WorldWideScience

Sample records for cobalt copper tin

  1. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  2. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  3. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  4. Comparative effects of cobalt, nickel and copper on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, W E

    1938-11-01

    An account is given of the present position of our knowledge with regard to the distribution and the physiological importance of nickel and cobalt, in relation to plants and animals. Experiments on barley and broad beans were carried out in water cultures with the sulfates and chlorides of cobalt, nickel and copper. In every case a range of low concentrations did little or no damage, but toxic action occurred abruptly above a concentration which varied with the species and with the compound. With barley, copper was the most poisonous element in either compound, but the differences were not striking. Low concentrations of the sulfate were innocuous, but parallel low strengths of the chloride caused a slight, significant depression in growth. With broad beans, cobalt was much more poisonous than either nickel or copper, particularly with the sulfate. No slight depression with low concentrations of the chloride was noticeable with this species. The morphological response to toxicity varied with the element concerned. Copper, in poisonous strengths, caused shortening and bunching of barley roots, whereas nickel and cobalt permitted the growth of elongated roots of a very attenuated nature. The individuality of plant response to poison was frequently shown by the great variation in growth in the borderline concentrations just below those which caused marked depression of growth.

  5. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Zeng, Guisheng; Deng, Xiaorong; Luo, Shenglian; Luo, Xubiao; Zou, Jianping

    2012-01-01

    Highlights: ► Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. ► The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. ► A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO 2 ) in this paper. The influence of copper ions on bioleaching of LiCoO 2 by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO 2 underwent a cationic interchange reaction with copper ions to form CuCo 2 O 4 on the surface of the sample, which could be easily dissolved by Fe 3+ .

  6. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guisheng, E-mail: zengguisheng@hotmail.com [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Deng, Xiaorong [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao; Zou, Jianping [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. Black-Right-Pointing-Pointer The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. Black-Right-Pointing-Pointer A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO{sub 2}) in this paper. The influence of copper ions on bioleaching of LiCoO{sub 2} by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO{sub 2} underwent a cationic interchange reaction with copper ions to form CuCo{sub 2}O{sub 4} on the surface of the sample, which could be easily dissolved by Fe{sup 3+}.

  7. Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery

    Directory of Open Access Journals (Sweden)

    Li Y.

    2018-01-01

    Full Text Available Recovery of copper and cobalt from smelter slag using reductive-sulfurizing smelting method was performed in this study. The effects of reductive agent (coke, sulfurizing agent (pyrite, slag modifier (CaO and smelting temperature and duration on the extractive efficiencies of Cu, Co and Fe were discussed. The phase compositions and microstructure of the materials, copper-cobalt matte and cleaned slag were determined. The results showed that copper and cobalt contents in cleaned slag could decrease averagely to 0.18% and 0.071% respectively after cleaning. 91.99% Cu and 92.94% Co and less than 38.73% Fe were recovered from the smelter slag under the optimum conditions: 6 wt.% coke, 20 wt.% pyrite and 6 wt.% CaO addition to the smelter slag, smelting temperature of 1350°C and smelting duration of 3h. The addition of CaO can increase the selectivity of Co recovery. The cleaning products were characterized by XRD and SEM-EDS analysis. The results showed that the main phases of copper-cobalt matte were iron sulfide (FeS, geerite (Cu8S5, iron cobalt sulfide (Fe0.92Co0.08S and Fe-Cu-Co alloy. The cleaned slag mainly comprised fayalite (Fe2SiO4, hedenbergite (CaFe(Si2O6 and magnetite (Fe3O4.

  8. Sorption of copper, zinc and cobalt by oat and oat products.

    Science.gov (United States)

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  9. Growth and Characterisation of Pulsed-Laser Deposited Tin Thin Films on Cube-Textured Copper at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Szwachta G.

    2016-06-01

    Full Text Available High-quality titanium nitride thin films have been grown on a cube-textured copper surface via pulsed laser deposition. The growth of TiN thin films has been very sensitive to pre-treatment procedure and substrate temperature. It is difficult to grow heteroexpitaxial TiN films directly on copper tape due to large differences in lattice constants, thermal expansion coefficients of the two materials as well as polycrystalline structure of substrate. The X-Ray diffraction measurement revealed presence of high peaks belonged to TiN(200 and TiN(111 thin films, depending on used etcher of copper surface. The electron diffraction patterns of TiN(200/Cu films confirmed the single-crystal nature of the films with cube-on-cube epitaxy. The high-resolution microscopy on our films revealed sharp interfaces between copper and titanium nitride with no presence of interfacial reaction.

  10. Synthesis and shape control of copper tin sulphide nanocrystals and formation of gold-copper tin sulphide hybrid nanostructures

    International Nuclear Information System (INIS)

    Kruszynska, Marta; Parisi, Juergen; Kolny-Olesiak, Joanna

    2014-01-01

    Hexagonal prismatic Cu 3 SnS 4 nanoparticles and nanorods were synthesized by a hot-injection procedure. Changing the reaction conditions leads to the formation of different shapes. When oleylamine is used as a solvent, hexagonal prismatic particles are obtained, while a reaction in octadecene results in the formation of nanorods. The growth process of copper tin sulphide starts with the formation of djurleite copper sulphide seeds. Their reaction with Sn 4+ ions leads to the formation of Cu 3 SnS 4 . These Cu 3 SnS 4 nanocrystals form Au-Cu 3 SnS 4 hybrid nanostructures by reaction with gold seeds.

  11. Synthesis and shape control of copper tin sulphide nanocrystals and formation of gold-copper tin sulphide hybrid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kruszynska, Marta; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research Lab.

    2014-08-15

    Hexagonal prismatic Cu{sub 3}SnS{sub 4} nanoparticles and nanorods were synthesized by a hot-injection procedure. Changing the reaction conditions leads to the formation of different shapes. When oleylamine is used as a solvent, hexagonal prismatic particles are obtained, while a reaction in octadecene results in the formation of nanorods. The growth process of copper tin sulphide starts with the formation of djurleite copper sulphide seeds. Their reaction with Sn{sup 4+} ions leads to the formation of Cu{sub 3}SnS{sub 4}. These Cu{sub 3}SnS{sub 4} nanocrystals form Au-Cu{sub 3}SnS{sub 4} hybrid nanostructures by reaction with gold seeds.

  12. Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

    International Nuclear Information System (INIS)

    Dong, Yuming; Wu, Lina; Wang, Guangli; Zhao, Hui; Jiang, Pingping; Feng, Cuiyun

    2013-01-01

    A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state

  13. Plasma Deposition and Characterization of Copper-doped Cobalt Oxide Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jacek TYCZKOWSKI

    2013-09-01

    Full Text Available A series of pure and copper-doped cobalt oxide films was prepared by plasma-enhanced metalorganic chemical vapor deposition (PEMOCVD. The effect of Cu-doping on the chemical structure and morphology of the deposited films was investigated. Raman and FTIR spectroscopies were used to characterize the chemical structure and morphology of the produced films. The bulk composition and homogeneity of the samples were investigated by energy dispersive X-ray microanalysis (EDX, and X-ray photoelectron spectroscopy (XPS was employed to assess the surface chemical composition of pure and doped materials. The obtained results permit to affirm that the PEMOCVD technique is a simple, versatile and efficient method for providing homogeneous layers of cobalt oxides with a different content of copper. It has been found that pure cobalt oxide films mainly contain Co3O4 in the form of nanoclusters whereas the films doped with Cu are much more complex, and CoOx (also Co3O4, mixed Co-Cu oxides and CuOx nanoclusters are detected in them. Preliminary catalytical tests show that Cu-doped cobalt oxide films allow to initiate catalytic combustion of n-hexane at a lower temperature compared to the pure cobalt oxide (Co3O4 films. From what has been stated above, the plasma-deposited thin films of Cu-doped cobalt oxides pave the way towards a new class of nanomaterials with interesting catalytic properties. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.2320

  14. Effect of Tin, Copper and Boron on the Hot Ductility of 20CrMnTi Steel between 650 °C and 1100 °C

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% tin, y% copper and z ppm boron (x = 0, 0.02; y = 0, 0.2; z = 0, 60) was investigated. The results show that tin and copper in 20CrMnTi steel are detrimental to its hot ductility while adding boron can eliminate the adverse effect and enhance hot ductility greatly. Tin is found to segregate to the boundaries tested by EPMA in 20CrMnTi steel containing tin and copper and tin-segregation is suppressed by adding boron, moreover, copper was found not to segregate to boundaries, however, fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of tin and copper on the hot ductility was due mainly to tin segregation and fine copper sulfide in the steel. The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the three examined steels. Tin and copper in 20CrMnTi steel can retard the occurrence of dynamic recrystallization (DRX) while boron-addition can compensate for that change. The beneficial effect of boron on 20CrMnTi steel containing tin and copper might be ascribed to the fact that boron segregates to grain boundaries, accelerates onset of DRX, retards austenite/ferrite transformation and promotes intragranular nucleation of ferrite.

  15. Research into tin and arsenical copper artefacts using nuclear analytical techniques

    International Nuclear Information System (INIS)

    Grant, M.R.

    1995-01-01

    This study includes the chemical analysis, sourcing and historical metallurgy of tin and arsenical copper artefacts discovered at Rooiberg and elsewhere in the Northern Transvaal and at Great Zimbabwe. A complete chemical analysis method for tin and cassiterite is presented, based on INAA (instrumental neutron activation analysis) and supplemented by PIXE or AAS for elements such as lead, bismuth and niobium. This is apparently the first study in which tin artefacts were analysed by INAA without chemical processing of the samples. INAA and PIXE returned the same results when a homogenized tin alloy block was analysed, but the structure and distribution of hardhead phases appear to produce an iron quantification problem in ancient tin. Ores and slags were analysed for light matrix elements by XRF or PIXE and INAA for the heavy trace metals. 108 refs., 24 figs., 130 tabs

  16. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    Science.gov (United States)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  17. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats

    International Nuclear Information System (INIS)

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-01-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm 2 of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm 2 . To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. - Highlights: • A new XRF application for analysing metals in antifouling paints has been used. • Almost 700 leisure boats were analysed for tin, copper and zinc. • Over 10% of the leisure boats contained high, >400

  18. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  19. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  20. World production and possible recovery of cobalt from the Kupferschiefer stratiform copper ore

    Directory of Open Access Journals (Sweden)

    Pazik Paulina M.

    2016-01-01

    Full Text Available Cobalt is recognized as a strategic metal and also E-tech element, which is crucial for worlds development. An increasing demand for cobalt forces for searching of new resources that could be explored in European countries. There are many examples of cobalt recoveries, mostly from laterite and sulphide deposits. However, the accurate choice of the technology depends on many factors. The Kupferschiefer stratiform copper ore located in Poland is the biggest deposit of cobalt in Europe. Although KGHM Polska Miedz S.A. recovers many precious metals from this ore, cobalt is not recovered yet. This metal occurs as an accompanying element, mostly in the form of cobaltite (CaAsS, with the average content of 50–80 g/Mg. In this paper a possible recovery of cobalt from the Kupferschiefer ore, with the use of hydrometallurgical methods, was investigated.

  1. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  2. Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2017-12-01

    Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Preparation of phenacylchloride, morpholinophenacyl and N-Piperidinophenacyl oximes and study of their complexation with Copper (II) and Cobalt (II) ions

    International Nuclear Information System (INIS)

    Ali, Kamal Eldin Ahmed

    1999-01-01

    The aim of the present work is to prepare phenacyl chloride oxime and phenacyl of N-Piperidine and morpholine derivatives, and mainly to study their complexes with Cu(II) and Co(II) ions with objective ascertaining that one of these ligands can be used in quantitative extraction of these metal ions from the aqueous solution. Copper (II) salts form 1:1 complexes with the phenyacyl oximes of N-piperidine and morpholine and 1:2 complex with phenacyl chloride oxime. However, cobalt(II) salts form 1:2 complexes with phenacyl oxime of N-piperidine and morpholine but does not complex with phenacyl chloride oxime. The stoichiometry of these complexes were determined by UV/VIS spectrophotometry using the mole ratio, continuous variation and slope ratio methods.The stability constants of the five complexes were calculated from aberrances using Job's method. They showed that the copper (II) and cobalt (II) complexes with N-piperidinophenacy oxime are more stable than those with morpholinophenacyl oxime. Copper (II) complexes with any of these two ligands are more stable than those of cobalt (II). IR spectra of the complexes of copper (II) and cobalt (II) with phenacyl oxime of N-piperidine and morpholine show diminished peaks of hydrogen bonds between N and O atoms of the ligand. Specific extractabilities using amylalcohol of copper (II) complexes with the three ligands increase from PH4 to reach its maximum at PH8. The high value for N-piperidinophenacyl oxime ligand (96%-97%) indicates that, this ligand can be used as analytical reagent for the quantitative spectrophotometric determination of copper (II) salts in aqueous media. Cobalt (II) complexes were formed and extracted from solution only at PH6 (specific PH). The extractabilities ranging from 81.6-87.2% warrants the use of these ligands in quantitative spectrophotometric determination of cobalt (II).(Author)

  4. Chitosan doped with nanoparticles of copper, nickel and cobalt.

    Science.gov (United States)

    Cárdenas-Triviño, Galo; Elgueta, Carolina; Vergara, Luis; Ojeda, Javier; Valenzuela, Ariel; Cruzat, Christian

    2017-11-01

    Metal colloids in 2 propanol using nanoparticles (NPs) of copper, nickel and cobalt were prepared by Chemical Liquid Deposition (CLD) method. The resulting colloidal dispersions were characterized by Transmission Electron Microscopy (TEM). The colloids were supported in chitosan. Then, microbiological assays were performed using E. coli and S. aureus in order to determine the bactericide/bacteriostatic activity of nanoparticles (NPs) trapped or chelated with chitosan. Finally, the toxicity of the metal colloids Cu, Ni and Co was tested. Bio-assays were conducted in three different animal species. First of all on earth warms (Eisenia foetida) to evaluate the toxicity and the biocompatibility of chitosan in lactic acid (1% and 0.5%). Secondly bio-assay done in fishes (rainbow trout), the liver toxicity of NPs in vivo was evaluated. Finally, a bio-assay was conducted in Sprange-Dawley rats of 100g weight, which were injected intraperitoneally with different solutions of chitosan metal colloids. Then, the minimum and maximum concentration were determined for copper, nickel and cobalt. The purpose of the use of chitosan was acting as a carrier for some magnetic NPs, which toxicity would allow to obtain new polymeric materials with potential applications as magnet future drugs carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of copper additions in tin molten pool on stability temperature and critical current of Nb3Sn

    International Nuclear Information System (INIS)

    Kruzliak, J.; Hutka, P.; Tomasich, M.

    1979-01-01

    Tested is the effect of 55 at% copper addition into the tin bath on the stability temperature and crytical current of Nb 3 Sn, prepared by the diffusion method. It is shown that copper presence in the tin bath transfers the stability temperature of NbSn 2 and Nb 6 Sn 5 phases below the annealing temperature of 700 deg C. It results in Nb 3 Sn appearance at the annealing temperatures above 600 deg C. The critical current increase is explained as follows: lower Nb 3 Sn appearance temperatures provide fine-grained structure of superconducting Nb 3 Sn layer with greater density of binning centers and with higher critical current in accordance with NbSn prepared by the diffusion of pure tin into niobium

  6. Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Shim Hee-Sang

    2011-01-01

    Full Text Available Abstract We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoO x . The copper nanofibers (CuNFs were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoO x thin-film (CoO x TF electrodes, the CuNFs@CoO x electrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoO x composite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries.

  7. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  8. Dissolution of copper, tin, and iron from sintered tungsten-bronze spheres in a simulated avian gizzard, and an assessment of their potential toxicity to birds

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; McGill, Ian R.

    2008-01-01

    The rates of dissolution of copper, tin, and iron from sintered tungsten-bronze spheres (51.1%W, 44.4%Cu, 3.9%Sn, 0.6%Fe, by mass) were measured in an in vitro simulated avian gizzard at pH 2.0, and 42C. Most of the spheres had disintegrated completely to a fine powder by day 14. Dissolution of copper, tin, and iron from the spheres was linear over time; all r > 0.974; all P < 0.001. The mean rate of release of copper, tin, and iron was 30.4 mg, 2.74 mg, and 0.38 mg per g tungsten-bronze per day, respectively. These rates of metal release were compared to those in published studies to determine whether the simultaneous ingestion of eight spheres of 3.48 mm diameter would pose a toxic risk to birds. The potential absorption rates of iron and tin (0.54 mg Fe/day, and 3.89 mg Sn/day) from eight tungsten-bronze spheres of total mass 1.42 g would not prove toxic, based on empirical studies of tin and iron ingestion in waterfowl. The release of 43.17 mg copper/day from eight tungsten-bronze spheres, while exceeding the daily copper requirements of domesticated birds, is far below the levels of copper known to cause copper toxicosis in birds. We conclude that sintered tungsten-bronze material made into gunshot, fishing weights, or wheel balance weights, would not pose a toxic risk to wild birds when ingested

  9. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  10. Isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi; Itami, Akira

    1989-01-01

    The isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide ion exchanger and aqueous solutions was radiochemically measured to obtain fundamental data which are useful for elucidating the ion-exchange kinetics of the material for the transition metal elements. The rate can be understood by considering that the cobalt ions were present in the exchanger as three kinds of species: (A 1 ) Free ions which can diffuse in the exchanger particles, (A 2 ) Weakly bound ions to the exchange sites which exchange rapidly with A 1 , and (B) Covalently fixed ions to the exchange sites which exchange very slowly with A 1 . At low fraction of B, the rate is controlled by the diffusion of A 1 with the effective diffusion coefficient, D eff , the values of which depend on the concentration ratios of A 2 to A 1 . When B predominates over the A species, the concentration ratios of B to A 1 affect greatly D eff . The values of D eff and their activation energy(20 kJ/mol) were also estimated

  11. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  12. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors

    Science.gov (United States)

    Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.

    2014-12-01

    The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.

  13. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  14. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    Science.gov (United States)

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  15. Biogeochemical investigations in areas of copper-tin mineralization in south-west England

    Energy Technology Data Exchange (ETDEWEB)

    Millman, A P

    1957-01-01

    Semi-quantitative methods of spectrographic analysis have been employed for the determination of Cu, Sn, Zn, Pb, and Ag in the leaves and twigs of a variety of trees growing in an area of copper-tin mineralization on the borders of Cornwall and Devon. The distribution of these ore metals in the soil profiles was also determined. Ore-negative (background) values have been derived for the trees and the soils, and these are compared with the results of earlier work in Southern Nigeria and Northern Rhodesia. 20 references, 4 tables.

  16. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Metals are present in electronic cigarette (EC fluid and aerosol and may present health risks to users.The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components.Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy.All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol.Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality.

  17. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  18. Optical absorption, {sup 31}P NMR, and photoluminescence spectroscopy study of copper and tin co-doped barium–phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, J.A., E-mail: jose.jimenez@unf.edu; Zhao, C.

    2014-10-15

    The optical and structural properties of 50P{sub 2}O{sub 5}:50BaO glasses prepared by melting have been investigated for additive concentrations of 10 and 1 mol% of CuO and SnO dopants. Absorption and photoluminescence spectroscopies were employed in the optical characterization, whereas structural properties were assessed by {sup 31}P nuclear magnetic resonance (NMR) spectroscopy. Residual Cu{sup 2+} was detectable by absorption spectroscopy for the highest concentration of CuO and SnO. More prominently, the optical data suggests contributions from both twofold-coordinated Sn centers and Cu{sup +} ions to light absorption and emission in the glasses. The luminescence depends strongly on excitation wavelength for the highest concentration of dopants where a blue–white emission is observed under short-wavelength excitation (e.g., 260 nm) largely due to tin, while an orange luminescence is exhibited for longer excitation wavelengths (e.g., 360 nm) essentially due to Cu{sup +} ions. On the other hand, dissimilar luminescent properties were observed in connection to Cu{sup +} ions for the lowest concentration studied, as the copper ions were preferentially excited in a narrower range at shorter wavelengths near tin centers absorption. The structural analyses revealed the glass matrix to be composed essentially of Q{sup 2} (two bridging oxygens) and Q{sup 1} (one bridging oxygen) phosphate tetrahedra. A slight increase in the Q{sup 1}/Q{sup 2} ratio reflected upon SnO doping alone suggests a major incorporation of tin into the glass network via P–O–Sn bonds, compatible with the 2-coordinated state attributed to the luminescent Sn centers. However, a significant increase in the Q{sup 1}/Q{sup 2} ratio was indicated with the incorporation of copper at the highest concentration, consistent with a key role of the metal ions as network modifiers. Thus, the change in Cu{sup +} optical properties concurs with different distributions of local environments around the

  19. Strategies to Reduce Tin and Other Metals in Electronic Cigarette Aerosol

    Science.gov (United States)

    Williams, Monique; To, An; Bozhilov, Krassimir; Talbot, Prue

    2015-01-01

    Background Metals are present in electronic cigarette (EC) fluid and aerosol and may present health risks to users. Objective The objective of this study was to measure the amounts of tin, copper, zinc, silver, nickel and chromium in the aerosol from four brands of EC and to identify the sources of these metals by examining the elemental composition of the atomizer components. Methods Four brands of popular EC were dissected and the cartomizers were examined microscopically. Elemental composition of cartomizer components was determined using integrated energy dispersive X-ray microanalysis, and the concentrations of the tin, copper, zinc silver, nickel, and chromium in the aerosol were determined for each brand using inductively coupled plasma optical emission spectroscopy. Results All filaments were made of nickel and chromium. Thick wires were copper coated with either tin or silver. Wires were joined to each other by tin solder, brazing, or by brass clamps. High concentrations of tin were detected in the aerosol when tin solder joints were friable. Tin coating on copper wires also contributed to tin in the aerosol. Conclusions Tin concentrations in EC aerosols varied both within and between brands. Tin in aerosol was reduced by coating the thick wire with silver rather than tin, placing stable tin solder joints outside the atomizing chamber, joining wires with brass clamps or by brazing rather than soldering wires. These data demonstrate the feasibility of removing tin and other unwanted metals from EC aerosol by altering designs and using materials of suitable quality. PMID:26406602

  20. Operationally defined species characterization and bioaccessibility evaluation of cobalt, copper and selenium in Cape gooseberry (Physalis Peruviana L.) by SEC-ICP MS.

    Science.gov (United States)

    Wojcieszek, Justyna; Ruzik, Lena

    2016-03-01

    Physalis peruviana could attract great interest because of its nutritional and industrial properties. It is an excellent source of vitamins, minerals, essential fatty acids and carotenoids. Physalis Peruviana is also known to have a positive impact on human health. Unfortunately, still little is known about trace elements present in Physalis Peruviana and their forms available for the human body. Thus, the aim of this study was to estimate bioaccessibility and characterization of species of cobalt, copper and selenium in Physalis Peruviana fruits. Total and extractable contents of elements were determined by mass spectrometer with inductively coupled plasma (ICP MS). In order to separate the different types of metal complexes Physalis peruviana fruits were treated with the following solvents: Tris-HCl (pH 7.4), sodium dodecyl sulfate (SDS) (pH 7.4) and ammonium acetate (pH 5.5). The best efficiency of extraction of: cobalt was obtained for ammonium acetate (56%) and Tris-HCl (60%); for copper was obtained for SDS (66%), for selenium the best extraction efficiency was obtained after extraction with SDS (48%). To obtain information about bioaccessibility of investigated elements, enzymatic extraction based on in vitro simulation of gastric (pepsin) and intestinal (pancreatin) digestion was performed. For copper and selenium the simulation of gastric digestion leads to the extraction yield above 90%, while both steps of digestion method were necessary to obtain satisfactory extraction yield in the case of cobalt. Size exclusion chromatography (SEC) coupled to on-line ICP MS detection was used to investigate collected metal species. The main fraction of metal compounds was found in the 17 kDa region. Cobalt and copper create complexes mostly with compounds extracted by means of ammonium acetate and SDS, respectively. Cobalt, copper and selenium were found to be highly bioaccessible from Physalis Peruviana. Investigation of available standards of cobalt and selenium

  1. Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan

    OpenAIRE

    Lei Sun; Yuehua Hu; Wei Sun; Zhiyong Gao; Mengjie Tian

    2017-01-01

    Tajikistan has abundant copper–tin resources. In this study, mineralogical analysis of copper–tin ores from the Mushiston deposit of Tajikistan indicates that tin mainly occurred in mushistonite, cassiterite, and stannite, while copper mainly occurred in mushistonite, malachite, azurite, and stannite. The total grades of tin (Sn) and copper (Cu) were 0.65% and 0.66%, respectively, and the dissemination size of copper–tin minerals ranged from 4 μm to over 200 μm. Coarse particles of copper–tin...

  2. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    Science.gov (United States)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  3. Electrodeposition of white copper-tin alloys from alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Purwadaria, H.S.; Zainal Arifin Ahmad

    2007-01-01

    Electrodeposition of white copper-tin alloys (including with mir alloys) has been done onto planar mild steel substrates from alkaline cyanide solutions at 65 degree C. The chemical composition of the coating is influenced by plating bath composition and current density. White mir alloy can be produced from the test solution containing 10 g/l CuCN 2 ,45 g/l Na 2 SnO 3 , 25 g/l NaCN, and 12 g/l NaOH at current density about 5 mA/cm?2. The local compositions of the coating cross section were analyzed using EDX installed in a FESEM operated at an accelerating voltage of 20 kV. The phases formed during co-deposition process were identified using XRD at 25 mA current and 35 kV voltage. (Author)

  4. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  5. Effect of sample preparation methods on photometric determination of the tellurium and cobalt content in the samples of copper concentrates

    Directory of Open Access Journals (Sweden)

    Viktoriya Butenko

    2016-03-01

    Full Text Available Methods of determination of cobalt and nickel in copper concentrates currently used in factory laboratories are very labor intensive and time consuming. The limiting stage of the analysis is preliminary chemical sample preparation. Carrying out the decomposition process of industrial samples with concentrated mineral acids in open systems does not allow to improve the metrological characteristics of the methods, for this reason improvement the methods of sample preparation is quite relevant and has a practical interest. The work was dedicated to the determination of the optimal conditions of preliminary chemical preparation of copper concentrate samples for the subsequent determination of cobalt and tellurium in the obtained solution using tellurium-spectrophotometric method. Decomposition of the samples was carried out by acid dissolving in individual mineral acids and their mixtures by heating in an open system as well as by using ultrasonification and microwave radiation in a closed system. In order to select the optimal conditions for the decomposition of the samples in a closed system the phase contact time and ultrasonic generator’s power were varied. Intensification of the processes of decomposition of copper concentrates with nitric acid (1:1, ultrasound and microwave radiation allowed to transfer quantitatively cobalt and tellurium into solution spending 20 and 30 min respectively. This reduced the amount of reactants used and improved the accuracy of determination by running the process in strictly identical conditions.

  6. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  7. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    Science.gov (United States)

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations

  8. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    Science.gov (United States)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt

  9. Effects of iron, tin, and copper on zinc absorption in humans

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Chamberlain, M.J.

    1984-01-01

    Zinc absorption as measured by body retention of [65Zn]zinc chloride or a turkey test meal extrinsically labeled with 65Zn was determined in human subjects by whole body counting after 7 days. Average 65Zn absorption from zinc chloride in persons with a high iron-absorbing capacity was similar to persons with a low capacity to absorb iron. Inorganic iron, 920 mumol (51 mg), or HB iron, 480 mumol (26 mg), inhibited 65Zn absorption from 92 mumol (6 mg) of zinc chloride. When 610 mumol of iron (34 mg) was added to a turkey test meal containing 61 mumol of zinc (4 mg), 65Zn absorption was not inhibited. Tin, 306 mumol (36 mg), given with zinc chloride or turkey test meals (61 mumol, 4 mg, of Zn) significantly reduced 65Zn absorption. Copper, 79 mumol (5 mg), had no significant effect on the 65Zn absorption from 7.9 mumol (0.5 mg) of zinc chloride. In summary, the capacity to absorb iron did not influence 65Zn absorption, but both inorganic iron and heme-iron inhibited 65Zn absorption from zinc chloride. Inorganic iron had no effect, however, on 65Zn absorption from the turkey test meal. Tin in a large dose also inhibited 65Zn absorption from both zinc chloride and the turkey test meal

  10. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  11. Cobalt mineral exploration and supply from 1995 through 2013

    Science.gov (United States)

    Wilburn, David R.

    2011-01-01

    The global mining industry has invested a large amount of capital in mineral exploration and development over the past 15 years in an effort to ensure that sufficient resources are available to meet future increases in demand for minerals. Exploration data have been used to identify specific sites where this investment has led to a significant contribution in global mineral supply of cobalt or where a significant increase in cobalt production capacity is anticipated in the next 5 years. This report provides an overview of the cobalt industry, factors affecting mineral supply, and circumstances surrounding the development, or lack thereof, of key mineral properties with the potential to affect mineral supply. Of the 48 sites with an effective production capacity of at least 1,000 metric tons per year of cobalt considered for this study, 3 producing sites underwent significant expansion during the study period, 10 exploration sites commenced production from 1995 through 2008, and 16 sites were expected to begin production by 2013 if planned development schedules are met. Cobalt supply is influenced by economic, environmental, political, and technological factors affecting exploration for and production of copper, nickel, and other metals as well as factors affecting the cobalt industry. Cobalt-rich nickel laterite deposits were discovered and developed in Australia and the South Pacific and improvements in laterite processing technology took place during the 1990s and early in the first decade of the 21st century when mining of copper-cobalt deposits in Congo (Kinshasa) was restricted because of regional conflict and lack of investment in that country's mining sector. There was also increased exploration for and greater importance placed on cobalt as a byproduct of nickel mining in Australia and Canada. The emergence of China as a major refined cobalt producer and consumer since 2007 has changed the pattern of demand for cobalt, particularly from Africa and

  12. Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates

    Science.gov (United States)

    Panchapakesan, Balaji; Cavicchi, Richard; Semancik, Steve; DeVoe, Don L.

    2006-01-01

    In this paper, the sensitivity, stability and selectivity of nanoparticle engineered tin oxide (SnO2) are reported, for microhotplate chemical sensing applications. 16 Å of metals such as nickel, cobalt, iron, copper and silver were selectively evaporated onto each column of the microhotplate array. Following evaporation, the microhotplates were heated to 500 °C and SnO2 was deposited on top of the microhotplates using a self-aligned chemical vapour deposition process. Scanning electron microscopy characterization revealed control of SnO2 nanostructures in the range of 20-121 nm. Gas sensing in seven different hydrocarbons revealed that metal nanoparticles that helped in producing faster nucleation of SnO2 resulted in smaller grain size and higher sensitivity. Sensitivity as a function of concentration and grain size is addressed for tin oxide nanostructures. Smaller grain sizes resulted in higher sensitivity of tin oxide nanostructures. Temperature programmed sensing of the devices yielded shape differences in the response between air and methanol, illustrating selectivity. Spiderweb plots were used to monitor the materials programmed selectivity. The shape differences between different gases in spiderweb plots illustrate materials selectivity as a powerful mapping approach for monitoring selectivity in various gases. Continuous monitoring in 80 ppm methanol yielded stable sensor response for more than 200 h. This comprehensive study illustrates the use of a nanoparticle engineering approach for sensitive, selective and stable gas sensing applications.

  13. Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing

    International Nuclear Information System (INIS)

    Carreon, Hector; Nagy, Peter B.; Nayfeh, Adnan H.

    2000-01-01

    Inclusions and other types of imperfections in metals can be nondestructively detected by noncontacting magnetic measurements that sense the thermoelectric currents around such flaws when the specimen is subjected to directional heating and cooling. This article presents experimental data for the magnetic field produced by thermoelectric currents around surface-breaking spherical tin inclusions in copper under external thermal excitation for different lift-off distances between the sensor and the surface of the specimen. The diameter of the inclusions and the lift-off distance varied from 2.4 to 12.7 mm and from 12 to 20 mm, respectively. A fairly modest 0.7 o C/cm temperature gradient in the specimen produced peak magnetic flux densities ranging from 1 to 250 nT. These results were found to be in good agreement with recently published theoretical predictions [P. B. Nagy and A. H. Nayfeh, J. Appl. Phys. 87, 7481 (2000)

  14. The use of a hierarchically platinum-free electrode composed of tin oxide decorated polypyrrole on nanoporous copper in catalysis of methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Elnaz, E-mail: elnazasghari@yahoo.com; Ashassi-Sorkhabi, Habib; Vahed, Akram; Rezaei-Moghadam, Babak; Charmi, Gholam Reza

    2016-01-01

    Tin oxide nanoparticles were synthesized through a galvanostatic pathway on polypyrrole, PPy, coated nanoporous copper. The morphology and surface analysis of the assemblies were evaluated by field emission scanning electron microscopy, FESEM, and energy dispersive X-ray, EDX, analysis, respectively. The electrocatalytic behavior of electrodes was studied by cyclic voltammetry and chronoamperometry tests in methanol solution. FESEM results showed that uniformly distributed nanoparticles with diameters of about 20–30 nm have been dispersed on PPy matrix. Cyclic voltammetry and chronoamperometry tests in methanol solution showed a significant enhancement in the catalytic action of PPy after decoration of tin oxide nanoparticles. Porous Cu/PPy/SnO{sub x} electrodes showed enhanced anodic peak current density for methanol oxidation compared to smooth Cu/PPy/SnO{sub x} and porous Cu/PPy. The effects of synthesis current density and time on the electrocatalytic behavior of the electrodes were evaluated. The significant enhancement of electrocatalytic behavior of the Cu/PPy electrode after decoration of SnO{sub x} overlayer was attributed to the effect of tin oxide on the adsorption of intermediates of methanol oxidation as well as oxidation of bi-products such as CO; huge tendency of tin oxides for dehydrogenation of the alcohols and the increase in microscopic surface area of the electrodes were introduced as other affecting factors. - Highlights: • Nanoporous copper–zinc substrates were formed by chemical leaching of zinc. • Polypyrrole thin film was electrodeposited on nanoporous copper. • Thin oxide nanoparticles were synthesized electrochemically on polypyrrole layer. • The catalytic performance of the electrodes was evaluated for methanol oxidation.

  15. Flotation-separation and ICP-AES determination of ultra trace amounts of copper, cadmium, nickel and cobalt using 2-aminocyclopentene-1-dithiocarboxylic acid.

    Science.gov (United States)

    Shamsipur, Mojtaba; Hashemi, Omid Reza; Safavi, Afsaneh

    2005-09-01

    A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.

  16. Incorporation of Tin on copper clad laminate to increase the interface adhesion for signal loss reduction of high-frequency PCB lamination

    Science.gov (United States)

    Wang, Chong; Wen, Na; Zhou, Guoyun; Wang, Shouxu; He, Wei; Su, Xinhong; Hu, Yongsuan

    2017-11-01

    A novel method of improving the adhesion between copper and prepreg in high frequency PCB was proposed and studied in this work. This process which aimed to decrease the IEP (isoelectric point) of the copper to obtain higher adhesion, was achieved by depositing a thin tin layer with lower IEP on copper. It was characterized by scanning electron microscopy (SEM), 3D microscope, peel strength test, X-Ray thickness test, grazing incidence X-ray diffraction (GXRD), X-ray photoelectron spectroscopy (XPS), Agilent vector network analyzer (VNA), which confirmed its excellent adhesion performance and outstanding electrical properties in high-frequency signal transmission compared with traditional brown oxide method. Moreover, the mechanism of achieving high adhesion for this method was also investigated.

  17. Seasonal study on Bothriocephalus as indicator of metal pollution in ...

    African Journals Online (AJOL)

    ... vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, antimony, tellurium, barium, mercury, thallium, lead and uranium) were determined with an ICP-MS. Bioconcentration of metals (selenium, mercury, and lead during autumn; copper, zinc, selenium, cadmium, ...

  18. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Wei-Dong [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China); Huang, Shu-Ping [Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069 (United States); Lee, Chun-Sing, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Material Science, City University of Hong Kong, Hong Kong (China)

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.

  19. An Analysis of the Mineral Industries of the Republics of China, the Philippines, and Korea, the Kingdom of Thailand, and New Zealand. Volume 1.

    Science.gov (United States)

    1984-12-01

    spect to gold production, processing gold as a byproduct of copper extraction . 2 The Kingdom of Thailand is also richly endowed with minerals. The...process, a relatively confidential process which yields a good recovery rate and promotes cobalt byproduct extraction .1 6 In an effort to reduce production...diversifying its economy. Important minerals in this part of the world include chromium, copper, cobalt, gold , tin, tantalum, natural gas, antimony, graphite

  20. Study of Malayaite and Malayaite Cobalt Pigment

    International Nuclear Information System (INIS)

    Pina, C.; Arriola, H.; Nava, N.

    2005-01-01

    Calcium tin silicate, CaSnSiO 5 , called Malayaite is synthesized with equimolecular quantities of calcium oxide, silica and stannic oxide followed by a thermic process. In this work, the synthesis of Malayaite and the structure of a Malayaite-based pigment, Sn/Co pink, is investigated by X-ray diffraction and Mossbauer spectroscopy. The results indicate Malayaite and Cassiterite formation, but the ion cobalt incorporated in the Malayaite structure, diminishes the Cassiterite proportion and causes larger asymmetry in the environment of the tin atom.

  1. Synthesis, characterization and polymerization of methacrylates of copper (II), cobalt (II) and molybdenum (II). Generation of new materials

    International Nuclear Information System (INIS)

    Rojas Bolanos, Omar

    2006-01-01

    Coordination compounds of the species copper (II), cobalt (II) and molybdenum (II) with methacrylic acid were synthesized and characterized. Besides, it realized reactions of bromine addition to the doubles links of the species obtained previously, also too like reactions with dry HCl. Finally, it got hybrids materials by polymerization of the first compounds in an acrylic matrix. Research concluded with the characterization of all the products. (author) [es

  2. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    Breckenridge, R.L.; Russell, G.M.; Watson, A.E.

    1976-01-01

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  3. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous separation/preconcentration of nickel, cobalt and copper prior to determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mooud Amirkavei

    2013-01-01

    Full Text Available A dispersive liquid-liquid microextraction based on solidification of floating organic drop for simultaneous extraction of trace amounts of nickel, cobalt and copper followed by their determination with electrothermal atomic absorption spectrometry was developed. 300 µL of acetone and 1-undecanol was injected into an aqueous sample containing diethyldithiocarbamate complexes of metal ions. For a sample volume of 10 mL, enrichment factors of 277, 270 and 300 and detection limits of 1.2, 1.1 and 1 ng L-1 for nickel, cobalt and copper were obtained, respectively. The method was applied to the extraction and determination of these metals in different water samples.

  4. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples

    International Nuclear Information System (INIS)

    Ghaedi, M.; Ahmadi, F.; Soylak, M.

    2007-01-01

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni 2+ , Cu 2+ and Co 2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 μg L -1 for copper, 0.75 μg L -1 for nickel and 0.80 μg L -1 for cobalt. The loading capacity was 0.56 mg g -1 for Ni 2+ , 0.50 mg g -1 for Cu 2+ and 0.47 mg g -1 for Co 2+ . The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n = 3)

  5. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)]. E-mail: m_ghaedi@mail.yu.ac.ir; Ahmadi, F. [Gachsaran Azad University, Gachsaran (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni{sup 2+}, Cu{sup 2+} and Co{sup 2+} ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 {mu}g L{sup -1} for copper, 0.75 {mu}g L{sup -1} for nickel and 0.80 {mu}g L{sup -1} for cobalt. The loading capacity was 0.56 mg g{sup -1} for Ni{sup 2+}, 0.50 mg g{sup -1} for Cu{sup 2+} and 0.47 mg g{sup -1} for Co{sup 2+}. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n = 3)

  6. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples.

    Science.gov (United States)

    Ghaedi, M; Ahmadi, F; Soylak, M

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni2+, Cu2+ and Co2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 microg L(-1) for copper, 0.75 microg L(-1) for nickel and 0.80 microg L(-1) for cobalt. The loading capacity was 0.56 mg g(-1) for Ni2+, 0.50 mg g(-1) for Cu2+ and 0.47 mg g(-1) for Co2+. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n=3).

  7. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  8. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  9. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  10. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Science.gov (United States)

    2010-07-01

    ... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... Pyridine 2,4,6-trichlorophenol Metal parameters Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Tin...-Cresol p-Cresol n-Decane Fluoranthene n-Octadecane Phenol Pyridine 2,4,6-trichlorophenol Metal parameters...

  11. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  12. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy.

    Science.gov (United States)

    Jin, Shujing; Qi, Xun; Wang, Tongmin; Ren, Ling; Yang, Ke; Zhong, Hongshan

    2018-02-01

    Endothelialization is an important process after stenting in coronary artery. Recovery of the injured site timely can reduce the neointima formation and platelet absorbance, leading to a lower risk of in-stent restenosis. Copper is known to be critical in vascular construction. Thus a combination of copper with stent materials is a meaningful attempt. A copper bearing L605-Cu cobalt alloy was prepared and its effect on human umbilical vein endothelial cells (HUVECs) was evaluated in vitro in this study. It was found that HUVECs attached and stretched better on the surface of L605-Cu compared with L605, and the apoptosis of cells was decreased simultaneously. The migration and tube formation of HUVECs were also enhanced by the extract of L605-Cu. Furthermore, L605-Cu increased the mRNA expression of VEGF in HUVECs significantly. However it had no effect on the secretion of NO or mRNA expression of eNOS. The result of blood clotting test indicated that L605-Cu had better blood compatibility. These results above have demonstrated that the L605-Cu alloy is promising to be a new stent material with function of accelerating endothelialization. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 561-569, 2018. © 2017 Wiley Periodicals, Inc.

