WorldWideScience

Sample records for co2 m-2 h-1

  1. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2 }2 {μ-η22 -B2 H4 }] and [{Cp*M(CO)2 }2 B2 H2 M(CO)4 ], M=Mo,W.

    Science.gov (United States)

    Mondal, Bijan; Bag, Ranjit; Ghorai, Sagar; Bakthavachalam, K; Jemmis, Eluvathingal D; Ghosh, Sundargopal

    2018-04-26

    The reaction of [(Cp*Mo) 2 (μ-Cl) 2 B 2 H 6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO) 2 } 2 {μ-η 22 -B 2 H 4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged C s structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO) 2 } 2 C 2 H 2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO) 4 ] fragment, [{Cp*Mo(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (3) was isolated upon treatment with [W(CO) 5 ⋅thf]. Compound 3 shows the intriguing presence of [B 2 H 2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (4) and [{Cp*W(CO) 2 } 2 B 2 H 2 Mo(CO) 4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Homoleptic diphosphacyclobutadiene complexes [M(η(4)-P2C2R2)2]x- (M = Fe, Co; x = 0, 1).

    Science.gov (United States)

    Wolf, Robert; Ehlers, Andreas W; Khusniyarov, Marat M; Hartl, František; de Bruin, Bas; Long, Gary J; Grandjean, Fernande; Schappacher, Falko M; Pöttgen, Rainer; Slootweg, J Chris; Lutz, Martin; Spek, Anthony L; Lammertsma, Koop

    2010-12-27

    The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and Mössbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.

  3. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  4. [H2en]2{La2M(SO4)6(H2O)2} (M=Co, Ni): First organically templated 3d-4f mixed metal sulfates

    International Nuclear Information System (INIS)

    Yuan Yanping; Wang Ruiyao; Kong Deyuan; Mao Jianggao; Clearfield, Abraham

    2005-01-01

    The first organically templated 3d-4f mixed metal sulfates, [H 2 en] 2 {La 2 M(SO 4 ) 6 (H 2 O) 2 } (M=Co 1, Ni 2) have been synthesized and structurally determined from non-merohedrally twinned crystals. The two compounds are isostructural and their structures feature a three-dimensional anionic network formed by the lanthanum(III) and nickel(II) ions bridged by sulfate anions. The La(III) ions in both compounds are 10-coordinated by four sulfate anions in bidentate chelating fashion, and two sulfate anions in a unidentate fashion. The transition metal(II) ion is octahedrally coordinated by six oxygens from four sulfate anions and two aqua ligands. The doubly protonated enthylenediamine cations are located at the tunnels formed by 8-membered rings (four La and four sulfate anions)

  5. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  6. Synthesis, crystal structure and properties of [Co(L2](ClO42 (L=1,3-bis(1H-benzimidazol-2-yl-2-oxapropane

    Directory of Open Access Journals (Sweden)

    Tavman Aydin

    2015-01-01

    Full Text Available The reaction of 1,3-bis(1H-benzimidazol-2-yl-2-oxapropane (L with Co(ClO42•6H2O in absolute ethanol produces di[1,3-bis(1H-benzimidazol-2-yl-2-oxapropane-k2N,N’]cobalt(IIdiperchlorate chelate complex ([Co(L2](ClO42, 1. The complex 1 was characterized by elemental analysis, magnetic moment, molar conductivity, thermogravimetric analysis, FT-IR, UV-visible, mass spectrometry, and its solid state structure was determined by single crystal X-ray diffraction. According to the thermogravimetric analysis data, there is no any water coordinated or uncoordinated in 1 as well as elemental analysis. The complex 1 has 1:2 M:L ionic characteristic according to the molar conductivity. In the complex, the distances between the cobalt and the ethereal oxygen atoms (Co1-O2: 2.805(3; Co2-O1: 2.752(2 Å show the semi-coordination bonding and the Co(II ion is six-coordinated with a N4O2 ligand set, resulting in a distorted octahedron.

  7. Solubility of NaNd(CO3)2.6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions

    International Nuclear Information System (INIS)

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.; Novak, C.F.

    1996-01-01

    NaNd(CO 3 ) 2 x 6 H 2 O(c) was identified to be the final equilibrium solid phase in suspensions containing concentrated sodium carbonate (0.1 to 2.0 M) and sodium bicarbonate (0.1 to 1.0 M), with either NaNd(CO 3 ) 2 x 6 H 2 O(c) or Nd 2 (CO 3 ) 3 x xH 2 O(s) as initial solids. A thermodynamic model, based on Pitzer's specific into-interaction approach, was developed to interpret the solubility of NaNd(CO 3 ) 2 x 6 H 2 O(c) as functions of sodium carbonate and sodium bicarbonate concentrations. In this model, the solubility data of NaNd(CO 3 ) 2 x 6 H 2 O(c) were explained by assuming the formation of NdCO 3 + , Nd(CO 3 ) 2 - and Nd(CO 3 ) 3 3- species and invoking the specific ion interactions between Na + and Nd(CO 3 ) 3 3- . Ion interaction parameters for Na + -Nd(CO 3 ) 3 3- were developed to fit the solubility data. Based on the model calculations, Nd(CO 3 ) 3 3- was the predominant aqueous neodymium species in 0.1 to 2 M sodium carbonate and 0.1 to 1 M sodium bicarbonate solutions. The logarithm of the NaNd(CO 3 ) 2 x 6 H 2 O solubility product (NaNd(CO 3 ) 2 x 6 H 2 O(c)=Na + +Nd 3+ +2 CO 3 2- +6 H 2 O) was calculated to be -21.39. This model also provided satisfactory interpretation of the solubility data of the analogous Am(III) system in less concentrated carbonate and bicarbonate solutions. (orig.)

  8. Generation of H{sub 2} and CO by solar thermochemical splitting of H{sub 2}O and CO{sub 2} by employing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    2016-10-15

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles

  9. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co and Ni) through selenate incorporation

    Science.gov (United States)

    Driscoll, L. L.; Kendrick, E.; Knight, K. S.; Wright, A. J.; Slater, P. R.

    2018-02-01

    In this paper we report an investigation into the phases formed on dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts to dehydrate the samples doped with selenate resulted in amorphous products, and it is suspected that a side redox reaction involving the Fe and selenate may be occurring leading to phase decomposition and hence the lack of a crystalline product on dehydration. For M = Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SeO4)1.5x, was observed for the selenate doped compositions, with this phase forming as a single phase for x ≥ 0.5 M = Co, and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit with small impurities for lower selenate content samples. Although the alluaudite-type phases Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to increase the maximum sodium content within the structure. Moreover, the selenate doped Ni based samples reported here are the first examples of a Ni sulfate/selenate containing system exhibiting the alluaudite structure.

  10. Evolution of H2O, CO, and CO2 production in Comet C/2009 P1 Garradd during the 2011-2012 apparition

    Science.gov (United States)

    McKay, Adam J.; Cochran, Anita L.; DiSanti, Michael A.; Villanueva, Geronimo; Russo, Neil Dello; Vervack, Ronald J.; Morgenthaler, Jeffrey P.; Harris, Walter M.; Chanover, Nancy J.

    2015-04-01

    We present analysis of high spectral resolution NIR spectra of CO and H2O in Comet C/2009 P1 (Garradd) taken during its 2011-2012 apparition with the CSHELL instrument on NASA's Infrared Telescope Facility (IRTF). We also present analysis of observations of atomic oxygen in Comet Garradd obtained with the ARCES echelle spectrometer mounted on the ARC 3.5-m telescope at Apache Point Observatory and the Tull Coude spectrograph on the Harlan J. Smith 2.7-m telescope at McDonald Observatory. The observations of atomic oxygen serve as a proxy for H2O and CO2. We confirm the high CO abundance in Comet Garradd and the asymmetry in the CO/H2O ratio with respect to perihelion reported by previous studies. From the oxygen observations, we infer that the CO2/H2O ratio decreased as the comet moved towards the Sun, which is expected based on current sublimation models. We also infer that the CO2/H2O ratio was higher pre-perihelion than post-perihelion. We observe evidence for the icy grain source of H2O reported by several studies pre-perihelion, and argue that this source is significantly less abundant post-perihelion. Since H2O, CO2, and CO are the primary ices in comets, they drive the activity. We use our measurements of these important volatiles in an attempt to explain the evolution of Garradd's activity over the apparition.

  11. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  12. Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-). Theoretical evidence for a competitive charge transfer mechanism.

    Science.gov (United States)

    Hu, Zhenming; Boyd, Russell J; Nakatsuji, Hiroshi

    2002-03-20

    Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.

  13. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    Science.gov (United States)

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  14. Production of H2 from aluminium/water reaction and its potential for CO2 methanation

    Science.gov (United States)

    Khai Phung, Khor; Sethupathi, Sumathi; Siang Piao, Chai

    2018-04-01

    Carbon dioxide (CO2) is a natural gas that presents in excess in the atmosphere. Owing to its ability to cause global warming, capturing and conversion of CO2 have attracted much attention worldwide. CO2 methanation using hydrogen (H2) is believed to be a promising route for CO2 removal. In the present work, H2 is produced using aluminum-water reaction and tested for its ability to convert CO2 to methane (CH4). Different type of water i.e. tap water, distilled water, deionized water and ultrapure water, concentration of sodium hydroxide (NaOH) (0.2 M to 1.0 M) and particle size of aluminum (45 m to 500 μm) were varied as parameter study. It was found that the highest yield of H2 was obtained using distilled water, 1.0 M of NaOH and 45μm particle size of aluminium. However, the highest yield of methane was achieved using a moderate and progressive H2 production (distilled water, 0.6 M of NaOH and 45 μm particle size of aluminium) which allowed sufficient time for H2 to react with CO2. It was concluded that 1130 ml of H2 can produce about 560 ppm of CH4 within 25 min of batch reaction using nickel catalyst.

  15. Mild hydrothermal synthesis, crystal structure, spectroscopic and magnetic properties of the [MxIIM2.5-xIII(H2O)2(HPIIIO3)y(PVO4)2-yF] [M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds

    International Nuclear Information System (INIS)

    Orive, Joseba; Mesa, Jose L.; Legarra, Estibaliz; Plazaola, Fernando; Arriortua, Maria I.; Rojo, Teofilo

    2009-01-01

    The [M x II M 2.5-x III (H 2 O) 2 (HP III O 3 ) y (P V O 4 ) 2-y F] [M=Fe (1), x=2.08, y=1.58; M=Co (2), x=2.5, y=2; Ni (3), x=2.5, y=2] compounds have been synthesized using mild hydrothermal conditions at 170 deg. C during five days. Single-crystals of (1) and (2), and polycrystalline sample of (3) were obtained. These isostructural compounds crystallize in the orthorhombic system, space group Aba2, with a=9.9598(2), b=18.8149(4) and c=8.5751(2) A for (1), a=9.9142(7), b=18.570(1) and c=8.4920(5) A for (2) and a=9.8038(2), b=18.2453(2) and c=8.4106(1) A for (3), with Z=8 in the three phases. An X-ray diffraction study reveals that the crystal structure is composed of a three-dimensional skeleton formed by [MO 5 F] and [MO 4 F 2 ] (M=Fe, Co and Ni) octahedra and [HPO 3 ] tetrahedra, partially substituted by [PO 4 ] tetrahedra in phase (1). The IR spectra show the vibrational modes of the water molecules and those of the (HPO 3 ) 2- tetrahedral oxoanions. The thermal study indicates that the limit of thermal stability of these phases is 195 deg. C for (1) and 315 deg. C for (2) and (3). The electronic absorption spectroscopy shows the characteristic bands of the Fe(II), Co(II) and Ni(II) high-spin cations in slightly distorted octahedral geometry. Magnetic measurements indicate the existence of global antiferromagnetic interactions between the metallic centers with a ferromagnetic transition in the three compounds at 28, 14 and 21 K for (1), (2) and (3), respectively. Compound (1) exhibits a hysteresis loop with remnant magnetization and coercive field values of 0.72 emu/mol and 880 Oe, respectively. - Abstract: Polyhedral view of the crystal structure of the [M x II M 2.5-x III (H 2 O) 2 (HP III O 3 ) y (P IV O 4 ) 2-y F] [M=Fe, x=2.08, y=1.58; M=Co, Ni, x=2.5, y=2] compounds showing the sheets along the [001] direction.

  16. Solar kerosene from H2O and CO2

    Science.gov (United States)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  17. Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co; H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties

    Science.gov (United States)

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-01

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO2 is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO2 from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M2(hfipbb)2(ted)] (M=Zn (1), Co (2); H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO2 and N2 adsorption experiments and IAST calculations are carried out on [Zn2(hfipbb)2(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO2 strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO2 over N2, making it promising for capturing and separating CO2 from CO2/N2 mixtures.

  18. Synthesis of 9H-Indeno [1, 2-b] Pyrazine and 11H-Indeno [1, 2-b ...

    African Journals Online (AJOL)

    NICO

    Synthesis of 9H-Indeno [1, 2-b] Pyrazine and. 11H-Indeno [1, 2-b] Quinoxaline Derivatives in. One-step Reaction from 2-Bromo-4-chloro-1-indanone. S. Jasouri1,2, J. Khalafy1,*, M. Badali2 and R.H. Prager3. 1Department of Chemistry, Urmia University, Urmia 57154, Iran. 2Daana Pharmaceutical Co., P.O. Box 5181, Tabriz ...

  19. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  20. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model

    Science.gov (United States)

    Batalha, Natasha; Domagal-Goldman, Shawn D.; Ramirez, Ramses; Kasting, James F.

    2015-09-01

    A recent study by Ramirez et al. (Ramirez, R.M. et al. [2014]. Nat. Geosci. 7(1), 59-63. http://www.nature.com/doifinder/10.1038/ngeo2000 (accessed 16.09.14)) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ˜1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere was indeed H2-rich, we might be able to see evidence of this in the rock record. The hypothesis proposed here is consistent with new data from the Curiosity Rover, which show evidence for a long-lived lake in Gale Crater near Mt. Sharp. It is also consistent with measured oxygen fugacities of martian meteorites, which show evidence for progressive mantle oxidation over time.

