WorldWideScience

Sample records for coating film formed

  1. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    International Nuclear Information System (INIS)

    Asoh, Hidetaka; Uchibori, Kota; Ono, Sachiko

    2009-01-01

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  2. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  3. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  4. Titanium-silicon films prepared by spin and dip-coating

    International Nuclear Information System (INIS)

    Nassar, Eduardo J.; Ciuffi, Katia J.; Goncalves, Rogeria R.; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2003-01-01

    The conditions for the preparation of luminescent materials, consisting of Eu 3+ ions entrapped in a titanium matrix, in the form of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hydrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu 3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique. (author)

  5. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    Science.gov (United States)

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  6. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films.

    Science.gov (United States)

    Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2012-04-01

    To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  7. Study progression in application of process analytical technologies on film coating

    Directory of Open Access Journals (Sweden)

    Tingting Peng

    2015-06-01

    Full Text Available Film coating is an important unit operation to produce solid dosage forms, thereby, the monitoring of this process is helpful to find problems in time and improve the quality of coated products. Traditional methods adopted to monitor this process include measurement of coating weight gain, performance of disintegration and dissolution test, etc. However, not only do these methods cause destruction to the samples, but also consume time and energy. There have recently emerged the applications of process analytical technologies (PAT on film coating, especially some novel spectroscopic and imaging technologies, which have the potential to real-time track the progress in film coating and optimize production efficiency. This article gives an overview on the application of such technologies for film coating, with the goal to provide a reference for the further researches.

  8. Experimental evaluation of coating delamination in vinyl coated metal forming

    International Nuclear Information System (INIS)

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min; Lee, Jung Min; Byoen, Sang Doek; Lee, Soen Bong

    2012-01-01

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications

  9. Experimental evaluation of coating delamination in vinyl coated metal forming

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min [Pusan National Univ., Busan (Korea, Republic of); Lee, Jung Min [Korea Institute of Industrial Technology, Busan (Korea, Republic of); Byoen, Sang Doek [HA Digital Engineering Gr., Seongsan Gu (Korea, Republic of); Lee, Soen Bong [Keimyung Univ., Daegu (Korea, Republic of)

    2012-10-15

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications.

  10. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  11. Bottom Extreme-Ultraviolet-Sensitive Coating for Evaluation of the Absorption Coefficient of Ultrathin Film

    Science.gov (United States)

    Hijikata, Hayato; Kozawa, Takahiro; Tagawa, Seiichi; Takei, Satoshi

    2009-06-01

    A bottom extreme-ultraviolet-sensitive coating (BESC) for evaluation of the absorption coefficients of ultrathin films such as extreme ultraviolet (EUV) resists was developed. This coating consists of a polymer, crosslinker, acid generator, and acid-responsive chromic dye and is formed by a conventional spin-coating method. By heating the film after spin-coating, a crosslinking reaction is induced and the coating becomes insoluble. A typical resist solution can be spin-coated on a substrate covered with the coating film. The evaluation of the linear absorption coefficients of polymer films was demonstrated by measuring the EUV absorption of BESC substrates on which various polymers were spin-coated.

  12. Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms.

    Science.gov (United States)

    Korasa, Klemen; Vrečer, Franc

    2018-01-01

    Over the last two decades, regulatory agencies have demanded better understanding of pharmaceutical products and processes by implementing new technological approaches, such as process analytical technology (PAT). Process analysers present a key PAT tool, which enables effective process monitoring, and thus improved process control of medicinal product manufacturing. Process analysers applicable in pharmaceutical coating unit operations are comprehensibly described in the present article. The review is focused on monitoring of solid oral dosage forms during film coating in two most commonly used coating systems, i.e. pan and fluid bed coaters. Brief theoretical background and critical overview of process analysers used for real-time or near real-time (in-, on-, at- line) monitoring of critical quality attributes of film coated dosage forms are presented. Besides well recognized spectroscopic methods (NIR and Raman spectroscopy), other techniques, which have made a significant breakthrough in recent years, are discussed (terahertz pulsed imaging (TPI), chord length distribution (CLD) analysis, and image analysis). Last part of the review is dedicated to novel techniques with high potential to become valuable PAT tools in the future (optical coherence tomography (OCT), acoustic emission (AE), microwave resonance (MR), and laser induced breakdown spectroscopy (LIBS)). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    Science.gov (United States)

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  14. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2017-01-01

    Full Text Available Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1 without antireflection coating (ARC layer, (2 with TiO2-compact ARC film, and (3 with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88% owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2 when compared with a single TiO2-compact ARC.

  15. Iron oxide coating films in soda-lime glass by triboadhesion

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J. O.; Arjona, M. J. [Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal (Mexico); Rodriguez-Lelis, J. M. [Interior Internado Palmira s/n, Cuernavaca, Morelos (Mexico)

    2009-04-15

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  16. Iron oxide coating films in soda-lime glass by triboadhesion

    International Nuclear Information System (INIS)

    Aguilar, J. O.; Arjona, M. J.; Rodriguez-Lelis, J. M.

    2009-01-01

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  17. Edible films and coatings: Sources, properties and application

    Directory of Open Access Journals (Sweden)

    Šuput Danijela Z.

    2015-01-01

    Full Text Available In order to extend product shelf life while preserving the quality scientific attention focused to biopolymers research that are base for edible films and coatings production. Another major advantage of this kind of food packaging is their eco-friendly status because biopolymers do not cause environmental problems as packaging materials derived from non-renewable energy sources do. Objective of this work was to review recently studied edible films and coatings - their sources, properties and possible application. As sources for edible biopolymers were highlighted polysaccharides, proteins and lipids. The most characteristic subgroups from each large group of compounds were selected and described regarding possible physical and mechanical protection; migration, permeation, and barrier functions. The most important biopolymers characteristic is possibility to act as active substance carriers and to provide controlled release. In order to achieve active packaging functions emulsifiers, antioxidants and antimicrobial agents can also be incorporated into film-forming solutions in order to protect food products from oxidation and microbial spoilage, resulting in quality improvement and enhanced safety. The specific application where edible films and coatings have potential to replace some traditional polymer packaging are explained. It can be concluded that edible films and coatings must be chosen for food packaging purpose according to specific applications, the types of food products, and the major mechanisms of quality deterioration.

  18. Development of fi lm forming formulation and technology of polymeric fi lm coating on Indotril tablets

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2013-09-01

    Full Text Available Introduction. In previous researches we grounded expedience of «Indotril» tablets development; formulation and technology of "Indotril" tablet cores were developed. Received tablet cores should be covered by protective polymeric film with the purpose of unpleasant taste elimination, increase of tablets expiration date. Objective. The aim of our investigation was to develop the film forming composition and technology of polymeric film coating on «Indotril» tablets in pseudo-fluidized layer. Materials and Methods. As “Indotril” tablets cores should be covered by protective polymeric film we performed research designed to select efficient film forming solution. Thus modern filming agents were studied, besides such factors were investigated: concentration of film forming suspension, increase of tablet coat in mass, air temperature under gas distribution grid. Obtained tablets were checked according to pharmacopeia methods. Results and discussion. First we studied tablet compression force influence on main parameters of «Indotril» cores tablets: on crushing strength, abrasion in pseudo-fluidized layer unit and disintegration. Then for further investigation we chose «Indotril» cores tablets with crushing strength near 70 H, abrasion - up to 0,5% and disintegration time - not more than 10 minutes. We performed research to select film forming solution for covering “Indotril” tablets in pseudo-fluidized layer unit. As filming agents we used different samples of hydroxypropyl methylcellulose (HPMC by Japan company Shin-Etsu Chemical Co and English company Colorcon. Water HPMC solutions were prepared which contained plasticizer (propylene glycol, pigment (titanium IV dioxide and dye (tartrazine. Coating process of “Indotril” tablets was performed in laboratory pseudo-fluidized layer unit with the air temperature 75ºC under gas distribution grid. Variance analysis of experimental data on quality of coat surface showed insignificance as

  19. Thin film plasma coatings from dielectric free-flowing materials

    International Nuclear Information System (INIS)

    Timofeeva, L.A.; Katrich, S.A.; Solntsev, L.A.

    1994-01-01

    Fabrication of thin film plasma coatings from insulating free-flowing materials is considered. Molybdenum-tart ammonium coating of 3...5 μ thickness deposited on glassy carbon, aluminium, silicon, nickel, cast iron and steel substrates in 'Bulat-ZT' machine using insulating free-flowing materials cathod was found to form due to adsorption, absorption and dissuasion processes. The use of insulating free-flowing materials coatings allow to exclude pure metals cathods in plasma-plating process

  20. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    Science.gov (United States)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  1. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  2. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  3. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  4. Tribological properties of coating films for core structure of HTGR

    International Nuclear Information System (INIS)

    Ozawa, Kenji; Kikuchi, Akiyoshi; Kawakami, Haruo

    1985-01-01

    The tribological properties of the various coating films used for the in-core structures of a high temperature gas-cooled experimental reactor were examined. When the explosion sprayed films of chrome carbide were applied for preventing galling in core restraining mechanism, the hardness of substrate materials exerted influence on the strength of the coating films. Also the effect of the surface roughness of the plasma sprayed films of zirconia on the sliding characteristics of the zirconia films and PGX graphite used for support plates was clarified. The coefficient of friction and the dependence of the amount of wear on surface pressure of these materials were examined. These results have been effectively utilized for the design of the test bodies of HENDEL-T2. In helium atmosphere, oxide film is hard to be formed on metal surface, especially on the contact surface of metals exposed to high temperature, there is the possibility to cause adhesion due to mutual diffusion and galling in sliding. As the means to prevent those, ceramic coating has been attempted. Sliding test, high pressure joining test, thermal cycle test and corrosion test in helium were carried out to evaluate the properties. (Koko, I.)

  5. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  6. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  7. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation

    Science.gov (United States)

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J Axel

    2015-01-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30–200 μm, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100 μm. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3377–3385, 2015 PMID:26284354

  8. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  9. Numerical studies of film formation in context of steel coating

    Science.gov (United States)

    Aniszewski, Wojciech; Zaleski, Stephane; Popinet, Stephane

    2017-11-01

    In this work, we present a detailed example of numerical study of film formation in the context of metal coating. Liquid metal is drawn from a reservoir onto a retracting solid sheet, forming a coating film characterized by phenomena such as longitudinal thickness variation (in 3D) or waves akin to that predicted by Kapitza and Kapitza (visible in two dimensions as well). While the industry standard configuration for Zinc coating is marked by coexistence of medium Capillary number (Ca = 0.03) and film Reynolds number above 1000, we present also parametric studies in order to establish more clearly to what degree does the numerical method influence film regimes obtained in the target configuration. The simulations have been performed using Basilisk, a grid-adapting, strongly optimized code derived from Gerris . Mesh adaptation allows for arbitrary precision in relevant regions such as the contact line or the meniscus, while a coarse grid is applied elsewhere. This adaptation strategy, as the results indicate, is the only realistic approach for numerical method to cover the wide range of necessary scales from the predicted film thickness (hundreds of microns) to the domain size (meters).

  10. Methods and means for coating paper by film coating

    NARCIS (Netherlands)

    van der Maarel, Marc; Ter Veer, Arend Berend Cornelis; Vrieling-Smit, Annet; Delnoye, Pierre

    2015-01-01

    This invention relates to the field of paper coating, more in particular to means and methods for providing paper with at least one layer of pigment using film coating to obtain a well printable surface. Provided is a method for preparing coated paper comprising the steps of: a) providing a

  11. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  12. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625

    Energy Technology Data Exchange (ETDEWEB)

    Bakare, M.S. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Voisey, K.T., E-mail: Katy.voisey@nottingham.ac.uk [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Roe, M.J.; McCartney, D.G. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-15

    There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH){sub 2}, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.

  13. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  14. Soybean oil in water-borne coatings and latex film formation study by AC impedance

    Science.gov (United States)

    Jiratumnukul, Nantana

    Conventional coalescing agents such as butyl cellosolve, butyl carbitol, and TexanolRTM are widely use in the latex coatings industry to facilitate film formation at ambient temperature. Coalescent aids are composed of solvents with low evaporation rates. After water evaporates, coalescent aids would help soften polymer molecules and form continuous films, then gradually evaporates from the film. Coalescent aids, therefore, are considered as volatile organic compounds (VOC), which are of environmental concern. The main purpose of this research project was to prepare a fatty acid glycol ester from soybean oil and glycol (polyols). The soybean oil glycol ester can be used as a coalescent aid in latex paint formulation. The soybean oil glycol ester not only lowered the minimum film formation temperature of latex polymers and continuous film formed at ambient temperature, but also after it has facilitated film formation, does not substantially evaporate, but becomes part of the film. Soybean oil glycol esters, therefore, can reduce the VOC levels and facilitate film formation of latex paints. In the second part of this research AC-Impedance was used to investigate the efficiency of soybean oil coalescent aid in latex film formation relative to the conventional ones. The coating resistance showed that the efficiency of film formation was increased as a function of dry time. The coating resistance also exhibited the effect of soybean oil ester in latex film formation in the same fashion as a conventional coalescent aid, TexanolRTM.

  15. Process for forming epitaxial perovskite thin film layers using halide precursors

    Science.gov (United States)

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  16. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  17. Drying of latex films and coatings: Reconsidering the fundamental mechanisms

    DEFF Research Database (Denmark)

    Kiil, Søren

    2006-01-01

    The two existing theories describing drying of latex films or coatings are reconsidered. Subsequently, a novel mathematical drying model is presented, the simulations of which can match and explain experimental drying rate data of two previous investigations with latex films. In contrast to previ......The two existing theories describing drying of latex films or coatings are reconsidered. Subsequently, a novel mathematical drying model is presented, the simulations of which can match and explain experimental drying rate data of two previous investigations with latex films. In contrast...... to previous model studies, but in agreement with observations, simulations suggest that during the falling rate period of the drying process of a latex film, a porous skin of partly coalesced latex particles is indeed formed, which limits transport of water vapour from the receding air-liquid interphase...... to the surface of the film. The value of the effective diffusion coefficient of water vapour in the dry and partly coalesced layer (7 x 10(-7) m(2)/s at 19-24 degrees C), the adjustable parameter of the model for the falling rate period, was found to be independent of initial wet film thickness (89-1322 mu m...

  18. Quantitative Appearance Inspection for Film Coated Tablets.

    Science.gov (United States)

    Yoshino, Hiroyuki; Yamashita, Kazunari; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-01-01

    The decision criteria for the physical appearance of pharmaceutical products are subjective and qualitative means of evaluation that are based entirely on human interpretation. In this study, we have developed a comprehensive method for the quantitative analysis of the physical appearance of film coated tablets. Three different kinds of film coated tablets with considerable differences in their physical appearances were manufactured as models, and their surface roughness, contact angle, color measurements and physicochemical properties were investigated as potential characteristics for the quantitative analysis of their physical appearance. All of these characteristics were useful for the quantitative evaluation of the physical appearances of the tablets, and could potentially be used to establish decision criteria to assess the quality of tablets. In particular, the analysis of the surface roughness and film coating properties of the tablets by terahertz spectroscopy allowed for an effective evaluation of the tablets' properties. These results indicated the possibility of inspecting the appearance of tablets during the film coating process.

  19. Fabrication of indium tin oxide (ITO) thin film with pre-treated sol coating

    International Nuclear Information System (INIS)

    Hong, Sung-Jei; Han, Jeong-In

    2004-01-01

    A new pre-treated sol-coating method to fabricate an indium tin oxide (ITO) thin film is introduced in this paper. The pre-treatment sol-coating method is to form a seed layer on the substrate before spin coating of ITO sol. The pre-treatment was carried out at room temperature in order not to damage the substrate during the pre-treatment. It is effective to enhance the formation of the ITO sol film on the substrate, owing to the seed layer. The seed layer consists of ultrafine grains, which are observed at the pre-treated substrate. For the optimal pre-treatment condition, we used pre-treatment times of 24, 48, 72, and 96 hours to observe the effect on the characteristics of ITO sol film. As a result, the lowest resistance could be achieved with a pre-treatment time of 72 hours. The optical transmittance of the ITO sol film with the pre-treatment time of 72 hours exceeded 80 % at a wavelength of 400 nm. So, an ITO sol film with good electrical and optical properties could be fabricated by using the pretreatment sol coating.

  20. Films and edible coatings containing antioxidants - a review

    Directory of Open Access Journals (Sweden)

    Kaliana Sitonio Eça

    2014-06-01

    Full Text Available The incorporation of natural antioxidants into films and edible coatings can modify their structure, improving their functionality and applicability in foods, such as in fresh-cut fruits. This paper reviews the more recent literature on the incorporation of antioxidants from several sources into films and edible coatings, for application in fruits and vegetables. The use of synthetic antioxidants in foods has been avoided due to their possible toxic effects. Instead, a wide range of natural antioxidants (such as essential oils and plant extracts, as well as pure compounds, like ascorbic acid and α-tocopherol have been incorporated into edible films and coatings to improve their bioactive properties. Films and coatings containing added antioxidants help to preserve or enhance the sensory properties of foods and add value to the food products by increasing their shelf life.

  1. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: Film morphology and field effect mobility

    International Nuclear Information System (INIS)

    Kotsuki, Kenji; Tanaka, Hiroshige; Obata, Seiji; Stauss, Sven; Terashima, Kazuo; Saiki, Koichiro

    2014-01-01

    We have investigated the film morphology and the field effect mobility of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) thin films which were formed by spin coating on the SiO 2 substrate with solution-processed graphene electrodes. The domain size and the density of aggregates in the C8-BTBT film showed the same dependence on the spinning speed. These competitive two factors (domain size and density of aggregates) give an optimum spinning speed, at which the field effect mobility of C8-BTBT transistor showed a maximum (2.6 cm 2 /V s). This result indicates the importance of spinning speed in the fabrication of solution processed organic thin film transistors by spin coating.

  2. 13th International Conference on Films and Coatings

    International Nuclear Information System (INIS)

    2017-01-01

    Analytical Review of the Reports Presented at the 13th International Conference on Films and Coatings (ICFC13) V G Kuznetsov 1 and D K Kostrin 2 1 Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, 199178, Saint Petersburg, Russia 2 Saint Petersburg Electrotechnical University “LETI”, 197376, Saint Petersburg, Russia E-mail: kvgipme@gmail.com Abstract. In this preface main trends in the development of films and coatings technology presented at the 13th International Conference on Films and Coatings (ICFC13) that was held on 18–20 April 2017 in Saint Petersburg, Russia are discussed. During the Conference were presented the results of theoretical and experimental research in the physics and mechanics of condensed matter, physics of low temperature plasma, formation of films and coatings using plasma and related methods that were obtained over the past two years that have passed since the previous meeting. Special attention was paid to the study of properties of surfaces and coatings, methods of their research, new coating materials, including nanomaterials, new areas of their application, development of modern equipment and technological processes, surface preparation and many other issues. During the Conference were presented more than 150 reports that were distributed in 8 sections: • vacuum ion-plasma methods; • thermal spray coating methods; • physical processes at all stages of coatings formation; • equipment for application of films and coatings; • materials for sputtering and deposition; • nanomaterials and nanotechnologies; • properties of coatings and films and methods of their evaluation; • preparation of surfaces before application and methods of post-processing of coatings and films. For the first time the Conference had a special section for young scientists, where presentations were made by students, postgraduates, candidates and doctors of science aged up to 35 years. Among the participants were

  3. Magnesium Diboride thin Films, multilayers, and coatings for SRF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoxing [Temple Univ., Philadelphia, PA (United States)

    2017-08-17

    Superconducting radio frequency (SRF) cavities currently use low-temperature superconductor niobium, and the Nb SRF cavities have approached the performance levels predicted theoretically. Compared to Nb, MgB2 becomes superconducting at a much higher temperature and promises a better RF performance in terms of higher quality factor Q and higher acceleration capability. An MgB2 SRF technology can significantly reduce the operating costs of particle accelerators when these potentials are realized. This project aimed to advance the development of an MgB2 SRF technology. It had two main objectives: (1) materials issues of MgB2 thin films and multilayers related to their applications in SRF cavities; and (2) coating single-cell cavities for testing at RF frequencies. The key technical thrust of the project is the deposition of high quality clean MgB2 films and coatings by the hybrid physical-chemical vapor deposition (HPCVD) technique, which was developed in my group. We have achieved technical progress in each of the two areas. For the first objective, we have confirmed that MgB2 thin film coatings can be used to effectively enhance the vortex penetration field of an SRF cavity. A vortex is a normal region in the shape of spaghetti that threads through a superconductor. Its existence is due to an applied magnetic field that is greater than a so-called lower critical field, Hc1. Once a vortex enters the superconductor, its movement leads to loss. This has been shown to be the reason for an SRF cavity to break down. Thus, enhancing the magnetic field for a vortex to enter the superconductor that forms the SRF cavity has be a goal of intense research. To this end, Gurevich proposed that a coating of thin superconductor layer can impede the vortex entrance. In this project, we have done two important experiment to test this concept. One, we showed that the enhancement of Hc1 can be

  4. Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism.

    Science.gov (United States)

    Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying

    2018-03-28

    Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.

  5. Simulation of the coating film appearance for spray application

    OpenAIRE

    Seeler, Fabian; Hager, Christian; Schneider, Matthias; Tiedje, Oliver

    2015-01-01

    The coating film topography depends on the substrate structure, the application parameters and the coating material’s levelling properties. Substrates consisting of several materials with different surface structures and differently inclined areas make a homogenous coating film structure difficult. By means of simulations, the paint film structure is intended to be controlled so that the theoretical optimum is reached and the experimental effort can be reduced. The focus is on spray applicati...

  6. Use of 2-hydroxylhydrazine as a new modifier in dip-coating nickel films

    International Nuclear Information System (INIS)

    Syukri, R.; Ito, Yusuke; Ban, Takayuki; Ohya, Yutaka; Takahashi, Yasutaka

    2002-01-01

    A modified version of the dip-coating technique, which uses 2-hydroxylhydrazine as a mild reducing agent, was applied in the fabrication of nickel thin films. Nickel acetate was used as metal source. Metallic nickel thin films were formed on glass substrates by firing in the range of 400-600 deg. C under nitrogen atmosphere. The deposited layers were composed of cubic Ni crystallites. X-ray photoelectron spectroscopy analysis indicated almost uniformity in composition throughout the film thickness. The morphology of the films analyzed by scanning electron microscopy and atomic force microscopy revealed a very weak roughness after firing at 400 deg. C and the films turned out to be homogeneous. A thin film of approximately 19 nm in thickness exhibited a high resistivity of 86 μΩ cm. However, the resistivity was found to gradually decrease with increasing film thickness up to 110 nm by repeated dip-coating, reaching a minimum value of approximately 10 μΩ cm

  7. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  8. Application of Neem Gum for Aqueous Film Coating of Ciprofloxacin Tablets

    OpenAIRE

    A P Kulkarni; Y R Shaikh; MH GR Dehghan

    2013-01-01

    Summary. At present the pharmaceutical industry and academia are focusing on the use of natural materials and resources for development of pharmaceutical product. In previous study, neem gum (NG), obtained from Azadirachata indica plant revealed satisfactory film forming ability. The present study evaluates the application potential of neem gum, as an aqueous film coating material, using ciprofloxacin hydrchloride (drug) as a model drug. Initial study of physical mixture indicated absence of ...

  9. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    Science.gov (United States)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  10. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  11. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunhong, E-mail: y.jiang@leeds.ac.uk [University of Leeds, Institute of Particle Science and Engineering (United Kingdom); O’Neill, Alex J. [University of Leeds, School of Molecular and Cellular Biology (United Kingdom); Ding, Yulong [University of Leeds, Institute of Particle Science and Engineering (United Kingdom)

    2015-04-15

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  12. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  13. New NbCd2 Phase in Niobium-Cadmium Coating Films

    Science.gov (United States)

    Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.

    2018-02-01

    Solid solutions in the form of alloy coatings have been obtained for the first time in the Cd concentration range of 64.5% using ion-plasma sputtering and the codeposition of Nb and Cd ultrafine particles. This supports thermal fluctuation melting and the coalescence of fine particles. A coating of niobium and cadmium layers less than 2 nm thick at 68 at % Cd results in the formation of a new phase identified as NbCd2. The tetragonal fcc phase with lattice parameters a = 0.84357 nm and c = 0.54514 nm forms directly during film coating. XRD data for the identification of the intermetallic compound have been determined. The thermal stability of the NbCd 2 intermetallic compound is limited by 200°C. The properties of the synthesized NbCd 2 phase are typical of semiconductors.

  14. Physics properties of TiO_2 films produced by dip-coating technique

    International Nuclear Information System (INIS)

    Teloeken, A.C.; Alves, A.K.; Berutti, F.A.; Tabarelli, A.; Bergmann, C.P.

    2014-01-01

    The use of titanium dioxide (TiO_2) as a photocatalyst to produce hydrogen has been of great interest because of their chemical stability, low cost and non-toxicity. TiO_2 occurs in three different crystal forms: rutile, anatase and brokita. Among these, the anatase phase generally exhibits the best photocatalytic behavior, while the rutile phase is the most stable. Among the various techniques of deposition, dip-coating technique produces films with good photocatalytic properties, using simple and inexpensive equipment. In this work TiO_2 films were obtained by dip-coating. The films were characterized using X-ray diffraction, scanning electron microscopy, profilometry, contact angle measurements and photocurrent. The microstructure and physical properties were evaluated in relation of the temperature and the addition of an additive. (author)

  15. Surface Morphology Diagram for Cylinder-Forming Block Copolymer Thin Films

    International Nuclear Information System (INIS)

    Zhang, Xiaohua; Berry, Brian C.; Yager, Kevin G.; Kim, Sangcheol; Jones, Ronald L.; Satija, Sushil; Pickel, Deanna L.; Douglas, Jack F.; Karim, Alamgir

    2008-01-01

    We investigate the effect of annealing temperature (T), film thickness (hf) on the surface morphology of flow coated films of a cylinder forming block copolymer, poly (styrene-block-methyl methacrylate) (PS-b-PMMA). Surface morphology transitions from a perpendicular to a parallel cylinder orientation with respect to the substrate with increasing hf are observed in these model 'frustrated-interaction' films where the substrate interaction is preferential for one of the blocks (PMMA) and nearly neutral for the other interface (polymer-air). In these films a transition occurs from cylinders oriented parallel to the substrate to a mixed or 'hybrid' state where the two orientations coexist followed by a transition to cylinders oriented perpendicularly to the polymer-air interface for larger hf. The characteristic values of hf defining these surface morphological transitions depend on T and we construct a surface morphology diagram as a function of hf and T. The surface morphology diagram is found to depend on the method of film formation (flow coated versus spun cast films) so non-equilibrium effects evidently have a large effect on the surface pattern morphology. In particular, the residual solvent within the film (quantified by neutron reflectivity measurements) in the context of physics of glass-formation can have a large effect on the surface morphology diagram

  16. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  17. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets.

    Science.gov (United States)

    Korasa, Klemen; Hudovornik, Grega; Vrečer, Franc

    2016-10-10

    Although process analytical technology (PAT) guidance has been introduced to the pharmaceutical industry just a decade ago, this innovative approach has already become an important part of efficient pharmaceutical development, manufacturing, and quality assurance. PAT tools are especially important in technologically complex operations which require strict control of critical process parameters and have significant effect on final product quality. Manufacturing of prolonged release film coated pellets is definitely one of such processes. The aim of the present work was to study the applicability of the at-line near-infrared spectroscopy (NIR) approach in the monitoring of pellet film coating and curing steps. Film coated pellets were manufactured by coating the active ingredient containing pellets with film coating based on polymethacrylate polymers (Eudragit® RS/RL). The NIR proved as a useful tool for the monitoring of the curing process since it was able to determine the extent of the curing and hence predict drug release rate by using partial least square (PLS) model. However, such approach also showed a number of limitations, such as low reliability and high susceptibility to pellet moisture content, and was thus not able to predict drug release from pellets with high moisture content. On the other hand, the at-line NIR was capable to predict the thickness of Eudragit® RS/RL film coating in a wide range (up to 40μm) with good accuracy even in the pellets with high moisture content. To sum up, high applicability of the at-line NIR in the monitoring of the prolonged release pellets production was demonstrated in the present study. The present findings may contribute to more efficient and reliable PAT solutions in the manufacturing of prolonged release dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  19. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    Science.gov (United States)

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  20. Coated particle waste form development

    International Nuclear Information System (INIS)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  1. Mechanical properties of molybdenum coated with titanium carbide film

    International Nuclear Information System (INIS)

    Shikama, T.; Shinno, H.; Fukutomi, M.; Fujitsuka, M.; Okada, M.

    1983-01-01

    TiC-coated molybdenum is mechanically tensile tested. The 6 μm thick TiC-coated molybdenum has a higher 0.2% proof strength with a slight decrease in uniform and rupture elongation than the uncoated one. This strengthening effect of the TiC coating can be explained by the constrained effect of the high strength TiC film. The 1.2 μm thick TiC-coated molybdenum starts its plastic deformation at a lower stress than the uncoated one. Also, the coating makes the stress-strain curve more smooth. These effects are attributed to the surface effect, namely, that the interface between the molybdenum substrate and the strong and brittle TiC film acts as a strong dislocation source. The compressive stress in the TiC film will also help the start of plastic deformation at lower external stresses. (author)

  2. Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films

    OpenAIRE

    A.P. Loperena; I.L. Lehr; S.B. Saidman.

    2016-01-01

    Cerium-based conversion coatings were formed on AZ91D magnesium alloy by immersion of the substrate in solutions containing Ce(NO3)3, H2O2 and ascorbic acid (HAsc). The characterisation of the films was performed by electrochemical and surface analysis techniques such as SEM, EDS, X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The degree of corrosion protection achieved was evaluated in simulated physiological solution by the open circuit potential monitoring, polarisation tech...

  3. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  4. Technique for forming ITO films with a controlled refractive index

    Energy Technology Data Exchange (ETDEWEB)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.; Kukushkin, M. V.; Zakheim, D. A.; Pavlov, S. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-07-15

    A new method for fabricating transparent conducting coatings based on indium-tin oxide (ITO) with a controlled refractive index is proposed. This method implies the successive deposition of material by electron-beam evaporation and magnetron sputtering. Sputtered coatings with different densities (and, correspondingly, different refractive indices) can be obtained by varying the ratio of the mass fractions of material deposited by different methods. As an example, films with effective refractive indices of 1.2, 1.4, and 1.7 in the wavelength range of 440–460 nm are fabricated. Two-layer ITO coatings with controlled refractive indices of the layers are also formed by the proposed method. Thus, multilayer transparent conducting coatings with desired optical parameters can be produced.

  5. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating......In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...

  6. Film forming microbial biopolymers for commercial applications--a review.

    Science.gov (United States)

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    applications either in the form of coatings or wrappings. Use of EPS in combinations to obtain desired properties can be evaluated to increase the application range. Controlled release of active compounds, bioactive protection and resistance to water can be investigated while developing new technologies to improve the film properties of active packaging and coatings. An holistic approach may be adopted in developing an economical and biodegradable packaging material with acceptable properties. An interdisciplinary approach with new innovations can lead to the development of new composites of these biopolymers to enhance the application range. This current review focuses on linking and consolidation of recent research activities on the production and applications of film forming microbial polymers like EPS, PHA and PLA for commercial applications.

  7. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component.

    Science.gov (United States)

    Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi; Anzai, Jun-Ichi

    2018-01-22

    Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.

  8. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Science.gov (United States)

    2010-04-01

    ... polycarbonate film. 175.365 Section 175.365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in this section and applied on polycarbonate film may be safely used as food-contact surfaces, in...

  9. Surface self-organization in multilayer film coatings

    Science.gov (United States)

    Shuvalov, Gleb M.; Kostyrko, Sergey A.

    2017-12-01

    It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.

  10. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham.

    Science.gov (United States)

    Theinsathid, Pornpun; Visessanguan, Wonnop; Kruenate, Jittiporn; Kingcha, Yutthana; Keeratipibul, Suwimon

    2012-02-01

    A novel type of environmentally friendly packaging with antibacterial activity was developed from lauric arginate (LAE)-coating of polylactic acid (PLA) films after surface activation using a corona discharge. Scanning electron microscopy (SEM)-based analysis of the LAE/PLA films confirmed the successful coating of LAE on the PLA surface. The mechanical properties of the LAE/PLA films with different levels of LAE-coating (0% to 2.6%[w/w]) were essentially the same as those of the neat PLA film. The antibacterial activity of the LAE/PLA films against Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium) was confirmed by a qualitative modified agar diffusion assay and quantitative JIS Z 2801:2000 method. Using the LAE/PLA film as a food-contact antimicrobial packaging for cooked cured ham, as a model system, suggested a potential application to inhibit L. monocytogenes and S. Typhimurium on ham with a 0.07% (w/w) LAE coating on the PLA when high transparency is required, as evidenced from the 2 to 3 log CFU/tested film lower pathogen growth after 7 d storage but even greater antibacterial activity is obtained with a LAE coating level of 2.6% (w/w) but at the cost of a reduced transparency of the finished product. This article shows how we can simply develop functional green packaging of PLA for food with effective and efficient antimicrobial activity by use of LAE coating on the surface via corona discharge. The effectiveness of an innovative antimicrobial LAE-coated PLA film against foodborne pathogens was demonstrated. Importantly, the application of the LAE to form the LAE-coated PLA film can be customized within current film manufacturing lines. © 2012 Institute of Food Technologists®

  11. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    Science.gov (United States)

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  12. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M., E-mail: Morteza.Eslamian@sjtu.edu.cn

    2015-05-30

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  13. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    International Nuclear Information System (INIS)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M.