  13. Tin

    Science.gov (United States)

    Kamilli, Robert J.; Kimball, Bryn E.; Carlin, James F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Tin (Sn) is one of the first metals to be used by humans. Almost without exception, tin is used as an alloy. Because of its hardening effect on copper, tin was used in bronze implements as early as 3500 B.C. The major uses of tin today are for cans and containers, construction materials, transportation materials, and solder. The predominant ore mineral of tin, by far, is cassiterite (SnO2).In 2015, the world’s total estimated mine production of tin was 289,000 metric tons of contained tin. Total world reserves at the end of 2016 were estimated to be 4,700,000 metric tons. China held about 24 percent of the world’s tin reserves and accounted for 38 percent of the world’s 2015 production of tin.The proportion of scrap used in tin production is between 10 and 25 percent. Unlike many metals, tin recycling is relatively efficient, and the fraction of tin in discarded products that get recycled is greater than 50 percent.Only about 20 percent of the world’s identified tin resources occur as primary hydrothermal hard-rock veins, or lodes. These lodes contain predominantly high-temperature minerals and almost invariably occur in close association with silicic, peraluminous granites. About 80 percent of the world’s identified tin resources occur as unconsolidated secondary or placer deposits in riverbeds and valleys or on the sea floor. The largest concentration of both onshore and offshore placers is in the extensive tin belt of Southeast Asia, which stretches from China in the north, through Thailand, Burma (also referred to as Myanmar), and Malaysia, to the islands of Indonesia in the south. Furthermore, tin placers are almost always found closely allied to the granites from which they originate. Other countries with significant tin resources are Australia, Bolivia, and Brazil.Most hydrothermal tin deposits belong to what can be thought of as a superclass of porphyry-greisen deposits. The hydrothermal tin deposits are all characterized by a close spatial

  14. Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Altimari, Pietro; Bellagamba, Marco; Granata, Giuseppe; Moscardini, Emanuela; Schiavi, Pier Giorgio; Toro, Luigi

    2015-01-01

    Cobalt nanoparticles were synthesized by pulsed electrodeposition on copper substrate. Scanning electron microscopy and image analysis were used to determine morphology and particle size distribution of nanoparticle populations obtained in different operating conditions. After preliminary tests, t on and t off were set at 50 and 300 ms respectively to obtain distinct nanoparticles and avoid dendritic structures. Experimental tests were performed according to two partially superimposed factorial designs with two factors at two levels. First factorial design investigated the effect of current density (I = 10 and 50 mA/cm 2 ) and discharged cobalt (Q = 2.5 × 10 −3 and 1.0 × 10 −2 C); second factorial design investigated the effect of cobalt concentration (C 0 = 0.01 and 0.1 M) for the same two levels of Q. For optimized value of t on /t off , square and hexagonal shaped nanoparticles were obtained. Statistical analysis evidenced that, for C 0 = 0.1 mol/L, current density is the most influencing factor on mean size: increasing I from 10 to 50 mA/cm 2 determined a diminution of mean size of 240 nm. For the same cobalt concentration, increasing the deposition time (Q) determined an increase of mean size of 60 nm. Diminishing the initial cobalt concentration from 0.1 to 0.01 mol/L determined an increase of mean size from 10 nm to 36 nm. For C 0 = 0.01 mol/L nanoparticles grow reaching an optimal size (36 nm) and then, increasing the time of deposition, optimal sized subunits tend to aggregate. As for polydispersity of nanoparticles, statistical tests denoted that increasing I determined significant reduction of variance, while increasing the time of deposition determined a significant increase of variance

  15. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of); Mishra, Chinmayee [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of); Hong, Hyun Seon [Sungshin University, Dept. of Interdisciplinary ECO Science, Seoul, 142-732 (Korea, Republic of); Cho, Sung-Soo [Institute for Advanced Engineering, Advanced Materials & Processing Center, Yongin, 449-863 (Korea, Republic of)

    2016-05-15

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching

  16. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes

    International Nuclear Information System (INIS)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-01-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m 3 of copper and 1.35 kg/m 3 of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater

  17. Investigation into cobalt, copper and vanadium complexes with phenylbenzimidazolylazoketoxime and o-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Dubinina, L F; Lipunova, G N; Medvedeva, L I; Mertsalov, S L [Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR)

    1983-01-01

    Complex formation of phenylbenzimidozolylazoketoxime (PhBAKO) with Co(2), Cu(2) and V(5) ions in aqueous-ethanol medium at different pH values, is investigated. In aqueous-ethanol medium PhBAKO forms coloured complexes. Reagent has a low selectivity under these conditions. It is found that the addition of phenanthroline not only increases the contrast of the reaction but considerably increases its selectivity. The optimum range of pH value of complex formation for vanadium is 6.0-8.2. A high selectivity of PhBAKO and the contrast nature of complex formation reaction of the reagent with cobalt copper and vanadium ions, different stability of complexes in the acidic medium have permitted to develop the photometric method of determination of these elements in natural waters in the case of their mutual presence. The limit of vanadium detection is 0.01 ..mu..g/ml.

  18. Selective Recovery of Mushistonite from Gravity Tailings of Copper–Tin Minerals in Tajikistan

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2017-12-01

    Full Text Available Tajikistan has abundant copper–tin resources. In this study, mineralogical analysis of copper–tin ores from the Mushiston deposit of Tajikistan indicates that tin mainly occurred in mushistonite, cassiterite, and stannite, while copper mainly occurred in mushistonite, malachite, azurite, and stannite. The total grades of tin (Sn and copper (Cu were 0.65% and 0.66%, respectively, and the dissemination size of copper–tin minerals ranged from 4 μm to over 200 μm. Coarse particles of copper–tin minerals were partially recovered by shaking table concentrators with a low recovery rate. Based on the mineralogical analysis, flotation recovery was used for the first time on the fine particles of copper–tin minerals, including mushistonite, from shaking table tailings. Single factor flotation experiments, open circuit flotation tests, and closed circuit flotation tests were performed to determine the optimized flotation conditions. Results indicated that benzohydroxamic acid (C6H5CONHOH and lead nitrate could effectively recover the mushistonite, cooperating with other depressants. The final concentrate contained 13.28% Sn, with a recovery rate of 61.56%, and 18.51% Cu, with a recovery rate of 86.52%. This method proved effective for the exploitation and use of this type of copper–tin resource in Tajikistan.

  19. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  20. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  1. Proton microprobe study of tin-polymetallic deposits

    International Nuclear Information System (INIS)

    Murao, S.; Sie, S.H.; Suter, G.F.

    1996-01-01

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs

  2. Effect of leaching on heavy metals concentration of soil in some ...

    African Journals Online (AJOL)

    Administrator

    chemical manufacturing, painting and coating, mining, extractive metallurgy, nuclear and other .... The concentration of cadmium, cobalt, chromium, copper, iron, lead, manganese, nickel, tin and zinc from seven locations on each dumpsites at ...

  3. Seasonal study on Bothriocephalus as indicator of metal pollution in ...

    African Journals Online (AJOL)

    Seasonal study on Bothriocephalus as indicator of metal pollution in yellowfish, ... Water and sediment, as well as liver, muscle and tapeworm samples were ... iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, tin, ...

  4. CONCURRENT CONTACT SENSITIZATION TO METALS IN DENTAL EXPOSURES

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2018-03-01

    Full Text Available Purpose: Sensitization to metals is a significant problem for both dental patients treated with dental materials and for dental professionals in occupational exposures. The purpose of the present study was to evaluate the incidence of concurrent contact sensitization to relevant for dental practice metals among students of dental medicine, students from dental technician school, dental professionals and patients. Material and Methods: A total of 128 participants were included in the study. All of them were patch-tested with nickel, cobalt, copper, potassium dichromate, palladium, aluminium, gold and tin. The results were subject to statistical analysis (p < 0.05. Results: For the whole studied population, potassium dichromate exhibited concomitant reactivity most often; copper and tin also often manifested co-reactivity. For the groups, exposed in dental practice, potassium dichromate and tin were outlined as the most often co-reacting metal allergens, but statistical significance concerning the co-sensitization to copper and the other metals was established only for aluminium. An increased incidence and OR for concomitant sensitization to cobalt and nickel was established in the group of dental students; to copper and nickel - in the control group; to palladium and nickel - in the group of dental professionals, the group of students of dental medicine and in the control group; to potassium dichromate and cobalt - in the group of dental students; to copper and palladium - in the control group of dental patients; to potassium dichromate and copper - in the group of dental professionals; to copper and aluminum - in the groups of students from dental technician school and of dental professionals; to copper and gold - in the groups of dental professionals and in the group of dental patients; to potassium dichromate and aluminum - in the group of dental professionals; to potassium dichromate and gold - in the group of dental professionals, and to

  5. Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Canulescu, Stela

    2016-01-01

    The influence of the laser wavelength on the deposition of copper tin sulfide (CTS) and SnS-rich CTS with a 248-nm KrF excimer laser (pulse length τ = 20 ns) and a 355-nm frequency-tripled Nd:YAG laser (τ = 6 ns) was investigated. A comparative study of the two UV wavelengths shows that the CTS...... film growth rate per pulse was three to four times lower with the 248-nm laser than the 355-nm laser. SnS-rich CTS is more efficiently ablated than pure CTS. Films deposited at high fluence have submicron and micrometer size droplets, and the size and area density of the droplets do not vary significantly...

  6. Combined Effects of Copper and Tin at Intermediate Level of Manganese on the Structure and Properties of As-Cast Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Lacaze J.

    2017-06-01

    Full Text Available Copper, manganese and tin are commonly used as pearlite promoter elements in cast irons. A number of studies have been aimed at quantitatively evaluate the effect of each of these elements, individually or at given levels of the others. As a matter of fact, while tin may be necessary for achieving a fully pearlitic matrix, it is known that when in excess it is detrimental for mechanical properties. As the pearlite promoting effect of each of those elements is totally different, it is of real interest to know the optimum combination of them for a given cooling rate. The present report is a first part of a work dedicated at characterizing the best alloying levels in terms of room temperature mechanical properties of as-cast pearlitic materials.

  7. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2018-03-01

    Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Recovery of Tin and Nitric Acid from Spent Solder Stripping Solutions

    International Nuclear Information System (INIS)

    Ahn, Jae-Woo; Ryu, Seong-Hyung; Kim, Tae-young

    2015-01-01

    Spent solder-stripping solutions containing tin, copper, iron, and lead in nitric acid solution, are by-products of the manufacture of printed-circuit boards. The recovery of these metals and the nitric acid, for re-use has economic and environmental benefits. In the spent solder-stripping solution, a systematic method to determine a suitable process for recovery of valuable metals and nitric acid was developed. Initially, more than 90% of the tin was successfully recovered as high-purity SnO 2 by thermal precipitation at 80 ℃ for 3 hours. About 94% of the nitric acid was regenerated effectively from the spent solutions by diffusion dialysis, after which there remained copper, iron, and lead in solution. Leakage of tin through the anion-exchange membrane was the lowest (0.026%), whereas Pb-leakage was highest (4.26%). The concentration of the regenerated nitric acid was about 5.1 N.

  9. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  10. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    OpenAIRE

    Han Chulwoong; Kim Young-Min; Son Seong Ho; Choi Hanshin; Kim Tae Bum; Kim Yong Hwan

    2015-01-01

    This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail o...

  11. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    International Nuclear Information System (INIS)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%∼100.9% for Iron, 92.50%∼108.0% for Copper, 93.00%∼110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%∼12.1%. The sampling rate is 45 samples h -1 . The determination results of the food samples were in good agreement between the proposed method and ICP-AES

  12. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Energy Technology Data Exchange (ETDEWEB)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying [West China School of Public Health, Sichuan University, Chengdu, 610041 (China)

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%{approx}100.9% for Iron, 92.50%{approx}108.0% for Copper, 93.00%{approx}110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%{approx}12.1%. The sampling rate is 45 samples h{sup -1}. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  13. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Science.gov (United States)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  14. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYL)ETHANONE N(4)-ALLYL-3-THIOSEMICARBAZONE

    OpenAIRE

    Vasilii GRAUR; Serghei SAVCIN; Victor TSAPKOV; Aurelian GULEA

    2015-01-01

    The paper presents the synthesis of the ligand 1-(2-hydroxyphenyl)ethanone N(4)-allyl-3-thiosemicarbazone (H2L) and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 ce...

  15. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Abstract. Toxic effects of two heavy metals, cadmium (Cd) and copper (Cu), and a fungicide, .... mining 50% morbid concentrations (MC50) and 50% inhibition .... WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper.

  16. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  17. Mechanizm of propylene oxidation on modified cobalt-molybdenum catalysts

    International Nuclear Information System (INIS)

    Kutyrev, M.Yu.; Rozentuller, B.V.; Isaev, O.V.; Margolis, L.Ya.; Krylov, O.V.

    1977-01-01

    Effect is studied of additions of iron, copper, nickel, and vanadium oxides, introduced into cobalt, molybdate, on oxidation reactions of propylene to acrolein and acrylicacid. The principal parameters determining the activity and selectivity of oxidation of propylene and acrolein on modified cobalt molibdate are the structure, the type of Mo-O bond, and the nature of the electron transitions in the solid under the effect of adsorption of the reaction components

  18. On the system of provision of ojsc "MMC 'Norilsk Nickel'" with interstate and State certified reference materials for quality control of cobalt, nickel, copper and promproducts

    Directory of Open Access Journals (Sweden)

    T. V. Shabelnikova

    2014-01-01

    Full Text Available In order to manage the quality of OJSC "MMC "Norilsk Nickel" products the Centre of Certified Reference Material Development has developed and is currently successfully implementing a system of operations provision with interstate and state certified reference materials of nickel, cobalt and copper composition. The system wholly corresponds to modern metrological requirements. The Centre of Reference Materials Development, fulfilling leading function in the field of state certified reference material production and supply to the Company's operations, aims its activity both at the development of new types of certified reference materials in the form of metals and at widening the range of synthetic oxide certified reference materials. Developed for the first time, metallic state certified reference materials of nickel, cobalt composition with certified mass fractions of oxygen, hydrogen, nitrogen, sulfur and carbon were put into practice of the Company's analytical services work. Certified reference material use provides the possibility to take into account requirements of some consumers to the quality of nickel and produce by OJSC "MMC "Norilsk Nickel" and also helps to raise competitive ability of the products on the world metals market. Over recent years the Centre fulfilled the work on the development, certification in established order, approval and entering into the State Register twenty five types of state certified reference materials. Certified reference materials are intended for fulfillment of the analysis of chemical composition of nickel, cobalt and copper in terms of their conformity with both national and international standards.

  19. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  20. Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution

    Energy Technology Data Exchange (ETDEWEB)

    Millikan, C R

    1947-01-01

    The addition of molybdenum to solutions containing an excess of either manganese, zinc, copper, nickel or cobalt respectively, resulted in decreases in the severity of iron deficiency symptoms which normally occurred when flax was grown in solutions containing the same concentrations of any of these elements, but without molybdenum. The efficacy of molybdenum in this regard increased with increasing concentration up to 25 parts per million. However, concentrations of 0.5 to 2 parts per million of molybdenum had little effect on the severity of iron deficiency symptoms at the concentrations of heavy metals used. Molybdenum 5, 10 or 25 parts per million also retarded the date of appearance and reduced the severity of lower leaf necrosis which is another characteristic symptom of the presence of excess manganese (25 to 100 parts per million) in the nutrient solution. It is concluded that an essential function of molybdenum is intimately associated with the regulation of the deleterious effect of manganese, zinc, copper, nickel or cobalt on the physiological availability of iron to the plant. 46 references, 3 figures.

  1. Heliotropium europaeum poisoning of sheep with low liver copper concentrations and the preventive efficacy of cobalt and antimethanogen.

    Science.gov (United States)

    Peterson, J E; Payne, A; Culvenor, C C

    1992-03-01

    In a field experiment in the Mallee district of Victoria, Merlno xBorder Leicester ewes and wethers grazed Heliotropium europaeum (heliotrope) over periods of 3 to 4 months in 4 successive years. By the end of the second year 12% (14 of 120) of the sheep had died; after 4 years the loss attributable to heliotrope was between 18% and 35%. Mortality was not affected by intraruminal treatment with cobalt or antimethanogen. At the end of the experiment the highest concentration of copper in the liver was 1.95 mmol/kg wet weight (approximately 413 micrograms/g dry weight). The relatively low mortality from primary heliotrope poisoning and the low concentration of copper in the liver of sheep grazing the plant are discussed in relation to the contrasting situation that prevails in the Riverina area of New South Wales. The importance of local environmental factors in the management of heliotrope grazing by sheep is emphasised, particularly in relation to the number of seasons in which the plant may be a major component of the diet.

  2. Jewellery

    DEFF Research Database (Denmark)

    Hamann, Dathan; Thyssen, Jacob P; Hamann, Carsten R

    2015-01-01

    and lead release by the use of artificial sweat immersion and plasma optical emission spectroscopy. RESULTS: Eighteen elements were detected. The 10 most frequently occurring were, in order of frequency, copper, iron, zinc, nickel, silver, chromium, tin, manganese, lead, and cobalt. Release of nickel...

  3. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  4. Health assessment for Tex Tin Corporation, National Priorities List Site, Texas City, Texas, Region 6. CERCLIS No. TXD062113329. Preliminary report

    International Nuclear Information System (INIS)

    1990-01-01

    The Tex Tin Corporation facility, formerly Gulf Chemical and Metallurgical Corporation, is a proposed National Priorities List site located in Texas City, Galveston County, Texas. Tex Tin previously operated as a primary tin smelter, but currently operates as a copper smelter. Significant concentrations of metals (antimony, arsenic, barium, cadmium, chromium, copper, lead, manganese, mercury, nickel, silver, tin, and zinc) have been detected on-site in surface water, groundwater, and soil. Significant concentrations of metals (arsenic, cadmium, chromium, lead, nickel, and tin) have also been detected in ambient air samples collected off-site. Some remediation activities have occurred on-site including the closure of a 19-million-gallon ferric chloride pond and the removal of approximately 4,000 drums containing radioactive material. The Tex Tin site poses a potential public health concern for on-site workers, residents living in nearby neighborhoods, and possibly for a limited number of residents on private wells located within approximately one mile of the site

  5. Recovery of cobalt and lithium fromspent Li-ion batteries

    OpenAIRE

    Busnardo, Natália Giovanini; Paulino, Jéssica Frontino; Afonso, Julio Carlos

    2007-01-01

    The "active mass" (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 ºC) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the "active mass" was treated with potassium hydrogen sulfate (500 ºC) and dissolved in water. Cobalt was precipitated together with copper after addition of so...

  6. Recovery of cobalt and lithium from spent Li-ion batteries

    International Nuclear Information System (INIS)

    Busnardo, Natalia Giovanini; Paulino, Jessica Frontino; Afonso, Julio Carlos

    2007-01-01

    The 'active mass' (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 deg C) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the 'active mass' was treated with potassium hydrogen sulfate (500 deg C) and dissolved in water. Cobalt was precipitated together with copper after addition of sodium hydroxide. Lithium was partially recovered as lithium fluoride. Co-processing of other battery components (aluminum and copper foils) affected negatively the behavior of the recovery procedures. Previous segregation of battery components is essential for an efficient and economical processing of the 'active mass'. (author)

  7. Synthesis and characterization of strontium molybdate doped with copper, cobalt and zinc for purposes photocatalytic

    International Nuclear Information System (INIS)

    Dutra, F.B.; Silva, M.M.S.; Moriyama, A.L.L.; Souza, C.P.

    2016-01-01

    The broad concerns of contemporary society with environmental problems requires legislation and more effective techniques for wastewater treatment. In recent years, ceramic materials that have properties such as high melting points and high stability have been receiving great emphasis in several studies in particular heterogeneous photocatalysis, rapid and efficient method for the complete mineralization of contaminants. In this context, the present work deals with the synthesis and characterization of molybdate Strontium (SrMoO4) doped with copper, cobalt and zinc for the purpose of photocatalytic studies. The compounds were synthesized by complexation method EDTA / Citrate basic medium. The powders were characterized by Thermogravimetric Analysis (TG), X-Ray Diffraction (XRD), Particle size distribution by laser diffraction, Spectroscopy in the UV-Visible region, Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), showing promising results as the crystalline phase of development and potential uses for the purpose of heterogeneous photocatalysis. (author)

  8. Sustainable prevention of resource conflicts. Case study and scenarios on copper and cobalt in the Democratic Republic of Congo (Report 3.2); Rohstoffkonflikte nachhaltig vermeiden. Fallstudie und Szenarien zu Kupfer und Kobalt in der Demokratischen Republik Kongo (Teilbericht 3.2)

    Energy Technology Data Exchange (ETDEWEB)

    Taenzler, Dennis; Westerkamp, Meike [Adelphi Research, Berlin (Germany); Supersberger, Nikolaus; Ritthoff, Michael; Bleischwitz, Raimund [Wuppertal Institut (Germany)

    2011-04-15

    The Democratic Republic of Congo has enormous economic potential thanks to its raw material wealth. However, since 1996 (if not before) DR Congo has been seen as a classic example of the linkage between the exploitation of raw materials and the financing of war. The UN Panel of Experts on the Illegal Exploitation of Natural Resources in DR Congo points out that the history of Congo since colonial times has been marked by systematic abuse of natural and human resources (UN Panel 2002). The UN Panel of Experts and the work of NGOs have helped to reveal rebels, senior military figures and private companies as profiteers from the exploitation of raw materials and to identify channels of financing the violent conflict in Congo since 1996 (see reports from the UN Panel, Pole Institute, Global Witness, HRW). Foreign companies mining, trading in or processing raw materials in DR Congo have also been regularly criticised as sharing responsibility for the ongoing violence, principally in the eastern Congo (UN Panel 2002, Cuvelier/Raeymaekers 2002, RAID 2004). Practically every major escalation in conflict in recent years between the various players in Congo has been connected to the management of, or the (legal or illegal) revenues from, natural resources, particularly from mining. This observation was also backed by data from the HIIK's CONIS information system. In 2008, eight of nine conflicts in Congo related at least in part to resources - five being violent and three non-violent (HIIK 2008). Following the coltan boom of 2000/2001, it now primarily profits from the mining and sale of the tin oxide ore cassiterite which continue to serve as the key means of financing violence (see Garrett 2008).1 In DRK it is not only the mining and sale of coltan and cassiterite which represents a nexus of conflict and resources however. Alongside timber, diamonds, oil and gold, it is above all the mining and sale of copper and cobalt from the so-called copper belt in the south

  9. Economical characteristics of base types of minerals. 1. Metallic minerals

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1990-01-01

    Metallic minerals is raw materials base of black and colour metallurgy. In this article of book author describes the group of black metals (iron, manganese, chromium), group of tempers (titanium, vanadium, nickel, cobalt, molybdenum, tungsten), colour metals (copper, lead, zinc, aluminium, tin, mercury, antimony, bismuth) and etc.

  10. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX.

    Science.gov (United States)

    Assunção-Miranda, I; Cruz-Oliveira, C; Neris, R L S; Figueiredo, C M; Pereira, L P S; Rodrigues, D; Araujo, D F F; Da Poian, A T; Bozza, M T

    2016-03-01

    To investigate the effect of heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX (CoPPIX and SnPPIX), macrocyclic structures composed by a tetrapyrrole ring with a central metallic ion, on Dengue Virus (DENV) and Yellow Fever Virus (YFV) infection. Treatment of HepG2 cells with heme, CoPPIX and SnPPIX after DENV infection reduced infectious particles without affecting viral RNA contents in infected cells. The reduction of viral load occurs only with the direct contact of DENV with porphyrins, suggesting a direct effect on viral particles. Previously incubation of DENV and YFV with heme, CoPPIX and SnPPIX resulted in viral particles inactivation in a dose-dependent manner. Biliverdin, a noncyclical porphyrin, was unable to inactivate the viruses tested. Infection of HepG2 cells with porphyrin-pretreated DENV2 results in a reduced or abolished viral protein synthesis, RNA replication and cell death. Treatment of HepG2 or THP-1 cell lineage with heme or CoPPIX after DENV infection with a very low MOI resulted in a decreased DENV replication and protection from death. Heme, CoPPIX and SnPPIX possess a marked ability to inactivate DENV and YFV, impairing its ability to infect and induce cytopathic effects on target cells. These results open the possibility of therapeutic application of porphyrins or their use as models to design new antiviral drugs against DENV and YFV. © 2016 The Society for Applied Microbiology.

  11. X-Ray diffraction analysis of thermally evaporated copper tin selenide thin films at different annealing temperature

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Zainal Abidin Talib; Wan Mahmood Mat Yunus; Josephine Liew Ying Chyi; Wilfred Sylvester Paulus

    2010-01-01

    Semiconductor thin films Copper Tin Selenide, Cu 2 SnSe 3 , a potential compound for semiconductor radiation detector or solar cell applications were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen, N 2 , for 2 hours in the temperature range from 100 to 500 degree Celsius. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from the Reitveld refinement show that the samples composed of Cu 2 SnSe 3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43 m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain. (author)

  12. 40 CFR 437.21 - Effluent limitations attainable by the application of the best practicable control technology...

    Science.gov (United States)

    2010-07-01

    ....6 Metal Parameters Arsenic 2.95 1.33 Cadmium 0.0172 0.0102 Chromium 0.746 0.323 Cobalt 56.4 18.8 Copper 0.500 0.242 Lead 0.350 0.160 Mercury 0.0172 0.00647 Tin 0.335 0.165 Zinc 8.26 4.50 Organic...

  13. Moessbauer study of the composition and corrosion behaviour of electrodeposited and cast brass containing 1-4 m% tin

    International Nuclear Information System (INIS)

    Vertes, A.; Suba, M.; Varsanyi-Lakatos, M.; Czako-Nagy, I.; Pchelnikov, A.P.; Losev, V.V.

    1982-01-01

    Moessbauer measurements on electrodeposited and cast brass containing 1-4 m% tin were carried out using conversion electron detector. It was found that the tin formed phases with copper but not with zinc. The identified phases were β, γ, epsilon and eta and their ratio depended on the tin concentration and on the preparation process of the brass. The corrosion behaviour of the samples was also studied. (author)

  14. Estimated monthly streamflows for selected locations on the Kabul and Logar Rivers, Aynak copper, cobalt, and chromium area of interest, Afghanistan, 1951-2010

    Science.gov (United States)

    Vining, Kevin C.; Vecchia, Aldo V.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, used the stochastic monthly water-balance model and existing climate data to estimate monthly streamflows for 1951–2010 for selected streamgaging stations located within the Aynak copper, cobalt, and chromium area of interest in Afghanistan. The model used physically based, nondeterministic methods to estimate the monthly volumetric water-balance components of a watershed. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Kabul River at Maidan and Kabul River at Tangi-Saidan indicated that the stochastic water-balance model was able to provide satisfactory estimates of monthly streamflows for high-flow months and low-flow months even though withdrawals for irrigation likely occurred. A comparison of estimated and recorded monthly streamflows for the streamgaging stations Logar River at Shekhabad and Logar River at Sangi-Naweshta also indicated that the stochastic water-balance model was able to provide reasonable estimates of monthly streamflows for the high-flow months; however, for the upstream streamgaging station, the model overestimated monthly streamflows during periods when summer irrigation withdrawals likely occurred. Results from the stochastic water-balance model indicate that the model should be able to produce satisfactory estimates of monthly streamflows for locations along the Kabul and Logar Rivers. This information could be used by Afghanistan authorities to make decisions about surface-water resources for the Aynak copper, cobalt, and chromium area of interest.

  15. Synthesis, crystal structure and excellent photoluminescence properties of copper (II and cobalt (II complexes with Bis(1[(4-butylphenylimino]methyl naphthalen-2-ol Schiff base

    Directory of Open Access Journals (Sweden)

    V.B. Nagaveni

    2018-03-01

    Full Text Available Copper (II and Cobalt (II metal complexes (4a- and 4b-complexes using Schiff base ligand 1-[(4-butylphenylimino]methyl naphthalen-2-ol (3 have been synthesized. The single crystals of Copper (II and Cobalt (II complex phosphors were grown and characterized by Fourier-Transform Infrared (FT-IR, single crystal X-ray diffraction (XRD, SEM (Scanning Electron Microscope and EDS (Energy Dispersive X-ray spectroscopy. Photoluminescence study of the phosphors revealed the presence of excitation peaks at 333 nm and 360 nm for 4a-complex (λemi = 495 nm and excitation peaks at 300 nm and 360 nm for 4b-complex (λemi = 496 nm. The calculated CCT values of the complexes pointed out that these materials can be used to obtain cold white light from the light emitting devices. Diffuse reflectance spectra (DRS showed the measured band gap energies of 1.78 eV and 1.44 eV for Cu (II and Co (II complexes, respectively. It is concluded that the 4a- and 4b-complexes become white and blue green light emitting diodes respectively and will be useful in the development of strong electroluminescent materials. Keywords: 1[(4-butylphenylimino]methylnaphthalen-2-ol, Schiff base, Cu (II and Co (IIcomplex, Photoluminescence, Single crystal XRD, OLED

  16. Potential for cobalt recovery from lateritic ores in Europe

    Science.gov (United States)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  17. Tin-silver and tin-copper alloys for capillarity joining-soft soldering-of copper piping

    International Nuclear Information System (INIS)

    Duran, J.; Amo, J. M.; Duran, C. M.

    2001-01-01

    It is studied the influence of the type of alloy used as filling material on the defects of the soldering joints in copper piping installations, which induce the fluid leak of the systems. The different eutectic temperatures and solidus-liquidus ranges of these alloys, require the setting of the soldering heat input in each case to obtain the suitable capillarity features and alloying temperatures to achieve for the correct formation of the bonding. Most defects in the joints are demonstrated to be generated by bad dossification of thermal inputs, which led depending on the filler alloy used to variations in its fluidity that may produce penetration failures in the bonds or insufficient consistency for the filling of the joints. (Author) 7 refs

  18. Stability constants of glutarate complexes of copper(II), zinc(II), cobalt(II) and uranyl(II) by paper electrophoresis

    International Nuclear Information System (INIS)

    Singh, R.K.P.; Yadava, J.R.; Yadava, K.L.

    1981-01-01

    Stability constants of Copper(II), Zinc(II), Cobalt(II) and Uranyl(II) glutarates have been determined by paper electrophoresis. Glutaric acid (0.005 mol dmsup(-3)) was added to the background electrolyte : 0.1 mol dmsup(-3) HClO 4 . The proportions of (CH 2 ) 3 COOH COO - and (CH 2 ) 3 C 2 O 4 2- were varied by changing the pH of the electrolyte. These anions yielded the complexes Cu(CH 2 ) 3 C 2 O 4 , [Zn(CH 2 ) 3 COOH COO] + [Co(CH 2 ) 3 COOH COO] + and UO 2 (CH 2 ) 3 C 2 O 4 whose stability constants are found to be 10sup(3.9), 10sup(2.9), 10sup(2.7) and 10sup(13.5) respectively. (author)

  19. Synthesis and properties of complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine

    International Nuclear Information System (INIS)

    El-Bindary, A.A.; El-Sonbati, A.Z.

    2000-01-01

    Metal complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine (HL) have been prepared and characterized by chemical and thermal analyses, molar conductivity , magnetic susceptibility measurements, and infrared, electronic and EPR spectra. The visible and EPR spectra indicated that the Cu(II) complex has a tetragonal geometry. From EPR spectrum of the Cu(II) complex,various parameters were calculated. The crystal field parameters of Ni(II) complex were calculated and were found to agree fairly well with the values reported for known square pyramidal complexes. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and nitrogen donor system. Thermal stabilities of the complexes are also reported. (author)

  20. Evaluation of the Content of Lead, Cadmium, Mercury, Arsenic, Tin, Copper and Zinc during the Production Process Flow of Tomato Broth

    Directory of Open Access Journals (Sweden)

    Corina Andrei

    2013-11-01

    Full Text Available Heavy metals are among the largest contaminants of food products. Once metals are present in vegetables, their concentrations are rarely modified by industrial processing techniques, although in some cases washing may decrease the metal content. The main objective of this study was to quantify the effect of industrial processing on the content of lead, cadmium, mercury, arsenic, tin, copper and zinc in tomatoes and products resulting on flow technology of tomato broth. For the determination of essential elements and/or potentially toxic was use atomic absorption spectrometry. The analytical results for quantitative evaluation the concentrations of the investigated elements on the samples of tomatoes taken from the technological process of the production of tomato broth indicated the presence of Pb, Cd, Cu and Zn but with a level of concentration that significantly decreased in the finished product and the absence of metals Hg and As in all investigated samples. Effect of industrial processing on the content of tin in tomato samples analyzed was characterized by fluctuations in the residual content that led to a significant increase in concentration of 0.100 ± 0.041 mg kg-1 (tomatoes - unprocessed to 0.200 ± 0.041 mg kg-1 (tomato broth.

  1. Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, N., E-mail: nisar.ali@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Department of Physics, Govt. Post Graduate Jehanzeb College Saidu Sharif, Swat, 19200 (Pakistan); Hussain, A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Wan Shamsuri, W.N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [Department of Physics and Electrical Engineering, Faculty of Engineering & Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-12-30

    Highlights: • A new and novel material for solar cell applications is demonstrated as a replacement for toxic and expansive compounds. • The materials used in this compound are abundant and low cost. • Compound exhibit unusual optical and electrical properties. • The band gap was found to be comparable with that of GaAs. - Abstract: Low price thin film modules based on Copper antimony tin sulphide (CATS) are introduced for solar harvesting to compete for the already developed compound semiconductors. Here, CATS thin films were deposited on soda lime glass by thermal evaporation technique followed by a rapid thermal annealing in an argon atmosphere. From Our XRD analysis, it was revealed that the annealed samples were poly-crystalline and their crystallinity was improved with increasing annealing temperature. The constituent elements and their corresponding chemical states were identified using X-ray photoelectron spectroscopy. The obtained optical band gap of 1.4 eV for CATS thin film is found nearly equal to GaAs – one of the highly efficient thin film material for solar cell technology. Furthermore, our observed good optical absorbance and low transmittance for the annealed CATS thin films in the visible region of light spectrum assured the aptness of the CATS thin films for solar cell applications.

  2. Investigation of the susceptibility to solidification cracking in copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Richard [Avesta Sheffield R and D, Avesta (Sweden)

    2000-04-01

    A test procedure has been developed at LuTH for investigating the susceptibility to cracking at high temperatures in weldments. It has been proposed to adapt this testing procedure to investigate the cracking susceptibility at high temperatures during strip casting of certain copper alloys. Six different materials were selected for investigation - OFHC copper, tellurium containing copper, 4% tin bronze, 6% tin bronze, 30% zinc brass and 35% zinc brass. The aim of the investigation was to characterize the cracking susceptibility of the candidate materials so as to be able to rank and compare them in a quantitative manner. A further aim of the work was to study the suitability of using the data on the cracking indices generated in the present work in thermomechanical models of the casting process to optimize the casting parameters for each of the materials.

  3. Thermochemical study of some inorganic and organic salts of cobalt, nickel and copper

    International Nuclear Information System (INIS)

    Le Van, My

    1968-01-01

    Differential enthalpy analysis has been carried out on a certain number of inorganic (halides, halide oxy-acid salts, nitrates and sulfates) and organic (alkanoates, and dicarboxylates) of cobalt, nickel and copper using a Tian-Calvet high-temperature microcalorimeter. Other investigational methods such as thermo-crystallography, thermogravimetry, spectroscopy and gas-phase chromatography have been used to complete this work. An intrinsic study of the microcalorimeter covering thermal leakage, the sensitivity and the aging of the batteries, the deviation of the experimental zero, has been carried out. A satisfactory experimental device has been developed which corresponds to optimum conditions of analysis. We have shown which are the most important factors affecting differential thermal analysis and have detected certain phenomena; we have also demonstrated that intermediate hydrates exist and shown the possibilities of thermal recrystallization. Various enthalpies of transformation have been evaluated. The various possible reaction mechanisms are discussed. The normal formation enthalpies of several series of alkanoates and dicarboxylates have been measured. A graphical method has been devised for evaluating the kinetic parameters of heterogeneous dissociations from the thermograms obtained. Finally, we have developed a simple method for estimating the normal formation enthalpies of carboxylates and oxy-acid salts, both anhydrous and hydrated. The agreement with available experimental data is satisfactory. (author) [fr

  4. Enhanced photoelectrochemical properties of copper-assisted catalyzed etching black silicon by electrodepositing cobalt

    Science.gov (United States)

    Cai, Weidong; Xiong, Haiying; Su, Xiaodong; Zhou, Hao; Shen, Mingrong; Fang, Liang

    2017-11-01

    Black silicon (Si) photoelectrodes are promising for improving the performance of photoelectrochemical (PEC) water splitting. Here, we report the fabrication of p-black Si and n+p-black Si photocathodes via a controllable copper-assisted catalyzed etching method. The etching process affects only the topmost less than 200 nm of Si and is independent of the surface doping. The synergistic effects of the excellent light harvesting of the black Si and the improved charge transfer properties of the p-n junction boost the production and utilization of photogenerated carriers. The mean reflectance of the pristine Si samples is about 10% from 400 to 950 nm, while that of the black Si samples is reduced as low as 5%. In addition, the PEC properties of the n+p-black Si photocathode can be further enhanced by depositing a cobalt (Co) layer. Compared with the p-Si sample, the onset potential of the Co/n+p-black Si photocathode is positively shifted by 560 mV to 0.33 V vs. reversible hydrogen electrode and the saturation photocurrent density is increased from 22.7 to 32.6 mA/cm2. The design of the Co/n+p-black Si photocathode offers an efficient strategy for preparing PEC solar energy conversion devices.

  5. Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt.

    Science.gov (United States)

    Osman, O; Tanguichi, H; Ikeda, K; Park, P; Tanabe-Hosoi, S; Nagata, S

    2010-04-01

    To isolate and characterize copper-resistant halophilic bacteria from the polluted Maruit Lake, Egypt and identify the role of plasmids in toxic metal resistance. We isolated strain MA2, showing high copper resistance up to the 1.5 mmol l(-1) concentration; it was also resistant to other metals such as nickel, cobalt and zinc and a group of antibiotics. Partial 16S rRNA analysis revealed that strain MA2 belonged to the genus Halomonas. Copper uptake, measured by atomic absorption spectrophotometery, was higher in the absence of NaCl than in the presence of 0.5-1.0 mol l(-1) NaCl during 5-15 min of incubation. Cell fractionation and electron microscopic observation clarified that most of the copper accumulated in the outer membrane and periplasmic fractions of the cells. Plasmid screening yielded two plasmids: pMA21 (11 kb) and pMA22 (5 kb). Plasmid curing resulted in a strain that lost both the plasmids and was sensitive to cobalt and chromate but not copper, nickel and zinc. This cured strain also showed weak growth in the presence of 0.5-1.0 mol l(-1) NaCl. Partial sequencing of both plasmids led to the identification of different toxic metals transporters but copper transporters were not identified. The highest cell viability was found in the presence of 1.0 mol l(-1) NaCl at different copper concentrations, and copper uptake was optimal in the absence of NaCl. Plasmid pMA21 encoded chromate, cobalt, zinc and cadmium transporters, whereas pMA22 encoded specific zinc and RND (resistance, nodulation, cell division) efflux transporters as well as different kinds of metabolic enzymes. Copper resistance was mainly incorporated in the chromosome. Strain MA2 is a fast and efficient tool for copper bioremediation and the isolated plasmids show significant characteristics of both toxic metal and antibiotic resistance.

  6. Direct Laser Cladding of Cobalt on Ti-6Al-4V with a Compositionally Graded Interface

    Directory of Open Access Journals (Sweden)

    Jyotsna Dutta Majumdar

    2011-01-01

    Full Text Available Direct laser cladding of cobalt on Ti-6Al-4V with and without a graded interface has been attempted using a continuous wave CO2 laser. Graded interface is developed by depositing a thin copper layer on Ti-6Al-4V substrate prior to multiple laser cladding of cobalt on it. Presence of copper interlayer was found to suppress the formation of brittle intermetallics of Ti and Co. The effect of process parameters on the microstructures, compositions, and phases of the interface was studied in details. Finally, the mechanical and electrochemical properties of the interface processed under optimum process parameters are reported.

  7. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    Science.gov (United States)

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  8. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    International Nuclear Information System (INIS)

    Rabah, Mahmoud A.

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics

  9. Precipitation and ion floatation of molybdenum, tungsten, copper, and cobalt compounds by cetyltrimethylammonium bromide and sodium diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Strizhko, V.S.; Shekhirev, D.V.; Ignatkina, V.A.; Alimova, R.Eh.

    1996-01-01

    Experimental data are presented on application of ion-flotation in purification of low-concentration (less than 10 -3 M) acid solutions from molybdenum, tungsten, copper and cobalt ions. Two collectors, i.e. DEDC and CTMAB have been tested, their optimal consumption is determined. It is shown that CTMAB provides for selective purification from Mo and W ions and allows foam product with little water on flotation in a column to be obtained. But the achieved residual W and Mo concentration of 20 to 10 mg/l require deeper finishing purification in order to meet a sanitary permissible limiting concentration value employing other methods. DEDC provides for sufficient purification from nonferrous metal ions but does not possess selectivity with respect to some metals. The obtained results have shown the possibility to apply ion-flotation in concentration of metal ions in foam product in the process of waste water purification with further finishing purification up to a sanitary permissible limiting concentration value. 14 refs.; 3 figs.; 1 tab

  10. Influences of the matrix effect in the sensibility of cobalt measurement by atomic absorption

    International Nuclear Information System (INIS)

    Avila, L.A. d'.