  1. The 2ν2 bands of H212CO and H213CO by high-resolution FTIR spectroscopy

    Science.gov (United States)

    Tan, T. L.; A'dawiah, Rabia'tul; Ng, L. L.

    2017-10-01

    The Fourier transform infrared (FTIR) absorption spectra of the 2ν2 overtone bands of formaldehyde H212CO and its isotopologue H213CO were recorded at an unapodized resolution of 0.0063 cm-1 in the 3300-3540 cm-1 region. Upper state (v2 = 2) rovibrational up to two sextic centrifugal distortion constants were accurately determined for both H212CO and H213CO. A total of 533 unperturbed infrared transitions of H212CO and 466 unperturbed infrared transitions of H212CO were assigned and fitted with rms deviations of 0.0012 cm-1 and 0.00084 cm-1 respectively using Watson's A-reduced Hamiltonian in the Ir representation. Analysis of new transitions for H212CO measured in this work yielded upper state constants with greater accuracy than previously reported. The infrared transitions of the 2ν2 band of H213CO were measured for the first time. The band center of the A-type 2ν2 band of H212CO was found to be 3471.71403 ± 0.00012 cm-1 and that of H213CO was 3396.628983 ± 0.000083 cm-1. Furthermore, the newly assigned high-resolution infrared lines of the 2ν2 bands in the 3300-3540 cm-1 region can be useful in detecting the H212CO and H213CO molecules in this IR region.

  2. Synthesis and Structural Characterisation of [Ir4(CO8(CH3(m4-h3-Ph2PCCPh(m-PPh2] and of the Carbonylation Product [Ir4(CO8{C(OCH3}(m4-h3-Ph2PCCPh(m-PPh2]; First Evidence for the Formation of a CO Cluster Adduct before CO Insertion

    Directory of Open Access Journals (Sweden)

    Braga Dario

    1999-01-01

    Full Text Available Deprotonation of [(mu-HIr4(CO10(mu-PPh2], 1, gives [Ir4(CO10(mu-PPh2]- that reacts with Ph2PCCPh and CH3I to afford [Ir4(CO8(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2], 2 (34%, besides [Ir4(CO9(mu3-eta³-Ph2PC(HCPh(mu-PPh2] and [(mu-HIr4(CO9(Ph2PCºCPh(mu-PPh2]. Compound 2 was characterised by a single crystal X-ray diffraction analysis and exhibits a flat butterfly of metal atoms, with the Ph2PCCPh ligand interacting with all four Ir atoms and the methyl group bonded terminally to a wingtip Ir atom. Carbonylation of 2 yields initially (25 °C, 20 min a CO addition product that, according to VT 31P{¹H} and 13C{¹H} studies, exists in solution in the form of two isomers 4A and 4B (8:1, and then (40 °C, 7 h, the CO insertion product [Ir4(CO8{C(OCH3}(mu4-eta³-Ph2PCCPh(mu-PPh2], 5. The molecular structure of 5, established by an X-ray analysis, is similar to that of 2, except for the acyl group that remains bound to the same Ir atom. The process is reversible at both stages. Treatment of 2 with PPh3 and P(OMe3 affords the CO substitution products [Ir4(CO7L(CH3(mu4-eta³-Ph2PCCPh(mu-PPh2] (L = PPh3, 6 and P(OMe3, 7, instead of the expected CO inserted products. According to the ¹H and 31P{¹H} NMR studies, the PPh3 derivative 6 exists in the form of two isomers (1:1 that differ with respect to the position of this ligand.

  3. High temperature H2/CO2 separation using cobalt oxide silica membranes

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Diniz da Costa, J.C. [The University of Queensland, FIMLab - Films and Inorganic Membrane Laboratory, School of Chemical Engineering, Brisbane, Qld 4072 (Australia); Vente, J.F. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2012-09-15

    In this work high quality cobalt oxide silica membranes were synthesized on alumina supports using a sol-gel, dip coating method. The membranes were subsequently connected into a steel module using a graphite based proprietary sealing method. The sealed membranes were tested for single gas permeance of He, H2, N2 and CO2 at temperatures up to 600C and feed pressures up to 600 kPa. Pressure tests confirmed that the sealing system was effective as no gas leaks were observed during testing. A H2 permeance of 1.9 x 10{sup -7} mol m{sup -2} s{sup -1} Pa-1 was measured in conjunction with a H2/CO2 permselectivity of more than 1500, suggesting that the membranes had a very narrow pore size distribution and an average pore diameter of approximately 3 Angstrom. The high temperature testing demonstrated that the incorporation of cobalt oxide into the silica matrix produced a structure with a higher thermal stability, able to resist thermally induced densification up to at least 600C. Furthermore, the membranes were tested for H2/CO2 binary feed mixtures between 400 and 600C. At these conditions, the reverse of the water gas shift reaction occurred, inadvertently generating CO and water which increased as a function of CO2 feed concentration. The purity of H2 in the permeate stream significantly decreased for CO2 feed concentrations in excess of 50 vol%. However, the gas mixtures (H2, CO2, CO and water) had a more profound effect on the H2 permeate flow rates which significantly decreased, almost exponentially as the CO2 feed concentration increased.

  4. Study of Paramagnetic Monohydrates MeSO4.1H2O (Me = Mn2+, Co2+, Fe2+, Ni2+, Cu2+

    Directory of Open Access Journals (Sweden)

    Jelšovská Kamila

    2000-09-01

    Full Text Available Nuclear magnetic resonance (NMR of protons of crystrallization water in isomorphous paramagnetic monohydrates MeSO4.1H2O with Me = Mn2+ , Co2+ , Fe2+ , Ni2+ , Cu2+ is studied in the present paper. Several physically important parameters characterizing the studied substances were derived from the NMR spectra. In this paper we analysed the dependences of the NMR second moment M2 on the magnitude of the external magnetic field induction Br and the temperature. The proton NMR spectra in paramagnetic hydrates have an asymmetric form caused by the anisotropy of the local magnetic field acting on resonating nuclei and their second moments, M2, depend linearly on the square of the external magnetic field Br. The parameters M20 (the part of the second moment M2 which corresponds to the nuclear dipole-dipole interactions and á which characterize nuclear dipole-dipole interactions of protons and paramagnetic ions, respectively, are derived from experimentally obtained dependences of M2 vs Br2. The measurements were performed at the room temperature. Calculations were realized using the approximation where two nearest neighbour ions Me2+ to each water molecule are considered. The temperature dependence of the second moment, which was realised in the temperature range 123-313 K, was more informative than the field one. Besides the individual dependences M2(T measured at fr1 and fr2 we analysed the temperature dependence of the difference ∆M2(T. Beside the second moment M20 the Curie-Weiss constant è and the magnetic moment µi of paramagnetic ions were determined from the temperature dependences. The parameters è and M20 were determined directly from the experimental data. Some knowledge on the crystalline structure for the studied substance was required for the calculation of the magnetic moment µi. By means of the classification of substances according to the Curie-Weiss parameter, the negative value of the temperature parameter è for all studied

  5. Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO_2, CH_4, H_2 adsorptions and high CO_2/N_2 selectivity

    International Nuclear Information System (INIS)

    Modak, Arindam; Bhaumik, Asim

    2015-01-01

    Microporous carbon having Brunauer-Emmett-Teller (BET) surface area of 2186 m"2 g"−"1 and micropore volume of 0.85 cm"3 g"−"1 has been synthesized via KOH induced high temperature carbonization of a non-conjugated hypercrosslinked organic polymer. Owing to the templating and activation by KOH, we have succeeded in making a microporous carbon from this porous polymer and the resultant carbon material showed high uptake for CO_2 (7.6 mmol g"−"1) and CH_4 (2.4 mmol g"−"1) at 1 atm, 273 K together with very good selectivity for the CO_2/N_2 (30.2) separation. Furthermore, low pressure (1 atm) H_2 (2.6 wt%, 77 K) and water uptake (57.4 wt%, 298 K) ability of this polymer derived porous activated carbon is noteworthy. - Graphical abstract: Microporous carbon with BET surface area of 2186 m"2 g"−"1 has been synthesized via KOH activation of a porous organic polymer and it showed high uptake for CO_2 (7.6 mmol g"−"1), CH_4 (2.4 mmol g"−"1) and H_2 (2.6 wt%) at 1 atm together with very good selectivity for CO_2. - Highlights: • Porous carbon from hypercrosslinked organic polymer. • KOH activated carbon with BET surface area 2186 m"2 g"−"1. • High CO2 uptake (7.6 mmol g"−"1) and CO_2/N_2 selectivity (30.2). • Porous carbon also showed high H_2 (2.6 wt%) and H_2O (57.4 wt%) uptakes.

  6. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO

    Science.gov (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.

    1992-01-01

    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  7. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    Science.gov (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  8. Charge transfer processes in collisions of H+ ions with H2, D2, CO, CO2 CH4, C2H2, C2H6 and C3H8 molecules below 10 keV

    International Nuclear Information System (INIS)

    Kusakabe, T.; Buenker, R.J.; Kimura, M.

    2002-01-01

    Charge transfer processes resulting from collisions of H + ions with H 2 , D 2 , CO, CO 2 CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 molecules have been investigated in the energy range of 0.2 to 4.0 keV experimentally and theoretically. The initial growth rate method was employed in the experiment for studying the dynamics and cross sections. Theoretical analysis based on a molecular-orbital expansion method for H 2 , D 2 , CO, CH 4 and C 2 H 2 targets was also carried out. The present results for the H 2 , CO and CO 2 molecules by H + impact are found to be in excellent accord with most of previous measurements above 1 keV, but they show some differences below this energy where our result displays a stronger energy-dependence. For CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 targets, both experimental and theoretical results indicate that if one assumes vibrationally excited molecular ions (CH 4 + , C 2 H 2 + , C 2 H 6 + and C 3 H 8 + ) formed in the exit channel, then charge transfer processes sometimes become more favorable since these vibrationally excited fragments meet an accidental resonant condition. This is a clear indication of the role of vibrational excited states for charge transfer, and is an important realization for general understanding. (author)

  9. New metal-organic polygons involving MM quadruple bonds: M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6 (M=Mo, W).

    Science.gov (United States)

    Byrnes, Matthew J; Chisholm, Malcolm H; Patmore, Nathan J

    2005-12-12

    The reactions between M2(O2CtBu)4, where M=Mo or W, and thienyl-3,4-dicarboxylic acid (0.5-1.5 equiv) in toluene proceed via a series of detectable intermediates to the compounds M8(O2CtBu)4(mu-SC4H2-3,4-{CO2}2)6, which are isolated as air-sensitive yellow (M=Mo) or red (M=W) powders and show parent molecular ions in their mass spectra (MALDI). The structure of the molybdenum complex was determined by single-crystal X-ray crystallography and shown to contain an unusual M8 polygon involving four Mo2 quadruply bonded units linked via the agency of the six 3,4-thienylcarboxylate groups. The structure has crystallographically imposed S4 symmetry and may be described in terms of a highly distorted tetrahedron of Mo2 units or a bisphenoid in which two Mo2 units are linked by a thienyldicarboxylate such that intramolecular Mo2...O bonding is present, while the other thienylcarboxylate bridges merely serve to link these two [Mo2]...[Mo2] units together. The color of the compounds arises from intense M2 delta-to-thienyl pi transitions and, in THF, the complexes are redox-active and show four successive quasi-reversible oxidation waves. The [M8]+ radical cations, generated by one-electron oxidation with AgPF6, are shown to be valence-trapped (class II) by UV-vis-near-IR and electron paramagnetic resonance spectroscopy. These results are supported by the electronic structure calculations on model compounds M8(O2CH)4(mu-SC4H2-3,4-{CO}2)6 employing density functional theory that reveal only a small splitting of the M2 delta manifold via mixing with the 3,4-thienylcarboxylate pi system.

  10. Homoleptic Diphosphacyclobutadiene Complexes [M(η4-P2C2R2)2]x- (M=Fe, Co; x=0, 1)

    NARCIS (Netherlands)

    Wolf, Robert; Ehlers, A.W.; Khusniyarov, M.M.; Hartl, F.; de Bruin, B.; Long, G.J.; Grandjean, F.; Schappacher, F.M.; Pöttgen, R.; Slootweg, J.C.; Lutz, M.; Spek, A.L.; Lammertsma, K.

    2011-01-01

    The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)ACHTUNGTRENUNG(thf)2][Fe(η4- P2C2tBu2)2] (K1), [K([18]crown-6)- ACHTUNGTRENUNG(thf)2][Co(h4-P2C2tBu2)2] (K2), and

  11. Pumping characteristics for H2, CO and gas mixture of H2 and CO of distributed ion pump for the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Hirano, Nobuo; Kobari, Toshiaki; Matsumoto, Manabu

    1995-01-01

    Evacuation in the vacuum chamber of the deflection magnet part of the SPring-8 storage ring is planned to be performed with a non evaporable getter pump (NEG) as well as a distributed ion pump (DIP). Pumping characteristics for H 2 , CO and a gas mixture of H 2 and CO of DIP was investigated. The structure of the DIP constructed on a trial basis and an experimental setup to measure the DIP pumping characteristics were described. Pumping speed above 100 L/s per 1 m at the 10 -6 Pa device and pumping speed of about 500 L/s per 1 m at the 10 -7 Pa device were achieved for a gas mixture of H 2 and CO (37% and 55% CO). On the DIP saturated with CO, pumping speed for H 2 is about twice that of pumping speed for CO at the 10 -7 Pa device. Pumping speed for CO is about 1.5 times of the speed for N 2 at the 10 -6 Pa device. Pressure of 1.2 x 10 -8 Pa (9.0 x 10 -11 Torr) is achieved at a room temperature by baking at 150degC for 40 hr. Thus, it was confirmed that the DIP has sufficient pumping characteristics as a pump for the SPring-8 storage ring. (T.H.)