    2015-01-01

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  14. Improvement of food packaging related properties in whey protein isolate‑based nanocomposite films and coatings by addition of montmorillonite nanoplatelets

    Science.gov (United States)

    Schmid, Markus; Merzbacher, Sarah; Brzoska, Nicola; Müller, Kerstin; Jesdinszki, Marius

    2017-11-01

    In the present study the effects of the addition of montmorillonite (MMT) nanoplatelets on whey protein isolate (WPI)-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT-nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast-films and coatings were prepared by dispersing 0 % (reference sample), 3 %, 6 %, 9 % (w/w protein) MMT, or, depending on the protein concentration, also 12 % and 15 % (w/w protein) MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15 % (w/w protein) MMT into 10 % (w/w dispersion) WPI-based cast-films or coatings, the oxygen permeability (OP) was reduced by 91 % for glycerol-plasticized and 84 % for sorbitol-plasticized coatings, water vapor transmission rate (WVTR) was reduced by 58 % for sorbitol-plasticized cast-films. Due to the addition of MMT- nanofillers the Young’s modulus and tensile strength improved by 315 % and 129 %, respectively, whereas elongation at break declined by 77 % for glycerol-plasticized cast-films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast-films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast-films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high nanofiller-loadings. These results suggest that the addition of natural MMT- nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of

  15. 21 CFR 175.360 - Vinylidene chloride copolymer coatings for nylon film.

    Science.gov (United States)

    2010-04-01

    ... film. 175.360 Section 175.360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... coatings for nylon film. Vinylidene chloride copolymer coatings identified in this section and applied on nylon film may be safely used as food-contact surfaces, in accordance with the following prescribed...

  16. Structural features of spin-coated thin films of binary AsxS100−x chalcogenide glass system

    International Nuclear Information System (INIS)

    Cook, J.; Slang, S.; Golovchak, R.; Jain, H.; Vlcek, M.; Kovalskiy, A.

    2015-01-01

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As x S 100−x (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As 2 O 3 was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films

  17. Multi-Walled Carbon Nanotube-Assisted Electrodeposition of Silver Dendrite Coating as a Catalytic Film

    Directory of Open Access Journals (Sweden)

    Li Fu

    2017-12-01

    Full Text Available A multi-walled carbon nanotube (MWCNT-coated indium tin oxide (ITO slide was used as a platform for the growth of a silver dendrite (Ag-D film using cyclic voltammetry. The particular dendritic nanostructures were formed by the diffusion-limited-aggregation model due to the potential difference between the MWCNTs and the ITO surface. The Ag-D-coated ITO film was then used for the catalytic degradation of methyl orange (MO and methylene blue (MB under static aqueous conditions. The network structure of the Ag-D allows the efficient diffusion of MO and MB, and consequently enhances the catalytic performance. Since the thin film is much easier to use for the post-treatment of powder catalysts, the proposed method shows great potential in many catalytic applications.

  18. Use of edible films and coatings to extend the shelf life of food products.

    Science.gov (United States)

    Maftoonazad, Neda; Badii, Fojan

    2009-06-01

    The increased consumer demand for high quality, extended shelf life, ready to eat foods has initiated the development of several innovative techniques to keep their natural and fresh appearance as long as possible and at the same time render them safe. Packaging has been an important element in these preservation concepts for providing the appropriate (mechanical and functional) protection to the commodity. Since synthetic packaging materials contribute to the environmental pollution, edible coatings and packages have been proposed to replace or complement conventional packaging. Biodegradable and edible films and coatings are made from naturally occurring polymers and functional ingredients, and formed on the surface of food products. Edible films and coating have long been known to protect perishable food products from deterioration and reduce quality loss. These films should have acceptable sensory characteristics, appropriate barrier properties (CO(2), O(2), water, oil), microbial, biochemical and physicochemical stability, they should be safe, and be produced by simple technology in low cost. Also they can act as effective carrier for antioxidant, flavor, color, nutritional or anti-microbial additives. Patents on edible films and food products are also discussed in this article.

  19. Self Healing Coating/Film Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha

    2015-01-01

    Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.

  20. High-mobility ultrathin semiconducting films prepared by spin coating

    Science.gov (United States)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  1. Hydrogel coating of RVNRL film by electron beam irradiation

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Hj, Mohd Dahlan; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The tackiness properties of Radiation Vulcanized Natural Rubber Latex (RVNRL) film surfaces coated by various monomers have been investigated in order to understand the suitable hydrogels which reduce the tackiness of the film. In this context , different types of monomers namely, N-vinyl-2-pyrrolidone (NVP), N,N-dimethyl amino ethyl amide (DMAEA), acrylic acid (AAc), N-butyl acrylate (n-BA) and 2-hydroxyethyl methacrylate (HEMA) as well as monomer mixtures have been tried with varying degrees of success. It was found that coating the RVNRL with 80% HEMA/20% n-BA by irradiation at 80 kGy using low Energy Electron Beam gave remarkable reduction in surface tackiness of the RVNRL film. Several other attempts were made such as priming with acid and aluminum sulfate, mixing the aluminum sulfate into the monomer and dipping the partially wet RVNRL film into the monomer to enhance the wettability of he monomers with the film. Studies on surface topography revealed that the decrease in tackiness with coating is due to the increase of the surface roughness at 80 kGy, irradiation dose

  2. Thin films

    International Nuclear Information System (INIS)

    Strongin, M.; Miller, D.L.

    1976-01-01

    This article reviews the phenomena that occur in films from the point of view of a solid state physicist. Films form the basis for many established and developing technologies. Metal layers have always been important for optical coatings and as protective coatings. In the most sophisticated cases, films and their interaction on silicon surfaces form the basis of modern electronic technology. Films of silicon, GaAs and composites of these materials promise to lead to practical photovoltaic devices

  3. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  4. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  5. Preparation of CulnSe2 thin films by paste coating

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precursor pastes were obtained by milling Cu-In alloys and Se powders.CuInSe2 thin films were successfully prepared by precursor layers,which were coated using these pastes,and were annealed in a H2 atmosphere.The pastes were tested by laser particle diameter analyzer,simultaneous thermogravimetric and differential thermal analysis instruments (TG-DTA),and X-ray diffractometry (XRD).Selenized films were characterized by XRD,scanning electron microscopy (SEM),and energy dispersive spectroscopy (EDS).The results indicate that chalcopyrite CuInSe2 is formed at 180℃ and the crystallinity of this phase is improved as the temperature rises.All the CuInSe2 thin films,which were annealed at various temperatures,exhibit the preferred orientation along the (112) plane.The compression of precursor layers before selenization step is one oftbe most essential factors for the preparation of perfect CulnSe2 thin films.

  6. High-mobility ultrathin semiconducting films prepared by spin coating.

    Science.gov (United States)

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  7. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: liu_yunli@hotmail.com [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom); Beckett, D.; Hawthorne, D. [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom)

    2011-02-15

    Electroless black nickel-phosphorus plating is an advanced electroless nickel plating process formulated to deposit a black finish when processed through an oxidizing acid solution. Heat treatment, five types of top organic coating techniques and one conversion coating technique with three different experimental conditions were investigated to stabilize the black film and increase the hardness and corrosion resistance. Morphology and compositions of electroless nickel-phosphorous films with or without heat treatment, with five types of top organic coatings, and with three conversion coatings were compared to examine nickel, phosphorus, oxygen, carbon, silicon and chrome contents on the corrosion resistance of black surfaces by energy dispersive X-ray microanalysis and scanning electron microscope. Corrosion resistance of black electroless nickel-phosphorus coatings with or without heat treatment, with five types of top organic coatings, and with three conversion coatings was investigated by the polarization measurements and the salt spray test in 5% NaCl solution, respectively. HydroLac as the top organic coating from MacDermid showed the excellent corrosion resistance and the black EN film did not lose the black color after 48 h salt spray test. Electrotarnil B process with 0.5 ASD for 1 min stabilized the black Ni-P film immediately and increased the hardness and corrosion performance of the black Ni-P film. The black Ni-P coating with Electroarnil B process passed the 5% NaCl salt spray test for 3000 h in the black color and had a minimal corrosion current 0.8547 {mu}A/cm{sup 2} by the polarization measurement.

  8. XPS investigations of tribofilms formed on CrN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Podgornik, Bojan

    2017-02-28

    Highlights: • Formation of tribofilms from lubricant additives on CrN surfaces during tribological contact confirmed by XPS. • Chemistry & chemical state of tribofilms obtained by XPS. • Thin sulphate film forms at the top of sulphide tribofilm. • Final type of sulphide in tribolayer depends on additive chemistry and testing temperature. - Abstract: Action of lubrication additives in the case of uncoated steel surfaces, including the type and mechanism of tribofilm formation is well known and understood. However, contact type of tribofilms which might form under the tribological contact between CrN coated surfaces, remains more or less unexplored. The aim of this investigation was to study the type of tribofilms formed on the CrN coated steel samples subjected to lubricated reciprocating sliding contact under different contact conditions Contact surface and tribofilms formed were studied by X-ray Photoelectron Spectroscopy (XPS). Sample surfaces were first imaged by Scanning Electron Microscopy (SEM) to determine areas of tribofilm formation as well as areas not affected by tribological contact. In these areas survey and high resolution (HR) XPS measurements were performed to obtain information about surface chemistry and oxidation states of the constituent elements. It was found that differences between different samples, observed by the XPS measurements, may reflect differences in chemistry of tribofilms formed under different contact conditions.

  9. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy

    International Nuclear Information System (INIS)

    Elsentriecy, Hassan H.; Azumi, Kazuhisa; Konno, Hidetaka

    2008-01-01

    The effects of pH and temperature of a stannate bath on the quality of stannate chemical conversion coatings formed on AZ91 D magnesium alloy by using the potentiostatic polarization technique at E = -1.1 V were investigated in order to improve uniformity and corrosion protection performance of the coating films. It was found that the uniformity and corrosion resistance of coating films deposited by potentiostatic polarization were closely associated with pH and temperature of the coating bath. The pH and temperature to obtain the best coating film were investigated as a function of corrosion protection performance evaluated by curves of potentiodynamic anodic polarization conducted in borate buffer solution. Scanning electron microscope observation and electrochemical corrosion tests of the stannate-coated samples confirmed significant improvement in uniformity and corrosion resistivity of coating films deposited by the potentiostatic technique by modifying the pH and temperature of the coating bath. It was also found that uniformity and corrosion resistivity of the coating films deposited by the potentiostatic technique were considerably improved compared to those of coatings deposited by the simple immersion method at the best conditions of pH and temperature of the coating bath

  10. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  11. Nano-enabled tribological thin film coatings: global patent scenario.

    Science.gov (United States)

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  12. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    Science.gov (United States)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon

  13. Influence of silane films in the zinc coating post-treatment

    International Nuclear Information System (INIS)

    Costa, Marlla Vallerius da; Menezes, Tiago Lemos; Malfatti, Celia de Fraga; Muller, Iduvirges Lourdes; Oliveira, Claudia Trindade; Bonino, Jean-Pierre

    2009-01-01

    The sol-gel process based on silanes precursors appeared in recent years as a strong alternative for post-treatment to provide an optimization of the protective efficacy of zinc. Moreover, this process has been used to replace chemical chromating conversion based on hexavalent chromium. The silane films are hybrid compounds that provide characteristics of both polymeric materials, such as flexibility and functional compatibility, and ceramic materials, such as high strength and durability. The present work aimed to evaluate the influence of silane films obtained by dip-coating, on the characteristics of electrodeposited zinc coatings. The xerogel films showed a homogeneous surface and a better performance on the corrosion resistance than zinc coating without post-treatment, what can be confirmed by the electrochemical impedance results. These tests showed that application of the silane film promotes the occurrence of one more time constant compared to pure zinc system, hindering the corrosion process. (author)

  14. Laser-induced damage to thin film dielectric coatings

    International Nuclear Information System (INIS)

    Walker, T.W.

    1980-01-01

    The laser-induced damage thresholds of dielectric thin film coatings have been found to be more than an order of magnitude lower than the bulk material damage thresholds. Prior damage studies have been inconclusive in determining the damage mechanism which is operative in thin films. A program was conducted in which thin film damage thresholds were measured as a function of laser wavelength (1.06 μm, 0.53 μm, 0.35 μm and 0.26 μm), laser pulse length (5 and 15 nanoseconds), film materials and film thickness. The large matrix of data was compared to predictions given by avalanche ionization, multiphoton ionization and impurity theories of laser damage. When Mie absorption cross-sections and the exact thermal equations were included into the impurity theory excellent agreement with the data was found. The avalanche and multiphoton damage theories could not account for most parametric variations in the data. For example, the damage thresholds for most films increased as the film thickness decreased and only the impurity theory could account for this behavior. Other observed changes in damage threshold with changes in laser wavelength, pulse length and film material could only be adequately explained by the impurity theory. The conclusion which results from this study is that laser damage in thin film coatings results from absorbing impurities included during the deposition process

  15. Deposition and characterization of aluminum magnesium boride thin film coatings

    Science.gov (United States)

    Tian, Yun

    Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14

  16. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  17. Optimized thin film coatings for passive radiative cooling applications

    Science.gov (United States)

    Naghshine, Babak B.; Saboonchi, Ahmad

    2018-03-01

    Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.

  18. Flexible diamond-like carbon film coated on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Pal, J.P. van der; Martinez-Martinez, D.; Hosson, J.Th.M. De

    2013-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 70% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin films by which the coefficient of friction is reduced to less than one tenth. Coating

  19. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  20. Structural features of spin-coated thin films of binary As{sub x}S{sub 100−x} chalcogenide glass system

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)

    2015-08-31

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.

  1. Production of AlN films: ion nitriding versus PVD coating

    International Nuclear Information System (INIS)

    Figueroa, U.; Salas, O.; Oseguera, J.

    2004-01-01

    The properties of AlN render this material very attractive for optical, electronic, and tribological applications; thus, a great interest exists for the production of thin AlN films on a variety of substrates. Many methods have been developed for this purpose where two processes stand out: plasma-assisted nitriding (PAN) and PVD coating. In the present paper, we compare the processing advantages and disadvantages of both methods in terms of the characteristics of the layers formed. AlN production by ion nitriding is very sensitive to presputtering cleaning and working pressure. Layers several micrometers thick can be produced in a few hours, which are formed by a fine mixture of Al+AlN. The surface morphology of the layers is rather rough. On the other hand, formation of PVD AlN coatings by DC reactive magnetron sputtering is more readily performed and better controlled than in ion nitriding. PVD results in macroscopically smoother AlN films and with similar thickness than the ion nitrided layers but produced in shorter processing times. The morphology of the PVD AlN layers is columnar with a fairly flat surface. Mechanisms for the formation of both types of AlN layers are proposed. One of the main differences between the two processes that explain the different AlN layer morphologies is the energy of the particles that arrive at the substrate. Considering only the processing advantages and the morphology of the AlN layers formed, PVD performs better than PAN processing

  2. Sliding friction of nanocomposite WC1-x/C coatings: transfer film and its influence on tribology.

    Science.gov (United States)

    Liu, Y; Gubisch, M; Spiess, L; Schaefer, J A

    2009-06-01

    The transfer film on steel spheres formed in reciprocating sliding against nanocomposite coatings based on nanocrystalline WC1-x in amorphous carbon matrix is characterized and correlated with the tribological properties measured by a precision microtribometer. With the presence of transfer film, a coefficient of friction approximately 0.13 and a depth wear rate approximately 0.35 x 10(-10) m/N.Pass were obtained. The central zone of the transfer film covering approximately 25% of the Hertz contact area is intact while cracks and wear debris are found in the vast peripheral area. It is also heavily oxidized due to the absence of carbon, which is located at the peripherals and acts as lubricants. We propose that the oxidation of WC and adhesion of the oxides to the surface of sphere is the main mechanism for the buildup of the transfer films. With the thickening of the film, the internal stress increases. Under the shear stress, spalling and cracking of the transfer film take place. The overall tribological performance of the coatings is therefore a competing process of buildup and spalling of transfer films.

  3. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, Hunter [School of Packaging, Michigan State University, East Lansing, Michigan (United States); Li, Yana [Mechanical Engineering College, Wuhan Polytechnic University (China); Almenar, Eva, E-mail: ealmenar@msu.edu [School of Packaging, Michigan State University, East Lansing, Michigan (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  4. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    International Nuclear Information System (INIS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-01-01

    Graphical abstract: - Highlights: • Surface tension between PLA/CS blend solution and PLA film modified by MDI. • Better wettability between PLA/CS blend solution and PLA film by increasing MDI. • Increased breaking strength by increasing MDI due to the increased H-bonding. • Increased number of physical entanglements between PLA/CS coating and PLA film. • Development of a suitable bio-based multilayer film for food packaging applications. - Abstract: The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41–35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228–303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film

  5. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  6. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  7. [Oral films as perspective dosage form].

    Science.gov (United States)

    Walicová, Veronika; Gajdziok, Jan

    Oral films, namely buccal mucoadhesive films and orodispersible films represent innovative formulations for administration of a wide range of drugs. Oral films show many advantageous properties and are intended for systemic drug delivery or for local treatment of the oral mucosa. In both cases, the film represents a thin layer, which could be intended to adhere to the oral mucosa by means of mucoadhesion; or to rapid dissolution and subsequent swallowing without the need of liquid intake, in the case of orodispersible films. Main constitutive excipients are film-forming polymers, which must in the case of mucoadhesive forms remain on the mucosa within the required time interval. Oral films are currently available on the pharmaceutical market and could compete with conventional oral dosage forms in the future. oral cavity oral films buccal mucoadhesive films orodispersible films film-forming polymers.

  8. Structural, compositional and optical properties of spin coated MoO3 thin film

    Science.gov (United States)

    Jain, Vishva; Shah, Dimple; Patel, K. D.; Zankat, Chetan

    2018-05-01

    The attraction towards the MoO3 thin film is due to its wide range of application base on its properties. Its application in the field of energy storage and conversion as a cathode material for rechargeable lithium ion battery, hole selective layer in solar cell and in pseudocapacitors makes it more attractive material. Taking in consideration, economical route and tailoring advantage of film formation we have used spin coating method for the synthesis of the film with Ammonium heptamolybdate (NH4)6Mo7O24 4H2O) and distilled water as the precursor and solvent respectively on the glass substrate. The method also provides the large area synthesis of the film which is beneficial for the commercial applications. The film was spin coated at 1600 rpm with 4 % weight per volume ratio. The film so formed was annealed at 300 °C for 3 hours. The structural investigation was done by the X-Ray diffraction technique which shows the thin film of polycrystalline type. The average crystallize size is about 50 nm. The composition of the film was studied with the help of EDAX. The optical properties were studied by the photoluminescence and UV Spectroscopy. The results from both the characterization are well matched with each other. Photoluminescence studies show band to band emission observed at 416 nm shown in the fig. 5. From UV spectroscopy, using transmission and absorption spectra we observed the band gap edge around 3 eV. This is in accordance with the photoluminescence result.

  9. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheiko, Nataliia [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Kékicheff, Patrick, E-mail: patrick.kekicheff@ics-cnrs.unistra.fr [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Marie, Pascal; Schmutz, Marc; Jacomine, Leandro [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Perrin-Schmitt, Fabienne [Faculté de Médecine, INSERM, UMR-S 1121, “Biomaterials and Bioengineering”, Université de Strasbourg, 11 rue Humann, 67085 Strasbourg Cedex (France)

    2016-12-15

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  10. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    International Nuclear Information System (INIS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-01-01

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  11. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    Science.gov (United States)

    Schlicke, Hendrik; Schröder, Jan H.; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-07-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  12. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    International Nuclear Information System (INIS)

    Schlicke, Hendrik; Schroeder, Jan H; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-01-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  13. Laser formation of titanium nitride films as a result of Ti coating modification in a nitrogen atmosphere

    Science.gov (United States)

    Eskin, Sergei

    1998-12-01

    Laser treatment of the 303 and 416 stainless steels with Ti precoating was studied. CW CO2 and UV ArF excimer lasers were used. The TiN films were formed at a treatment velocity of 0.5 to 3 - 5 cm/sec and a power density of CO2 laser at (3 - 5) 104 W/cm2. X-ray diffractometry, x-ray mapping and Auger electron spectroscopy techniques indicated a TiN phase on the surface with oxygen content 12 - 25 at%. The thickness of the TiN film was 0.3 - 0.4 micrometers after treatment of the 5 micrometers Ti coating and about 900 angstroms for the 0.3 micrometers coating. Some characteristics of TiN films were examined and features of the nitriding process are discussed.

  14. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  15. Thin-Film Coated Plastic Wrap for Food Packaging

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2017-07-01

    Full Text Available In this study, the antimicrobial property and food package capability of polymethylpentene (PMP substrate with silicon oxdie (SiOx and organic silicon (SiCxHy stacked layers deposited by an inductively coupled plasma chemical vapor deposition system were investigated. The experimental results show that the stacked pair number of SiOx/SiCxHy on PMP is limited to three pairs, beyond which the films will crack and cause package failure. The three-pair SiOx/SiCxHy on PMP shows a low water vapor transmission rate of 0.57 g/m2/day and a high water contact angle of 102°. Three-pair thin-film coated PMP demonstrates no microbe adhesion and exhibits antibacterial properties within 24 h. Food shelf life testing performed at 28 °C and 80% humidity reports that the three-pair thin-film coated PMP can enhance the food shelf-life to 120 h. The results indicate that the silicon-based thin film may be a promising material for antibacterial food packaging applications to extend the shelf-life of food products.

  16. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    Science.gov (United States)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  17. Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.

    Science.gov (United States)

    Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua

    2018-02-01

    As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.

  18. Novel Thiol-Ene Hybrid Coating for Metal Protection

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2016-04-01

    Full Text Available A novel hybrid anticorrosion coating with dual network of inorganic (Si–O–Si and organic bonds (C–S–C was prepared on metal through an in situ sol-gel and thiol-ene click reaction. This novel interfacial thin film coating incorporates (3-mercaptopropyl trimethoxysilane (MPTS and 1,4-di(vinylimidazolium butane bisbromide based polymerizable ionic liquid (PIL to form a thiol-ene based photo-polymerized film, which on subsequent sol-gel reaction forms a thin hybrid interfacial layer on metal surface. On top of this PIL hybrid film, a self-assembled nanophase particle (SNAP coating was employed to prepare a multilayer thin film coating for better corrosion protection and barrier performance. The novel PIL hybrid film was characterised for structure and properties using Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The corrosion protection performance of the multilayer coating was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results reveal that this novel double layer coating on metal offers excellent protection against corrosion and has remarkably improved the barrier effect of the coating.

  19. Antimicrobial edible coatings and films from micro-emulsions and their food applications.

    Science.gov (United States)

    Guo, Mingming; Yadav, Madhav P; Jin, Tony Z

    2017-12-18

    This study focused on the use of antimicrobial edible coatings and films from micro-emulsions to reduce populations of foodborne pathogens in foods. Corn-Bio-fiber gum (C-BFG) was used as an emulsifier with chitosan. Allyl isothiocyanate (AIT) and lauric arginate ester (LAE) served as antimicrobials. Micro-emulsions were obtained from a solution consisting of 1% chitosan, 0.5% C-BFG, and 1-4% AIT or LAE which was subject to high pressure homogenization (HPH) processing at 138MPa for 3cycles. Coatings and films produced from the micro-emulsions had micro-pores with sizes ranging from 100 to 300nm and micro-channels that hold antimicrobials effectively and facilitate the release of antimicrobials from the center to the surface of the films or coatings, thus enhancing their antimicrobial efficacy. The coatings and films with 1% AIT reduced populations of Listeria innocua by over 5, 2, and 3 log CFU in culture medium (Tryptic soy broth, TSB), ready-to-eat meat, and strawberries, respectively. The coatings and films with 1% LAE reduced populations of Escherichia coli O157:H7 and Salmonella spp. by over 5 and 2 log CFU in TSB and strawberries, respectively. This study provides an innovative approach for the development of effective antimicrobial materials to reduce food borne pathogenic contaminants on ready-to-eat meat, strawberries, or other food. Published by Elsevier B.V.

  20. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    International Nuclear Information System (INIS)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-01-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4% wt/wt ) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films

  1. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, G., E-mail: giovannibarbaro@email.it; Galdi, M. R., E-mail: mrgaldi@unisa.it; Di Maio, L., E-mail: ldimaio@unisa.it; Incarnato, L., E-mail: lincarnato@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%{sub wt/wt}) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  2. Nanocomposites biodegradable coating on BOPET films to enhance hot seal strength properties

    Science.gov (United States)

    Barbaro, G.; Galdi, M. R.; Di Maio, L.; Incarnato, L.

    2015-12-01

    The coating technology is a strategic solution to improve the properties of flexible packaging films. Indeed, additional functional layers are often designed and added as coating on the substrate, in order to improve the characteristic of the flexible packaging and to meet the requirements for the desired gas or vapour barrier, for adhesion and sealing, or for improving the film printability, its aesthetics and durability. Moreover, this technology allows to functionalize a polymeric substrate applying materials with different chemistry, rheology, thermal and structural characteristics. BOPET films are widely used for food packaging applications thanks to their good gas barrier and mechanical properties, high transparency and for the excellent printability. In regard to sealing performance, BOPET films show poor sealing properties so they are mostly submitted to lamination processes with polyethylene. Nevertheless, this solution compromises the PET recyclability and influences the gas permeability of the multilayer PET based structures. The aim of this work is to investigate on the effect of nanocomposite biodegradable coatings for BOPET substrates in enhancing the heat sealing strength of eco-compatible PET/PLA films. At this regards, different percentages of Cloisite C30B (0%, 2% and 4%wt/wt) have been added to PLA by solution intercalation technique and the nanocomposite biodegradable materials produced have been applied on BOPET commercial films by casting. The BOPET coated films have been characterized in order to evaluate the heat sealing strength and the mechanical, gas permeability and surface properties. The results have shown that the addition of nanoclay in PLA coating significantly enhance the hot tack properties of the PET/PLA system produced, while the oxygen and water vapour permeability are slightly increased if compared to pure BOPET films.

  3. Degradation of zinc oxide thin films in aqueous environment. Pt. II. Coated films

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L. de; Mitton, D.B.; Monetta, T.; Bellucci, F. [Naples Univ. (Italy). Dept. of Materials and Production Engineering; Springer, J. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2001-12-01

    cn Part I of this research, the degradation mechanism of two different bare ZnO thin films was assessed. Degradation of the electrical properties of ZnO as well as changes in morphology were observed for both films. In the current paper, the degradation of zinc oxide thin films coated with protective acrylic paint is addressed during exposure to (i) an aqueous 3.5% NaCl solution at 85 C and (ii) a standard damp heat test at 85% R.H. and 85 C. Electrical and electrochemical techniques were employed to monitor zinc oxide degradation during exposure to the test environments. Electrochemical Impedance Spectroscopy was employed to investigate the delamination phenomena at the ZnO/coating interface and a simple equivalent circuit was developed to quantitatively measure the delamination ratio. The effect of different silane based adhesion promoters (glycidil-oxypropyl-trimethoxy-silane and aminopropyl-trimethoxy-silane) was also investigated. (orig.)

  4. Thin Film Coatings for Suppressing Electron Multipacting in Particle Accelerators

    CERN Document Server

    Costa Pinto, P; Chiggiato, P; Neupert, H; Shaposhnikova, E N; Taborelli, M; Vollenberg, W; Yin Vallgren, C

    2011-01-01

    Thin film coatings are an effective way for suppressing electron multipacting in particle accelerators. For bakeable beam pipes, the TiZrV Non Evaporable Getter (NEG) developed at CERN can provide a Secondary Electron Yield (SEY) of 1.1 after activation at 180oC (24h). The coating process was implemented in large scale to coat the long straight sections and the experimental beam pipes for the Large Hadron Collider (LHC). For non bakeable beam pipes, as those of the Super Proton Synchrotron (SPS), CERN started a campaign to develop a coating having a low SEY without need of in situ heating. Magnetron sputtered carbon thin films have shown SEY of 1 with marginal deterioration when exposed in air for months. This material is now being tested in both laboratory and accelerator environment. At CERN’s SPS, tests with electron cloud monitors attached to carbon coated chambers show no degradation of the coating after two years of operation interleaved with a total of 3 months of air exposure during shutdown periods...

  5. Filmes de titânio-silício preparados por "spin" e "dip-coating"

    Directory of Open Access Journals (Sweden)

    Nassar Eduardo J.

    2003-01-01

    Full Text Available The conditions for the preparation of luminescent materials, consisting of Eu3+ ions entrapped in a titanium matrix, in the forma of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hidrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique.

  6. Transparent nanocrystalline ZnO films prepared by spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Berber, M. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany)]. E-mail: mete.berber@sustech.de; Bulto, V. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Kliss, R. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Hahn, H. [SusTech GmbH and Co. KG, Petersenstr. 20, 64287 Darmstadt, Hessen (Germany); Forschungszentrum Karlsruhe, Institute for Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Joint Research Laboratory Nanomaterials, TU Darmstadt, Institute of Materials Science, Petersenstr. 23, 64287 Darmstadt (Germany)

    2005-09-15

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents.

  7. Transparent nanocrystalline ZnO films prepared by spin coating

    International Nuclear Information System (INIS)

    Berber, M.; Bulto, V.; Kliss, R.; Hahn, H.

    2005-01-01

    Dispersions of zinc oxide nanoparticles synthesized by the electrochemical deposition under oxidizing conditions process with organic surfactants, were spin coated on glass substrates. After sintering, the microstructure, surface morphology, and electro-optical properties of the transparent nanocrystalline zinc oxide films have been investigated for different coating thicknesses and organic solvents

  8. Corrosion properties of the Mg alloy coated with polypyrrole films

    International Nuclear Information System (INIS)

    Grubač, Zoran; Rončević, Ivana Škugor; Metikoš-Huković, Mirjana

    2016-01-01

    Highlights: • Electropolymerization of pyrrole on Mg-alloy surface in presence of salicylate. • Salicylate dual role in PPy deposition: passivation and electron transfer mediation. • Redox potential of salicylate corresponds to potential of PPy nucleation. • EIS and polarization corrosion studies of PPy coated Mg-alloy in Hanks’ solution. • Polypyrrole significantly slowdown Mg alloy corrosion in Hanks’ solution. - Abstract: In the present study the reactive surface of Mg alloy was coated with the nontoxic biocompatible polypyrrole (PPy) film synthesized by electrochemical oxidation from an aqueous salicylate solution. Salicylate ions prevent Mg dissolution and act as an electron transfer mediator during the PPy film nucleation, formation and growth on the alloy surface. Kinetics of the pyrrole polymerization as well as corrosion resistance of the PPy coated Mg alloy in the Hanks’ solution were investigated using dc electrochemical methods and electrochemical impedance spectroscopy (EIS). Characterization of the surface film was performed by optical and Fourier transform infrared spectroscopy (FTIR).

  9. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    Directory of Open Access Journals (Sweden)

    Peng Xi

    2018-05-01

    Full Text Available Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Result: Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01, significantly shortened the rabbit skin burns from the scab time (P < 0.01, and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05. Conclusion: The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing. Keywords: Nano-silver hydrogel coating film, Deep degree burns, Topical, Rabbits

  10. Recent innovations in the area of edible films and coatings.

    Science.gov (United States)

    Maftoonazad, Neda; Badii, Fojan; Shahamirian, Maryam

    2013-12-01

    Edible films/coatings have been considered as one of the potential technologies that can be used to increase the storability of foods and to improve the existent packaging technology, helping to ensure the microbial safety and the preservation of food from the influence of external factors. Innovations constantly appear in food packaging, always aiming at creating a more efficient quality preservation system while improving foods' attractiveness and marketability. The utilization of renewable sources for packaging materials, such as hydrocolloids and lipids from biological origin, is one the main trends of the industry. These films should have acceptable sensory characteristics, appropriate barrier properties (CO2, O2, water, oil), microbial, biochemical and physicochemical stability, they should be safe, and produced by simple technology in low cost. Also they can act as effective carrier for antioxidant, flavor, color and nutritional or anti-microbial additives. Nowadays, a great discussion exists about the potential applications of edible films/coatings on food products. The general trend is to find the correct combination between the food product and the edible film/coating, which will ensure the success of the technology.

  11. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    Science.gov (United States)

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  12. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  13. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  14. Development of Anti-Insect Microencapsulated Polypropylene Films Using a Large Scale Film Coating System.

    Science.gov (United States)

    Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C

    2018-04-01

    Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.

  15. Novel microstructure in spin coated polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Deepak; Dutta, V [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India)

    2007-05-08

    Polyaniline (Pani) thin films doped with camphor sulfonic acid (CSA) have been deposited on glass substrates using the spin coating technique. Pani is chemically synthesized by an oxidation method at {approx}0 deg. C. Pani-CSA films show a hexagonal structure in scanning electron micrographs, which occurs due to the crystalline growth of CSA. A dense hexagonal structure is visible for film deposited at 800 rpm, but it becomes sparser as the revolutions per minute are increased (1200, 1500 and 2000 rpm). Electronic transition of quinoid units cause an absorption shoulder at {approx}900 nm for films deposited at 1200, 1500 and 2000 rpm, which is not observed for film deposited at 800 rpm.