    1977-06-01

    The interferences caused by iron, aluminium, calcium, magnesium, manganese, copper, nickel, zinc, sodium and potassium in the determination of cobalt by atomic absorption, were studied. The concentrations of cobalt were varied in the range of 1 to 800 μg/ml and the concentrations of the interferents in the proportions occuring normally in soils, rocks, sediments, geological material in general, alloys, caustic liquors etc. To study the flame composition effect, the flame region effect and also the effect of different interferent concentrations on the cobalt for each selected spectral line, an air-acetilene flame was utilized. As an application of this study the effect was shown of 'simulated soil matrices' with respect to the interference of iron on cobalt [pt

  11. Development of technique for AR coating nickel and copper metallization of solar cells FPS project product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Experimental matrices were conducted to determine a suitable firing schedule for fritless tin printing ink. considerable difficulties were encountered with oxidation. Best results were obtained with a firing cycle consisting of 400 C for 20 minutes in nitrogen followed by 5 minutes in air at 500 C. Elimination of oxidizing conditions impaired the adhesion of both tin and copper fritless printing inks, although adhesion of fritless copper inks was obtained when fired in nitrogen with slight oxidation.

  12. Processing of copper anodic-slimes for extraction of valuable metals.

    Science.gov (United States)

    Amer, A M

    2003-01-01

    This work focuses on processing of anodic slimes obtained from an Egyptian copper electrorefining plant. The anodic slimes are characterized by high concentrations of copper, lead, tin and silver. The proposed hydrometallurgical process consists of two leaching stages for the extraction of copper (H(2)SO(4)-O(2)) and silver (thiourea-Fe3+), and pyrometallurgical treatment of the remaining slimes for production of Pb-Sn soldering alloy. Factors affecting both the leaching and smelting stages were studied.

  13. Preliminary investigations of the copper/bismuth/tin system in a proposed new net-shaping process

    International Nuclear Information System (INIS)

    Macnamara, D.S.; Meltcalfe, R.D.; Krezalek, I.

    2002-01-01

    Full text: Mixed-phase near net-shape forming processes such as semi-solid and thixotropic moulding are receiving increasing interest. Problems met in these processes include homogenisation of the semi-solid melt and temperature control in the semi-solid region. Injection moulding of a paste of solid particles of relatively high melting point in a liquid metal matrix removes the need for precision temperature control. Ideally the process should also require neither mechanical stirring nor agitation. In this project, powder precursors are subjected to uniaxial compaction to improve particle distribution and provide good metal-to-metal contact. Static heating tests to determine the composition of the mixed-phase melt and dynamic tests to investigate the homogeneity, density and net shape of extruded samples have been carried out. Initial investigations have concentrated on copper particles suspended in a near-eutectic bismuth-tin alloy. This provides a good density match between liquid and solid phases, a low temperature melt, and good optical contrast for traditional metallography. We used the scanning electron microscope to highlight fine detail of microstructural features, and electron probe microanalysis for compositional information on the resultant material. Detailed results are presented. Copyright (2002) Australian Society for Electron Microscopy Inc

  14. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  15. Coral skeletal tin and copper concentrations at Pohnpei, Micronesia: possible index for marine pollution by toxic anti-biofouling paints

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Mayuri; Suzuki, Atsushi; Nohara, Masato; Kan, Hironobu; Edward, Ahser; Kawahata, Hodaka

    2004-06-01

    We present 40 year-long skeletal chronologies of tin (Sn) and copper (Cu) from an annually-banded coral (Porites sp.) collected from Pohnpei Island, Micronesia (western equatorial Pacific). Both the elements are present in antifouling marine paints and are released inadvertently into ambient seawater. Especially, Sn has often been used in the form of tributyltin (TBT). Based on a stepwise pretreatment examination, Sn and Cu both inside and outside the aragonite lattice of the coral skeleton show a potential for providing marine pollution indicators. High values of extra-skeletal Cu/Ca and Sn/Ca atomic ratios were found between late 1960s and late 1980s during a period of active use of TBT-based antifouling paints worldwide. However, a significant decrease in both the ratios in the beginning of 1990s can be attributed to regulation of the use of TBT on cargo ships by countries such as the USA, Japan and Australia. - A new index of coral marine pollution is proposed.

  16. Coral skeletal tin and copper concentrations at Pohnpei, Micronesia: possible index for marine pollution by toxic anti-biofouling paints

    International Nuclear Information System (INIS)

    Inoue, Mayuri; Suzuki, Atsushi; Nohara, Masato; Kan, Hironobu; Edward, Ahser; Kawahata, Hodaka

    2004-01-01

    We present 40 year-long skeletal chronologies of tin (Sn) and copper (Cu) from an annually-banded coral (Porites sp.) collected from Pohnpei Island, Micronesia (western equatorial Pacific). Both the elements are present in antifouling marine paints and are released inadvertently into ambient seawater. Especially, Sn has often been used in the form of tributyltin (TBT). Based on a stepwise pretreatment examination, Sn and Cu both inside and outside the aragonite lattice of the coral skeleton show a potential for providing marine pollution indicators. High values of extra-skeletal Cu/Ca and Sn/Ca atomic ratios were found between late 1960s and late 1980s during a period of active use of TBT-based antifouling paints worldwide. However, a significant decrease in both the ratios in the beginning of 1990s can be attributed to regulation of the use of TBT on cargo ships by countries such as the USA, Japan and Australia. - A new index of coral marine pollution is proposed

  17. Coral skeletal tin and copper concentrations at Pohnpei, Micronesia: possible index for marine pollution by toxic anti-biofouling paints.

    Science.gov (United States)

    Inoue, Mayuri; Suzuki, Atsushi; Nohara, Masato; Kan, Hironobu; Edward, Ahser; Kawahata, Hodaka

    2004-06-01

    We present 40 year-long skeletal chronologies of tin (Sn) and copper (Cu) from an annually-banded coral (Porites sp.) collected from Pohnpei Island, Micronesia (western equatorial Pacific). Both the elements are present in antifouling marine paints and are released inadvertently into ambient seawater. Especially, Sn has often been used in the form of tributyltin (TBT). Based on a stepwise pretreatment examination, Sn and Cu both inside and outside the aragonite lattice of the coral skeleton show a potential for providing marine pollution indicators. High values of extra-skeletal Cu/Ca and Sn/Ca atomic ratios were found between late 1960s and late 1980s during a period of active use of TBT-based antifouling paints worldwide. However, a significant decrease in both the ratios in the beginning of 1990s can be attributed to regulation of the use of TBT on cargo ships by countries such as the USA, Japan and Australia.

  18. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail of carbothermic reaction, thermodynamic calculation was carried out and compared with experiments. From thermodynamic calculation and experiment, it was confirmed that Sn-based anodic slime could be reduced by controlling temperature and amount of carbon. However, any tendency between the reduction temperature and carbon content for the reduction reaction was not observed.

  19. Geologic report and recommendations for the cobalt mission to Morocco sponsored by The Trade and Development Program of the International Development Cooperation Agency

    Science.gov (United States)

    Foose, M.P.; Rossman, D.L.

    1982-01-01

    A mission sponsored by the Trade and Development Program (TDP) of the International Development Cooperation Agency (IDCA) went to Morocco to evaluate the possibility of finding additional sources of cobalt in that country, as well as other types of mineralization. Information obtained during this trip shows Morocco to be a country for which much geologic information is available and in which there are many favorable target areas for future exploration. Work in the Bou Azzer district (Morocco's principal cobalt district) shows that much excellent geologic work has been done in searching for additional deposits. However, a number of useful approaches to locate cobalt have not been tried, and their use might be successful. The potential for undiscovered deposits in the Bou Azzer region seems very high. The cobalt mineralization in the Siroua uplift is different from that in the Bou Azzer district. However, geologic similarities between the two areas suggest that a genetic link may exist between the two types of mineralization. This further indicates that cobalt deposits of the Bou Azzer types might be present in the Siroua region. Examination of the Bleida copper mine shows it to be a well-exposed volcanic hosted stratabound copper deposit. Large unexplored areas containing similar rocks occur near this deposit and may contain as yet undiscovered copper mineralization.

  20. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash; Shi, Lei; Rothenberger, Alexander

    2015-01-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide

  1. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  2. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  3. Nickel, Cobalt, Chromium and Copper in agricultural and grazing land soils of Europe

    Science.gov (United States)

    Albanese, Stefano; Sadeghi, Martiya; De Vivo, Benedetto; Lima, Annamaria; Cicchella, Domenico; Dinelli, Enrico

    2014-05-01

    In the framework of the GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soils) project, concentrations of Ni, Co, Cu and Cr were determined for the whole available dataset (2218 samples of agricultural soil and 2127 samples of grazing land soil) covering a total area of 5.6 million sq km all over Europe. The distribution pattern of Ni in the European soils (both agricultural and grazing land soils) shows the highest concentrations in correspondence with the Mediterranean area (especially in Greece, the Balcan Peninsula and NW Italy) with average values generally ranging between 40 mg/kg and 140 mg/kg and anomalous areas characterized by peaks higher than 2400 mg/kg. Concentrations between 10 mg/kg and 40 mg/kg characterize Continental Europe north of Alps and, partly, the Scandinavian countries. Lower concentrations (agricultural and grazing land soils. The maximum concentration peaks of Cobalt and Cr rise up to respectively 126 mg/kg and 696 mg/kg in agricultural soils and up to 255 mg/kg and 577 mg/kg in grazing land soils. Copper distribution in the soils collected across Europe, although has a general correspondence with the patterns of Ni, Co, Cr, shows some peculiarities. Specifically, Cu is characterized by high concentration values (up to 395 mg/kg in agricultural soils and 373 mg/kg in Grazing land soils) also in correspondence with the Roman Comagmatic Province and the south western coast of France characterized by a wide spread of vineyards.

  4. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  5. Wafer-level hermetic vacuum packaging by bonding with a copper-tin thin film sealing ring

    Science.gov (United States)

    Akashi, Teruhisa; Funabashi, Hirofumi; Takagi, Hideki; Omura, Yoshiteru; Hata, Yoshiyuki

    2018-04-01

    A wafer-level hermetic vacuum packaging technology intended for use with MEMS devices was developed based on a copper-tin (CuSn) thin film sealing ring. To allow hermetic packaging, the shear strength of the CuSn thin film bond was improved by optimizing the pretreatment conditions. As a result, an average shear strength of 72.3 MPa was obtained and a cavity that had been hermetically sealed using wafer-level packaging (WLP) maintained its vacuum for 1.84 years. The total pressures in the cavities and the partial pressures of residual gases were directly determined with an ultra-low outgassing residual gas analyzer (RGA) system. Hermeticity was evaluated based on helium leak rates, which were calculated from helium pressures determined with the RGA system. The resulting data showed that a vacuum cavity following 1.84 years storage had a total pressure of 83.1 Pa, contained argon as the main residual gas and exhibited a helium leak rate as low as 1.67  ×  10-17 Pa · m3 s-1, corresponding to an air leak rate of 6.19  ×  10-18 Pa · m3 s-1. The RGA data demonstrate that WLP using a CuSn thin film sealing ring permits ultra-high hermeticity in conjunction with long-term vacuum packaging that is applicable to MEMS devices.

  6. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  7. Synthesis, Characterization and Antimicrobial Studies of a New Mannich Base N-[Morpholino(phenylmethyl]acetamide and Its Cobalt(II, Nickel(II and Copper(II Metal Complexes

    Directory of Open Access Journals (Sweden)

    L. Muruganandam

    2012-01-01

    Full Text Available A new Mannich base N-[morpholino(phenylmethyl]acetamide (MBA, was synthesized and characterized by spectral studies. Chelates of MBA with cobalt(II, nickel(II and copper(II ions were prepared and characterized by elemental analyses, IR and UV spectral studies. MBA was found to act as a bidentate ligand, bonding through the carbonyl oxygen of acetamide group and CNC nitrogen of morpholine moiety in all the complexes. Based on the magnetic moment values and UV-Visible spectral data, tetracoordinate geometry for nitrato complexes and hexacoordinate geometry for sulphato complexes were assigned. The antimicrobial studies show that the Co(II nitrato complex is more active than the other complexes.

  8. Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide

    International Nuclear Information System (INIS)

    Syamal, A.; Maurya, M.R.

    1986-01-01

    Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL . 3H 2 O, CoL . 2H 2 O, CuL, MnL . 2H 2 O, ZnL . H 2 O, Zr(OH) 2 (LH) 2 , Zr(OH) 2 L . 2MeOH, UO 2 L . MeOH and MoO 2 L . MeOH (where LH 2 =Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese(II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic oxygen, enolic oxygen and azomethine nitrogen. (orig.)

  9. The commercialization of the FENIX iron control system for purifying copper electrowinning electrolytes

    Science.gov (United States)

    Shaw, D. R.; Dreisinger, D. B.; Lancaster, T.; Richmond, G. D.; Tomlinson, M.

    2004-07-01

    The FENIX Hydromet Iron Control System was installed at Western Metals Copper Ltd.’s Mt. Gordon Operations in Queensland, Australia. The system uses a novel and patented ion-exchange resin to selectively remove iron from copper electrolyte at the solvent extraction/electrowinning plant. At Mt. Gordon, the system delivered significant savings in reagent consumption (acid and cobalt sulfate for electrowinning and lime for neutralization of the raffinate bleed) and has the potential to deliver higher current efficiencies in copper electrowinning, leading to increased copper production.

  10. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  11. Trace metal levels in soils and vegetation from some tin mining ...

    African Journals Online (AJOL)

    Samples of soil and vegetation from some tin mining areas of Nigeria were analysed for lead, zinc, copper and cadmium content. The levels of Pb and Zn were found to be high in some samples. The mean levels of metal in the vegetation were: 86.6+ 36.0, 49.6+ 28.3, 12.6+4.8 and 1.4+0.8 µgg-1 dry weight for Pb, Zn, Cu ...

  12. Composites having an intermetallic containing matrix

    International Nuclear Information System (INIS)

    Nagle, D.C.; Brupbacher, J.M.; Christodoulou, L.

    1990-01-01

    This paper describes a composite material. It comprises: a dispersion of in-situ precipitated second phase particles selected from the group consisting of borides, carbides, nitrides, and sulfides, in an intermetallic containing matrix selected from the group consisting of the aluminides, silicides, and beryllides of nickel, copper, titanium, cobalt, iron, platinum, gold, silver, niobium, tantalum, zinc, molybdenum, hafnium, tin, tungsten, lithium, magnesium, thorium, chromium, vanadium, zirconium, and manganese

  13. Role of different chelating agent in synthesis of copper doped tin oxide (Cu-SnO2) nanoparticles

    Science.gov (United States)

    Saravanakumar, B.; Anusiya, A.; Rani, B. Jansi; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    An attempt was made to synthesis the copper doped tin oxide (Cu-SnO2) nanoparticles by adopting different chelating agents (NaOH, KOH and C2H2O4) by Sol-gel process. The synthesized products were characterized by XRD, Photoluminescence (PL), Infra- Red (FTIR) and SEM analysis. The XRD confirms the formation of Cu-SnO2 shows the maximum peak at 33.8° with lattice plane (101). The PL peak at 361 and 382 nm due to the recombination of electron in conduction band to valence band infers the optical properties. The IR spectra correspond to the peak at 551 and 620 cm-1 attributed to the characteristics peak for Cu-SnO2 nanoparticles. The SEM images for all three Cu-SnO2 nanoparticles formed by three chelating agent (NaOH, KOH and C2H2O4) facilitates the formation mechanism and the chelating agent Oxalic acid results in formation of nano flowers with diverse layers orientated in random direction. Further SEM studies reveal that, the Cu-SnO2 nanoparticles formed by oxalic acid could posses high surface area with large number layered structured enables the better electrochemical properties and its applications.

  14. Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of N'-(furan-3-ylmethylene)-2-(4-methoxyphenylamino)acetohydrazide.

    Science.gov (United States)

    Emam, Sanaa M; El-Saied, Fathy A; Abou El-Enein, Saeyda A; El-Shater, Heba A

    2009-03-01

    Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of furan-2-carbaldehyde 4-methoxy-N-anilinoacetohydrazone were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment and molar conductivity. Mononuclear complexes are obtained with 1:1 molar ratio except complexes 3 and 9 which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a neutral bidentate one and coordination occurs via the carbonyl oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the enolic oxygen atom, azomethine nitrogen atom and the oxygen atom of furan ring. Moreover, the ligand behaves as a neutral tridentate and coordination occurs via the carbonyl oxygen, azomethine nitrogen and furan oxygen atoms as well as a monobasic bidentate and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complex 10 possesses a square planar geometry. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes.

  15. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples.

    Science.gov (United States)

    Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B

    2008-02-28

    A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.

  16. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples

    International Nuclear Information System (INIS)

    Karimi, H.; Ghaedi, M.; Shokrollahi, A.; Rajabi, H.R.; Soylak, M.; Karami, B.

    2008-01-01

    A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL -1 , respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples

  17. Multi-component titanium–copper–cobalt- and niobium nanostructured oxides as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Henych, Jiří; Ivanova, R.; Kovacheva, D.; Štengl, Václav

    2015-01-01

    Roč. 116, č. 2 (2015), s. 397-408 ISSN 1878-5190 Institutional support: RVO:61388980 Keywords : Copper and cobalt oxides * Effect of support * Ethyl acetate combustion * Multicomponent oxides * Titania doped with niobium Subject RIV: CA - Inorganic Chemistry Impact factor: 1.265, year: 2015

  18. Evaluation on the characteristics of tin-silver-bismuth solder

    Science.gov (United States)

    Xia, Z.; Shi, Y.; Chen, Z.

    2002-02-01

    Tin-silver-bismuth solder is characterized by its lower melting point, good wetting behavior, and good mechanical property for which it is expected to be a new lead-free solder to replace tin-lead solder. In this article, Sn-3.33Ag-4.83Bi solder was investigated concerning its physical, spreading, and mechanical properties under specific conditions. Cooling curves and DSC results showed that it was close to eutectic composition (m.p. 210° 212 °C). Coefficiency of thermal expansion (CTE) of this solder, between that of PCBs and copper substrates, was beneficial to alleviate the thermal mismatch of the substrates. It was also a good electrical and thermal conductor. Using a rosin-based, mildly activated (RMA) flux, a spreading test indicated that SnAgBi solder paste had good solderability. Meanwhile, the solder had high tensile strength and fracture energy. Its fracture mechanism was a mixture of ductile and brittle fracture morphology. The metallographic and EDAX analyses indicated that it was composed of a tin-based solid solution and some intermetallic compound (IMC) that could strengthen the substrate. However, these large needle-like IMCs would cut the substrate and this resulted in the decreasing of the toughness of the solder.

  19. Isolation and characterization of cobalt-sensitive mutant of Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Krishnapuram Rashmi

    2014-12-01

    Full Text Available Objective: To isolate and demonstrate the mechanism of metal transport in cobalt-sensitive mutant (CSM of Neurospora crassa (N. crassa. Methods: Isolation of CSM of N. crassa, I50 determination, growth measurements, metal ion uptake studies and sexual crosses were performed to determine the mechanism of sensitivity and locus. Results: CSMs of N. crassa were isolated by mutagenesis with diethyl sulfate. More than 500 isolates were screened and out of these isolates, CSM-I was 5-fold and CSM-II was 10-fold sensitive to Co on liquid medium as compared to the wild type. Compositional analysis of cell wall revealed the decrease in total phosphate content. N. crassa CSM bound much less cobalt to cell wall fraction than wild type. The data indicated closer linkage between resistance and mating type locus (mat, which is, located on LG I. Conclusions: A CSM of N. crassa is 5-fold more sensitive than wild type and cross sensitive to nickel and copper and hyper-accumulates 2-4 fold more toxic metal ions over wild type. The mechanism for sensitivity is decreased in cobalt-binding to cell wall fraction and increased intracellular uptake. N. crassa-acon-3 morphologically resembles the CSM, cobalt-sensitive and maps to similar locus.

  20. High performance liquid chromatographic determination of vanadium in crude oils and cobalt and iron in pharmaceutical preparations

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Lanjwani, S.N.; Khaskhely, G.Q.

    1993-01-01

    High performance liquid Chromatographic (HPLC) method has ben developed for the determination of vanadium in crude oils, based on acid decomposition of oils, followed by complexation with bis (salicylaldehyde) tetramethyl ethylenediamine (H2SA2Ten). The complex is extracted in organic phase and is separated from copper and nickel using normal phase HPLC column. Detection is achieved using spectrophtmetric detector. The vanadium in oil is obtained at sub microgram/g level. Similarly cobalt(II), cobalt(III) and iron(II) are separated on reversed phase HPLC column. Pre column derivatization is used to develop HPLC method for the determination of cobalt and iron in pharmaceutical preparations. Finally results are compared using atomic absorption spectrometer. (author)

  1. Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    CERN Document Server

    Catanesi, M.G.; Ellis, Malcolm; Robbins, S.; Soler, F.J.P.; Gossling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; Di Capua, E.; Vidal-Sitjes, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M.C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G.B.; Graulich, J.S.; Gregoire, G.; Bonesini, M.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, M.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, Stefan; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2008-01-01

    A measurement of the double-differential $\\pi^{\\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \\MeVc \\leq p < 800 \\MeVc$ and angle $0.35 \\rad \\le \\theta <2.15 \\rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \\GeVc, 5 \\GeVc, 8 \\GeVc and 12 \\GeVc).

  2. Tin Whisker Formation — A Stress Relieve Phenomenon

    Science.gov (United States)

    Dittes, M.; Oberndorff, P.; Crema, P.; Su, P.

    2006-02-01

    With the move towards lead-free electronics also the solderable finish of electronic components' terminations are converted. While the typical finish was containing 5 % to 20 % lead (Pb) and thus was almost whisker free, lead (Pb)-free finishes such as pure tin or high tin alloys are rather prone to grow whisker. These whiskers are spontaneous protrusions that grow to a significant length of up to millimeters with a typical diameter in the range of few microns and are suspect to cause shorts in electronic assemblies. The latest details of the mechanisms are not yet understood. However it appears to be well established that the driving force for tin whisker growth is a compressive stress in the tin layer and that this stress is released by whisker formation. Besides the mechanism for whisker growth therefore the mechanism of the stress induction is of interest. The origin of that stress may have multiple sources. Among others the most important one is the volume increase within the tin layer due the formation of intermetallics at the interface to the base material. This applies to all copper based material. For base materials with a coefficient of thermal expansion (cte) significantly different from the tin finish another mechanism plays the dominant role. This is the induction of stress during thermal cycling due to the different expansion of the materials with every temperature change. Another mechanism for stress induction may be the oxidation of the finish, which also leads to a local volume increase. Based on the knowledge of stress induction various mitigation strategies can be deducted. Most common is the introduction of a diffusion barrier (e.g. Ni) in order to prevent the growth of the Cu-Sn intermetallics, the controlled growth of Cu-Sn intermetallics in order to prevent their irregularity or the introduction of a mechanical buffer material targeting at the minimisation of the cte mismatch between base and finish material. With respect to the stress

  3. AFRICOM: Combatant Command for the 21st Century

    Science.gov (United States)

    2008-06-01

    significant part of the world’s diamonds, gold, and chromium. Copper, bauxite , phosphate, uranium, tin, iron ore, cobalt, and titanium are also mined in...25%. World oil prices rose above $60 per barrel in Apr 2007 after the country held disputed national elections and above $70 per barrel in May 2007...which acknowledges the importance of establishing a mechanism for coordination between DoD and the other departments and agencies based in Washington

  4. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    Science.gov (United States)

    Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard

  5. Copper alloys deterioration due to anthropogenic action

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Perez-Rodriguez, J. L.; Herrera, L. K.; Jimenez-de-Haro, M. C.; Robador, M. D.; Justo, A.; Blanes, J. M.; Perez-Ferrer, J. C.

    2008-07-01

    Results are presented from several samples taken from leaves of the Pardon Portico of Mosque-Cathedral or Cordoba, where an alteration on their surface was detected. Metal samples analyzed using X-ray microanalysis and powder x-ray diffraction were predominantly constituted by copper with some amounts of zinc attributed to brass, whereas other samples were also constituted by copper, tin and lead attributed to bronze. surface samples were analyzed using the same techniques. In addition Fourier transform infrared spectroscopy was also used. The main compound identified in all the surface of the leaves is copper chloride hydroxide (atacamite). Lead chlorides have also been found. These data show that the sudden alteration that appears may be attributed to the use of some cleaning product containing chloride. Other compounds detected in the surface were gypsum, quartz and oxalates coming from environmental contamination. (Author) 17 refs.

  6. An Optical Model Study of Neutrons Elastically Scattered by Iron, Nickel, Cobalt, Copper, and Indium in the Energy Region 1.5 to 7.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1967-03-15

    Angular distributions of elastically scattered neutrons have been measured for cobalt and copper at nine energies between 1.5 and 7.0 MeV, for natural iron at 4.6 MeV, for natural nickel and indium at four energies between 3.0 and 4.6 MeV, by using time-of-flight technique. The observed angular distributions were corrected for neutron flux attenuation, multiple elastic scattering, and the finite geometry of the source-sample-detector system by using a Monte Carlo program. Theoretical angular distributions have been fitted to the experimental angular distributions by using an optical model potential with Saxon-Woods form factors. A computer program was used to find parameter values of the potential giving the best fittings to the experimental angular distributions.

  7. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  8. Biologic assessment of copper-containing amalgams.

    Science.gov (United States)

    Mjor, I A; Eriksen, H M; Haugen, E; Skogedal, O

    1977-12-01

    In order to reduce creep and avoid marginal fractures in amalgam restorations, new alloys containing higher proportions of copper have been introduced. Fillings of these materials were placed in cavities prepared in the deciduous teeth of monkeys or placed in polyethylene tubes and implanted subcutaneously in rats. Conventional silver/tin alloys and zinc oxide eugenol cement were used as reference materials. Despite limitations due to the varying depths of cavities and the small number of animals involved it was concluded that the high copper alloys caused more severe pulp damage than the other materials studied. In the implantation studies many of the high copper specimens were exfoliated before the end of the experimental period. It is concluded that in deep cavities these materials require the use of a non-toxic base or lining material although as they are commonly used in young children's teeth the placement of linings and the isolation of the cavity pose problems.

  9. Recovery of cobalt and lithium from spent Li-ion batteries; Recuperacao de cobalto e de litio de baterias ion-litio usadas

    Energy Technology Data Exchange (ETDEWEB)

    Busnardo, Natalia Giovanini; Paulino, Jessica Frontino; Afonso, Julio Carlos [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica]. E-mail: julio@iq.ufrj.br

    2007-07-15

    The 'active mass' (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 deg C) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the 'active mass' was treated with potassium hydrogen sulfate (500 deg C) and dissolved in water. Cobalt was precipitated together with copper after addition of sodium hydroxide. Lithium was partially recovered as lithium fluoride. Co-processing of other battery components (aluminum and copper foils) affected negatively the behavior of the recovery procedures. Previous segregation of battery components is essential for an efficient and economical processing of the 'active mass'. (author)

  10. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  11. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    Science.gov (United States)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  12. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Science.gov (United States)

    2013-11-01

    ... shot, causing sediment/soil and water contamination and the direct ingestion of shot by aquatic and.... Shot[supreg]. * Coatings of copper, nickel, tin, zinc, zinc chloride, zinc chrome, and fluoropolymers...

  13. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  14. TIN-X

    DEFF Research Database (Denmark)

    Cannon, Daniel C; Yang, Jeremy J; Mathias, Stephen L

    2017-01-01

    between proteins and diseases, based on text mining data processed from scientific literature. In the current implementation, TIN-X supports exploration of data for G-protein coupled receptors, kinases, ion channels, and nuclear receptors. TIN-X supports browsing and navigating across proteins......Motivation: The increasing amount of peer-reviewed manuscripts requires the development of specific mining tools to facilitate the visual exploration of evidence linking diseases and proteins. Results: We developed TIN-X, the Target Importance and Novelty eXplorer, to visualize the association...

  15. Enhanced magnetocrystalline anisotropy in deposited cobalt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, D.A.; Denby, P.M.; Kirkman, I.W. [Daresbury Laboratory, Daresbury, Warrington (United Kingdom); Harrison, A.; Whittaker, A.G. [Department of Chemistry, University of Edinburgh, Edinburgh (United Kingdom)

    2002-01-28

    The magnetic properties of nanomaterials made by embedding cobalt nanocrystals in a copper matrix have been studied using a SQUID magnetometer. The remanent magnetization at temperatures down to 1.8 K and the RT (room temperature) field-dependent magnetization of 1000- and 8000-atom (average-size) cobalt cluster samples have been measured. In all cases it has been possible to relate the morphology of the material to the magnetic properties. However, it is found that the deposited cluster samples contain a majority of sintered clusters even at cobalt concentrations as low as 5% by volume. The remanent magnetization of the 8000-atom samples was found to be bimodal, consisting of one contribution from spherical particles and one from touching (sintered) clusters. Using a Monte Carlo calculation to simulate the sintering it has been possible to calculate a size distribution which fits the RT superparamagnetic behaviour of the 1000-atom samples. The remanent magnetization for this average size of clusters could then be fitted to a simple model assuming that all the nanoparticles are spherical and have a size distribution which fits the superparamagnetic behaviour. This gives a value for the potential energy barrier height (for reversing the spin direction) of 2.0 {mu}eV/atom which is almost four times the accepted value for face-centred-cubic bulk cobalt. The remanent magnetization for the spherical component of the large-cluster sample could not be fitted with a single barrier height and it is conjectured that this is because the barriers change as a function of cluster size. The average value is 1.5 {mu}eV/atom but presumably this value tends toward the bulk value (0.5 {mu}eV/atom) for the largest clusters in this sample. (author)

  16. On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Böhme, Solveig; Edström, Kristina; Nyholm, Leif

    2015-01-01

    As tin based electrodes are of significant interest in the development of improved lithium-ion batteries it is important to understand the associated electrochemical reactions. In this work it is shown that the electrochemical behavior of SnO_2 coated tin electrodes can be described based on the SnO_2 and SnO conversion reactions, the lithium tin alloy formation and the oxidation of tin generating SnF_2. The CV, XPS and SEM data, obtained for electrodeposited tin crystals on gold substrates, demonstrates that the capacity loss often observed for SnO_2 is caused by the reformed SnO_2 layer serving as a passivating layer protecting the remaining tin. Capacities corresponding up to about 80 % of the initial SnO_2 capacity could, however, be obtained by cycling to 3.5 V vs. Li"+/Li. It is also shown that the oxidation of the lithium tin alloy is hindered by the rate of the diffusion of lithium through a layer of tin with increasing thickness and that the irreversible oxidation of tin to SnF_2 at potentials larger than 2.8 V vs. Li"+/Li is due to the fact that SnF_2 is formed below the SnO_2 layer. This improved electrochemical understanding of the SnO_2/Sn system should be valuable in the development of tin based electrodes for lithium-ion batteries.

  17. Progress on a high current density low cost Niobium3Tin conductor scaleable to modern niobium titanium production

    Science.gov (United States)

    Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.

    2002-05-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.

  18. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    International Nuclear Information System (INIS)

    Ramesh, Thimmasandra Narayan

    2010-01-01

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co 3 O 4 . The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co 3 O 4 phase.

  19. Cobalt Xanthate Thin Film with Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    İ. A. Kariper

    2013-01-01

    Full Text Available Cobalt xanthate thin films (CXTFs were successfully deposited by chemical bath deposition, onto amorphous glass substrates, as well as on p- and n-silicon, indium tin oxide, and poly(methyl methacrylate. The structure of the films was analyzed by far-infrared spectrum (FIR, mid-infrared (MIR spectrum, nuclear magnetic resonance (NMR, and scanning electron microscopy (SEM. These films were investigated from their structural, optical, and electrical properties point of view. Electrical properties were measured using four-point method, whereas optical properties were investigated via UV-VIS spectroscopic technique. Uniform distribution of grains was clearly observed from the photographs taken by scanning electron microscope (SEM. The transmittance was about 70–80% (4 hours, 50°C. The optical band gap of the CXTF was graphically estimated to be 3.99–4.02 eV. The resistivity of the films was calculated as 22.47–75.91 Ω·cm on commercial glass depending on film thickness and 44.90–73.10 Ω ·cm on the other substrates. It has been observed that the relative resistivity changed with film thickness. The MIR and FIR spectra of the films were in agreement with the literature analogues. The expected peaks of cobalt xanthate were observed in NMR analysis on glass. The films were dipped in chloroform as organic solvent and were analyzed by NMR.

  20. Development of technique for air coating and nickel and copper metalization of solar cells

    Science.gov (United States)

    1982-01-01

    Solar cells were made with a variety of base metal screen printing inks applied over silicon nitride AR coating and copper electroplated. Fritted and fritless nickel and fritless tin base printing inks were evaluated. Conversion efficiencies as high as 9% were observed with fritted nickel ink contacts, however, curve shapes were generally poor, reflecting high series resistance. Problems encountered in addition to high series reistance included loss of adhesion of the nickel contacts during plating and poor adhesion, oxidation and inferior curve shapes with the tin base contacts.

  1. Blood doping by cobalt. Should we measure cobalt in athletes?

    Directory of Open Access Journals (Sweden)

    Guidi Gian

    2006-07-01

    Full Text Available Abstract Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice

  2. Preparation and characterization of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Irshad, M. I.; Mohamed, N. M.; Ahmad, F.; Abdullah, M. Z.

    2014-01-01

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl 2 Ðœ‡6H2O salt solution was used, which was buffered with H 3 BO 3 and acidified by dilute H 2 SO 4 to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications

  3. Preparation and characterization of electrodeposited cobalt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2014-10-24

    Electrochemical deposition technique has been used to deposit cobalt nanowires into the nano sized channels of Anodized Aluminium Oxide (AAO) templates. CoCl{sub 2}Ðœ‡6H2O salt solution was used, which was buffered with H{sub 3}BO{sub 3} and acidified by dilute H{sub 2}SO{sub 4} to increase the plating life and control pH of the solution. Thin film of copper around 150 nm thick on one side of AAO template coated by e-beam evaporation system served as cathode to create electrical contact. FESEM analysis shows that the as-deposited nanowires are highly aligned, parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. The TEM results show that electrodeposited cobalt nanowires are crystalline in nature. The Hysteresis loop shows the magnetization properties for in and out of plane configuration. The in plane saturation magnetization (Ms) is lower than out of plane configuration because of the easy axis of magnetization is perpendicular to nanowire axis. These magnetic nanowires could be utilized for applications such as spintronic devices, high density magnetic storage, and magnetic sensor applications.

  4. On the chemical variability of Middelburg glass beads and rods

    International Nuclear Information System (INIS)

    Karklins, K.; Kottman, J.; Hancock, R.G.V.; Sempowski, M.L.; Nohe, A.W.; Moreau, J.-F.; Aufreiter, S.; Kenyon, I.

    2001-01-01

    Forty-three glass samples from a late 16th-early 17th century, glass beadmaking house in Middelburg, the Netherlands, were selected for maximum colouring variability, including plain and multi-coloured varieties. The glass chemistries were quite diverse, within each colour grouping. For each single colour of glass, anticipated colouring elements (copper for turquoise blue, cobalt for dark blue, manganese for rose, and tin for white) were used, with the exception of two beads that were opacified wih antimony rather than with tin. Multi-coloured glass glasses (chevron beads) produced chemistries that match the mixing of the different coloured glasses. In some cases, low relative amounts of some inter-mixed glasses were not detectable against the composition of the major glass component. (author). 16 refs., 3 tabs

  5. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes

    International Nuclear Information System (INIS)

    Vieira Ferreira, L.F.; Ferreira Machado, I.; Ferraria, A.M.; Casimiro, T.M.; Colomban, Ph.

    2013-01-01

    Sherds representative of the Portuguese faience production of the early-16th century from the “Mata da Machada” kiln and from an archaeological excavation on a small urban site in the city of Aveiro (from late 15th to early 16th century) were studied with the use of non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE). These results were compared with the ones obtained for two Spanish productions, from Valencia and Seville, both from same period (late 15th century and 16th century), since it is well know that Portugal imported significant quantities of those goods from Spain at that time. The obtained results evidence a clear similarity in the micro-Raman spectrum in the glaze and clays of Portuguese pottery produced at “Mata da Machada” and sherds found at the mediaeval house of Homem Cristo Filho (HCF) street at Aveiro. The blue pigment in the sample from the household of Aveiro is a cobalt oxide that exists in the silicate glassy matrix in small amounts, which did not allow the formation of detectable cobalt silicate microcrystals. White glaze from Mata da Machada and Aveiro evidence tin oxide micro-Raman signatures superimposed on the bending and stretching bands of SiO 2 . All these are quite different from the Spanish products under study (Seville and Valencia), pointing to an earlier production of tin glaze earthenware in Portugal than the mid 16th century, as commonly assumed.

  6. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Ferreira, L.F., E-mail: LuisFilipeVF@ist.utl.pt [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ferreira Machado, I. [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Department of Technology and Design, School of Technology and Management, Polytechnic Institute of Portalegre, P-7300-110 Portalegre (Portugal); Ferraria, A.M. [CQFM – Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Casimiro, T.M. [Instituto de Arqueologia e Paleociências da Universidade Nova de Lisboa, Departamento de História, Avenida de Berna 26-C, 1069-061 Lisboa (Portugal); Colomban, Ph. [Laboratoire de Dynamique, Interaction et Réactivité, UMR7075 CNRS-Université Pierre et Marie-Curie, Paris 6, 4 Place Jussieu, C49 batF, 75252 Paris Cedex 05 (France)

    2013-11-15

    Sherds representative of the Portuguese faience production of the early-16th century from the “Mata da Machada” kiln and from an archaeological excavation on a small urban site in the city of Aveiro (from late 15th to early 16th century) were studied with the use of non-invasive spectroscopies, namely: ground state diffuse reflectance absorption (GSDR), micro-Raman, Fourier-transform infrared (FT-IR) and proton induced X-ray (PIXE). These results were compared with the ones obtained for two Spanish productions, from Valencia and Seville, both from same period (late 15th century and 16th century), since it is well know that Portugal imported significant quantities of those goods from Spain at that time. The obtained results evidence a clear similarity in the micro-Raman spectrum in the glaze and clays of Portuguese pottery produced at “Mata da Machada” and sherds found at the mediaeval house of Homem Cristo Filho (HCF) street at Aveiro. The blue pigment in the sample from the household of Aveiro is a cobalt oxide that exists in the silicate glassy matrix in small amounts, which did not allow the formation of detectable cobalt silicate microcrystals. White glaze from Mata da Machada and Aveiro evidence tin oxide micro-Raman signatures superimposed on the bending and stretching bands of SiO{sub 2}. All these are quite different from the Spanish products under study (Seville and Valencia), pointing to an earlier production of tin glaze earthenware in Portugal than the mid 16th century, as commonly assumed.

  7. Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran

    Energy Technology Data Exchange (ETDEWEB)

    Oudbashi, Omid, E-mail: o.oudbashi@aui.ac.ir [Department of Conservation of Historic Properties, Faculty of Conservation, Art University of Isfahan, Hakim Nezami Street, Sangtarashha Alley, P.O. Box 1744, Isfahan (Iran, Islamic Republic of); Davami, Parviz, E-mail: pdavami@razi-foundation.com [Faculty of Material Science and Engineering, Sharif University of Technology/Razi Applied Science Foundation, No. 27, Fernan St., Shahid Ghasem Asghari Blvd., km 21 of Karadj Makhsous Road, Tehran (Iran, Islamic Republic of)

    2014-11-15

    Archaeological excavations in western Iran have recently revealed a significant Luristan Bronzes collection from Sangtarashan archaeological site. The site and its bronze collection are dated to Iron Age II/III of western Iran (10th–7th century BC) according to archaeological research. Alloy composition, microstructure and manufacturing technique of some sheet metal vessels are determined to reveal metallurgical processes in western Iran in the first millennium BC. Experimental analyses were carried out using Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy and Optical Microscopy/Metallography methods. The results allowed reconstructing the manufacturing process of bronze vessels in Luristan. It proved that the samples have been manufactured with a binary copper–tin alloy with a variable tin content that may relates to the application of an uncontrolled procedure to make bronze alloy (e.g. co-smelting or cementation). The presence of elongated copper sulphide inclusions showed probable use of copper sulphide ores for metal production and smelting. Based on metallographic studies, a cycle of cold working and annealing was used to shape the bronze vessels. - Highlights: • Sangtarashan vessels are made by variable Cu-Sn alloys with some impurities. • Various compositions occurred due to applying uncontrolled smelting methods. • The microstructure represents thermo-mechanical process to shape bronze vessels. • In one case, the annealing didn’t remove the eutectoid remaining from casting. • The characteristics of the bronzes are similar to other Iron Age Luristan Bronzes.

  8. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-01

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L -1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L -1 for aqueous samples and in the range of 2.5-9.4 ng g -1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results

  9. Comparative assessment of gastrointestinal irritant potency in man of tin(II) chloride and tin migrated from packaging.