  12. Understanding the H 2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn)

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; Banerjee, Rahul; Orcajo, Gisela; Eckert, Juergen; Space, Brian

    2015-01-01

    © 2014 American Chemical Society. Electronic structure calculations and simulations of H2 sorption were performed in four members of the M-MOF-74 series: Mg-MOF-74, Ni-MOF-74, Co-MOF-74, and Zn-MOF-74. Notable differences were observed in the partial charge and polarizability of the metal ions derived from the electronic structure calculations. The modeling parameters obtained from the electronic structure calculations were found to influence certain features in the experimentally observed H2 sorption trends in the M-MOF-74 series. The simulations were performed with the inclusion of explicit many-body polarization, which was required to reproduce the experimental H2 sorption observables (i.e., sorption isotherms and isosteric heats of adsorption (Qst)) and the H2-metal interaction in all four MOFs using classical molecular simulation. Consistent with experimental measurements, the simulations captured the following trend for the H2-metal interaction strength: Ni-MOF-74 > Co-MOF-74 > Mg-MOF-74 > Zn-MOF-74. The calculations revealed that stronger H2-metal interactions within the M-MOF-74 series corresponded to shorter H2-metal distances and higher induced dipoles on the metal-sorbed H2 molecules. In addition, it was observed that there was a strong correlation between the H2-metal interaction and the polarization contribution. Although Mg-MOF-74 has the highest calculated partial charge for the metal ion within the series, the Mg2+ ion has a very low polarizability compared to the other M2+ ions; this explains why the H2-metal interaction in this MOF is weaker compared to those for Ni-MOF-74 and Co-MOF-74. The sterics interactions, reflected in the crystal structure for all four MOFs, also played a role for the observed H2 sorption trends. Zn-MOF-74 has the lowest H2 uptakes and Qst within the series due to an unfavorable geometric environment for the Zn2+ ions within the ZnO5 clusters. Lastly, the two-dimensional quantum rotational levels were calculated for the H

  13. Understanding the H 2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn)

    KAUST Repository

    Pham, Tony

    2015-01-15

    © 2014 American Chemical Society. Electronic structure calculations and simulations of H2 sorption were performed in four members of the M-MOF-74 series: Mg-MOF-74, Ni-MOF-74, Co-MOF-74, and Zn-MOF-74. Notable differences were observed in the partial charge and polarizability of the metal ions derived from the electronic structure calculations. The modeling parameters obtained from the electronic structure calculations were found to influence certain features in the experimentally observed H2 sorption trends in the M-MOF-74 series. The simulations were performed with the inclusion of explicit many-body polarization, which was required to reproduce the experimental H2 sorption observables (i.e., sorption isotherms and isosteric heats of adsorption (Qst)) and the H2-metal interaction in all four MOFs using classical molecular simulation. Consistent with experimental measurements, the simulations captured the following trend for the H2-metal interaction strength: Ni-MOF-74 > Co-MOF-74 > Mg-MOF-74 > Zn-MOF-74. The calculations revealed that stronger H2-metal interactions within the M-MOF-74 series corresponded to shorter H2-metal distances and higher induced dipoles on the metal-sorbed H2 molecules. In addition, it was observed that there was a strong correlation between the H2-metal interaction and the polarization contribution. Although Mg-MOF-74 has the highest calculated partial charge for the metal ion within the series, the Mg2+ ion has a very low polarizability compared to the other M2+ ions; this explains why the H2-metal interaction in this MOF is weaker compared to those for Ni-MOF-74 and Co-MOF-74. The sterics interactions, reflected in the crystal structure for all four MOFs, also played a role for the observed H2 sorption trends. Zn-MOF-74 has the lowest H2 uptakes and Qst within the series due to an unfavorable geometric environment for the Zn2+ ions within the ZnO5 clusters. Lastly, the two-dimensional quantum rotational levels were calculated for the H

  14. Enhancement of CO(3-2)/CO(1-0) ratios and star formation efficiencies in supergiant H II regions

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Rie E.; Espada, Daniel; Komugi, Shinya; Nakanishi, Kouichiro; Sawada, Tsuyoshi; Fujii, Kosuke; Kawabe, Ryohei [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kohno, Kotaro [Institute of Astronomy, School of Science, The University of Tokyo, Osawa, Mitaka, Tokyo 181-0015 (Japan); Tosaki, Tomoka [Joetsu University of Education, Yamayashiki-machi, Joetsu, Niigata 943-8512 (Japan); Hirota, Akihiko; Minamidani, Tetsuhiro [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1805 (Japan); Okumura, Sachiko K. [Department of Mathematical and Physical Sciences, Faculty of Science, Japan Woman' s University, Mejirodai 2-8-1, Bunkyo, Tokyo 112-8681 (Japan); Kuno, Nario [Department of Astronomical Science, The Graduate University for Advanced Studies (Sokendai), 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Muraoka, Kazuyuki; Onodera, Sachiko [Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Kaneko, Hiroyuki, E-mail: rie.miura@nao.ac.jp [Department of Physics, Meisei University, Hino, Tokyo 191-8506 (Japan)

    2014-06-20

    We present evidence that super giant H II regions (GHRs) and other disk regions of the nearby spiral galaxy, M33, occupy distinct locations in the correlation between molecular gas, Σ{sub H{sub 2}}, and the star formation rate surface density, Σ{sub SFR}. This result is based on wide-field and high-sensitivity CO(3-2) observations at 100 pc resolution. Star formation efficiencies (SFEs), defined as Σ{sub SFR}/Σ{sub H{sub 2}}, in GHRs are found to be ∼1 dex higher than in other disk regions. The CO(3-2)/CO(1-0) integrated intensity ratio, R {sub 3-2/1-0}, is also higher than the average over the disk. Such high SFEs and R {sub 3-2/1-0} can reach the values found in starburst galaxies, which suggests that GHRs may be the elements building up a larger-scale starburst region. Three possible contributions to high SFEs in GHRs are investigated: (1) the I {sub CO}-N(H{sub 2}) conversion factor, (2) the dense gas fraction traced by R {sub 3-2/1-0}, and (3) the initial mass function (IMF). We conclude that these starburst-like properties in GHRs can be interpreted by a combination of both a top-heavy IMF and a high dense gas fraction, but not by changes in the I {sub CO}-N(H{sub 2}) conversion factor.

  15. Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl · 2H2O

    International Nuclear Information System (INIS)

    Zhao, Pu Su; Lu, Lu De; Jian, Fang Fang

    2003-01-01

    The crystal structure of [Co(phen) 2 (Cl)(H 2 O)] Cl · 2H 2 O(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P 1 , with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)A, α=64.02(1), β=86.364(9), γ=78.58(2) .deg., and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33A). The intermolecular hydrogen bonds connect the [Co(phen) 2 (Cl)(H 2 O)] 1+ , H 2 O moieties and chloride ion

  16. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  17. Oxidation of cyclic amines by molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br

    Directory of Open Access Journals (Sweden)

    H.M. Mbuvi

    2013-05-01

    Full Text Available The molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br react with a large excess of the nitrogen bases, 1-methylpyrrolidine, 1-methylpiperidine, 1-ethylpiperidine and 2-ethylpiperidine to give aminecarbonyl complexes of the type M(CO3L3 (L= alkylamine. Excess piperidine reacts with the tungsten halocarbonyls, [W(CO4X2]2 (X = Cl, Br, to give the trans isomer of the complex, W(CO3(C5H11N3. The halogens were recovered as the amminium salts, amine, HX. The oxidized amine dimerized to form a yellow product which was recovered as an oily liquid but in very small amounts. However, in the reaction between Mo(CO4Br2 and 1-ethylpiperidine, a yellow crystalline solid, with a melting point of 224 oC was recovered in sufficient amounts for elemental analysis, melting point and spectral data. Its mass spectrum showed a molecular ion peak at m+/z = 222, a clear evidence that the oxidized amine dimerizes. The cyclic dibasic amine piperazine, C4H10N2 is not, however, oxidized by these halocarbonyls but rather it reacts by substituting some CO groups to form products of the type, M(CO3(C4H10N22X2 (M = Mo, W; X = Cl, Br. Products were characterized by elemental analysis, IR, UV, 1H NMR and mass spectrometry.

  18. Theoretical Prediction on [5]Radialene Sandwich Complexes (CpM)2(C10H10) (Cp = η5-C5H5; M = Fe, Co, Ni): Geometry, Spin States, and Bonding.

    Science.gov (United States)

    Liu, Nan-Nan; Xue, Ying-Ying; Ding, Yi-Hong

    2017-02-09

    [5]Radialene, the missing link for synthesis of radialene family, has been finally obtained via the preparation and decomplexation of the [5]radialene-bis-Fe(CO) 3 complex. The stability of [5]radialene complex benefits from the coordination with Fe(CO) 3 by losing free 1,3-butadiene structures to avoid polymerization. In light of the similar coordination ability of half-sandwiches CpM(Cp = η 5 -C 5 H 5 ; M = Fe, Co, Ni), there is a great possibility that the sandwiched complexes of [5]radialene with CpM are available. Herein, we present the first theoretical prediction on the geometry, spin states and bonding of (CpM)(C 10 H 10 ) and (CpM) 2 (C 10 H 10 ). For M = Fe, Co, Ni, the ground states of (CpM)(C 10 H 10 ) and (CpM) 2 (C 10 H 10 ) are doublet and triplet, singlet and singlet, and doublet and triplet states, where each Fe, Co, and Ni adopts 17, 18, and 19 electron-configuration, respectively. In particular, (CpFe) 2 (C 10 H 10 ) and (CpNi) 2 (C 10 H 10 ) have considerable open-shell singlet features. Generally the trans isomers of (CpM) 2 (C 10 H 10 ) with two CpM fragments on the opposite sides of the [5]radialene plane are apparently more stable than the cis ones with CpM fragments on the same side. However, for the singlet and triplet isomers of (CpNi) 2 (C 10 H 10 ) (both cis and trans isomers), the energy differences are relatively small, indicating that these isomers all have the opportunity to exist. Besides, the easy Diels-Alder (DA) dimerization between the [3]dendralene-like fragments of (CpM)(C 10 H 10 ) suggests the great difficulty in isolating the (CpM)(C 10 H 10 ) monomer.

  19. Synthesis and Structural Characterization of [Ir4(m-CO(CO7{m4-h3-Ph2PC(HC(PhPCBut}(m-PPh2]: Alkyne-Phosphaalkyne Coupling and Formation of a Novel 2-phosphabutadienylphosphine Ligand

    Directory of Open Access Journals (Sweden)

    Araujo Maria Helena

    1998-01-01

    Full Text Available Reaction of [Ir4(mu-H(CO9(Ph2PCºCPh(mu-PPh2] 1 with PºCBu t in CH2Cl2, at 35 °C, for 4 h yields the novel compound [Ir4(mu-CO(CO7{mu4-eta³-Ph2PC(HC(PhPCBu t}(mu-PPh2] 2, which contains the 2-phosphabutadienylphosphine chain. Compound 2 is also formed upon thermolysis of [Ir4(CO10(Ph2PCºCPh(PPh2H] 3 in the presence of PºCBu t in thf, at 40 °C, for 48 h. Small amounts of [Ir4(mu-CO(CO7(mu3-eta²-HCCPh(mu-PPh22] 4 are always obtained from both reactions, because of the competing rates of the transformations of 1 and 3 into 4 and of their reactions with PºCBu t. Compound 2 was characterized by analytical and spectroscopic studies such as FAB ms, ¹H, 31P,13C, 2D31P-¹H HETCOR, nOe difference and DEPT NMR experiments, which led to its formulation and established the coupling between the coordinated Ph2PCºCPh and PºCBu t and the migration of the hydride to the Calpha of the Ph2PCºCPh ligand. However, it was impossible to establish unambiguously if cleavage of the P-Csp bond of the Ph2PCºCPh ligand had occurred and the mode of interaction of the organophosphorus chain. An X-ray diffraction study of compound 2 established a butterfly arrangement of iridium atoms with the new ligand interacting with the metal framework via four sigma bonds and the PPh2 phosphorus lone pair.

  20. Magnetic structure and phase transitions of Co1-xMnxCl2.2H2O and Co1-xMnxCl2.2D2O

    International Nuclear Information System (INIS)

    Brueckel, T.; Lippert, M.; Kubo, H.; Zenmyo, K.; Mayer, H.M.; Pfeiffer, F.; Hohlwein, D.; Krimmel, A.

    1995-01-01

    We present neutron diffraction results of the magnetic structure, phase transitions and magnetic short-range order of Co 1-x Mn x Cl 2 .2H 2 O/D 2 O single crystals. For samples in an intermediate composition range, where a spin glass phase exists, we found the coexistence of spin glass and long-range antiferromagnetic order. ((orig.))

  1. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization

    DEFF Research Database (Denmark)

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin

    2016-01-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H-2/CO2), CH4 production kinetics were investigated at 37 +/- 1 degrees C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from...... formate, acetate and H-2/CO2 were 19.58 +/- 0.49, 42.65 +/- 1.17 and 314.64 +/- 3.58 N mL/gVS/d in digested manure system and 6.53 +/- 0.31, 132.04 +/- 3.96 and 640.16 +/- 19.92 N mL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular...... sludge system, while the rate of formate methanation was faster than from H-2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H-2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales...

  2. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br).

    Science.gov (United States)

    Kassaee, Mohamad Zaman; Ashenagar, Samaneh

    2018-02-06

    In a quest to identify new ground-state triplet germylenes, the stabilities (singlet-triplet energy differences, ΔE S-T ) of 96 singlet (s) and triplet (t) M 1 -Ge-M 2 -M 3 species were compared and contrasted at the B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M 1  = H, Li, Na, K; M 2  = Be, Mg, Ca; M 3  = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M 3  = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M 3  = Cl or Br). Triplets with M 1  = K (i.e., the K-Ge-M 2 -M 3 series) seem to be more stable than the corresponding triplets with M 1  = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M 3  = Cl behave similarly to those with M 3  = Br. Conversely, triplets with M 3  = H show similar stabilities and linearities to those with M 3  = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M 1 -Ge-M 2 -M 3 become more stable as the electropositivities of the α-substituents (M 1 and M 2 ) and the electronegativity of the β-substituent (M 3 ) increase.

  3. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    Science.gov (United States)

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states

    International Nuclear Information System (INIS)

    Raupp, G.B.; Dumesic, J.A.