  16. Alternative waste form development - low-temperature pyrolytic carbon coatings

    International Nuclear Information System (INIS)

    Oma, K.H.; Rusin, J.M.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Although several chemical vapor deposition (CVD) - coated waste forms have been successfully produced, some major disadvantages associated with the high-temperature fluidized-bed CVD coating process exist. To overcome these disadvantages, the Pacific Northwest Laboratory has initiated the development of a pyrolytic carbon CVD coating system to coat large waste-form particles at temperatures ranging from 400 to 500/degree/C. This relatively simple system has been used to coat kilogram quantities of simulated waste-glass marbles. Further development of this system could result in a viable process to coat bulk quantities of both glass and ceramic waste forms. This paper discusses various aspects of the development work, including coating techniques, parametric study, and coater equipment. 10 refs

  17. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    Science.gov (United States)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  18. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti−6Al−4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rahmati, B., E-mail: r.bijan@yahoo.com [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@um.edu.my [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, W. Jeffrey [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia); Abas, W.A.B.W. [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    In this research, an attempt is made to study the corrosion and wear behavior of TaO{sub 2} thin film coating deposited onto Ti−6Al−4V alloy with the highest adhesion (was achieved in the author's previous experiments using Taguchi statistical method) which leads to increase corrosion resistance, decrease debris generation and improve durability. Accordingly, pure tantalum (Ta) was deposited onto Ti−6Al−4V substrate surface as intermetallic layer then to form a TaO{sub 2} thin film, Ta was deposited onto the sample surface in the presence of oxygen by using physical vapor deposition magnetron sputtering (PVDMS). Corrosion testing was carried out in fetal bovine serum (FBS). The corrosion test in FBS medium confirmed that the corrosion resistance of the TaO{sub 2} – coated Ti−6Al−4V alloys was significantly higher than the uncoated Ti−6Al−4V substrate due to the decrease in corrosion current density (I{sub corr}) for the coated substrate with high thin-film adhesion. Wear testing was carried out on uncoated and coated Ti−6Al−4V substrates in the presence of FBS medium under 15 N load (natural walking load) at 1.09 m/s (simulated medium walking speed). The tests revealed that the specific wear ratio of TaO{sub 2} coating was significantly lower than the uncoated substrate wear ratio. The average friction coefficients obtained were 0.183 and 0.152 for uncoated substrate and TaO{sub 2} thin film coating, respectively. So, due to the noticeable corrosion and wear resistance characteristics of the TaO{sub 2} coating, it is suggested for hip joint implant. - Highlights: • The TaO{sub 2} coating has been created onto the Ti−6Al−4V surface by using PVDMS method. • The TaO{sub 2} coating has been formed on the Ti−6Al−4V sample at the highest adhesion. • The corrosion resistance of the coated Ti−6Al−4V substrate has been improved. • The wear resistance of the coated Ti−6Al−4V substrate has been increased. • The durability

  19. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    Science.gov (United States)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  20. Characteristics and corrosion studies of vanadate conversion coating formed on Mg–14 wt%Li–1 wt%Al–0.1 wt%Ce alloy

    International Nuclear Information System (INIS)

    Ma Yibin; Li Ning; Li Deyu; Zhang Milin; Huang Xiaomei

    2012-01-01

    Highlights: ► Vanadate film forms on the surface of Mg–Li–Al–Ce alloy. ► Vanadate coating improves the corrosion resistance. ► Vanadate coating is composed of Mg(OH) 2 , Li 2 O and V 2 O 5 . - Abstract: Mg–14Li–1Al–0.1Ce alloy is immersed in NH 4 VO 3 + K 3 (Fe(CN) 6 ) solutions with different NH 4 VO 3 and/or K 3 (Fe(CN) 6 ) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg–Li–Al–Ce surface after the sample is immersed in 30 g L −1 NH 4 VO 3 + 3.75 g L −1 K 3 (Fe(CN) 6 ) solution at 80 °C for 10 min. The coating consists of V 2 O 5 , Li 2 O and Mg(OH) 2 .

  1. Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques

    International Nuclear Information System (INIS)

    Chaki, Sunil H.; Deshpande, M.P.; Tailor, Jiten P.

    2014-01-01

    CuS thin films were synthesized by chemical bath deposition and dip coating techniques at ambient temperature. The energy dispersive analysis of X-rays of the thin films confirmed that both the as synthesized thin films are stoichiometric. The X-ray diffraction of the chemical bath deposited and dip coating deposited thin films showed that the films possess hexagonal structure having lattice parameters, a = b = 3.79 A and c = 16.34 A. The crystallite sizes determined from the X-ray diffraction data using Scherrer's formula for the chemical bath deposition and dip coating deposition thin films came out to be nearly 11 nm and 13 nm, respectively. The optical microscopy of the as deposited thin films surfaces showed that the substrates are well covered in both the deposited films. The scanning electron microscopy of the thin films clearly showed that in chemical bath deposited thin films the grain size varies from few μm to nm, while in dip coating deposited films the grain size ranges in nm. The optical bandgap determined from the optical absorbance spectrum analysis showed, chemical bath deposited thin films possess direct bandgap of 2.2 eV and indirect bandgap of 1.8 eV. In the case of dip coating deposited thin films, the direct bandgap is 2.5 eV and indirect bandgap is 1.9 eV. The d.c. electrical resistivity variation with temperature for both the deposited films showed that the resistivity decreases with temperature thus confirming the semiconducting nature. The thermoelectric power variations with temperature and the room temperature Hall Effect study of both the synthesized CuS thin films showed them to be of p-type conductivity. The obtained results are discussed in details. - Highlights: • CuS thin films were synthesized by chemical bath deposition and dip coating techniques. • The films possessed hexagonal structure. • The optical absorption showed that the films had direct and indirect bandgap. • Study of electrical transport properties

  2. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  3. Hierarchical opal grating films prepared by slide coating of colloidal dispersions in binary liquid media.

    Science.gov (United States)

    Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung

    2015-02-15

    There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  5. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    Energy Technology Data Exchange (ETDEWEB)

    Manoudis, P [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Papadopoulou, S [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Karapanagiotis, I [' Ormylia' Art Diagnosis Centre, Ormylia, Chalkidiki, 63071 (Greece); Tsakalof, A [Medical Department, University of Thessaly, Larissa, 41222 (Greece); Zuburtikudis, I [Department of Industrial Design Engineering, TEI of Western Macedonia, Kozani, 50100 (Greece); Panayiotou, C [Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece)

    2007-04-15

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale.

  6. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    International Nuclear Information System (INIS)

    Manoudis, P; Papadopoulou, S; Karapanagiotis, I; Tsakalof, A; Zuburtikudis, I; Panayiotou, C

    2007-01-01

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale

  7. Electron grafted barrier coatings for packaging film modification

    International Nuclear Information System (INIS)

    Rangwalla, I.J.; Nablo, S.V.

    1993-01-01

    The O 2 barrier performance of organosilane films, coated, dried and electron beam grafted to polyolefin film has been studied. Excellent anti-scalping properties based upon limonene (dipentene) transmission measurements have also been observed. Results are also reported on O 2 permeability reduction when the process is applied to common barrier polymers such as EVOH and acrylonitrile. Experience with its in-line application on LDPE is discussed. (author)

  8. Surface analysis of thin film coatings on container glass

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A. [GCC Pty Ltd., Jindalee, QLD (Australia); Wood, B. [The University of Queensland, Brisbane, QLD (Australia). Department of Chemistry

    1999-12-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  9. Surface analysis of thin film coatings on container glass

    International Nuclear Information System (INIS)

    Bhargava, A.; Wood, B.

    1999-01-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  10. Simulation and parametric study of a film-coated controlled-release pharmaceutical.

    Science.gov (United States)

    Borgquist, Per; Zackrisson, Gunnar; Nilsson, Bernt; Axelsson, Anders

    2002-04-23

    Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.

  11. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  12. Adhesion and corrosion studies of a lithium based conversion coating film on the 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Castro, M.R.S.; Nogueira, J.C.; Thim, G.P.; Oliveira, M.A.S.

    2004-01-01

    AA2024-T3-aluminum alloy surfaces were coated using non-chromate and chromate conversion coatings. All coatings were painted with the 10P4-2-primer epoxy resin. Independent on the film formation process, films passed on the substrate/conversion coating wet tape adhesion test. However, only the chromate conversion coating passed on the conversion coating/primer epoxy resin adhesion test. Electrochemical corrosion measurements showed that non-chromate conversion coated surfaces present lower corrosion current density, bigger polarization resistance and less negative corrosion potential than chromate conversion coated surfaces

  13. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  14. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    International Nuclear Information System (INIS)

    Meral, Kadem; Arik, Mustafa; Onganer, Yavuz

    2016-01-01

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  15. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey)

    2016-04-18

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  16. Controlling the electrical properties of ZnO films by forming zinc and oxide bridges by a plasma and electron-assisted process

    Directory of Open Access Journals (Sweden)

    Norihiro Shimoi

    2012-06-01

    Full Text Available A new method to produce electrically steady ZnO films without any heating process has been developed by using plasma and electron beams to facilitate bonding between the metallic component and the oxygen on coated ZnO films. Both plasma atmosphere and electron beams can function as sources of nonequilibrium bonding energy, forming bridges between the zinc present in the zinc complex and the oxygen in the ZnO particles to construct a zinc-oxide thin film. Our results confirm that it is possible to achieve low conductive characteristics by controlling the acceleration voltage of electrons used to irradiate the ZnO coating. The electrically steady films fabricated have various potential applications, being particularly well-suited to electrical devices on a plastic medium.

  17. Controlling the electrical properties of ZnO films by forming zinc and oxide bridges by a plasma and electron-assisted process

    Energy Technology Data Exchange (ETDEWEB)

    Shimoi, Norihiro; Tanaka, Yasumitsu [Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Harada, Takamitsu [Sendai Technology Center, Consumer-Professional and Devices Group, Sony Corporation, 3-4-1 Sakuragi, Tagajo 985-0842 (Japan); Tanaka, Shun-ichiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-06-15

    A new method to produce electrically steady ZnO films without any heating process has been developed by using plasma and electron beams to facilitate bonding between the metallic component and the oxygen on coated ZnO films. Both plasma atmosphere and electron beams can function as sources of nonequilibrium bonding energy, forming bridges between the zinc present in the zinc complex and the oxygen in the ZnO particles to construct a zinc-oxide thin film. Our results confirm that it is possible to achieve low conductive characteristics by controlling the acceleration voltage of electrons used to irradiate the ZnO coating. The electrically steady films fabricated have various potential applications, being particularly well-suited to electrical devices on a plastic medium.

  18. Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser

    International Nuclear Information System (INIS)

    Shinonaga, Togo; Tsukamoto, Masahiro; Nagai, Akiko; Yamashita, Kimihiro; Hanawa, Takao; Matsushita, Nobuhiro; Xie, Guoqiang; Abe, Nobuyuki

    2014-01-01

    Titanium (Ti) is widely used in biomaterials because of its excellent anti-corrosion properties and high strength. However, Ti has no biological function, so its bioactivity must be improved. Coating a titanium dioxide (TiO 2 ) film on a Ti plate surface has been shown to improve the biocompatibility of Ti plates. If periodic nanostructures were formed on the film surface, the direction of cell spreading might be controlled by the direction of the grooves. Controlling cell spreading on biomaterials would contribute to the creation of advanced biomaterials. In this paper, a TiO 2 film was formed on a Ti plate with an aerosol beam composed of sub micron-sized TiO 2 particles and helium gas. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by scanning the femtosecond laser focusing spot. The period and height of the periodic nanostructures were about 230 nm and 150 nm, respectively. In a cell test, cell spreading was observed along the grooves of the periodic nanostructures; in contrast, cell spreading did not show a definite direction on TiO 2 a film without periodic nanostructures. These results suggest that the direction of cell spreading on the film can be controlled by periodic nanostructure formation generated using a femtosecond laser.

  19. Morphology and inhibition performance of Ag thin film as antimicrobial coating deposited by RF-PVD on 316 L stainless steel

    Science.gov (United States)

    Purniawan, A.; Khrisna, Y. S. A.; Rasyida, A.; Atmono, T. M.

    2018-04-01

    Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.

  20. Photocatalytic sterilization of TiO2 films coated on Al fiber

    International Nuclear Information System (INIS)

    Luo Li; Miao Lei; Tanemura, Sakae; Tanemura, Masaki

    2008-01-01

    Photocatalytic TiO 2 films were coated on Al fiber by sol-gel dip-coating method, and then annealed. The crystal structure and morphology of the films were performed by XRD, TEM and SEM. Photocatalytic sterilization of the films was investigated in O 2 atmosphere through purifying the aqueous solution with facultative aerobe (Bacillus cereus), aerobe (Pseudomonas aeruginosa) and anaerobe (Staphylococcus aureus, Enterococcus faecalis and Escherichia coli). In the presence of O 2 , it benefits to generate O 2 · - and ·OH at the first stage of the photocatalytic reaction, while the excess O 2 restrains the anaerobe from reproducing and accelerates the reproducing for the aerobe at the second stage of reaction. As a result, it was found that the crystal of TiO 2 films is anatase phase and the films have excellent sterilization effect against facultative aerobe and anaerobe. Nevertheless, it only decreased the bioactivity against aerobe in a short time

  1. [Analysis of the character of film decomposition of methyl methacrylate (MMA) coated urea by infrared spectrum].

    Science.gov (United States)

    Li, Dong-po; Wu, Zhi-jie; Liang, Cheng-hua; Chen, Li-jun; Zhang, Yu-lan; Nie, Yan-xi

    2012-03-01

    The degradability characteristics of film with 4 kinds of methyl methacrylate coated urea amended with inhibitors were analyzed by FITR, which was purposed to supply theoretical basis for applying the FITR analysis method to film decomposition and methyl methacrylate coated urea fertilizers on farming. The result showed that the chemical component, molecule structure and material form of the membrane were not changed because of adding different inhibitors to urea. the main peaks of expressing film degradation process were brought by the -C-H of CH3 & CH2, -OH, C-O, C-C, C-O-C, C=O, C=C flexing vibrancy in asymmetry and symmetry in 3 479-3 195, 2 993--2 873, 1 741-1 564, 1 461-925 and 850-650 cm(-1). The peak value changed from smooth to tip, and from width to narrow caused by chemical structural transform of film The infrared spectrum of 4 kinds of fertilizers was not different remarkably before 60 days, and the film was slowly degraded. But degradation of the film was expedited after 60 days, it was most quickened at 120 day, and the decomposition rate of film was decreased at 310 day. The substantiality change of film in main molecule structure of 4 kinds of fertilizers didn't happen in 310 days. The main component of film materials was degraded most slowly in brown soil. The speed of film degradation wasn't heavily impacted by different inhibitors. The characteristic of film degradation may be monitored entirely by infrared spectrum. The degradation dynamic, chemical structure change, degradation speed difference of the film could be represented through infrared spectrum.

  2. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; Yoo, Chanho; No, Youngsoo; Kim, Suyoun; Kim, Taewhan; Cho, Woonjo; Kim, Jinyoung

    2012-01-01

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of - 1.0 and - 1.5 mA/cm 2 were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  3. Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

    Science.gov (United States)

    Al-Gousous, J; Penning, M; Langguth, P

    2015-04-30

    The purpose of this investigation was to study the effect of using different salts of shellac on the disintegration properties of shellac-based enteric coatings. In the last two decades, shellac has been increasingly used as an aqueous solution for enteric coating purposes, with the ammonium salt being the form typically used. Little investigation has been performed on using other salts, and therefore, this was the focus of our work. Enteric coatings, based on different shellac salts (ammonium, sodium, potassium and composite ammonium-sodium), were applied onto soft gelatin capsules. Disintegration testing of the coated soft gelatin capsules showed that alkali metal salts promote faster disintegration than ammonium salts. In order to determine the causes behind these differences, the solubility, thermal and spectroscopic properties of films cast from the different salts were investigated. The results show that films cast from ammonium-based salts of shellac are, unlike those cast from alkali metal-based salts, water-insoluble. Spectroscopic evidence suggests that this might be due to partial salt dissociation resulting in loss of ammonium as ammonia and reduced degree of shellac ionization during drying. In addition, oxidation of shellac aldehyde groups of the ammonium-based shellac salts could also play a role. And possible higher extent of shellac hydrolysis during the preparation of alkali metal salts might also be a factor. Therefore, the nature of the shellac salt used in the preparation of shellac-based aqueous coating solutions is a significant formulation factor affecting product performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    Science.gov (United States)

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  film group significantly decreased skin irritation, infection integral value ( P  film significantly reduced film rabbits' scalded skin crusting time ( P  film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  5. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  6. Effect of Annealing Temperature and Spin Coating Speed on Mn-Doped ZnS Nanocrystals Thin Film by Spin Coating

    Directory of Open Access Journals (Sweden)

    Noor Azie Azura Mohd Arif

    2017-01-01

    Full Text Available ZnS:Mn nanocrystals thin film was fabricated at 300°C and 500°C via the spin coating method. Its sol-gel was spin coated for 20 s at 3000 rpm and 4000 rpm with metal tape being used to mold the shape of the thin film. A different combination of these parameters was used to investigate their influences on the fabrication of the film. Optical and structural characterizations have been performed. Optical characterization was analyzed using UV-visible spectroscopy and photoluminescence spectrophotometer while the structural and compositional analysis of films was measured via field emission scanning electron microscopy and energy dispersive X-ray. From UV-vis spectra, the wavelength of the ZnS:Mn was 250 nm and the band gap was within the range 4.43 eV–4.60 eV. In room temperature PL spectra, there were two emission peaks centered at 460 nm and 590 nm. Under higher annealing temperature and higher speed used in spin coating, an increase of 0.05 eV was observed. It was concluded that the spin coating process is able to synthesize high quality spherical ZnS:Mn nanocrystals. This conventional process can replace other high technology methods due to its synthesis cost.

  7. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique.

    Science.gov (United States)

    Ito, Takashi; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-05-30

    We suggest a novel wet coating process for preparing indium tin oxide (ITO) films from simple solutions containing only metal salts and water via evaporation-driven film deposition during low-speed dip coating. Homogeneous ITO precursor films were deposited on silica glass substrates from the aqueous solutions containing In(NO 3 ) 3 ·3H 2 O and SnCl 4 ·5H 2 O by dip coating at substrate withdrawal speeds of 0.20-0.50 cm min -1 and then crystallized by the heat treatment at 500-800 °C for 10-60 min under N 2 gas flow of 0.5 L min -1 . The ITO films heated at 600 °C for 30 min had a high optical transparency in the visible range and a good electrical conductivity. Multiple-coating ITO films obtained with five-times dip coating exhibited the lowest sheet (ρ S ) and volume (ρ V ) resistivities of 188 Ω sq -1 and 4.23 × 10 -3 Ω cm, respectively.

  8. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  9. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  10. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  11. Optical Thin Film Coating Having High Damage Resistance in Near-Stoichiometric MgO-Doped LiTaO3

    Science.gov (United States)

    Tateno, Ryo; Kashiwagi, Kunihiro

    2008-08-01

    Currently, High power and compact red, green, and blue (RGB) lasers are being considered for use in large screen laser televisions and reception-lobby projectors. Among these three laser sources, green semiconductor lasers are expensive and exhibit inferior performance in terms of the semiconductor material used, making it difficult to achieve a high output. In this study, we examined the use of our coating on MgO-doped LiTaO3, using a mirror coated with a multilayer film. Over a substrate, a Ta2O5 film was used to coat a high-refractive-index film layer, and a SiO2 film was used to coat a low-refractive-index film layer. To improve reflectivity, we designed the peak of the electric field intensity to be in the film layer with the low refractive index. As a result, the film endurance of 100 J/cm2 was obtained by one-on-one testing. With the nonlinear crystal material, the mirror without our coating exhibited a damage threshold of 33 J/cm2; however, after coating, this mirror demonstrated a higher damage threshold of 47 J/cm2. Thus, the film we fabricated using this technique is useful for improving the strength and durability of laser mirrors.

  12. Preparation and voltammetric characterization of electrodes coated with Langmuir-Schaefer ultrathin films of Nafion®

    Directory of Open Access Journals (Sweden)

    Bertoncello Paolo

    2003-01-01

    Full Text Available Ultrathin films of Nafion® perfluorinated polymer were deposited on indium-tin oxide electrodes (ITO by using Langmuir-Schaefer (LS technique, after optimization of the subphase composition conditions. Morphological characteristics of these coatings were obtained by Atomic Force Microscopy (AFM. Nafion® LS films showed a good uniformity and complete coverage of the electrode surface, however a different organization degree of the polymer layer was evidenced with respect to thin films deposited by spin-coating. ITO electrodes modified with Nafion® LS coatings preconcentrate by ion-exchange electroactive cations, such as Ru[(NH36]3+, dissolved in diluted solutions. The electroactive species is retained by the Nafion® LS coated ITO also after transfer of the modified electrode into pure supporting electrolyte. This allowed the use of the ruthenium complex as voltammetric probe to test diffusion phenomena within the Nafion® LS films. Apparent diffusion coefficients (Dapp of Ru[(NH36]3+ incorporated in Nafion® LS films were obtained by voltammetric measurements. Dapp values decrease slightly by increasing the amount of ruthenium complex incorporated in the ultrathin film. They are significantly lower than values typical for recasted Nafion® films, in agreement with the highly condensed nature of the Nafion® LS fims.

  13. Coating-substrate-simulations applied to HFQ® forming tools

    Directory of Open Access Journals (Sweden)

    Leopold Jürgen

    2015-01-01

    Full Text Available In this paper a comparative analysis of coating-substrate simulations applied to HFQTM forming tools is presented. When using the solution heat treatment cold die forming and quenching process, known as HFQTM, for forming of hardened aluminium alloy of automotive panel parts, coating-substrate-systems have to satisfy unique requirements. Numerical experiments, based on the Advanced Adaptive FE method, will finally present.

  14. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    International Nuclear Information System (INIS)

    Testrich, H.; Rebl, H.; Finke, B.; Hempel, F.; Nebe, B.; Meichsner, J.

    2013-01-01

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion

  15. Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films

    International Nuclear Information System (INIS)

    Qu, Ge; Zhao, Xikang; Newbloom, Gregory M.; Zhang, Fengjiao; Mohammadi, Erfan

    2017-01-01

    Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor–acceptor conjugated polymer, poly(diketopyrrolopyrrole-co-thiopheneco- thieno[3,2-b]thiophene-co-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π–π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coating direction. The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. As a result, we further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front.

  16. Gas barrier properties of diamond-like carbon films coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Nagashima, I.; Ohgoe, Y.; Hirakuri, K.K.; Mukaibayashi, H.; Masuzawa, T.

    2009-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using radio frequency (RF) plasma-enhanced chemical vapour deposition (PE-CVD). Before the DLC coating, the PTFE substrate was modified with a N 2 plasma pre-treatment to enhance the adhesive strength of the DLC to the substrate. The influences of the N 2 plasma pre-treatment and process pressure on the gas permeation properties of these DLC-coated PTFE samples were investigated. In the Raman spectra, the G peak position shifted to a lower wave number with increasing process pressure. With scanning electron microscopy (SEM), a network of microcracks was observed on the surface of the DLC film without N 2 plasma pre-treatment. The density of these cracks decreased with increasing process pressure. In the film subjected to a N 2 plasma pre-treatment, no cracks were observed at any process pressure. In the gas barrier test, the gas permeation decreased drastically with increasing film thickness and saturated at a thickness of 0.2 μm. The DLC-coated PTFE with the N 2 plasma pre-treatment exhibited a greater reduction in gas permeation than did the samples without pre-treatment. For both sample types, gas permeation decreased with increasing process pressure.

  17. Thin Film Energy Storage Device with Spray‐Coated Sliver Paste Current Collector

    Directory of Open Access Journals (Sweden)

    Seong Man Yoon

    2017-12-01

    Full Text Available This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass‐manufacturable spray‐coating technology enables the fabrication of two different half‐cell electric double layer capacitors (EDLC with a spray‐coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half‐cell EDLC with the spray‐coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half‐cell EDLC with the spray‐coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from −0.5 V to 0.5 V, the spray‐coated thin film energy storage device exhibits a better performance.

  18. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  19. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    Science.gov (United States)

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

  20. OPTICAL PROPERTIES OF Al:ZnO THIN FILM DEPOSITED BY DIFFERENT SOL-GEL TECHNIQUES: ULTRASONIC SPRAY PYROLYSIS AND DIP-COATING

    Directory of Open Access Journals (Sweden)

    Ebru Gungor

    2016-08-01

    Full Text Available Undoped and Al-doped ZnO polycrystalline thin films have been fabricated on glass substrates by using a computer-controlled dip coating (DC and ultrasonic spray pyrolysis (USP systems. The film deposition parameters of DC process were optimized for the samples. In this technique, the substrate was exposed to temperature gradient using a tube furnace. In the study, the other solvent-based technique was conventional USP. The zinc salt and Al salt concentrations in the solution were kept constant as 0.1 M and 2% of Zn salt’s molarity, respectively. The optical properties were compared for the films deposited two different techniques. The optical transmission of Al:ZnO/Glass/Al:ZnO sample dip coated and  the optical transmission of Al:ZnO/Glass sample ultrasonically sprayed were determined higher than 80% in the visible and near infrared region. Experimental optical transmittance spectra of the films in the forms of FilmA/Glass/FilmA and FilmA/glass were used to determine the optical constants. It was observed that the optical band gaps of Al doped ZnO films onto glass substrate were increases with increase of Al content and the absorption edge shifted to the shorter wavelength (blue shift compared with the undoped ZnO thin film.

  1. Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Shinonaga, Togo, E-mail: togo@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Nagai, Akiko; Yamashita, Kimihiro; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Xie, Guoqiang [Institute for Materials Research, Tohoku University, 2-1-1 Karahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Abe, Nobuyuki [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2014-01-01

    Titanium (Ti) is widely used in biomaterials because of its excellent anti-corrosion properties and high strength. However, Ti has no biological function, so its bioactivity must be improved. Coating a titanium dioxide (TiO{sub 2}) film on a Ti plate surface has been shown to improve the biocompatibility of Ti plates. If periodic nanostructures were formed on the film surface, the direction of cell spreading might be controlled by the direction of the grooves. Controlling cell spreading on biomaterials would contribute to the creation of advanced biomaterials. In this paper, a TiO{sub 2} film was formed on a Ti plate with an aerosol beam composed of sub micron-sized TiO{sub 2} particles and helium gas. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by scanning the femtosecond laser focusing spot. The period and height of the periodic nanostructures were about 230 nm and 150 nm, respectively. In a cell test, cell spreading was observed along the grooves of the periodic nanostructures; in contrast, cell spreading did not show a definite direction on TiO{sub 2} a film without periodic nanostructures. These results suggest that the direction of cell spreading on the film can be controlled by periodic nanostructure formation generated using a femtosecond laser.

  2. 'Breath figure' PLGA films as implant coatings for controlled drug release

    Science.gov (United States)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  3. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging

    DEFF Research Database (Denmark)

    Haaser, Miriam; Naelapaa, Kaisa; Gordon, Keith C

    2013-01-01

    In this study, terahertz pulsed imaging (TPI) was employed to investigate the effect of the coating equipment (fluid bed and drum coater) on the structure of the applied film coating and subsequent dissolution behaviour. Six tablets from every batch coated with the same delayed release coating fo...

  4. Effect of the External Lubrication Method for a Rotary Tablet Press on the Adhesion of the Film Coating Layer.

    Science.gov (United States)

    Kondo, Hisami; Toyota, Hiroyasu; Kamiya, Takayuki; Yamashita, Kazunari; Hakomori, Tadashi; Imoto, Junko; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-01-01

    External lubrication is a useful method which reduces the adhesion of powder to punches and dies by spraying lubricants during the tableting process. However, no information is available on whether the tablets prepared using an external lubrication system can be applicable for a film coating process. In this study, we evaluated the adhesion force of the film coating layer to the surface of tablets prepared using an external lubrication method, compared with those prepared using internal lubrication method. We also evaluated wettability, roughness and lubricant distribution state on the tablet surface before film coating, and investigated the relationship between peeling of the film coating layer and these tablet surface properties. Increasing lubrication through the external lubrication method decreased wettability of the tablet surface. However, no change was observed in the adhesion force of the film coating layer. On the other hand, increasing lubrication through the internal lubrication method, decreased both wettability of the tablet surface and the adhesion force of the film coating layer. The magnesium stearate distribution state on the tablet surface was assessed using an X-ray fluorescent analyzer and lubricant agglomerates were observed in the case of the internal lubrication method. However, the lubricant was uniformly dispersed in the external lubrication samples. These results indicate that the distribution state of the lubricant affects the adhesion force of the film coating layer, and external lubrication maintained sufficient lubricity and adhesion force of the film coating layer with a small amount of lubricant.

  5. Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation

    CERN Document Server

    Costa Pinto, P; Basso, T; Edwards, P; Mensi, M; Sublet, A; Taborelli, M

    2014-01-01

    Low Secondary Electron Yield (SEY) carbon thin films eradicate electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be described.

  6. Functional patterned coatings by thin polymer film dewetting.

    Science.gov (United States)

    Telford, Andrew M; Thickett, Stuart C; Neto, Chiara

    2017-12-01

    An approach for the fabrication of functional polymer surface coatings is introduced, where micro-scale structure and surface functionality are obtained by means of self-assembly mechanisms. We illustrate two main applications of micro-patterned polymer surfaces obtained through dewetting of bilayers of thin polymer films. By tuning the physical and chemical properties of the polymer bilayers, micro-patterned surface coatings could be produced that have applications both for the selective attachment and patterning of proteins and cells, with potential applications as biomaterials, and for the collection of water from the atmosphere. In all cases, the aim is to achieve functional coatings using approaches that are simple to realize, use low cost materials and are potentially scalable. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Tumeric oil as the antioxidation agent in edible coating film

    Science.gov (United States)

    Ahmad, N. A.; Sharif, Z. I. M.; Jai, J.; Yusof, N. M.; Mustapha, F. A.

    2018-03-01

    Turmeric oil (TO) has been studied for its potential as an antioxidation agent in starch edible coating for fresh cut apples and its degree of oxidation was analysed. TO incorporate with starch edible coating was examined using FT-IR Spectroscopy to determine the presence of secondary metabolites. The presence of alcohol and aromatic ring in the edible coating film proved that the secondary metabolites from TO were existed. The fresh cut apples were underwent the sensory test and six out of ten panellist concluded that coated fresh cut apples have good appearance and surface colour. Fresh cut apples were coated with edible coating incorporated with different concentrations of TO (uncoated, 0μL, 5μL, 10μL, 15μL. Percentage weight loss for 15μL were the least which were 1.98% (day 6) and 3.95% (day 12). Colour measurement were done for few days and it shows that the total colour difference (ΔΕ) for 15μL were the lowest. Thus, the oxidation activities for 15μL is the slowest compared to the others. These can be proved through the degree of oxidation analysis using UV-Vis spectroscopy. Uncoated fresh cut apples have the highest degree of oxidation while those with 15μL have the lowest. This study can be illustrated that the oxidation activities of fresh cut apples could be postponed using edible film incorporated with TO.

  8. Lubricating coating prepared by PIIID on a forming tool

    International Nuclear Information System (INIS)

    Martinatti, J F; Durrant, S F; Cruz, N C; Rangel, E C; Santos, L V

    2012-01-01

    In this work, the performance of a-C:H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C 2 H 2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 μs, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films were investigated. Film thickness increased from 0.3 to 0.5 μm when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84°, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of μ) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

  9. Preparation and Characterization of FC Films Coated on PET Substrates by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Huang Mei-lin

    2018-01-01

    Full Text Available Fluorocarbon (FC films were prepared on polyethylene terephthalate (PET plates and PET fabrics respectively by a radiofrequency (RF magnetron sputtering technique using polytetrafluoroethylene (PTFE as a target. Scanning electron microscope and X-ray photoelectron spectroscopy were used to investigate the morphology, structure and composition of the obtained FC films. The hydrophobicity and uvioresistant properties of the FC film coated fabric were studied. The results show that the FC films were successfully deposited on the PET substrates by a RF magnetron sputtering. The deposited films are made up of four components -CF3, -CF2-, CF- and -C-. The proportions of the four components and surface morphologies of the deposited films vary with the sputtering conditions. Compared with the original fabric samples, the hydrophobicity of the FC film coated fabrics is quite good and improved significantly.

  10. Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method

    Science.gov (United States)

    Amin, N. Mohd; Ng, S. S.

    2018-01-01

    Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.

  11. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14 wt%Li-1 wt%Al-0.1 wt%Ce alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yibin [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Ning, E-mail: lininghit@263.net [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li Deyu [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Zhang Milin; Huang Xiaomei [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Vanadate film forms on the surface of Mg-Li-Al-Ce alloy. Black-Right-Pointing-Pointer Vanadate coating improves the corrosion resistance. Black-Right-Pointing-Pointer Vanadate coating is composed of Mg(OH){sub 2}, Li{sub 2}O and V{sub 2}O{sub 5}. - Abstract: Mg-14Li-1Al-0.1Ce alloy is immersed in NH{sub 4}VO{sub 3} + K{sub 3}(Fe(CN){sub 6}) solutions with different NH{sub 4}VO{sub 3} and/or K{sub 3}(Fe(CN){sub 6}) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg-Li-Al-Ce surface after the sample is immersed in 30 g L{sup -1} NH{sub 4}VO{sub 3} + 3.75 g L{sup -1} K{sub 3}(Fe(CN){sub 6}) solution at 80 Degree-Sign C for 10 min. The coating consists of V{sub 2}O{sub 5}, Li{sub 2}O and Mg(OH){sub 2}.

  12. Flexible diamond-like carbon thin film coated rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Y.T.

    2015-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 75% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin film, by which the coefficient of friction is reduced to less than one tenth. Coating

  13. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging.

    Science.gov (United States)

    Iseppi, Ramona; Pilati, Francesco; Marini, Michele; Toselli, Maurizio; de Niederhäusern, Simona; Guerrieri, Elisa; Messi, Patrizia; Sabia, Carla; Manicardi, Giuliano; Anacarso, Immacolata; Bondi, Moreno

    2008-04-30

    In this study, Enterocin 416K1, a bacteriocin produced by Enterococcus casseliflavus IM 416K1, was entrapped in an organic-inorganic hybrid coating applied to a LDPE (low-density polyethylene) film for its potential use in the active food packaging field. The antibacterial activity of the coated film was evaluated against Listeria monocytogenes NCTC 10888 by qualitative modified agar diffusion assay, quantitative determination in listeria saline solution suspension and direct contact with artificially contaminated food samples (frankfurters and fresh cheeses) stored at room and refrigeration temperatures. All investigations demonstrated that enterocin-activated coatings have a good anti-listeria activity. Qualitative tests showed a clear zone of inhibition in the indicator lawn in contact with and around the coated film. During the quantitative antibacterial evaluation the L. monocytogenes viable counts decreased to 1.5 log units compared to the control. The inhibitory capability was confirmed also in food-contact assays. In all food samples packed with coated films we observed a significant decrease in L. monocytogenes viable counts in the first 24 h compared to the control. This difference was generally maintained up to the seventh day and then decreased, with the exception of the cheese samples stored at refrigeration temperature.

  14. Ion assisted deposition of refractory oxide thin film coatings for improved optical and structural properties

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Bhattacharyya, D.; Das, N.C.