    Science.gov (United States)

    Boogaard, Peter J; Boisset, Michel; Blunden, Steve; Davies, Scot; Ong, Teng Jin; Taverne, Jean-Pierre

    2003-12-01

    Tin is present in low concentrations in most canned foods and beverages, the highest levels being found in products packaged in unlacquered or partially lacquered tinplate cans. A limited number of case-reports of acute gastrointestinal disorders after consumption of food containing 100-500 mg/kg tin have been reported, but these reports suffer many insufficiencies. Controlled clinical studies on acute effects of tin migrated from packaging suggest a threshold concentration for adverse effects (AEs) of >730 mg/kg. Two separate randomised, single-centre, double-blind, crossover studies, enabling comparison of the tolerability of tin added as tin(II) chloride at concentrations of soup in 24 volunteers (Study 2) were carried out. Distribution studies were conducted to get insight in the acute AEs of low molecular weight (clear dose-response relationship was only observed when tin was added as tin(II) chloride in tomato juice. No clinically significant AEs were reported in Study 2 and comparison of the incidence of tin-related AEs showed no difference between the dose levels (including control). Tin species of low molecular weight in supernatant represented 31-32% of total tin in canned tomato soup versus 56-61% in juice freshly spiked with tin(II) chloride. Differences in the incidence of AEs following administration of tomato juice with 161 and 264 mg of tin per kg and tomato soup with 201 and 267 mg of tin per kg likely results from differences in the concentration of low molecular weight tin species and in the nature of tin complexes formed. The results of this work demonstrate that tin levels up to 267 mg/kg in canned food cause no AEs in healthy adults and support the currently proposed tin levels of 200 mg/kg and 250 mg/kg for canned beverages and canned foods, respectively, as safe levels for adults in the general population.

  10. Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huajun [State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Tang, Fengqiu; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou (Max) Lu, Gao Qing [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Lim, Melvin [Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-01-15

    Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g{sup -1}) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors. (author)

  11. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil

    2010-01-01

    . Conclusions: This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future......Objectives: The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. Methods: The cobalt spot test was used to assess cobalt release from all items...

  12. Clean-up of liquid radiation wastes with elevated mineralization from cesium and cobalt radionuclides by the modified clinoptilolite of the Chankanaj deposit

    International Nuclear Information System (INIS)

    Plotnikov, V.I.; Tuleushev, A.Zh.; Zhabykbaev, G.T.; Kostsov, S.V.; Medvedeva, Z.V.; Plotnikova, O.M.; Chakrova, E.T.; Idrisova, U.R.; Idrisova, D.Zh.

    2003-01-01

    On the base of laboratory studies and semi-industrial testing the possibility of liquid radioactive wastes clean-up from cesium and cobalt radionuclides in elevated mineralization conditions with help of modified clinoptilolite is shown. In the work the synthesized thin-layer inorganic sorbent (TIS) with conventional name MC-2 (modified clinoptilolite) was used. The Chankanaj deposit's zeolite in the crushed form was base for the TIS production. The copper ferrocyanides serves as the modifier. This sorbent is selective one in relationship to cesium and cobalt radionuclides

  13. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-01-30

    The effects of copper on Fischer-Tropsch activity, selectivity and water-gas shift activity were studied over a wide range of syngas conversion. Three catalyst compositions were prepared for this study: (a) 100Fe/4.6Si/1.4K, (b) 100Fe/4.6Si/0.10Cu/1.4K and (c) 100Fe/4.6Si/2.0Cu/1.4K. The results are reported in Task 2. The literature review for cobalt catalysts is approximately 90% complete. Due to the size of the document, it has been submitted as a separate report labeled Task 6.

  14. Hydrolysis of bis(dimethylamido)tin to tin (II) oxyhydroxide and its selective transformation into tin (II) or tin (IV) oxide

    KAUST Repository

    Khanderi, Jayaprakash

    2015-03-01

    Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ≤200 °C in air or under inert atmosphere. Tin (IV) oxide nanoparticles are formed in the presence of a carboxylic acid and base in air at room temperature. IR spectroscopy, Raman spectroscopy, thermogravimetry (coupled with infrared spectroscopy), powder X-ray diffraction, high temperature X-ray diffraction, scanning electron and transmission electron microscopy are used for the characterization of Sn6O4(OH)4 and the investigation of its selective decomposition into SnO or SnO2. Spectroscopic and X-ray diffraction results indicate that SnO is formed by the removal of water from crystalline Sn6O4(OH)4. SEM shows octahedral morphology of the Sn6O4(OH)4, SnO and SnO2 with particle size from 400 nm-2 μm during solid state conversion. Solution phase transformation of Sn6O4(OH)4 to SnO2 occurs in the presence of potassium glutarate and oxygen. SnO2 particles are 15-20 nm in size.

  15. Certification of a copper metal reference material for neutron dosimetry. (EC nuclear reference material 522)

    International Nuclear Information System (INIS)

    Ingelbrecht, C.; Pauwels, J.; Lievens, F.

    1993-01-01

    Copper metal of ≥ 99.995% nominal purity in the form of 0.1 and 1.0 mm thick foil and 0.5 and 1.0 mm diameter wire has been certified for its cobalt and silver mass fractions. The certified values are -1 and 0.95 ± 0.04 mg.kg -1 respectively, based on 66 results for cobalt and 88 results for silver obtained by nine laboratories using three methods. This reference material, EC-NRM 522, is intended for reactor neutron dosimetry. (authors). 14 refs., 1 annexe, 10 tabs., 2 figs

  16. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  17. Recuperação de cobalto e de lítio de baterias íon-lítio usadas Recovery of cobalt and lithium fromspent Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Natália Giovanini Busnardo

    2007-08-01

    Full Text Available The "active mass" (cathode + anode + electrolyte of spent Li-ion batteries was submitted to one of the following procedures: (a it was calcined (500 ºC and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b the "active mass" was treated with potassium hydrogen sulfate (500 ºC and dissolved in water. Cobalt was precipitated together with copper after addition of sodium hydroxide. Lithium was partially recovered as lithium fluoride. Co-processing of other battery components (aluminum and copper foils affected negatively the behavior of the recovery procedures. Previous segregation of battery components is essential for an efficient and economical processing of the "active mass".

  18. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult......-tested dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt...

  19. Bioleaching of copper, cobalt and zinc from black shale by ...

    African Journals Online (AJOL)

    Extractions were compared with chemical leaching, where leaching up to 54.27% Co and 35.16% Zn were achieved in medium of 1% oxalic acid whereas, copper up to 51.22% extracted in medium containing 1% citric acid. Recovery of metals from this ore has indicated that this low grade discarded ore may be potential ...

  20. Effect of chemical composition of copper alloys on their hot-brittleness and weldability

    International Nuclear Information System (INIS)

    Zakharov, M.V.

    1985-01-01

    Effect of different alloying elements on the hot crack formation in argon-arc welding of M1 copper has been studied. It is shown that the effective crystallization interval has a determining influence on hot-brittleness of low-alloyed high-thermal- and electric conducting welded copper alloys. The narrow is this interval the lower is linear schrinkage and the alloys inclined to the formation of crystallization cracks in welding to a lesser degree. Alloying elements with low solubility in copper in solid state broadening the crystallization interval affect negatively the alloy hot-brittleness. Such additives as zirconium are useful at 0.02-0.O5% content and at > 0.1% content are intolerable. As to cadmium, tin, magnesium, cerium and antimony additives they don't practically strengthen copper and its alloys at 700-800 deg C and they should not be introduced

  1. Electrodeposition of rhenium-tin nanowires

    International Nuclear Information System (INIS)

    Naor-Pomerantz, Adi; Eliaz, Noam; Gileadi, Eliezer

    2011-01-01

    Highlights: → Rhenium-tin nanowires were formed electrochemically, without using a template. → The nanowires consisted of a crystalline-Sn-core/amorphous-Re-shell structure. → The effects of bath composition and operating conditions were investigated. → A mechanism is suggested for the formation of the core/shell structure. → The nanowires may be attractive for a variety of applications. - Abstract: Rhenium (Re) is a refractory metal which exhibits an extraordinary combination of properties. Thus, nanowires and other nanostructures of Re-alloys may possess unique properties resulting from both Re chemistry and the nanometer scale, and become attractive for a variety of applications, such as in catalysis, photovoltaic cells, and microelectronics. Rhenium-tin coatings, consisting of nanowires with a core/shell structure, were electrodeposited on copper substrates under galvanostatic or potentiostatic conditions. The effects of bath composition and operating conditions were investigated, and the chemistry and structure of the coatings were studied by a variety of analytical tools. A Re-content as high as 77 at.% or a Faradaic efficiency as high as 46% were attained. Ranges of Sn-to-Re in the plating bath, applied current density and applied potential, within which the nanowires could be formed, were determined. A mechanism was suggested, according to which Sn nanowires were first grown on top of Sn micro-particles, and then the Sn nanowires reduced the perrhenate chemically, thus forming a core made of crystalline Sn-rich phase, and a shell made of amorphous Re-rich phase. The absence of mutual solubility of Re and Sn may be the driving force for this phase separation.

  2. International strategic minerals inventory summary report; tin

    Science.gov (United States)

    Sutphin, D.M.; Sabin, A.E.; Reed, B.L.

    1990-01-01

    The International Strategic Minerals Inventory tin inventory contains records for 56 major tin deposits and districts in 21 countries. These countries accounted for 98 percent of the 10 million metric tons of tin produced in the period 1934-87. Tin is a good alloying metal and is generally nontoxic, and its chief uses are as tinplate for tin cans and as solder in electronics. The 56 locations consist of 39 lode deposits and 17 placers and contain almost 7.5 million metric tons of tin in identified economic resources (R1E) and another 1.5 million metric tons of tin in other resource categories. Most of these resources are in major deposits that have been known for over a hundred years. Lode deposits account for 44 percent of the R1E and 87 percent of the resources in other categories. Placer deposits make up the remainder. Low-income and middle-income countries, including Bolivia and Brazil and countries along the Southeast Asian Tin Belt such as Malaysia, Thailand, and Indonesia account for 91 percent of the R1E resources of tin and for 61 percent of resources in other categories. The United States has less than 0.05 percent of the world's tin R1E in major deposits. Available data suggest that the Soviet Union may have about 4 percent of resources in this category. The industrial market economy countries of the United States, Japan, Federal Republic of Germany, and the United Kingdom are major consumers of tin, whereas the major tin-producing countries generally consume little tin. The Soviet Union and China are both major producers and consumers of tin. At the end of World War II, the four largest tin-producing countries (Bolivia, the Belgian Congo (Zaire), Nigeria, and Malaysia) produced over 80 percent of the world's tin. In 1986, the portion of production from the four largest producers (Malaysia, Brazil, Soviet Union, Indonesia) declined to about 55 percent, while the price of tin rose from about $1,500 to $18,000 per metric ton. In response to tin shortages

  3. Multilayer TiC/TiN diffusion barrier films for copper

    International Nuclear Information System (INIS)

    Yoganand, S.N.; Raghuveer, M.S.; Jagannadham, K.; Wu, L.; Karoui, A.; Rozgonyi, G.

    2002-01-01

    TiC/TiN thin films deposited by reactive magnetron sputtering on Si (100) substrates were investigated by transmission electron microscopy for microstructure and by deep level transient spectroscopy (DLTS) for diffusion barrier against copper. TiN thin films deposited on Si substrates at a substrate temperature of 600 deg. C were textured, and TiC thin films deposited at the same temperature were polycrystalline. TiC/TiN multilayer films also showed the same characteristics with the formation of an additional interaction layer. The diffusion barrier characteristics of the TiC/TiN/Si were determined by DLTS and the results showed that the films completely prevented diffusion of copper into Si

  4. Annual report 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Various research programs at Mintek are discussed, including the following: Carbon-in-pulp processes; carbon-in-solution processes; resin-in-pulp processes; leaching of gold and uranium, refractory gold; milling; recovery of pyrite; ferroalloys; research programs on iron, steel, stainless steel, copper, nickel, cobalt, zinc, lead, platinum group metals, phosphate and fluorospar. Rare earth metals, antimony, tin, chromium, aluminium and manganese are also dealt with. The abrasive wear and corrosive wear of alloys are discussed. There is also a section on general research, including mineralogy, chemical analysis, ore-dressing

  5. Spectrophotometric determination of cobalt(II), nickel(II) and copper (II) with 1-(2 pyridylazo)-2-naphthol in micellar medium

    International Nuclear Information System (INIS)

    Shar, G.A.; Soomro, G.A.

    2004-01-01

    Spectrophotometric determination of cobalt(II), nickel(II) and copper(II) is carried out with 1-(2 pyridylazo)-2-naphthol as a complexing reagent in aqueous phase using non-ionic surfactant Tween 80. Beer's law is obeyed for Co(II), Ni(II) and Cu(II) over the range 0.5 - 4.0, 0.5 - 4.0 and 0.5 - 3.0 ngmL/sup -1/ with detection limit (2 σ) of 6.7, 3.2 and 3.9 ngmL/sup -1/. The max molar absorption, molar absorptivity, Sandell's sensitivity of Co(II), Ni(II) and Cu(II) are 580 nm, 570 nm and 555 nm; max (104 mol/sup -1/ cm /sup -1/) is 0.87, 1.8 and 1.6 and 6.8, 3.3 and 3.9 ng cm-2 respectively. The pH at which complex is formed for Co(II), Ni(II) and Cu(II) is 5, 5.5 and 6.5 respectively. The critical micelle concentration (CMC) of Tween 80 is 5%. The present method is compared with that of atomic absorption spectroscopy and no significant difference is noted between the two methods at 95% confidence level. The method has been applied to the determination of Co(II), Ni(II) and Cu(II) in industrial waste water and pharmaceutical samples. (author)

  6. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  7. Temperature and pressure determination of the tin melt boundary from a combination of pyrometry, spectral reflectance, and velocity measurements along release paths

    Science.gov (United States)

    La Lone, Brandon; Asimow, Paul; Fatyanov, Oleg; Hixson, Robert; Stevens, Gerald

    2017-06-01

    Plate impact experiments were conducted on tin samples backed by LiF windows to determine the tin melt curve. Thin copper flyers were used so that a release wave followed the 30-40 GPa shock wave in the tin. The release wave at the tin-LiF interface was about 300 ns long. Two sets of experiments were conducted. In one set, spectral emissivity was measured at six wavelengths using a flashlamp illuminated integrating sphere. In the other set, thermal radiance was measured at two wavelengths. The emissivity and thermal radiance measurements were combined to obtain temperature histories of the tin-LiF interface during the release. PDV was used to obtain stress histories. All measurements were combined to obtain temperature vs. stress release paths. A kink or steepening in the release paths indicate where the releases merge onto the melt boundary, and release paths originating from different shock stresses overlap on the melt boundary. Our temperature-stress release path measurements provide a continuous segment of the tin melt boundary that is in good agreement with some of the published melt curves. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy, and supported by the Site-Directed Research and Development Program. DOE/NV/259463133.

  8. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Science.gov (United States)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  9. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    OpenAIRE

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  10. Nonvolatile Resistive Switching Memory Utilizing Cobalt Embedded in Gelatin

    Directory of Open Access Journals (Sweden)

    Cheng-Jung Lee

    2017-12-01

    Full Text Available This study investigates the preparation and electrical properties of Al/cobalt-embedded gelatin (CoG/ indium tin oxide (ITO resistive switching memories. Co. elements can be uniformly distributed in gelatin without a conventional dispersion procedure, as confirmed through energy dispersive X-ray analyzer and X-ray photoelectron spectroscopy observations. With an appropriate Co. concentration, Co. ions can assist the formation of an interfacial AlOx layer and improve the memory properties. High ON/OFF ratio, good retention capability, and good endurance switching cycles are demonstrated with 1 M Co. concentration, in contrast to 0.5 M and 2 M memory devices. This result can be attributed to the suitable thickness of the interfacial AlOx layer, which acts as an oxygen reservoir and stores and releases oxygen during switching. The Co. element in a solution-processed gelatin matrix has high potential for bio-electronic applications.

  11. Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea.

    Science.gov (United States)

    Eklund, Britta; Watermann, Burkard

    2018-05-01

    A handheld XRF-analyzer specially calibrated for measurements of metals on plastic boat hulls has been used on leisure boats in Denmark (DK), Finland (FI), and Germany (DE). The results on tin and copper are presented as μg metal/cm 2 . Tin is a proxy for the occurrence of organotin compounds on the boat. Two or three sites were visited in each country and between 25 and 90 boats were measured at each site. Every boat was measured at six to eight places, and the results are presented both as mean and median values. Linear regression of mean to median values of the 377 data pairs shows high relationship with R 2  = 0.9566 for tin and R 2 of 0.9724 for copper and thus both ways of calculation may be used. However, for regulative use, it is suggested that all individual measurements on each boat should be presented and used for decisions of removal or sealing of boat hulls. The results are compared with published data from different parts of Sweden, i.e., boats in fresh water, brackish water, and salt water. The results show that tin with mean values > 50 μg Sn/cm 2 is still found on 42, 24, and 23% of the boats in DK, FI, and DE, respectively. The corresponding percentages based on median values are 38, 22, and 18% for DK, FI, and DE, respectively. The variation among boats is high with a maximum mean value of 2000 μg Sn/cm 2 . As comparison, one layer of an old TBT antifouling paint Hempels Hard racing superior, corresponds to 300 μg Sn/cm 2 . The percentage of boats with tin > 400 μg Sn/cm 2 content based on mean values was 10% in DK, 5% in FI, and 1% in DE. The corresponding median values were 9, 6, and 1% for DK, FI, and DE. Copper, > 100 μg Cu/cm 2 , was detected on all measured boats in DK and in DE and on all but 3% of the FI boats. One layer of Hempels MilleXtra corresponds to ̴ 4000 μg Cu/cm 2 . The recommendation on the can is to apply two layers. The proportion of boats with higher mean copper values than 8000 μg Cu/cm 2

  12. Valence states of cobalt and crystal structure peculiarities of solid solution YBa2Cu3-xCoxO6+σ

    International Nuclear Information System (INIS)

    Voronin, V.I.; Goshchinskij, B.N.; Mitberg, Eh.B.; Leonidov, I.A.; Kozhevnikov, V.L.

    2000-01-01

    Crystal structure of solid solution YBa 2 Cu 3-x Co x O 6+σ , where x = 0.2, 0.4, 0.6 and 0.8, is studied by the method of powder neutron diffraction. Charge states of the cation are calculated using the interatomic distances obtained. It is shown that cobalt in Cu1 position has valency 3 + and octahedral coordination at x = 0.2 and 0.4. Increase in doping degree involves both transition of a portion of cobalt ions in the positions mentioned to the state with valence 4 + and tetrahedral coordination and partial substitution of copper in Cu2 position [ru

  13. Chemistry of tin compounds and environment

    International Nuclear Information System (INIS)

    Ali, S.; Mazhar, M.; Mahmood, S.; Bhatti, M.H.; Chaudhary, M.A.

    1997-01-01

    Of the large volume of tin compounds reported in the literature, possible only 100 are commercially important. Tin compounds are a wide variety of purposes such as catalysts, stabilizers for many materials including polymer, biocidal agents, bactericides, insecticides, fungicides, wood preservatives, acaricides and anti fouling agents in paints, anticancer and antitumour agents, ceramic opacifiers, as textile additives, in metal finishing operations, as food additives and in electro conductive coating. All these applications make the environment much exposed to tin contamination. The application of organotin compounds as biocides account for about 30% of total tin consumption suggesting that the main environmental effects are likely to originate from this sector. Diorgano tins and mono-organo tins are used mainly in plastic industry which is the next big source for environmental pollution. In this presentation all environmental aspects of the use of tin compounds and the recommended preventive measures are discussed. (author)

  14. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy

    International Nuclear Information System (INIS)

    Metikos-Hukovic, M.; Babic, R.

    2007-01-01

    Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited 'chromium like' passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range

  15. Synthesising highly reactive tin oxide using Tin(II2- ethylhexanoate polynucleation as precursor

    Directory of Open Access Journals (Sweden)

    Alejandra Montenegro Hernández

    2009-01-01

    Full Text Available Tin oxide is a widely used compound in technological applications, particularity as a catalyst, gas sensor and in making varistors, transparent conductors, electrocatalytic electrodes and photovoltaic cells. An ethylhexanoate tin salt, a carboxylic acid and poly-esterification were used for synthesising highly reactive tin oxide in the present study. Synthesis was controlled by Fourier transform infrared (FTIR spectroscopy and recording changes in viscosity. The tin oxide characteristics so obtained were determined using FTIR spectroscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The SnO2 dust synthesised and heat-treated at 550°C yielded high density aggregates, having greater than 50 μm particle size. This result demonstrates the high reactivity of the ceramic powders synthesised here.

  16. Measuring the sustainability of tin in China.

    Science.gov (United States)

    Yang, Congren; Tan, Quanyin; Zeng, Xianlai; Zhang, Yuping; Wang, Zhishi; Li, Jinhui

    2018-09-01

    Tin is a component of many items used in daily activities, including solder in consumer electronics, tin can containing food and beverages, polyvinyl chloride stabilizers in construction products, catalysts in industrial processes, etc. China is the largest producer and consumer of refined tin, and more than 60% of this refined tin is applied in the electronics sector as solder. China is the leader in global economic growth; simultaneously, China is also a major producer and consumer of electrical and electronic equipment (EEE). Thus, future tin supply and demand in China are forecasted, based on the gross domestic product per capita and the average consumption of refined tin in past five years. Current tin reserves and identified resources in China can meet the future two decades of mine production, but import of tin will also be critical for China's future tin consumption. However, there will be a lot of uncertainty for import of tin from other countries. At the same time, virgin mining of geological ores is a process of high energy consumption and destruction of the natural environment. Hence recycling tin from Sn-bearing secondary resources like tailings and waste electrical and electronic equipment (WEEE) can not only address the shortage of tin mineral resources, but also save energy and protect the ecological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles

    Science.gov (United States)

    Monahan, Bradley Michael

    Semiconductor nanoparticles have been an important area of research in many different disciplines. A substantial amount of this work has been put toward advancing the field of photovoltaics. However, current p-type photovoltaic materials can not sustain the large scale production needed for future energy demands due to their low elemental abundance. Therefore, Earth abundant semiconductor materials have become of great interest to the photovoltaic community especially, the material copper zinc tin sulfide (CZTS), also known by its mineral name kesterite. CZTS exhibits desirable properties for photovoltaics, such as elemental abundance, high absorption coefficient (~104 cm-1 ), high carrier concentration, and optimum direct band gap (1.5 eV). To date, solution based approaches for making CZTS have yielded the most promising conversion efficiencies in solar cells. To that end, the motivation of nanoparticle based inks that can be used in high throughput production are an attractive route for large scale deployment. This has driven the need to make high quality CZTS nanoparticles that possess the properties of the pure kesterite phase with high monodispersity that can be deposited into dense thin films. The inherent challenge of making a quaternary compound of a single phase has made this a difficult task; however, some of those fundamental problems are addressed in this thesis. This had resulted in the synthesis of phase-pure k-CZTS confirmed by powder X-ray diffraction, Raman spectroscopy, UV-visible absorption spectroscopy and energy dispersive x-ray spectroscopy. Furthermore, ultra-fast laser spectroscopy was done on CZTS thin films made from phase-pure kesterite nanoparticles synthesized in this work. This thesis provides new data that directly probes the lifetime of photogenerated free carriers in kesterite CZTS (k-CZTS) thin films.

  18. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  19. Low-temperature Synthesis of Tin(II) Oxide From Tin(II) ketoacidoximate Precursor

    KAUST Repository

    Alshankiti, Buthainah

    2015-01-01

    Sn (II) oxide finds numerous applications in different fields such as thin film transistors1, solar cells2 and sensors.3 In this study we present the fabrication of tin monoxide SnO by using Sn (II) ketoacid oximate complexes as precursors. Tin (II

  20. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    : On the basis of five included studies, the ED10 values of aqueous cobalt chloride ranged between 0.0663 and 1.95 µg cobalt/cm(2), corresponding to 30.8-259 ppm. CONCLUSIONS: Our analysis provides an overview of the doses of cobalt that are required to elicit allergic cobalt contactdermatitis in sensitized...

  1. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  2. Recent applications of PIXE spectrometry in archaeology. Pt. 1; Observations on the early development of copper metallurgy in the Old World

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, S J [MASCA, Univ. Museum, Univ. Pennsylvania, Philadelphia, PA (United States); Swann, C P [Bartol Research Inst., Univ. Delaware, Newark, DE (United States)

    1993-04-01

    The early development of copper metallurgy can be characterized by three steps of innovation: (i) Exploitation of native copper resources for simple tool-making as early as the 7th millennium B.C. in the Near East; (ii) the recovery of copper metal from minerals such as malachite, by smelting, during the 5th millennium B.C., both in the Near East and in eastern Europe; and (iii) the deliberate alloying of copper and tin, to make bronze, circa 2800 B.C. in Mesopotamia (modern Iraq). This paper reviews the technological aspects associated the first two of these steps, comparing compositional patterns (as determined by PIXE spectrometry) for the copper metallurgy of various regions including the Middle Danube basin, the Tigris basin, and the Iranian Plateau. (orig.).

  3. Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors

    Science.gov (United States)

    Chen, Chia-Ying; Shih, Zih-Yu; Yang, Zusing; Chang, Huan-Tsung

    2012-10-01

    We have prepared carbon nanotube (CNT)/cobalt sulfide (CoS) composites from cobalt nitrate, thioacetamide, and CNTs in the presence of poly(vinylpyrrolidone). CNT/CoS composites are deposited onto fluorine-doped tin oxide glass substrates and then subjected to simple annealing at 300 °C for 0.5 h to fabricate CNT/CoS electrodes. Data collected from Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and d-spacing reveal the changes in the CoS structures and crystalline lattices after annealing. Cyclic voltammetry results reveal that the annealed CNT/CoS composite electrodes yield values of 2140 ± 90 and 1370 ± 50 F g-1 for specific capacitance at scan rates of 10 and 100 mV s-1, respectively. To the best of our knowledge, the annealed CNT/CoS composite electrodes provide higher specific capacitance relative to other reported ones at a scan rate of 100 mV s-1. CNT/CoS composite electrodes yield a power density of 62.4 kW kg-1 at a constant discharge current density of 217.4 A g-1. With such a high-rate capacity and power density, CNT/CoS composite supercapacitors demonstrate great potential as efficient energy storage devices.

  4. Structural studies of supported tin catalysts

    Science.gov (United States)

    Nava, Noel; Viveros, Tomás

    1999-11-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Mössbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied.

  5. Structural studies of supported tin catalysts

    International Nuclear Information System (INIS)

    Nava, Noel; Viveros, Tomas

    1999-01-01

    Tin oxide was supported on aluminium oxide, titanium oxide, magnesium oxide and silicon oxide, and the resulting interactions between the components in the prepared samples and after reduction were characterized by Moessbauer spectroscopy. It was observed that in the oxide state, tin is present as SnO 2 on alumina, magnesia and silica, but on titania tin occupies Ti sites in the structure. After hydrogen treatment at high temperatures, tin is reduced from Sn(4) to Sn(2) on alumina and titania; it is reduced from Sn(4) to Sn(0) on silica, and is practically not reduced on magnesia. These results reveal the degree of interaction between tin and the different supports studied

  6. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  7. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Energy Technology Data Exchange (ETDEWEB)

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  8. Reactivity of fly ash from copper smelters in an Oxisol: implications for smelter-polluted soil systems in the tropics

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Petráňová, Veronika; Vítková, M.; Mihaljevič, M.; Šebek, O.; Kříbek, B.

    2016-01-01

    Roč. 16, č. 1 (2016), s. 115-124 ISSN 1439-0108 Institutional support: RVO:68378297 Keywords : cobalt * copper * fly ash * leaching * Oxisol * smelting Subject RIV: DD - Geochemistry Impact factor: 2.522, year: 2016 http://link.springer.com/article/10.1007%2Fs11368-015-1174-7

  9. INTRACELLULAR COPPER ACCUMULATION ENHANCES THE GROWTH OF KINEOCOCCUS RADIOTOLERANS DURING CHRONIC IRRADIATION

    International Nuclear Information System (INIS)

    Bagwell, C; Charles Milliken, C

    2007-01-01

    The actinobacteria Kineococcus radiotolerans is highly resistant to ionizing radiation, desiccation, and oxidative stress; though the underlying biochemical mechanisms are unknown. The purpose of this study was to explore a possible linkage between the uptake of transition metals and extreme resistance to ionizing radiation and oxidative stress. The effects of 6 different divalent cationic metals on growth were examined in the absence of ionizing radiation. None of the metals tested were stimulatory, though cobalt was inhibitory to growth. In contrast, copper supplementation dramatically increased cell growth during chronic irradiation. K. radiotolerans exhibited specific uptake and intracellular accumulation of copper compared to only a weak response to both iron and manganese supplementation. Copper accumulation sensitized cells to hydrogen peroxide. Acute irradiation induced DNA damage was similar between the copper-loaded culture as the age-synchronized no copper control culture, though low molecular weight DNA was more persistent during post-irradiation recovery in the Cu-loaded culture. Still, the estimated times for genome restoration differed by only 1 hr between treatments. While we cannot discount the possibility that copper fulfills an unexpectedly important biochemical role in a radioactive environment; K. radiotolerans has a high capacity for intracellular copper sequestration, and presumably efficiently coordinated oxidative stress defenses and detoxification systems, which confers cross-protection from the damaging affects ionizing radiation

  10. How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?

    International Nuclear Information System (INIS)

    Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani

    2017-01-01

    In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium–nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (∼2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs. (paper)

  11. How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?

    Science.gov (United States)

    Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani

    2017-11-01

    In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium-nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (~2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs.

  12. Separation and purification of carrier-free cobalt-58 from neutron irradiated nickel foil for electrochemical studies

    International Nuclear Information System (INIS)

    Egamediev, S.; Nurbaeva, D.; Rakhmanov, A.

    2004-01-01

    Full text: Cobalt-58 will be used for tracer studies of the behaviour of cobalt radionuclides in no- carrier-added form during electrochemical deposition on metal backing. The 58 Co can be produced by using 58 Ni(n,p) 58 Co nuclear reaction in nuclear reactor. 58 Co (T 1/2 =71 days) decays by positron emitting (15%) and electron capture (85%) with simultaneous γ -irradiation. In this study, we have developed the simple method for separation and purification of 58 Co in no- carrier-added form from neutron irradiated nickel foil. Previously, we have studied the dissolution of nickel foil in various media to find best conditions for rapid dissolution of nickel target. It was found that nickel foil dissolved completely without heating in 6.3 M hydrobromic acid with addition a few drops of hydrogen peroxide. After dissolution of the target material, the cobalt-58 is separated from nickel, copper, iron and other elements by extraction chromatography. The solution in 6.3 M hydrobromic acid is passed through a column containing suspension of polytetrafluoroethylene powder with 0.5 M trioctylamine in xylene, equilibrated with the same acid. Nickel is not extracted and passed through column. Cobalt is retained and finally eluted with 3 M HBr in the one free column volume. The cobalt fraction is percolated through a column filled with suspension of pure polytetrafluoroethylene powder to purify from the admixture of extractant. The obtained solution is evaporated to dryness and the dry residue is treated by evaporation with aqua regia. After treatment the damp residue is dissolved in electrolyte and the obtained solution is used to study of 58 Co electrochemical deposition procedure. The yield of cobalt-58 was higher than 93% and the radiochemical purity was more than 99%. This method will be used for separation and purification of cobalt-57 to make of sealed sources for X-ray fluorescence analysis

  13. A radiochemical NAA method for the determination of tin, barium, copper and antimony- role of tin as an indicator for gun shot residues

    International Nuclear Information System (INIS)

    Chattopadhyay, N.; Basu, A.K.; Tripathi, A.B.R.; Rao, M.S.; Anil Kumar, S.; Parthasarathy, R.; Mathur, P.K.

    1998-01-01

    Metallic tin being present as impurity and hardening agent of lead bullet/shot, is expected to play an important role in forensic ballistics in matching of bullet lead specimens for establishment of commonness of origin and also as an additional parameter for characterisation of Gun Shot Residue (GSR). 121 Sn is a suitable radioisotope for quantification of the element at ppm level if it is separated in highest radiochemical purity. A sequential Radiochemical Neutron Activation Analysis (RNAA) procedure for its simultaneous determination along with trace levels of Ba, Cu and Sb has been developed and its applications in forensic science are described. (author)

  14. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  15. Electrochemical dissolution of tin in methanesulphonic acid solutions

    NARCIS (Netherlands)

    de Greef, R.A.T.; Janssen, L.J.J.

    2001-01-01

    High-rate electroplating of tin on a moving steel strip is generally carried out in cells with dimensionally stable anodes. To obtain a matt tin deposit a concentrated acidic tin methanesulphonate solution containing a small concentration of sulphuric acid is used. The concentrated tin

  16. Cobalt metabolism and toxicology—A brief update

    International Nuclear Information System (INIS)

    Simonsen, Lars Ole; Harbak, Henrik; Bennekou, Poul

    2012-01-01

    Cobalt metabolism and toxicology are summarized. The biological functions of cobalt are updated in the light of recent understanding of cobalt interference with the sensing in almost all animal cells of oxygen deficiency (hypoxia). Cobalt (Co 2+ ) stabilizes the transcriptional activator hypoxia-inducible factor (HIF) and thus mimics hypoxia and stimulates erythropoietin (Epo) production, but probably also by the same mechanism induces a coordinated up-regulation of a number of adaptive responses to hypoxia, many with potential carcinogenic effects. This means on the other hand that cobalt (Co 2+ ) also may have beneficial effects under conditions of tissue hypoxia, and possibly can represent an alternative to hypoxic preconditioning. Cobalt is acutely toxic in larger doses, and in mammalian in vitro test systems cobalt ions and cobalt metal are cytotoxic and induce apoptosis and at higher concentrations necrosis with inflammatory response. Cobalt metal and salts are also genotoxic, mainly caused by oxidative DNA damage by reactive oxygen species, perhaps combined with inhibition of DNA repair. Of note, the evidence for carcinogenicity of cobalt metal and cobalt sulfate is considered sufficient in experimental animals, but is as yet considered inadequate in humans. Interestingly, some of the toxic effects of cobalt (Co 2+ ) have recently been proposed to be due to putative inhibition of Ca 2+ entry and Ca 2+ -signaling and competition with Ca 2+ for intracellular Ca 2+ -binding proteins. The tissue partitioning of cobalt (Co 2+ ) and its time-dependence after administration of a single dose have been studied in man, but mainly in laboratory animals. Cobalt is accumulated primarily in liver, kidney, pancreas, and heart, with the relative content in skeleton and skeletal muscle increasing with time after cobalt administration. In man the renal excretion is initially rapid but decreasing over the first days, followed by a second, slow phase lasting several weeks, and

  17. Recent studies on photoelectron and secondary electron yields of TiN and NEG coatings using the KEKB positron ring

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Kanazawa, K.; Shibata, K.; Hisamatsu, H.

    2007-01-01

    In order to obtain a method to suppress electron-cloud instability (ECI), the photoelectron and the secondary electron yields (PEY and SEY) of a TiN coating and an NEG (Ti-Zr-V) coating on copper have been studied so far by using the KEK B-factory (KEKB) positron ring. Recently, test chambers with these coatings were installed at a straight section of the ring where the irradiated photon density was considerably smaller than that at the arc section of a previous experiment. The number of electrons around beams was measured by an electron current monitor; this measurement was performed up to a stored beam current of approximately 1700 mA (1389 bunches). For the entire range of the beam current, the electron currents of the NEG-coated and the TiN-coated chambers were clearly smaller as compared to those of the uncoated copper chamber by the factors of 2-3 and 3-4, respectively. The small photon density, that is, the weak effect of photoelectrons, elucidated the differences in the SEYs of these coatings when compared to the measurements at the arc section. By assuming almost the same PEY (η e ) values obtained in the previous study, the maximum SEY (δ max ) for the TiN and NEG coatings and the copper chamber was again estimated based on a previously developed simulation. The evaluated δ max values for these three surfaces were in the ranges of 0.8-1.0, 1.0-1.15, and 1.1-1.25, respectively. These values were consistent with the values obtained so far. As an application of the simulation, the effective η e , η e-eff (which included the geometrical effect of the antechamber) and δ max values were also estimated for copper chambers with one or two antechambers. These chambers were installed in an arc section and a wiggler section, respectively. The evaluated η e-eff and δ max values were approximately 0.008 and 1.2, and 0.04 and 1.2, respectively, where η e =0.28 was assumed on the side wall. As expected, the η e-eff values were considerably smaller than those

  18. Nuclear Spectroscopy with Copper Isotopes of Extreme N/Z Ratios

    CERN Multimedia

    La commara, M; Roeckl, E; Van duppen, P L E; Schmidt, K A; Lettry, J

    2002-01-01

    The collaboration aims to obtain detailed nuclear spectroscopy information on isotopes close to the magic proton number Z=28 Very neutron-rich and neutron-deficient copper isotopes are ionized with the ISOLDE resonance ionization laser ion source (RILIS) to provide beams with low cross contamination.\\\\ \\\\On the neutron-deficient side the high $Q_\\beta$-values of $^{56}$Cu (15~MeV) and $^{57}$Cu (8.8~MeV) allow to study levels at high excitation energies in the doubly magic nucleus $^{56}$Ni and the neighbouring $^{57}$Ni. On the neutron-rich side the spectroscopy with separated copper isotopes allows presently the closest approach to the doubly magic $^{78}$Ni at an ISOL facility. Up to now no suitable target material with a rapid release was found for nickel itself. A slow release behaviour has to be assumed also for the chemically similar elements iron and cobalt.\\\\ \\\\Using a narrow-bandwidth dye laser and tuning of the laser frequency allows to scan the hyperfine splittings of the copper isotopes and isome...

  19. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  20. Cobalt metabolism and toxicology-A brief update

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Lars Ole, E-mail: LOSimonsen@dadlnet.dk; Harbak, Henrik; Bennekou, Poul

    2012-08-15

    Cobalt metabolism and toxicology are summarized. The biological functions of cobalt are updated in the light of recent understanding of cobalt interference with the sensing in almost all animal cells of oxygen deficiency (hypoxia). Cobalt (Co{sup 2+}) stabilizes the transcriptional activator hypoxia-inducible factor (HIF) and thus mimics hypoxia and stimulates erythropoietin (Epo) production, but probably also by the same mechanism induces a coordinated up-regulation of a number of adaptive responses to hypoxia, many with potential carcinogenic effects. This means on the other hand that cobalt (Co{sup 2+}) also may have beneficial effects under conditions of tissue hypoxia, and possibly can represent an alternative to hypoxic preconditioning. Cobalt is acutely toxic in larger doses, and in mammalian in vitro test systems cobalt ions and cobalt metal are cytotoxic and induce apoptosis and at higher concentrations necrosis with inflammatory response. Cobalt metal and salts are also genotoxic, mainly caused by oxidative DNA damage by reactive oxygen species, perhaps combined with inhibition of DNA repair. Of note, the evidence for carcinogenicity of cobalt metal and cobalt sulfate is considered sufficient in experimental animals, but is as yet considered inadequate in humans. Interestingly, some of the toxic effects of cobalt (Co{sup 2+}) have recently been proposed to be due to putative inhibition of Ca{sup 2+} entry and Ca{sup 2+}-signaling and competition with Ca{sup 2+} for intracellular Ca{sup 2+}-binding proteins. The tissue partitioning of cobalt (Co{sup 2+}) and its time-dependence after administration of a single dose have been studied in man, but mainly in laboratory animals. Cobalt is accumulated primarily in liver, kidney, pancreas, and heart, with the relative content in skeleton and skeletal muscle increasing with time after cobalt administration. In man the renal excretion is initially rapid but decreasing over the first days, followed by a second, slow

  1. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.

  2. Cobalt accumulation and circulation by blackgum trees

    International Nuclear Information System (INIS)

    Thomas, W.A.

    1975-01-01

    Blackgum (Nyssa sylvatica Marsh.) trees accumulate far greater concentrations of cobalt in mature foliage than do other species on the same site (363 ppM in ash of blackgum, compared with about 3 ppM by mockernut hickory and about 1 ppM by red maple, tulip tree, and white oak). Cobalt concentrations in dormant woody tissues of blackgum also significantly exceed those in the other four species. Inoculation of six blackgums with 60 Co revealed that cobalt remains mobile in the trees for at least 3 years. Foliar concentrations of stable cobalt increase uniformly until senescence. In late August, foliage accounts for only 9 percent of total tree weight but 57 percent of total tree cobalt. Losses of cobalt from trees occur almost entirely by leaf abscission, and the loss rates of weight and cobalt from decomposing litter are similar. Retention of cobalt in the biologically active soil layers perpetuates zones of cobalt concentration created by this species in woodlands

  3. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments. The major application is in the health care industry where irradiators are used to sterilize single use medical products. These irradiators are designed and built by MDS Nordion and are used by manufacturers of surgical kits, gloves, gowns, drapes and other medical products. The irradiator is a large shielded room with a storage pool for the cobalt-60 sources. The medical products are circulated through the shielded room and exposed to the cobalt-60 sources. This treatment sterilizes the medical products which can then be shipped to hospitals for immediate use. Other applications for this irradiation technology include sanitisation of cosmetics, microbial reduction of pharmaceutical raw materials and food irradiation. The cobalt-60 sources are manufactured by MDS Nordion in their Cobalt Operations Facility in Kanata. More than 75,000 cobalt-60 sources for use in irradiators have been manufactured by MDS Nordion. The cobalt-60 sources are double encapsulated in stainless steel capsules, seal welded and helium leak tested. Each source may contain up to 14,000 curies. These sources are shipped to over 170 industrial irradiators around the world. This paper will focus on the MDS Nordion proprietary technology used to produce the cobalt-60 isotope in CANDU reactors. Almost 55 years ago MDS Nordion and Atomic Energy of Canada developed the process for manufacturing cobalt-60 at the Chalk River Labs, in Ontario, Canada. A cobalt-59 target was introduced into a research reactor where the cobalt-59 atom absorbed one neutron to become cobalt-60. Once the cobalt-60 material was removed from the research reactor it was encapsulated in stainless steel and seal welded using a Tungsten Inert Gas weld. The first cobalt-60 sources manufactured using material from the Chalk River Labs were used in cancer

  4. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  5. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO2 transparent semiconducting films prepared by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-01-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2 :Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2 :Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  6. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO 2 transparent semiconducting films prepared by spray pyrolysis technique

    Science.gov (United States)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-10-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  7. Cobalt allergy in hard metal workers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T; Rystedt, I

    1983-03-01

    Hard metal contains about 10% cobalt. 853 hard metal workers were examined and patch tested with substances from their environment. Initial patch tests with 1% cobalt chloride showed 62 positive reactions. By means of secondary serial dilution tests, allergic reactions to cobalt were reproduced in 9 men and 30 women. Weak reactions could not normally be reproduced. A history of hand eczema was found in 36 of the 39 individuals with reproducible positive test reactions to cobalt, while 21 of 23 with a positive initial patch test but negative serial dilution test had never had any skin problems. Hand etching and hand grinding, mainly female activities and traumatic to the hands, were found to involve the greatest risk of cobalt sensitization. 24 individuals had an isolated cobalt allergy. They had probably been sensitized by hard metal work, while the individuals, all women, who had simultaneous nickel allergy had probably been sensitized to nickel before their employment and then became sensitized to cobalt by hard metal work. A traumatic occupation, which causes irritant contact dermatitis and/or a previous contact allergy or atopy is probably a prerequisite for the development of cobalt allergy.