    1985-01-01

    The adsorptive properties of titania surfaces with different oxidation states were proved by temperature-programmed desorption (TPD) of CO, H 2 , CO 2 , and H 2 O. Auger electron spectroscopy and X-ray photoelectron spectroscopy revealed that vacuum annealing an oxidized titanium foil at temperatures from 300 to 800 K was an effective means of systematically varying the average surface oxidation state from Ti 4+ to Ti 2+ . Carbon monoxide weakly adsorbed (desorption energy of 44-49 kJ x mol -1 ) in a carbonyl fashion on coordinatively unsaturated cation sites. Titania surfaces were inert with respect to H 2 adsorption and dissociation. Carbon dioxide adsorbed in a linear molecular fashion. Water adsorbed both molecularly and dissociatively. Results are discussed in terms of the role of titania oxidation state in CO hydrogenation over titania-supported metal catalysts. 74 references, 7 figures

  5. Synthesis and structural characterization of two cobalt phosphites: 1-D (H3NC6H4NH3)Co(HPO3)2 and 2-D (NH4)2Co2(HPo3)3

    International Nuclear Information System (INIS)

    Cheng, C.-C.; Chang, W.-K.; Chiang, R.-K.; Wang, S.-L.

    2010-01-01

    Two new cobalt phosphites, (H 3 NC 6 H 4 NH 3 )Co(HPO 3 ) 2 (1) and (NH 4 ) 2 Co 2 (HPO 3 ) 3 (2), have been synthesized and characterized by single-crystal X-ray diffraction. All the cobalt atoms of 1 are in tetrahedral CoO 4 coordination. The structure of 1 comprises twisted square chains of four-rings, which contain alternating vertex-shared CoO 4 tetrahedra and HPO 3 groups. These chains are interlinked with trans-1,4-diaminocyclohexane cations by hydrogen bonds. The 2-D structure of 2 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by Co 2 O 9 to form complex layers. Magnetic susceptibility measurements of 1 and 2 showed that they have a weak antiferromagnetic interaction. - Graphical abstract: The 2-D structure of (NH 4 ) 2 Co 2 (HPO 3 ) 3 comprises anionic complex sheets with ammonium cations present between them. An anionic complex sheet contains three-deck phosphite units, which are interconnected by dimmeric Co 2 O 9 to form complex layers.

  6. Crystal structure of the cyclo-tetraphosphates pentahydrates: M/sup II/Ag/sub 2/P/sub 4/O/sub 12/. 5H/sub 2/O (M/sup II/=Co,Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Soua, M.; Jouini, A.; Dabbabi, M.

    1989-03-15

    M/sub r/=680.84, monoclinic, P2/sub 1//n, a=15.712 (3), b=7.263 (1), c=12.619 (3) A, ..beta..=91.85 (1)/sup 0/, V=1439.3 A/sup 3/, Z=4, D/sub x/=3.141, D/sub m/=3.162 Mg m/sup -3/, lambda(MoK..cap alpha..)=0.7107 A, ..mu..=2.237 mm/sup -1/, F(000)=1308, room temperature, R=0.042 for 3551 independent reflexions. The Co atoms are octahedrally surrounded by two water molecules and four O atoms, forming infinite linear chains parallel to the c axis with a period (CoH/sub 2/O)/sub 2/P/sub 4/O/sub 12/vertical stroke/sup 2-/.Co(2)O/sub 6/ shares the O(E31), O(E41), O(W2) face with Ag(2)O/sub 6/ which is linked to Ag(1)O/sub 6/ by the corner O(E42). Co(1)O/sub 6/ is linked to Ag(1)O/sub 6/ by the edge O(E11)-O(E21). Indeed, polyhedra of associated cations form another infinite chain parallel with the a axis: CoO/sub 6/ octahedra are at the intersection of these two perpendicular infinite chains.

  7. Thermal, spectroscopic and magnetic properties of the Co xNi1-x(SeO3).2H2O (x = 0, 0.4, 1) phases

    International Nuclear Information System (INIS)

    Larranaga, A.; Mesa, J.L.; Pizarro, J.L.; Pena, A.; Chapman, J.P.; Arriortua, M.I.; Rojo, T.

    2005-01-01

    The Co x Ni 1-x (SeO 3 ).2H 2 O (x = 0, 0.4, 1) family of compounds has been hydrothermally synthesized under autogeneous pressure and characterized by elemental analysis, infrared and UV-vis spectroscopies and thermogravimetric and thermodiffractometric techniques. The crystal structure of Co 0.4 Ni 0.6 (SeO 3 ).2H 2 O has been solved from single-crystal X-ray diffraction data. This phase is isostructural with the M(SeO 3 ).2H 2 O (M = Co and Ni) minerals and crystallizes in the P2 1 /n space group, with a 6.4681(7), b = 8.7816(7), c = 7.5668(7) A, β = 98.927(9) deg and Z = 4. The crystal structure of this series of compounds consists of a three-dimensional framework formed by (SeO 3 ) 2- selenite oxoanions and edge-sharing M 2 O 10 dimeric octahedra in which the metallic cations are coordinated by the oxygens belonging to both the selenite groups and water molecules. The diffuse reflectance spectra show the essential characteristics of Co(II) and Ni(II) cations in slightly distorted octahedral environments. The calculated values of the Dq and Racah (B and C) parameters are those habitually found for the 3d 7 and 3d 8 cations in octahedral coordination. The magnetic measurements indicate the existence of antiferromagnetic interactions in all the compounds. The magnetic exchange pathways involve the metal orbitals from edge-sharing dimeric octahedra and the (SeO 3 ) 2- anions which are linked to the M 2 O 10 polyhedra in three dimensions

  8. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    Science.gov (United States)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  9. INFRARED ABSORPTION LINES TOWARD NGC 7538 IRS 1: ABUNDANCES OF H{sub 2}, H{sub 3}{sup +}, AND CO

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Miwa [Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 Munich (Germany); Geballe, T. R. [Gemini Observatory, 670 North A‘ohoku Place, Hilo, HI 96720 (United States); Usuda, Tomonori, E-mail: mgoto@usm.lmu.de, E-mail: tgeballe@gemini.edu, E-mail: usuda@naoj.org [Subaru Telescope, 650 North A‘ohoku Place, Hilo, HI 96720 (United States)

    2015-06-10

    We report high-resolution near-infrared absorption spectroscopy of H{sub 2}, H{sub 3}{sup +}, and CO toward the young high mass object NGC 7538 IRS 1. The v = 1–0 H{sub 2} S(0) line and lines in the CO v = 2–0 band were detected; the v = 1–0 H{sub 2} S(1) line and the v = 1–0 H{sub 3}{sup +} lines [R(1, 1){sup l}, R(1, 0), R(1, 1){sup u}] were not detected. The line of sight traverses two clouds, with temperatures 45 and 259 K and with roughly equal column densities of CO. Assuming that H{sub 2} is at the same temperature as CO and that the two species are uniformly mixed, [H{sub 2}]/[CO] = 3600 ± 1200. NGC 7538 is the most distant object from the Galactic center for which [H{sub 2}]/[CO] has been directly measured using infrared absorption spectroscopy.

  10. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  11. Positronium formation and hydrated positron reactions in H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Pedersen, Niels Jørgen

    1986-01-01

    Angular correlation of annihilation photons were measured for H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−. The three components of the angular correlation spectra for D2O and H2O were nearly identical in shape. The positronium (Ps) yields for the H2O and D2O solutions...... before annihilation (lifetime 400 ps) was determined for the three halides in the four solvents. Simple kinetic equations (“trapping model”) with time dependent rate constant, solved analytically, could explain the [X−, e+] formation in H2O fairly well for concentrations below 0.03 M X−, if a diffusion...... controlled reaction with positron diffusion constant D = 5 × 10−5 cm2/s and reaction radius R = 1 nm were assumed. The three halides gave roughly identical [X−, e+] formation below 0.03 M X−. The difference between the four solutions could be explained partly only in terms of viscosity change for the model...

  12. The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr Bicomponent Catalysts on Partial Methanation Coupling with Water Gas Shift under Low H2/CO Conditions

    Directory of Open Access Journals (Sweden)

    Xinxin Dong

    2017-02-01

    Full Text Available Ni-M (M = Mo, Fe, Co, Mn or Cr bicomponent catalysts were prepared through the co-impregnation method for upgrading low H2/CO ratio biomass gas into urban gas through partial methanation coupling with water gas shift (WGS. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction (XRD, H2 temperature programmed reduction (H2-TPR, H2 temperature programmed desorption (H2-TPD, scanning electron microscopy (SEM and thermogravimetry (TG. The catalytic performances demonstrated that Mn and Cr were superior to the other three elements due to the increased fraction of reducible NiO particles, promoted dispersion of Ni nanoparticles and enhanced H2 chemisorption ability. The comparative study on Mn and Cr showed that Mn was more suitable due to its smaller carbon deposition rate and wider adaptability to various H2/CO and H2O/CO conditions, indicating its better synergy effect with Ni. A nearly 100 h, the lifetime test and start/stop cycle test further implied that 15Ni-3Mn was stable for industrial application.

  13. STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS

    International Nuclear Information System (INIS)

    Gao, Peter; Hu, Renyu; Li, Cheng; Yung, Yuk L.; Robinson, Tyler D.

    2015-01-01

    We investigate the chemical stability of CO 2 -dominated atmospheres of desiccated M dwarf terrestrial exoplanets using a one-dimensional photochemical model. Around Sun-like stars, CO 2 photolysis by Far-UV (FUV) radiation is balanced by recombination reactions that depend on water abundance. Planets orbiting M dwarf stars experience more FUV radiation, and could be depleted in water due to M dwarfs’ prolonged, high-luminosity pre-main sequences. We show that, for water-depleted M dwarf terrestrial planets, a catalytic cycle relying on H 2 O 2 photolysis can maintain a CO 2 atmosphere. However, this cycle breaks down for atmospheric hydrogen mixing ratios <1 ppm, resulting in ∼40% of the atmospheric CO 2 being converted to CO and O 2 on a timescale of 1 Myr. The increased O 2 abundance leads to high O 3 concentrations, the photolysis of which forms another CO 2 -regenerating catalytic cycle. For atmospheres with <0.1 ppm hydrogen, CO 2 is produced directly from the recombination of CO and O. These catalytic cycles place an upper limit of ∼50% on the amount of CO 2 that can be destroyed via photolysis, which is enough to generate Earth-like abundances of (abiotic) O 2 and O 3 . The conditions that lead to such high oxygen levels could be widespread on planets in the habitable zones of M dwarfs. Discrimination between biological and abiotic O 2 and O 3 in this case can perhaps be accomplished by noting the lack of water features in the reflectance and emission spectra of these planets, which necessitates observations at wavelengths longer than 0.95 μm

  14. 13CO2/12CO2 isotope ratio analysis in human breath using a 2 μm diode laser

    Science.gov (United States)

    Sun, Mingguo; Cao, Zhensong; Liu, Kun; Wang, Guishi; Tan, Tu; Gao, Xiaoming; Chen, Weidong; Yinbo, Huang; Ruizhong, Rao

    2015-04-01

    The bacterium H. pylori is believed to cause peptic ulcer. H. pylori infection in the human stomach can be diagnosed through a CO2 isotope ratio measure in exhaled breath. A laser spectrometer based on a distributed-feedback semiconductor diode laser at 2 μm is developed to measure the changes of 13CO2/12CO2 isotope ratio in exhaled breath sample with the CO2 concentration of ~4%. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe CO2 spectrum. A new type multi-passes cell with 12 cm long base length , 29 m optical path length in total and 280 cm3 volume is used in this work. The temperature and pressure are well controlled at 301.15 K and 6.66 kPa with fluctuation amplitude of 25 mK and 6.7 Pa, respectively. The best 13δ precision of 0.06o was achieved by using wavelet denoising and Kalman filter. The application of denoising and Kalman filter not only improved the signal to noise ratio, but also shorten the system response time.

  15. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  16. Assembly of [Cu2(COO)4] and [M3(μ3-O)(COO)6] (M = Sc, Fe, Ga, and In) building blocks into porous frameworks towards ultra-high C2H2/CO2 and C2H2/CH4 separation performance.

    Science.gov (United States)

    Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Qu, Peng; Zhai, Quan-Guo

    2018-02-20

    A porous MOF platform (SNNU-65s) formed by creatively combining paddle-wheel-like [Cu 2 (COO) 4 ] and trigonal prismatic [M 3 (μ 3 -O)(COO) 6 ] building blocks was designed herein. The mixed and high-density open metal sites and the OH-functionalized pore surface promote SNNU-65s to exhibit ultra-high C 2 H 2 uptake and separation performance. Impressively, SNNU-65-Cu-Ga stands out for the highest C 2 H 2 /CO 2 (18.7) and C 2 H 2 /CH 4 (120.6) selectivity among all the reported MOFs at room temperature.

  17. Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO{sub 2}, CH{sub 4}, H{sub 2} adsorptions and high CO{sub 2}/N{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Arindam; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2015-12-15

    Microporous carbon having Brunauer-Emmett-Teller (BET) surface area of 2186 m{sup 2} g{sup −1} and micropore volume of 0.85 cm{sup 3} g{sup −1} has been synthesized via KOH induced high temperature carbonization of a non-conjugated hypercrosslinked organic polymer. Owing to the templating and activation by KOH, we have succeeded in making a microporous carbon from this porous polymer and the resultant carbon material showed high uptake for CO{sub 2} (7.6 mmol g{sup −1}) and CH{sub 4} (2.4 mmol g{sup −1}) at 1 atm, 273 K together with very good selectivity for the CO{sub 2}/N{sub 2} (30.2) separation. Furthermore, low pressure (1 atm) H{sub 2} (2.6 wt%, 77 K) and water uptake (57.4 wt%, 298 K) ability of this polymer derived porous activated carbon is noteworthy. - Graphical abstract: Microporous carbon with BET surface area of 2186 m{sup 2} g{sup −1} has been synthesized via KOH activation of a porous organic polymer and it showed high uptake for CO{sub 2} (7.6 mmol g{sup −1}), CH{sub 4} (2.4 mmol g{sup −1}) and H{sub 2} (2.6 wt%) at 1 atm together with very good selectivity for CO{sub 2}. - Highlights: • Porous carbon from hypercrosslinked organic polymer. • KOH activated carbon with BET surface area 2186 m{sup 2} g{sup −1}. • High CO2 uptake (7.6 mmol g{sup −1}) and CO{sub 2}/N{sub 2} selectivity (30.2). • Porous carbon also showed high H{sub 2} (2.6 wt%) and H{sub 2}O (57.4 wt%) uptakes.