    1999-03-01

    Ion assisted deposition technique (IAD) has emerged as a powerful tool to control the optical and structural properties of thin film coatings. Keeping in view the complexity of the interaction of ions with the films being deposited, sophisticated ion sources have been developed that cater to the need of modern optical coatings with stringent spectral and environmental specifications. In the present work, the results of ion assisted deposition (IAD) of two commonly used refractory oxides, namely TiO 2 and ZrO 2 , using cold cathode ion source (CC-102R) are presented. Through successive feedback and calibration techniques, various ion beams as well as deposition parameters have been optimized to achieve the best optical and structural film properties in the prevalent deposition geometry of the coating system. It has been possible to eliminate the unwanted optical and structural inhomogeneities from these films using and optimized set of process parameters. Interference modulated spectrophotometric and phase modulated ellipsometric techniques have been very successfully utilized to analyze the optical and structural parameters of the films. Several precision multilayer coatings have been developed and are being used for laser and spectroscopic applications. (author)

  15. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 ?m thickness formed within the

  16. The development of pulsed ion sources with explosive ions emission for deposition of films and coatings with ion and electron mixing

    International Nuclear Information System (INIS)

    Korenev, S.

    1998-01-01

    The development of pulsed ion sources with explosive ion emission for deposition of films and coatings with ion and electron mixing is considered in the report. The deposition of films and coatings with high hardness and high resistance on the basis using this source on the working voltage 50--100 kV is presented. The deposition of TiB(2), W and other films is discussed and comparison with other results. The experimental results of pulsed electron/ion mixing are considered. The main characteristics of these films and coating are considered. The cluster mechanism of deposition of films and coatings are discussed. The main question of structure of these films on the basis of surface cluster fractal structure is suggested and discussed. The study of structure of these films showed the new kind of structure of these films and coatings

  17. Investigation of optimum annealing parameters for formation of dip coated Cu{sub 2}ZnSnS{sub 4} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Sushmita; Kannan, P.K.; Dey, Suhash R., E-mail: suhash@iith.ac.in

    2016-08-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is most attractive absorber material for inorganic solar cell applications because of its cost effective and ecofriendly nature. To obtain phase pure CZTS film, effects of annealing parameters on synthesis of CZTS thin film are investigated. CZTS films are deposited through dip coating method followed by heat treatment to form crystalline CZTS thin films. Factors influencing the crystallinity, morphology and composition of the films such as annealing temperature, time, rate and atmosphere are studied through X-Ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. After numerous experiments of synthesis of CZTS in different annealing conditions and its characterization, it is observed that 1.4 eV band gap CZTS thin film of kesterite structure is obtained by annealing the film in nitrogen atmosphere for 60 min at 300 °C with 10 °C/min ramping rate. - Highlights: • Dip coated Cu{sub 2}ZnSnS{sub 4} film is developed using non-hydrazine based precursor solution. • Optimum annealing condition to achieve best crystalline film is studied. • Optimal condition is 300 °C in N{sub 2} atmosphere for 60 min at 10 °C/min ramping rate. • Bandgap of prepared films is 1.4 eV, suitable for solar cell applications.

  18. Indium Sulfide and Indium Oxide Thin Films Spin-Coated from Triethylammonium Indium Thioacetate Precursor for n-Channel Thin Film Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Duy Dao; Jeong, Hyun Dam [Chonnam Natioal University, Gwangju (Korea, Republic of)

    2014-09-15

    The In{sub 2}S{sub 3} thin films of tetragonal structure and In{sub 2}O{sub 3} films of cubic structure were synthesized by a spin coating method from the organometallic compound precursor triethylammonium indium thioacetate ([(Et){sub 3}NH]+ [In(SCOCH{sub 3}){sub 4}]''-; TEA-InTAA). In order to determine the electron mobility of the spin-coated TEA-InTAA films, thin film transistors (TFTs) with an inverted structure using a gate dielectric of thermal oxide (SiO{sub 2}) was fabricated. These devices exhibited n-channel TFT characteristics with a field-effect electron mobility of 10.1 cm''2 V''-1s''-1 at a curing temperature of 500 o C, indicating that the semiconducting thin film material is applicable for use in low-cost, solution-processed printable electronics.

  19. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Science.gov (United States)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-12-01

    High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  20. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    Science.gov (United States)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  1. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  2. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    International Nuclear Information System (INIS)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-01-01

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles

  3. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  4. Preparation and characterization of polymeric nanocomposite films for application as protective coatings

    Science.gov (United States)

    Gagliardi, S.; Rondino, F.; D'Erme, C.; Persia, F.; Menchini, F.; Santarelli, M. L.; Paulke, B.-R.; Enayati, A. L.; Falconieri, M.

    2017-08-01

    Addiction of ceramic nanoparticles to acrylic polymers provides a simple and effective means to produce paints with important properties, such as mechanical resistance and tailored wettability, even though for optimal performances, an engineered nanoparticle distribution would be desirable. In this paper we report on the realization and on the morphological and functional characterization of nanocomposites where the nanophase is distributed on the surface of acrylic polymer films, in order to enhance the expression of surface-related properties. To this aim, commercial titanium oxide and silicon oxide nanopowders were dispersed in water and the suspensions were air-sprayed on polymeric films prepared by paint brushing, thus producing a nanostructured ceramic surface coating. Control of the pH of suspensions and acrylic acid functionalization of the surface of titania were used together with high power ultrasonic treatments in order to control dimension of the aggregates in the sprayed suspensions. Optical microscopy, mechanical profilometry, and atomic force microscopy were used to characterize the nanocomposite surface morphology and correlate it to the coating functional properties, evaluated through mechanical abrasion tests and contact angle measurements; also, colorimetry on coated stones was performed in order to test the impact of the coatings on the aesthetical appearance and their photostability under UV irradiation. Results show that the nanostructured ceramic layer slightly improves the resistance of coatings to mechanical abrasion in case of polymer films prepared from latexes. The nanocomposite surface layer does not affect the wettability of the polymer, which remained slightly hydrophilic; this behavior is likely due to inadequate distribution of the nanophase. On the other hand UV-induced superhydrophilicity was observed when the concentration of surface titania nanoparticles is about 0.6 mg/cm2. Colorimetric analysis on historical and Carrara

  5. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films

    International Nuclear Information System (INIS)

    Castaneda, L.

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) thin films were deposited by the ultrasonic spray pyrolysis technique employing titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) dissolved in pure methanol as a source material. In order to prepare oxygen sensors, TiO 2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. Palladium (Pd) coatings were carried out by vacuum thermal evaporation through a metallic mask. The effect of the surface additive (Pd) on the response of the thin film TiO 2 oxygen sensors was monitored in a mixture with zero-grade air. The electrical characterization (monitoring of the electrical surface resistance with the operation temperature) of the sensors in an atmosphere of oxygen (diluted in zero-grade air) was performed in a vacuum chamber (10 -6 Torr), where the gas pressure can be controlled. The films sensitivity was estimated by the following relation: s=R gas -R 0 /R 0 . The response time of the sensor is defined to be the time needed to reach a 0.9R 0 value when the oxygen excess is removed. The gas-sensing properties of TiO 2 sensors in an atmosphere of 10 4 ppm of oxygen were measured between 100 and 450 deg. C. Experimental results obtained using palladium as a surface additive show that the sensitivity reaches a stationary value of 1.18 for O 2 concentration of 100ppm in zero-grade air at 300 deg. C, which is as high as those reported for oxygen sensors prepared with more expensive and complex techniques. The role and activity of palladium coatings incorporated on solid-state oxygen sensors are determined by their chemical state, aggregation form and interaction with the metal-oxide semiconductor

  6. Hybrid Perovskite Thin Film Formation: From Lab Scale Spin Coating to Large Area Blade Coating

    KAUST Repository

    Munir, Rahim

    2017-01-01

    in which an anti-solvent is used during the coating process through the solvent mixture of GBL and DMSO in different ratios. It has been shown that solvent engineering produce pin hole-free films, justifying its wide adoption across the field. We

  7. Carbon film coating of abutment surfaces: effect on the abutment screw removal torque.

    Science.gov (United States)

    Corazza, Pedro Henrique; de Moura Silva, Alecsandro; Cavalcanti Queiroz, José Renato; Salazar Marocho, Susana María; Bottino, Marco Antonia; Massi, Marcos; de Assunção e Souza, Rodrigo Othávio

    2014-08-01

    To evaluate the effect of diamond-like carbon (DLC) coating of prefabricated implant abutment on screw removal torque (RT) before and after mechanical cycling (MC). Fifty-four abutments for external-hex implants were divided among 6 groups (n = 9): S, straight abutment (control); SC, straight coated abutment; SCy, straight abutment and MC; SCCy, straight coated abutment and MC; ACy, angled abutment and MC; and ACCy, angled coated abutment and MC. The abutments were attached to the implants by a titanium screw. RT values were measured and registered. Data (in Newton centimeter) were analyzed with analysis of variance and Dunnet test (α = 0.05). RT values were significantly affected by MC (P = 0.001) and the interaction between DLC coating and MC (P = 0.038). SCy and ACy showed the lowest RT values, statistically different from the control. The abutment coated groups had no statistical difference compared with the control. Scanning electron microscopy analysis showed DLC film with a thickness of 3 μm uniformly coating the hexagonal abutment. DLC film deposited on the abutment can be used as an alternative procedure to reduce abutment screw loosening.

  8. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); Huang, Li-jing; Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing, 225400 (China)

    2016-07-25

    A ZnO nanorod-coated FTO film was prepared by sputtering an AZO layer on FTO glass, thermal annealing of the AZO/FTO film, and hydrothermal growth of ZnO nanorods at 70 °C on the annealed AZO/FTO film using zinc foils as zinc source. Two other ZnO nanorod-coated FTO films were also prepared by hydrothermal growths of ZnO nanorods on the FTO glass and the unannealed AZO/FTO film respectively for comparison purpose. The results were observed in detail using X-ray diffraction, scanning electron microscopy, water contact/sliding angle measurement, spectrophotometry and four-point probe measurement. The ZnO nanorods on the annealed AZO/FTO film were found to exhibit denser distribution and better orientation than those on the FTO glass and the unannealed AZO/FTO film. As a result, the ZnO nanorod-coated annealed AZO/FTO film demonstrated superhydrophobicity, high transparency and low reflectance in the visible range. Also this film had the lowest sheet resistance of 4.0 Ω/sq, implying its good electrical conductivity. This investigation provides a valuable reference for developing multifunctional transparent conductive films. - Highlights: • ZnO nanorod-coated annealed AZO/FTO film was obtained by a three-step method. • FTO and unannealed AZO/FTO films were also used as substrates for comparison. • ZnO nanorods on the annealed AZO/FTO film were denser and more vertically-oriented. • The ZnO nanorod-coated annealed AZO/FTO film (Z/TA-FTO) had superhydrophobicity. • The Z/TA-FTO exhibited high transparency, low reflectance and good conductivity.

  9. Electrochemical and surface characterisation of carbon-film-coated piezoelectric quartz crystals

    International Nuclear Information System (INIS)

    Pinto, Edilson M.; Gouveia-Caridade, Carla; Soares, David M.; Brett, Christopher M.A.

    2009-01-01

    The electrochemical properties of carbon films, of thickness between 200 and 500 nm, sputter-coated on gold- and platinum-coated 6 MHz piezoelectric quartz crystal oscillators, as new electrode materials have been investigated. Comparative studies under the same experimental conditions were performed on bulk electrodes. Cyclic voltammetry was carried out in 0.1 M KCl electrolyte solution, and kinetic parameters of the model redox systems Fe(CN) 6 3-/4- and [Ru(NH 3 ) 6 ] 3+/2+ as well as the electroactive area of the electrodes were obtained. Atomic force microscopy was used in order to examine the surface morphology of the films, and the properties of the carbon films and the electrode-solution interface were studied by electrochemical impedance spectroscopy. The results obtained demonstrate the feasibility of the preparation and development of nanometer thick carbon film modified quartz crystals. Such modified crystals should open up new opportunities for the investigation of electrode processes at carbon electrodes and for the application of electrochemical sensing associated with the EQCM.

  10. Thin film coatings which inhibit spin relaxation of polarized potassium atoms

    International Nuclear Information System (INIS)

    Thomas, G.E.; Holt, R.J.; Boyer, D.; Green, M.C.; Kowalczyk, R.S.; Young, L.

    1986-01-01

    A prototype of a polarized deuterium target which employs the spin exchange method is being developed. The mixing cell for mixing deuterium atoms and potassium vapor requires a surface that will reflect these atoms without being destroyed by the corrosive potassium. Thin film coating methods and a technique for coating pyrex are described. Results of spin relaxation measurements are given

  11. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    Science.gov (United States)

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  12. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  13. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    Science.gov (United States)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  14. Hybrid Perovskite Thin Film Formation: From Lab Scale Spin Coating to Large Area Blade Coating

    KAUST Repository

    Munir, Rahim

    2017-11-22

    Our reliance on semiconductors is on the rise with the ever growing use of electronics in our daily life. Organic-inorganic hybrid lead halide perovskites have emerged as a prime alternative to current standard and expensive semiconductors because of its use of abundant elements and the ease of solution processing. This thesis has shed light on the ink-to-solid conversion during the one-step solution process of hybrid perovskite formulations from DMF. We utilize a suite of in situ diagnostic probes including high speed optical microscopy, optical reflectance and absorbance, and grazing incidence wide angle x-ray scattering (GIWAXS), all performed during spin coating, to monitor the solution thinning behavior, changes in optical absorbance, and nucleation and growth of crystalline phases of the precursor and perovskite. The starting formulation experiences solvent-solute interactions within seconds of casting, leading to the formation of a wet gel with nanoscale features visible by in situ GIWAXS. The wet gel subsequently gives way to the formation of ordered precursor solvates (equimolar iodide and chloride solutions) or disordered precursor solvates (equimolar bromide or 3:1 chloride), depending upon the halide and MAI content. The ordered precursor solute phases are stable and retain the solvent for long durations, resulting in consistent conversion behavior to the perovskite phase and solar-cell performance. In this thesis, we develop a firm understanding of the solvent engineering process in which an anti-solvent is used during the coating process through the solvent mixture of GBL and DMSO in different ratios. It has been shown that solvent engineering produce pin hole-free films, justifying its wide adoption across the field. We then translate our learnings from the lab scale spin coating process to the industrial friendly blade coating process. Here we compare the ink solidification and film formation mechanisms of CH3NH3PbI3 in solutions we used to

  15. Listeria monocytogenes inhibition by defatted mustard meal-based edible films.

    Science.gov (United States)

    Lee, Hahn-Bit; Noh, Bong Soo; Min, Sea C

    2012-02-01

    An antimicrobial edible film was developed from defatted mustard meal (Sinapis alba) (DMM), a byproduct from the bio-fuel industry, without incorporating external antimicrobials and its antimicrobial activity against Listeria monocytogenes and physical properties were investigated. The DMM colloidal solution consisting of 184 g water, 14 g DMM, and 2g glycerol was homogenized and incubated at 37°C for 0.2, 0.5, 24 or 48 h to prepare a film-forming solution. The pH of a portion of the film-forming solution (pH 5.5) was adjusted to 2.0 or 4.0. Films were formed by drying the film-forming solutions at 23°C for 48 h. The film-forming solution incubated for 48 h inhibited L. monocytogenes in broth and on agar media. Antimicrobial effects of the film prepared from the 48 h-incubated solution increased with decrease in pH of the solution from 5.5 to 2.0. The film from the film forming solution incubated for 48 h (pH 2.0) initially inhibited more than 4.0 log CFU/g of L. monocytogenes inoculated on film-coated salmon. The film-coating retarded the growth of L. monocytogenes in smoked salmon at 5, 10, and 15°C and the antimicrobial effect during storage was more noticeable when the coating was applied before inoculation than when it was applied after inoculation. The tensile strength, percentage elongation, solubility in watercxu, and water vapor permeability of the anti microbial film were 2.44 ± 0.19 MPa, 6.40 ± 1.13%, 3.19 ± 0.90%, and 3.18 ± 0.63 gmm/kPa hm(2), respectively. The antimicrobial DMM films have demonstrated a potential to be applied to foods as wraps or coatings to control the growth of L. monocytogenes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Bovine pericardium coated with biopolymeric films as an alternative to prevent calcification: In vitro calcification and cytotoxicity results

    International Nuclear Information System (INIS)

    Nogueira, Grinia M.; Rodas, Andrea C.D.; Weska, Raquel F.; Aimoli, Cassiano G.; Higa, Olga Z.; Maizato, Marina; Leiner, Adolfo A.; Pitombo, Ronaldo N.M.; Polakiewicz, Bronislaw; Beppu, Marisa M.

    2010-01-01

    Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification.

  17. Application of Nanofibrillated Cellulose on BOPP/LDPE Film as Oxygen Barrier and Antimicrobial Coating Based on Cold Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Peng Lu

    2018-05-01

    Full Text Available The application of nanofibrillated cellulose (NC films in packaging industry has been hindered by its lack of heat-sealing ability. Incorporation of NC films with the biaxially oriented polypropylene/low density polyethylene (BOPP/LDPE laminates can take advantage of each material and endow the films with novel functions for food packaging applications. In this study, a coating that consists of NC and nisin was applied onto a cold plasma treated BOPP/LDPE film to fabricate a novel active packaging with an improved oxygen barrier performance and an added antimicrobial effect. The results showed that cold plasma treatment improved the surface hydrophilicity of BOPP/LDPE films for better attachment of the coatings. NC coatings significantly enhanced oxygen barrier property of the BOPP/LDPE film, with an oxygen transmission rate as low as 24.02 cc/m2·day as compared to that of the non-coated one (67.03 cc/m2·day. The addition of nisin in the coating at a concentration of 5 mg/g caused no significant change in barrier properties but imparted the film excellent antimicrobial properties, with a growth inhibition of L. monocytogenes by 94%. All films exhibit satisfying mechanical properties and transparency, and this new film has the potential to be used as antimicrobial and oxygen barrier packaging.

  18. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties.

    Science.gov (United States)

    Huang, S Y; Huang, J J; Kang, T; Diao, D F; Duan, Y Z

    2013-10-01

    This study aims to coat diamond-like carbon (DLC) films onto nickel-titanium (NiTi) orthodontic archwires. The film protects against fluoride-induced corrosion and will improve orthodontic friction. 'Mirror-confinement-type electron cyclotron resonance plasma sputtering' was utilized to deposit DLC films onto NiTi archwires. The influence of a fluoride-containing environment on the surface topography and the friction force between the brackets and archwires were investigated. The results confirmed the superior nature of the DLC coating, with less surface roughness variation for DLC-coated archwires after immersion in a high fluoride ion environment. Friction tests also showed that applying a DLC coating significantly decreased the fretting wear and the coefficient of friction, both in ambient air and artificial saliva. Thus, DLC coatings are recommended to reduce fluoride-induced corrosion and improve orthodontic friction.

  19. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    Stojadinovic, S.; Vasilic, R.; Petkovic, M.; Nedic, Z.; Kasalica, B.; Belca, I.; Zekovic, Lj.

    2010-01-01

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  20. Improved Morphology of Poly(3,4-ethylenedioxythiophene:Poly(styrenesulfonate Thin Films for All-Electrospray-Coated Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yingjie Liao

    2016-01-01

    Full Text Available Spray coating technique has been established as a promising substitute for the traditional coating methods in the fabrication of organic devices in many reports recently. Control of film morphology at the microscopic scale is critical if spray-coated devices are to achieve high performance. Here we investigate electrospray deposition protocols for the fabrication of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS thin films with a single additive system under ambient conditions at room temperature. Critical deposition parameters including solution composition, applied voltage, and relative humidity are discussed systematically. Optimized process for preparing homogenous PEDOT:PSS thin films is applied to all-electrospray-coated organic photovoltaic cells and contributes to a power conversion efficiency comparable to that of the corresponding all-spin-coated device.

  1. A new process control strategy for aqueous film coating of pellets in fluidised bed

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, Pernille Scholdan

    2003-01-01

    The parameters with effect on maximum spray rate and maximum relative outlet air humidity when coating pellets in a fluidised bed were investigated. The tested variables include type of water based modified release film coating (Eudragit® NE 30D, Eudragit® RS 30D, Aquacoat ECD®) coating principle...... (top spray, bottom spray), inlet air humidity and type of pellets (sugar spheres, microcrystalline cellulose pellets). The maximum spray rate was not influenced by the coating principles. The highest spray rate was obtained for the film polymer with the lowest tackiness which is assumed...... to be the controlling factor. The type of pellets affected the maximum spray rate. A thermodynamic model for the coating process is employed throughout the process and not just during steady state. The thermodynamic model is incorporated into a new process control strategy. The process control strategy is based on in...

  2. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  3. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    International Nuclear Information System (INIS)

    Li, Bao-jia; Huang, Li-jing; Ren, Nai-fei; Zhou, Ming

    2014-01-01

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO 2 )/FTO bilayer films. Large and densely arranged grains were observed on all TiO 2 /FTO bilayer films. The presence of TiO 2 tetragonal rutile phase in the TiO 2 /FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO 2 /FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10 −2 Ω −1 , higher than 1.78 × 10 −2 Ω −1 for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO 2 /FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10 −2 Ω −1 , indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  4. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata, E-mail: neillohit@yahoo.co.in

    2014-11-30

    Graphical abstract: - Highlights: • CdS film grown on indium coated glass substrates via CBD and subsequent annealing. • Disappearance of the indium (1 1 2) peak confirms interdiffusion at 300 °C. • SIMS indicates the subsequent interdiffusion at progressively higher temperature. • Composite In–CdS layer showed lower photosensitivity compared to pure CdS. - Abstract: In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  5. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  6. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  7. Can deformation of a polymer film with a rigid coating model geophysical processes?

    Science.gov (United States)

    Volynskii, A. L.; Bazhenov, S. L.

    2007-12-01

    The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.

  8. Synthesis of LSM films deposited by dip-coating on YSZ substrate; Sintese de filmes de LSM depositados por dip-coating em substratos de YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Leandro da; Souza, Mariana M.V.M., E-mail: mmattos@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica; Ribeiro, Nielson F.P. [Coordenacao dos Programas de Pos-graduacao de Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica. Nucleo de Catalise

    2010-07-01

    The dip-coating process was used to deposit films of La{sub 0.7}Sr{sub 0.}3MnO{sub 3} (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 {mu}m, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  9. Microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Park, Ji Yoon; Kim, Kwan Hyu; Choe, Han Cheol

    1999-01-01

    The microstructure and mechanical properties of Ti/TiN film coated on AISI 304 stainless steels have been studied. AISI 304 stainless steels containing 0.1∼1.0 wt% Ti were fabricated by using vacuum furnace and followed by solutionization treatment at 1050 .deg. C for 1hr. The specimens were coated by Ti and TiN with 1 μm and 2 μm thickness by electron-beam PVD method. The microstructure and phase analysis were carried out by using XRD, WDS and SEM. Mechanical properties such as hardness (micro-Vickers) and wear resistance were examined. Coated films showed fine columnar structure and some defects. Surface roughness increased in all specimens after TiN coating. XRD patterns showed that the TiN(111) peak was major in TiN single-layer and the other peaks were very weak, but TiN(220) and TiN(200) peaks were developed in Ti/TiN double-layer. The hardness of the coating film was higher in Ti/TiN double-layer than in TiN single-layer and not affected by the Ti content of substrate. Ti/TiN double-layer showed better wear resistance than TiN single-layer. The observed wear traces were sheared type in all coated specimens

  10. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  11. Ionizing radiation method for forming acrylic pressure sensitive adhesives and coated substrates

    International Nuclear Information System (INIS)

    Dowbenko, R.; Christenson, R.M.

    1975-01-01

    Pressure-sensitive adhesive having improved adhesive properties are formed by subjecting a mixture comprising a monomer selected from the group consisting of alkyl acrylates, hydroxyalkyl acrylates, alkoxyalkyl acrylates, cyanoalkyl acrylates, alkyl methacrylates, hydroxyalkyl methacrylates, alkoxyalkyl methacrylates, cyanoalkyl methacrylates, N-alkoxymethylacrylamides, and N-alkoxymethylmethacrylamides, and a homopolymer or copolymer selected from the group consisting of polymers of alkyl acrylates, hydroxyalkyl acrylates, alkoxyalkyl acrylates, cyanoalkyl acrylates, alkyl methacrylates, hydroxyalkyl methacrylates, alkoxyalkyl methacrylates, cyanoalkyl methacrylates, acrylamide, methacrylamide, N-(substituted alkyl) acrylamides, N-(substituted alkyl) methacrylamides, alkyl acrylamides, alkyl methacrylamides, and N-alkoxymethylacrylamides and N-alkoxymethylmethacrylamides to ionizing irradiation. The adhesive material finds utility as binding resins in laminates, coatings on substrates, and as film adhesives. (U.S.)

  12. Synthesis of waterborne polyurethane containing alkoxysilane side groups and the properties of the hybrid coating films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Guo, Longhai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Xiao, Weidong; Du, Dianxing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-07-30

    Highlights: • A diol with side-chain trimethoxysilane (DEA-Si) was synthesized using 3-(methacryloxypropyl)trimethoxysilane (MAPTS) and diethanolamine (DEA). • The crosslinking structure could in situ formed within the WPU matrix through sol-gel process. • The Si tends to shift to the polymer-air interface due to the flexible long alkyl-ester side chain. • The incorporation of DEA-Si enhanced mechanical and surface hydrophobic properties of WPU films. - Abstract: A series of waterborne polyurethane (WPU) containing alkoxysilane side groups were synthesized by using the dihydroxy functionalized alkoxysilane. The diol with trimethoxysilane groups at the side chains was synthesized via Michael addition between 3-(methacryloxypropyl)trimethoxysilane (MAPTS) and diethanolamine (DEA). The silane diol was applied as the chain extender for the NCO-endcapped prepolymer of isophorone diisocyanate, polycarbonate diol, 2,2-bis(hydroxymethyl) butyric acid and 1,4-butanediol. The products with the silane content varied from 1.2 to 16.5 wt% were dispersed in water after neutralization. The effect of the silane diol on the particle size and morphology of the WPU dispersion was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) characterization was carried out on the coating film of the WPU, revealing that the long flexible side chain is favorable for the silane components to emigrate toward the film surface and crosslink during the film formation process. As a result, both the surface contact angle to water and water adsorption of the WPU coating films increased with the silane content. Furthermore, the mechanical properties including the modulus and tensile strength of the films were also improved by the incorporation of silane diol.

  13. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    Science.gov (United States)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  14. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B.

    2013-01-01

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g −1 at 3 A g −1 ), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  15. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  16. Investigation on feasibility and detection limits for determination of coating film thickness by neutron activation analysis

    International Nuclear Information System (INIS)

    Yao Maoying; Xu Jiayun; Zhang Dida; Yang Zunyong; Yao Zhenqiang; Wang Mingqiu; Gao Dangzhong

    2010-01-01

    A method for the determination of coating film thickness by neutron activation was proposed in this paper. After Au, Al and Cu et al.films were activated with a Am-Be neutron source, the characteristic γ-rays emitted by the activated nuclides in the films were counted with a HPGe γ spectrometer. The detection limits of film thickness by using a nuclear reactor neutron source were deduced on the basis of the γ-ray counts and the Monte-Carlo simulated detection efficiencies. The possible detection limits are typically 4-5 orders of magnitude better than those by fluorescent X-ray method, which is currently widely used to determine coating film thickness. (authors)

  17. Dry coating of solid dosage forms: an overview of processes and applications.

    Science.gov (United States)

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  18. Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film

    International Nuclear Information System (INIS)

    Tran, N.D.; Dutta, N.K.; Choudhury, N. Roy

    2005-01-01

    Plasma polymerization of perfluoro (methylcyclohexane) was carried out under cold plasma process operated at 13.56 MHz to deposit pore-free, uniform, ultra-thin film on an ethylene propylene diene terpolymer (EPDM) substrate in a view to modify the surface characteristics. The plasma fluoropolymeric films were formed at different plasma treatment times (from 20 s to 16 min), applied powers (20 to 100 W) and precursor flow rates to produce high quality films in a controllable yet tunable fashion. Scanning electron microscopy was employed successfully to characterize the evolution of the morphological feature in the film and also to determine the thickness of the coating. The surface energy of the film was determined by sessile drop method using different solvents as probe liquids. It is observed that a pore-free homogeneous plasma polymer thin film is formed within 20 s of treatment time, however, the morphology of the film depends on the plasma processing conditions, such as plasma power, precursor flow rate and deposition time. With increased time and power at a constant flow rate, the morphology of the film progressively changes from flat smooth to globular and rough. The kinetics and activation energy of the plasma polymer film deposition process were also estimated. The surface energy of the EPDM substrate decreased dramatically with plasma coating, however, it appears to be independent of the treatment time

  19. Spin-coating deposition of PbS and CdS thin films for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jayesh; Mighri, Frej [Laval University, CREPEC, Department of Chemical Engineering, Quebec, QC (Canada); Ajji, Abdellah [Ecole Polytechnique, CREPEC, Chemical Engineering Department, Montreal, QC (Canada); Tiwari, Devendra; Chaudhuri, Tapas K. [Charotar University of Science and Technology (CHARUSAT), Dr. K.C. Patel Research and Development Centre, Anand District, Gujarat (India)

    2014-12-15

    In this work, we describe a simple spin-coating deposition technique for lead sulphide (PbS) and cadmium sulphide (CdS) films from a methanolic metal-thiourea complex. The characterization of the films by X-ray diffraction and X-ray photoelectron spectroscopy techniques revealed that pure cubic phase PbS and CdS layers were formed via this method. As shown by atomic force microscopy and scanning electron microscopy results, both films were homogeneous and presented a smooth surface. Optical properties showed that the energy band gap of PbS and CdS films were around 1.65 and 2.5 eV, respectively. The PbS film is p-type in nature with an electrical conductivity of around 0.8 S/cm. The hole concentration and mobility were 2.35 x 10{sup 18} cm{sup -3} and 2.16 x 10{sup -3} cm{sup 2}/V/s, respectively, as determined from Hall measurement. Both films were used to develop a thin film solar cell device of graphite/PbS/CdS/ITO/glass. Device characterization showed the power conversion efficiency of around 0.24 %. The corresponding open circuit voltage, short circuit current and fill factor were 0.570 V, 1.32 mA/cm{sup 2} and 0.32, respectively. (orig.)

  20. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  1. Room temperature H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) thick films

    Energy Technology Data Exchange (ETDEWEB)

    More, P.S., E-mail: p_smore@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400 032 (India); Raut, R.W. [Department of Botany, Institute of Science, Mumbai 400 032 (India); Ghuge, C.S. [Department of Physics, Institute of Science, Mumbai 400 032 (India)

    2014-02-14

    The study reports H{sub 2}S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) films. The porous alumina (PoAl) thick layers were formed in the dark on aluminum substrates using an electrochemical anodization method. Thin semitransparent platinum (Pt) films were deposited on PoAl samples using chemical bath deposition (CBD) method. The films were characterized using energy dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM). The thicknesses of coated and bare films were measured using ellipsometry. The sensing properties such as sensitivity factor (S.F.), response time, recovery time and repeatability were measured using a static gas sensing system for H{sub 2}S gas. The EDAX studies confirmed the purity of Pt–PoAl film and indicated the formation of pure platinum (Pt) phase. The ellipsometry studies revealed the thickness of PoAl layer of about 15–17 μm on aluminum substrates. The SEM studies demonstrated uniform distribution of spherical pores with a size between 0.250 and 0.500 μm for PoAl film and nearly spherical platinum particles with average particle size ∼100 nm for Pt–PoAl film. The gas-sensing properties of these samples were studied in a home-built static gas characterization system. The H{sub 2}S gas sensing properties of Pt–PoAl at 1000 ppm of H{sub 2}S gave maximum sensitivity factor (S.F.) = 1200. The response time and recovery time were found to be 2–3 min and ∼1 min respectively. Further, the measurement of H{sub 2}S gas sensing properties clearly indicated the repeatability of gas sensing response of Pt–PoAl film. The present study indicated the significant potential of Pt coated PoAl films for H{sub 2}S gas sensing applications in diverse areas. - Highlights: • Electrochemical anodization, cheap and effective method for fabrication of PoAl. • Chemical bath deposition, a simple and effective method for deposition of Pt on PoAl. • A nano-composite film sensor with high sensitivity

  2. Feasibility of bovine submaxillary mucin (BSM) films as biomimetic coating for polymeric biomaterials

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Madsen, Jan Busk; Pakkanen, Kirsi I.

    2013-01-01

    Feasibility of bovine submaxillary mucin (BSM) films generated via spontaneous adsorption from aqueous solutions onto polydimethylsiloxane (PDMS) and polystyrene (PS) surfaces have been investigated as biomimetic coatings for polymeric biomaterials. Two attributes as biomedical coatings, namely a......-on-disk tribometry, employing compliant PDMS as tribopairs, has shown that BSM coatings generated on PDMS surface via spontaneous adsorption from aqueous solution has effective lubricating properties, but for very limited duration only....

  3. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Kymakis, E.; Stratakis, E.; Stylianakis, M.M.; Koudoumas, E.; Fotakis, C.

    2011-01-01

    Many research efforts have been devoted to the replacement of the traditional indium–tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C 61 -butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.

  4. Ultraviolet Stimulated Emission from Sol-Gel Spin Coated ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Ahmed S. Razeen

    2017-01-01

    Full Text Available Low cost ultraviolet stimulated emission has been generated using optical excitation of ZnO thin films deposited by sol-gel spin coating on n+ As-doped 100 Si-substrate. The number of deposited layers and the heat treatment have been investigated to obtain a film that can generate stimulated emission under optical excitation. The optimum condition for preparation of the film has been presented. X-ray diffraction and scanning electron microscope have been used for structural and morphological investigations. Input-output intensity dependence and spectral width, peak emission wavelength, and the quantum efficiency versus the pump intensity have been presented. A quantum efficiency of about 24.2% has been reported, a power exponent higher than 8 has been obtained in input-output intensity dependence, and a threshold of about 23 Mw/cm2 has been evaluated for the samples. The mechanism by which stimulated emission occurs has been discussed. The results show that sol-gel spin coating is a promising method for generating ultraviolet stimulated emission from ZnO thin films.