  8. Pharmacokinetics of inorganic cobalt and a vitamin B12 supplement in the Thoroughbred horse: Differentiating cobalt abuse from supplementation.

    Science.gov (United States)

    Hillyer, L L; Ridd, Z; Fenwick, S; Hincks, P; Paine, S W

    2018-05-01

    While cobalt is an essential micronutrient for vitamin B 12 synthesis in the horse, at supraphysiological concentrations, it has been shown to enhance performance in human subjects and rats, and there is evidence that its administration in high doses to horses poses a welfare threat. Animal sport regulators currently control cobalt abuse via international race day thresholds, but this work was initiated to explore means of potentially adding to application of those thresholds since cobalt may be present in physiological concentrations. To devise a scientific basis for differentiation between presence of cobalt from bona fide supplementation and cobalt doping through the use of ratios. Six Thoroughbred horses were given 10 mL vitamin B 12 /cobalt supplement (Hemo-15 ® ; Vetoquinol, Buckingham, Buckinghamshire, UK., 1.5 mg B 12 , 7 mg cobalt gluconate = 983 μg total Co) as an i.v. bolus then an i.v. infusion (15 min) of 100 mg cobalt chloride (45.39 mg Co) 6 weeks later. Pre-and post-administration plasma and urine samples were analysed for cobalt and vitamin B 12 . Urine and plasma samples were analysed for vitamin B 12 using an immunoassay and cobalt concentrations were measured via ICP-MS. Baseline concentrations of cobalt in urine and plasma for each horse were subtracted from their cobalt concentrations post-administration for the PK analysis. Compartmental analysis was used for the determination of plasma PK parameters for cobalt using commercially available software. On administration of a vitamin B 12 /cobalt supplement, the ratio of cobalt to vitamin B 12 in plasma rapidly increased to approximately 3 and then rapidly declined below a ratio of 1 and then back to near baseline over the next week. On administration of 100 mg cobalt chloride, the ratio initially exceeded 10 in plasma and then declined with the lower 95% confidence interval remaining above a ratio of 1 for 7 days. For two horses with extended sampling, the plasma ratio remained above one for

  9. Synthesis of copolymers suitable for the storage and slow release of reactants. Cases of copper salts for intra-uterine devices

    International Nuclear Information System (INIS)

    Gaussens, Gilbert; Duchemin-Berthet, Jeanne.

    1976-01-01

    This research has been carried out to determine whether a grafted poly(ethylene-vinyl acetate) matrix could be prepared which would release useful amounts of copper salts when used in intra-uterine devices. Intra-uterine devices were prepared by grafting hydroxyethyl acrylate onto ethylene-vinylacetate copolymers (EVA). The kinetics of the grafting reaction were studied. The grafting reaction was initiated by cobalt 60 gamma rays using the simultaneous method. The conditions of copper salts absorption by the grafted copolymers were selected. The average quantity of copper salts released daily from the intra-uterine device was meaured as a function of grafting ratio and the amount of copper salt initially incorporated in the grafted polymeric matrix. In vitro experiments samples showed constant release rates during a period of 18 months

  10. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  11. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  12. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  13. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  14. Synthesis and characterization of strontium molybdate doped with copper, cobalt and zinc for purposes photocatalytic; Sintese e caracterizacao do molibdato de estroncio dopado com cobre, cobalto e zinco para fins fotocataliticos

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, F.B.; Silva, M.M.S.; Moriyama, A.L.L.; Souza, C.P., E-mail: faby_qui@hotmail.com [Universidade Federal do Rio Grande do Norte (LAMNRC/UFRN), Natal, RN (Brazil). Lab. de Materiais Nanoestruturados e Reatores Catalicos

    2016-07-01

    The broad concerns of contemporary society with environmental problems requires legislation and more effective techniques for wastewater treatment. In recent years, ceramic materials that have properties such as high melting points and high stability have been receiving great emphasis in several studies in particular heterogeneous photocatalysis, rapid and efficient method for the complete mineralization of contaminants. In this context, the present work deals with the synthesis and characterization of molybdate Strontium (SrMoO4) doped with copper, cobalt and zinc for the purpose of photocatalytic studies. The compounds were synthesized by complexation method EDTA / Citrate basic medium. The powders were characterized by Thermogravimetric Analysis (TG), X-Ray Diffraction (XRD), Particle size distribution by laser diffraction, Spectroscopy in the UV-Visible region, Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), showing promising results as the crystalline phase of development and potential uses for the purpose of heterogeneous photocatalysis. (author)

  15. Electronic and magnetic coupling of iron and copper phthalocyanine to ferromagnetic Co(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane [Department of Physics, University of Kaiserslautern, Erwin Schroedinger Str. 56, D-67663 Kaiserslautern (Germany); Ali, Ehesan; Oppeneer, Peter [Department of Physics and Materials Science, Box 530, Uppsala University, S-75121 Uppsala (Sweden)

    2009-07-01

    Metallo-phthalocyanines are organic semiconductors which show in certain cases promising magnetic properties, advertising them for use in organic spintronics. Here, copper (CuPc) and iron phthalocyanine (FePc) were grown on ultra thin layers of Co(100) substrates with well known highly spin-polarized electron injection capability. Photoelectron spectroscopy (XPS) reveals different interactions between the pyrolytic nitrogen atoms and the cobalt surface for the two phthalocyanines. The analysis of the different multiplet structures appearing for the nitrogen core levels in the submonolayer regime and UPS investigations of the valence band electronic structure of the Co dominated region near the Fermi level indicates a particularly electronic coupling and a rehybridisation of the molecular orbitals with the cobalt orbitals. In order to clarify the influence of the two different central atoms on the electronic- and subsequently the magnetic coupling to the Co substrate, theoretical calculations using the GGA and GGA+U methodologies on a structure of Fe/Cu-phthalocyanine adsorbed on a 3-layered cobalt surface were performed indicating a ferromagnetic coupling between FePc and Co.

  16. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers

    International Nuclear Information System (INIS)

    Costa e Silva, Danilo Lopes

    2015-01-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  17. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  18. Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

    International Nuclear Information System (INIS)

    Qiao Shi-Zhu; Kang Shi-Shou; Li Qiang; Zhong Hai; Kang Yun; Yu Shu-Yun; Han Guang-Bing; Yan Shi-Shen; Mei Liang-Mo; Qin Yu-Feng

    2014-01-01

    Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al 2 O 3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)

  19. Conversion electron Moessbauer spectroscopic studies on the chemical states of surface layers of corroded tin plates and tin-coated iron plates

    International Nuclear Information System (INIS)

    Kato, Akinori; Endo, Kazutoyo; Sano, Hirotoshi

    1980-01-01

    By means of the conversion electron Moessbauer spectroscopy (CEMS), we studied surface layers of ''tin'' plates and tin-coated iron plates corroded by various acids. Transmission Moessbauer spectra and X-ray diffraction patterns were also measured. Metastannic acid was formed, when the ''tin'' plate was corroded by nitric acid solution. In corrosion by phosphoric acid solution, the X-ray diffractometry revealed the formation of tin(IV) pyrophosphate. In corrosion by various organic acid solutions, the formation of oxides was identified by the 119 Sn CEMS, but not by the X-ray diffractometry because of the too thin corrosion layer. In corrosion of tin-coated iron plates, maleic acid, malonic acid, formic acid, and oxalic acid were used. It was determined by CEMS that the corrosion products caused by these acids were tin(IV) oxides, although they could not be identified by the X-ray diffractometry. CEMS also confirmed that the surface of uncorroded tin-coated iron plate was already oxidized by air. Colorimetric determinations of Sn and Fe dissolved from tin-coated iron plates to various acid solutions confirmed that maleic acid had the strongest corrosion effect among the organic acids studied. (author)

  20. Cobalt-60 production in CANDU reactors

    International Nuclear Information System (INIS)

    Ross, Michel; Lemire, Christian

    2002-01-01

    CANDU reactors can produce cobalt-60 very efficiently and with an interesting return on investment. This paper discusses what is needed to convert a CANDU reactor into a cobalt-60 producer: what are the different phases, the safety studies required, the physical modifications needed, and what is the minimum involvement of the utility owning the plant. The past ten years of experience of Hydro-Quebec as a cobalt-60 producer will be reviewed, including the management of the risk of both incident and electricity generation loss, and including the benefits for the utility and its personnel. Originally a simple metal used for centuries as a pigment, cobalt-59 today is transformed into cobalt-60, a radioactive element of unprecedented value. Well known in medicine for cancer treatment, cobalt-60 is also used to sterilize a wide range of disposable medical products used in hospitals and to sanitize pharmaceutical and cosmetic products. Cobalt-60 is proving to be a new and effective solution, in the food sector, for preserving harvests and controlling food-borne diseases, or to advantageously replace certain gases and chemical products which are suspected of being harmful or carcinogenic. There are also other applications, such as: hardening of some plastics, treatment of sewage sludge and elimination of harmful insect populations. With a half-life of 5,3 years, cobalt-60 is a metal not found in nature. It is a radioactive isotope produced by exposing stable nuclei of cobalt-59 to neutrons. One of the best places to find such an important neutron source is a nuclear reactor. High energy gamma rays are then emitted during the process of radioactive decay, where cobalt-60 seeks again its stable state

  1. Directly smelted lead-tin alloys: A historical perspective

    Science.gov (United States)

    Dube, R. K.

    2010-08-01

    This paper discusses evidence related to the genesis and occurrence of mixed lead-tin ore deposit consisting of cassiterite and the secondary minerals formed from galena. These evidences belong to a very long time period ranging from pre-historic to as late as the nineteenth century a.d. This type of mixed ore deposits was smelted to prepare lead-tin alloys. The composition of the alloy depended on the composition of the starting ore mixture. A nineteenth century evidence for the production of directly smelted lead-tin alloys in southern Thailand is discussed. A unique and rather uncommon metallurgical terminology in Sanskrit language— Nāgaja—was introduced in India for the tin recovered from impure lead. This suggests that Indians developed a process for recovering tin from lead-tin alloys, which in all probability was based on the general principle of fire refining. It has been shown that in the context of India the possibility of connection between the word Nāgaja and the directly smelted lead-tin alloys cannot be ruled out.

  2. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction

    Science.gov (United States)

    Babar, P. T.; Lokhande, A. C.; Pawar, B. S.; Gang, M. G.; Jo, Eunjin; Go, Changsik; Suryawanshi, M. P.; Pawar, S. M.; Kim, Jin Hyeok

    2018-01-01

    The development of an inexpensive, stable, and highly active electrocatalyst for oxygen evolution reaction (OER) is essential for the practical application of water splitting. Herein, we have synthesized an electrodeposited cobalt hydroxide on nickel foam and subsequently annealed in an air atmosphere at 400 °C for 2 h. In-depth characterization of all the films using X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) techniques, which reveals major changes for their structural, morphological, compositional and electrochemical properties, respectively. The cobalt hydroxide nanosheet film shows high catalytic activity with 290 mV overpotential at 10 mA cm-2 and 91 mV dec-1 Tafel slope and robust stability (24 h) for OER in 1 M KOH electrolyte compared to cobalt oxide (340 mV). The better OER activity of cobalt hydroxide in comparison to cobalt oxide originated from high active sites, enhanced surface, and charge transport capability.

  3. Cobalt sensitization and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P

    2012-01-01

    : This clinical review article presents clinical and scientific data on cobalt sensitization and dermatitis. It is concluded that cobalt despite being a strong sensitizer and a prevalent contact allergen to come up on patch testing should be regarded as a very complex metal to test with. Exposure...

  4. Toxicology of inorganic tin

    International Nuclear Information System (INIS)

    Burba, J.V.

    1982-01-01

    Tin(II) or stannous ion as a reducing agent is important in nuclear medicine because it is an essential component and common denominator for many in vivo radiodiagnostic agents, commonly called kits for the preparation of radiopharmaceuticals. This report is intended to alert nuclear medicine community regarding the wide range of biological effects that the stannous ion is capable of producing, and is a review of a large number of selected publications on the toxicological potential of tin(II)

  5. Cobalt 60 availability for radiation processing

    International Nuclear Information System (INIS)

    Fraser, F.M.

    1986-01-01

    In the last 20 years, the steady and significant growth in the application of radiation processing to industrial sterilization has been seen. The principal application of this technology is the sterilization of disposable medical products, food irradiation, the irradiation of personal care goods and so on. At present, more than 70 million curies of cobalt-60 supplied by Atomic Energy of Canada Ltd. have been used for gamma processing in these applications. This is estimated to be more than 80 % of the total cobalt-60 in service in the world. Commercial food irradiation has an exciting future, and as to the impact of food irradiation on the availability of cobalt-60 over the next ten years, two principal factors must be examined, namely, the anticipated demand for cobalt-60 in all radiation processing applications, and the supply of cobalt-60 to reliably meet the expected demand. As for the cobalt-60 in service today, 90 % is used for the sterilization of disposable medical products, 5 % for food irradiation, and 5 % for other application. The demand for up to 30 million curies of cobalt-60 is expected over the next 10 years. Today, it is estimated that over 150,000 tons of spices, fruit and fish are irradiated. The potential cobalt-60 production could exceed 110 million curies per year. Gamma processing application will demand nearly 50 million curies in 1990. (Kako, I.)

  6. Characterization of tin selenides synthesized by high-energy milling

    Directory of Open Access Journals (Sweden)

    Marcela Achimovičová

    2011-12-01

    Full Text Available Tin selenides SnSeX (x=1,2 were synthesized from tin and selenium powder precursors by high-energy milling in the planetary ballmill Pulverisette 6 (Fritsch, Germany. The orthorhombic tin selenide SnSe and the hexagonal tin diselenide SnSe2 phases were formed after4 min and 5 min of milling, respectively. Specific surface area of both selenides increased with increasing time of mechanochemicalsynthesis. The particle size distribution analysis demonstrated that the synthesized products contain agglomerated selenide particlesconsisting of numerous idiomorphic tin selenide crystals, measuring from 2 to more than 100 nm in diameter, which were also documentedby TEM. UV-Vis spectrophotometry confirmed that tin selenide particles do not behave as quantum dots.

  7. Preparation of textural lamellar tin deposits via electrodeposition

    Science.gov (United States)

    Wen, Xiaoyu; Pan, Xiaona; Wu, Libin; Li, Ruinan; Wang, Dan; Zhang, Jinqiu; Yang, Peixia

    2017-06-01

    Lamellar tin deposits were prepared by galvanostatical electroplating from the aqueous acidic-sulfate bath, with gelatin and benzalacetone dissolved in ethanol (ABA+EtOH) as additive, and their morphologies were investigated by scanning electron microscopy. Cathodic polarization curves revealed that the absorbability of ABA+EtOH on the cathode surface was higher than that of gelatin. X-ray diffraction analysis indicated preferred orientations of tin growth led to the formation of lamellar structure and distortion of tin lattice. The growth mechanism of lamellar tin was also discussed.

  8. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  9. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  10. Cobalt—Styles of deposits and the search for primary deposits

    Science.gov (United States)

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and

  11. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYLETHANONE N(4-ALLYL-3-THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Vasilii GRAUR

    2015-12-01

    Full Text Available The paper presents the synthesis of the ligand 1-(2-hydroxyphenylethanone N(4-allyl-3-thiosemicarbazone (H2L and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 cells and cervical cancer HeLa cells was determined. It was established that the substitution of hydrogen atom with methyl group in the azomethinic fragment leads to the growth of antitumor activity.SINTEZA ŞI ACTIVITATEA ANTITUMORALĂ A COMPUŞILOR COMPLECŞI AI CUPRULUI, NICHELULUI ŞI COBALTULUI CU N(4-ALIL-3-TIOSEMICARBAZONA 1-(2-HIDROXIFENILETANONEILucrarea conţine descrierea sintezei N(4-alil-3-tiosemicarbazonei 1-(2-hidroxifeniletanonei (H2L şi a şase compuşi coordinativi ai cuprului, nichelului şi cobaltului cu acest ligand. Structura tiosemicarbazonei H2L a fost stabilită în baza datelor spectroscopiei RMN 1H şi 13C. Compuşi coordinativi au fost studiaţi cu ajutorul analizei elementale, analizei gravimetrice a conţinutului de apă, conductivitaţii molare şi magnetochimiei. Pentru H2L a fost determinată activitatea antitumorală faţă de celulele leucemiei umane HL-60 şi ale cancerului cervical HeLa. S-a stabilit că înlocuirea atomului de hidrogen cu o grupare metil în fragmentul azomethinic conduce la creşterea activitaţii antitumorale.

  12. Synthesis of new cobalt aluminophosphate framework by opening a cobalt methylphosphonate layered material

    Czech Academy of Sciences Publication Activity Database

    Zaarour, M.; Pérez, O.; Boullay, P.; Martens, J.; Mihailova, B.; Karaghiosoff, K.; Palatinus, Lukáš; Mintova, S.

    2017-01-01

    Roč. 19, č. 34 (2017), s. 5100-5105 ISSN 1466-8033 Institutional support: RVO:68378271 Keywords : cobalt aluminophosphate * cobalt methylphosphonate * layered materials * crystallic structure * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.474, year: 2016

  13. Radio cobalt in French rivers

    International Nuclear Information System (INIS)

    Lambrechts, A.; Baudin-Jaulent, Y.

    1996-01-01

    The isotopes 58 and 60 of cobalt present in liquid wastes from nuclear plants or from fuel reprocessing plant of Marcoule are fixed in the different compartments of French rivers. The activity levels of radio-cobalt vary according to the sampled compartments nature (bryophyta > immersed plants > sediment > fish). Elsewhere, laboratory experimentations show that the contamination of fish occurs essentially from the water way rather than from food. Cobalt is mainly fixed by kidneys; muscles is no more than 30 % of the total fish activity. (author)

  14. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  15. Mitigating tin whisker risks theory and practice

    CERN Document Server

    Handwerker, Carol A; Bath, Jasbir

    2016-01-01

    Discusses the growth mechanisms of tin whiskers and the effective mitigation strategies necessary to reduce whisker growth risks. This book covers key tin whisker topics, ranging from fundamental science to practical mitigation strategies. The text begins with a review of the characteristic properties of local microstructures around whisker and hillock grains to identify why these particular grains and locations become predisposed to forming whiskers and hillocks. The book discusses the basic properties of tin-based alloy finishes and the effects of various alloying elements on whisker formation, with a focus on potential mechanisms for whisker suppression or enhancement for each element. Tin whisker risk mitigation strategies for each tier of the supply chain for high reliability electronic systems are also described.

  16. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  17. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  18. On stream radioisotope X-ray fluorescence analyser and a method for the determination of copper in slurry

    International Nuclear Information System (INIS)

    Holynska, B.; Lankosz, M.; Lacki, E.; Ostachowicz, J.; Baran, W.; Owsiak, T.

    1975-01-01

    The paper presents an ''on stream'' analyser and a radioisotope X-ray fluorescence method for the continuous determination of copper content in feed 0.5-2.5% Cu, concentrates 15-25% Cu and tailings 0.01-0.03% Cu. The analyser consists essentially of a radioisotope X-ray fluorescence measuring head, γ-density gauge, electronic unit, analog processor and recorders. The method is based on the measurement of the characteristic radiation of Cu series, selected by nickel-cobalt filters. The total relative error (1s) of the determination of copper in feed is 6-8%, in concentrates 5-7% and in tailings about 18%. The ''on stream'' analyser has been succesfully operated in a pilot plant. (author)

  19. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  20. GEMAS - Tin and Tungsten: possible sources of enriched concentrations in soils in European countries

    Science.gov (United States)

    João Batista, Maria; Filipe, Augusto; Reimann, Clemens

    2014-05-01

    southern soils and SiO2 is higher in loess sediments region, in the North German-Poland basin and in the Paris basin. Organic matter may immobilise these metals and silica content influences metallic elements concentrations in soils. Natural processes of soil development, land management of agricultural soils and population density all together may be responsible for higher concentrations of W in the soils of Netherlands Germany, Belgium, Switzerland and northeast France which seems not related with Sn-W mineral provinces. Tin and tungsten are enriched in the Precambrian shields compared to the Caledonian shields soils in the northern countries, although in northern countries climatic conditions may play the most important role in these elements concentrations. Tin and tungsten and tin or tungsten alone or in association of precious metals, copper, uranium, niobium, beryllium, titanium altogether were extracted in 650 small or median size mines in Portugal. Except tin in Neves Corvo mine of the Iberian Pyrite Belt the rest of these mines occurred in the Variscides granitic intrusions region. Tin and tungsten concentrations are therefore well reflected in the northern Portugal soils. At the GEMAS density of sampling pollution and local natural phenomena are not reflected in mapping but this important province is well delimited.

  1. Nanocrystalline Cobalt-doped SnO2 Thin Film: A Sensitive Cigarette Smoke Sensor

    Directory of Open Access Journals (Sweden)

    Patil Shriram B.

    2011-11-01

    Full Text Available This article discusses a sensitive cigarette smoke sensor based on Cobalt doped Tin oxide (Co-SnO2 thin films deposited on glass substrate by a conventional Spray Pyrolysis technique. The Co-SnO2 thin films have been characterized by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM and Energy Dispersive X-ray Spectroscopy (EDAX. The XRD spectrum shows polycrystalline nature of the film with a mixed phase comprising of SnO2 and Co3O4. The SEM image depicts uniform granular morphology covering total substrate surface. The compositional analysis derived using EDAX confirmed presence of Co in addition to Sn and O in the film. Cigarette smoke sensing characteristics of the Co-SnO2 thin film have been studied under atmospheric condition at different temperatures and smoke concentration levels. The sensing parameters such as sensitivity, response time and recovery time are observed to be temperature dependent, exhibiting better results at 330 oC.

  2. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  3. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  4. Iodometric determination of peroxydiphosphate in the presence of copper(II) or iron(II) as catalyst.

    Science.gov (United States)

    Kapoor, S; Sharma, P D; Gupta, Y K

    1975-09-01

    Peroxydiphosphate can be determined iodometrically in the presence of a large excess of potassium iodide with copper(II) or iron(II) as catalyst through the operation of the Cu(II)/Cu(I) or Fe(II)/Fe(III) cycle. The method is applicable in HClO(4), H(2)SO(4), HCl and CH(3)COOH acid media in the range 0.1-1.0M studied. Nickel, manganese(II), cobalt(II), silver, chloride and phosphate are without effect.

  5. Effect of Graphene Addition on Mechanical Properties of TiN

    International Nuclear Information System (INIS)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2017-01-01

    Despite of many attractive properties of TiN, the current concern about the TiN focuses on its low fracture toughness below the ductile-brittle transition temperature. To improve its mechanical properties, the approach generally utilized has been the addition of a second phase to form composites and to make nanostructured materials. In this respect, highly dense nanostructured TiN and TiN-graphene composites were obtained within two min at 1250 ℃. The grain size of TiN was reduced remarkably by the addition of graphene. The addition of graphene to TiN simultaneously improved the fracture toughness and hardness of TiN-graphene composite due to refinement of TiN and deterring crack propagation by graphene. This study demonstrates that the graphene can be an effective reinforcing agent for improved hardness and fracture toughness of TiN composites.

  6. Effect of Graphene Addition on Mechanical Properties of TiN

    Energy Technology Data Exchange (ETDEWEB)

    Shon, In-Jin [Chonbuk National University, Jeonju (Korea, Republic of); Yoon, Jin-Kook; Hong, Kyung-Tae [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2017-03-15

    Despite of many attractive properties of TiN, the current concern about the TiN focuses on its low fracture toughness below the ductile-brittle transition temperature. To improve its mechanical properties, the approach generally utilized has been the addition of a second phase to form composites and to make nanostructured materials. In this respect, highly dense nanostructured TiN and TiN-graphene composites were obtained within two min at 1250 ℃. The grain size of TiN was reduced remarkably by the addition of graphene. The addition of graphene to TiN simultaneously improved the fracture toughness and hardness of TiN-graphene composite due to refinement of TiN and deterring crack propagation by graphene. This study demonstrates that the graphene can be an effective reinforcing agent for improved hardness and fracture toughness of TiN composites.

  7. Cobalt reduction of NSSS valve hardfacings for ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Hak; Lee, Sang Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author).

  8. Cobalt reduction of NSSS valve hardfacings for ALARA

    International Nuclear Information System (INIS)

    Kim, Joo Hak; Lee, Sang Sub

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author)

  9. The Role of External Inputs and Internal Cycling in Shaping the Global Ocean Cobalt Distribution: Insights From the First Cobalt Biogeochemical Model

    Science.gov (United States)

    Tagliabue, Alessandro; Hawco, Nicholas J.; Bundy, Randelle M.; Landing, William M.; Milne, Angela; Morton, Peter L.; Saito, Mak A.

    2018-04-01

    Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.

  10. Microwave plasma CVD of NANO structured tin/carbon composites

    Science.gov (United States)

    Marcinek, Marek [Warszawa, PL; Kostecki, Robert [Lafayette, CA

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  11. Accumulation of cobalt by cephalopods

    International Nuclear Information System (INIS)

    Nakahara, Motokazu

    1981-01-01

    Accumulation of cobalt by cephalopod mollusca was investigated by radiotracer experiments and elemental analysis. In the radiotracer experiments, Octopus vulgaris took up cobalt-60 from seawater fairly well and the concentration of the nuclide in whole body attained about 150 times the level of seawater at 25th day at 20 0 C. Among the tissues and organs measured, branchial heart which is the specific organ of cephalopods showed the highest affinity for the nuclide. The organ accumulated about 50% of the radioactivity in whole body in spite of its little mass as 0.2% of total body weight. On the other hand, more than 90% of the radioactivity taken up from food (soft parts of Gomphina melanaegis labelled with cobalt-60 previously in an aquarium) was accumulated in liver at 3rd day after the single administration and then the radioactivity in the liver seemed to be distributed to other organs and tissues. The characteristic elution profiles of cobalt-60 was observed for each of the organs and tissues in Sephadex gel-filtration experiment. It was confirmed by the gel-filtration that most of cobalt-60 in the branchial heart was combined with the constituents of low molecular weights. The average concentration of stable cobalt in muscle of several species of cephalopods was 5.3 +- 3.0 μg/kg wet and it was almost comparable to the fish muscle. On the basis of soft parts, concentration of the nuclide closed association among bivalve, gastropod and cephalopod except squid that gave lower values than the others. (author)

  12. Cobalt-free nickel-base superalloys

    International Nuclear Information System (INIS)

    Koizumi, Yutaka; Yamazaki, Michio; Harada, Hiroshi

    1979-01-01

    Cobalt-free nickel-base cast superalloys have been developed. Cobalt is considered to be a beneficial element to strengthen the alloys but should be eliminated in alloys to be used for direct cycle helium turbine driven by helium gas from HTGR (high temp. gas reactor). The elimination of cobalt is required to avoid the formation of radioactive 60 Co from the debris or scales of the alloys. Cobalt-free alloys are also desirable from another viewpoint, i.e. recently the shortage of the element has become a serious problem in industry. Cobalt-free Mar-M200 type alloys modified by the additions of 0.15 - 0.2 wt% B and 1 - 1.5 wt% Hf were found to have a creep rupture strength superior or comparable to that of the original Mar-M200 alloy bearing cobalt. The ductility in tensile test at 800 0 C, as cast or after prolonged heating at 900 0 C (the tensile test was done without removing the surface layer affected by the heating), was also improved by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf. The morphology of grain boundaries became intricated by the additions of 0.15 - 0.2% B and 1 - 1.5% Hf, to such a degree that one can hardly distinguish grain boundaries by microscopes. The change in the grain boundary morphology was considered, as suggested previously by one of the authors (M.Y.), to be the reason for the improvements in the creep rupture strength and tensile ductility. (author)

  13. Temperature measurement of tin under shock compression

    International Nuclear Information System (INIS)

    Hereil, Pierre-Louis; Mabire, Catherine

    2002-01-01

    The results of pyrometric measurements performed at the interface of a tin target with a LiF window material are presented for stresses ranging from 38 to 55 GPa. The purpose of the study is to analyze the part of the interface in the temperature measurement by a multi-channel pyrometric device. The results show that the glue used at target/window interface remains transparent under shock. The values of temperature measured at the tin/LiF interface are consistent with the behavior of tin under shock

  14. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    Science.gov (United States)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  15. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  16. Experimental evidence for cobalt(III)-carbene radicals: key intermediates in cobalt(II)-based metalloradical cyclopropanation

    NARCIS (Netherlands)

    Lu, H.; Dzik, W.I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X.P.

    2011-01-01

    New and conclusive evidence has been obtained for the existence of cobalt(III)-carbene radicals that have been previously proposed as the key intermediates in the underlying mechanism of metalloradical cyclopropanation by cobalt(II) complexes of porphyrins. In the absence of olefin substrates,

  17. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  18. Removal of Cobalt Ions by Precipitate Foam Flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-30

    Simulated waste liquid containing 50 ppm cobalt ion was tested by precipitate flotation using a sodium lauryl sulfate as a collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% H{sub 2}O{sub 2} prior to precipitate flotation made shift of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, flotation time 30 min. The simulate ion was formed to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested. The presence of 0.1 M of SO{sub 4}{sup 2-} ion decreased removal efficiency of cobalt to 90% while the cobalt were almost entirely removed in the absence of sulfate ion. (author). 11 refs., 8 figs.

  19. Diffuse scattering in metallic tin polymorphs

    International Nuclear Information System (INIS)

    Wehinger, Björn; Bosak, Alexeï; Piccolboni, Giuseppe; Krisch, Michael; Refson, Keith; Chernyshov, Dmitry; Ivanov, Alexandre; Rumiantsev, Alexander

    2014-01-01

    The lattice dynamics of the metallic tin β and γ polymorphs has been studied by a combination of diffuse scattering, inelastic x-ray scattering and density functional perturbation theory. The non-symmorphic space group of the β -tin structure results in unusual asymmetry of thermal diffuse scattering. Strong resemblance of the diffuse scattering intensity distribution in β and γ-tin were observed, reflecting the structural relationship between the two phases and revealing the qualitative similarity of the underlying electronic potential. The strong influence of the electron subsystem on inter-ionic interactions creates anomalies in the phonon dispersion relations. All observed features are described in great detail by the density functional perturbation theory for both β - and γ-tin at arbitrary momentum transfers. The combined approach delivers thus a complete picture of the lattice dynamics in harmonic description. (paper)

  20. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  1. Telomere dysfunction and cell survival: roles for distinctTIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-Ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Beausejour, Christian; Kaminker, Patrick; Campisi, Judith

    2006-11-07

    Telomeres are maintained by three DNA binding proteins, TRF1, TRF2 and POT1, and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. These and two other proteins form a soluble complex that may be the core telomere-maintenance complex. It is not clear whether subcomplexes exist or function in vivo. Here, we provide evidence for two TIN2 subcomplexes with distinct functions in human cells. TIN2 ablation by RNA interference caused telomere uncapping and p53-independent cell death in all cells tested. However, we isolated two TIN2 complexes from cell lysates, each selectively sensitive to a TIN2 mutant (TIN2-13, TIN2-15C). In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN215C more than TIN2-13 caused genomic instability and cell death. Thus, TIN2 subcomplexes likely have distinct functions in telomere maintenance, and may provide selective targets for eliminating cells with mutant p53.

  2. Effects of cobalt in nickel-base superalloys

    Science.gov (United States)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  3. Cobalt: A vital element in the aircraft engine industry

    Science.gov (United States)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  4. Powder metallurgy: Solid and liquid phase sintering of copper

    Science.gov (United States)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  5. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  6. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  7. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  8. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  9. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  10. Effects of blending of desalinated water with treated surface drinking water on copper and lead release.

    Science.gov (United States)

    Liu, Haizhou; Schonberger, Kenneth D; Korshin, Gregory V; Ferguson, John F; Meyerhofer, Paul; Desormeaux, Erik; Luckenbach, Heidi

    2010-07-01

    This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the zeta-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO(4) were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  12. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  13. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  14. The physiological effect of cobalt on watermelon cultivation

    International Nuclear Information System (INIS)

    Yao Naihua; Jin Yafang; Sun Yaochen; Huang Yiming

    1993-01-01

    Cobalt has essential physiological action on both animals and plants. For the latter it can raise plant's nitrogen-fixing ability and saccharine content. Spray of cobalt mixed with other nutritive elements can improve the germinatit of seeds and the yield of fruit. For specifying the nutritive function of cobalt upon watermelon, isotope 60 Co was mixed into a complex leaf nutritive aqua and the regularity of transferring and absorbing cobalt in the watermelon's body was investigated

  15. Relaxation resistance of heat resisting alloys with cobalt

    International Nuclear Information System (INIS)

    Borzdyka, A.M.

    1977-01-01

    Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading

  16. Heating-induced inner-sphere substitution and reduction-oxidation reactions of the solid phenanthroline containing cobalt (2) and cobalt (3) complexes

    International Nuclear Information System (INIS)

    Palade, D.M.

    1996-01-01

    The results of the differential thermal and thermogravimetric analyses of solid phenanthroline-containing complexes of cobalt (2) and cobalt (3) in the atmosphere of the air have been analyzed. Mechanism of redox reactions occurring when cobalt (3) complexes are heated has been discussed. It is shown that some of gaseous products of the redox processes appear as a result of secondary reactions and not the processes of the ligands oxidation by Co 3+ . The influence of certain inner-sphere and coordinated anions (of I, inclusively) on cobalt (3) complexes behaviour during heating has been considered

  17. Copper diffusion in Ti-Si-N layers formed by inductively coupled plasma implantation

    International Nuclear Information System (INIS)

    Ee, Y.C.; Chen, Z.; Law, S.B.; Xu, S.; Yakovlev, N.L.; Lai, M.Y.

    2006-01-01

    Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into Ti x Si y substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 deg. C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers

  18. Control of carbon nanotube growth using cobalt nanoparticles as catalyst

    International Nuclear Information System (INIS)

    Huh, Yoon; Green, Malcolm L.H.; Kim, Young Heon; Lee, Jeong Yong; Lee, Cheol Jin

    2005-01-01

    We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of cobalt (Co) nanoparticles

  19. Microstructure and growth mechanism of tin whiskers on RESn3 compounds

    International Nuclear Information System (INIS)

    Li Caifu; Liu Zhiquan

    2013-01-01

    Graphical abstract: Large amount of intact tin whiskers were firstly prepared without post handling, and their microstructures were investigated systematically with TEM. A growth model was proposed to explain the observed growth characteristics from Sn–RE alloys. - Abstract: An exclusive method was developed to prepare intact tin whiskers as transmission electron microscope specimens, and with this technique in situ observation of tin whisker growth from RESn 3 (RE = Nd, La, Ce) film specimen was first achieved. Electron irradiation was discovered to have an effect on the growth of a tin whisker through its root. Large quantities of tin whiskers with diameters from 20 nm to 10 μm and lengths ranging from 50 nm to 500 μm were formed at a growth rate of 0.1–1.8 nm s −1 on the surface of RESn 3 compounds. Most (>85%) of these tin whiskers have preferred growth directions of 〈1 0 0〉, 〈0 0 1〉, 〈1 0 1〉 and 〈1 0 3〉, as determined by statistics. This kind of tin whisker is single-crystal β-Sn even if it has growth striations, steps and kinks, and no dislocations or twin or grain boundaries were observed within the whisker body. RESn 3 compounds undergo selective oxidation during whisker growth, and the oxidation provides continuous tin atoms for tin whisker growth until they are exhausted. The driving force for whisker growth is the compressive stress resulting from the restriction of the massive volume expansion (38–43%) during the oxidation by the surface RE(OH) 3 layer. Tin atoms diffuse and flow to feed the continuous growth of tin whiskers under a compressive stress gradient formed from the extrusion of tin atoms/clusters at weak points on the surface RE(OH) 3 layers. A growth model was proposed to discuss the characteristics and growth mechanism of tin whiskers from RESn 3 compounds.

  20. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity

    KAUST Repository

    Fermoso, Fernando G.

    2010-12-01

    The effect of dosing a metal limited anaerobic sludge blanket (UASB) reactor with a metal pulse on the methanogenic activity of granular sludge has thus far not been successfully modeled. The prediction of this effect is crucial in order to optimize the strategy for metal dosage and to prevent unnecessary losses of resources. This paper describes the relation between the initial immobilization of cobalt in anaerobic granular sludge cobalt dosage into the reactor and the evolution of methanogenic activity during the subsequent weeks. An operationally defined parameter (A0· B0) was found to combine the amount of cobalt immobilized instantaneously upon the pulse (B0) and the amount of cobalt immobilized within the subsequent 24. h (A0). In contrast with the individual parameters A0 and B0, the parameter A0· B0 correlated significantly with the methanogenic activity of the sludge during the subsequent 16 or 35. days. This correlation between metal retention and activity evolution is a useful tool to implement trace metal dosing strategies for biofilm-based biotechnological processes. © 2010.

  1. NASA GSFC Tin Whisker Homepage http://nepp.nasa.gov/whisker

    Science.gov (United States)

    Shaw, Harry

    2000-01-01

    The NASA GSFC Tin Whisker Homepage provides general information and GSFC Code 562 experimentation results regarding the well known phenomenon of tin whisker formation from pure tin plated substrates. The objective of this www site is to provide a central repository for information pertaining to this phenomenon and to provide status of the GSFC experiments to understand the behavior of tin whiskers in space environments. The Tin Whisker www site is produced by Code 562. This www site does not provide information pertaining to patented or proprietary information. All of the information contained in this www site is at the level of that produced by industry and university researchers and is published at international conferences.

  2. Cobalt(II) and Cobalt(III) Coordination Compounds.

    Science.gov (United States)

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  3. Atomic dynamics of tin nanoparticles embedded into porous glass

    Energy Technology Data Exchange (ETDEWEB)

    Parshin, P. P.; Zemlyanov, M. G., E-mail: zeml@isssph.kiae.ru; Panova, G. Kh.; Shikov, A. A. [Russian Research Centre Kurchatov Institute (Russian Federation); Kumzerov, Yu. A.; Naberezhnov, A. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Sergueev, I.; Crichton, W. [European Synchrotron Radiation Facility (France); Chumakov, A. I. [Russian Research Centre Kurchatov Institute (Russian Federation); Rueffer, R. [European Synchrotron Radiation Facility (France)

    2012-03-15

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with {sup 119}Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  4. Atomic dynamics of tin nanoparticles embedded into porous glass

    International Nuclear Information System (INIS)

    Parshin, P. P.; Zemlyanov, M. G.; Panova, G. Kh.; Shikov, A. A.; Kumzerov, Yu. A.; Naberezhnov, A. A.; Sergueev, I.; Crichton, W.; Chumakov, A. I.; Rüffer, R.

    2012-01-01

    The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with 119 Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

  5. Cobalt-60 control in Ontario Hydro reactors

    International Nuclear Information System (INIS)

    Lacy, C.S.

    1988-01-01

    This paper discusses the impact of specifying reduced Cobalt-59 in the primary heat transport circuit materials of construction on the radiation fields developed around the primary circuit. An eight-fold reduction in steam generator radiation fields due to Cobalt-60 has been observed for two identical sets of reactors, one with and one without Cobalt-59 control. The comparison is between eight reactors at the Pickering Nuclear Generating Station (PNGS). Units 5 to 8 (PNGS-B) are identical to Units 1 to 4 (PNGS-A) except that PNGS-B has reduced impurity Cobalt-59 in the alloys of construction and a reduced use of stellite. The effects of chemistry control are also discussed

  6. Organic derivatives of tin (II/IV): Investigation of their structure

    Energy Technology Data Exchange (ETDEWEB)

    Szirtes, L., E-mail: szirtes@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Megyeri, J., E-mail: megyeri@iki.kfki.h [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary); Kuzmann, E. [Laboratory of Nuclear Chemistry, CRC of the Hungarian Academy of Science at Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary); Beck, A. [Institute of Isotopes of the Hungarian Academy of Sciences, Budapest H-1525, P.O. Box 77 (Hungary)

    2011-07-15

    The structures of tin(II)-oxalate, tin(IV)Na-EDTA and tin(IV)Na{sub 8}-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Moessbauer study, thermal analysis and FTIR spectrometry. The Moessbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) A, b=9.7590(1) A, c=13.1848(5) A, V=1184.62 A{sup 3} and Z=8. SnNa-EDTA was found to be monoclinic with space group P2{sub 1}/c{sub 1}, a=10.7544(3) A, b=10.1455(3) A, c=16.5130(6) A, {beta}=98.59(2){sup o}, V=1781.50(4) A{sup 3} and Z=4. Sn(C{sub 6}H{sub 6}Na{sub 8}O{sub 24}P{sub 6}) was found to be amorphous.