  18. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E

    2014-01-01

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  19. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping

    2014-03-24

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  20. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  1. The nido-osmaboranes [2,2,2-(CO)(PPh(3))(2)-nido-2-OsB(5)H(9)] and [6,6,6-(CO)(PPh(3))(2)-nido-6-OsB(9)H(13)].

    Science.gov (United States)

    Bould, J; Kennedy, J D; Thomas, R L; Rath, N P; Barton, L

    2001-11-01

    The structural characterization of the osmahexaborane 2-carbonyl-2,2-bis(triphenylphosphine)-nido-2-osmahexaborane(9), [Os(B(5)H(9))(C(18)H(15)P)(2)(CO)], (I), a metallaborane analogue of B(6)H(10), confirms the structure proposed from NMR spectroscopy. The structure of the osmadecaborane 6-carbonyl-6,6-bis(triphenylphosphine)-nido-6-osmadecaborane(13), [Os(B(9)H(13))(C(18)H(15)P)(2)(CO)], (IV), is similarly confirmed. The short basal B-B distance of 1.652 (8) A in (I), not bridged by an H atom, mirrors that in the parent hexaborane(10) [1.626 (4) A].

  2. Selective removal of carbon dioxide from wet CO{sub 2}/H{sub 2} mixtures via facilitated transport membranes containing amine blends as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Heydari Gorji, A. [Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran); Kargari, A. [Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran (Iran); Kaghazchi, T.

    2009-01-15

    The selective separation of carbon dioxide (CO{sub 2}) from a wet gaseous mixture of CO{sub 2}/H{sub 2} through facilitated transport membranes containing immobilized aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), ethylenediamine (EDA) and monoprotonated ethylenediamine (EDAH{sup +}) and their blends was experimentally investigated. The effect of CO{sub 2} partial pressure, amine concentration, feed side pressure and amine species on the CO{sub 2} and H{sub 2} permeances were studied. The CO{sub 2} permeability through amine solution membranes decreased with increasing CO{sub 2} feed partial pressure but the H{sub 2} permeance was almost independent of the H{sub 2} partial pressure. A comparison of experimental results showed that single or blended amines with low viscosity and a moderate equilibrium constant, i.e., large forward and reverse reaction rate of CO{sub 2}-amine, are suitable for effective separation of CO{sub 2}. The permeability of CO{sub 2} generally increased with an increase in amine concentration, although this increase may be compromised by the salting out effect and decrease in diffusivities of species. The results obtained indicated that CO{sub 2} permeance across a variety of amines are in the order of DEA (2 M)>MD(2M) >MD(1 M)>MEA(2 M) >MEA(4 M)>MD (4 M)>DEA (1 M)> DEA(4 M)>MEA (1 M) for various concentrations of MEA+DEA blend and are in the order of EDAH{sup +}(2 M)> DEA(2 M) >MH(2 M)>DH (2 M)>ED (2 M)>EDA (2 M)> MEA(2 M) for various blends of amine. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Solubility of NpO2 in Na2CO3 solutions

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Yang, Han Beom; Lee, Eil Hee; Kim, Kwang Wook

    2010-03-01

    Solubilities of NpO 2 were measured in 0.1 M Na 2 CO 3 (pH 11.25) and 0.1 M Na 2 CO 3 -0.5M H 2 O 2 (pH 11.25), respectively, for two weeks. Three detection methods such as gas proportional counting (GPC), liquid scintillation counting (LSC) and ICP-MS were used for the measurement of dissolved NpO 2 in the solutions and the results by different methods were compared with each other. The solubility of NpO 2 increased as the contact time increased and those after 2 weeks showed 4.4 x 10 -9 M in 0.10 M Na 2 CO 3 (pH 11.25) and 2.4 x 10 -8 M in 0.10 M Na 2 CO 3 -0.5M H 2 O 2 (pH 11.25), respectively

  4. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  5. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    Science.gov (United States)

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  6. Selective removal of Cs and Re by precipitation in a Na2CO3-H2O2 solution

    International Nuclear Information System (INIS)

    Eil-Hee Lee; Jae-Gwan Lim; Dong-Yong Chung; Han-Beom Yang; Kwang-Wook Kim

    2010-01-01

    The removal of Cs and Re (as a surrogate for Tc) by selective precipitation from the simulated fission products which were co-dissolved with uranium during the oxidative dissolution of spent fuel in a Na 2 CO 3 -H 2 O 2 solution was investigated in this study. The precipitations of Cs and Re were examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylohosponium chloride (TPPCl), respectively. The precipitation of Cs by NaTPB and that of Re by TPPCl each took place within 5 min, and an increase in temperature up to 50 deg C and a stirring speed up to 1000 rpm hardly affected their precipitation rates. The most important factor in the precipitation with NaTPB and TPPCl was found to be a pH of the solution after precipitation. Since Mo tends to co-precipitate with Cs or Re at a lower pH, an effective precipitation with NaTPB and TPPCl was done at pH of above 9 without the co-precipitation of Mo. More than 99% of Cs and Re were precipitated when the initial concentration ratio of NaTPB to Cs was above 1 and when that of TPPCl to Re was above 1. The precipitation of Cs and Re was never affected by the concentration of Na 2 CO 3 and H 2 O 2 , even though they were raised up to 1.5 and 1.0 M, respectively. Precipitation yields of Cs and Re in a Na 2 CO 3 -H 2 O 2 solution were found to be dependent on the concentration ratios of [NaTBP]/[Cs] and [TPPCl]/[Re]. (author)

  7. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  8. Urchin-Like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow.

    Science.gov (United States)

    Wei, Wutao; Cui, Shizhong; Ding, Luoyi; Mi, Liwei; Chen, Weihua; Hu, Xianluo

    2017-11-22

    Portable electronics and electric or hybrid electric vehicles are developing in the trend of fast charge and long electric mileage, which ask us to design a novel electrode with sufficient electronic and ionic transport channels at the same time. Herein, we fabricate a uniform hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material through an easy self-generated and resacrificial template method. The one-dimensional chain-like crystal structure unit containing the metallic bonding and the intercalated OH - and H 2 O endow this electrode material with abundant electronic and ionic transport channels. The hollow-urchin-like structure built by nanorods contributes to the large electrode-electrolyte contact area ensuring the supply of ions at high current. CNTs are employed to transport electrons between electrode material and current collector. The as-assembled NC-CNT-2//AC supercapacitor device exhibits a high specific capacitance of 108.3 F g -1 at 20 A g -1 , a capacitance retention ratio of 96.2% from 0.2 to 20 A g -1 , and long cycle life. Comprehensive investigations unambiguously highlight that the unique hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material would be the right candidate for advanced next-generation supercapacitors.

  9. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging.

    Science.gov (United States)

    Kraemer, Jeremy T; Bagley, David M

    2006-09-01

    Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.

  10. Oxidative Addition Reactions of I2 with [HIr4(CO10-n(PPh3 n(m-PPh2] (n = 1 and 2 and Crystal and Molecular Structure of [HIr4(m-I2(CO7 (PPh3(m-PPh2

    Directory of Open Access Journals (Sweden)

    Braga Dario

    2002-01-01

    Full Text Available The reactions of the cluster compounds [HIr4(CO10-n(PPh3 n(mu-PPh2] [n = 0, (1; 1, (2 and 2, (3] with I2 have been investigated. Compound 1 does not react, however, the presence of PPh3 in place of CO ligand(s activates the cluster. Both compounds 2 and 3 react with I2 under mild conditions to give [HIr4(mu-I2(CO7(PPh3(mu-PPh 2] (4, as the result of oxidative addition of I2 and dissociation of two CO ligands, or one CO and one PPh3 ligands, respectively. The molecular structure of 4, determined by an X-ray diffraction study, exhibits a butterfly arrangement of iridium atoms with the wings spanned by a mu-PPh2 ligand, the hinge bridged by a mu-H ligand, two hinge to wing tip edges bridged by iodine atoms and all metal atoms bearing two CO ligands, with the exception of one of the hinge atoms that contains a CO and a PPh3 ligands. This cluster exhibits the shortest average Irfraction three-quartersIr bond length [2.698(2 Å] observed so far for a derivative of 1 and this is in accord with the relatively high average oxidation state of its metal atoms (+1 for a carbonyl cluster compound.

  11. CO2-, He- and H2-broadening coefficients of SO2 for ν1 band and ground state transitions for astrophysical applications

    Science.gov (United States)

    Ceselin, Giorgia; Tasinato, Nicola; Puzzarini, Cristina; Pietropolli Charmet, Andrea; Stoppa, Paolo; Giorgianni, Santi

    2017-12-01

    The discovery of the Universe and of the interstellar medium (ISM) is based on the knowledge of the molecules that are present in those places. Most of our understanding about the composition of the ISM and planetary atmospheres has been made possible almost entirely thanks to spectroscopic observations. Sulfur dioxide, SO2, is one of the about 200 molecules that have been detected in the ISM or circumstellar shells. In addition to its astrophysical relevance, SO2 has a proved role in the Earth's atmosphere. It origins from biomass burning and volcanic eruptions and directly enters in the sulfur cycle. In this work high-resolution tunable diode laser (TDL) infrared (IR) spectroscopy and mm-/sub-mm wave spectroscopy are exploited to retrieve the broadening parameters of sulfur dioxide perturbed by H2, He and CO2. IR measurements are carried out for ν1 band transitions around 9 μm by using He and CO2 as damping gases. As far as the vibrational ground state is concerned, about 20 rotational transitions are analyzed by means of the speed dependent Voigt profile to retrieve H2- and He-broadening coefficients. From the experimental results some conclusions about the quantum number dependence of the H2-, CO2- and He-collisional cross sections are drawn. Both IR and MW experiments highlight a very weak dependence of He broadening parameters on the Ka and J rotational quantum numbers. In a similar way, also SO2-H2 broadening coefficients show a negligible dependence on the rotational quantum numbers. Conversely, when CO2 is employed as perturbing species, the observed collisional cross sections tend to decrease with increasing Ka values and to increase against J, at least over the range of quantum numbers considered. The present results provide the first systematic determination of line-by-line SO2-CO2 broadening coefficients and they are of relevance to increase the potential use of spectroscopic databases for astronomical applications.

  12. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  13. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    Science.gov (United States)

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  14. High catalytic activity and stability of Ni/CexZr1-xO2/MSU-H for CH4/CO2 reforming reaction

    Science.gov (United States)

    Chang, Xiaoqian; Liu, Bingsi; Xia, Hong; Amin, Roohul

    2018-06-01

    How to reduce emission of CO2 as greenhouse gases, which resulted in global warming, is of very important significance. A series of Ni/CexZr1-xO2/MSU-H catalysts was prepared by means of hexagonally ordered mesoporous MSU-H with thermal and hydrothermal stabilities, which is cheap and can be synthesized in the large scale. The 10%Ni/Ce0.75Zr0.25O2/MSU-H catalyst presents high catalytic activity, stability and the ability of coke-resistance for CH4/CO2 reforming reaction due to high SBET (428 m2/g) and smaller Nio nanoparticle size (3.14 nm). The high dispersed Nio nanoparticles over MSU-H promoted the decomposition of CH4 and the carbon species accumulated on active Nio sites reacting with crystal lattice oxygen in Ce0.75Zr0.25O2 to form CO molecules. In the meantime, the remained oxygen vacancies on the interface between Nio and Ce0.75Zr0.25O2 could be supplemented via CO2. HRTEM images and XRD results of Ni/Ce0.75Zr0.25O2/MSU-H verified that high dispersion of Ni nanoparticles over Ni/Ce0.75Zr0.25O2/MSU-H correlated closely with the synergistic action between Ce0.75Zr0.25O2 and MSU-H as well as hexagonally ordered structure of MSU-H, which can provide effectively the oxygen storage capacity and inhibit the formation of coke.

  15. Superconductivity in Na{sub 1-x}CoO{sub 2}.yH{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinkiy, Philipp; Alff, Lambert [Institute for Materials Science, TU Darmstadt (Germany); Fritsch, Ingo; Habermeier, Hanns-Ulrich [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Lemmens, Peter [Institute for Condensed Matter Physics, TU Braunschweig (Germany)

    2010-07-01

    Sodium cobaltate (Na{sub 1-x}CoO{sub 2}) is a novel material with thermoelectric behavior, charge and spin ordered states dependent on the sodium content in the composition. A superconducting phase was found in water intercalated sodium cobaltate (Na{sub 1-x}CoO{sub 2}.yH{sub 2}O) with x=0.65-0.7 and y=0.9-1.3. The pairing state is still under debate, but there are some indications for a spin-triplet or p-wave superconducting pairing state. First films of Na{sub 1-x}CoO{sub 2}.yH{sub 2}O with a superconducting transition temperature near 5 K have been successfully grown. Here we report on thin films of Na{sub 1-x}CoO{sub 2} grown by pulsed laser deposition technique. The deposition parameters, sodium deintercalation and water intercalation conditions are tuned in order to obtain the superconducting phase. The instability of this phase might be an indication for triplet superconductivity, which is known to be affected strongly by impurities and defects.This observation is in agreement with the fact that so far also no superconducting thin films of the most famous triplet superconductor Sr{sub 2}RuO{sub 4} have been reported.

  16. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.