  5. Third-order optical susceptibility in polythiophene thin films prepared by spin-coating from high-boiling-point solvents

    International Nuclear Information System (INIS)

    Kobayashi, Takashi; Shinke, Wataru; Nagase, Takashi; Murakami, Shuichi; Naito, Hiroyoshi

    2014-01-01

    We examined the enhancements in the third-order optical susceptibility (χ (3) ) of spin-coated thin films of poly(3-hexylthiophene) using an anhydrous solvent with a high boiling point. The χ (3) value was found to be enhanced as the boiling point of the solvent increased. In this study, the largest value of χ (3) was obtained for thin films that were spin-coated in an inert atmosphere using anhydrous dichlorobenzene and then was subsequently exposed to its vapor for 1 h. The maximum value of the imaginary part of χ (3) was determined to be 1.8 × 10 -9 esu, which is more than three times greater than that of thin films spin-coated in an ambient atmosphere using a solvent with a low boiling point, such as chloroform. - Highlights: • Enhancements in nonlinear optical properties of a conjugated polymer were examined. • Thin films were fabricated by spin-coating using a solvent with a high boiling point. • The third-order optical susceptibility increased with increasing boiling point. • An additional enhancement was obtained by the vapor-treatment technique. • These thin films were sufficiently homogeneous for use in nonlinear optical devices

  6. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  7. Nanostructured ZnO thin films prepared by sol–gel spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, E., E-mail: heredia.edu@gmail.com [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Bojorge, C.; Casanova, J.; Cánepa, H. [UNIDEF (CONICET-MINDEF), J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, A. [Instituto de Física, Universidade de São Paulo, Cidade Universitária, 66318 São Paulo, SP (Brazil); Kellermann, G. [Universidade Federal do Paraná, 19044 Paraná (Brazil)

    2014-10-30

    Highlights: • ZnO films synthesized by sol–gel were deposited by spin-coating on flat substrates. • Structural features of ZnO films with several thicknesses were characterized by means of different techniques. • The thicknesses of different ZnO thin films were determined by means of FESEM and AFM. • The nanoporous structures of ZnO thin films were characterized by GISAXS using IsGISAXS software. • The average densities of ZnO thin films were derived from (i) the critical angle in 1D XR patterns, (ii) the angle of Yoneda peak in 2D GISAXS images, (iii) minimization of chi2 using IsGISAXS best fitting procedure. - Abstract: ZnO thin films deposited on silica flat plates were prepared by spin-coating and studied by applying several techniques for structural characterization. The films were prepared by depositing different numbers of layers, each deposition being followed by a thermal treatment at 200 °C to dry and consolidate the successive layers. After depositing all layers, a final thermal treatment at 450 °C during 3 h was also applied in order to eliminate organic components and to promote the crystallization of the thin films. The total thickness of the multilayered films – ranging from 40 nm up to 150 nm – was determined by AFM and FESEM. The analysis by GIXD showed that the thin films are composed of ZnO crystallites with an average diameter of 25 nm circa. XR results demonstrated that the thin films also exhibit a large volume fraction of nanoporosity, typically 30–40 vol.% in thin films having thicknesses larger than ∼70 nm. GISAXS measurements showed that the experimental scattering intensity is well described by a structural model composed of nanopores with shape of oblate spheroids, height/diameter aspect ratio within the 0.8–0.9 range and average diameter along the sample surface plane in the 5–7 nm range.

  8. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  9. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  10. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  11. A chromia forming thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M.P.; Evans, H.E. [Metallurgy and Materials, The University of Birmingham, Birmingham, B15 2TT (United Kingdom); Gray, S.; Nicholls, J.R. [Surface Science and Engineering Centre, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2011-07-15

    Conventional thermal barrier coating (TBC) systems consist of an insulating ceramic topcoat, a bond coat for oxidation protection and the underlying superalloy designed to combat the oxidising conditions in aero- and land-based gas turbines. Under high-temperature oxidation, the use of an alumina forming bond coat is warranted, thus all current TBC systems are optimised for the early formation of a dense, protective thermally grown oxide (TGO) of alumina. This also offers protection against Type I hot corrosion but a chromia layer gives better protection against Type II corrosion and intermediate temperatures, the conditions found in land-based gas turbines. In this paper the authors present the first known results for a chromia forming TBC system. Tests have been performed under oxidising conditions, up to 1000 h, at temperatures between 750 C and 900 C, and under Type I (900 C) and Type II (700 C) hot corrosion conditions up to 500 h. Under all these conditions no cracking, spallation or degradation was observed. Examination showed the formation of an adherent, dense chromia TGO at the bond coat / topcoat interface. These initial results are very encouraging and the TGO thicknesses agree well with comparable results reported in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Rapid shear alignment of sub-10 nm cylinder-forming block copolymer films based on thermal expansion mismatch

    Science.gov (United States)

    Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.

    2018-01-01

    Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.

  13. Titanium dioxide-coated fluorine-doped tin oxide thin films for improving overall photoelectric property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: bjia_li@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Ming [The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Titanium (Ti) layers were deposited by direct current (DC) magnetron sputtering on commercial fluorine-doped tin oxide (FTO) glasses, followed by simultaneous oxidation and annealing treatment in a tubular furnace to prepare titanium dioxide (TiO{sub 2})/FTO bilayer films. Large and densely arranged grains were observed on all TiO{sub 2}/FTO bilayer films. The presence of TiO{sub 2} tetragonal rutile phase in the TiO{sub 2}/FTO bilayer films was confirmed by X-ray diffraction (XRD) analysis. The results of parameter optimization indicated that the TiO{sub 2}/FTO bilayer film, which was formed by adopting a temperature of 400 °C and an oxygen flow rate of 15 sccm, had the optimal overall photoelectric property with a figure of merit of 2.30 × 10{sup −2} Ω{sup −1}, higher than 1.78 × 10{sup −2} Ω{sup −1} for the FTO single-layer film. After coating a 500 nm-thick AZO layer by DC magnetron sputtering on this TiO{sub 2}/FTO bilayer film, the figure of merit of the trilayer film achieved to a higher figure of merit of 3.12 × 10{sup −2} Ω{sup −1}, indicating further improvement of the overall photoelectric property. This work may provide a scientific basis and reference for improving overall photoelectric property of transparent conducting oxide (TCO) films.

  14. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  15. The characterization of edible coating from tilapia surimi as a biodegradable packaging

    Science.gov (United States)

    Saputra, E.; Alamsjah, A.; Abdillah, A. A.

    2018-04-01

    One of the problems that often arise in the fisheries sector is maintaining the quality. In the room temperature, the fish more quickly enter the phase of rigor mortis and lasted shorter. The retention of fresh fish can be extended by adding antibacterial compounds in the form of synthetic chemicals or natural ingredients. One of the safe natural ingredients used to extend the freshness of the fish is the edible coating. Edible coatings may be composed of hydrocolloid, lipids and composites. In the food industry surimi can be used as an ingredient to make edible packaging or better known in the form of edible film and protein-based edible coating. Edible film and potential coatings are used as packaging materials as they may affect food quality, food safety, and shelf life. Protein-based edible film have superior inhibitory and mechanical properties compared to polysaccharide-based ones. This is because protein contains 20 different amino acids and has most special characteristics that produce functional characteristics when compared with polysaccharides used as an ingredient in edible film and coating making most homopolymers.

  16. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.

    Science.gov (United States)

    Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit

    2016-06-01

    In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation

    Directory of Open Access Journals (Sweden)

    Irais Sánchez-Ortega

    2014-01-01

    Full Text Available Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.

  18. Robust infrared-shielding coating films prepared using perhydropolysilazane and hydrophobized indium tin oxide nanoparticles with tuned surface plasmon resonance.

    Science.gov (United States)

    Katagiri, Kiyofumi; Takabatake, Ryuichi; Inumaru, Kei

    2013-10-23

    Robust infrared (IR)-shielding coating films were prepared by dispersing indium tin oxide (ITO) nanoparticles (NPs) in a silica matrix. Hydrophobized ITO NPs were synthesized via a liquid phase process. The surface plasmon resonance (SPR) absorption of the ITO NPs could be tuned by varying the concentration of Sn doping from 3 to 30 mol %. The shortest SPR wavelength and strongest SPR absorption were obtained for the ITO NPs doped with 10% Sn because they possessed the highest electron carrier density. Coating films composed of a continuous silica matrix homogeneously dispersed with ITO NPs were obtained using perhydropolysilazane (PHPS) as a precursor. PHPS was completely converted to silica by exposure to the vapor from aqueous ammonia at 50 °C. The prepared coating films can efficiently shield IR radiation even though they are more than 80% transparent in the visible range. The coating film with the greatest IR-shielding ability completely blocked IR light at wavelengths longer than 1400 nm. The pencil hardness of this coating film was 9H at a load of 750 g, which is sufficiently robust for applications such as automotive glass.

  19. Determination of parameters for successful spray coating of silicon microneedle arrays.

    Science.gov (United States)

    McGrath, Marie G; Vrdoljak, Anto; O'Mahony, Conor; Oliveira, Jorge C; Moore, Anne C; Crean, Abina M

    2011-08-30

    Coated microneedle patches have demonstrated potential for effective, minimally invasive, drug and vaccine delivery. To facilitate cost-effective, industrial-scale production of coated microneedle patches, a continuous coating method which utilises conventional pharmaceutical processes is an attractive prospect. Here, the potential of spray-coating silicon microneedle patches using a conventional film-coating process was evaluated and the key process parameters which impact on coating coalescence and weight were identified by employing a fractional factorial design to coat flat silicon patches. Processing parameters analysed included concentration of coating material, liquid input rate, duration of spraying, atomisation air pressure, gun-to-surface distance and air cap setting. Two film-coating materials were investigated; hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC). HPMC readily formed a film-coat on silicon when suitable spray coating parameter settings were determined. CMC films required the inclusion of a surfactant (1%, w/w Tween 80) to facilitate coalescence of the sprayed droplets on the silicon surface. Spray coating parameters identified by experimental design, successfully coated 280μm silicon microneedle arrays, producing an intact film-coat, which follows the contours of the microneedle array without occlusion of the microneedle shape. This study demonstrates a novel method of coating microneedle arrays with biocompatible polymers using a conventional film-coating process. It is the first study to indicate the thickness and roughness of coatings applied to microneedle arrays. The study also highlights the importance of identifying suitable processing parameters when film coating substrates of micron dimensions. The ability of a fractional factorial design to identify these critical parameters is also demonstrated. The polymer coatings applied in this study can potentially be drug loaded for intradermal drug and vaccine delivery

  20. Study the polymer coating for detecting and surface decontamination of uranium

    International Nuclear Information System (INIS)

    Pham Thi Quynh Luong; Nguyen Van Chinh

    2011-01-01

    Strippable polymer coating is one of the methods for effective surface decontamination. It has been developed in both detecting and removing the radioactive isotope and heavy metal elements from contaminated surfaces. A polymer coating is produced to be sprayed or brushed on contaminated material of uranium. The places of U contamination is shown by color change of polymer coating. As the polymer coating is dried up to form a strong film, the contaminations are absorbed in to the coating and contaminated surfaces are cleaned by removing the film. (author)

  1. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating

    International Nuclear Information System (INIS)

    Mo, Lixin; Fang, Yi; Zhai, Qingbin; Li, Luhai; Ran, Jun; Yang, Li

    2016-01-01

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J–V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing. (paper)

  2. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  3. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    OpenAIRE

    Peng Xi; Yan Li; Xiaojin Ge; Dandan Liu; Mingsan Miao

    2018-01-01

    Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from th...

  4. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovich, G., E-mail: gfox@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Kovalev, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Aguirre, M.H. [Laboratory of Advanced Microscopy, Institute of Nanoscience of Aragón, University of Zaragoza, 50018 Zaragoza (Spain); Yamamoto, K. [Materials Research Laboratory, Kobe Steel Ltd, 1-5-5 Takatsuda-dai, Nishi-ku, Kobe 651-2271, Hyogo (Japan); Veldhuis, S. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Gershman, I. [All-Russian Railway Research Institute, 10 Third Mytishchinskaya Street, Moscow 29851 (Russian Federation); Rashkovskiy, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Endrino, J.L. [Albengoa Research, Energia Solar 1, Palmas Altas, Seville 41014 (Spain); Beake, B. [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dosbaeva, G. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Wainstein, D. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Yuan, Junifeng; Bunting, J.W. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada)

    2014-04-01

    Highlights: • The evolution of self-organization under extreme frictional conditions has been studied. • Comprehensive characterization of the tribo-films was made using various surface analytical techniques. • During the running-in stage, mullite tribo-ceramics predominate on the surface of the nano-multilayer coating, establishing a functional hierarchy within the layer of tribo-films. • It is possible to control tribo-film evolution during self-organization by means of an increase in structural complexity and the non-equilibrium state of the surface engineered layer. - Abstract: The evolution of the self-organization process where dissipative structures are formed under the extreme frictional conditions associated with high performance dry machining of hardened steels has been studied in detail. The emphasis was on the progressive studies of surface transformations within multilayer and monolayer TiAlCrSiYN-based PVD coatings during the running-in stage of wear when self-organization process occurs. The coating layer was characterized by high resolution electron energy-loss spectroscopy (HREELS). It is shown that the nano-multilayer coating possesses higher non-equilibrium structure in comparison to the monolayer. Comprehensive studies of the tribo-films (dissipative structures) formed on the friction surface were made using a number of advanced surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). The data obtained for the tribo-films was combined with the detailed TEM studies of the structural and phase transformations within the underlying coating layer. This data was related to the micro-mechanical characteristics of the coating layer and its wear resistance. It was demonstrated that the evolution of the self-organization process is strongly controlled by the characteristics of the tribo-films formed at different stages of the wear process. Within running-in stage (after

  5. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  6. Ordered mesoporous carbon film as an effective solid-phase microextraction coating for determination of benzene series from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hui [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); School of Geography Science, Nantong University, Nantong 226001 (China); Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Mingyue; Lu, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-08-12

    The present work reports preparation of ordered mesoporous carbon (OMC) film supported on a graphite fiber as a new type of solid-phase microextraction (SPME) fiber for determination of benzene series from aqueous media. The strategy for the supported OMC film preparation was combined dip-coating technology with solvent evaporation-induced self-assembly (EISA) approach. A graphite fiber was immersed in an ethanol solution containing phenolic resin and Pluronic triblock copolymer. Upon solvent evaporation and subsequent pyrolysis under 700 °C, the phenolic resin and the surfactant self-assembled on the surface of the graphite fiber to form smooth OMC film. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen isothermal adsorption results indicate that the resultant OMC film possesses well-ordered two dimensional hexagonal mesostructure with pore diameters of 4.5 nm and BET surfaces of 630 m{sup 2}/g. Scanning electron microscopy (SEM) studies show the supported OMC film with thickness at 8.5 μm is continuous and defect-free. The SPME efficiency of the OMC fiber was evaluated by analysis of five benzene series (benzene, toluene, ethylbenzene, p-xylene and m-xylene) from water samples by gas chromatography-flame ionization detection (GC-FID). The analysis results indicate that the prepared OMC fiber has wide linear ranges (0.5–500 μg/L), low detection limits (0.01–0.05 μg/L) and good repeatabilities (4.0–5.8% for one fiber, 2.9–8.7% for fiber-to-fiber). Compared with commercial counterparts, the OMC fiber exhibits improved extraction efficiency for benzene series and PAHs. - Highlights: • Ordered mesoporous carbon film supported on graphite fiber was first reported as solid-phase microextraction coating. • The strategy for the film preparation was combined dip-coating technology with evaporation-induced self-assembly approach. • The obtained fiber showed enhanced thermal stability and organic solvents resistance. • The

  7. Novel method for screening of enteric film coatings properties with magnetic resonance imaging.

    Science.gov (United States)

    Dorożyński, Przemysław; Jamróz, Witold; Niwiński, Krzysztof; Kurek, Mateusz; Węglarz, Władysław P; Jachowicz, Renata; Kulinowski, Piotr

    2013-11-18

    The aim of the study is to present the concept of novel method for fast screening of enteric coating compositions properties without the need of preparation of tablets batches for fluid bed coating. Proposed method involves evaluation of enteric coated model tablets in specially designed testing cell with application of MRI technique. The results obtained in the testing cell were compared with results of dissolution studies of mini-tablets coated in fluid bed apparatus. The method could be useful in early stage of formulation development for screening of film coating properties that will shorten and simplify the development works. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bu-Jong; Han, Sang-Hoon; Park, Jin-Seok

    2014-12-01

    This study demonstrates hybrid-type transparent electrodes based on carbon nanotubes (CNTs) that possess characteristics desirable for touch screen panels. This has been accomplished by depositing CNTs via spray-coating and then depositing thin conductive polymer (such as PEDOT:PSS) films on the CNTs via spin-coating. For all of the samples such as CNTs, PEDOT:PSS, and hybrid (i.e., PEDOT:PSS-coated CNTs), their surface morphologies, sheet resistances, visible transmittances, and chromatic properties are characterized as functions of their preparation conditions. In the PEDOT:PSS-coated CNTs, the PEDOT:PSS particles fill up the voids between tubes in CNTs, forming a conduction bridge for electron transfer and eventually decreasing the sheet resistance of the hybrid electrode. Also, the hybrid electrode reveals a superior color property compared with that of CNTs or the PEDOT:PSS single electrode due to the complementary color relation between CNTs and PEDOT:PSS. Experimental results show that the fabricated hybrid-type electrodes can simultaneously satisfy the requirements necessary for transparent electrodes of touch screen panels such as the sheet resistance requiring to be lower than 100 Ω/sq, visible transmittance higher than 80%, and yellowness approaching to zero. - Highlights: • Hybrid-type (PEDOT:PSS-coated CNTs) electrodes for touch panels are fabricated. • PEDOT:PSS films are coated via spin-coating on spray-deposited CNTs. • Hybrid electrodes are fabricated by varying the thickness of CNTs and PEDOT:PSS. • The resistance, transmittance, and color properties have been analyzed. • Hybrid electrodes satisfy electrical and optical properties for touch panels.

  9. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels

    International Nuclear Information System (INIS)

    Kim, Bu-Jong; Han, Sang-Hoon; Park, Jin-Seok

    2014-01-01

    This study demonstrates hybrid-type transparent electrodes based on carbon nanotubes (CNTs) that possess characteristics desirable for touch screen panels. This has been accomplished by depositing CNTs via spray-coating and then depositing thin conductive polymer (such as PEDOT:PSS) films on the CNTs via spin-coating. For all of the samples such as CNTs, PEDOT:PSS, and hybrid (i.e., PEDOT:PSS-coated CNTs), their surface morphologies, sheet resistances, visible transmittances, and chromatic properties are characterized as functions of their preparation conditions. In the PEDOT:PSS-coated CNTs, the PEDOT:PSS particles fill up the voids between tubes in CNTs, forming a conduction bridge for electron transfer and eventually decreasing the sheet resistance of the hybrid electrode. Also, the hybrid electrode reveals a superior color property compared with that of CNTs or the PEDOT:PSS single electrode due to the complementary color relation between CNTs and PEDOT:PSS. Experimental results show that the fabricated hybrid-type electrodes can simultaneously satisfy the requirements necessary for transparent electrodes of touch screen panels such as the sheet resistance requiring to be lower than 100 Ω/sq, visible transmittance higher than 80%, and yellowness approaching to zero. - Highlights: • Hybrid-type (PEDOT:PSS-coated CNTs) electrodes for touch panels are fabricated. • PEDOT:PSS films are coated via spin-coating on spray-deposited CNTs. • Hybrid electrodes are fabricated by varying the thickness of CNTs and PEDOT:PSS. • The resistance, transmittance, and color properties have been analyzed. • Hybrid electrodes satisfy electrical and optical properties for touch panels

  10. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    International Nuclear Information System (INIS)

    Lu Ping; Liu Yin; Guo Meiqing; Fang Haidong; Xu Xinhua

    2011-01-01

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: → An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. → This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. → The drug release rate could be controlled by LG:GA ratio and the PTX

  11. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ping [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu Yin [Department of Cardiology, Tianjin Chest Hospital, Tianjin 300051 (China); Guo Meiqing; Fang Haidong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xu Xinhua, E-mail: xhxu_tju@eyou.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2011-10-10

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: {yields} An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. {yields} This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. {yields} The drug release rate could be controlled by LG

  12. Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films.

    Science.gov (United States)

    Cazalini, Elisa M; Miyakawa, Walter; Teodoro, Guilherme R; Sobrinho, Argemiro S S; Matieli, José E; Massi, Marcos; Koga-Ito, Cristiane Y

    2017-06-01

    A promising strategy to reduce nosocomial infections related to prosthetic meshes is the prevention of microbial colonization. To this aim, prosthetic meshes coated with antimicrobial thin films are proposed. Commercial polypropylene meshes were coated with metal-containing diamond-like carbon (Me-DLC) thin films by the magnetron sputtering technique. Several dissimilar metals (silver, cobalt, indium, tungsten, tin, aluminum, chromium, zinc, manganese, tantalum, and titanium) were tested and compositional analyses of each Me-DLC were performed by Rutherford backscattering spectrometry. Antimicrobial activities of the films against five microbial species (Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis) were also investigated by a modified Kirby-Bauer test. Results showed that films containing silver and cobalt have inhibited the growth of all microbial species. Tungsten-DLC, tin-DLC, aluminum-DLC, zinc-DLC, manganese-DLC, and tantalum-DLC inhibited the growth of some strains, while chromium- and titanium-DLC weakly inhibited the growth of only one tested strain. In-DLC film showed no antimicrobial activity. The effects of tungsten-DLC and cobalt-DLC on Pseudomonas aeruginosa biofilm formation were also assessed. Tungsten-DLC was able to significantly reduce biofilm formation. Overall, the experimental results in the present study have shown new approaches to coating polymeric biomaterials aiming antimicrobial effect.

  13. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  14. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish.

    Science.gov (United States)

    Jovanović, Gordana D; Klaus, Anita S; Nikšić, Miomir P

    2016-01-01

    The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4°C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4log10CFU/g for L. monocytogenes ATCC 19115 and 2.1log10CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24h of storage. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. TiCx thin films coatings prepared by reactive sputtering

    International Nuclear Information System (INIS)

    Saoula, N.; Handa, K.; Kesri, R.

    2004-01-01

    Full text.Transition metal carbides and nitrides attract large technological interest due to their unique properties like high hardness and young modulus, high electric conductivity, a considerable high-temperature strength, high corrosion resistance and high melting or decomposition temperatures. They have been applied as coatings for tools because of their superior properties. these materials have such properties due to atomic bonding, which shows a mixed covalent, metallic and ionic character. Among these nitrides and carbides titanium carbide is a compound of particular importance. Titanium carbide combines the advantages of a high melting point (3140 celsius degree) and hardness (3000 Hv) with those of relative lightness (density 4.93 10 3 Kg m -3 ).It also exhibits high resistance to both corrosion and oxidation and a relatively low friction coefficient. Usually, TiC films are produced by deposition with plasma-enhanced CVD (PCVD), thermal chemical vapour deposition (CVD) or activated reactive evaporation methods. However, these methods require high temperature (>600 celsius degree) substrates to achieve the deposition, which sometimes causes thermal damage to the deposited films. At temperature above 550 celsius degree, thermal diffusion of materials not suitable may also occur. In addition, it has been reported that the maximum temperature which permits the appropriate coating of hardened steel tools is 500 celsius degree. Therefore, it is desirable to develop a deposition technique for TiC films using low-temperature substrates to avoid thermal damage. So, different physical vapour deposition (PVD) processes for deposition of TiC at relatively low temperatures have been used through the years. These processes are based on vaporisation of titanium in hydrocarbon atmosphere or on sputtering of solid TiC target or titanium target in hydrocarbon atmosphere. the most often-used hydrocarbon gases are methane, acetylene, ethene and ethane. In previous works, we

  16. Properties of gelatin-based films incorporated with chitosan-coated microparticles charged with rutin.

    Science.gov (United States)

    Dammak, Ilyes; Bittante, Ana Mônica Quinta Barbosa; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-08-01

    The aim of this study was development an active film based on gelatin incorporated with antioxidant, rutin carried into microparticles. The complexation between oppositely charged lecithin and chitosan was applied to prepare the chitosan-coated microparticles. The generated microparticles had an average size of 520±4nm and a span of 0.3 were formulated by a rotor-stator homogenize at the homogenization speed 10,000rpm. Composite films were prepared by incorporating chitosan-coated microparticles, at various concentrations (0.05, 0.1, 0.5, or 1% (based on the weight of the gelatin powder)) in the gelatin-based films. For the prepared films, the results showed that obtained physicochemical, water vapor barrier, and mechanical were compared with native gelatin film with a slight decrease for chitosan concentration higher than 0.5%. The microstructure studies done by scanning electron microscopes, revealed different micropores embedded with oil resulting from the incorporation of the microparticles into the gelatin matrix. Moreover, the calorimetric results were comparable to those of gelatin control film with T g value 45°C and increased crystallinity percentage with increasing incorporation of microparticles. This original concept of composite biodegradable films may thus be a good alternative to incorporate liposoluble active compounds to design an active packaging with good properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Campo, L. del [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Emittance of Inconel 718 coated with plasma sprayed yttria stabilized zirconia. Black-Right-Pointing-Pointer The coating is opaque for {lambda} > 9 {mu}m and semi-transparent for {lambda} < 9 {mu}m. Black-Right-Pointing-Pointer In the semi-transparent region the emittance decreases with coating thickness. Black-Right-Pointing-Pointer 300 {mu}m thick coatings are still semi-transparent. Black-Right-Pointing-Pointer In the opaque region the surface roughness determines the emittance level. - Abstract: Knowledge of the radiative behaviour of the yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) is needed to perform radiative heat transfer calculations in industrial applications. In this paper, normal spectral emittance experimental data of atmospheric plasma sprayed (PS) YSZ films layered on Inconel 718 substrates are shown. The spectral emittance was measured between 2.5 and 22 {mu}m on samples with film thicknesses ranging from 20 to 280 {mu}m. The samples were heated in a controlled environment, and the emittance was measured for several temperatures between 330 and 730 Degree-Sign C. The dependence of the spectral emittance with film thickness, surface roughness and temperature has been studied and compared with the available results for YSZ TBCs obtained by electron-beam physical vapour deposition. The PS-TBC samples show a Christiansen point at {lambda} = 12.8 {mu}m. The films are semi-transparent for {lambda} < 9 {mu}m, and opaque for {lambda} > 9 {mu}m. In the semi-transparent region, the contribution of the radiation emitted by the Inconel 718 substrate to the global emittance of the samples is analysed. In addition, the influence of the roughness in the emittance values in the opaque spectral region is discussed. Finally, the total normal emittance is obtained as a function of the TBC thickness.

  18. Multifunctionality in coating films including Nb-doped TiO2 and Cs x WO3: near infrared shielding and photocatalytic properties

    Science.gov (United States)

    Asakura, Yusuke; Anada, Yuto; Hamanaka, Ryo; Sato, Tsugio; Katsumata, Ken-ichi; Wu, Xiaoyong; Yin, Shu

    2018-06-01

    Various types of coating films were obtained from hydrothermally synthesized Nb-doped TiO2 (NTO) and Cs x WO3 (CWO) nanoparticles. The coating films possessed multifunctionality including near infrared (NIR) absorption and photocatalysis abilities. The NTO and CWO nanoparticles were synthesized by a unique solvothermal reaction in which water induced by an esterification reaction between alcohol and carboxylic acid can act as a hydrolyzing agent for metal precursors. NTO was synthesized by the unique solvothermal reaction for the first time. The reaction accompanied by the reduction of Ti4+ to Ti3+ led to the formation of nanoparticles with both NIR absorption and photocatalytic properties. The effect of the ethanol–acetic acid ratio on the morphology of the obtained NTO was investigated, and the larger amount of acetic acid led to a larger nanoparticle size, indicating the size controllability. The two types of coating film, including CWO and NTO nanoparticles, were obtained for comparison: (1) coexistent coating film: one side of the quartz glass was coated with a dispersion, including both CWO and NTO nanoparticles, and (2) double-sided coating film: a quartz glass coated with a CWO dispersion on one side and an NTO dispersion on the other side. The double-sided coating led to higher multifunctionality. Furthermore, the optimized condition for the double-sided coating was investigated by using various NTO particles obtained using different ethanol–acetic acid ratios.

  19. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  20. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NARCIS (Netherlands)

    Martinez, D. Martinez; Nohava, Jiri; De Hosson, J. Th. M.

    2015-01-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond- like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the

  1. Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

    Directory of Open Access Journals (Sweden)

    Mohammadreza Foruzanmehr

    2014-04-01

    Full Text Available   Objective(s: Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were deposited on nano-scale electro-polished stainless steel 316L with 1 to 5 nano-sized layers. Surface morphology and structure of the film were studied with X-ray diffraction and atomic force microscopy. Blood compatibility was also determined by measuring the platelet activation (CD62P expression, platelet adhesion (Scanning Electron Microscopy, and the blood clotting time on these samples. Results: The films were compact and smooth and existed mainly in the form of anatase. By increasing the number of TiO2 thin layer, clotting time greatly extended, and the population of activated platelet and P-selectine expression changed according to the surface characteristics of each layer. Conclusion: The findings revealed that stainless steel 316L coated with nano-structured TiO2 layer improved blood compatibility, in terms of both blood platelet activity and coagulation cascade, which can decrease the thrombogenicity of blood contacting devices which were made from stainless steel.

  2. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells.

    Science.gov (United States)

    Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2017-12-20

    Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

  3. Composite structure of ZnO films coated with reduced graphene oxide: structural, electrical and electrochemical properties

    Science.gov (United States)

    Shuai, Weiqiang; Hu, Yuehui; Chen, Yichuan; Hu, Keyan; Zhang, Xiaohua; Zhu, Wenjun; Tong, Fan; Lao, Zixuan

    2018-02-01

    ZnO films coated with reduced graphene oxide (RGO-ZnO) were prepared by a simple chemical approach. The graphene oxide (GO) films transferred onto ZnO films by spin coating were reduced to RGO films by two steps (exposed to hydrazine vapor for 12 h and annealed at 600 °C). The crystal structures, electrical and photoluminescence properties of RGO-ZnO films on quartz substrates were systematically studied. The SEM images illustrated that RGO layers have successfully been coated on the ZnO films very tightly. The PL properties of RGO-ZnO were studied. PL spectra show two sharp peaks at 390 nm and a broad visible emission around 490 nm. The resistivity of RGO-ZnO films was measured by a Hall measurement system, RGO as nanofiller considerably decrease the resistivity of ZnO films. An electrode was fabricated, using RGO-ZnO films deposited on Si substrate as active materials, for super capacitor application. By comparison of different results, we conclude that the RGO-ZnO composite material couples possess the properties of super capacitor. Project supported by the National Natural Science Foundation of China (Nos. 61464005, 51562015), the Natural Science Foundation of Jiangxi Province (Nos. 20143ACB21004, 20151BAB212008, 20171BAB216015), the Jiangxi Province Foreign Cooperation Projects, China (No. 20151BDH80031), the Leader Training Object Project of Major Disciplines Academic and Technical of Jiangxi Province (No. 20123BCB22002), and the Key Technology R & D Program of the Jiangxi Provine of Science and Technology (No. 20171BBE50053).

  4. Development of a flexible nanocomposite TiO{sub 2} film as a protective coating for bioapplications of superelastic NiTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aun, Diego Pinheiro, E-mail: diegoaun@yahoo.com.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil); Houmard, Manuel, E-mail: mhoumard@ufmg.br [Department of Materials and Construction Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil); Mermoux, Michel, E-mail: michel.mermoux@lepmi.grenoble-inp.fr [LEPMI, Grenoble INP, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Latu-Romain, Laurence, E-mail: laurence.latu-romain@simap.grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Joud, Jean-Charles, E-mail: jean-charles.joud@grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Berthomé, Gregory, E-mail: gregory.berthome@simap.grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Buono, Vicente Tadeu Lopes, E-mail: vbuono@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil)

    2016-07-01

    Highlights: • A NiTi alloy was coated with a flexible TiO{sub 2} protective layer via the sol–gel method. • Maximum flexibility was obtained with a nanocomposite crystalline/amorphous film. • The film reduces the Ni surface content, possibly improving the biocompatibility. - Abstract: An experimental procedure to coat superelastic NiTi alloys with flexible TiO{sub 2} protective nanocomposite films using sol–gel technology was developed in this work to improve the metal biocompatibility without deteriorating its superelastic mechanical properties. The coatings were characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and glazing incidence X-ray diffraction. The elasticity of the film was tested in coated specimens submitted to three-point bending tests. A short densification by thermal treatment at 500 °C for 10 min yielded a bilayer film consisting of a 50 nm-thick crystallized TiO{sub 2} at the inner interface with another 50-nm-thick amorphous oxide film at the outer interface. This bilayer could sustain over 6.4% strain without cracking and could thus be used to coat biomedical instruments as well as other devices made with superelastic NiTi alloys.

  5. A method for probing the effects of conformal nanoscale coatings on fatigue crack initiation in electroplated Ni films

    International Nuclear Information System (INIS)

    Straub, T.; Baumert, E.K.; Eberl, C.; Pierron, O.N.

    2012-01-01

    This paper describes an experimental technique to identify robust nanoscale coatings for improving the long-term reliability of metallic microelectromechanical systems. More specifically, the influence of nanoscale alumina coatings on the fatigue crack initiation process in 20 μm thick electrodeposited Ni films was investigated in a mild (30 °C, 50% RH) and harsh (80 °C, 90% RH) environment. Atomic-layer-deposited alumina layers, with thicknesses of 5 and 25 nm, were coated on Ni fatigue micro-resonators, and the fatigue degradation behavior in the very high cycle fatigue regime was compared to that of uncoated structures. Evidence based on post-test scanning electron microscopy and resonant frequency evolution plots shows that the coatings do not prevent the formation of fatigue extrusions and micro-cracks. However, their formation is likely delayed for the 25 nm thick alumina-coated Ni films. - Highlights: ► Effect of alumina coatings (5 and 25 nm thick) on fatigue initiation in nickel films ► Fatigue tests were performed at 30 °C, 50% relative humidity (RH) and 80 °C, 90% RH. ► Coatings did not prevent fatigue extrusions and micro-cracks. ► 25 nm coatings likely delayed the formation of fatigue extrusions and micro-cracks. ► The technique can be used to identify reliable nanoscale coatings.