  7. An elevator for cobalt-60 source

    International Nuclear Information System (INIS)

    Tang Zaimin; Liang Donghu

    1990-07-01

    The elevator used for cobalt-60 source is a key device in the irradiation industry. It plays an important role in the safety and control of irradiation operation as well as the utilization rate of radiation source. From 1983 to 1986, Beijing Institute of Nuclear Engineering undertook designing of various size irradiation projects for different uses. Since then a kind of cobalt-60 source elevator suited for the irradiator of wet-source-storage has been chosen. It is reliable in the operation and complete in the function. An automatic control circuit brings the systems of cobalt-60 source elevator into an interlock system which ensures the irradiation operation safety. Besides introducing the structural features and performance of this elevator, the conditions of safety interlocking in raising or lowering the cobalt-60 source is also discussed. The discussion is from the safety viewpoint of operating an irradiator and irradiation technology

  8. Proton transport properties of tin phosphate, chromotropic acid ...

    Indian Academy of Sciences (India)

    The functionalized materials of tin (IV) phosphate (SnP) like chromotropic acid anchored tin ... elemental analysis (ICP–AES), thermal analysis, X-ray analysis and FTIR spectroscopy. .... nal level below 1 V, interfaced to a minicomputer for data.

  9. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a...

  10. Studies on Nanocrystalline TiN Coatings Prepared by Reactive Plasma Spraying

    Directory of Open Access Journals (Sweden)

    Dong Yanchun

    2008-01-01

    Full Text Available Titanium nitride (TiN coatings with nanostructure were prepared on the surface of 45 steel (Fe-0.45%C via reactive plasma spraying (denoted as RPS Ti powders using spraying gun with self-made reactive chamber. The microstructural characterization, phases constitute, grain size, microhardness, and wear resistance of TiN coatings were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electron diffraction indicated that the TiN is main phase of the TiN coating. The forming mechanism of the nano-TiN was characterized by analyzing the SEM morphologies of surface of TiN coating and TiN drops sprayed on the surface of glass, and observing the temperature and velocity of plasma jet using Spray Watch. The tribological properties of the coating under nonlubricated condition were tested and compared with those of the AISI M2 high-speed steel and Al2O3 coating. The results have shown that the RPS TiN coating presents better wear resistance than the M2 high-speed steel and Al2O3 coating under nonlubricated condition. The microhardness of the cross-section and longitudinal section of the TiN coating was tested. The highest hardness of the cross-section of TiN coating is 1735.43HV100 g.

  11. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  12. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    International Nuclear Information System (INIS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ interface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°

  13. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ngah Demon, Siti Zulaikha [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Department of Physics, Centre of Defence Foundation Studies, National Defence University of Malaysia, 53 000 Kuala Lumpur (Malaysia); Miyauchi, Yoshihiro [Department of Applied Physics, School of Applied Sciences, National Defense Academy of Japan, 239-8686 Kanagawa (Japan); Mizutani, Goro, E-mail: mizutani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Matsushima, Toshinori; Murata, Hideyuki [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan)

    2014-08-30

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ{sub interface} with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  14. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil

    2010-01-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure.......Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure....

  15. The role of cobalt on the creep of Waspaloy

    Science.gov (United States)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  16. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Conducting tin halides with a layered organic-based perovskite structure

    Science.gov (United States)

    Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.

    1994-06-01

    THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

  18. The content of minerals and trace elements in meals

    International Nuclear Information System (INIS)

    Bognar, A.; Schelenz, R.; Gruenewald, T.; Frahm, H.; Heine, K.; Wiechen, A.; Bundesanstalt fuer Milchforschung, Kiel

    1981-07-01

    Within the frame work of the research programme 'School Feeding', 68 menu items of different producers were investigated for the content of the minerals calcium, chlorine, iron, potassium, magnesium, sodium and phosphorus, and for the trace elements antimony, barium, bromine, cesium, chromium, hafnium, iridium,cobalt, copper, manganese, mercury, rubidium, scandium, selenium, silver, strontium, tin and zinc. For the analytical determination of the elements, instrumental neutron activation analysis and X-ray fluorometry were applied. The studies showed that a calculation of the content of minerals and trace elements in meals on the basis of recipes and nutritive tables for raw foods is not justified, expect for sodium and phosphorus, because incorrect results can be obtained for the majority of meals. (orig./MG) [de

  19. COBALT COMPOUNDS AS ANTIDOTES FOR HYDROCYANIC ACID.

    Science.gov (United States)

    EVANS, C L

    1964-12-01

    The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5xLD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5xLD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3xLD50) than for mice (2xLD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered.

  20. Designer Ligands. Part 13. Synthesis and Catalytic Activity of ...

    African Journals Online (AJOL)

    Copper(I), copper(II), cobalt(II) and zinc(II) complexes of a macrocyclic, multidentate Schiff-base ligand have been prepared and, with the exception of the zinc(II) complex, have been shown to exhibit biomimetic catecholase activity. Keywords: Copper(II);Cobalt(II); Zinc(II); Biomimetic complexes; Catecholase activity

  1. Characterization of a Porous Carbon Material Functionalized with Cobalt-Oxide/Cobalt Core-Shell Nanoparticles for Lithium Ion Battery Electrodes

    KAUST Repository

    Anjum, Dalaver H.; Rasul, Shahid; Roldan-Gutierrez, Manuel A.; Da Costa, Pedro M. F. J.

    2016-01-01

    A nanoporous carbon (C) material, functionalized with Cobalt-Oxide/Cobalt (CoO/Co) core-shell nanoparticles (NPs), was structurally and chemically characterized with transmission electron microcopy (TEM) while its electrochemical response

  2. Simultaneous detection of ascorbic acid, uric acid and homovanillic acid at copper modified electrode

    International Nuclear Information System (INIS)

    Selvaraju, T.; Ramaraj, R.

    2007-01-01

    The copper was deposited on glassy carbon (GC) and indium tin oxide (ITO) electrodes by electrochemical method. The copper structures on electrode were characterized by atomic force microscope, X-ray diffractometeric pattern and differential pulse voltammetric studies. Optimal conditions for uniform growth of copper structures on the electrode were established. Voltammetric sensor was fabricated using the copper deposited GC electrode for the simultaneous detection and determination of uric acid (UA) and homovanillic acid (HVA) in the presence of excess concentrations of ascorbic acid (AA). The voltammetric signals due to AA and UA oxidation were well separated with a potential difference of 400 mV and AA did not interfere with the measurement of UA and HVA at the GC/Cu electrode. Linear calibration curves were obtained in the concentration range 1-40 μM for AA and 20-50 μM for UA at physiological pH and a detection limit of 10 nM of UA in the presence of 10-fold excess concentrations of AA was achieved. The simultaneous detection of submicromolar concentrations of AA, UA and HVA was achieved at the GC/Cu electrode. The practical utility of the present GC/Cu modified electrode was demonstrated by measuring the AA content in Vitamin C tablet, UA content in human urine and blood serum samples with satisfactory results

  3. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  4. Making a robust carbon-cobalt(III) bond

    DEFF Research Database (Denmark)

    Larsen, Erik; Madsen, Anders Østergaard; Kofod, Pauli

    2009-01-01

    The coordination ion with a well-characterized carbon-cobalt(III) bond, the (1,4,7-triazacyclononane)(1,6-diamino-3-thia-4-hexanido)cobalt(III) dication, [Co(tacn)(C-aeaps)](2+) (aeaps, for aminoethylaminopropylsulfide), has been reacted with iodomethane, and the S-methyl thionium derivative has...... been isolated. The crystal structure of the resulting [Co(tacn)(C-aeaps-SCH(3))]Br(3) x 3 H(2)O at 122 K has been determined by X-ray diffraction techniques to verify the structure. The crystal structure determination shows that the carbon-cobalt bond length is even shorter (2.001(4) A) than in [Co......(tacn)(C-aeaps)](2+) participates in bonding to cobalt(III), having implications for the transformation between the carbon- and sulfur-bound forms of the aeaps ligand....

  5. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-01

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH) 2 ] + cations, chloride ions, and molecules of crystallization water are linked together by a similar network

  6. Total body irradiation with a reconditioned cobalt teletherapy unit.

    Science.gov (United States)

    Evans, Michael D C; Larouche, Renée-Xavière; Olivares, Marina; Léger, Pierre; Larkin, Joe; Freeman, Carolyn R; Podgorsak, Ervin B

    2006-01-01

    While the current trend in radiotherapy is to replace cobalt teletherapy units with more versatile and technologically advanced linear accelerators, there remain some useful applications for older cobalt units. The expansion of our radiotherapy department involved the decommissioning of an isocentric cobalt teletherapy unit and the replacement of a column-mounted 4-MV LINAC that has been used for total body irradiation (TBI). To continue offering TBI treatments, we converted the decommissioned cobalt unit into a dedicated fixed-field total body irradiator and installed it in an existing medium-energy LINAC bunker. This article describes the logistical and dosimetric aspects of bringing a reconditioned cobalt teletherapy unit into clinical service as a total body irradiator.

  7. Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide

    International Nuclear Information System (INIS)

    Ashur, Idan; Jones, Anne K.

    2012-01-01

    Highlights: ► Immobilization of azurin at indium tin oxide causes modification of the native redox properties. ► Azurin was immobilized at alkylsilane self-assembled monolayer on indium tin oxide. ► Native, solution redox properties are retained for the immobilized protein on the SAM. ► Technique should be widely applicable to other redox proteins. - Abstract: Indium tin oxide (ITO) is a promising material for developing spectroelectrochemical methods due to its combination of excellent transparency in the visible region and high conductivity over a broad range of potential. However, relatively few examples of immobilization of redox proteins at ITO with retention of the ability to transfer electrons with the underlying material with native characteristics have been reported. In this work, we utilize an alkylsilane functionalized ITO surface as a biocompatible interface for immobilization of the blue copper protein azurin. Adsorption of azurin at ITO as well as ITO coated with self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane (MPTMS) and n-decyltrimethoxysilane (DTMS) was achieved, and immobilized protein probed using protein film electrochemistry. The native redox properties of the protein were perturbed by adsorption directly to ITO or to the MPTMS layer on an ITO surface. However, azurin adsorbed at a DTMS covered ITO surface retained native electrochemical properties (E 1/2 = 122 ± 5 mV vs. Ag/AgCl) and could exchange electrons directly with the underlying ITO layer without need for an intervening chemical mediator. These results open new opportunities for immobilizing functional redox proteins at ITO and developing spectroelectrochemical methods for investigating them.

  8. Method of stabilizing Nb3Sn superconducting foils

    International Nuclear Information System (INIS)

    Kruzliak, J.; Lences, P.; Allarova, H.

    1982-01-01

    The stabilization of niobium-tin Nb 3 Sn superconducting foils with copper is carried out by deposition or by diffusion in pure copper or in a tin bath containing different copper levels, with the surface etched or unetched. The foils are covered with a copper film at a temperature of 300 to 5O0 degC using a tin solder, spread on a copper, silver or nickel layer deposited on the foil surface from solutions for electroless plating. The bond between the surface of the superconducting foil and the electroless plated metal layer is annealed in a controlled atmosphere or in a vacuum at a temperature of 200 to 500 degC for over 20 to 60 minutes. The copper stabilization layer can also be produced electrolytically. (J.B.)

  9. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  10. Synthesis of cobalt boride nanoparticles using radio frequency thermal plasma

    International Nuclear Information System (INIS)

    Lapitan, Jr. Lorico DS.; Ying Ying Chen; Seesoek Choe; Watanabe, Takayuki

    2012-01-01

    Nano size cobalt boride particles were synthesized from vapor phase using a 30 kw-4 MHz radio frequency (RF) thermal plasma. Cobalt and boron powder mixtures used as precursors in different composition and feed rate were evaporated immediately in the high temperature plasma and cobalt boride nanoparticles were produced through the quenching process. The x-ray diffractometry (XRD) patterns of cobalt boride nanoparticles prepared from the feed powder ratio of 1:2 and 1:3 for Co: B showed peaks that are associated with the Co 2 B and CoB crystal phases of cobalt boride. The XRD analysis revealed that increasing the powder feed rate results in a higher mass fraction and a larger crystalline diameter of cobalt boride nanoparticles. The images obtained by field emission scanning electron microscopy (FE-SEM) revealed that cobalt boride nanoparticles have a spherical morphology. The crystallite size of the particles estimated with XRD was found to be 18-22 nm. (author)

  11. Study to use graded cobalt adjuster in 540 MWe PHWR

    International Nuclear Information System (INIS)

    Raj, Manish; Fernando, M.P.S.; Pradhan, A.S.; Kumar, A.N.

    2007-01-01

    Full text: There are 17 adjusters in 540 MWe PHWR, which are essentially provided for xenon override function. They also provide flux flattening being in the central region of the reactor core. The present design of adjusters consists of stainless steel tube. The adjuster rods are grouped into 8 banks for movement. Since adjusters are normally fully inserted during reactor operation, they are best suited for production of cobalt 60. The nickel-plated cobalt in the form of either slugs or pellet are used for the design of cobalt pencils. The number of pencils can be varied to optimize the reactivity load and cobalt 60 production requirement. The worth and activity of cobalt adjusters have been worked out considering different pin configuration for the adjuster assembly. To start with we have assumed all adjusters throughout its length are of the same configuration. The flux depression factors within the cobalt pencils have been considered in the estimations of the specific and total cobalt 60 activities. The option of using graded cobalt adjusters, where different pin configuration along the length is considered for better flux flattening

  12. Tribological characterization of TiN coatings prepared by magnetron sputtering

    Science.gov (United States)

    Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.

  13. Characterization of tin oxide nanoparticles synthesized via oxidation from metal

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M.

    2014-01-01

    The tin oxide (SnO_2) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO_2 powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  14. A-15 superconducting composite wires and a method for making

    International Nuclear Information System (INIS)

    Suenaga, M.; Klamut, C. J.; Luhman, Th. S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, The tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes

  15. Investigations on bioaccumulation of cobalt by fish eggs

    International Nuclear Information System (INIS)

    Harms, U.; Behringer, H.; Kunze, J.

    1978-01-01

    In ionized form cobalt is taken up by fish eggs directly from the water. Accumulation takes place on the chorion where the metal ions are reversibly bound to functional groups of the protein of the envelope of the egg or of the mycosa. To a small extent there occurs a transport of metal ions into the interior of the egg. It could not be clarified within the scope of the studies performed if this process is to be attributed to diffusion. Binding of the cobalt ions to the chorion leads, within hours, to a nearly uncharged final state, an apparent equilibrium, whose position is determined by the cobalt ion concentration of the breeding medium. Foreign ions (electrolytes like Ca 2+ ) lead to reduced uptake of cobalt ions, because they compete with the latter for binding places in the egg's envelope. Complex-forming substances (cysteine) result in lower absorption rates, too, the concentration of available cobalt ions in the water being reduced. (orig.) [de

  16. Tin and tin-titanium as catalyst components for reversible hydrogen storage of sodium aluminium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jia Fu; Shik Chi Tsang [University of Reading, Reading (United Kingdom). Surface and Catalysis Research Centre, School of Chemistry

    2006-10-15

    This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH{sub 4} are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)3H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH{sub 4} evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH{sub 4}, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH{sub 4} are therefore made. 31 refs., 8 figs., 2 tabs.

  17. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi

    2010-01-01

    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  18. Influence of cobalt and chromium additions on the precipitation processes in a Cu-4Ti alloys; Influencia de la adicion de cobalto y cromo en el proceso de precipitacion en una aleacion de Cu-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2010-07-01

    The influence of 0.5% atomic cobalt and 1% atomic chromium additions on the precipitation hardening of Cu-4Ti alloy was studied by differential scanning calorimetry (DSC) and microhardness measurements. The analysis of the calorimetric curves, for binary alloy, shows the presence of two overlapping exothermic reactions (stages 1 and 2) attributed to the formation of Cu{sub 4}Ti and Cu{sub 3}Ti particles in the copper matrix, respectively. DSC curves for Cu-4Ti-0.5Co alloy shows three exothermic effects (overlapping stages 3 and 4 and stage 5) associated to the formation of phases Ti{sub 2}Co, TiCo and Cu{sub 4}Ti, respectively. DSC curves for Cu-4Ti1Cr alloy shows three exothermic reactions (stages 6, 7 and 9) and one endothermic peak (stage 8). The exothermic reactions correspond to the formation of phases Cr{sub 2}Ti, Cu{sub 4}Ti and Cu{sub 3}Ti, respectively, and the endothermic reactions are attributed to the Cr{sub 2}Ti dissolution. The activation energies calculated using the modified Kissinger method were lower than the ones corresponding to diffusion of cobalt, chromium, and titanium in copper. Kinetic parameters were obtained by a convolution method based on the Johnson-Mehl-Avrami (JMA) formalism. Microhardness measurements confirmed the formation of the mentioned phases. Also, these measurements confirmed the effect of cobalt and chromium addition on the binary alloy hardness. (Author). 31 refs.

  19. Formation of ultralong copper nanowires by hydrothermal growth for transparent conducting applications

    Science.gov (United States)

    Balela, Mary Donnabelle L.; Tan, Michael

    2017-07-01

    Transparent conducting electrodes are key components of optoelectronic devices, such as touch screens, organic light emitting diodes (OLEDs) and solar cells. Recent market surveys have shown that the demands for these devices are rapidly growing at a tremendous rate. Semiconducting oxides, in particular indium tin oxide (ITO) are the material of choice for transparent conducting electrodes. However, these conventional oxides are typically brittle, which limits their applicability in flexible electronics. Metal nanowires, e.g. copper (Cu) nanowires, are considered as the best candidate as substitute for ITO due to their excellent mechanical and electrical properties. In this paper, ultralong copper (Cu) nanowires with were successfully prepared by hydrothermal growth at 50-80°C for 1 h. Ethylenediamine was employed as the structure-directing agents, while hydrazine was used as the reductant. In situ mixed potential measurement was also carried out to monitor Cu deposition. Higher temperature shifted the mixed potential negatively, leading to thicker Cu nanowires. Transparent conducting electrode, with a sheet resistance of 197 Ω sq-1 at an optical transmittance of around 61 %, was fabricated with the Cu nanowire ink.

  20. Measurement for cobalt target activity and its axial distribution

    International Nuclear Information System (INIS)

    Li Xingyuan; Chen Zigen.

    1985-01-01

    Cobalt target activity and its axial distribution are measured in process of producing radioactive isotopes 60 Co by irradiation in HFETR. Cobalt target activity is obtained with measured data at 3.60 m and 4.60 m, relative axial distribution of cobalt target activity is obtained with one at 30 cm, and axial distribution of cobalt target activity(or specific activity) is obtained with both of data. The difference between this specific activity and measured result for 60 Co teletherapy sources in the end is less than +- 5%

  1. Electroluminescence and Photoluminescence from a Fluorescent Cobalt Porphyrin Grafted on Graphene Oxide

    Science.gov (United States)

    Janghouri, Mohammad

    2017-10-01

    A new graphene oxide-cobalt porphyrin (GO-CoTPP) hybrid material has been used as an emissive layer in organic light-emitting diodes (OLEDs). Devices with fundamental structure of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, 45 nm)/polyvinylcarbazole (PVK):2-(4-biphenyl)-5-(4- t-butylphenyl)-1,3,4-oxadiazole (PBD):GO-CoTPP (70 nm)/1,3,5-tris( N-phenylbenzimidazol-2-yl)-benzene (TPBI, 20 nm)/Al (150 nm) were fabricated. A red electroluminescence (EL) was obtained from thin-film PVK:PBD:CoTPP at 70 nm thickness. When CoTPP was covalently grafted on graphene oxide (GO) sheets, near-white EL was obtained. The white emission, which was composed of bluish green and red, is attributed to electroplex formation at the GO-CoTPP/PBD interface. Such electroplex emission between electrons and holes is a reason for the low turn-on voltage of the GO-CoTPP-based OLED. Maximum luminance efficiency of 1.43 cd/A with Commission International de l'Eclairage coordinates of 0.33 and 0.40 was achieved at current of 0.02 mA and voltage of 14 V.

  2. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg. No...

  3. Characterization and Catalytic Activity of Montmorillonite K10-Supported Cobalt Catalysts

    International Nuclear Information System (INIS)

    Gobara, H.M.; Ghattas, M.S.; Henien, S.A.

    2010-01-01

    Montmorillonite K10-supported cobalt catalysts were prepared by wet impregnation method. The samples were analyzed by XRD, TPR, FTTR and BET characterization techniques. [Three phases of cobalt species were identified namely, cobalt oxide (Co 3 O 4 ), cobalt silicate (Co 2 S 1 O 4 ) and cobalt aluminate (CoAl 2 O 4 ). These species were most probably existing within the inter lamellar spaces of the meso porous montmorillonite K10 support]. The two bands observed at 1385 and 760 cm 1 were characteristic of metal species rather than the support, being mostly of Co - O bond vibration. The hysteresis loop, pore size distribution, pore volume and BET surface area were greatly affected by cobalt loading. The catalyst containing 18 wt% cobalt was the most selective sample for ethylene production from ethanol dehydration.

  4. Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles And Thin Films

    Science.gov (United States)

    Khare, Ankur

    Copper zinc tin sulfide (Cu2ZnSnS4, or CZTS) is emerging as an alternative material to the present thin film solar cell technologies such as Cu(In,Ga)Se2 and CdTe. All the elements in CZTS are abundant, environmentally benign, and inexpensive. In addition, CZTS has a band gap of ˜1.5 eV, the ideal value for converting the maximum amount of energy from the solar spectrum into electricity. CZTS has a high absorption coefficient (>104 cm-1 in the visible region of the electromagnetic spectrum) and only a few micron thick layer of CZTS can absorb all the photons with energies above its band gap. CZT(S,Se) solar cells have already reached power conversion efficiencies >10%. One of the ways to improve upon the CZTS power conversion efficiency is by using CZTS quantum dots as the photoactive material, which can potentially achieve efficiencies greater than the present thin film technologies at a fraction of the cost. However, two requirements for quantum-dot solar cells have yet to be demonstrated. First, no report has shown quantum confinement in CZTS nanocrystals. Second, the syntheses to date have not provided a range of nanocrystal sizes, which is necessary not only for fundamental studies but also for multijunction photovoltaic architectures. We resolved these two issues by demonstrating a simple synthesis of CZTS, Cu2SnS3, and alloyed (Cu2SnS3) x(ZnS)y nanocrystals with diameters ranging from 2 to 7 nm from diethyldithiocarbamate complexes. As-synthesized nanocrystals were characterized using high resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and energy dispersive spectroscopy to confirm their phase purity. Nanocrystals of diameter less than 5 nm were found to exhibit a shift in their optical absorption spectra towards higher energy consistent with quantum confinement and previous theoretical predictions. Thin films from CZTS nanocrystals deposited on Mo-coated quartz substrates using drop casting were found to be continuous

  5. Electrodeposition, characterization and corrosion investigations of galvanic tin-zinc layers from pyrophosphate baths

    OpenAIRE

    STOPIC MILENA D.; FRIEDRICH BERND G.

    2016-01-01

    Tin-zinc alloy deposits are recognized as a potential alternative to toxic cadmium as corrosion resistant coatings. Tin-zinc alloy layers offer outstanding corrosion protection for steel by combining the barrier protection of tin with the galvanic protection of zinc. Tin-zinc coatings have been used on the chassis of electrical and electronic apparatus and on critical automotive parts such as fuel and brake line components. In this study, tin-zinc alloy deposits were successfully prepared fro...

  6. Determination of tin in cassiterite ores by colorimetry of iodometry

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, B.

    1972-01-01

    The analytical methods are described far the determination of tin in cassiterite ores. The gallein-colorimetric method is described for determining small amounts of tin, covering the 0,01-0,5 per cent range. The sample is decomposed by heating with ammonium iodide, and tin is analyzed colorimetrically by means of it s complex with gallein. The final measure may be brought about either visually or spectrophotometrically at 525 nm. (Author)

  7. Radiation induced ligand loss from cobalt complexes

    International Nuclear Information System (INIS)

    Funston, A. M.; McFadyen, W.D.; Tregloan, P.A.

    2000-01-01

    Full text: Due to the rapid nature of ligand dissociation from cobalt(II) complexes the study of the rate of ligand dissociation necessitates the use of a technique such as pulse radiolysis. This allows the rapid reduction of the corresponding cobalt(III) complex by a reducing radical, such as the aquated electron, to form the cobalt(II) complex. However, to date, no systematic study of either the mechanism of reduction or the influence of the electronic structure on the rate of ligand dissociation has been carried out. In order to understand these processes more fully the mechanism of reduction of a range of related cobalt(III) complexes by the aquated electron and the subsequent rate of ligand dissociation from the resulting cobalt(II) complexes is being investigated. It has been found that a number of processes are observed following the initial rapid reaction of the cobalt(III) complex with the aquated electron. Ultimately ligand loss is observed. Depending upon the complex, the initial processes observed may include the formation of coordinated radicals and electron transfer within the complex. For complexes containing aromatic ligands such as 2,2'-bipyridine, 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine the formation of a coordinated radical is observed as the initial reduction step. The kinetics of ligand dissociation of these complexes has been determined. The loss of monodentate ligands is fast and has been indistinguishable from the reduction processes when aromatic ligands are also present in the complex. However, for diamine chelates and diimine chelates spectra of the transient species can be resolved

  8. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  9. The cobalt-60 container scanner

    International Nuclear Information System (INIS)

    Jigang, A.; Liye, Z.; Yisi, L.; Haifeng, W.; Zhifang, W.; Liqiang, W.; Yuanshi, Z.; Xincheng, X.; Furong, L.; Baozeng, G.; Chunfa, S.

    1997-01-01

    The Institute of Nuclear Energy Technology (INET) has successfully designed and constructed a container (cargo) scanner, which uses cobalt-60 of 100-300 Ci as radiation source. The following performances of the Cobalt-60 container scanner have been achieved at INET: a) IQI (Image Quality Indicator) - 2.5% behind 100 mm of steel; b) CI (Contrast Indicator) - 0.7% behind 100 mm of steel; c) SP (Steel Penetration) - 240 mm of steel; d) Maximum Dose per Scanning - 0.02mGy; e) Throughput - twenty 40-foot containers per hour. These performances are equal or similar to those of the accelerator scanners. Besides these nice enough inspection properties, the Cobalt-60 scanner possesses many other special features which are better than accelerator scanners: a) cheap price - it will be only or two tenths of the accelerator scanner's; b) low radiation intensity - the radiation protection problem is much easier to solve and a lot of money can be saved on the radiation shielding building; c) much smaller area for installation and operation; d) simple operation and convenient maintenance; e) high reliability and stability. The Cobalt-60 container (or cargo) scanner is satisfied for boundary customs, seaports, airports and railway stations etc. Because of the nice special features said above, it is more suitable to be applied widely. Its high properties and low price will make it have much better application prospects

  10. Highly selective cobalt-catalyzed hydrovinylation of styrene

    NARCIS (Netherlands)

    Grutters, M.M.P.; Müller, C.; Vogt, D.

    2006-01-01

    The hydrovinylation reaction is a codimerization of a 1,3-diene or vinyl arene and ethene with great potential for fine chemicals and pharmaceuticals. For the first time, enantioselective cobalt-catalyzed hydrovinylations of styrene were achieved with a cobalt-based system bearing a chiral

  11. Cobalt Blues The Story of Leonard Grimmett, the Man Behind the First Cobalt-60 Unit in the United States

    CERN Document Server

    Almond, Peter R

    2013-01-01

    For the latter half of the 20th century, cobalt-60 units were the mainstay of radiation treatments for cancer. Cobalt Blues describes the development of the first cobalt-60 unit in the United States and the man behind it, Leonard Grimmett. Conceptually conceived before World War II, it only became possible because of the development of nuclear reactors during the war. Although Grimmett conceived of and published his ideas first, the Canadians built the first units because of the capability of their reactor to produce more suitable cobalt-60 sources. This book tells the story of how Grimmett and others came together at the time that the U S Atomic Energy Agency was pushing the use of radioactivity in medicine. Due to his sudden death, very little information about Grimmett was known until recently, when various documents have come to light, allowing the full story to be told.

  12. The recovery of tin, and the production of niobium pentoxide and potassium tantalum fluoride, from a tin slag

    International Nuclear Information System (INIS)

    Iorio, G.; Tyler, M.S.

    1987-01-01

    This report describes the results of testwork on the recovery of tin, niobium, and tantalum from a tin slag. The slag, which consisted mainly of amorphous silica, with varying amounts of calcuim, magnesium, manganese, iron, and aluminium, contained an average of 8,8 per cent niobium pentoxide and 6,2 per cent tantalum pentoxide. The metallic tin-ion phase was removed from the crushed slag by magnetic separation. The slag was then leached with hydrochloric acid to remove magnesium, calcium, aluminium, iron, manganese, and the remainder of the tin. Leaching with sodium hydroxide for the removal of silica and phosphorous was followed by a final leach with hydrochloric acid for the removal of sodium. The upgraded concentrate thus obtained was purified by leaching with hydrofluoric acid, solvent extraction of niobium and tantalum into tri-n-butyl phosphate and methyl isobutyl ketone, and selective stripping of niobium with sulphuric acid and tantalum with ammonium floride. Niobium pentoxide and potassium tantalum fluoride were then precipitated by the addition of ammonium hydroxide and potassium fluoride to the respective strip liquors. The overall recoveries in the upgraded concentrate were 98 per cent for tantalum and 92 per cent for niobium. Dissolutions and recoveries of over 99 per cent were obtained for both tantalum and niobium in the purification steps. The niobium pentoxide and potassium tantalum fluoride precipitates obtained were of high purity

  13. Studies on tin based inorganic ion exchangers for fission products separation

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.; Murthy, T.S.

    1993-01-01

    Tin(IV) antimonate and hydrous tin(IV) oxide have been prepared and their characteristics are evaluated. A new method has been finalized for the separation of 95 Zr- 95 Nb from irradiated uranium using hydrous tin(IV) oxide. In this process, the irradiated sample is dissolved in concentrated HNO 3 , evaporated to near dryness and taken up in 0.5 M HNO 3 . The solution is passed over tin(IV) oxide column and the isotope eluted with 10 M HNO 3 . The product is obtained in pure nitrate form which is generally preferred for different applications. A method has been finalized for the separation of 106 Ru from fission product solution using tin(IV) antimonate. In this method fission product solution is adjusted to 2 M with respect to nitric acid, 137 Cs is separated on a column of ammonium phosphomolybdate, the effluent after adjustment of acidity to 0.2 M is then passed over a column of tin(IV) antimonate where the effluent contains pure 106 Ru. (author). 14 refs., 6 figs., 2 tabs

  14. Development of Formulations for a-SiC and Manganese CMP and Post-CMP Cleaning of Cobalt

    Science.gov (United States)

    Lagudu, Uma Rames Krishna

    We have investigated the chemical mechanical polishing (CMP) of amorphous SiC (a-SiC) and Mn and Post CMP cleaning of cobalt for various device applications. During the manufacture of copper interconnects using the damascene process the polishing of copper is followed by the polishing of the barrier material (Co, Mn, Ru and their alloys) and its post CMP cleaning. This is followed by the a-SiC hard mask CMP. Silicon carbide thin films, though of widespread use in microelectronic engineering, are difficult to process by CMP because of their hardness and chemical inertness. The earlier part of the SiC work discusses the development of slurries based on silica abrasives that resulted in high a-SiC removal rates (RRs). The ionic strength of the silica dispersion was found to play a significant role in enhancing material removal rate, while also providing very good post-polish surface-smoothness. For example, the addition of 50 mM potassium nitrate to a pH 8 aqueous slurry consisting of 10 wt % of silica abrasives and 1.47 M hydrogen peroxide increased the RR from about 150 nm/h to about 2100 nm/h. The role of ionic strength in obtaining such high RRs was investigated using surface zeta-potentials measurements and X-ray photoelectron spectroscopy (XPS). Evidently, hydrogen peroxide promoted the oxidation of Si and C to form weakly adhered species that were subsequently removed by the abrasive action of the silica particles. The effect of potassium nitrate in increasing material removal is attributed to the reduction in the electrostatic repulsion between the abrasive particles and the SiC surface because of screening of surface charges by the added electrolyte. We also show that transition metal compounds when used as additives to silica dispersions enhance a-SiC removal rates (RRs). Silica slurries containing potassium permanganate gave RRs as high as 2000 nm/h at pH 4. Addition of copper sulfate to this slurry further enhanced the RRs to ˜3500 nm/h at pH 6

  15. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints.

    Science.gov (United States)

    Pelletier, Emilien; Bonnet, Claudie; Lemarchand, Karine

    2009-07-14

    Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada) were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan-and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  16. Biofouling Growth in Cold Estuarine Waters and Evaluation of Some Chitosan and Copper Anti-Fouling Paints

    Directory of Open Access Journals (Sweden)

    Karine Lemarchand

    2009-07-01

    Full Text Available Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan- and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  17. Sputtering on cobalt with noble gas ions

    International Nuclear Information System (INIS)

    Sarholt-Kristensen, L.; Johansen, A.; Johnson, E.

    1983-01-01

    Single crystals of cobalt have been bombarded with 80 keV Ar + ions and with 80 keV and 200 keV Xe + ions in the [0001] direction of the hcp phase and the [111] direction of the fcc phase. The sputtering yield has been measured as function of target temperature (20 0 C-500 0 C), showing a reduction in sputtering yield for 80 keV Ar + ions and 200 keV Xe + ions, when the crystal structure changes from hcp to fcc. In contrast to this, bombardment with 80 keV Xe + ions results in an increase in sputtering yield as the phase transition is passed. Sputtering yields for [111] nickel are in agreement with the sputtering yields for fcc cobalt indicating normal behaviour of the fcc cobalt phase. The higher sputtering yield of [0001] cobalt for certain combinations of ion mass and energy may then be ascribed to disorder induced partly by martensitic phase transformation, partly by radiation damage. (orig.)

  18. Tin electrodeposition from sulfate solution containing a benzimidazolone derivative

    Directory of Open Access Journals (Sweden)

    Said BAKKALI

    2016-11-01

    Full Text Available Tin electrodeposition in an acidic medium in the presence of N,N’-1,3-bis-[N-3-(6-deoxy-3-O-methyl-D-glucopyranose-6-yl-2-oxobenzimidazol-1-yl]-2-tetradecyloxypropane as an additive was investigated in this work. The adequate current density and the appropriate additive concentration were determined by gravimetric measurements. Chronopotentiometric curves showed that the presence of the additive caused an increase in the overpotential of tin reduction. The investigations by cyclic voltammetry technique revealed that, in the presence and in absence of the additive, there were two peaks, one in the cathodic side attributed to the reduction of Sn2+ and the other one in the anodic side assigned to the oxidation of tin previously formed during the cathodic scan. The surface morphology of the tin deposits was studied by scanning electron microscopy (SEM and XRD.

  19. Characteristics of organic light emitting diodes with copper iodide as injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Stakhira, P., E-mail: stakhira@polynet.lviv.u [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Hotra, Z. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Rzeszow University of Technology, W. Pola 2, Rzeszow, 35-959 (Poland); Tataryn, V. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Luka, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2010-09-30

    We have studied the use of a thin copper iodide (CuI) film as an efficient injection layer of holes from indium tin oxide (ITO) anode in a light-emitting diode structure based on tris-8-hydroxyquinoline aluminium (Alq3). The results of impedance analysis of two types of diode structures, ITO/CuI/Alq3/poly(ethylene glycol) dimethyl ether/Al and ITO/Alq3/poly(ethylene glycol) dimethyl ether/Al, are presented. Comparative analysis of their current density-voltage, luminance-voltage and impedance characteristics shows that presence of CuI layer facilitates injection of holes from ITO anode into the light-emitting layer Alq3 and increases electroluminescence efficiency of the organic light emitting diodes.

  20. Heavy metals and mineral elements not included on the nutritional labels in table olives.

    Science.gov (United States)

    López-López, Antonio; López, Rafael; Madrid, Fernando; Garrido-Fernández, Antonio

    2008-10-22

    The average contents, in mg/kg edible portion (e.p.), of elements not considered for nutritional labeling in Spanish table olives were as follows: aluminum, 71.1; boron, 4.41; barium, 2.77; cadmium, 0.04; cobalt, 0.12; chromium, 0.19; lithium, 6.56; nickel, 0.15; lead, 0.15; sulfur, 321; tin, 18.4; strontium, 9.71; and zirconium, 0.04. Sulfur was the most abundant element in table olives, followed by aluminum and tin (related to green olives). There were significant differences between elaboration styles, except for aluminum, tin, and sulfur. Ripe olives had significantly higher concentrations (mg/kg e.p.) of boron (5.32), barium (3.91), cadmium (0.065), cobalt (0.190), chromium (0.256), lithium (10.01), nickel (0.220), and strontium (10.21), but the levels of tin (25.55) and zirconium (0.039) were higher in green olives. The content of contaminants (cadmium, nickel, and tin) was always below the maximum limits legally established. The discriminant analysis led to an overall 86% correct classification of cases (80% after cross-validation).

  1. The Moessbauer effect in binary tin chalcogenides of tin 119

    International Nuclear Information System (INIS)

    Ortalli, I.; Fano, V.

    1975-01-01

    The values of the isomer shift, quadrupole splitting, Moessbauer coefficient, Debye temperature for the tin chalcogenides SnS. SnSe, SnTe are tabulated for the temperatures 80 and 300 K. Temperature dependences of the Moessbauer coefficient and of the effective Debye temperature for SnS, SnSe and SnTe in a temperature range of 78 to 300 K are presented. (Z.S.)

  2. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2010-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish .

  3. Results of elemental analyses of water and waterborne sediment samples from areas of Alaska proposed for the Chukchi Imuruk National Reserve, Selawik National Wildlife Refuge, and Cape Krusenstern National Monument

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.

    1978-10-01

    During July--August 1976, waters and sediments were collected from streams and lakes over an area of 100,000 km 2 around Kotzebue, Alaska, as part of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance. The work provides multielement results for 949 waters and 886 sediments from 979 locations. Of these, 492 waters and 452 sediments are from 517 locations in the proposed Chukchi Imuruk Reserve; 447 waters and 423 sediments are from 451 locations in the proposed Selawik Wildlife Refuge; and 10 waters and 11 sediments are from 11 locations in the proposed Cape Krusenstern Monument. The field data, with concentrations of 13 elements in the waters and 43 in the sediments, are presented, and the sample locations are shown on accompanying plates. The waters were analyzed for uranium by fluorometry or delayed-neutron counting and calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, titanium, and zinc by plasma-source emission spectrography. The sediment samples were analyzed for uranium by delayed-neutron counting, beryllium and lithium by arc-source emission spectrography, bismuth, cadmium, copper, lead, nickel, niobium, silver, tin, and tungsten by x-ray fluorescence, and aluminum, antimony, barium, calcium, cerium, cesium, chlorine, chromium, cobalt, dysprosium, europium, gold, hafnium, iron, lanthanum, lutetium, magnesium, manganese, potassium, rubidium, samarium, scandium, sodium, strontium, tantalum, terbium, thorium, titanium, vanadium, ytterbium, and zinc by neutron activation. Uranium to thorium ratios in each sediment are also provided

  4. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  5. The analysis, by atomic-absorption spectrophotometry, of matte-leach residues

    International Nuclear Information System (INIS)

    Mallett, R.C.; Ring, E.J.; Middleton, H.R.; Dubois, M.

    1973-01-01

    Alternative methods for the analysis of matte-leach residues by atomic-absorption spectrophotometry were investigated. For the determination of the platinum-group metals, gold, and certain of the base metals, a fusion with sodium peroxide, followed by the separation of gold by reverse-phase chromatography and of the platinum-group metals by ion-exchange, is proposed. The noble metals are then determined in a solution that is free of most base metals including the sodium present as a result of the fusion. Copper, nickel, iron, calcium, magnesium, and aluminium can be determined after they have been removed from the ion-exchange column. Arsenic, selenium, tellurium, bismuth, tin, silver, lead, manganese, zinc, and cobalt can be determined in a separate sample after dissolution by a sealed-tube method. This is also an alternative method for the determination of copper, nickel, and iron. Chromium is determined separately after fusion with sodium peroxide, and silver can also be determined in this way. The laboratory method for these procedures is given as an appendix [af

  6. Atomic layer deposition of W{sub x}N/TiN and WN{sub x}C{sub y}/TiN nanolaminates

    Energy Technology Data Exchange (ETDEWEB)

    Elers, K.-E.; Saanila, V.; Li, W.-M.; Soininen, P.J.; Kostamo, J.T.; Haukka, S.; Juhanoja, J.; Besling, W.F.A

    2003-06-23

    Diffusion barrier materials, such as TiN, W{sub x}N, WN{sub x}C{sub y} and their nanolaminates were deposited by atomic layer deposition method. TiN film exhibited excellent properties, but W{sub x}N film exhibited high resistivity despite the low residue concentration. Both TiN and W{sub x}N films suffered from serious incompatibility with the copper metal. WN{sub x}C{sub y} film was deposited by introducing triethylboron as a reducing agent for tungsten. Excellent film properties were obtained, including very good compatibility with the copper metal, evident as strong adhesion and no pitting on the copper surface. Nanolaminate barrier stacks of W{sub x}N/TiN and WN{sub x}C{sub y}/TiN were successfully deposited. TiN deposition did not cause copper pitting when thin WN{sub x}C{sub y} film was deposited underneath.