    Science.gov (United States)

    Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F

    2015-06-01

    In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hydrothermal synthesis, thermal, structural, spectroscopic and magnetic studies of the Mn5-x Co x (HPO4)2(PO4)2(H2O)4 (x=1.25, 2, 2.5 and 3) finite solid solution

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    The Mn 5- x Co x (HPO 4 ) 2 (PO 4 ) 2 (H 2 O) 4 (x=1.25, 2, 2.5, 3) finite solid solution has been synthesized by mild hydrothermal conditions under autogeneous pressure. The phases crystallize in the C2/c space group with Z=4, belonging to the monoclinic system. The unit-cell parameters obtained from single crystal X-ray diffraction are: a=17.525(1), b=9.0535(6), c=9.4517(7) A, β=96.633(5) o being R1=0.0436, wR2=0.0454 for Mn75Co25; a=17.444(2), b=9.0093(9), c=9.400(1) A, β=96.76(1) o being R1=0.0381, wR2=0.0490 for Mn60Co40; a=17.433(2), b=8.9989(9), c=9.405(1) A, β=96.662(9) o being R1=0.0438, wR2=0.0515 for Mn50Co50 and a=17.4257(9), b=8.9869(5), c=9.3935(5) A, β=96.685(4) o being R1=0.0296, wR2=0.0460 for Mn40Co60. The structure consists of a three dimensional network formed by octahedral pentameric entities (Mn,Co) 5 O 16 (H 2 O) 6 sharing vertices with the (PO 4 ) 3- and (HPO 4 ) 2- tetrahedra. The limit of thermal stability of these compounds is, approximately, 165 deg. C, near to this mean temperature the phases loose their water content in two successive steps. IR spectra show the characteristic bands of the water molecules and the phosphate and hydrogen-phosphate oxoanions. The diffuse reflectance spectra are consistent with the presence of MO 6 octahedra environments in slightly distorted octahedral geometry, except for the M(3)O 6 octahedron which presents a remarkable distortion and so a higher Dq parameter. The mean value for the Dq and B-Racah parameter for the M(1),(2)O 6 octahedra is 685 and 850 cm -1 , respectively. These parameters for the most distorted M(3)O 6 polyhedron are 825 and 880 cm -1 , respectively. The four phases exhibit antiferromagnetic couplings as the major magnetic interactions. However, a small spin canting phenomenon is observed at low temperatures for the two phases with major content in the anisotropic-Co(II) cation. - Graphical abstract: Crystal structure of the finite solid solution Mn 5-x Co x (HPO 4 ) 2 (PO 4 ) 2 (H

  18. Full-disc 13CO(1-0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H2 conversion factor

    Science.gov (United States)

    Cormier, D.; Bigiel, F.; Jiménez-Donaire, M. J.; Leroy, A. K.; Gallagher, M.; Usero, A.; Sandstrom, K.; Bolatto, A.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E. J.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Sliwa, K.; Walter, F.

    2018-04-01

    Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While 12CO has been targeted extensively, isotopologues such as 13CO have the advantage of being less optically thick and observations have recently become accessible across full galaxy discs. We present a comprehensive new data set of 13CO(1-0) observations with the IRAM 30-m telescope of the full discs of nine nearby spiral galaxies from the EMPIRE survey at a spatial resolution of ˜1.5 kpc. 13CO(1-0) is mapped out to 0.7 - 1 r25 and detected at high signal-to-noise ratio throughout our maps. We analyse the 12CO(1-0)-to-13CO(1-0) ratio (ℜ) as a function of galactocentric radius and other parameters such as the 12CO(2-1)-to-12CO(1-0) intensity ratio, the 70-to-160 μm flux density ratio, the star formation rate surface density, the star formation efficiency, and the CO-to-H2 conversion factor. We find that ℜ varies by a factor of 2 at most within and amongst galaxies, with a median value of 11 and larger variations in the galaxy centres than in the discs. We argue that optical depth effects, most likely due to changes in the mixture of diffuse/dense gas, are favoured explanations for the observed ℜ variations, while abundance changes may also be at play. We calculate a spatially resolved 13CO(1-0)-to-H2 conversion factor and find an average value of 1.0 × 1021 cm-2 (K km s-1)-1 over our sample with a standard deviation of a factor of 2. We find that 13CO(1-0) does not appear to be a good predictor of the bulk molecular gas mass in normal galaxy discs due to the presence of a large diffuse phase, but it may be a better tracer of the mass than 12CO(1-0) in the galaxy centres where the fraction of dense gas is larger.

  19. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    International Nuclear Information System (INIS)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong

    2017-01-01

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2 -CO-H 2 O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2 O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2 /CO = 40/7). Rate expressions that correlate CO 2 and H 2 O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate ((mol)/(m 2 s)) = 406 exp ((−50.2kJ/mol)/(RT)) (pZnpCO 2 − PCO/K eq CO 2 ) ((mol)/(m 2 xs)) Rate (((mol)/(m 2 s))) = 32.9 exp (((−13.7kJ/mol)/(RT))) (pZnPH 2 O − PH 2 /K eq H 2 O) ((mol)/(m 2 xs)). It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2 O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by

  20. UH-1H Flat Rate Manual. Volume 2

    Science.gov (United States)

    1975-07-01

    o o Ox IA «A IAVO o O O O O rococo co co rococo co co CO CO CO CO CO CO CO CO CO IAIAIA IA IA IT» »A IA UMA i ■ XX o 4» « § « * * ■ 2...OOO O O O O O rococo co co co co co rococo co co co co co 1 WIAIA IA U\\ ITilA IA s If r% ■H fjg X a ! °* i Q i F o M as 1 V. 3 I -372

  1. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    Science.gov (United States)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  2. CdBr2 complexes of 1,2-bis-[2-(5-H/methyl/chloro/nitro)-1H-benzimidazolyl]-1,2-ethanediols

    International Nuclear Information System (INIS)

    Aydin Tavman

    2005-01-01

    The complexes of 1,2-bis-[2-(5-H/methyl/chloro/nitro)-1H-benzimidazolyl]-1,2-ethanediols with CdBr 2 were synthesized and characterized by elemental analysis, molar conductivity, IR and NMR spectra. The ligands act as a bidentate only through both oxygen atoms of hydroxyl groups in complexes with ratio M:L=1:1 [ru

  3. SYSTEMATIC VARIATIONS IN CO2/H2O ICE ABUNDANCE RATIOS IN NEARBY GALAXIES FOUND WITH AKARI NEAR-INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Onaka, T.; Shimonishi, T.; Suzuki, T.

    2015-01-01

    We report CO 2 /H 2 O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5–5.0 μm) spectra. The CO 2 /H 2 O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO 2 /H 2 O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in the relation between CO 2 /H 2 O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO 2 /H 2 O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO 2 /H 2 O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO 2 /H 2 O ice abundance ratios tend to be high in young star-forming galaxies

  4. CHEMICAL COMPLEXITY IN THE HELIX NEBULA: MULTI-LINE OBSERVATIONS OF H{sub 2}CO, HCO{sup +}, AND CO

    Energy Technology Data Exchange (ETDEWEB)

    Zack, L. N.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu [Department of Chemistry, University of Arizona, P.O. Box 210041, Tucson, AZ 85721 (United States)

    2013-03-10

    Observations of CO, HCO{sup +}, and H{sub 2}CO have been carried out at nine positions across the Helix Nebula (NGC 7293) using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. Measurements of the J = 1 {yields} 0, 2 {yields} 1, and 3 {yields}2 transitions of CO, two transitions of HCO{sup +} (J = 1 {yields} 0 and 3 {yields}2), and five lines of H{sub 2}CO (J{sub Ka,Kc} = 1{sub 0,1} {yields} 0{sub 0,0}, 2{sub 1,2} {yields} 1{sub 1,1}, 2{sub 0,2} {yields} 1{sub 0,1}, 2{sub 1,1} {yields} 1{sub 1,0}, and 3{sub 0,3} {yields}2{sub 0,2}) were conducted in the 0.8, 1, 2, and 3 mm bands toward this highly evolved planetary nebula. HCO{sup +} and H{sub 2}CO were detected at all positions, along with three transitions of CO. From a radiative transfer analysis, the kinetic temperature was found to be T{sub K} {approx} 15-40 K across the Helix with a gas density of n(H{sub 2}) {approx} 0.1-5 Multiplication-Sign 10{sup 5} cm{sup -3}. The warmer gas appears to be closer to the central star, but high density material is distributed throughout the nebula. For CO, the column density was found to be N{sub tot} {approx} 0.25-4.5 Multiplication-Sign 10{sup 15} cm{sup -2}, with a fractional abundance of f (CO/H{sub 2}) {approx} 0.3-6 Multiplication-Sign 10{sup -4}. Column densities for HCO{sup +} and H{sub 2}CO were determined to be N{sub tot} {approx} 0.2-5.5 Multiplication-Sign 10{sup 11} cm{sup -2} and 0.2-1.6 Multiplication-Sign 10{sup 12} cm{sup -2}, respectively, with fractional abundances of f (HCO{sup +}/H{sub 2}) {approx} 0.3-7.3 Multiplication-Sign 10{sup -8} and f (H{sub 2}CO/H{sub 2}) {approx} 0.3-2.1 Multiplication-Sign 10{sup -7}-several orders of magnitude higher than predicted by chemical models. Polyatomic molecules in the Helix appear to be well-protected from photodissociation and may actually seed the diffuse interstellar medium.

  5. The topotactic dehydration of monoclinic {[Co(pht)(bpy)(H2O)22H2O}n into orthorhombic [Co(pht)(bpy)(H2O)2]n (pht is phthalate and bpy is 4,4'-bipyridine).

    Science.gov (United States)

    Harvey, Miguel Angel; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2014-10-01

    Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633, 1127-1130] dihydrate {[Co(pht)(bpy)(H2O)22H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4'-bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2-benzene-1,2-dicarboxylato-κ(2)O(1):O(2))(μ2-4,4'-bipyridine-κ(2)N:N')cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two-dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn2(1)) in a disordered fashion, where the space-group-symmetry restrictions are achieved only in a statistical sense, with mirror-related two-dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror-related `ghosts' of half-occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed.

  6. Unusual electronic features and reactivity of the dipyridylazaallyl ligand: characterizations of (smif)2M [M = Fe, Co, Co+, Ni; smif = {(2-py)CH}2N] and [(TMS)2NFe]2(smif)2.

    Science.gov (United States)

    Frazier, Brenda A; Wolczanski, Peter T; Lobkovsky, Emil B; Cundari, Thomas R

    2009-03-18

    Application of the dipyridylazaallyl ligand (2-py)CHNCH(2-py) (smif) to a series of first-row transition metals afforded (smif)(2)M(n) [n = 0, M = Fe (1), Co (2), Ni (3); n = +1, M = Co (2+)] and {(TMS)(2)NFe}(2)(smif)(2) (4(2)) via metathetical procedures. The Mossbauer spectrum of 1 (S = 0) and TDDFT calculations, including a UV-vis spectral simulation, reveal it to be a covalent, strong-field system with Delta(o) estimated as approximately 18,000 cm(-1) and B approximately 470 cm(-1). (smif)(2)Co (2) has S = 1/2 according to SQUID data at 10 K. DFT calculations suggest that the odd electron is localized in a smif pi* orbital, i.e., smif is redox-active. EPR-silent (smif)(2)Ni (3) has S = 1 (SQUID), and calculations show that the unpaired spins reside in the d(z(2)) and d(x(2))(-y(2)) orbitals. X-ray structural parameters suggest that low-spin d(6) 1 and 2+ are relatively symmetric D(2d) species, but 2 and 3 manifest a distortion in which one smif is canted in the plane perpendicular to the other. (smif)FeN(TMS)(2) (4) is principally monomeric in solution, but reversibly dimerizes (K(eq) approximately 10(-4) M(-1)) via C-C bond formation in the azaallyl backbone to crystallize as {(TMS)(2)NFe}(2)(smif)(2) (4(2)). The azaallyl compounds possess extraordinary UV-vis absorptivities (epsilon approximately 18,000-52,000) at 580 +/- 15 nm and 406(25) nm that have been identified as intraligand bands with C(nb) --> smif pi* character.

  7. The surface chemistry of Cu in the presence of CO2 and H2O

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xingyi; Verdaguer, Albert; Herranz, Tirma; Weis, Christoph; Bluhm, Hendrik; Salmeron, Miquel

    2008-07-16

    The chemical nature of copper and copper oxide (Cu{sub 2}O) surfaces in the presence of CO{sub 2} and H{sub 2}O at room temperature was investigated using ambient pressure x-ray photoelectron spectroscopy. The studies reveal that in the presence of 0.1 torr CO{sub 2} several species form on the initially clean Cu, including carbonate CO{sub 3}{sup 2}, CO{sub 2}{sup {delta}-} and C{sup 0}, while no modifications occur on an oxidized surface. The addition of 0.1 ML Zn to the Cu results in the complete conversion of CO{sub 2}{sup {delta}-} to carbonate. In a mixture of 0.1 torr H{sub 2}O and 0.1 torr CO{sub 2}, new species are formed, including hydroxyl, formate and methoxy, with H{sub 2}O providing the hydrogen needed for the formation of hydrogenated species.

  8. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h1 and H 2 /O 2 ratio of 2.

  9. Reaction of tin(iv) phthalocyanine dichloride with decamethylmetallocenes (M = CrII and CoII). Strong magnetic coupling of spins in (Cp*2Co+){SnIVCl2(Pc˙3-)}˙-·2C6H4Cl2.

    Science.gov (United States)

    Konarev, Dmitri V; Troyanov, Sergey I; Shestakov, Alexander F; Yudanova, Evgeniya I; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N

    2018-01-23

    The reaction of tin(iv) phthalocyanine dichloride {Sn IV Cl 2 (Pc 2- )} with decamethylmetallocenes (Cp* 2 M, M = Co, Cr) has been studied. Decamethylcobaltocene reduces Sn IV Cl 2 (Pc 2- ) to form the (Cp* 2 Co + ){Sn IV Cl 2 (Pc˙ 3- )}˙ - ·2C 6 H 4 Cl 2 (1) complex. The negative charge of {Sn IV Cl 2 (Pc˙ 3- )}˙ - is delocalized over the Pc macrocycle providing the alternation of the C-N(imine) bonds, the appearance of new bands in the NIR range and a strong blue shift of both the Soret and Q-bands in the spectrum of 1. The magnetic moment of 1 is equal to 1.68μ B at 300 K, indicating the contribution of one S = 1/2 spin of the Pc˙ 3- macrocycles. These macrocycles form closely packed double stacks in 1 with effective π-π interactions providing strong antiferromagnetic coupling of spins at a Weiss temperature of -80 K. Decamethylchromocene initially also reduces Sn IV Cl 2 (Pc 2- ) to form the [(Cp* 2 Cr + ){Sn VI Cl 2 (Pc˙ 3- )}˙ - complex but further reaction between the ions is observed. This reaction is accompanied by the substitution of one Cp* ligand of Cp* 2 Cr by chloride anions originating from {Sn IV Cl 2 (Pc˙ 3- )}˙ - to form the complex {(Cp*CrCl 2 )(Sn IV (μ-Cl)(Pc 2- ))}·C 6 H 4 Cl 2 (2) in which the (Cp*CrCl 2 ) and {Sn IV (Pc 2- )} species are bonded through the μ-bridged Cl - anion. According to the DFT calculations, this reaction proceeds via an intermediate [(Cp* 2 CrCl)(SnClPc)] complex.