  6. Fabrication of yttrium-doped barium zirconate thin films with sub-micrometer thickness by a sol–gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hanlin; Su, Pei-Chen, E-mail: peichensu@ntu.edu.sg

    2015-06-01

    A modified sol–gel process was developed for the fabrication of sub-micrometer scale yttrium-doped barium zirconate (BZY) thin film at much lower processing temperatures. The film was fabricated by direct spin-coating of the sol on a Si{sub 3}N{sub 4} passivated Si substrate, followed by low temperature thermal annealing at 1000 °C, and single BZY phase without barium carbonate residue was obtained. A 200 nm-thick thin film without obvious through-film cracks was fabricated with optimized process parameters of sol concentration and heating rate. The stoichiometry of the BZY thin film was well-controlled and no Ba evaporation was observed due to the low processing temperature. The combination of sol–gel and spin coating method can be a promising alternative to vacuum-based thin film deposition techniques for the fabrication of sub-micrometer scale BZY thin film. - Highlights: • A sol–gel spin coating method was developed for the fabrication of BZY thin films. • The processing temperature was much lower compared to powder-based sintering. • Sub-micrometer scale BZY thin film with well-controlled stoichiometry was obtained.

  7. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    International Nuclear Information System (INIS)

    Barik, R.K.; Bera, A.; Raju, R.S.; Tanwar, A.K.; Baek, I.K.; Min, S.H.; Kwon, O.J.; Sattorov, M.A.; Lee, K.W.; Park, G.-S.

    2013-01-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  8. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R. K.; Bera, A. [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Raju, R. S. [Central Electronics Engineering Research Institute (CEERI), Rajasthan (India); Tanwar, A. K.; Baek, I. K.; Min, S. H.; Kwon, O. J.; Sattorov, M. A. [Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Lee, K. W. [LIG Nex1, Seoul (Korea, Republic of); Park, G.-S., E-mail: gunsik@snu.ac.kr [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  9. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo

    2017-05-08

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  10. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo; Liu, Yucheng; Ren, Xiaodong; Yang, Zhou; Li, Ruipeng; Su, Hang; Yang, Xiaoming; Xu, Junzhuo; Xu, Hua; Hu, Jian-Yong; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2017-01-01

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  11. Synthesis of LSM films deposited by dip-coating on YSZ substrate

    International Nuclear Information System (INIS)

    Conceicao, Leandro da; Souza, Mariana M.V.M.; Ribeiro, Nielson F.P.

    2010-01-01

    The dip-coating process was used to deposit films of La 0.7 Sr 0. 3MnO 3 (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 μm, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  12. Laser deposition of SmCo thin film and coating on different substrates

    International Nuclear Information System (INIS)

    Allocca, L; Bonavolonta, C; Valentino, M; Giardini, A; Lopizzo, T; Morone, A; Verrastro, M F; Viggiano, V

    2008-01-01

    Thin films and coatings of permanent magnetic materials are very important for different electronic and micromechanical applications. This paper deals with the fabrication, using pulsed laser deposition (PLD) technique, of good quality magnetic SmCo thin films on polycarbonate, steel, silicon and amorphous quartz substrates, for low cost electronic applications like radio frequency identification (RFID) antennas and electromechanical devices for fuel feeding control in the automotive. X-ray fluorescence and magnetic scanning measurements using giant magneto-resistive (GMR) sensors have been performed to study the functional magnetic properties of the deposited thin films.

  13. Cracking in Drying Colloidal Films

    Science.gov (United States)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  14. Cage and linear structured polysiloxane/epoxy hybrids for coatings: Surface property and film permeability.

    Science.gov (United States)

    Ma, Yanli; He, Ling; Jia, Mengjun; Zhao, Lingru; Zuo, Yanyan; Hu, Pingan

    2017-08-15

    Three polysiloxane/epoxy hybrids obtained by evolving cage- or linear-structured polysiloxane into poly glycidyl methacrylate (PGMA) matrix are compared used as coatings. One is the cage-structured hybrid of P(GMA/MA-POSS) copolymer obtained by GMA and methacrylisobutyl polyhedral oligomeric silsesquioxane (MA-POSS) via free radical polymerization, the other two are PGMA/NH 2 -POSS and PGMA/NH 2 -PDMS hybrids by cage-structured aminopropyllsobutyl POSS (NH 2 -POSS) or linear-structured diamino terminated poly(dimethylsiloxane) (NH 2 -PDMS) to cure PGMA. The effect of MA-POSS, NH 2 -POSS and NH 2 -PDMS on polysiloxane/epoxy hybrid films is characterized according to their surface morphology, transparency, permeability, adhesive strength and thermo-mechanical properties. Due to caged POSS tending to agglomerate onto the film surface, P(GMA/MA-POSS) and PGMA/NH 2 -POSS films exhibit much more heterogeneous surfaces than PGMA/NH 2 -PDMS film, but the well-compatibility between epoxy matrix and MA-POSS has provided P(GMA/MA-POSS) film with much higher transmittance (98%) than PGMA/NH 2 -POSS film (24%), PGMA/NH 2 -PDMS film (27%) and traditional epoxy resin film (5%). The introduction of polysiloxane into epoxy matrix is confirmed to create hybrids with strong adhesive strength (526-1113N) and high thermos-stability (T g =262-282°C), especially the cage-structured P(GMA/MA-POSS) hybrid (1113N and 282°C), but the flexible PDMS improves PGMA/NH 2 -PDMS hybrid with much higher storage modulus (519MPa) than PGMA/NH 2 -POSS (271MPa), which suggests that PDMS is advantage in improving the film stiffness than POSS cages. However, cage-structured P(GMA/MA-POSS) and PGMA/NH 2 -POSS indicate higher permeability than PGMA/NH 2 -PDMS and traditional epoxy resin. Comparatively, the cage-structured P(GMA/MA-POSS) hybrid is the best coating in transparency, permeability, adhesive strength and thermostability, but linear-structured PGMA/NH 2 -PDMS hybrid behaviors the best coating in

  15. Structural characterization and comparison of iridium, platinum and gold/palladium ultra-thin film coatings for STM of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Sebring, R.; Arendt, P.; Imai, B.; Bradbury, E.M.; Gatewood, J. [Los Alamos National Lab., NM (United States); Panitz, J. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Yau, P. [Univ. of California, Davis, CA (United States)

    1997-10-30

    Scanning tunneling microscopy (STM) is capable of atomic resolution and is ideally suited for imaging surfaces with uniform work function. A biological sample on a conducting substrate in air does not meet this criteria and requires a conductive coating for stable and reproducible STM imaging. In this paper, the authors describe the STM and transmission electron microscopy (TEM) characterization of ultra-thin ion-beam sputtered films of iridium and cathode sputtered gold/palladium and platinum films on highly ordered pyrolytic graphite (HOPG) which were developed for use as biomolecule coatings. The goals were the development of metal coatings sufficiently thin and fine grained that 15--20 {angstrom} features of biological molecules could be resolved using STM, and the development of a substrate/coating system which would allow complementary TEM information to be obtained for films and biological molecules. The authors demonstrate in this paper that ion-beam sputtered iridium on highly ordered pyrolytic graphite (HOPG) has met both these goals. The ion-beam sputtered iridium produced a very fine grained (< 10 {angstrom}) continuous film at 5--6 {angstrom} thickness suitable for stable air STM imaging. In comparison, cathode sputtered platinum produced 16 {angstrom} grains with the thinnest continuous film at 15 {angstrom} thickness, and the sputtered gold/palladium produced 25 {angstrom} grains with the thinnest continuous film at 18 {angstrom} thickness.

  16. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  17. Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method

    Science.gov (United States)

    Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.

    2018-04-01

    Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.

  18. Edible films and coatings in seafood preservation: A review.

    Science.gov (United States)

    Dehghani, Samira; Hosseini, Seyed Vali; Regenstein, Joe M

    2018-02-01

    Seafood is highly perishable and has a short shelf-life. During storage many reactions occur leading to changes in quality such as endogenous chemical and enzymatic reactions. The safety and shelf-life are related to the presence of food spoilage and pathogenic microorganisms. Despite improved manufacturing facilities and implementation of effective process control procedures such as the Hazard Analysis Critical Control Point system by seafood companies, the number of seafood-related foodborne illnesses has increased. Edible coatings can improve the quality of fresh and frozen products by retarding microbial growth, reducing lipid oxidation and moisture loss, and functioning as a carrier of food additives such as antimicrobial and antioxidant agents. Biodegradable edible coatings have various advantages over synthetic coatings such as being edible and generally being more environmentally friendly. This paper reviews the application of various types of natural bio-polymer and different active ingredients incorporated into the films and their effects on seafood quality attributes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Murthy, Swathi; Kofod, Guggi

    We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user- and environ......We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user......- and environmentally-friendly alkali metal chloride salts can be directly dissolved in controllable amounts. The homogeneous distribution of alkali metals in the ink allows uniform grain growth within the deposited absorber layer as a result of liquid phase assisted sintering. We find that particularly beneficial...... as an unquantifiable amount of ZnS. A Sono-tek spray-coating system is used which utilizes ultrasonic atomization. We investigate the effect of different binders, ink concentration, and spray-coating conditions, i.e. spray power, flow rate from syringe pump, distance between spray nozzle and the substrate, and time...

  20. Toward High-Performance Coatings for Biomedical Devices: Study on Plasma-Deposited Fluorocarbon Films and Ageing in PBS

    Directory of Open Access Journals (Sweden)

    Diego Mantovani

    2010-03-01

    Full Text Available High performance coatings tailored to medical devices represent a recognised approach to modulate surface properties. Plasma-deposited fluorocarbon films have been proposed as a potential stent coating. Previous studies have shown promising adhesion properties: the 35 nm-thick film sustained plastic deformation up to 25% such as induced during the clinical implantation. In this study, the compositional and morphological changes of plasma-deposited fluorocarbon films were examined during ageing in a pseudo-physiological medium, a phosphate buffer solution (PBS, by angle-resolved XPS, FT-IR data and AFM images. The evolution of the ageing process is discussed: defluorination and crosslinking yielded an oxidized protective top layer onto the films, which showed further degradation.

  1. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels.

    Science.gov (United States)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-28

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  2. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    Science.gov (United States)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  3. Recobrimento de sementes de brócolos e salsa com coberturas e filmes biodegradáveis Covering broccoli and parsley seeds with biodegradable films and coatings

    Directory of Open Access Journals (Sweden)

    Patrícia Sayuri Tanada-Palmu

    2005-01-01

    Full Text Available O objetivo deste trabalho foi a comparação do desempenho de sementes de brócolos e de salsa cobertas ou aderidas a filmes biodegradáveis de quitosana e gelatina. Inicialmente, determinou-se o número ótimo de camadas de cobertura e a espessura do filme, para não comprometer a germinação das sementes. O desempenho foi avaliado por meio da capacidade de germinação e do vigor, e pelas massas de material fresco e seco de plantas com cerca de 30 dias. Observou-se germinação inferior ao controle nas sementes inseridas às fitas. O recobrimento de sementes obteve bons resultados em termos de vigor e desenvolvimento das plantas. Pelos resultados indicados, verificou-se que o recobrimento de sementes, com coberturas biodegradáveis, pode ser promissor, devido à melhoria na germinação das sementes recobertas e também no desenvolvimento das plantas quando comparadas às sementes sem tratamento.The objective of this work was to compare the performance of broccoli and parsley seeds coated or adhered to biodegradable films of gelatin and chitosan. Initially, the optimum number of coating layers and the thickness of the film were determined in order not to affect the germination of seeds. The performance was evaluated by germination capacity and vigor, and by fresh and dry weight of plants with 30 days. The seeds inserted into the films of gelatin and chitosan showed lower germination results than the control seeds. The coating of the seeds with gelatin and chitosan coatings of had good results in terms of vigor and development of plants. The results indicated that coating the seeds with biodegradable coatings can be promising due to the improvement of the germination of the coated seeds and the development of the plants when compared to the seeds with not treated.

  4. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245 (Indonesia); Sugianto,; Maddu, A. [Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Institute of Culture, IPB Bogor (Indonesia)

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.

  5. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  6. Studies on the mechanism of printing film-coated tablets containing titanium dioxide in the film by using UV laser irradiation.

    Science.gov (United States)

    Kato, Yoshiteru; Nakashima, Yasuhiko; Shino, Naoki; Sasaki, Koichi; Hosokawa, Akihiro; Ishihara, Hiroshi

    2010-04-01

    The purpose of this article is to study a detailed mechanism of printing when film-coated tablets were irradiated by UV laser at a wavelength of 355 nm. Hydroxypropylmethylcellulose (HPMC) film containing titanium dioxide (TiO(2)) and the film not containing TiO(2) and TiO(2) powder were lirradiated by the UV laser and estimated by the morphological observation by zoom stereo microscope, thermogravimetric analysis (TGA), total color difference (dE), X-ray powder diffraction (XRD), and dispersive Raman microscopy. In the case of the film containing TiO(2), the film showed a visible change in its color from white to gray by the UV laser irradiation. By zoom stereo microscope, it was found that the entire UV laser-irradiated area was not grayed uniformly, but many black particles, whose diameter was about 2 microm, were observed on the film. When TiO(2) powder was irradiated by the UV laser, a visible change in its color from white to gray was observed similar to the case of the film containing TiO(2). There were many black particles locally in the UV laser-treated TiO(2) powder by the morphological observation, and these black particles, agglomerates of the grayed oxygen-defected TiO(2), were associated with the visible change of the TiO(2). It was found that the film-coated tablets were printed utilizing the formation of the black particles by the agglomeration of the grayed oxygen-defected TiO(2) by the UV laser irradiation.

  7. The Influence of Coating Structure on Micromachine Stiction

    Energy Technology Data Exchange (ETDEWEB)

    Kushmerick, J.G.; Hankins, M.G.; De Boer, M.P.; Clews, P.J.; Carpick, R.W.; Bunker, B.C.

    2000-10-03

    We have clearly shown that the film morphology dictates the anti-stiction properties of FDTS coatings. Release stiction is not observed when ideal monolayer films are present but can be extensive when thicker aggregate structures are present. This finding is significant because it indicates that agglomerate formation during processing is a major source of irreproducible behavior when FDTS coatings are used to release micromachined parts. The results could also help explain why coatings that are aged at high. humidity start to stick to each other. (AFM results show that humid environments promote the formation of aggregates from monolayer films.) The reason why aggregate structures promote stiction is currently unknown. However, it appears that aggregates interfere with the ability of FDTS to form dense, well-ordered coatings under microstructures, leading to surfaces that are sufficiently hydrophilic to allow for release stiction via an attractive Laplace force during drying.

  8. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  9. Fluoropolymer coated alanine films treated by atmospheric pressure plasmas − In comparison with gamma irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Bardenshtein, Alexander; Morgen, Per

    2018-01-01

    Fluoropolymer coated alanine films are treated by a dielectric barrier discharge and a gliding arc at atmospheric pressure as well as with gamma irradiation. The film surfaces and the underlying bulk materials are characterized before and after each treatment. The fluorine content decreases...

  10. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    International Nuclear Information System (INIS)

    Kagemori, N.; Umemura, K.; Yoshimura, T.; Inoue, M.; Kawai, S.; Yano, K.; Sera, K.; Futatsugawa, S.; Nakamura, Y.

    1999-01-01

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  11. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hongchao [Department of Environmental Engineering, Hubei Agriculture College, 434103, Jingzhou (China)

    2003-10-01

    An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L{sup -1} HCl solution containing 0.02 mol L{sup -1} KI, Hg{sup 2+} was firstly preconcentrated at the MWNT film and then reduced at -0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about -0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I{sup -} remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg{sup 2+} at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg{sup 2+} over the range 8 x 10{sup -10}-5 x 10{sup -7} mol L{sup -1}. The lowest detectable concentration of Hg{sup 2+} is 2 x 10{sup -10} mol L{sup -1} at 5 min accumulation. The relative standard deviation (RSD) at 1 x 10{sup -8} mol L{sup -1} Hg{sup 2+} was about 6% (n=10). By using this proposed method, Hg{sup 2+} in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis. (orig.)

  12. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United States)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  13. Magnetism in spin-coated pristine TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hassini, Awatef [IUT de Blois, 3 place Jean Jaures, C.S. 2903, 41029 Blois (France); Sakai, Joe [Laboratoire LEMA, UMR 6157 CNRS/CEA, Universite Francois Rabelais, Parc de Grandmont, 37200 Tours (France); Lopez, Josep Santiso [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, Bellaterra 08193 (Spain); Nguyen Hoa Hong [Laboratoire LEMA, UMR 6157 CNRS/CEA, Universite Francois Rabelais, Parc de Grandmont, 37200 Tours (France)], E-mail: nguyen.hoahong@univ-tours.fr

    2008-04-28

    Spin coated pristine TiO{sub 2} thin films show magnetic behaviors that are similar to those of pulsed laser ablated TiO{sub 2} thin films that were reported previously. It seems that in this kind of material, ferromagnetism (FM) is indeed intrinsic, and it can be achieved by various deposition techniques. The fact that oxygen annealing degrades the magnetic moment implies that the observed magnetism is likely due to defects or/and oxygen vacancies. Moreover, thick films that were deposited under the same growth conditions have the magnetic ordering degraded enormously. It is found that as for FM in undoped TiO{sub 2} films made by the chemical solution deposition, not only do defects/oxygen vacancies play a role, but also the confinement effects seem to be important.

  14. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    Science.gov (United States)

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. © 2011 American Chemical Society

  15. Decorative properties of annealed Ti N coatings

    International Nuclear Information System (INIS)

    Klubovich, V.V.; Rubanik, V.V.; Bagrets, D.A.

    2012-01-01

    The decorative properties of annealed TiN coatings on austenitic stainless steel which were formed by vacuum-arc deposition wen investigated. It was shown the principal possibility to control colour characteristics of TiN films due to heat treatment at different temperature and time that expand their usage as decorative coatings. (authors).

  16. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    U. Gangopadhyay

    2007-01-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  17. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  18. Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2–Cu2O thin films

    International Nuclear Information System (INIS)

    Aytug, Tolga; Paranthaman, Parans M; Simpson, John T; Christen, David K; Bogorin, Daniela F; Mathis, John E

    2014-01-01

    By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO 2 –Cu 2 O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie–Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ∼172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO 2 , the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required. (papers)

  19. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation

    Science.gov (United States)

    Anawati, Anawati; Gumelar, Muhammad Dikdik

    2018-05-01

    Plasma Electrolytic Oxidation (PEO) is an electrochemical anodization process which involves the application of a high voltage to create intense plasma on a metal surface to form a ceramic type of oxide. The resulted coating exhibits high wear resistance and good corrosion barrier which are suitable to enhance the performance of biodegradable Mg alloys. In this work, the role of alloying element Ca in modifying the characteristics of PEO layer formed on AZ61 series magnesium alloys was investigated. PEO treatment was conducted on AZ61, AZX611, and AZX612 alloys in 0.5 M Na3PO4 solution at a constant current of 200 A/m2 at 25°C for 8 min. The resulted coatings were characterized by field emission-scanning electron microscope (FESEM), X-ray diffraction spectroscopy (XRD), and X-ray fluorescence spectroscopy (XRF), as well as hardness test. The presence of alloying element Ca in the AZ61 alloys accelerated the PEO coatings formation without altering the coating properties significantly. The coating formed on AZX specimen was slightly thicker ( 14-17 µm) than that of formed onthe AZ specimens ( 13 µm). Longer exposure time to plasma discharge was the reason for faster thickening of the coating layer on AZX specimen. XRD detected a similar crystalline oxide phase of Mg3(PO4)2 in the oxide formed on all of the specimens. Zn was highly incorporated in the coatings with a concentration in the range 24-30 wt%, as analyzed by XRF. Zn compound might exist in amorphous phases. The microhardness test on the coatings revealed similar average hardness 124 HVon all of the specimens.

  20. Structure, electrochromic and optical properties of WO3 film prepared by dip coating-pyrolysis

    International Nuclear Information System (INIS)

    Yang Haitao; Shang Fuliang; Gao Ling; Han Haitao

    2007-01-01

    The tungsten oxide (WO 3 ) film was grown by dip coating-pyrolysis method with the PEG-400 as the structure-directing agent. Microstructure of the WO 3 film was characterized by TG-DSC, XRD and SEM techniques. It was found that the film annealed at 350 deg. C for 2 h comprised cubic WO 3 and orthorhombic WO 3 . The measurements of the cyclic voltammetry (CV) and UV-vis spectrum suggested that the WO 3 film had a good electrochromic reversibility performance. The film possessed excellent modulation to the visible light and the maximal average transmittance modulation reached 70.06%

  1. Electrochemical and dissolution studies on coated film and magnetite pellet in PDCA and NTA based formulations

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Sumathi, S.; Rangarajan, S.; Narasimhan, S.V.

    2000-01-01

    In water cooled nuclear reactors magnetite often exists as both mobile particulate protective film on the inner surface of the PHT system. To determine the mechanism and kinetics of dissolution from a film coated on carbon steel (CS) and magnetite pellet electrochemical measurements were carried out in 2,6-pyridine dicarboxylic acid (PDCA) and nitrilo-triacetic acid (NTA) based formulations containing ascorbic acid (AA) and citric acid (CA) at 28 degC and 60 degC. The solution redox potential arises based on the release of relative amounts of Fe 2+ and Fe 3+ . Complexation, adsorption and reduction affect the concentration of these species in solutions. On coated specimen, the pore size and rate of formation via auto reduction contribute to the observed potential. In PDCA based formulation higher percentage of magnetite dissolution with lower base metal corrosion was observed as compared to that in NTA based formulation. The base metal aided dissolution due to the pores and microcracks in the film (Auto reduction) was observed for coated film. The dominant role of surface adsorption characteristics of PDCA, AA and CA were evident in magnetite pellet dissolution studies. (author)

  2. Oxygen Plasma Modification of Poss-Coated Kapton(Registered TradeMark) HN Films

    Science.gov (United States)

    Wohl, C. J.; Belcher, M. A.; Ghose, S.; Connell, J. W.

    2008-01-01

    The surface energy of a material depends on both surface composition and topographic features. In an effort to modify the surface topography of Kapton(Registered TradeMark) HN film, organic solutions of a polyhedral oligomeric silsesquioxane, octakis(dimethylsilyloxy)silsesquioxane (POSS), were spray-coated onto the Kapton(Registered TradeMark) HN surface. Prior to POSS application, the Kapton(Registered TradeMark) HN film was activated by exposure to radio frequency (RF)-generated oxygen plasma. After POSS deposition and solvent evaporation, the films were exposed to various durations of RF-generated oxygen plasma to create a topographically rich surface. The modified films were characterized using optical microscopy, attenuated total reflection infrared (ATR-IR) spectroscopy, and high-resolution scanning electron microscopy (HRSEM). The physical properties of the modified films will be presented.

  3. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    International Nuclear Information System (INIS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-01-01

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  4. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  5. Ultrananocrystalline diamond film as a wear resistant and protective coating for mechanical seal applications

    International Nuclear Information System (INIS)

    Sumant, A.V.; Krauss, A.R.; Gruen, D.M.; Auciello, O.; Erdemir, A.; Williams, M.; Artiles, A.F.; Adams, W.

    2005-01-01

    Mechanical shaft seals used in pumps are critically important to the safe operation of the paper, pulp, and chemical process industry, as well as petroleum and nuclear power plants. Specifically, these seals prevent the leakage of toxic gases and hazardous chemicals to the environment and final products from the rotating equipment used in manufacturing processes. Diamond coatings have the potential to provide negligible wear, ultralow friction, and high corrosion resistance for the sliding surfaces of mechanical seals, because diamond exhibits outstanding tribological, physical, and chemical properties. However, diamond coatings produced by conventional chemical vapor deposition (CVD) exhibit high surface roughness (R a ≥ 1 μm), which results in high wear of the seal counterface, leading to premature seal failure. To avoid this problem, we have developed an ultrananocrystalline diamond (UNCD) film formed by a unique CH 4 /Ar microwave plasma CVD method. This method yields extremely smooth diamond coatings with surface roughness R a = 20-30 nm and an average grain size of 2-5 nm. We report the results of a systematic test program involving uncoated and UNCD-coated SiC shaft seals. Results confirmed that the UNCD-coated seals exhibited neither measurable wear nor any leakage during long-duration tests that took 21 days to complete. In addition, the UNCD coatings reduced the frictional torque for seal rotation by five to six times compared with the uncoated seals. This work promises to lead to rotating shaft seals with much improved service life, reduced maintenance cost, reduced leakage of environmentally hazardous materials, and increased energy savings. This technology may also have many other tribological applications involving rolling or sliding contacts.

  6. Carbon-based sputtered coatings for enhanced chitosan-based films properties

    Science.gov (United States)

    Fernandes, C.; Calderon V., S.; Ballesteros, Lina F.; Cerqueira, Miguel A.; Pastrana, L. M.; Teixeira, José A.; Ferreira, P. J.; Carvalho, S.

    2018-03-01

    In order to make bio-based packaging materials competitive in comparison to petroleum-based one, some of their properties need to be improved, among which gas permeability is of crucial importance. Thus, in this work, carbon-based coatings were applied on chitosan-based films by radiofrequency reactive magnetron sputtering aiming to improve their barrier properties. Chemical and morphological properties were evaluated in order to determine the effect of the coatings on the chemical structure, surface hydrophobicity and barrier properties of the system. Chemical analysis, performed by electron energy loss spectroscopy and Fourier transform infrared spectroscopy, suggests similar chemical characteristics among all coatings although higher incorporation of hydrogen as the acetylene flux increases was observed. On the other hand, scanning transmission electron microscopy revealed that the porosity of the carbon layer can be tailored by the acetylene flux. More importantly, the chitosan oxygen permeability showed a monotonic reduction as a function of the acetylene flux. This study opens up new opportunities to apply nanostructured coatings on bio-based polymer for enhanced oxygen barrier properties.

  7. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    Science.gov (United States)

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Residual stress in coated low-Z films of TiC and TiN. Pt. 2

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Kabeya, Z.; Kamada, K.

    1984-01-01

    The correlations of the residual stresses with microstructures of TiC and TiN films deposited onto various substrates were examined by means of observations of SEM micrographs, X-ray back-reflected Debye rangs and diffraction line profile of X-ray spectrometer chart. It was found that specimens with lower residual stress generally show sharp line profile and good separation between Ksub(α1) and Ksub(α2) diffraction peaks in both TiN and TiC films, indicating better crystalline perfection. PVD coated TiC films on Mo and Inconel substrates show poor separation of Ksub(α1) and Ksub(α2) peaks, namely due to higher residual stresses in comparison with those of CVD coated TiN and TiC films on Mo or Inconel substrate. In CVD TiC/Pocographite system, with film thickness ranging from 10 to 100 μm, the grain size increase with increasing the thickness, except 100 μm thick specimen which has the smallest grain size in this group. However, the sharpness of diffraction profile is best in 20 μm thick film, and worst in 100 μm thick film. This is in good correlation with the amount of residual stress. (orig.)

  9. A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings

    International Nuclear Information System (INIS)

    Ai, L; Chen, T C; Su, W K; Mau, J C; Liu, W F

    2008-01-01

    A fiber sensor based on a polyaniline (PANI) film that is coated on the surface of an etched superstructure fiber grating to detect volatile solvent vapors is experimentally demonstrated. This sensing mechanism is based on the interaction of the testing gas with the polyaniline coating film, which changes the film index, resulting in a shift in the Bragg wavelength. The sensitivity of this sensor to ammonia (NH 3 ) gas is about 0.073 pm ppm −1 , which depends on the optical characteristics of the fiber grating, the diameter of the fiber cladding and the constituents of the sensing film. Methanol concentrations can also be measured using this sensing scheme. The sensitivity of this sensor must be improved to provide a simple, reliable, repeatable and non-destructive method for sensing various chemical gases. (technical design note)

  10. Children's Preferences for Film Form and Technique.

    Science.gov (United States)

    Cox, Carole

    1982-01-01

    Describes the methodology and results of a study of the preferences of fourth- and fifth-grade children for film form and technique. Indicates that children prefer narrative/live action films, followed by narrative/animation, nonnarrative/live action, and nonnarrative/animation. (HTH)

  11. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  12. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  13. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Science.gov (United States)

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  14. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    Science.gov (United States)

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Corrosion Behavior of Ti/TiN Film Coated on AISI 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Han Cheol [Kwangyang College, Gwangyang (Korea, Republic of); Park, Ji Yoon; Kim, Kwan Hyu [Chonnam National University, Gwangju (Korea, Republic of)

    2000-06-15

    Effects of the Ti content and the presence of Ti underlayer on the corrosion behaviors of TiN coated AISI 304 stainless steel have been studied. The stainless steel containing 0.1{approx}1.0 wt% Ti were melted with a vacuum furnace and heat treated at 1050 .deg. C for 1hr for solutionization. The specimens were coated with Ti and TiN with thickness of 1 {mu}m and 2 {mu}m respectively by electron-beam physical vapour deposition (EB-PVD) method. The microstructures and phase analysis were conducted by using SEM and WDS. The coated films showed fine columnar structure. The corrosion potential obtained from the anodic polarization curves measured in H{sub 2}SO{sub 4} solution increased in proportion to the Ti content of substrate and was much higher in the specimen coated with Ti underlayer compared to the specimen without Ti underlayer. The potential-time and the current-time curves which were obtained in 0.1M H{sub 2}SO{sub 4} + 0.1M HCI solution showed that both the increase in Ti content and the presence of Ti underlayer increased the potential and decreased the current density resulting in a dense passive film and a suppress of pit formation respectively.

  16. Improvement in the corrosion protection and bactericidal properties of AZ91D magnesium alloy coated with a microstructured polypyrrole film

    Directory of Open Access Journals (Sweden)

    A.D. Forero López

    2018-03-01

    Full Text Available In this work hollow rectangular microtubes of polypyrrole (PPy films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution. The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer. Finally the duplex film was modified by the incorporation of silver species. The obtained coatings were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS and the antimicrobial activity against the bacteria Escherichia coli was evaluated. The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential, polarization techniques and electrochemical spectroscopy (EIS. The duplex coating presents an improved anticorrosive performance with respect to the PPy film. The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating. Keywords: Polypyrrole, Duplex coating, AZ91D alloy, Corrosion resistance, Antibacterial properties

  17. Formulation and in vitro and in vivo evaluation of film-coated montelukast sodium tablets using Opadry® yellow 20A82938 on an industrial scale

    Directory of Open Access Journals (Sweden)

    Zaid AN

    2013-02-01

    Full Text Available Abdel Naser Zaid,1 Salam Natur,2 Aiman Qaddumi,2 Abeer Abu Ghoush11Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine; 2Pharmacare PLC, Ramallah, PalestinePurpose: The aim of this study was to formulate stable film-coated montelukast sodium (MS tablets using Opadry® yellow 20A82938 (Montikast® tablets and to evaluate their in vitro and in vivo release profile.Methods: MS core tablets were manufactured using a direct compression method. Opadry yellow 20A82938 aqueous coating dispersion was used as the film-coating material. Dissolution of the film-coated tablets was tested in 900 mL of 0.5% sodium lauryl sulfate solution and the bioequivalence of the tablets was tested by comparing them with a reference formulation – Singulair® tablets. In vitro–in vivo correlation was evaluated. The stability of the obtained film-coated tablets was evaluated according to International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines.Results: The efficiency of the film coating was determined by subjecting the coated tablets to gastric pH and drug release was analyzed using high-performance liquid chromatography. The coated tablets had no obvious defects. MS release met the study criterion of not less than 80% dissolved after 30 minutes in 0.5% sodium lauryl sulfate solution. Statistical comparison of the main pharmacokinetic parameters clearly indicated no significant difference between test and reference in any of the calculated pharmacokinetic parameters. Level A correlation between in vitro drug release and in vivo absorption was found to be satisfactory.Conclusion: These findings suggest that aqueous film coating with Opadry yellow 20A82938 is an easy, reproducible, and economical approach for preparing stable MS film-coated tablets without affecting the drug-release characteristics.Keywords: coating, stability, aqueous

  18. Nickel coated flyash (Ni-FAC) cenosphere doped polyaniline composite film for electromagnetic shielding

    International Nuclear Information System (INIS)

    Bora, Pritom J; Ramamurthy, Praveen C; Madras, Giridhar; Vinoy, K J; Kishore

    2015-01-01

    A solid waste material fly ash cenosphere (FAC) was nickel coated and polyaniline in situ polymerized at −30 ± 2 °C in nitrogen atmosphere. A thin film of this composite material was prepared by solution processing and surface morphology/topography was studied. High electromagnetic shielding effectiveness (SE) was obtained for this film; 59 ± 4 μm and 133 ± 4 μm films show an average of 38 and 60 dB SE, respectively, in the frequency range 8.2–12.4 GHz (X-band). Unlike PANI film, the SE of these composite films is high at high frequency. The presence of magneto dielectric microsphere (Ni-FAC) increases the heterogeneity of the composite film in an efficient way for EMI shielding by changing film topography and increasing ac conductivity and permeability. (paper)

  19. Wear behavior of contacting between thin film coating on SKD11 ball and 304 stainless steel disk

    Directory of Open Access Journals (Sweden)

    Sriprasird, J.