  7. Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films

    Science.gov (United States)

    Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi

    2018-03-01

    Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.

  8. The Influence of Nickel and Tin Additives on the Microstructural and Mechanical Properties of Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Haider T. Naeem

    2014-01-01

    Full Text Available The effects of nickel and nickel combined tin additions on mechanical properties and microstructural evolutions of aluminum-zinc-magnesium-copper alloys were investigated. Aluminum alloys containing Ni and Sn additives were homogenized at different temperatures conditions and then aged at 120°C for 24 h (T6 and retrogressed at 180°C for 30 min and then reaged at 120°C for 24 h (RRA. Comparison of the ultimate tensile strength (UTS of as-quenched Al-Zn-Mg-Cu-Ni and Al-Zn-Mg-Cu-Ni-Sn alloys with that of similar alloys which underwent aging treatment at T6 temper showed that gains in tensile strengths by 385 MPa and 370 MPa were attained, respectively. These improvements are attributed to the precipitation hardening effects of the alloying element within the base alloy and the formation of nickel/tin-rich dispersoid compounds. These intermetallic compounds retard the grain growth, lead to grain refinement, and result in further strengthening effects. The outcomes of the retrogression and reaging processes which were carried on aluminum alloys indicate that the mechanical strength and Vickers hardness have been enhanced much better than under the aging at T6 temper.

  9. A laboratory and field evaluation of the mobility of cobalt-60/EDTA

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Kirkham, R.R.; Swanson, J.L.

    1983-01-01

    We have observed a time and soil type dependence in the ability of the organic complexant EDTA to keep cobalt-60 in solution. Test results indicate that short-term adsorption tests lasting 5 days or less can be misleading. In short-term tests using cobalt-60/EDTA and soil from the Hanford site, low sorption in batch tests and high mobility in column tests were observed. During long-term batch test using cobalt-60/EDTA, the percentage of cobalt remaining in solution decreased from 90% after 7 days to less than 10% after 500 days. In laboratory and field column tests where low water flow rates allowed long contact time, virtually no cobalt movement was observed even though in the field test tritium was transported over 4 meters. Long-term batch tests using cobalt-60/EDTA and soil from Savannah River burial grounds showed that cobalt remainin in solution dropped to 30% of the total cobalt added after 5 days and to less than 1% after 15 days. Batch tests using soil from Oak Ridge burial grounds were less dramatic showing cobalt in solution decreasing from 90% after 5 days to 70% after 35 days. The cobalt-60/EDTA complex appears to be dissociating and leaving uncomplexed cobalt which is readily sorbed. The dissociation seems to be rather complete in Hanford and Savannah River soil but limited in the Oak Ridge soil. The implication to waste management is that the potential for transport of cobalt by EDTA may not be as serious at all burial sites as once thought

  10. EXAFS Determination of the Structure of Cobalt in Carbon-Supported Cobalt and Cobalt-Molybdenum Sulfide Hydrodesulfurization Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Bouwens, S.M.A.M.; Veen, J.A.R. van; Beer, V.H.J. de; Prins, R.

    1991-01-01

    The structure of the cobalt present in carbon-supported Co and Co-Mo sulfide catalysts was studied by means of X-ray absorption spectroscopy at the Co K-edge and by X-ray photoelectron spectroscopy (XPS). Thiophene hydrodesulfurization activities were used to measure the catalytic properties of

  11. A spot test for detection of cobalt release - early experience and findings

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil; Johansen, Jeanne D

    2010-01-01

    It is often difficult to establish clinical relevance of metal exposure in cobalt-allergic patients. Dermatologists and patients may incorrectly assume that many metallic items release cobalt at levels that may cause cobalt dermatitis. Cobalt-allergic patients may be unaware that they are exposed...

  12. Electrochemical reduction of trinitrotoluene on core-shell tin-carbon electrodes

    International Nuclear Information System (INIS)

    Grigoriants, Irena; Markovsky, Boris; Persky, Rachel; Perelshtein, Ilana; Gedanken, Aharon; Aurbach, Doron; Filanovsky, Boris; Bourenko, Tatiana; Felner, Israel

    2008-01-01

    In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH 3 ) 4 , and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of -0.50 to -0.80 V (vs. an Ag/AgCl/Cl - reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 deg. C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around -0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO 2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors

  13. Incentives and opportunities for reducing the cobalt content in reactor core components

    International Nuclear Information System (INIS)

    Ocken, H.

    1985-01-01

    Cobalt in core components contributes to radiation field buildup on out-of-core surfaces. Core components containing cobalt-base alloys and cobalt as an impurity are identified. The use of cobalt-free wear-resistant alloys and construction materials with lower impurity levels of cobalt is disused. It is argued that such measures are cost effective. Lower radiation fields and disposal costs will offset higher raw material costs. Component performance will not be affected. (author)

  14. Peculiarities of the electrontransport properties of polyimide films implanted with copper and cobalt ions

    International Nuclear Information System (INIS)

    Nazhim, F.A.; Odzhaev, V.B.; Lukashevich, M.G.; Nuzhdin, V.I.; Khajbullin, R.I.

    2010-01-01

    Thin polyimide foils were implanted with 40 keV Co + and Cu + ions at fluencies of 2,5·1016-1,251017 cm 2 and at ion current densities of 4, 8 and 12 mA cm 2 . Surface dc electric resistance of the implanted polymer samples have been measured in the temperature range 40-300 K. Metal implantation results in decreasing polymer resistance with the dose and current density increasing for the both kinds of metal ions. The decrease of dc electric resistance is caused by radiation-induced carbonization and metal nanoparticle formation in the implanted region of polymer. The transition from the insulating to metallic regime of conductivity is observed in cobalt implanted samples for critical doses above Dc = 1,25?1017 cm 2 at an ion current density of 8 mA cm 2 . In the contrary, high-fluence implantation in the polymer with Cu + ions for the same regimes does not result in the transition. The dominating mechanisms of charge carrier transport and the origin of insulator-to-metal transition in the metal implanted polymer are discussed. (authors)

  15. Shanghai Futures Exchange Published Draft of Tin and Nickel Futures Contract

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Shanghai Futures Exchange published draft for soliciting opinions for tin and nickel futures contract on its official website on January 19,which implies the marketing time of the long awaited tin and nickel futures is drawing near.According to the draft for soliciting opinions,the transaction unit of tin futures contract is 1tonne/lot,minimum variation unit is 10 yuan/tonne,daily maximum price fluctuation shall

  16. VO2 /TiN Plasmonic Thermochromic Smart Coatings for Room-Temperature Applications.

    Science.gov (United States)

    Hao, Qi; Li, Wan; Xu, Huiyan; Wang, Jiawei; Yin, Yin; Wang, Huaiyu; Ma, Libo; Ma, Fei; Jiang, Xuchuan; Schmidt, Oliver G; Chu, Paul K

    2018-03-01

    Vanadium dioxide/titanium nitride (VO 2 /TiN) smart coatings are prepared by hybridizing thermochromic VO 2 with plasmonic TiN nanoparticles. The VO 2 /TiN coatings can control infrared (IR) radiation dynamically in accordance with the ambient temperature and illumination intensity. It blocks IR light under strong illumination at 28 °C but is IR transparent under weak irradiation conditions or at a low temperature of 20 °C. The VO 2 /TiN coatings exhibit a good integral visible transmittance of up to 51% and excellent IR switching efficiency of 48% at 2000 nm. These unique advantages make VO 2 /TiN promising as smart energy-saving windows. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Removal of Cobalt Ion by Adsorbing Colloidal Flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-30

    Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(III) as flocculant and a sodium lauryl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., were considered. The flotation with Fe(III) showed 99.8% removal efficiency of cobalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution was treated with 35% H{sub 2}O{sub 2} prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of H{sub 2}O{sub 2}. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation wider. Foreign ions such as, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, Ca{sup 2+} were adopted and their effects were observed, Of which sulfate ion was found to be detrimental to removal of cobalt ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in better removal efficiency of cobalt ion in the presence of sulfate ion. (author). 14 refs., 13 figs.

  18. Alteration of uraniferous and native copper concretions in the Permian mudrocks of south Devon, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Styles, M.T.; Horstwood, M.S.A.; Kemp, S.J. [British Geological Survey, Nottingham (United Kingdom)

    2002-03-01

    This report presents the results of a study of the mineralogy and alteration characteristics of unusual concretions containing sheets of native copper, and uranium-vanadium mineralised concretions, in mudstones and siltstones of the Pennian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The main objectives of the study were: 1. To investigate the corrosion characteristics of the native copper as a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of spent fuel and high-level radioactive waste (HLW). This study developed from an earlier pilot study, which demonstrated that the alteration of the native copper in the concretions from Littleham Cove was mineralogically and chemically complex. 2. To investigate the alteration and oxidation of minerals containing reduced species (e.g. ferrous iron) within the uranium-rich concretions as a natural analogue for the potential effects of oxidation induced by alpha-radiolysis of water in a HLW repository environment. Native copper-bearing concretions in the Littleham Mudstone Formation are very rare. They occur, as thin lenticular disks developed largely along bedding lamina and thin low-angle fractures cutting the bedding laminae the upper part of the formation, about 10 m below the top of the formation. This part of the sequence comprises laterally discontinuous, fine-grained sheet-flood and channel sandstones and siltstones. Some of these sandstones, are more extensively-cemented by copper sulphides (mainly chalcocite), copper arsenides, cobalt-nickel arsenides, and uranium silicate. The thin permeable sandstones and siltstones, and fractures zones around small faults appear to have acted as the conduits for the movement of mineralising fluids through the mudstones. The native copper sheets all show a similar pattern of corrosion and alteration. However, the intensity of alteration is

  19. Heating analysis of cobalt adjusters in reactor core

    International Nuclear Information System (INIS)

    Mei Qiliang; Li Kang; Fu Yaru

    2011-01-01

    In order to produce 60 Co source for industry and medicine applications in CANDU-6 reactor, the stainless steel adjusters were replaced with the cobalt adjusters. The cobalt rod will generate the heat when it is irradiated by neutron and γ ray. In addition, 59 Co will be activated and become 60 Co, the ray released due to 60 Co decay will be absorbed by adjusters, and then the adjusters will also generate the heat. So the heating rate of adjusters to be changed during normal operation must be studied, which will be provided as the input data for analyzing the temperature field of cobalt adjusters and the relative heat load of moderator. MCNP code was used to simulate whole core geometric configuration in detail, including reactor fuel, control rod, adjuster, coolant and moderator, and to analyze the heating rate of the stainless steel adjusters and the cobalt adjusters. The maximum heating rate of different cobalt adjuster based on above results will be provided for the steady thermal hydraulic and accident analysis, and make sure that the reactor is safe on the thermal hydraulic. (authors)

  20. The effect of gaseous ammonia on cobalt perrhenate

    International Nuclear Information System (INIS)

    Maslov, L.P.; Men'shikov, O.D.; Borisov, V.V.; Sorokin, S.I.; Krutovertsev, S.A.; Kharkevich, S.I.; Ivanova, O.M.

    1994-01-01

    The influence of humid air ammonia mixture on crystal pentahydrate of cobalt(2) perrhenate has been studied by the methods of PES, IR spectroscopy thermal analysis and electrophysical measurements. It is shown that with an increase in ammonia content in gaseous phase cobalt perrhenate successively transforms into diaquodiammine-, tetrammine- and μ-dioxo-bis-(tetrammine) derivatives of cobalt. Reversibility of dioxocomplex formation and a correlation between the change in electrophysical properties of crystal sample and change in ammonia content in gaseous phase are pointed out. 16 refs.; 4 figs.; 1 tab

  1. Tinned fish with radioprotective ingredients

    International Nuclear Information System (INIS)

    Chaneva, M.; Minkova, M.; Zajko, G.

    1992-01-01

    A survey of food ingredients with pronounced radioprotective properties is made. The protective effect of fish proteins and some vegetable oils is mentioned. As suitable additives to tinned fish during the manufacturing process the β carotene, anthocyans and apple pectin are pointed out. β-carotene possesses the ability to absorb radiations. It can be added either as a pure crystalline substance or dissolved in the vegetable oil. Anthocyans have an antimutagen effect due to their ability to inhibit free radical reactions. Some vegetable polyphenols can be added with wine. The Bulgarian anthocyan concentrate Enobagrin (made by extraction of marc and wine) is also proposed. A combination of Enobagrin, β-tocopherol and pyracetam decreases the postradiation hypoplasia. Special attention is paid to the importance of the pectin in intoxication with heavy radioactive metals. It is thought that the pectin forms unsoluble complex compounds with Fe, Zn, Cd, Co, Pb, Hg, Mn, Cr. The binding energy depends on the available carboxylic groups. Some experiments showing the interaction of the pectin with 90 Sr are mentioned. In the tinned fish the pectin can be introduced with tomato paste. Vegetables rich in pectin and carotene - carrots and tomato concentrate - can be added as well. Proposed enriched tinned fish can be used as a preventive radioprotective food under conditions of increased radiation risk. 19 refs

  2. Nitrogen induced ferromagnetism in Cobalt doped BaTiO3

    Directory of Open Access Journals (Sweden)

    Chandrima Mitra

    2012-09-01

    Full Text Available The electronic structure and magnetism of Cobalt doped BaTiO3 (BaTi1−xCoxO3 is investigated. Substitutional Nitrogen on an Oxygen site is found to play an important role in inducing net magnetic moments in the system. The presence of a Nitrogen atom as nearest neighbour to a Cobalt atom is crucial in producing spin splitting of both the Nitrogen and Cobalt states thereby introducing a net local magnetic moment. The introduction of Nitrogen is further found to enhance ferromagnetic interactions between Cobalt atoms.

  3. Separation of substandard tin ores by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Kotler, N.I.; Konovalov, V.M.; Kamenskij, Yu.V.; Neverov, A.D.; Ogorodnikov, Yu.V.

    1987-01-01

    Analysis of pure tin ores on X-ray fluorescence separation (XFS) is carried out. The volumes of lump sampling are substantiated; several variants of technical and economical efficiency of XFS application have been calculated. It is shown that at XFS of -400+25 mm classes conditional as to tin content intermediate product with high efficiency factor may be prepared. Separation of -25+10 mm class is unsuitable, as it doesn't allow to increase tin content to conditional, and the process efficiency is low

  4. Tin - an unlikely ally for silicon field effect transistors?

    KAUST Repository

    Hussain, Aftab M.

    2014-01-13

    We explore the effectiveness of tin (Sn), by alloying it with silicon, to use SiSn as a channel material to extend the performance of silicon based complementary metal oxide semiconductors. Our density functional theory based simulation shows that incorporation of tin reduces the band gap of Si(Sn). We fabricated our device with SiSn channel material using a low cost and scalable thermal diffusion process of tin into silicon. Our high-κ/metal gate based multi-gate-field-effect-transistors using SiSn as channel material show performance enhancement, which is in accordance with the theoretical analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of radioactive cobalt

    International Nuclear Information System (INIS)

    1977-01-01

    This is a manual published by Science and Technology Agency, Japan, which prescribes on the analysis method for radioactive cobalt which is a typical indexing nuclide among the radioactive nuclides released from nuclear facilities. Since the released cobalt is mainly discharged to coastal region together with waste water, this manual is written for samples of sea water, sea bottom sediments and marine organisms. Radioactive cobalt includes the nuclides of 57 co, 58 Co, 60 Co, etc., the manual deals with them as a whole as 60 Co of long half life. Though 60 Co analysis has become feasible comparatively simply due to scintillation or semi-conductor spectrometry, trace 60 Co analysis is performed quantitatively by co-precipitation or collection into alumina and scintillation spectrometry. However, specific collecting operation and γ-γ coincidence measurement have been required so far. This manual employs 60 Co collection by means of ion-exchange method and measurement with low background GM counting system, to analyze quantitatively and rapidly low level 60 Co. It is primarily established as the standard analyzing method for the survey by local autonomous bodies. It is divided into 4 chapters including introduction sea water, marine organisms, and sea bottom sediments. List of required reagents is added in appendix. (Wakatsuki, Y.)

  6. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of cobalt-manganese oxides

    International Nuclear Information System (INIS)

    Valencia, J.; Arias, N.P.; Giraldo, O.; Rosales-Rivera, A.

    2012-01-01

    Cobalt doped/un-doped manganese oxides materials were synthesized at various doping rates by soft chemical reactions, oxidation-reduction method, which allows generating a metal-mixed oxide. The synthesized materials were characterized using several techniques including chemical analysis, X-rays diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The chemical analysis confirmed the presence of cobalt in the samples. XRD patterns reveal mainly a spinel-like structure and SEM micrographs exhibited morphology with fine aggregate of particles. TGA profiles showed weight loss due to loss of water in a first step, followed by a loss of oxygen from the lattice associated with partial reduction of Mn 4+ to Mn 3+ . VSM was used to measure the magnetization as a function of the applied magnetic field at temperatures T=50 and 300 K. Different magnetic behaviors were observed when cobalt percentage changed in the samples. These behaviors are considered to be related to the size of the particles and composition of the materials. Higher coercive field and lesser magnetization were observed for the sample with higher cobalt content.

  8. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electr...... by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.......The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...

  9. Trace hydrogen extraction from liquid lithium tin alloy

    International Nuclear Information System (INIS)

    Xie Bo; Hu Rui; Xie Shuxian; Weng Kuiping

    2010-01-01

    In order to finish the design of tritium extraction system (TES) of fusion fission hybrid reactor (FFHR) tritium blanket, involving the dynamic mathematical model of liquid metal in contact with a gaseous atmosphere, approximate mathematical equation of tritium in lithium tin alloy was deduced. Moreover, carrying process used for trace hydrogen extraction from liquid lithium tin alloy was investigated with hydrogen being used to simulate tritium in the study. The study results indicate that carrying process is effective way for hydrogen extraction from liquid lithium tin alloy, and the best flow velocity of carrier gas is about 4 L/min under 1 kg alloy temperatures and carrying numbers are the main influencing factors of hydrogen number. Hydrogen extraction efficiency can reach 85% while the alloy sample is treated 6 times at 823 K. (authors)

  10. Total quality management of cobalt-60 sources

    International Nuclear Information System (INIS)

    Malkoske, G.R.

    1999-01-01

    Total Quality Management of Cobalt-60 sources by a supplier requires a life cycle approach to source management. This covers various aspects, including design, manufacturing, installation, field inspection, source surveillance and return of cobalt-60 sources at the end of their useful life. The Total Quality Management approach demonstrates a strong industry commitment to the beneficial use of gamma technology for industrial irradiation applications in both developed nations and in those nations who are developing their infrastructure and techniques for the beneficial use of this technology. MDS Nordion continues to demonstrate its support and commitment to the industry by developing and implementing state-of-the-art standards for the safe use of cobalt-60 sources

  11. Solubility of cobalt in primary circuit solutions

    International Nuclear Information System (INIS)

    Lambert, I.; Joyer, F.

    1992-01-01

    The solubility of cobalt ferrite (CoFe 2 O 4 ) was measured in PWR primary circuit conditions, in the temperature range 250-350 deg C, and the results were compared with the ones obtained on magnetite and nickel ferrite. As in the former cases, it was found that, in the prevailing primary circuit conditions, the solubility of the cobalt ferrite was minimum at temperatures around 300 deg C, for cobalt as well as for iron. The equilibrium iron concentration is significantly lower than in the case of magnetite. The results are discussed in relation with the POTHY code, based only on thermodynamic laws and data, used for the prediction of the primary circuit chemistry

  12. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  13. Cobalt source calibration

    International Nuclear Information System (INIS)

    Rizvi, H.M.

    1999-01-01

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10 5 rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10 5 rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10 5 rad/h to 1.073 x 10 5 rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10 6 to 9.27 x 10 5 . This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10 7 rad/h. During irradiation of the Fricke dosimeter solution the Fe 2+ ions ionize to Fe 3+ . When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate

  14. Piezoelectric properties and thermal stabilities of cobalt-modified potassium bismuth titanate

    International Nuclear Information System (INIS)

    Guo, Zhen-Lei; Wang, Chun-Ming; Zhao, Tian-Long; Yu, Si-Long; Cao, Zhao-Peng

    2013-01-01

    The cobalt-modified potassium bismuth titanate (K 0.5 Bi 4.5 Ti 4 O 15 , KBT) piezoelectric ceramics have been prepared using conventional solid–state reaction. X-ray diffraction analysis revealed that the cobalt-modified KBT ceramics have a pure four-layer (m = 4) Aurivillius-type structure. The dielectric, ferroelectric, and piezoelectric properties of cobalt-modified KBT ceramics were investigated in detail. The piezoelectric activities of KBT ceramics were significantly improved by the cobalt modification. The reasons for piezoelectric activities enhancement with cobalt modification were given. The piezoelectric coefficient d 33 and Curie temperature T c for the 5 mol% cobalt-modified KBT ceramics (KBT-Co5) were found to be 28 pC/N and 575 °C, respectively. The DC resistivity, frequency constants (N p and N t ), and electromechanical properties at elevated temperature were investigated, indicating the cobalt-modified KBT piezoelectric ceramics possess stable piezoelectric properties up to 500 °C. The results show the cobalt-modified KBT ceramics are potential materials for high temperature piezoelectric applications. - Highlights: • We examine the piezoelectric properties of the cobalt-modified K 0.5 Bi 4.5 Ti 4 O 15 . • A high level of piezoelectric activities (d 33 = 28 pC/N) are obtained. • High Curie temperature (T c = 575 °C) is acquired for the optimal composition. • The Co-modified K 0.5 Bi 4.5 Ti 4 O 15 is promising as high temperature materials

  15. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  16. The effect of silica concentration on the biosorption of Cu 2+ and Co ...

    African Journals Online (AJOL)

    cations were studied to ascertain the optimal conditions for biosorption to take place. Test solutions contained 0.002 M, 0.07 M and 0.2 M of either copper or cobalt ions. The Bacillus strains removed the copper and cobalt more efficiently from ...

  17. Inductively coupled plasma atomic emission spectrometric determination of tin in canned food.

    Science.gov (United States)

    Sumitani, H; Suekane, S; Nakatani, A; Tatsuka, K

    1993-01-01

    Various canned foods were digested sequentially with HNO3 and HCl, diluted to 100 mL, and filtered, and then tin was determined by inductively coupled plasma atomic emission spectrometry (ICP/AES). Samples of canned Satsuma mandarin, peach, apricot, pineapple, apple juice, mushroom, asparagus, evaporated milk, short-necked clam, spinach, whole tomato, meat, and salmon were evaluated. Sample preparations did not require time-consuming dilutions, because ICP/AES has wide dynamic range. The standard addition method was used to determine tin concentration. Accuracy of the method was tested by analyzing analytical standards containing tin at 2 levels (50 and 250 micrograms/g). The amounts of tin found for the 50 and 250 micrograms/g levels were 50.5 and 256 micrograms/g, respectively, and the repeatability coefficients of variation were 4.0 and 3.8%, respectively. Recovery of tin from 13 canned foods spiked at 2 levels (50 and 250 micrograms/g) ranged from 93.9 to 109.4%, with a mean of 99.2%. The quantitation limit for tin standard solution was about 0.5 microgram/g.

  18. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  19. The cobalt radioactive isotopes in environment; Les isotopes radioactifs du cobalt dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    For the year 1993 the total activity released in cobalt is 69 GBq for the whole of nuclear power plants. The part of activity in cobalt for La Hague in 1993 is 8 GBq of {sup 58}Co and 2 GBq of {sup 60}Co. The radioactive isotopes released by nuclear power plants or the reprocessing plant of La Hague under liquid effluents are shared by half between {sup 58}Co and {sup 60}Co. The exposure to sealed sources is the most important risk for the cobalt. The risk of acute exposure can associate a local irradiation of several decades of grays inducing a radiological burns, deep burn to treat in surgery by resection or graft even amputation. A global irradiation of organism for several grays induces an acute irradiation syndrome, often serious. At long term the stochastic effects are represented by leukemia and radio-induced cancers. The increase of probability of their occurrence is 1% by sievert. We must remind that the natural spontaneous probability is 25%. (N.C.)

  20. Separation of cobalt from synthetic intermediate and decontamination radioactive wastes using polyurethane foam

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.; Narasimhan, S.V.; Ahmed, J.

    1997-01-01

    Studies have been carried out on the removal of radioactive cobalt ( 60 Co) from synthetic intermediate level waste (ILW) and decontamination waste using neat polyurethane (PU) foam as well as n-tributyl phosphate-polyurethane (TBP-PU) foam. The radioactive cobalt has been extracted on the PU foam as cobalt thiocyanate from the ILW. Maximum removal of cobalt has been observed when the concentration of thiocyanate in the solution is about 0.4 M. Cobalt can be separated from decontamination waste containing ethylenediaminetetraacetic acid (EDTA) and iron(II). The extent of extraction of cobalt is slow and the separation of iron and cobalt is better with the neat PU foam compared to the TBP-PU foam. The presence of iron in the decontamination waste facilitates the extraction of cobalt thiocyanate on the PU foam. Column studies have been carried out in order to extend these studies to the plant scale. The capacities of the PU foams for cobalt have been determined. The effect of density and the surface area of PU foam have been investigated. Fourier Transform Infrared (FT-IR) spectral studies have been conducted to find out the interaction between PU foam and cobalt thiocyanate species

  1. Airborne chemical elements in Spanish moss

    Energy Technology Data Exchange (ETDEWEB)

    Shacklette, H.T.; Connor, J.J.

    1973-01-01

    Spanish moss (Tillandsia usneoides L.), collected from its geographic range in Southern United States, was analyzed for 38 chemical elements in 123 samples. Analyses of Spanish moss samples collected at rural, residential, highway, and industrial locations reflected significant differences in concentrations of metals. Samples from industrial and highway locations are characterized as containing greater-than-average amounts of arsenic, cadmium, chromium, cobalt, copper, lead, nickel, and vanadium. The high levels of lead found in some samples from highway locations are especially noteworthy. Many samples from sites near the seashore contained greater-than-average amounts of sodium that is thought to have been derived from ocean spray. Samples from rural locations commonly contain low concentrations of the metal usually associated with industrial or urban activity but may contain large amounts of the elements that are ordinary constituents of soil dust. Four of six samples containing detectable amounts of tin were collected within 50 miles of the only tin smelter in the United States; this result suggests that elemental analyses of Spanish moss samples can provide an economical and rapid method of estimating the kind and relative degree of local atmospheric metal pollution.

  2. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  3. Quadtree of TIN: a new algorithm of dynamic LOD

    Science.gov (United States)

    Zhang, Junfeng; Fei, Lifan; Chen, Zhen

    2009-10-01

    Currently, Real-time visualization of large-scale digital elevation model mainly employs the regular structure of GRID based on quadtree and triangle simplification methods based on irregular triangulated network (TIN). TIN is a refined means to express the terrain surface in the computer science, compared with GRID. However, the data structure of TIN model is complex, and is difficult to realize view-dependence representation of level of detail (LOD) quickly. GRID is a simple method to realize the LOD of terrain, but contains more triangle count. A new algorithm, which takes full advantage of the two methods' merit, is presented in this paper. This algorithm combines TIN with quadtree structure to realize the view-dependence LOD controlling over the irregular sampling point sets, and holds the details through the distance of viewpoint and the geometric error of terrain. Experiments indicate that this approach can generate an efficient quadtree triangulation hierarchy over any irregular sampling point sets and achieve dynamic and visual multi-resolution performance of large-scale terrain at real-time.

  4. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  5. Association between cobalt allergy and dermatitis caused by leather articles

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus

    2015-01-01

    BACKGROUND: Cobalt is a strong skin sensitizer and a prevalent contact allergen. Recent studies have recognized exposure to leather articles as a potential cause of cobalt allergy. OBJECTIVES: To examine the association between contact allergy to cobalt and a history of dermatitis resulting from...... exposure to leather. METHODS: A questionnaire case-control study was performed: the case group consisted of 183 dermatitis patients with a positive patch test reaction to cobalt chloride and a negative patch test reaction to potassium dichromate; the control group consisted of 621 dermatitis patients who...... did not react to either cobalt or chromium in patch testing. Comparisons were made by use of a χ(2) -test, Fisher's exact, and the Mann-Whitney test. Logistic regression analyses were used to test for associations while taking confounding factors into consideration. RESULTS: Leather was observed...

  6. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  7. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  8. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  9. Evaluation of the suitability of tin slag in cementitious materials: Mechanical properties and Leaching behaviour

    Science.gov (United States)

    Rustandi, Andi; Wafa' Nawawi, Fuad; Pratesa, Yudha; Cahyadi, Agung

    2018-01-01

    Tin slag, a by-product of tin production has been used in cementitious application. The present investigation focuses on the suitability of tin slag as primary component in cement and as component that substitute some amount of Portland Cement. The tin slags studied were taken from Bangka, Indonesia. The main contents of the tin slag are SiO2, Al2O3, and Fe2O3 according to the XRF investigation. The aim of this article was to study the mechanical behaviour (compressive strength), microstructure and leaching behaviour of tin slag blended cement. This study used air-cooled tin slag that had been passed through 400# sieve to replace Portland Cement with ratio 0, 10, 20, 30, 40 by weight. Cement pastes and tin slag blended cement pastes were prepared by using water/cement ratio (W/C) of 0.40 by weight and hydrated for various curing ages of 3, 7, 14 days The microstructure of the raw tin slag was investigated using Scanning Electron Microscope (SEM). The phase composition of each cement paste was investigated using X-ray Diffraction (XRD). The aim of the leachability test was to investigate the environmental impacts of tin slag blended cement product in the range 4-8 pH by using static pH-dependent leaching test. The result show that the increase of the tin slag content decreasing the mortar compressive strength at early ages. The use of tin slag in cement provide economic benefits for all related industries.

  10. Transport properties of cobalt at low temperatures

    DEFF Research Database (Denmark)

    Radharkishna, P.; Nielsen, Mourits

    1965-01-01

    Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering.......Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering....

  11. Effect of annealing temperature on the PEC performance of electrodeposited copper oxides

    Science.gov (United States)

    Marathey, Priyanka; Pati, Ranjan; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    In this work, we have deposited Cu2O film on fluorine doped tin oxide (FTO) substrate by electrodeposition. Pure CuO phase has been obtained by annealing the electrodeposited Cu2O film at optimized temperature (500°C) for two hours in air. Copper(I) oxide films showed good photo response with a current density of 0.54mA/cm2 at 0 V vs RHE. It is evident from UV-Visible spectroscopic analysis that the bandgap of Cu(I) and Cu(II) oxides differs from each other resulting in significant change in photo current for these two phases, observed in the PEC study. However CuO film showed better stability as compared to Cu2O film.

  12. A spot test for detection of cobalt release – early experience and findings

    DEFF Research Database (Denmark)

    Thyssen, Jacob P.; Menné, Torkil; Johansen, Jeanne D.

    2010-01-01

    Background: It is often difficult to establish clinical relevance of metal exposure in cobalt-allergic patients. Dermatologists and patients may incorrectly assume that many metallic items release cobalt at levels that may cause cobalt dermatitis. Cobalt-allergic patients may be unaware that they...

  13. NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage

    Science.gov (United States)

    Brusse, Jay; Sampson, Mike; Leidecker, Henning; Kadesch, Jong

    2004-01-01

    This website provides information about tin whiskers and related research. The independent research performed during the past 50+ years is so vast that it is impractical to cover all aspects of tin whiskers in this one resource. Therefore, the absence of information in this website about a particular aspect of tin whiskers should NOT be construed as evidence of absence.

  14. Assessment of cobalt levels in wastewater, soil and vegetable ...

    African Journals Online (AJOL)

    User

    Key words: Cobalt level, Kubanni River, soil, vegetable, wastewater. INTRODUCTION. Cobalt is ... metals released into the environment from a variety of anthropogenic activities ..... Heavy Metal Stress in Plants, 2nd Edition,. Springer,. United.

  15. Synthesis and phosphatase activity of a Cobalt(II) phenanthroline ...

    Indian Academy of Sciences (India)

    MAMONI GARAI

    2017-09-19

    Sep 19, 2017 ... Synthesis and phosphatase activity of a Cobalt(II) phenanthroline complex. MAMONI GARAIa ... tion, cobalt complexes have gained importance because of their application as ... 2.3 Physical measurements. Infrared spectrum ...

  16. Correlation between morphology and magnetic properties of electrochemically produced cobalt powder particles

    Directory of Open Access Journals (Sweden)

    Maksimović Vesna M.

    2015-01-01

    Full Text Available Cobalt 3D powder particles were successfully prepared by the galvanostatic electrodeposition. Electrodeposited cobalt powder were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, Energy Dispersive Spectroscopy (EDS analysis and SQUID magnetometry. It has been shown that morphology, structure and magnetic properties of cobalt particles are closely associated and can be easily controlled by adjusting process parameters of electrodeposition. Morphology of cobalt powder particles is strongly affected by hydrogen evolution reaction as a parallel reaction to cobalt electrodeposition. Depending on the applied current density, the two types of powder particles were formed: dendrites at lower and spongy-like particles at higher current densities. Morphologies and structures of powder particles are correlated with their magnetic properties, and compared with those of the bulk cobalt. In comparison with the properties of bulk cobalt, the obtained 3D structures exhibited a decreased saturation magnetization (MS, but an enhanced coercivity (HC which is explained by their peculiar morphology. [Projekat Ministarstva nauke Republike Srbije, br. III 45012

  17. Synthesis and characterization of cobalt-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, J. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis 55455-0153 (United States); Arias, N.P. [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Departamento de Ingenieria Electrica, Electronica y Computacion, Facultad de Ingenieria y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Giraldo, O. [Laboratorio de Materiales Nanoestructurados y Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Rosales-Rivera, A., E-mail: arosalesr@unal.edu.co [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia)

    2012-08-15

    Cobalt doped/un-doped manganese oxides materials were synthesized at various doping rates by soft chemical reactions, oxidation-reduction method, which allows generating a metal-mixed oxide. The synthesized materials were characterized using several techniques including chemical analysis, X-rays diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The chemical analysis confirmed the presence of cobalt in the samples. XRD patterns reveal mainly a spinel-like structure and SEM micrographs exhibited morphology with fine aggregate of particles. TGA profiles showed weight loss due to loss of water in a first step, followed by a loss of oxygen from the lattice associated with partial reduction of Mn{sup 4+} to Mn{sup 3+}. VSM was used to measure the magnetization as a function of the applied magnetic field at temperatures T=50 and 300 K. Different magnetic behaviors were observed when cobalt percentage changed in the samples. These behaviors are considered to be related to the size of the particles and composition of the materials. Higher coercive field and lesser magnetization were observed for the sample with higher cobalt content.

  18. Estimation of cobalt release from feed water heater tubes of BWRs

    International Nuclear Information System (INIS)

    Uchida, S.; Kitamura, M.; Ozawa, Y.

    1983-01-01

    To evaluate the release source of cobalt from heater tubes of the feed water line, release rate measurements were carried out by detecting 60 Co released from irradiated stainless steel in contact with neutral water at an oxygen concentration of 20 ppb. The dependences of cobalt release rate on temperature, flow velocity and exposure time were studied after 670 hours of release experiments, and an empirical equation (which is presented) was obtained in the temperature range from 150 to 240 deg C. A decrease in the cobalt release rate above 250 deg C was considered due to the formation of a protective oxide layer. From these data, the amount of cobalt released from individual feed water heaters was evaluated. It was demonstrated that low cobalt containing stainless steel was economically applied only in the higher temperature region of the heater (20% of the total surface) to reduce cobalt feed rate into the reactor (to approx. 1/2). (author)

  19. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  20. Tin in canned food: a review and understanding of occurrence and effect.

    Science.gov (United States)

    Blunden, Steve; Wallace, Tony

    2003-12-01

    Tinplate is light gauge, steel sheet or strip, coated on both sides with commercially pure tin and has been used for well over a hundred years as a robust form of food packaging. Altogether, about 25,000 million food cans are produced and filled in Europe per annum, about 20% of these having plain internal (unlacquered) tin-coated steel bodies. Worldwide, the total for food packaging is approximately 80,000 million cans. Tinplate is also extensively used for the production of beverage cans. Europe produces and fills over 15,000 million tinplate beverage cans per annum all of which are internally lacquered. The use of tinplate for food and beverage packaging, will result in some tin dissolving into the food content, particularly when plain uncoated internal surfaces are used. The Provisional Tolerable Weekly Intake for tin is 14 mg/kg body weight and recommended maximum permissible levels of tin in food are typically 250 mg/kg (200 mg/kg UK) for solid foods and 150 mg/kg for beverages. However, the question arises as to whether evidence exists that such elevated levels of tin in food in any way constitute a risk to human health. This review considers the factors affecting the dissolution of tin, the reported measurements/surveys of actual levels of tin in canned foods and the studies and reports of acute (short term) toxicity relating to the ingestion of elevated levels of tin in food products. Chronic studies are mentioned, but are not covered in detail, since the review is mainly concerned with possible effects from the ingestion of single high doses. From published data, there appears to be a small amount of evidence suggesting that consumption of food or beverages containing tin at concentrations at or below 200 ppm has caused adverse gastrointestinal effects in an unknown but possibly small proportion of those exposed. However, the evidence supporting this assertion is derived from reports of adverse effects which offer data that are limited, incomplete or of

  1. A novel method to synthesize cobalt oxide (Co3O4) nanowires from cobalt (Co) nanobowls

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Madhavi, S.; Ramanujan, R.V.

    2010-01-01

    A novel method suitable for the synthesis of the cobalt oxide (Co3O4) nanowires at targeted regions is presented in this report. Cobalt (Co) nanobowls synthesized by colloidal crystal directed assembly were transformed into Co3O4 nanowires by a simple heat treatment process. Co nanobowls exhibited...... a two phase (h.c.p. + f.c.c.) microstructure while single phase microstructure was observed for Co3O4 nanowires. Ferromagnetic Co nanobowls showed a dependence of coercivity on bowl size while Co3O4 exhibited weak ferromagnetic behavior....

  2. A review of cobalt adsorption on transition metal oxides

    International Nuclear Information System (INIS)

    Walker, S.M.

    1987-04-01

    This report reviews studies of cobalt adsorption on transition metal oxides, in the context of corrosion product and radioactivity transport in PWR primary circuits. In general, uptake of cobalt increases with pH, with temperature and with decreasing ionic strength. Very little data are available under PWR primary circuit conditions, but the limited data available suggest that cobalt uptake by the zirconium oxide corrosion product layer on fuel pins may be significant compared to that deposited on fuel crud. If fuel crud levels can be reduced in future by coolant chemistry control then uptake by the zirconia will assume a greater relative role. It is planned to use an autoclave to study uptake of cobalt on oxidised Zircaloy surfaces at temperatures up to 593K under PWR primary circuit chemistry conditions. (author)

  3. Ion exchange of Cobalt and Cadmium in Zeolite X

    International Nuclear Information System (INIS)

    Nava M, I.

    1994-01-01

    The growing development in the industry has an important contribution to the environmental damage, where the natural effluents are each day more contaminated by toxic elements, such as: mercury, chromium, lead and cadmium. So as to separate such elements it has sorbent must have enough stability, and have a sharp capacity of sorption. In this work it was studied the sorption behavior of cobalt and on the other hand, cadmium in aqueous solutions, which along with sodic form of the Zeolite X, undergoes a phenomenon of ionic interchange. Such interchange was verify to different concentration of cadmium, cobalt and hydronium ion. The content of cobalt and sodium in the interchanged samples was detected through the neutronic activation analysis. The results disclose a higher selectivity for cadmium than cobalt. (Author)

  4. The Application of Moessbauer Emission Spectroscopy to Industrial Cobalt Based Fischer-Tropsch Catalysts

    International Nuclear Information System (INIS)

    Loosdrecht, J. van de; Berge, P. J. van; Craje, M. W. J.; Kraan, A. M. van der

    2002-01-01

    The application of Moessbauer emission spectroscopy to study cobalt based Fischer-Tropsch catalysts for the gas-to-liquids process was investigated. It was shown that Moessbauer emission spectroscopy could be used to study the oxidation of cobalt as a deactivation mechanism of high loading cobalt based Fischer-Tropsch catalysts. Oxidation was observed under conditions that are in contradiction with the bulk cobalt phase thermodynamics. This can be explained by oxidation of small cobalt crystallites or by surface oxidation. The formation of re-reducible Co 3+ species was observed as well as the formation of irreducible Co 3+ and Co 2+ species that interact strongly with the alumina support. The formation of the different cobalt species depends on the oxidation conditions. Iron was used as a probe nuclide to investigate the cobalt catalyst preparation procedure. A high-pressure Moessbauer emission spectroscopy cell was designed and constructed, which creates the opportunity to study cobalt based Fischer-Tropsch catalysts under realistic synthesis conditions.

  5. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  6. The cobalt radioactive isotopes in environment

    International Nuclear Information System (INIS)

    2007-01-01

    For the year 1993 the total activity released in cobalt is 69 GBq for the whole of nuclear power plants. The part of activity in cobalt for La Hague in 1993 is 8 GBq of 58 Co and 2 GBq of 60 Co. The radioactive isotopes released by nuclear power plants or the reprocessing plant of La Hague under liquid effluents are shared by half between 58 Co and 60 Co. The exposure to sealed sources is the most important risk for the cobalt. The risk of acute exposure can associate a local irradiation of several decades of grays inducing a radiological burns, deep burn to treat in surgery by resection or graft even amputation. A global irradiation of organism for several grays induces an acute irradiation syndrome, often serious. At long term the stochastic effects are represented by leukemia and radio-induced cancers. The increase of probability of their occurrence is 1% by sievert. We must remind that the natural spontaneous probability is 25%. (N.C.)