  10. PVTx properties of the CO2-H2O and CO2-H2O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models

    Science.gov (United States)

    Hu, Jiawen; Duan, Zhenhao; Zhu, Chen; Chou, I.-Ming

    2007-01-01

    Evaluation of CO2 sequestration in formation brine or in seawater needs highly accurate experimental data or models of pressure–volume–temperature-composition (PVTx) properties for the CO2H2O and CO2H2O–NaCl systems. This paper presents a comprehensive review of the experimental PVTx properties and the thermodynamic models of these two systems. The following conclusions are drawn from the review: (1) About two-thirds of experimental data are consistent with each other, where the uncertainty in liquid volumes is within 0.5%, and that in gas volumes within 2%. However, this accuracy is not sufficient for assessing CO2 sequestration. Among the data sets for liquids, only a few are available for accurate modeling of CO2 sequestration. These data have an error of about 0.1% on average, roughly covering from 273 to 642 K and from 1 to 35 MPa; (2) There is a shortage of volumetric data of saturated vapor phase. (3) There are only a few data sets for the ternary liquids, and they are inconsistent with each other, where only a couple of data sets can be used to test a predictive density model for CO2 sequestration; (4) Although there are a few models with accuracy close to that of experiments, none of them is accurate enough for CO2 sequestration modeling, which normally needs an accuracy of density better than 0.1%. Some calculations are made available on www.geochem-model.org.

  11. Et2NH2C6H3(CO23SnBr2.4H2O: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    DAOUDA NDOYE

    2014-01-01

    Full Text Available The title compound has been obtained on allowing [C6H3(CO23(Et2NH23] to react with SnBr4. The molecular structure of Et2NH2C6H3(CO23SnBr2.4H2O has been determined on the basis of the infrared data. The suggested structure is a dimer in which each tin atom is hexacoordinated by two chelating C6H3(CO233- anions and two Br atoms. Cy2NH2+cations are involved through hydrogen bonds with non-coordinating CO2 groups. The suggested structure is a cage.

  12. Solar processing of CO2 and H2O, routes for solar fuels

    International Nuclear Information System (INIS)

    Flammant, G.; Abanades, St.

    2008-01-01

    Complete text of publication follows: Concentrated solar energy provides heat in the temperature range 200 C - 3000 C for concentration ratio variation from 10 to 10 000 (three orders of magnitude). Consequently, solar-driven thermochemical processes may be proposed to produce hydrogen from water decomposition and to reduce carbon dioxide. This lecture gives an overview of such processes. High temperature thermochemical cycles for hydrogen production by water splitting are currently studied at PROMES lab, particularly 2-step and 3-step cycles based on the following reaction scheme, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + H 2 O → MOox + H 2 (low temperature non solar step). Volatile and non-volatile oxide cycles are developed from the chemical and the engineering points of view. A similar reaction scheme may be proposed to reduce carbon dioxide with concentrated solar energy (Fig. 1), it comes, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + CO 2 → MOox + CO (low temperature non solar step). As a result gas mixtures such as CO 2 /H 2 and CO/H 2 may be produced by solar energy. Such mixtures are the reactants for liquid fuels production (solar fuels)

  13. Ion-molecule interactions in crossed-beams. [N/sup +/-H/sub 2/; F/sup +/-H; CO/sub 2//sup +/-D/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.G.

    1980-09-01

    Interactions of the ions N/sup +/, F/sup +/, and CO/sub 2//sup +/ with H/sub 2/ and/or its isotopes were examined using the crossed-beam technique in the low (< 4 eV) initial relative energy. For the reaction N/sup +/(/sup 3/P) + H/sub 2/ ..-->.. NH/sup +/ + H, complex formation dominates up to 1.9 eV and a substantial interaction occurs between all collision partners up to 3.6 eV. The distribution of N/sup +/ scattered nonreactively from H/sub 2/ also showed a long-lived complex channel below 1.9 eV. The reaction F/sup +/(/sup 3/P) + H/sub 2/ ..-->..FH/sup +/ + H proceeded by a direct reaction mechanism at 0.20 to 1.07 eV. The reaction CO/sub 2//sup +/ + D/sub 2/ ..-->.. DCO/sub 2//sup +/ + D gives asymmetric product distributions at 0.27 eV and above, indicating a direct reaction mechanism. Results indicated that there are probably barriers in the exit channels for DCO/sub 2//sup +/, DCO/sup +/, and D/sub 2/O/sup +/ products. The electronic state distributions of the N/sup +/, F/sup +/, and CO/sub 2//sup +/ beams was investigated using beam attenuation and total luminescence techniques.

  14. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2001-01-01

    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  15. Out-of-equilibrium nanocrystalline R1-s(Fe,M)5+2s alloys (R=Sm,Pr; M=Co,Si,Ga)

    International Nuclear Information System (INIS)

    Bessais, L.; Djega-Mariadassou, C.

    2005-01-01

    The out-of-equilibrium hexagonal P6/mmm R 1-s (Fe,M) 5+2s (R=Sm,Pr and M=Co, Si or Ga) intermetallics are obtained by controlled nanocrystallization. A model is presented to explain the structure of the hexagonal phases, which stoichiometry is consistent with Sm(Fe,M) 9 and R(Fe,Ti,Co) 10 . The Curie temperatures increase versus Ga, Si, Co content. The analysis of the Moessbauer spectra leads to monotonous variation of the hyperfine parameters. The refinement of the Moessbauer spectra was performed on the basis of the correlation between Wigner-Seitz cell volumes obtained from X-ray diffraction results and isomer shifts. The abundance of each magnetic site was calculated by the multinomial distribution law. For a given substituting Co, Si, Ga content, the sequence for the isomer shift in the hexagonal cell is 2e>3g>6l. With increasing M content, the isomer shift of the 3g site remains quasi-constant. Those approaches lead to the location of Si, Ga, Co in 3g site, Ti in 6l site. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: A novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell.

    Science.gov (United States)

    Cui, Shiqiang; Gu, Shuqing; Ding, Yaping; Zhang, Jiangjiang; Zhang, Zhen; Hu, Zongqian

    2018-02-01

    Hollow mesoporous CuCo 2 O 4 (meso-CuCo 2 O 4 ) microspheres were successfully synthesized by decomposing metal-organic frameworks (MOFs) as the template. The as-prepared CuCo 2 O 4 microspheres were first simultaneously used for H 2 O 2 biosensing and glucose biofuel cell (GFC) as the enzyme mimic. The resulting of meso-CuCo 2 O 4 displayed not only excellent catalytic performances to H 2 O 2 including a super-fast response time (within 2s), a super-high sensitivity (654.23 μA mM -1 cm -2 ) and a super-low detection limit (3nM at S/N = 3) on the sensor, but also great values in GFC as anode material with an open circuit voltage of 0.85V, a maximum power density of 0.33 mWcm -2 and a limiting current density of 1.27 mAcm -2 , respectively. The preeminent catalytic abilities to H 2 O 2 and glucose may be attributed to the surpassing intrinsic catalytic activity of CuCo 2 O 4 and large specific area of mesoporous structure. These significant findings deriving from this work not only provided a novel exploration for the fabrication of hollow spherical mesoporous bimetallic oxides, but also promoted the development of the supersensitive detection of H 2 O 2 and non-enzymatic biofuel cell. Copyright © 2017. Published by Elsevier B.V.

  17. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  18. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head

    Science.gov (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.

    2018-05-01

    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  19. Soft template synthesis of mesoporous Co3O4/RuO2.xH2O composites for electrochemical capacitors

    International Nuclear Information System (INIS)

    Liu Yang; Zhao Weiwei; Zhang Xiaogang

    2008-01-01

    Co 3 O 4 /RuO 2 .xH 2 O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO 3 ) 2 .6H 2 O and RuCl 3 .0.5H 2 O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 deg. C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m 2 g -1 . The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 deg. C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM)

  20. Enhanced Selectivity and Uptake Capacity of CO2 and Toluene Adsorption in Co0.5 M0.33 MoS4 (M= Sb or Y) Chalcogels by Impregnated Metal Salts

    KAUST Repository

    Adhiam, Fatima Abdullah Ahmed

    2017-11-17

    The synthesis of metal chalcogenide aerogels Co0.5M0.33MoS4 (M= Sb or Y) by the sol-gel method is reported. In this system, the building blocks [MoS4]2− chelated with Co2+ and (Sb3+) or (Y3+) salts in nonaqueous solvents forming amorphous networks with a gel property. The chalcogels obtained after supercritical drying have BET surface areas of 176 m2 g−1 (Co0.5Sb0.33MoS4) and 145 m2 g−1 (Co0.5Y0.33MoS4). Electron microscopy and physisorption studies reveal that the new materials are porous with wide pore size distribution and average pore width of 16 nm. These chalcogels show higher adsorption capacity of toluene vapor (Co0.5Sb0.33MoS4: 387 mg g−1) and (Co0.5Y0.33MoS4: 304 mg g−1) over cyclohexane vapor and high selectivity of CO2 over CH4 or H2, Co0.5Sb0.33MoS4 (CO2/H2: 80 and CO2/CH4: 21), Co0.5Y0.33MoS4 (CO2/H2: 27 and CO2/CH4: 15). We also demonstrated that the impregnation of various metal species like Li+, Mg2+, and Ni2+ significantly enhanced the uptake capacity and selectivity of toluene and CO2 adsorptions in the chacogels.

  1. Differential interaction of hGDH1 and hGDH2 with manganese: Implications for metabolism and toxicity.

    Science.gov (United States)

    Dimovasili, Christina; Aschner, Michael; Plaitakis, Andreas; Zaganas, Ioannis

    2015-09-01

    Manganese (Mn) is an essential trace element that serves as co-factor for many important mammalian enzymes. In humans, the importance of this cation is highlighted by the fact that low levels of Mn cause developmental and metabolic abnormalities and, on the other hand, chronic exposure to excessive amounts of Mn is characterized by neurotoxicity, possibly mediated by perturbation of astrocytic mitochondrial energy metabolism. Here we sought to study the effect of Mn on the two human glutamate dehydrogenases (hGDH1 and hGDH2, respectively), key mitochondrial enzymes involved in numerous cellular processes, including mitochondrial metabolism, glutamate homeostasis and neurotransmission, and cell signaling. Our studies showed that, compared to magnesium (Mg) and calcium (Ca), Mn exerted a significant inhibitory effect on both human isoenzymes with hGDH2 being more sensitive than hGDH1, especially under conditions of low ADP levels. Specifically, in the presence of 0.25 mM ADP, the Mn IC50 was 1.14 ± 0.02 mM and 1.54 ± 0.08 mM for hGDH2 and for hGDH1, respectively (p = 0.0001). Increasing Mn levels potentiated this differential effect, with 3 mM Mn inhibiting hGDH2 by 96.5% and hGDH1 by 70.2%. At 1mM ADP, the Mn IC50 was 1.84 ± 0.02 mM and 2.04 ± 0.07 mM (p = 0.01) for hGDH2 and hGDH1, respectively, with 3 mM Mn inhibiting hGDH2 by 93.6% and hGDH1 by 70.9%. These results were due to the sigmoidal inhibitory curve of Mn that was more pronounced for hGDH2 than for hGDH1. Indeed, at 0.25 mM, the Hill coefficient value was higher for hGDH2 (3.42 ± 0.20) than for hGDH1 (1.94 ± 0.25; p = 0.0002) indicating that interaction of Mn with hGDH2 was substantially more co-operative than for hGDH1. These findings, showing an enhanced sensitivity of the hGDH2 isoenzyme to Mn, especially at low ADP levels, might be of pathophysiological relevance under conditions of Mn neurotoxicity. Copyright © 2015 Elsevier Ltd. All

  2. Photodissociation dynamics of gaseous CpCo(CO)2 and ligand exchange reactions of CpCoH2 with C3H4, C3H6, and NH3.

    Science.gov (United States)

    Oana, Melania; Nakatsuka, Yumiko; Albert, Daniel R; Davis, H Floyd

    2012-05-31

    The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).

  3. A new metal-organic framework for separation of C2H2/CH4 and CO2/CH4 at room temperature

    Science.gov (United States)

    Duan, Xing; Zhou, You; Lv, Ran; Yu, Ben; Chen, Haodong; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2018-04-01

    A 3D microporous metal-organic framework with open Cu2+ sites and suitable pore space, [Cu2(L)(H2O)2]·(H2O)4(DMF)8 (ZJU-15, H4L = 5,5‧-(9H-carbazole-2,7-diyl)diisophthalic acid; DMF = N,N-dimethylformamide; ZJU = Zhejiang University), has been constructed and characterized. The activated ZJU-15a has three different types of cages and exhibits BET surface area of 1660 m2 g-1, and can separate gas mixture of C2H2/CH4 and CO2/CH4 at room temperature.

  4. Synthesis and properties of electrically conductive, ductile, extremely long (~50 μm) nanosheets of K(x)CoO2·yH2O.

    Science.gov (United States)

    Aksit, Mahmut; Hoselton, Benjamin C; Kim, Ha Jun; Ha, Don-Hyung; Robinson, Richard D

    2013-09-25

    Extremely long, electrically conductive, ductile, free-standing nanosheets of water-stabilized KxCoO2·yH2O are synthesized using the sol-gel and electric-field induced kinetic-demixing (SGKD) process. Room temperature in-plane resistivity of the KxCoO2·yH2O nanosheets is less than ~4.7 mΩ·cm, which corresponds to one of the lowest resistivity values reported for metal oxide nanosheets. The synthesis produces tens of thousands of very high aspect ratio (50,000:50,000:1 = length/width/thickness), millimeter length nanosheets stacked into a macro-scale pellet. Free-standing nanosheets up to ~50 μm long are readily delaminated from the stacked nanosheets. High-resolution transmission electron microscopy (HR-TEM) studies of the free-standing nanosheets indicate that the delaminated pieces consist of individual nanosheet crystals that are turbostratically stacked. X-ray diffraction (XRD) studies confirm that the nanosheets are stacked in perfect registry along their c-axis. Scanning electron microscopy (SEM) based statistical analysis show that the average thickness of the nanosheets is ~13 nm. The nanosheets show ductility with a bending radius as small as ~5 nm.