    2007-11-01

    Full Text Available Wear is a well known problem in metal stamping die, especially on the die working with stainless steel workpiece, in which wear rate is severe. This research considered various types of material coating on tool surface which were regularly practised in modern stamping industry due to the ability to increase wear resistance. The model study of friction "Ball-on-disk" technique was employed throughout this work. The disk was made from stainless steel austenitic grade (SUS304. The ball was made from cold work tool steel, SKD11 (JIS and was hardened to 60±2 HRC. Ball surface conditions selected for this work were non-coated, coated by TiC-CVD, TiCN (TiC/TiCN/TiN Multilayer-CVD and TiCN (TiN/TiCN Double layer-PVD, and treated by VC-TD. Tests were carried out without lubricant. The results show that the coating film and the surface treatment has no effect on the friction coefficient but it can reduce wear rate by 64.1-99.7% at contact pressure condition less than 1,100 MPa. At the higher level of contact pressure, only 2 types of coating, TiCN (Multilayer-CVD and TiC-CVD, can reduce wear rate. The other two, which are TiCN (Double layer-PVD coating film and a surface treatment by VC-TD process, on the contrary increase the rate of wear significantly. This is due to delamination of coating film at high contact pressure. The coating particles of high hardness accelerate wear phenomenon on the tool surface. Therefore, proper selection of tool surface condition depends on level of contact pressure generated in the process.

  20. Laser-damage thresholds of thin-film optical coatings at 248 nm

    International Nuclear Information System (INIS)

    Milam, D.; Rainer, F.; Lowdermilk, W.H.

    1981-01-01

    We have measured the laser-induced damage thresholds for 248 nm wavelength light of over 100 optical coatings from commercial vendors and research institutions. All samples were irradiated once per damage site with temporally multi-lobed, 20-ns pulses generated by a KrF laser. The survey included high, partial, and dichroic reflectors, anti-reflective coatings, and single layer films. The samples were supplied by ten vendors. The majority of samples tested were high reflectors and antireflective coatings. The highest damage thresholds were 8.5 to 9.4 J/cm 2 , respectively. Although these represent extremes of what has been tested so far, several vendors have produced coatings of both types with thresholds which consistently exceed 6 J/cm 2 . Repeated irradiations of some sites were made on a few samples. These yielded no degradation in threshold, but in fact some improvement in damage resistance. These same samples also exhibited no change in threshold after being retested seven months later

  1. Bioequivalence study of a new sildenafil 100 mg orodispersible film compared to the conventional film-coated 100 mg tablet administered to healthy male volunteers

    Science.gov (United States)

    Radicioni, Milko; Castiglioni, Chiara; Giori, Andrea; Cupone, Irma; Frangione, Valeria; Rovati, Stefano

    2017-01-01

    A new orodispersible film formulation of the phosphodiesterase type 5 inhibitor, sildenafil, has been developed to examine the advantages of an orally disintegrating film formulation and provide an alternative to the current marketed products for the treatment of erectile dysfunction. The pharmacokinetics of the sildenafil 100 mg orodispersible film (IBSA) was compared to that of the conventional marketed 100 mg film-coated tablet (Viagra®) after single-dose administration to 53 healthy male volunteers (aged 18–51 years) in a randomized, open, two-way crossover bioequivalence study. Each subject received a single oral dose of 100 mg of sildenafil as test or reference formulation administered under fasting conditions at each of the two study periods according to a randomized crossover design. There was a washout interval of ≥7 days between the two administrations of the investigational medicinal products. Blood samples for pharmacokinetic analysis were collected up to 24 h post-dosing. The primary objective was to compare the rate (peak plasma concentration; Cmax) and extent (area under the curve [AUC] from administration to last observed concentration time; AUC0–t) of sildenafil absorption after single-dose administration of test and reference. Secondary endpoints were observed to describe the plasma pharmacokinetic profiles of sildenafil and its metabolite N-desmethyl-sildenafil relative bioavailability and safety profile after single-dose administration. The mean sildenafil and N-desmethyl-sildenafil plasma concentration–time profiles up to 24 h after single-dose administration of sildenafil 100 mg orodispersible film and film-coated tablet were nearly superimposable. The bioequivalence test was fully satisfied for sildenafil and N-desmethyl-sildenafil in terms of rate and extent of bioavailability. Adverse events occurred at similar rates for the two formulations and were of mild-to-moderate severity. The results suggest that the new orodispersible film

  2. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu_tju@eyou.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  3. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Guo Meiqing; Fang Mingzhong

    2010-01-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  4. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Science.gov (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  5. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  6. Enhancement of as-sputtered silver-tantalum oxide thin film coating on biomaterial stainless steel by surface thermal treatment

    Science.gov (United States)

    Alias, Rodianah; Mahmoodian, Reza; Shukor, Mohd Hamdi Abd; Yew, Been Seok; Muhamad, Martini

    2018-04-01

    Stainless steel 316L (SS316L) is extensively used as surgical/clinical tools due to its low carbon content and excellent mechanical characteristic. The fabrication of metal ceramic based on this metallic biomaterial favor its biofunctionality properties. However, instability phase of amorphous thin film lead to degradation, corrosion and oxidation. Thus, thin film coating requires elevated adhesion strength and higher surface hardness to meet clinical tools criteria. In this study, the SS316L was deposited with micron thickness of Ag-TaO thin film by using magnetron sputtering. The microstructure, elemental analysis and phase identification of Ag-TaO thin film were characterized by using FESEM, EDX and XRD, respectively; whereas the micro scratch test and micro hardness test were performed by using Micro Scratch Testing System and Vickers Micro Hardness Tester, respectively. It was found that the coating thin film's adhesion and hardness strength were improved from 672 to 2749 mN and 142 to 158 Hv respectively. It was found that the as-deposited surface were treated at 500 °C of temperatures with 2 °C/min ramping rate enhance 4.1 times of the adhesion strength value. Furthermore, FESEM characterization revealed coarsening structure of the thin film coating which can provide high durability service.

  7. TRIBOLAYER FORMED ON MULTIFUNCTIONAL COATINGS: INFLUENCE OF THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    José Daniel Biasoli de Mello

    2012-06-01

    Full Text Available Friction and wear control can be achieved primarily by considering the nature of the counter faces, together with the environmental conditions. In most cases, a transfer film is found on the sliding surfaces. Environment plays a crucial role on the kinetics of formation and on the composition of the transfer film, and thus strongly influences friction levels and wear rates. In this paper, the effect of the actual environment (refrigerant present in hermetic compressors on the tribological behaviour of a Si rich multifunctional DLC coating deposited on 1020 steel is analyzed. Unlubricated reciprocating pin-on- disk tests are performed using a High Pressure Tribometer under different atmospheres (Air, CO2 and R600a. Samples tested in R600a environment present the lowest friction coefficient and the lowest wear rate for both body and counter-body

  8. Formation of a glassy phase in ceramic-like coatings

    International Nuclear Information System (INIS)

    Sazonova, M.V.; Gorbatova, G.N.

    1986-01-01

    The authors investigate the synthesis directly in coatings of a borosilicate melt that could fill the role of glassy matrix, thereby avoiding fusion and processing of the glassy material. The effect of added boron on the formation of coatings based on molybdenum disilicide and tungsten disilicide in air at 900 degrees C is presented. Without an additive no coating forms; there is no adhesion to the graphite and a continuous film does not form. As a result of boron oxidation an easily fused glassy matrix forms, which bonds the molybdenum disilicide or tungsten disilicide particles together and ensures adhesion to the graphite

  9. Analysis Of Corrosion Resistant Film On AI-Mg-Si Coated By Rare Earth Metal

    International Nuclear Information System (INIS)

    Darajati, Rusdiana; Ihsan, Mohammad; Wuryanto

    2001-01-01

    Corrosion analysis of AI-Mg-Si alloy which given corrosion-resistant film of a rare earth oxide coating incorporated with a uniform aluminum oxide film which has been formed on the aluminum alloy surface has been done. The measurement techniques were E corr versus time, polarization resistance, potentiodynamic and SEM (Scanning Electron Microscope for surface analysis. Potential corrosion in water environment tend to bigger with more time for four samples except sample AIMgSi that dipped into triethanolamine. ln HCl pH=1 potential corrosion sample AIMgSi, AIMgSi that dipped into triethanolamine, AIMgSi that dipped into triethanolamine and Ce Cl) tend to bigger with more time while sample AIMgSi that dipped into triethanolamine and YCI 3 or RECI 3 tend to smaller with more time. Potential corrosion in NaOH pH= 13 tend to bigger with more time for all samples. Corrosion rate for sample AIMgSi that dipped into triethanolamine in water environment relatively slower (0,0205 mpy), while in HCl pH=1 and NaOH pH=13 corrosion rate sample AIMgSi that dipped into triethanolamine and YCI 3 relatively slower, respectively are 0,1157 mpy and 2468,26 mpy. Sample AIMgSi that dipped into triethanolamine and RECI 3 in water environment has passivation and trans passivation area while four simple don't have passivation area, in H CI pH=1 all samples generally have passivation area at the same current density range while in NaOH pH= 13 sample AIMgSi has trans passivation area at a potential of about 800 mV while four other sample have passivation area at a potential of about-850-1500 mV. SEM analysis show that the coating layer which formed on the sample surface less protective especially in HCl pH= land NaOH pH=13

  10. Characterisation of organic thin film coatings on automobile steel sheets by photothermal methods

    Energy Technology Data Exchange (ETDEWEB)

    Orth, T. [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Fluegge, W. [Salzgitter Mannesmann Forschung GmbH, Salzgitter (Germany); Gibkes, J. [Ruhr-Univ. Bochum (Germany). AG FestKoerperSpektroskopie

    2006-07-01

    In the nineties, the first generation of organic thin film coatings for corrosion protection of zinc-coated thin sheet steel have been introduced. The coating typically consists of a suspension of small zinc particles, embedded in a polymer matrix. In the scope of quality control, the characterisation of the resulting layer structure is of great interest, comprising not only a constant layer thickness and a local homogeneity of the coating, but also the depth distribution of the particles within the layer. Especially the latter parameter does have a direct influence on the spot weldability of the steel sheets. The present work shows, how photothermal methods like modulated infrared radiometry and photoacoustics can be used for a successful depth profiling of the thin film coatings. The sample surface is periodically heated using an intensitymodulated laser beam, and a thermal wave is induced in the layer system. By variation of the modulation frequency of the laser beam, the thermal diffusion length and, as a consequence, the penetration depth of the thermal wave can be adjusted. By a suitable evaluation of the amplitude and phase lag signals as a function of the modulation frequency, accurate depth profiling has been realized which can be used for a very reliable prediction of the welding properties of the product. In the first investigations, artificial samples with well defined extreme distributions of the particles have been analyzed, and in a second step, an evaluation strategy has been developed for real production samples. (orig.)

  11. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seyfoori, A., E-mail: klm.1985@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); National Cell Bank, Pasteur Institute of Iran, 13164 Tehran (Iran, Islamic Republic of); Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Aliofkhazraei, M. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143 Tehran (Iran, Islamic Republic of)

    2013-10-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained.

  12. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    International Nuclear Information System (INIS)

    Seyfoori, A.; Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M.

    2013-01-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained

  13. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    Energy Technology Data Exchange (ETDEWEB)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin; Saad, Ismail; Ghosh, Bablu K.; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia)

    2015-08-28

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMA layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.

  14. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  15. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  16. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging.

    Science.gov (United States)

    Lantano, Claudia; Alfieri, Ilaria; Cavazza, Antonella; Corradini, Claudio; Lorenzi, Andrea; Zucchetto, Nicola; Montenero, Angelo

    2014-12-15

    In this work a comprehensive study on a new active packaging obtained by a hybrid organic-inorganic coating with antimicrobial properties was carried out. The packaging system based on polylactic acid was realised by sol-gel processing, employing tetraethoxysilane as a precursor of the inorganic phase and polyvinyl alcohol as the organic component, and incorporating natamycin as the active agent. Films with different organic-inorganic ratios (in a range between 1:19 and 1:4) were prepared, and the amount of antimycotic entrapped was found to be modulated by the sol composition, and was between 0.18 and 0.25mg/dm(2). FTIR microspectroscopic measurements were used to characterise the prepared coatings. The antifungal properties of the films were investigated against mould growth on the surface of commercial semi-soft cheese. The release of natamycin from the films to ethanol 50% (v/v) was studied by means of HPLC UV-DAD. The maximal level released was about 0.105 mg/dm(2), which is far below the value allowed by legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Influence of Substrate on Crystal Orientation of Large-Grained Si Thin Films Formed by Metal-Induced Crystallization

    Directory of Open Access Journals (Sweden)

    Kaoru Toko

    2015-01-01

    Full Text Available Producing large-grained polycrystalline Si (poly-Si film on glass substrates coated with conducting layers is essential for fabricating Si thin-film solar cells with high efficiency and low cost. We investigated how the choice of conducting underlayer affected the poly-Si layer formed on it by low-temperature (500°C Al-induced crystallization (AIC. The crystal orientation of the resulting poly-Si layer strongly depended on the underlayer material: (100 was preferred for Al-doped-ZnO (AZO and indium-tin-oxide (ITO; (111 was preferred for TiN. This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-Si layer reached nearly 20 µm for the AZO and ITO samples and no less than 60 µm for the TiN sample. Thus, properly electing the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers as well as for advanced functional materials.

  18. Deposition of DLC Film on Stainless Steel Substrates Coated by Nickel Using PECVD Method.

    Science.gov (United States)

    Khalaj, Zahra; Ghoranneviss, Mahmood; Vaghri, Elnaz; Saghaleini, Amir; Diudea, Mircea V

    2012-06-01

    Research on diamond-like carbon (DLC) films has been devoted to find both optimized conditions and characteristics of the deposited films on various substrates. In the present work, we investigate the quality of the DLC films grown on stainless steel substrates using different thickness of the nickel nanoparticle layers on the surface. Nickel nanoparticles were sputtered on the stainless steel substrates at 200 °C by a DC-sputtering system to make a good adherence between DLC coating and steel substrates. Atomic Force Microscopy was used to characterize the surface roughness and distribution function of the nickel nanoparticles on the substrate surface. Diamond like carbon films were deposited on stainless steel substrates coated by nickel using pure acetylene and C2H2/H2 with 15% flow ratio by DC-Plasma Enhanced Chemical Vapor Deposition (PECVD) systems. Microstructural analysis by Raman spectroscopy showed a low intensity ratio ID/IG for DLC films by increasing the Ni layer thickness on the stainless steel substrates. Fourier Transforms Infrared spectroscopy (FTIR) evidenced the peaks attributed to C-H bending and stretching vibration modes in the range of 1300-1700 cm-1 and 2700-3100 cm-1, respectively, in good agreement with the Raman spectroscopy and confirmed the DLC growth in all samples.

  19. Mechanisms of oxygen permeation through plastic films and barrier coatings

    International Nuclear Information System (INIS)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Dahlmann, Rainer; Hopmann, Christian; Mitschker, Felix; Awakowicz, Peter

    2017-01-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µ m) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities. (paper)

  20. Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films.

    Science.gov (United States)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm 2 V -1 s -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transmission photocathodes based on stainless steel mesh and quartz glass coated with N-doped DLC thin films prepared by reactive magnetron sputtering

    Science.gov (United States)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Arbet, J.

    2016-03-01

    The influence was investigated of N-doped diamond-like carbon (DLC) films properties on the quantum efficiency of a prepared transmission photocathode. N-doped DLC thin films were deposited on a silicon substrate, a stainless steel mesh and quartz glass (coated with 5 nm thick Cr adhesion film) by reactive magnetron sputtering using a carbon target and gas mixture Ar, 90%N2+10%H2. The elements' concentration in the films was determined by RBS and ERD. The quantum efficiency was calculated from the measured laser energy and the measured cathode charge. For the study of the vectorial photoelectric effect, the quartz type photocathode was irradiated by intensive laser pulses to form pin-holes in the DLC film. The quantum efficiency (QE), calculated at a laser energy of 0.4 mJ, rose as the nitrogen concentration in the DLC films was increased and rose dramatically after the micron-size perforation in the quartz type photocathodes.

  2. Comparison of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M.; Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pathak, Trilok Kumar [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Purohit, L.P. [Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2016-09-15

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi{sup 3+} ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in the two different sites of the Y{sub 2}O{sub 3} matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in one of the Y{sub 2}O{sub 3} matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films. - Highlights: • RF sputtering and spin coating were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. • XRD results of the two films showed cubic structures with different space groups. • PL showed different emission for the Bi{sup 3+} ions in the two films. • Three emission bands in the blue and green regions centered at about 360, 410 and 495 nm. • RF

  3. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    International Nuclear Information System (INIS)

    Deram, V.; Turrell, S.; Darque-Ceretti, E.; Aucouturier, M.

    2006-01-01

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy

  4. Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB.

    Science.gov (United States)

    Dhara, Palash; Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata

    2018-05-08

    Spin dewetting refers to spontaneous rupture of the dispensed solution layer during spin coating, resulting in isolated but periodic, regular sized domains of the solute and is pre-dominant when the solute concentration (C n ) is very low. In this article we report how the morphology of liquid crystal (LC) 5CB thin films coated on flat and patterned PMMA substrate transform from spin dewetted droplets to continuous films with increase in C n . We further show that within the spin dewetted regime, with gradual increase in the solute concentration, periodicity of the isotropic droplets (λ D ) as well as their mean diameter (d D ), gradually decreases, till the film becomes continuous at a critical concentration (C n *). Interestingly, the trend that λ D reduces with increase in C n is exact opposite to what is observed in thermal/solvent vapor induced dewetting of a thin film. The spin dewetted droplets exhibit transient Radial texture, in contrast to Schlieren texture observed in elongated threads and continuous films of 5CB, which remains in the Nematic phase at room temperature. Finally we show that by casting the film on a grating patterned substrate it becomes possible to align the spin dewetted droplets along the contours substrate patterns.

  5. The Effects of Curcuma Longa on the Functionality of Pigmentation for Thin Film Coating

    Science.gov (United States)

    Marsi, N.; Rus, A. Z. M.; Tan, N. A. M. S.

    2017-08-01

    This project presents the effects of turmeric (Curcuma Longa) on the functionality of pigmentation was carried out to improve the sustainability, environment impact and reduction of potential cost saving without sacrificing the performance of thin film coating. The Curcuma Longa pigment was extracted by grating the turmeric into small particles at different percentages which is 20%, 40%, 60% and 80% of Curcuma Longa pigment with 3, 6 and 9 layers of coating. The different percentages of Curcuma Longa pigment was formulated and synthesized with polyols by crosslinking agent of glycerol and calcium carbonate into temperature at 140 °C for 2 hours. The results of water droplet test (ASTM D5964) showed the water contact angle was achieved the optimum superhydrophobic characteristic up to 60% of Curcuma Longa at 153°. The formulation of 60% Curcuma Longa was revealed the optimum adhesion resistance test with no flaking and detachment when the coating applied at 9 layers in the classification grading of adhesion test at 5B. It is indicated that the adhesion resistance of thin film coating on metal substrate was obviously increased as the layer of coating as well as the Curcuma Longa pigment percentage up to 60% at 9 layers. This project also highlighted the potential of Curcuma Longa pigment to produce quality in the natural pigmentation as a replacement synthetic pigment which is long-term health hazards.

  6. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array

    Science.gov (United States)

    Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun

    2018-01-01

    Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).

  7. Alternative waste form development: low-temperature pyrolytic-carbon coatings

    International Nuclear Information System (INIS)

    Oma, K.H.; Rusin, J.M.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Large simulted waste-forms can be coated with PyC in screw-agitated coater (SAC) at low temperatures. Higher coating rates are obtained using Ni(CO) 4 as a catalyst rather than Fe(CO) 5 or Co(AcAc) 2 ; coating quality and deposition rates are improved when C 2 H 2 is used as carbon-source gas rather than methane, propane, heptane and toluene; H 2 is a better carrier gas than Ar or N 2 . Improved coating quality and deposition rates are obtained with H 2 ; deposition rates increase with Ni(CO) 4 concentration, C 2 H 2 concentration and reaction temperature. Increasing the Ni(CO) 4 and C 2 H 2 concentrations reduces the quality of the coatings; however, better adhesion of the coating to the substrate is obtained as temperature is increased; highest quality catalyzed PyC coatings have been obtained using 0.001 and 0.01 mole % Ni(CO) 4 , 1.5 to 3.0 mole % C 2 H 2 , and the balance H 2 at 425 and 525 0 C; and deposition rates are higher in the fluidized bed coater than the SAC

  8. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications

    Directory of Open Access Journals (Sweden)

    Rui Cai

    2017-04-01

    Full Text Available Silk sericin has great potential as a biomaterial for biomedical applications due to its good hydrophilicity, reactivity, and biodegradability. To develop multifunctional sericin materials for potential antibacterial application, a one-step synthesis method for preparing silver nanoparticles (AgNPs modified on polydopamine-coated sericin/polyvinyl alcohol (PVA composite films was developed. Polydopamine (PDA acted as both metal ion chelating and reducing agent to synthesize AgNPs in situ on the sericin/PVA composite film. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed that polydopamine could effectively facilitate the high-density growth of AgNPs as a 3-D matrix. X-ray diffractometry studies suggested the synthesized AgNPs formed good face-centered cubic crystalline structures. Contact angle measurement and mechanical test indicated AgNPs modified PDA-sericin/PVA composite film had good hydrophilicity and mechanical property. The bacterial growth curve and inhibition zone assays showed the AgNPs modified PDA-sericin/PVA composite film had long-term antibacterial activities. This work develops a new method for the preparation of AgNPs modified PDA-sericin/PVA film with good hydrophilicity, mechanical performance and antibacterial activities for the potential antimicrobial application in biomedicine.

  9. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  10. Vacuum deposition of high quality metal films on porous substrates

    International Nuclear Information System (INIS)

    Barthell, B.L.; Duchane, D.V.

    1982-01-01

    A composite mandrel has been developed consisting of a core of low density polymethylpentene foam overcoated with a thin layer of film-forming polymer. The surface tension and viscosity of the coating solution are important parameters in obtaining a polymer film which forms a continuous, smooth skin over the core without penetrating into the foam matrix. Water soluble film formers with surface tensions in the range of 45 dyn/cm and minimum viscosities of a few hundred centipoises have been found most satisfactory for coating polymethylpentene foam. By means of this technique, continuous polymer fims with thicknesses of 10--20 μm have been formed on the surface of machined polymethylpentene foam blanks. Aluminum has been vacuum deposited onto these composite mandrels to produce metal films which appear smooth and generally defect free even at 10 000 times magnification

  11. Surface plasmon resonance caused by gold nanoparticles formed on sprayed TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Oja Acik, I., E-mail: ilona.oja@ttu.ee [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Dolgov, L. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Krunks, M.; Mere, A.; Mikli, V. [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Pikker, S.; Loot, A.; Sildos, I. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2014-02-28

    Titania films covered by gold nanoparticles are prepared by combination of spray pyrolysis and spin-coating methods. Proposed combination of techniques is prospective for photovoltaic coatings with plasmonic properties. The prepared TiO{sub 2} films with Au nanoparticles demonstrate variation in size of the gold nanocrystallites from 36 to 56 nm depending on the concentration of the HAuCl{sub 4}∙ 3H{sub 2}O solution and plasmonic light extinction in the spectral range of 600–650 nm. It is shown that gold nanocrystallites enhance Raman scattering from the underlying thin TiO{sub 2} film. - Highlights: • TiO{sub 2} thin films with Au-nanoparticles were produced by chemical solution methods. • The size and shape of Au-nanoparticles are controlled by the [HAuCl{sub 4}∙ 3H{sub 2}O]. • Plasmon light extinction was tuned from 600 to 650 nm by changing [HAuCl{sub 4}∙ 3H{sub 2}O]. • Raman scattering intensity of TiO{sub 2} films is enhanced by the Au-nanoparticles.

  12. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  13. Effects of Post Heat Treatments on ZnO Thin-Films Grown on Zn-coated Teflon Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikhyun; Nam, Giwoong; Lee, Cheoleon; Kim, Dongwhan; Choi, Hyonkwang; Kim, Yangsoo; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of); Kim, Jin Soo [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Jong Su [Yeungnam University, Gyeongsan (Korea, Republic of); Son, Jeong-Sik [Kyungwoon University, Gumi (Korea, Republic of)

    2015-06-15

    ZnO thin films were first grown on Zn-coated Teflon substrates using a spin-coating method, with various post-heating temperatures. The structural and optical properties of the ZnO thin films were then investigated using field-effect scanning-electron microscopy, X-ray diffractometry, and photoluminescence (PL) spectroscopy. The surface morphology of these ZnO thin films exhibited dendritic structures. With increasing post-heating temperature, all samples preferentially exhibited preferential c-axis orientation and increased residual tensile stress. All of the films exhibited preferential c-axis orientation, and the residual tensile stress of those increased with increasing post-heating temperature. The near-band-edge emission (NBE) peaks were red-shifted after post-heating treatment at 400 ℃. The intensity of the deep-level emission (DLE) peaks gradually decreased with increasing post- heating temperature. Moreover, the narrowest ‘full width at half maximum’ (FWHM) and the highest intensity ratio of the NBE to the DLE for thin films, were observed after post-heating at 400 ℃. The ZnO thin films fabricated with the 400 ℃ post-heating process provided the highest crystallinity and optical properties.

  14. Verification of thickness and surface roughness of a thin film transparent coating

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Hansen, Hans Nørgaard; Pranov, H.

    2013-01-01

    Thin film coatings are extremely interesting for industries, where there is a need to protect a highly accurate surface which has tight dimensional tolerances. The topic is important both in the production of new metallic tools and repair applications. In both applications it is vital to have...

  15. Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Muthukrishnan, Karthika; Vanaraja, Manoj [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Boomadevi, Shanmugam [Department of Physics, National Institute of Technology, Tiruchirappalli, 620015 (India); Karn, Rakesh Kumar [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India); Singh, Vijay [Department of Chemical Engineering, Konkuk University, Seoul, 143-701 (Korea, Republic of); Singh, Pramod K. [Solar Energy Institute, Ege University, Bornova, 35100, Izmir (Turkey); Material Research Laboratory, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, U. P. (India); Pandiyan, Krishnamoorthy, E-mail: krishpandiyan@ece.sastra.edu [School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, 613401 (India)

    2016-07-15

    Acetone sensing characteristics of Zinc Oxide thin films prepared by dip coating method are discussed in this paper. The sol for dip coating was synthesized using Zinc nitrate hexahydrate (Zn (NO{sub 3}){sub 2}. 6H{sub 2}O) and organic polymer sodium carboxy methyl cellulose (Na-CMC) as a starting material. Crystallinity and crystallite size of the prepared thin film was characterised by X-ray diffraction (XRD). Morphology was studied using field emission scanning electron microscopy (FESEM). The gas sensing characteristics was studied using chemiresistive method, by exposing the film to various concentrations of acetone at room temperature. Further, for comparative study ethanol and acetaldehyde has also been tested. Gas sensing parameters such us response, selectivity, lowest detection limit, response/recovery time of the thin film towards acetone were also reported. - Highlights: • ZnO has successfully synthesized using cheap and ease method. • Detail characterization have carried out and explained. • Sensing behaviour has been studied. • Acetone sensor has been fabricated.

  16. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  17. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Valtakari, Dimitar, E-mail: dimitar.valtakari@abo.fi [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland); Bollström, Roger [Omya International AG, CH 4665 Oftringen (Switzerland); Toivakka, Martti; Saarinen, Jarkko J. [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland)

    2015-09-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass.

  18. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Valtakari, Dimitar; Bollström, Roger; Toivakka, Martti; Saarinen, Jarkko J.

    2015-01-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass

  19. Application of gamma irradiation on forming protein-based edible films

    International Nuclear Information System (INIS)

    Sabato, Susy Frey

    2000-01-01

    In the last decade considerable interest has been addressed to the development of protein-based edible films due to their application in the food industry, as a substitute to traditional plastic films. The use of soy and whey proteins to form those films has been investigated, using heat, chemical and enzymatic processes. Gamma irradiation was recently reported to form caseinate-based edible films, due to the increase of the cohesive strength of the proteins by the formation of cross-links. This work aimed to verify the role of the gamma irradiation in the process of forming edible films from soy protein isolate (SPI) alone and in complex mixtures, that is, mixed with whey protein isolate (WPI), with carbethoxymethyl cellulose (CMC) and with poly(vinyl)alcohol (PVA). Gamma irradiation treatment improved significantly the mechanical properties for all films. The mechanical behavior is strongly related to the formulation, showing synergy between the gamma irradiation and the CMC, mainly for SPI-based films. SPI-based films presented a trend to decrease the water vapor permeability values when irradiated. The CMC addition showed significant improvements on the permeability for films from SPI and from the mixture of SPI with WPI. (author)

  20. Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings

    International Nuclear Information System (INIS)

    Mandracci, Pietro; Pirri, Candido F; Mussano, Federico; Ceruti, Paola; Carossa, Stefano

    2015-01-01

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO x thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO x coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. (paper)

  1. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    Science.gov (United States)

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  2. New temperable solar coatings: Tempsol

    Science.gov (United States)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  3. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    Science.gov (United States)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  4. Fabrication and characterization of 6,13-bis(triisopropylsilylethynyl)-pentacene active semiconductor thin films prepared by flow-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin; Saad, Ismail; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia); Katsuhiro, Uesugi; Hisashi, Fukuda [Division of Engineering for Composite Functions, Muroran Institute of Technology 27-1 Mizumoto, Muroran 050-8585 Hokkaido (Japan)

    2015-08-28

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films in series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d{sub 001} = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.

  5. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Kyung [Department of Chemical Engineering, University of Seoul, 90 Chonnong-dong, Tongdaemun-gu, Seoul (Korea, Republic of); Pathan, Habib M.; Jung, Kwang-Deog; Joo, Oh-Shim [Eco-Nano Research Center, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul (Korea, Republic of)

    2006-09-22

    This work reports the supercapacitive properties of composite films of multiwalled carbon nanotubes (MWNT) and ruthenium oxide (RuO{sub 2}). Transmission and scanning electron microscopy, cyclic voltammetry, and electrochemical studies revealed that the nanoporous three-dimensional arrangement of RuO{sub 2}-coated MWNT in these films facilitated the improvement of electron and ion transfer relative to MWNT films. The capacitance was measured for films of different RuO{sub 2} loading, revealing specific capacitances per mass as high as 628Fg{sup -1}. The energy storage density of the electrode has increased about three times as compared to MWNT treated with piranha solution. (author)

  6. Track-etched nanopores in spin-coated polycarbonate films applied as sputtering mask

    International Nuclear Information System (INIS)

    Nix, A.-K.; Gehrke, H.-G.; Krauser, J.; Trautmann, C.; Weidinger, A.; Hofsaess, H.

    2009-01-01

    Thin polycarbonate films were spin-coated on silicon substrates and subsequently irradiated with 1-GeV U ions. The ion tracks in the polymer layer were chemically etched yielding nanopores of about 40 nm diameter. In a second process, the nanoporous polymer film acted as mask for structuring the Si substrate underneath. Sputtering with 5-keV Xe ions produced surface craters of depth ∼150 nm and diameter ∼80 nm. This arrangement can be used for the fabrication of track-based nanostructures with self-aligned apertures.

  7. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  8. Nonvolatile memory thin film transistors using CdSe/ZnS quantum dot-poly(methyl methacrylate) composite layer formed by a two-step spin coating technique

    Science.gov (United States)

    Chen, Ying-Chih; Huang, Chun-Yuan; Yu, Hsin-Chieh; Su, Yan-Kuin

    2012-08-01

    The nonvolatile memory thin film transistors (TFTs) using a core/shell CdSe/ZnS quantum dot (QD)-poly(methyl methacrylate) (PMMA) composite layer as the floating gate have been demonstrated, with the device configuration of n+-Si gate/SiO2 insulator/QD-PMMA composite layer/pentacene channel/Au source-drain being proposed. To achieve the QD-PMMA composite layer, a two-step spin coating technique was used to successively deposit QD-PMMA composite and PMMA on the insulator. After the processes, the variation of crystal quality and surface morphology of the subsequent pentacene films characterized by x-ray diffraction spectra and atomic force microscopy was correlated to the two-step spin coating. The crystalline size of pentacene was improved from 147.9 to 165.2 Å, while the degree of structural disorder was decreased from 4.5% to 3.1% after the adoption of this technique. In pentacene-based TFTs, the improvement of the performance was also significant, besides the appearances of strong memory characteristics. The memory behaviors were attributed to the charge storage/discharge effect in QD-PMMA composite layer. Under the programming and erasing operations, programmable memory devices with the memory window (Δ Vth) = 23 V and long retention time were obtained.

  9. Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings

    Directory of Open Access Journals (Sweden)

    Damian Wojcieszak

    2014-01-01

    Full Text Available Structural, optical, and photocatalytic properties of TiO2 and TiO2:Nd nanopowders and thin films composed of those materials have been compared. Titania nanoparticles with 1, 3, and 6 at. % of Nd-dopant were synthesized by sol-gel method. Additionally, thin films with the same material composition were prepared with the aid of spin-coating method. The analysis of structural investigations revealed that all as-prepared nanopowders were nanocrystalline and had TiO2-anatase structure. The average size of crystallites was ca. 4-5 nm and the correlation between the amount of neodymium and the size of TiO2 crystallites was observed. It was shown that the dopant content influenced the agglomeration of the nanoparticles. The results of photocatalytic decomposition of MO showed that doping with Nd (especially in the amount of 3 at. % increased self-cleaning activity of the prepared titania nanopowder. Similar effect was received in case of the thin films, but the decomposition rate was lower due to their smaller active surface area. However, the as-prepared TiO2:Nd photocatalyst in the form of thin films or nanopowders seems to be a very attractive material for various applications.

  10. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film.

    Science.gov (United States)

    Abugoch, Lilian; Tapia, Cristián; Plasencia, Dora; Pastor, Ana; Castro-Mandujano, Olivio; López, Luis; Escalona, Victor H

    2016-01-30

    The aim of this study was to evaluate quinoa protein (Q), chitosan (CH) and sunflower oil (SO) as edible film material as well as the influence of this coating in extending the shelf-life of fresh blueberries stored at 4 °C and 75% relative humidity. These conditions were used to simulate the storage conditions in supermarkets and represent adverse conditions for testing the effects of the coating. The mechanical, barrier, and structural properties of the film were measured. The effectiveness of the coating in fresh blueberries (CB) was evaluated by changes in weight loss, firmness, color, molds and yeast count, pH, titratable acidity, and soluble solids content. The tensile strength and elongation at break of the edible film were 0.45 ± 0.29 MPa and 117.2% ± 7%, respectively. The water vapor permeability was 3.3 × 10(-12) ± 4.0 × 10(-13) g s(-1) m(-1) Pa(-1). In all of the color parameters CB presented significant differences. CB had slight delayed fruit ripening as evidenced by higher titratable acidity (0.3-0.5 g citric acid 100 g(-1)) and lower pH (3.4-3.6) than control during storage; however, it showed reduced firmness (up to 38%). The use of Q/CH/SO as a coating in fresh blueberries was able to control the growth of molds and yeasts during 32 days of storage, whereas the control showed an increasing of molds and yeast, between 1.8 and 3.1 log cycles (between 20 and 35 days). © 2015 Society of Chemical Industry.