  7. Method of making Nb3Sn composite wires and cables

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Fietz, W.A.

    1977-01-01

    By providing a nickel or copper overcoat to a tin coating on a niobium-copper multifilamentary composite wire, one can avoid the necessity for choosing between poor superconducting properties due to tin droplet formation and substantially increasing production costs by adding a number of special processing steps. 9 claims, 1 figure

  8. Calculation support for industrial production of cobalt-60 at Leningrad NPP

    International Nuclear Information System (INIS)

    Artemov, Vladimir; Elshin, Alexander; Ivanov, Alexander; Gorbunov, Evgeny; Ikonnikov, Roman; Pimenov, Alexander

    2008-01-01

    Cobalt-60 is industrially produced at the Leningrad NPP by irradiation of cobalt-59 in special-purpose facilities loaded into the RBMK reactor core (all 4 units). The paper describes calculation methods used to determine the current activity of cobalt in irradiation assemblies for their timely unloading. The described peculiarities of core calculation model account for continuous refueling, overloading of irradiation assemblies and individual thermohydraulics in each channel under variation of reactor power. Fuel burnup in the core is calculated with a time step of about 24 hours. The resulting values for cobalt activity and uncertainties are presented in the paper as well. Deviation of calculated cobalt activity from measured activity is within the experimental accuracy of 10% (at confidence probability of 0.95). (authors)

  9. Sorption behavior of cobalt on manganese dioxide, smectite and their mixture

    International Nuclear Information System (INIS)

    Ohnuki, T.; Kozai, N.

    1995-01-01

    The sorption behavior of cobalt on manganese dioxide, the clay mineral smectite and mixtures of the two was studied by batch type sorption/desorption experiments at neutral pH. Sorption behavior was examined by sequential extraction, in which the sorbents were contacted first with a 1 M CH 3 COONH 4 solution and then with a hydroxylamine solution (NH 2 OH of 1 M with 25 weight % CH 3 COOH). More than 70% of the sorbed cobalt was desorbed from smectite with a 1 M CH 3 COONH 4 solution: about 15% of the cobalt remained on the smectite after treatment with the hydroxylamine solution. Less than 1% of the remaining cobalt was desorbed from manganese dioxide with a 1 M CH 3 COONH 4 solution; with the hydroxylamine solution, all was desorbed. In mixtures of MnO 2 and smectite that were formulated to sorb equal amounts of cobalt regardless of the MnO 2 /smectite ratio in the mixture, less than 5% of the sorbed cobalt was desorbed by treatment with 1 M CH 3 COONH 4 . The fraction of the cobalt desorbed by treatment with the hydroxylamine solution increased with increased MnO 2 in the mixtures. The fraction of the cobalt sorbed on MnO 2 in the mixture was estimated from the desorption experiments. The results showed that higher fractions were sorbed onto MnO 2 than were estimated by the weighted averages of distribution coefficients for MnO 2 and smectite. Therefore, in minerals of the mixture, manganese dioxide is a more important component than smectite for the sorption of cobalt. (orig.)

  10. Determination of tungsten and tin ions after preconcentration by flotation

    International Nuclear Information System (INIS)

    Dietze, U.; Kunze, S.

    1990-01-01

    A highly sensitive and selective combined method of flotation followed by spectrophotometry/d.c. polarography for the determination of tungsten and tin ions in acid and alkaline waste waters and hydrometallurgical solutions is presented here. Both kinds of ions are coprecipitated in the analyte solution with zirconium hydroxide after addition of ZrOCl 2 solution and ammonia. Afterwards, the collector precipitate is separated from the aqueous phase and preconcentrated by flotation for which sodium oleate and a frother are added. The precipitate is dissolved in a small amount of acid, with the organic reagents being destroyed by oxidation. The enrichment factor of the proposed technique is 100, with variations possible. Recovery is 94 % for tungsten and 99 % for tin. Spectrophotometry of the thiocyanate complex and d.c. polarography are applied as determination techniques for tungsten and tin, respectively. Detection limits attainable by this technique are 6 ng.ml -1 for tungsten and 5 ng.ml -1 for tin for the initial sample. (Authors)

  11. Concentration of radioactive cobalt by seaweeds in the food chain

    International Nuclear Information System (INIS)

    Nakahara, Motokazu; Koyanagi, Taku; Saiki, Masamichi

    1976-01-01

    On the pathway of radioactive substances in marine environments, seaweeds play an important role because of their higher concentration factors for many radionuclides and because they constitute a link of food chain in the sea. In the present work, uptake, distribution and excretion of radioactive cobalt were studied on several kinds of seaweeds by radioisotope tracer experiments under laboratory conditions and concentration factors were calculated. The concentration factors were also estimated from the results of stable cobalt determination by activation analysis or atomic absorption spectrometry on seaweeds and seawater, and compared with the results of tracer expts. The seaweeds showed the species specificity for the concentration of stable and radioactive cobalt with diverse values of concentration factors and biological half-lives. The transfer of radioactive cobalt in the food chain from contaminated seaweeds to mollusca was examined by feeding abalones, Haliotis discus, with four kinds of seaweed labelled with 60 Co and observing retention. Absorption rate for radioactive cobalt by abalones calculated at two days after feeding showed diverse values depending upon the species of seaweed, as follows: 47% through Laminaria japonica and Ulva pertusa, 31% through Undaria pinnatifida and 26 through Eisenia bicyclis, respectively. From the results, it was assumed that the accumulation of radioactive cobalt by mollusca is affected by the species of seaweeds as food. A very high concentration of ingested radioactive cobalt in the midgut gland was seen on the autoradiograph of abalone samples. (auth.)

  12. Concentration of radioactive cobalt by seaweeds in the food chain

    International Nuclear Information System (INIS)

    Nakahara, M.; Koyanagi, T.; Saiki, M.

    1975-01-01

    On the pathway of radioactive substances in marine environments, seaweeds play an important role because of their higher concentration factors for many radionuclides and because they constitute a link in the food chain. In the present work, uptake, distribution and excretion of radioactive cobalt were studied on several kinds of seaweeds by radioisotope tracer experiments under laboratory conditions and concentration factors were calculated. The concentration factors were also estimated from the results of stable cobalt determination by activation analysis or atomic absorption spectrometry on seaweeds and seawater, and compared with the results of tracer experiments. The seaweeds showed the species specificity for the concentration of stable and radioactive cobalt with diverse values of concentration factors and biological half-lives. The transfer of radioactive cobalt in the food chain from contaminated seaweeds to mollusca was examined by feeding abalones, Haliotis discus, with four kinds of seaweed labelled with 60 Co and observing retention. Absorption rate for radioactive cobalt by abalones calculated at two days after feeding showed diverse values depending upon the species of seaweed, as follows: 47% through Laminaria japonica and Ulva pertusa, 31% through Undaria pinnatifida and 26% through Eisenia bicyclis, respectively. From the results, it was assumed that the accumulation of radioactive cobalt by mollusca is affected by the species of seaweeds as food. A very high concentration of ingested radioactive cobalt in the midgut gland was seen on the autoradiograph of abalone samples. (author)

  13. Nonvolatile organic write-once-read-many-times memory devices based on hexadecafluoro-copper-phthalocyanine

    Science.gov (United States)

    Wang, Lidan; Su, Zisheng; Wang, Cheng

    2012-05-01

    Nonvolatile organic write-once-read-many-times memory device was demonstrated based on hexadecafluoro-copper-phthalocyanine (F16CuPc) single layer sandwiched between indium tin oxide (ITO) anode and Al cathode. The as fabricated device remains in ON state and it can be tuned to OFF state by applying a reverse bias. The ON/OFF current ratio of the device can reach up to 2.3 × 103. Simultaneously, the device shows long-term storage stability and long retention time in air. The ON/OFF transition is attributed to the formation and destruction of the interfacial dipole layer in the ITO/F16CuPc interface, and such a mechanism is different from previously reported ones.

  14. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  15. Characterization and Gas Sensing Properties of Copper-doped Tin Oxide Thin Films Deposited by Ultrasonic Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Zhaoxia ZHAI

    2016-05-01

    Full Text Available Tin oxide-based thin films are deposited by ultrasonic spray pyrolysis technology, in which Cu addition is introduced to enhance the gas sensing performance by H2S detection. The thin films are porous and comprise nano-sized crystallites. One of the Cu-containing thin film sensors demonstrates a fast and significant response to H2S gas. The values of power law exponent n are calculated to discuss the sensitivity of the sensors, which is significantly promoted by Cu additive. The sensitivity of Cu-doped SnO2 gas sensors is determined by two mechanisms. One is the normal gas sensing mechanism of SnO2 grains, and the other is the promoted mechanism caused by the transformation between CuO and CuS in the H2S detection. DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12917

  16. PENYERAPAN COBALT-60 DARI AIR OLEH TANAMAN KIAPU (Pistia stratiotes L.)

    OpenAIRE

    Lailatul Nuzzulul Safitri; Poppy Intan Tjahaja; Ida Bagus Made Suryatika

    2015-01-01

    Has conducted research Cobalt-60 radionuclide uptake by plants kiapu (Pistia stratiotes L.) found in many waters. The purpose of the study was to determine the value of the transfer factor on plant kiapu to Cobalt-60 in water. The study was conducted by growing plants on media kiapu gutter water in pots with the height 35 cm and diameter 11,5 cm containing Cobalt-60. The amount of Cobalt - 60 is absorbed and accumulated by the plant parts, i.e. roots and leaves, was observed by measuring the ...

  17. Correlation between optical and structural properties of copper oxide electrodeposited on ITO glass

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, O., E-mail: olfamassaoudi@gmail.com [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Makhlouf, H.; Souissi, A.; Ben assaker, I.; Karyaoui, M. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Bardaoui, A. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Physics department, Taif University (Saudi Arabia); Oueslati, M. [Unité de nano matériaux et photoniques, Faculté des Sciences de Tunis, ElManar1, 2092 Tunis (Tunisia); Chtourou, R. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia)

    2014-10-25

    Highlights: • Copper oxide films were grown by electrodeposition method with different applied potential. • Forouhi and Bloomer ellipsometric model were used. • Correlation between structural and optical proprieties was done. - Abstract: In this paper we study the growth of copper oxide (Cu{sub 2}O) thin films on indium tin oxide (ITO)-coated glass substrate by electrochemical deposition. We vary the applied potential from −0.50 to −0.60 V vs. Ag/AgCl in order to have a pure Cu{sub 2}O. The copper oxide thin films properties are obtained using Spectroscopic Ellipsometry (SE) in the frame of the Forouhi and Bloomer model. This model demonstrates that depending on the applied cathodic potential pure or mixed phases of CuO and Cu{sub 2}O can be obtained. Structural, morphological and optical properties are performed in order to confirm the SE results. X-ray diffraction analysis of the films reveals a mixed phase for a potential lower than −0.60V vs. Ag/AgCl while a high purity is obtained for this last potential. The optical band gap energy (E{sub g}) is evaluated using the tauc relation. Pure Cu{sub 2}O having a band gap of E{sub g} = 2.5 eV and a thickness around 900 nm are therefore successfully obtained with an applied potential of −0.60 V. Raman measurements show the characteristic modes of Cu{sub 2}O with a contribution of CuO modes at 618 cm{sup −1}. The intensity of the CuO modes decreases as the applied cathodic potential increases, leading to pure copper oxide layers.

  18. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  19. Method of making an improved superconducting quantum interference device

    International Nuclear Information System (INIS)

    Wu, C.T.; Falco, C.M.; Kampwirth, R.T.

    1977-01-01

    An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper

  20. Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. P., E-mail: chengjp@zju.edu.cn [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering (China); Shereef, Anas; Gray, Kimberly A., E-mail: k-gray@northwestern.edu [Northwestern University, Center for Catalysis and Surface Science (United States); Wu, Jinsong [Northwestern University, Department of Materials Science and Engineering (United States)

    2015-03-15

    Porous cobalt oxide was successfully prepared by precipitation of cobalt hydroxide followed by low temperature thermal decomposition. The morphologies of the resultant oxides remained as the corresponding hydroxides, although the morphology of cobalt hydroxides was greatly influenced by the precursor salts. The cobalt oxides with average crystal size less than 20 nm were characterized by X-ray diffraction, scanning electron microscope, BET surface area, and XPS analysis. The photocatalytic activities of the various cobalt oxides morphologies were investigated by comparing the photo-degradation of acetaldehyde under simulated solar illumination. Relative to their low order structures and reference titania samples, the hierarchical nanostructures of cobalt oxide showed excellent abilities to rapidly degrade acetaldehyde, a model air pollutant. This was attributed to the unique nature of these hierarchical cobalt oxide nanoassemblies, which contained many catalytically active reaction sites and open pores.

  1. 75 FR 62756 - Superior National Forest, Minnesota

    Science.gov (United States)

    2010-10-13

    ... statement for the construction and operation of an open pit copper/ nickel/cobalt/precious metals mine, an... produce base and precious metals, precipitates, and flotation concentrates from ore mined at the NorthMet... construction and operation of an open pit copper/nickel/cobalt/precious metals mine in the low grade poly...

  2. Radiation levels and countermeasure research on radiological protection in tin mine in china

    International Nuclear Information System (INIS)

    Yang Fengfang; Yuan Yongling

    2010-01-01

    Objective: To study the distribution of radiation level in our nation's tin mine, therefore comes up with proposals on radiological protection and provide scientific evidence on how to protect lives and health of worker underground in tin mine. Methods: To get the radiation level of the underground workplaces in tin mine by analysis of research papers and the measuring results from on-scene investigations. Results: Majority of the absorbed dose rates of γ radiation in the air of underground workplaces in tin mine falls within the range of radiation levels of normal background. Earlier, the typical values of radon concentration and potential alpha energy concentration of radon daughters in the air of underground workplaces in tin mine are 3.12 kBq/m 3 and 5.61 μJ/m 3 respectively. Now, radon concentration and potential alpha energy concentration of radon daughters in the air of underground workplaces in majority of tin mine are lower than 1000 Bq/m 3 and 3.57 μJ/m 3 . Conclusion: For these tin mine workers with an average of annual effective dose greater than 1 mSv or these of their specific activity for natural uranium in materials are greater than 1 Bq/g need to have regulation of radiological protection. The control limits for the radon concentration and the potential alpha energy concentration of radon daughters and the absorbed dose rates of γ radiation in the air of underground workplaces in tin mine are 1000 Bq/m3, 3.57 μJ/m 3 and 1 μGy/h respectively. The administrative individual dose for workers working under the ground of tin mine is 10 mSv/a. If a worker's total annual effective dose is greater than 10 mSv, he/she should be considered as radioactive worker. (authors)

  3. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  4. PCBs with immersion tin finish - some experiences with lead-free reflow process

    Energy Technology Data Exchange (ETDEWEB)

    Bukat, K.; Koziol, G.; Sitek, J.; Borecki, J.; Hackiewicz, H. [Tele and Radio Research Inst., Warsaw (Poland); Merkle, H.; Schroeder, S. [Ormecon Chemie GmbH and Co. KG, Ammersbek (Germany); Girulska, A.; Gardela, K. [Eldos Sp. z o.o., Wroclaw (Poland)

    2004-07-01

    Substitution of lead-free solders in electronic assemblies requires changes in the conventional SnPb finishes of PCBs. The Craft project ''PRINT'' objectives respond to this challenge. Its main goal is to develop and implement the new technology of high solderability immersion tin for printed circuit boards at small and medium enterprises. The subject of the research was organic based immersion tin coating which would fulfil demands of SMT. In the paper the results of reflow soldering process on PCBs covered by Ormecon registered immersion tin finish with using lead-free solder pastes will be described. Solderability of tin coating as well as wettability of lead-free solder paste will be presented. (orig.)

  5. Substoichiometric cobalt oxide monolayer on Ir(100)-(1 x 1)

    International Nuclear Information System (INIS)

    Gubo, M; Ebensperger, C; Meyer, W; Hammer, L; Heinz, K

    2009-01-01

    A substoichiometric monolayer of cobalt oxide has been prepared by deposition and oxidation of slightly less than one monolayer of cobalt on the unreconstructed surface of Ir(100). The ultrathin film was investigated by scanning tunnelling microscopy (STM) and quantitative low-energy electron diffraction (LEED). The cobalt species of the film reside in or near hollow positions of the substrate with, however, unoccupied sites (vacancies) in a 3 x 3 arrangement. In the so-formed 3 x 3 supercell the oxide's oxygen species are both threefold and fourfold coordinated to cobalt, forming pyramids with a triangular and square cobalt basis, respectively. These pyramids are the building blocks of the oxide. Due to the reduced coordination as compared to the sixfold one in the bulk of rock-salt-type CoO, the Co-O bond lengths are smaller than in the latter. For the threefold coordination they compare very well with the bond length in oxygen terminated CoO(111) films investigated recently. The substoichiometric 3 x 3 oxide monolayer phase transforms to a stoichiometric c(10 x 2)-periodic oxide monolayer under oxygen exposure, in which, however, cobalt and oxygen species are in (111) orientation and so form a CoO(111) layer.

  6. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  7. Study on the removal of iron impurities in methanesulfonic acid tin plating bath

    Science.gov (United States)

    Hou-li, LIU; Jian-Jun, CHEN; Hong-Liang, PAN

    2018-03-01

    This thesis investigated the the influence of sodium sulfite as reducing agent on the recovery rate of tin ion. The approach is that HZ016 type cation exchange resin was used to adsorb Sn2+ and Fe2+ in electroplated tin solution first. After adsorption, the resin was removed by sulfuric acid, which was added with NaOH to adjust pH value to form precipitation and separate tin. X-ray diffraction (XRD) and energy spectrum (EDS) method were used to analyze the composition of the precipitates adjusted by pH. The results show that when the mass ratio of resin to bath is 1:2, the adsorption efficiency of resin reaches 98.3% and 97.1% respectively, and the elution efficiency of tin and iron reaches 95.1% and 94% respectively when the mass ratio of resin to eluent sulfuric acid is 1:4. Sodium sulfite was added to increase the efficiency of tin recovery by 8.1%. EDS and XRD atlas showed that after pH regulation, the main composition of the filtration precipitation was the hydroxides of tin.

  8. Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers

    International Nuclear Information System (INIS)

    Leon-Brito, Neliza; Melendez, Anamaris; Ramos, Idalia; Pinto, Nicholas J; Santiago-Aviles, Jorge J

    2007-01-01

    Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor solution is 1.5%. After deposition, the fibers were sintered 600deg. C in air for two hours. The electrical conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when compared to undoped fibers prepared using the same method. The resistivity change as a function of the annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric solid. The resistivity of the fibers changes monotonically with temperature from 714Ω-cm at 2 K to 0.1Ω-cm at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the highest value of 155 % at 2 K and ±9 T. At temperatures of 10 and 12 K the sign of MR changes to negative values for low magnetic fields and positive for high magnetic fields. For higher temperatures (15 K and above) the MR becomes negative and its magnitude decreases with temperature

  9. Combined TiN- and TaN temperature compensated thin film resistors

    International Nuclear Information System (INIS)

    Malmros, Anna; Andersson, Kristoffer; Rorsman, Niklas

    2012-01-01

    The opposite signs of the temperature coefficient of resistance (TCR) of two thin film materials, titanium nitride (TiN) and tantalum nitride (TaN), were used to form temperature compensated thin film resistors (TFRs). The principle of designing temperature compensated TFRs by connecting TFRs of each compound in series or in parallel was demonstrated. TiN, TaN, and combined TiN and TaN TFRs for monolithic microwave integrated circuits (MMICs) were fabricated by reactive sputtering. DC characterization was performed over the temperature range of 30–200 °C. The TiN TFRs exhibited an increase in resistivity with temperature with TCRs of 540 and 750 ppm/°C. The TaN TFR on the other hand exhibited a negative TCR of − 470 ppm/°C. The shunted TFRs were fabricated by serial deposition of TiN and TaN to form a bilayer component. The TCRs of the series- and shunt configurations were experimentally reduced to − 60 and 100 ppm/°C, respectively. The concept of temperature compensation was used to build a Wheatstone bridge with an application in on-chip temperature sensing.

  10. Synthesis, Spectral Characterization and Antioxidant Activity of Tin(II-Morin Complex

    Directory of Open Access Journals (Sweden)

    Shahabuddin Memon

    2012-12-01

    Full Text Available The study focuses on the interaction between morin and Tin(II and the resulting complex was characterized through various analytical techniques by comparing it with morin. The complexation was confirmed at first by UV-Vis study, which shows that addition of Tin(II to morin may produce bathochromic shifts indicative of complex formation. IR spectral studies indicated that carbonyl has involved in coordination with Tin(II. Moreover, 1H-NMR studies validated that in conjunction with carbonyl, 3-OH of morin is more appropriate to be involved in complexation by replacement of its proton. Scavenging activities of morin and its Tin(II complex on DPPH• radical showed the inhibitory rates of 65% and 49%, respectively. In addition, the reducing capacity of morin was outstanding at 0.5 and 2.0 mg/ml concentrations relative to Tin(II complex. Overall, the study potentially shows the strong impact in order to design the anticancer drugs jointly from its cytotoxic potential and antioxidant activities, thereby selectively targeting the cancerous cells in result increasing their therapeutic index as well as extra advantages over other anticancer drugs.

  11. Testing of cobalt-free alloys for valve applications using a special test loop

    International Nuclear Information System (INIS)

    Benhamou, C.

    1992-01-01

    Considering that use of cobalt alloys should be avoided as far as possible in PWR components, a programme aimed at establishing the performance of cobalt-free alloys has been performed for valve applications, where cobalt alloys are mainly used. Referring to past work, two types of cobalt-free alloys were selected: Ni-Cr-B-Si and Ni-Cr-Fe alloys. Cobalt-free valves' behaviour has been evaluated comparatively with cobalt valves by implementation of a programme in a special PWR test loop. At the issue of the loop test programme, which included endurance, thermal shock and erosion tests, cobalt-free alloys candidate to replace cobalt alloys are proposed in relation with valve type (globe valve and swing check valve). The following was established: (i) Colmonoy 4-26 (Ni-Cr-B-Si alloy) and Cenium Z20 (Ni-Cr-Fe alloy) deposited by plasma arc process were found suitable for use in 3inch swing check valves; (ii) for integral parts acting as guide rings, Nitronic 60 and Cesium Z20/698 were tested successfully; (iii) for small-bore components such as 2inch globe valves, no solution can yet be proposed; introduction of cobalt-free alloys is dependent on the development of automatic advanced arc surfacing techniques applied to small-bore components

  12. The Determination of Uranium and Trace Metal Impurities in Yellow Cake Sample by Chemical Method

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Rodthongkom, Chouvana

    1999-01-01

    The purity of uranium cake is very critical in nuclear-grade uranium (UO 2 ) and uranium hexafluoride (UF 6 ) production. The major element in yellow cake is uranium and trace metal impurities. The objective of this study is to determine uranium and 25 trace metal impurities; Aluminum, Barium, Bismuth, Calcium, Cadmium, Cobalt, Chromium, Copper, Iron, Potassium, Iithium, Magnesium, Manganese, Molybdenum, Sodium, Niobium, Nickel, Lead, Antimony, Tin, Strontium, Titanium, Vanadium, Zinc and Zirconium, Uranium is determined by Potassium dichromate titration, after solvent extraction with Cupferon in Chloroform, Trace metal impurities are determined by solvent extraction with Tributyl Phosphate in Carbon-tetrachloride ( for first 23 elements) and N-Benzoyl-N-Phenylhydroxylamine in Chloroform ( for last 2 elements), then analyzed by Atomic Absorption Spectrophotometer (AAS) compared with Inductively Couple Plasma Spectrophotometers (ICP). The accuracy and precision are studied with standard uranium octaoxide

  13. Neutron diffraction studies on cobalt substituted BiFeO3

    Science.gov (United States)

    Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.

    2013-02-01

    A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.

  14. Evaluation of some emitted elements from selected small industries in Khartoum state

    International Nuclear Information System (INIS)

    Elboraie, Mahir Zein Elabdeen

    1999-08-01

    Employing x-ray fluorescence spectrometry, levels of calcium, chromium, iron, cobalt, nickel, copper, zinc and lead in the indoor aerosol environment of nile painting company, battery charging shop, Khartoum university printing press, Mirghany workshop, Burri power station and Sudanese mint company industries were measured. In the Nile painting company site, calcium, cobalt, nickel and lead exhibited high levels of concentration, whilst chromium, and copper displayed relatively high values with respect to their levels in the control site (Tutti Island). Iron exhibited a level nearly identical to that measured at the control site. No emission of zinc was monitored. In Battery Charging Shop site, Iron and lead, displayed the highest levels recorded, and calcium, chromium, copper, exhibited concentrations relatively high than the corresponding levels in the control site. Cobalt, nickel, and zinc have not been detected. The same trending was found in Khartoum University Printing Press site, with the exception that the level of iron is relatively high with respect to that of control site. In Mirghany Workshop site, calcium, iron, nickel, and zinc measured the highest values. Chromium, copper, and lead measured relatively high values with respect to their concentrations in the control site. No emission of cobalt was monitored. The average concentrations of calcium, iron, copper, and lead in Burri Power Station were nearly the same with that control site. Chromium, cobalt, nickel, and zinc, however, were not detected. In the indoor aerosol of Sudanese Mint Company site, cobalt, nickel, copper, and zinc, measured the highest values, whilst calcium, iron, chromium, and lead, displayed relatively high values with respect to their concentrations in the control site. The average concentrations of the elements under study in the indoor and outdoor aerosols of Sudanese Mint Company do not correlate to each other, but the outdoor measurements nearly resemble to those of the

  15. Colorimetric visualization of tin corrosion: A method for early stage corrosion detection on printed circuit boards

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    A majority of printed circuit board surfaces are covered with tin, therefore tin corrosion under humid conditions and movement of tin ions under the influence of an electric field plays an important role in the corrosion failure development. Tracking tin corrosion products spread on the printed c...

  16. Construction of an apparatus for nuclear orientation measurements at low temperatures. Application to neodymium-cobalt alloy; Realisation d'un appareil pour des mesures d'orientation nucleaire a basse temperature. Application a l'alliage neodyme-cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, E [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-10-01

    We describe experiments along which has been studied the anisotropy of {gamma} radiations emitted by oriented nuclei. We have used the great hyperfine fields acting on nuclei in ferromagnetic metals so as to produce alignment at low temperature. By irradiation we obtained a few cobalt 60 nuclei in our samples which were then cooled down to 0,01 K. The anisotropic rate of the 1,33 MeV {gamma} radiation was measured in function of the sample temperature, using as thermometer the anisotropy of {gamma} radiation emitted by cobalt 60 nuclei in a cobalt single crystal. Cobalt 60 was lined up in a cobalt nickel alloy (40% Ni). The hyperfine field at the cobalt was measured compared to the effective field in metallic cobalt: Heff(Co Ni)/Heff(Co metal) = 0.71 {+-} 0.12. These results are in good agreement with specific heat measurements made previously. Cobalt 60 has been polarised in a neodymium-cobalt alloy (NdCo{sub 5}). The field at the cobalt in NdCo{sub 5} has been measured compared to the field in metallic cobalt and taking the non-saturation into account we found 165000 oersteds < Heff(NdCo{sub 5}) < 220000 oersteds. (author) [French] Nous decrivons des experiences au cours desquelles nous avons etudie l'anisotropie de rayonnements {gamma} emis par des noyaux orientes. Nous avons utilise les grands champs hyperfins agissant sur las noyaux dans les metaux ferromagnetiques pour produire l'alignement a basse temperature. Par irradiation nous avons obtenu quelques noyaux de cobalt 60 dans nos echantillons qui furent ensuite refroidis a 0,01 K. Le degre d'anisotropie du rayonnement {gamma} de 1,33 MeV fut mesure en fonction de la temperature de l'echantillon en utilisant l'anisotropie du rayonnement {gamma} de noyaux de cobalt 60 dans un monocristal de cobalt metallique utilise comme thermometre. Le cobalt 60 a ete aligne dans un alliage de cobalt-nickel (40% Ni). Le champ hyperfin au niveau du cobalt a ete mesure par rapport au champ effectif dans le cobalt metallique

  17. Bioactivity and mechanical behaviour of cobalt oxide-doped ...

    Indian Academy of Sciences (India)

    tive base glass and cobalt oxide-doped glass were prepared by the addition of cobalt oxide (0, ... and 1 N HCl at 37. ◦. C as compared with the ... SO2−. 4. Cl. −. Simulated body fluid. 142.0. 5.0. 1.5. 2.5. 4.2. 1.0. 0.5. 147.8. Human blood plasma ...

  18. The tin mining and heavy mineral processing industry in the Kinta Valley, Perak, Malaysia

    International Nuclear Information System (INIS)

    Lee Swee Ching

    1994-01-01

    Overview of the tin mining and heavy mineral processing in the Kinta Valley, Perak, Malaysia was presented. Amang, a mixture composed of tin ore, sand, ilmenite, monazite, zircon, xenotime, struvite, etc , as a product from tin mining activities was discussed too in this paper

  19. Establishing Cynodon dactylon on mining tailings and mining ...

    African Journals Online (AJOL)

    Mining for copper and cobalt generates extensive mounds of removed topsoil and subsoil, and tailings with toxic levels of copper and cobalt. The threat of soil erosion in a high rainfall regime can be countered with rapid establishment of a sod-forming grass, such as Cynodon dactylon, that covers and binds the soil.

  20. Cobalt production in RAPS-1

    International Nuclear Information System (INIS)

    Krishnan, P.D.; Purandare, H.D.

    1978-01-01

    At present in RAPS-1 radioisotope Co 60 is produced by irradiating Co 59 in the adjusters which perform the function of regulation of reactivity, power and xenon override. But the manrem expenditure of the crew handling the charge and discharge of the adjusters is going to be prohibitively high. It is therefore proposed to irradiate Co 59 in the fuel channel positions. The physics optimisation study for such irradiation is presented. The burnup penalty and loss of power are estimated to produce the required quantity of Co 60 after optimising the number of cobalt pencils in a bundle and the positions of the cobalt producing channels in the reactor core. (author)

  1. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation

    International Nuclear Information System (INIS)

    Yan Wei; Wang Dan; Botte, Gerardine G.

    2012-01-01

    Nickel–Cobalt bimetallic hydroxide electrocatalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction. The Nickel–Cobalt bimetallic hydroxide catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, cyclic voltammetry (CV), and polarization techniques. A significant reduction in the overpotential (150 mV) of the reaction was observed with the Nickel–Cobalt bimetallic hydroxide electrode (ca. 43% Co content) when compared to a nickel hydroxide electrode. The decrease of the urea oxidation potential on the Nickel–Cobalt bimetallic hydroxide electrodes reveals great potential for future applications of urea electro-oxidation, including wastewater remediation, hydrogen production, sensors, and fuel cells.

  2. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    Science.gov (United States)

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  3. Performance of Nb3Sn multifilamentary superconductors in solenoidal magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.; Suenaga, M.; Robins, K.E.

    High current Nb 3 Sn multifilamentary conductors have been formed by heat treating cables braided from three types of composite wire. In the simplest configuration, these wires contain niobium filaments in a pure copper matrix. After braiding the conductor is coated with a layer of tin which diffuses through the copper during heat treatment to form Nb 3 S n filaments. The second configuration is made from wires containing niobium filaments in a copper-tin alloy and requires only heat treatment to form the Nb 3 Sn filaments. The third type of braid has wires which consist of groups of niobium filaments in the bronze matrix which are in turn in a copper matrix. Tantalum barriers surround each group of filaments to prevent the tin from contaminating the pure copper matrix. The cables have been wound into solenoids after heat treatment and the effect of mechanical handling was studied by monitoring the resistive voltage distribution in the coils. (U.S.)

  4. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

    Science.gov (United States)

    Kaeffer, Nicolas; Chavarot-Kerlidou, Murielle; Artero, Vincent

    2015-05-19

    Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the

  5. 77 FR 34938 - Certain Tin Mill Products From Japan: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2012-06-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-854] Certain Tin Mill Products... duty order on certain tin mill products from Japan would likely lead to continuation or recurrence of...: Background On August 28, 2000, the Department published the antidumping duty order on certain tin mill...

  6. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  7. Hot corrosion of low cobalt alloys

    Science.gov (United States)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  8. EFTF cobalt test assembly results

    International Nuclear Information System (INIS)

    Rawlins, J.A.; Wootan, D.W.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1988-01-01

    A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full power days at a power level fo 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal to produce Co-60, and a set of 4 pins with europium oxide to produce Gd-153, a radioisotope used in detection of the bone disease Osteoporosis. Post-irradiation examination of the cobalt pins determined the Co-60 produced with an accuracy of about 5 %. The measured Co-60 spatially distributed concentrations were within 20 % of the calculated concentrations. The assembly average Co-60 measured activity was 4 % less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes Eu-152 and Eu-154 to an absolute accuracy of about 10 %. The measured europium radioisotpe anc Gd-153 concentrations were within 20 % of calculated values. In conclusion, the hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate that the calculational methods developed by the Westinghouse Hanford Company are very accurate. (author)

  9. State of the Art Power-in Tube Niobium-Tin Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Godeke, A.; Ouden, A. Den; Nijhuis, A.; ten Kate, H.H.J.

    2008-06-01

    Powder-in-Tube (PIT) processed Niobium-Tin wires are commercially manufactured for nearly three decades and have demonstrated a combination of very high current density (presently up to 2500 A mm{sup -2} non-Cu at 12 T and 4.2 K) with fine (35 {micro}m), well separated filaments. We review the developments that have led to the present state of the art PIT Niobium-Tin wires, discuss the wire manufacturing and A15 formation processes, and describe typical superconducting performance in relation to magnetic field and strain. We further highlight successful applications of PIT wires and conclude with an outlook on possibilities for further improvements in the performance of PIT Niobium-Tin wires.

  10. Effect of Cobalt Supplementation on Performance of growing Calves

    Directory of Open Access Journals (Sweden)

    V.Nagabhushana

    Full Text Available The experiment was conducted to study the effect of critical supplementation of wheat straw with cobalt on fibre utilization and nutrient utilization in growing cross-bred male calves. Twenty-one crossbred (HF X Local male growing calves of 3-4 months age were fed with wheat straw based diet consisting without (Co0 and with 1 (Co1 and 6 (Co6 ppm cobalt as cobaltous chloride. There was no significant difference in intake of wheat straw, concentrate and DMI between the three groups and the ratio between concentrate and wheat straw was maintained at 40:60 irrespective of dietary level of cobalt. Similarly, average cumulative body weight, net gain in body weight or feed efficiency did not differ significantly between treatments. No significant effect was observed on the digestibility of dry matter, organic matter, crude protein, ether extract and fibre constituents like NDF, ADF, hemicellulose or cellulose by supplementation of 1 and 6 ppm Co to the diet of growing calves. Balance of nutrients such as Nitrogen, Calcium and Phosphorus was similar and positive in all the treatment groups. TDN and DCP values of the experimental diets remained almost similar irrespective of dietary level of cobalt. [Veterinary World 2008; 1(10.000: 299-302

  11. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  12. Highly conducting and transparent sprayed indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rami, M.; Benamar, E.; Messaoudi, C.; Sayah, D.; Ennaoui, A. (Faculte des Sciences, Rabat (Morocco). Lab. de Physique des Materiaux)

    1998-03-01

    Indium tin oxide (ITO) has a wide range of applications in solar cells (e.g. by controlling the resistivity, we can use low conductivity ITO as buffer layer and highly conducting ITO as front contact in thin films CuInS[sub 2] and CuInSe[sub 2] based solar cells) due to its wide band gap (sufficient to be transparent) in both visible and near infrared range, and high carrier concentrations with metallic conduction. A variety of deposition techniques such as reactive electron beam evaporation, DC magnetron sputtering, evaporation, reactive thermal deposition, and spray pyrolysis have been used for the preparation of undoped and tin doped indium oxide. This latter process which makes possible the preparation of large area coatings has attracted considerable attention due to its simplicity and large scale with low cost fabrication. It has been used here to deposit highly transparent and conducting films of tin doped indium oxide onto glass substrates. The electrical, optical and structural properties have been investigated as a function of various deposition parameters namely dopant concentrations, temperature and nature of substrates. X-ray diffraction patterns have shown that deposited films are polycrystalline without second phases and have preferred orientation [400]. INdium tin oxide layers with small resistivity value around 7.10[sup -5] [omega].cm and transmission coefficient in the visible and near IR range of about 85-90% have been easily obtained. (authors) 13 refs.

  13. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat, E-mail: kursat@itu.edu.tr

    2015-02-15

    Graphical abstract: - Highlights: • The (Ti,Re)N coating (8 ± 1.9 at.% Re) consisted of TiN and ReNx (x > 1.33) phases. • TiO{sub 2} provided low friction coefficient to TiN coating at 150 °C. • Re addition to TiN drastically dropped the friction coefficients to 0.17–0.22. • Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N coating. • Re addition to TiN improved the wear behavior. - Abstract: TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReN{sub x} (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa ( ± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al{sub 2}O{sub 3} balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti{sub 2}O{sub 3} for RT tests and TiO{sub 2} for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO{sub 2}, Ti−O−N, ReO{sub 2} and Re{sub 2}O{sub 7} for both test temperatures. Re{sub 2}O{sub 7} provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.

  14. Structural analysis of a coating of TiN over a Cu-Ti-Cr alloy: Study of the Cu-Ti interphase

    International Nuclear Information System (INIS)

    Villegas Vejar, C; Suazo, A; Radtk, H; Carrasco, C

    2004-01-01

    The crystalline structure of a thin film of TiN deposited by DC planar magnetron sputtering over a ternary copper alloy was studied. A fine film of titanium was deposited between the coating and the substrate for better adherence. The samples were analyzed with a transmission electron microscope to determine the structure of each of the components as well as the network distortion in the Cu-Ti interphase. The results were complemented with previous X-ray diffraction analyses to identify the network parameter for each of the study components and the respective residual tensions. This study shows the agreement between the network distortion and the residual tensions that were measured, and also relates the theory of crystalline coherence with the experimentally calculated break down by electron diffraction in the Cu-Ti interphase (CW)

  15. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites

    International Nuclear Information System (INIS)

    Fu, Min; Jiao, Qingze; Zhao, Yun

    2013-01-01

    Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO 3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene. - Highlights: • Reduction of GO and formation of ferrites were accomplished in a one-step reaction. • Ionic liquid was used to control 1D growth of ferrite nanorods for the first time. • Cobalt ferrite nanorods/graphene composites showed dielectric and magnetic loss. • Cobalt ferrite nanorods/graphene composites exhibited better absorbing properties

  16. Radioactive and stable cobalt concentrations in mussel in Kyushu island, Japan

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Shiki, Atsushi; Takashima, Yoshimasa; Maki, Takao; Koriyama, Munehiro; Shimozono, Seika; Imamura, Hiroka; Nakamata, Kojiro.

    1985-01-01

    Two kinds of mussel, Septifer virgatus and Mytilus edulis, were collected from Kyushu island, Japan, in order to elucidate a background level of 60 Co, which is one of the most significant radionuclide for environmental monitoring around a nuclear power plant. The mussels were collected from 7 locations in 1983 and classified 2 or 3 groups depending on their shell size at each location. Activities of 60 Co were measured by a low-background β counter after purified by means of chemical separation and electrodeposition. Stable cobalt concentrations were determined by colorimetric method. The concentrations of cobalt in Septifer virgatus are one order higher level than that in Mytilus edulis. There are not so large difference in cobalt content depending on shell size so long as comparing them at the same location. The radioactivities in mussels show the same trend as stable cobalt. It has become apparent that Septifer virgatus has a tendency to concentrate cobalt with growing but Mytilus edulis is opposite. The cobalt-60 introduced to sea from nuclear explosions seems to be relatively constant in coastal seawater since specific activities are distributed in a narrow range in spite of kind, shell size and location. (author)

  17. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.; Vagin, Sergei I.; Hammann, Markus; Zimmermann, Leander; Rieger, Bernhard

    2013-01-01

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.

    2013-09-18

    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reversible storage of lithium in a rambutan-like tin-carbon electrode.

    Science.gov (United States)

    Deng, Da; Lee, Jim Yang

    2009-01-01

    Fruity electrodes: A simple bottom-up self-assembly method was used to fabricate rambutan-like tin-carbon (Sn@C) nanoarchitecture (see scheme, green Sn) to improve the reversible storage of lithium in tin. The mechanism of the growth of the pear-like hairs is explored.

  20. Preliminary studies of cobalt complexation in groundwater

    International Nuclear Information System (INIS)

    Warwick, P.; Shaw, P.; Williams, G.M.; Hooker, P.J.

    1988-01-01

    A relatively non-invasive method has been used to separate complexed from free cobalt-60 in groundwater, using the weak cationic adsorption properties of Sephadex gels, and a mobile phase of natural groundwater. Results show the kinetics of Co complex formation in groundwater to be slow, and that the equilibrium position is affected by temperature, cobalt concentration and the ionic/organic strength of the groundwater. The addition of DAEA cellulose to the groundwater to remove humic material, also removed the majority of organic species which absorb UV at 254 nm, but 45% of the original total organic carbon remained, and the amount of complexed cobalt left in solution was only reduced to 76% of its former concentration. This suggests that the completed Co species separated by the method described in this paper are a mixture of inorganic and organic compounds, and studies are therefore continuing to establish their exact nature. (author)