  11. Forming of protective nanostructure coatings on metals and glasses and their properties investigation

    International Nuclear Information System (INIS)

    Deshkovskaya, A.; Lynkov, L.; Nagibarov, A.; Glybin, V.; Richter, E.; Pham, M.

    2013-01-01

    Transparent heat-resistant coatings of 10-30 nm thickness described by (ZrO 2 ) x •(Y 2 O 3 ) y composition are formed on the surface of metals and glasses by thermolysis technique. Produced coatings possess high adhesive strength, high corrosive and abrasive resistance. Nanocrystalline formations are revealed on samples surface, with quantity of these formations depending on basic solution concentration, formed layers number and thermal treatment mode. Ion-beam modification of obtained coatings under mixing mode enables said properties enhancing owing to zirconium oxiboride formation at substrate-coating interface as a result of ion-beam synthesis. (authors)

  12. Radiation curable compounds for use in coating compositions

    International Nuclear Information System (INIS)

    Friedlander, C.B.; McMullen, J.C.

    1979-01-01

    Radiation curable compounds are disclosed which are derived from the reaction of a siloxy-containing carbinol, a polyisocyanate and polyfunctional compound having hydroxy and acrylic functional groups. The compounds have high cure rates, are compatible with other components of radiation curable, film forming compositions and impart good slip and other properties to cured film coatings. (author)

  13. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES) Membrane

    Science.gov (United States)

    Prihandana, Gunawan S.; Sanada, Ippei; Ito, Hikaru; Noborisaka, Mayui; Kanno, Yoshihiko; Suzuki, Tetsuya; Miki, Norihisa

    2013-01-01

    A nano porous polyethersulfone (PES) membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC) onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems. PMID:28788333

  14. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Cécile, E-mail: cecile.boudot@tum.de [Technical University of Munich, Department of Mechanical Engineering, Boltzmannstraße 15, D-85748 Garching bei München (Germany); Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen [Institute for Plasma Technology and Mathematics, University of Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO{sub 2}) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150 nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO{sub 2} layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO{sub 2}-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68 days and the coating's resistance to several sterilization methods. - Highlights: • Vacuum arc plasma was applied to deposit titanium dioxide films onto silicone. • Thickness, roughness and composition of the films were determined. • Cytocompatibility of coated silicone elastomer is greatly improved. • Films have good adhesion to the substrate and are stable, non-toxic and sterilizable.

  15. Comparative study of dlc coatings by pvd against cvd technique on textile dents

    International Nuclear Information System (INIS)

    Malik, M.; Alam, S.; Iftikhar, F.

    2007-01-01

    Diamond like Carbon (DLC) film is a hard amorphous carbon hydride film formed by Physical or Chemical vapor deposition (PVD or CVD) techniques. Due to its unique properties especially high hardness, lower coefficient of friction and lubricious nature, these coatings are not only used to extend the life of cutting tools but also for non cutting applications such as for forming dies, molds and on many functional parts of textile. In the present work two techniques were employed i.e. PVD and CVD for deposition of diamond like carbon film on textile dents. These dents are used as thread guider in high speed weaving machine. The measurement of coating thickness, adhesion, hardness and roughness values indicates that overall properties of DLC coating developed by PVD LARC technology reduces abrasion and increases the workability and durability of textile dents as well as suppress the need of lubricants. (author)

  16. Effect of Calcium Ions on the Disintegration of Enteric-Coated Solid Dosage Forms.

    Science.gov (United States)

    Al-Gousous, Jozef; Langguth, Peter

    2016-02-01

    To investigate the effect of calcium ions on the disintegration of enteric-coated dosage forms, disintegration testing was performed on enteric-coated aspirin tablets in the presence and absence of calcium in the test media. The results show that the presence of calcium ions retards the disintegration of enteric-coated dosage forms. This finding, which has not been reported in scientific literature, sheds light on the importance of conducting well-designed detailed investigations into the potential of calcium from dietary sources, calcium supplements, antacids, and/or phosphate binders affecting the absorption of drugs formulated into enteric-coated dosage forms. Moreover, it shows the necessity to investigate the potential of the occurrence of additional nutrient-excipient interactions. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Study of deposition rae coating of Ag thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghanati, M.; Zendehnam, A.

    2003-01-01

    Exact knowledge about deposition rate and its distribution and variation of them with respect to coating parameters (Gas pressure, Distance, discharge current,..) is very vital. In this experimental research coating of Ag thin films by magnetron sputtering have been carried out over Ar pressure range of 10 -2 -10 -1 mbar, and discharge current up to 1000 m.A, and distance between glass substrates to silver target (Cathode) was changed from 5 to 15 cm. The obtained results have been investigated by help of computer curve fitting, and these studies show a very good agreement for the conditions used in this work

  18. Comparison of barium titanate thin films prepared by inkjet printing and spin coating

    Directory of Open Access Journals (Sweden)

    Jelena Vukmirović

    2015-09-01

    Full Text Available In this paper, barium titanate films were prepared by different deposition techniques (spin coating, office Epson inkjet printer and commercial Dimatix inkjet printer. As inkjet technique requires special rheological properties of inks the first part of the study deals with the preparation of inks, whereas the second part examines and compares structural characteristics of the deposited films. Inks were synthesized by sol-gel method and parameters such as viscosity, particle size and surface tension were measured. Deposited films were examined by optical and scanning electron microscopy, XRD analysis and Raman spectroscopy. The findings consider advantages and disadvantages of the particular deposition techniques.

  19. Lighting and cooling energy consumption in an open-plan office using solar film coating

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Lam, Tony N.T.; Wong, S.L.; Tsang, Ernest K.W.

    2008-01-01

    In subtropical Hong Kong, solar heat gain via glazing contributes to a significant proportion of the building envelope cooling load. The principal fenestration design includes eliminating direct sunlight and reducing cooling requirements. Daylighting is an effective approach to allow a flexible building facade design strategy, and to enhance an energy-efficient and green building development. This paper studies the lighting and cooling energy performances for a fully air-conditioned open-plan office when solar control films together with daylight-linked lighting controls are being used. Measurements were undertaken at two stages including the electricity expenditures for the office using photoelectric dimming controls only (first stage) and together with the solar control film coatings on the windows (second stage). Electric lighting and cooling energy consumption, transmitted daylight illuminance and solar radiation were systematically recorded and analysed. The measured data were also used for conducting and validating the building energy simulations. The findings showed that the solar film coatings coupled with lighting dimming controls cut down 21.2% electric lighting and 6.9% cooling energy consumption for the open-plan office

  20. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  1. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  2. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  3. Evaluation of Protective Ability of High Solid Novolac Clear Coatings Through Electrochemical Techniques

    International Nuclear Information System (INIS)

    Ramesh, D.; Shakkthivel, P.; Manickam, A. Susai; Kalpana, A.; Vasudevan, T.

    2006-01-01

    Solvent free high solid coatings are increasingly used as they posses number of advantages such as, lower cost per unit film thickness, better performance and eco-friendliness. In the present study polymeric film-forming materials such as aniline-novolac (ANS), cresol-novolac (CNS) and acrylic copolymer blended cresol-novolac (ACNS) coating materials have been prepared. The corrosion resistance properties of the prepared high solid coating materials have been evaluated through potential-time, potentiodynamic polarization and electrochemical impedance studies (EIS). Among the three coating systems, cresol-novolac polymer coated substrates offer better corrosion resistance property and the order of the performance was found as CNS > ACNS > ANS. We can recommend these systems for use in automobile applications

  4. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    Science.gov (United States)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  5. Influence of pH on optoelectronic properties of zinc sulphide thin films prepared using hydrothermal and spin coating method

    Science.gov (United States)

    Choudapur, V. H.; Bennal, A. S.; Raju, A. B.

    2018-04-01

    The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.

  6. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    International Nuclear Information System (INIS)

    Tao, Lei; Li, Heqin; Shen, Jiong; Qiao, Kai; Wang, Wei; Zhou, Chu; Zhang, Jing; Tang, Qiong

    2015-01-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H 2 SO 4 solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film

  7. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lei [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Shen, Jiong [Earth-Panda Advance Magnetic Material Co., Ltd., Anhui Lujiang 231500 (China); Qiao, Kai; Wang, Wei; Zhou, Chu [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Anhui Hefei 230009 (China)

    2015-02-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H{sub 2}SO{sub 4} solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film.

  8. Ultra-thin Glass Film Coated with Graphene: A New Material for Spontaneous Emission Enhancement of Quantum Emitter

    Institute of Scientific and Technical Information of China (English)

    Lu Sun; Chun Jiang

    2015-01-01

    We propose an ultra-thin glass film coated with graphene as a new kind of surrounding material which can greatly enhance spontaneous emission rate(SER) of dipole emitter embedded in it. With properly designed parameters,numerical results show that SER-enhanced factors as high as 1.286 9 106 can be achieved. The influences of glass film thickness and chemical potential/doping level of graphene on spontaneous emission enhancement are also studied in this paper. A comparison is made between graphene and other coating materials such as gold and silver to see their performances in SER enhancement.

  9. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    Energy Technology Data Exchange (ETDEWEB)

    Rădulescu, Dragoş [Bucharest University Hospital, Department of Orthopedics and Traumatology, 169 Splaiul Independentei, 050098 Bucharest (Romania); Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Grumezescu, Valentina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, PO Box MG-36, Măgurele, Bucharest (Romania); Holban, Alina Maria [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Bucharest (Romania); Research Institute of the University of Bucharest, Bd. Mihail Kogălniceanu 36-46, 050107 Bucharest (Romania); Vasile, Bogdan Stefan; Surdu, Adrian Vasile [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); and others

    2016-06-30

    Graphical abstract: - Highlights: • Silica/Zinforo thin coatings by matrix assisted pulsed laser evaporation. • Anti-adherent coating on medical surfaces against E. coli. • Thin coatings show a great biocompatibility in vitro and in vivo. - Abstract: In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer–Emmett–Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  10. Catalytic behaviors of ruthenium dioxide films deposited on ferroelectrics substrates, by spin coating process

    International Nuclear Information System (INIS)

    Khachane, M.; Nowakowski, P.; Villain, S.; Gavarri, J.R.; Muller, Ch.; Elaatmani, M.; Outzourhite, A.; Luk'yanchuk, I.; Zegzouti, A.; Daoud, M.

    2007-01-01

    Catalytic ruthenium dioxide films were deposited by spin-coating process on ferroelectric films mainly constituted of SrBi 2 Ta 2 O 9 (SBT) and Ba 2 NaNb 5 O 15 (BNN) phases. After thermal treatment under air, these ferroelectric-catalytic systems were characterized by X-ray diffraction and scanning electron microscopy (SEM). SEM images showed that RuO 2 film morphology depended on substrate nature. A study of CH 4 conversion into CO 2 and H 2 O was carried out using these catalytic-ferroelectric multilayers: the conversion was analyzed from Fourier transform infrared (FTIR) spectroscopy, at various temperatures. Improved catalytic properties were observed for RuO 2 films deposited on BNN oxide layer

  11. Vanadium dioxide formed by the sol-gel process

    International Nuclear Information System (INIS)

    Potember, R.S.; Speck, K.R.; Hu, H.S.

    1990-01-01

    This patent describes a process for the deposition of a crystalline vanadium dioxide thin film. It comprises: providing a solution comprising a vanadium tetraalkoxide and solvent; allowing hydrolysis and condensation reactions to progressively form a homogeneous sol from the solution, applying a coating of the sol to the substrate; allowing a gel to form from the sol on the substrate by evaporating the solvent; dehydrating the gel by heat treatment under an inert atmosphere to form the crystalline vanadium dioxide film

  12. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  13. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    International Nuclear Information System (INIS)

    Nakaya, Masaki; Shimizu, Mari; Uedono, Akira

    2014-01-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  14. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond filmsCoating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  15. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond filmsCoating characterization and first cell biological results

    International Nuclear Information System (INIS)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-01-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  16. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    Science.gov (United States)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2017-12-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  17. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    Science.gov (United States)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2018-06-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  18. Bitumen coating as a tool for improving the porosity and chemical stability of simulated cement-waste forms

    International Nuclear Information System (INIS)

    Saleh, H.M.

    2010-01-01

    Coating process of simulated cement-based waste form with bitumen was evaluated by performing physical and chemical experimental tests. X-ray diffraction (X-RD), Fourier transform infrared spectroscopy (FT-IR) and electron microscope investigations were applied on coated and non-coated simulated waste forms. Experimental results indicated that coating process improved the applicable properties of cement-based waste form such as porosity and leachability. Diffusion coefficients and leach indecies of coated specimens were calculated and show acceptable records. It could be stated that coating cemented waste form by bitumen emulsion, isolate the radioactive contaminants, thus reduces their back release to surrounding and in consequently save the environment proper and safe

  19. Flexible diamond-like carbon thin film coated on rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Yutao

    2015-01-01

    Dynamic rubber seals are the major source of friction in lubrication systems and bearings, which may take up to 70% of the total friction. Our solution is to coat rubbers with flexible diamond-like carbon (DLC) thin film by which the coefficient of friction is reduced from above 1.5 to below 0.15.

  20. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    Science.gov (United States)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  1. Wettability of Thin Silicate-Containing Hydroxyapatite Films Formed by RF-Magnetron Sputtering

    Science.gov (United States)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.; Gribennikov, M. V.; Pichugin, V. F.; Sharonova, A. A.; Pustovalova, A. A.; Prymack, O.; Epple, M.; Wittmar, A.; Ulbricht, M.; Gogolinskii, K. V.; Kravchuk, K. S.

    2014-02-01

    Using the methods of electron and atomic force microscopy, X-ray structural analysis and measurements of the wetting angle, the features of morphology, structure, contact angle and free surface energy of silicon-containing calcium-phosphate coatings formed on the substrates made from titanium VT1-0 and stainless steel 12Cr18Ni10Ti are investigated. It is shown that the coating - substrate system possesses bimodal roughness formed by the substrate microrelief and coating nanostructure, whose principal crystalline phase is represented by silicon-substituted hydroxiapatite with the size of the coherent scattering region (CSR) 18-26 nm. It is found out that the formation of a nanostructured coating on the surface of rough substrates makes them hydrophilic. The limiting angle of water wetting for the coatings formed on titanium and steel acquires the values in the following ranges: 90-92 and 101-104°, respectively, and decreases with time.

  2. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  3. Preparation and characterization of ultra-thin amphiphobic coatings on silicon wafers

    International Nuclear Information System (INIS)

    Mou, Chun-Yueh; Yuan, Wei-Li; Shih, Chih-Hsin

    2013-01-01

    Fluorine-based amphiphobic coatings have been widely used in commercial domestic utensils and textiles to repel water and oil contaminants. However, few reports from the literature survey have discussed the effects on amphiphobicity of the nano- to micro-scale surface features of such a coating. In this research thin amphiphobic epoxy coatings based on a mixture of bisphenol A diglycidyl ether, tetraethylorthosilicate (TEOS), and a particular alkoxy silane with fluorinated side chains (F-silane) are deposited on silicon wafers. Film amphiphobicity is characterized by the measurement of water and oil contact angles of the coating. Film morphology is revealed in the scanned images using atomic force microscopy. The deposited films free of F-silane are about 10 nm thick. When a small amount of F-silane was firstly added, the water and oil contact angles of the deposited films jumped up to 107° and 69° respectively and then flattened out with increased F-silane. Water droplets gave an average plateau contact angle about 110°, while vegetable oil ones, 40°. It was noted that there is a dramatic decrease in the lyophobicity causing a reduction in contact angles. However, surface lyophobicity also depends on sub-microscopic surface structures. In addition, by increasing TEOS, it was shown that the formed silica sols or granules were helpful in enhancing the mechanical strength along with retaining the lyophobicity of the film. - Highlights: • Epoxy ultrathin films about 10 nm thick deposited on silicon wafer. • Nominal fluorinated silane added to epoxy coatings for amphiphobicity. • Surface lyophobicity retained by sub-micrometer granules in ultrathin coatings. • Film hardness improved by adding tetraethylorthosilicate

  4. Preparation and characterization of ultra-thin amphiphobic coatings on silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Chun-Yueh, E-mail: cymou165@gmail.com; Yuan, Wei-Li; Shih, Chih-Hsin

    2013-06-30

    Fluorine-based amphiphobic coatings have been widely used in commercial domestic utensils and textiles to repel water and oil contaminants. However, few reports from the literature survey have discussed the effects on amphiphobicity of the nano- to micro-scale surface features of such a coating. In this research thin amphiphobic epoxy coatings based on a mixture of bisphenol A diglycidyl ether, tetraethylorthosilicate (TEOS), and a particular alkoxy silane with fluorinated side chains (F-silane) are deposited on silicon wafers. Film amphiphobicity is characterized by the measurement of water and oil contact angles of the coating. Film morphology is revealed in the scanned images using atomic force microscopy. The deposited films free of F-silane are about 10 nm thick. When a small amount of F-silane was firstly added, the water and oil contact angles of the deposited films jumped up to 107° and 69° respectively and then flattened out with increased F-silane. Water droplets gave an average plateau contact angle about 110°, while vegetable oil ones, 40°. It was noted that there is a dramatic decrease in the lyophobicity causing a reduction in contact angles. However, surface lyophobicity also depends on sub-microscopic surface structures. In addition, by increasing TEOS, it was shown that the formed silica sols or granules were helpful in enhancing the mechanical strength along with retaining the lyophobicity of the film. - Highlights: • Epoxy ultrathin films about 10 nm thick deposited on silicon wafer. • Nominal fluorinated silane added to epoxy coatings for amphiphobicity. • Surface lyophobicity retained by sub-micrometer granules in ultrathin coatings. • Film hardness improved by adding tetraethylorthosilicate.

  5. Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Thu Hong Anh Ngo

    2016-12-01

    Full Text Available In this paper, the coating of TiO2 nanoparticles onto the surface of a polyamide thin film composite nanofiltration membrane has been studied. Changes in the properties and separation performance of the modified membranes were systematically characterized. The experimental results indicated that the membrane surface hydrophilicity was significantly improved by the presence of the coated TiO2 nanoparticles with subsequent UV irradiation. The separation performance of the UV-irradiated TiO2-coated membranes was improved with a great enhancement of flux and a very high retention for removal of residual dye in an aqueous feed solution. The antifouling property of the UV-irradiated TiO2-coated membranes was enhanced with higher maintained flux ratios and lower irreversible fouling factors compared with an uncoated membrane.

  6. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    Aluminium and its alloys are widely used in aerospace industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed...... into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly...... regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms of aluminium oxide (γ-AlO(OH) , Al(OH)3...

  7. Improved performance of silicon-nanoparticle film-coated dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Bedja, Idriss M. [CRC, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433 (Saudi Arabia); Aldwayyan, Abdullah Saleh [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-11-15

    Silicon (Si) nanoparticles with average size of 13 nm and orange-red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 {mu}m to 2.6 {mu}m was coated on the glass (TiO{sub 2} side) of a dye-sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency ({eta}) at film thickness of {proportional_to}2.4 {mu}m under solar irradiation of 100 mW/cm{sup 2} (AM 1.5) with improved fill factor and short-circuit current density. This study revealed for the first time that the Si-nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Russell, W.C.; Malshe, A.P.; Yedave, S.N.; Brown, W.D.

    2001-01-01

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  9. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  10. Chemical solution deposition of LaMnO3-based films for coated conductors

    International Nuclear Information System (INIS)

    Shi, D Q; Zhu, X B; Kim, J H; Wang, L; Zeng, R; Dou, S X; Lei, H C; Sun, Y P

    2008-01-01

    LaMnO 3 -based films were prepared using the chemical solution deposition method. It was found that the films on perovskite oxide single crystal substrates are highly (h00)-oriented when the annealing atmosphere is oxygen or air; however, when the substrate is yttrium-stabilized ZrO 2 , only the La 1-x Na x MnO 3 films are highly (h00)-oriented, and other LaMnO 3 -based films are (110)-oriented. Under a reducing annealing atmosphere, the atmosphere must be wet in order to create a suitable oxygen partial pressure to crystallize the LaMnO 3 -based films. After annealing under a wet reducing atmosphere the LaMnO 3 -based films are (110)-oriented when the films are directly deposited on Ni tapes; however, when SrTiO 3 -buffered Ni tapes are used, the LaMnO 3 films are (h00)-oriented, which is suitable for subsequent growth of YBCO. The results suggest that it is possible to tune the orientation of buffer layers using suitable templates, which can widen the selection of buffer layers for coated conductors in the all metallorganic deposition approach

  11. Antithrombogenicity of Fluorinated Diamond-Like Carbon Films Coated Nano Porous Polyethersulfone (PES Membrane

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-09-01

    Full Text Available A nano porous polyethersulfone (PES membrane is widely used for aspects of nanofiltration, such as purification, fractionation and dialysis. However, the low-blood-compatibility characteristic of PES membrane causes platelets and blood cells to stick to the surface of the membrane and degrades ions diffusion through membrane, which further limits its application for dialysis systems. In this study, we deposited the fluorinated-diamond-like-carbon (F-DLC onto the finger like structure layer of the PES membrane. By doing this, we have the F-DLC films coating the membrane surface without sacrificing the membrane permeability. In addition, we examined antithrombogenicity of the F-DLC/PES membranes using a microfluidic device, and experimentally found that F-DLC drastically reduced the amount of blood cells attached to the surface. We have also conducted long-term experiments for 24 days and the diffusion characteristics were found to be deteriorated due to fouling without any surface modification. On the other hand, the membranes coated by F-DLC film gave a consistent diffusion coefficient of ions transfer through a membrane porous. Therefore, F-DLC films can be a great candidate to improve the antithrombogenic characteristics of the membrane surfaces in hemodialysis systems.

  12. Microstructure and properties of duplex (Ti:N)-DLC/MAO coating on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei; Ke, Peiling [Ningbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Fang, Yong [Sir Run Run Shaw Hospital, School of Medicine, Zhe Jiang University, Zhejiang 310016 (China); Zheng, He [Ningbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Ningbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2013-04-01

    Ti and N co-doped diamond-like carbon ((Ti:N)-DLC) film was deposited on the MAO coated substrate using a hybrid beam deposition system, which consists of a DC magnetron sputtering of Ti target and a linear ion source (LIS) with C{sub 2}H{sub 2} and N{sub 2} precursor gas. The microstructure and properties of the duplex (Ti:N)-DLC/MAO coating were investigated. Results indicate that the (Ti:N)-DLC top film with TiN crystalline phase was formed. Ti and N co-doping resulted in the increasing I{sub D}/I{sub G} ratio. The significant improvement in the wear and corrosion resistance of duplex (Ti:N)-DLC/MAO coating was mainly attributed to the increased binding strength, lubrication characteristics and chemical inertness of (Ti:N)-DLC top film. The superior low-friction and anti-corrosion properties of duplex (Ti:N)-DLC/MAO coating make it a good candidate as protective coating on magnesium alloy.

  13. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  14. Fabrication of barium titanate nanoparticles/poly (methylmethacrylate composite films by a combination of deposition process and spin-coating technique

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2014-10-01

    Full Text Available The present work proposes a method for fabricating poly(methylmethacrylate (PMMA film containing barium titanate (BT nanoparticles (BT/PMMA film. BT particles with an average size of 77.6 ± 30.5 nm and a crystal size of 28.1 nm were synthesized by adding sodium hydroxide aqueous solution to titanium tetraisopropoxide/acetylacetone/i-propanol solution suspending barium hydroxide. A sodium glass plate, of which surface was modified with polyvinylpyrrolidone, was immersed into water suspending the BT particles, which resulted in deposition of the BT particles on the plate. A BT/PMMA film was fabricated by twice performance of a process composed of spin-coating of N-methyl-2-pyrrolidone (NMP dissolving PMMA on the plate, and then drying the coated plate in the atmosphere at room temperature. Spin-coating of a PMMA/NMP solution with a PMMA concentration of 150 g/L at a rotating speed of 5000 rpm provided fabrication of a BT/PMMA film with a BT volume fraction of 35.5%, a thickness of ca. 300 nm, and a transmittance of ca. 90% in the visible light region.

  15. Reduction of metallosis in hip implant using thin film coating

    Science.gov (United States)

    Rajeshshyam, R.; Chockalingam, K.; Gayathri, V.; Prakash, T.

    2018-04-01

    Hip implant finds its emerging attraction due to it continuous demand over the years. The hip implants (femoral head) and acetabulum cup) mainly fabricated by metals such as stainless steel, cobalt chrome and titanium alloys, other than that ceramics and polyethylene have been used. The metal-on-metal hip implant was found to be best implant material for most of the surgeons due to its high surface finish, low wear rate and low chance of dislocation from its position after implanting. Where in metal based hip implant shows less wear rate of 0.01mm3/year. Metal-on-metal implant finds its advantage over other materials both in its mechanical and physical stability against human load. In M-O-M Cobalt- chromium alloys induce metal allergy. The metal allergy (particulate debris) that is generated by wear, fretting, fragmentation and which is unavoidable when a prosthesis is implanted, can induce an inflammatory reaction in some circumstances. The objectives of this research to evaluate thin film coating with Nano particle additives to reduce the wear leads to regarding metal ion release. Experimental results reveals that thin film Sol-Gel coating with 4wt. % of specimen reduced the cobalt and chromium ion release and reduces the wear rate. Wear rate reduced by 98% for 4wt. % graphene in 20N and 95% for 4wt. % graphene in 10N.

  16. Germanium films by polymer-assisted deposition

    Science.gov (United States)

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  17. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus

    2011-12-01

    In the last years, glow discharge optical emission spectrometry (GDOES) gained more and more acceptance in the analysis of functional coatings. GDOES thereby represents an interesting alternative to common depth profiling techniques like AES and SIMS, based on its unique combination of high erosion rates and erosion depths, sensitivity, analysis of nonconductive layers and easy quantification even for light elements such as C, N, O and H. Starting with the fundamentals of GDOES, a short overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings and thin films. Results illustrating the high depth resolution, confirmation of stoichiometry, the detection of light elements in coatings as well as contamination on the surface or interfaces will be demonstrated by measurements of: a multilayer system Cr/Ti on silicon, interface contamination on silicon during deposition of aluminum, Al2O3-nanoparticle containing conversion coatings on zinc for corrosion resistance, Ti3SiC2 MAX-phase coatings by pulsed laser deposition and hydrogen detection in a V/Fe multilayer system. The selected examples illustrate that GDOES can be successfully adopted as an analytical tool in the development of new materials and coatings. A discussion of the results as well as of the limitations of GDOES is presented. © 2011 Elsevier B.V.

  18. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications.

    Science.gov (United States)

    Bajaj, Piyush; Akin, Demir; Gupta, Amit; Sherman, Debby; Shi, Bing; Auciello, Orlando; Bashir, Rashid

    2007-12-01

    Surfaces of materials that promote cell adhesion, proliferation, and growth are critical for new generation of implantable biomedical devices. These films should be able to coat complex geometrical shapes very conformally, with smooth surfaces to produce hermetic bioinert protective coatings, or to provide surfaces for cell grafting through appropriate functionalization. Upon performing a survey of desirable properties such as chemical inertness, low friction coefficient, high wear resistance, and a high Young's modulus, diamond films emerge as very attractive candidates for coatings for biomedical devices. A promising novel material is ultrananocrystalline diamond (UNCD) in thin film form, since UNCD possesses the desirable properties of diamond and can be deposited as a very smooth, conformal coating using chemical vapor deposition. In this paper, we compared cell adhesion, proliferation, and growth on UNCD films, silicon, and platinum films substrates using different cell lines. Our results showed that UNCD films exhibited superior characteristics including cell number, total cell area, and cell spreading. The results could be attributed to the nanostructured nature or a combination of nanostructure/surface chemistry of UNCD, which provides a high surface energy, hence promoting adhesion between the receptors on the cell surface and the UNCD films.

  19. Formulation parameters influencing self-stratification of coatings

    NARCIS (Netherlands)

    Vink, P.; Bots, T.L.

    1996-01-01

    Research was carried out aimed at the development of self-stratifying paints for steel which after application during film formation spontaneously form two well established layers of primer and top coat. The parameters affecting stratification were investigated for combinations of epoxy resins and

  20. Zircon coatings deposited by electrophoresis on steel 316L

    International Nuclear Information System (INIS)

    Espitia C, I.; Contreras G, M.E.; Bartolo P, P.; Pena, J.L.; Reyes G, J.; Martinez, L.

    2005-01-01

    The present research involved zirconia coatings prepared using electrophoretic deposition (EPD) on 316l stainless steel, via hydrolysis of ZrOCI 2 aqueous solution. Initially, a first zirconia thin film was obtained and treated at 400 C for consolidation. Then a second zirconia film was deposited to obtain a homogeneous and fully covered 316l stainless steel plate. The XPS analyses show that on the first zirconia film, the elements Fe, Cr, O and Zr are present. In this first film the compounds Cr 2 O 3 , Fe 2 O 3 and ZrO 2 are formed. While in the second film only the Zr and O are observed so that the surface is formed by ZrO 2 . (Author)

  1. Effects of annealing and plasma treatment on the electrical and optical properties of spin-coated ITZO films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-min; Kim, Jae-Kwan [Department of Materials Science and Metallurgical Engineering, Sunchon National University, Sunchon, Chonnam 540-742 (Korea, Republic of); Hao, Jinchen; Kim, Han-Ki [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Yoon, Jae-Sik [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Ji-Myon, E-mail: jimlee@sunchon.ac.kr [Department of Printed Electronics Engineering, Sunchon National University, Sunchon, Chonnam 540-742 (Korea, Republic of)

    2014-01-15

    Highlights: • The resistivity of ITZO was enhanced by H{sub 2} gas plasma treatment. • The transmittance of H{sub 2} treated film was same as that of ref. after wet treatment. • The plasma process was carried out at room temperature. -- Abstract: This paper reports the effects on the optical and electrical properties of indium tin zinc oxide (ITZO) films by annealing and hydrogen plasma treatment. ITZO films were prepared by spin-coating using ITZO nanoink. The sheet resistance of the spin-coated ITZO was decreased to 155 Ω/square after annealing at 300 °C. Subsequent inductively-coupled hydrogen plasma decreased the sheet resistance of the ITZO film further to 88 Ω/square due to the formation of a high density of O–H bonds and oxygen vacancies leaving a metal cluster on the surface, which is comparable to that of solution-processed ITO films. Although the transmittance of the hydrogen plasma-treated sample was decreased considerable by the formation of metal clusters, the transmittance and optical band gap could be enhanced without a deteriorating the electrical properties by removing the metal clusters using a H{sub 2}SO{sub 4} solution.

  2. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    International Nuclear Information System (INIS)

    Salek, G.; Tenailleau, C.; Dufour, P.; Guillemet-Fritsch, S.

    2015-01-01

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu 2 O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu 2 O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation

  3. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  4. Development of Strontium Titanate Thin films on Technical Substrates for Superconducting Coated Conductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Grivel, Jean-Claude

    2012-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a template for high temperature superconducting tapes. Heteroepitaxial SrTiO3 thin films were deposited on Ni/W tapes using dip-coating in a precursor solution followed by drying and annealing under reducing conditions. Nearl...

  5. Influence of Deposition Conditions on Fatigue Properties of Martensitic Stainless Steel with Tin Film Coated by Arc Ion Plating Method

    Science.gov (United States)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.

  6. Structural study of Mg doped cobalt ferrite thin films on ITO coated glass substrate

    Science.gov (United States)

    Suthar, Mahesh; Bapna, Komal; Kumar, Kishor; Ahuja, B. L.

    2018-05-01

    We have synthesized thin films of Co1-xMgxFe2O4 (x = 0, 0.4, 0.6, 0.8, 1) on transparent conducting indium tin oxide (ITO) coated glass substrate by pulsed laser deposition method. The structural properties of the grown films were analyzed by the X-ray diffraction and Raman spectroscopy, which suggest the single phase growth of these films. Raman spectra revealed the incorporation of Mg ions into CoFe2O4 lattice and suggest that the Mg ions initially go both to the octahedral and tetrahedral sites upto a certain concentration. For higher concentration, Mg ions prefer to occupy the tetrahedral sites.

  7. Flash-lamp-crystallized polycrystalline silicon films with high hydrogen concentration formed from Cat-CVD a-Si films

    International Nuclear Information System (INIS)

    Ohdaira, Keisuke; Tomura, Naohito; Ishii, Shohei; Matsumura, Hideki

    2011-01-01

    We investigate residual forms of hydrogen (H) atoms such as bonding configuration in poly-crystalline silicon (poly-Si) films formed by the flash-lamp-induced crystallization of catalytic chemical vapor deposited (Cat-CVD) a-Si films. Raman spectroscopy reveals that at least part of H atoms in flash-lamp-crystallized (FLC) poly-Si films form Si-H 2 bonds as well as Si-H bonds with Si atoms even using Si-H-rich Cat-CVD a-Si films, which indicates the rearrangement of H atoms during crystallization. The peak desorption temperature during thermal desorption spectroscopy (TDS) is as high as 900 o C, similar to the reported value for bulk poly-Si.

  8. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    Science.gov (United States)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  9. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  10. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deram, V. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France) and Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France)]. E-mail: virginie.deram@ensmp.fr; Turrell, S. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France); Darque-Ceretti, E. [Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France); Aucouturier, M. [Centre de Recherche et de Restauration des Musees de France, UMR CNRS 171, Palais du Louvre, Porte des Lions, 14 quai F. Mitterrand, 75001 Paris Cedex (France)

    2006-09-25

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these