  5. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  6. Numerical modeling of injection and mineral trapping of CO2 withH2S and SO2 in a Sandstone Formation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten; Yamamoto, Hajime

    2004-09-07

    Carbon dioxide (CO{sub 2}) injection into deep geologic formations could decrease the atmospheric accumulation of this gas from anthropogenic sources. Furthermore, by co-injecting H{sub 2}S or SO{sub 2}, the products respectively of coal gasification or combustion, with captured CO{sub 2}, problems associated with surface disposal would be mitigated. We developed models that simulate the co-injection of H{sub 2}S or SO{sub 2} with CO{sub 2} into an arkose formation at a depth of about 2 km and 75 C. The hydrogeology and mineralogy of the injected formation are typical of those encountered in Gulf Coast aquifers of the United States. Six numerical simulations of a simplified 1-D radial region surrounding the injection well were performed. The injection of CO{sub 2} alone or co-injection with SO{sub 2} or H{sub 2}S results in a concentrically zoned distribution of secondary minerals surrounding a leached and acidified region adjacent to the injection well. Co-injection of SO{sub 2} with CO{sub 2} results in a larger and more strongly acidified zone, and alteration differs substantially from that caused by the co-injection of H{sub 2}S or injection of CO{sub 2} alone. Precipitation of carbonates occurs within a higher pH (pH > 5) peripheral zone. Significant quantities of CO{sub 2} are sequestered by ankerite, dawsonite, and lesser siderite. The CO{sub 2} mineral-trapping capacity of the formation can attain 40-50 kg/m{sup 3} medium for the selected arkose. In contrast, secondary sulfates precipitate at lower pH (pH < 5) within the acidified zone. Most of the injected SO{sub 2} is transformed and immobilized through alunite precipitation with lesser amounts of anhydrite and minor quantities of pyrite. The dissolved CO{sub 2} increases with time (enhanced solubility trapping). The mineral alteration induced by injection of CO{sub 2} with either SO{sub 2} or H{sub 2}S leads to corresponding changes in porosity. Significant increases in porosity occur in the acidified

  7. H2, CO, and dust absorption through cold molecular clouds

    Science.gov (United States)

    Lacy, John H.; Sneden, Chris; Kim, Hwihyun; Jaffe, Daniel Thomas

    2017-06-01

    We have made observations with IGRINS on the Harlan J. Smith telescope at McDonald Observatory of near-infrared absorption by H2, CO, and dust toward stars behind molecular clouds, primarily the TMC. Prior to these observations, the abundance of H2 in molecular clouds, relative to the commonly used tracer CO, had only been measured toward a few embedded stars, which may be surrounded by atypical gas. The new observations provide a representative sample of these molecules in cold molecular gas. We find N(H2)/Av ~ 0.9e+21, N(CO)/Av ~ 1.6e+17, and H2/CO ~ 6000. The measured H2/CO ratio is consistent with that measured toward embedded stars in various molecular clouds, but half that derived from mm-wave observations of CO emission and star counts or other determinations of Av.

  8. Infrared spectroscopic investigation of M(H2PO4)2x2H2O (M=Mg, Mn, Cd) dehydration products

    International Nuclear Information System (INIS)

    Pechkovskij, V.V.; Dzyuba, E.D.; Mel'nikova, R.Ya.; Salonets, G.I.; Kovalishina, V.I.; Malashonok, I.E.

    1982-01-01

    Using the method of IR spectroscopy the composition of products separated at different stages of M(H 2 PO 4 ) 2 x2H 2 O dehydration, where M=Mg, Mn, Cd, has been investigated. It is shown that cation influence is expressed in strengthening of bond of proton-containing groups in the structure of initial compounds from magnesium to cadmium. A supposition is made that the difference in bond character of the groups more evidently expressed for partially dehydrated products of the composition M(H 2 PO 4 ) 2 , conditions a possibility of dehydration in two directions- with the formation of intermediate phase MH 2 P 2 O 7 or with separation of three phosphoric acid

  9. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2016-01-01

    MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2

  10. Adsorption of CO2 and H2O on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Zhao, W.; Li, Z.; Cai, N.; Brilman, Derk Willem Frederik

    2014-01-01

    In this work we have evaluated the H2O and CO2 adsorption characteristics of Lewatit VP OC 1065 in view of the potential application of solid sorbents in post combustion CO2 capture. Here we present single component adsorption isotherms for H2O and CO2 as well as co-adsorption experiments. It was

  11. Degradation kinetics of monoethanolamine during CO2 and H2 S absorption from biogas

    Directory of Open Access Journals (Sweden)

    Preecha Kasikamphaiboon

    2015-02-01

    Full Text Available The rate of degradation of MEA during CO2 and H2 S absorption in the biogas upgrading process was examined in four degradation systems, i.e., MEA-CO2 , MEA-CO2 -O2 , MEA-CO2 -H2 S and MEA-CO2 -O2 -H2 S. Degradation experiments were performed in a 800-ml stainless steel autoclave reactor, using MEA concentrations of 3 and 5 mol/L, CO2 loadings of 0.4 and 0.5 mol CO2 /mol MEA, O2 pressure of 200 kPa, and H2 S concentrations of 84 and 87 mg/L at temperatures of 120 and 140C. The results showed that, for the MEA-CO2 system, an increase in temperature or MEA concentration resulted in a higher rate of MEA degradation. In contrast, an increase in CO2 loading in the MEA-CO2 -O2 system led to a reduction of MEA degradation. The degradation rate of the system with O2 was with 8.3 times as high as that of the system without O2 . The presence of H2 S did not appear to affect the rate of degradation in the MEA-CO2 -H2 S system. However, for the system in which both H2 S and O2 were present, the MEA degradation was additionally induced by H2 S, thus, resulting in higher degradation rates than those of the system with O2 only. The extent of degradation under the same period of time increased in the order MEA-CO2 , MEA-CO2 -H2 S < MEA-CO2 -O2 < MEA-CO2 -O2 -H2 S.

  12. Geometry and bonding in the ground and lowest triplet state of D{sub 6h} symmetric crenellated edged C{sub 6[3m(m-1)+1]}H{sub 6(2m-1)} (m = 2,..., 6) graphene hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Philpott, Michael R., E-mail: philpott@imr.edu [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan); Kawazoe, Yoshiyuki [Center for Computational Materials Science, Institute of Materials Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577 Sendai (Japan)

    2009-03-30

    Ab initio plane wave all valence electron based DFT calculations were used to explore the dichotomy of perimeter vs. interior in the electronic and geometric structure of the D{sub 6h} singlet ground state and D{sub 2h} lowest triplet state of planar graphene hydrocarbon molecules with crenellated (arm chair) edges and the general formula C{sub 6[3m(m-1)+1]} H{sub 6(2m-1)} where m = 2,...,6. The largest molecule C{sub 546}H{sub 66} was 4.78 nm across and contained 2250 valence electrons. These molecules are nominally 'fully benzenoid hydrocarbons'. However with increasing size, the core of central atoms abandoned any fully benzenoid geometry they had in small systems and organized into single layer graphite (graphene) structure. The perimeter atoms of the crenellation adopted a conjugated geometry with unequal bonds and between core and perimeter there were some C{sub 6} rings retaining remnants of aromatic sextet-type properties. Compared to a zigzag edge the crenellated edge conferred stability in all the systems studied as measured by the singlet homo-lumo level gap BG{sub 0} and the singlet-lowest triplet energy gap {Delta}E{sub ST}. For the largest crenellated system (m = 6) BG{sub 0} and {Delta}E{sub ST} were approximately 0.7 eV, larger in value than for similarly sized hexagonal graphenes with zigzag edges. Triplet states were identified for all the molecules in the series and in the case of the m = 2 molecule hexabenzocoronene C{sub 42}H{sub 18}, two conformations with D{sub 2h} symmetry were identified and compared to features on the triplet state potential energy surface of benzene.

  13. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  14. DNA-Binding Study of Tetraaqua-bis(p-nitrobenzoatocobalt(II Dihydrate Complex: [Co(H2O4(p-NO2C6H4COO2]·2H2O

    Directory of Open Access Journals (Sweden)

    Hacali Necefoglu

    2007-06-01

    Full Text Available The interaction of [Co(H2O4(p-NO2C6H4COO2]. 2H2O with sheep genomicDNA has been investigated by spectroscopic studies and electrophoresis measurements.The interaction between cobalt(II p-nitrobenzoate and DNA has been followed by gelelectrophoresis while the concentration of the complex was increased from 0 to 14 mM.The spectroscopic study and electrophoretic experiments support the fact that the complexbinds to DNA by intercalation via p-nitrobenzoate into the base pairs of DNA. Themobility of the bands decreased as the concentration of complex was increased, indicatingthat there was increase in interaction between the metal ion and DNA.

  15. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Science.gov (United States)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  16. Space-Based CO2 Active Optical Remote Sensing using 2m Triple-Pulse IPDA Lidar

    Science.gov (United States)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    , current efforts are focused on developing an aircraft-based 2m triple-pulse IPDA lidar for independent and simultaneous monitoring of CO2 and water vapor (H2O). Triple-pulse IPDA design, development and integration is based on the knowledge gathered from the successful demonstration of the airborne CO2 2m double-pulse IPDA lidar. IPDA transmitter enhancements include generating high-energy (80 mJ) and high repetition rate (50Hz) three successive pulses using a single pump pulse. IPDA receiver enhancement include an advanced, low noise (1 fW/Hz1/2) MCT e-APD detection system for improved measurement sensitivity. In place of H2O sensing, the triple-pulse IPDA can be tuned to measure CO2 with two different weighting functions using two on-lines and a common off-line. Modeling of a space-based high-energy 2-µm triple-pulse IPDA lidar was conducted to demonstrate CO2 measurement capability and to evaluate random and systematic errors. Projected performance shows reference surface using US Standard atmospheric model. In addition, measurements can be optimized by tuning on-lines based upon ground target scenarios, environment and science objectives. With 10 MHz detection bandwidth, surface ranging with an uncertainty of <3 m can be achieved as demonstrated from earlier airborne flights.

  17. The Cheshire-cat-like Behavior of 2nu(sub 3) Overtone of Co2 near 2.134 micron: NIR Lab Spectra of Solid CO2 in H2O and CH3OH

    Science.gov (United States)

    Bernstein, Max; Sandford, Scott; Cruikshank, Dale

    2005-01-01

    Infrared (IR) spectra have demonstrated that solid H2O is very common in the outer Solar System, and solid carbon dioxide (CO2) has been detected on icy satellites, comets, and planetismals throughout the outer Solar System. In such environments, CO2 and H2O must sometimes be mixed at a molecular level, changing their IR absorption features. In fact, the IR spectra of CO2-H2O mixtures are not equivalent to a linear combination of the spectra of the pure materials. Laboratory IR spectra of pure CO2 and H2O have been published but a lack of near-IR spectra of CO2-H2O mixtures has made the interpretation of outer Solar System spectra more difficult. We present near infrared (IR) spectra of CO2 in H2O and in CH3OH compared to that of pure solid CO2 and find significant differences. Peaks not present in either pure H2O or pure CO2 spectra become evident. First, the CO2 (2nu(sub 3)) overtone near 2.134 micron (4685/ cm) that is not seen in pure solid CO2 is prominent in the spectrum of a CO2/H2O = 25 mixture. Second, a 2.74 micron (3650/ cm) dangling OH feature of water (and a potentially related peak at 1.89 micron) appear in the spectra of CO2-H2O ice mixtures, but may not be specific to the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with water. Changes in CO2 peak positions and profiles on warming of a CO2/H2O = 5 mixture are consistent with 'segregation' of the ice into nearly pure separate components. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 ( 2nu(sub 3)) overtone near 2.134 micron (4685/ cm) is not present in pure CO2 but prominent in mixtures it may be a good observational indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. Significant changes in the near IR spectrum of solid CO2 in the presence of H2O and CH3OH means that the abundance of solid CO2 in the

  18. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    Science.gov (United States)

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-05-11

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.

  19. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    Science.gov (United States)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  20. The CO-H2 van der Waals complex and complex organic molecules in cold molecular clouds: A TMC-1C survey

    Science.gov (United States)

    Potapov, A.; Sánchez-Monge, Á.; Schilke, P.; Graf, U. U.; Möller, Th.; Schlemmer, S.

    2016-10-01

    Context. Almost 200 different species have been detected in the interstellar medium (ISM) during the last decades, revealing not only simple species but complex molecules with more than six atoms. Other exotic compounds, like the weakly-bound dimer (H2)2, have also been detected in astronomical sources like Jupiter. Aims: We aim to detect, for the first time, the CO-H2 van der Waals complex in the ISM, which could be a sensitive indicator for low temperatures if detected. Methods: We used the IRAM 30 m telescope, located in Pico Veleta (Spain), to search for the CO-H2 complex in a cold, dense core in TMC-1C (with a temperature of ~10 K). All the brightest CO-H2 transitions in the 3 mm (80-110 GHz) band were observed with a spectral resolution of 0.5-0.7 km s-1, reaching a rms noise level of ~2 mK. The simultaneous observation of a broad frequency band, 16 GHz, allowed us to conduct a serendipitous spectral line survey. Results: We did not detected any lines belonging to the CO-H2 complex. We set up a new, more stringent upper limit for its abundance to be [CO-H2]/[CO] ~ 5 × 10-6, while we expect the abundance of the complex to be in the range ~10-8-10-3. The spectral line survey has allowed us to detect 75 lines associated with 41 different species (including isotopologues). We detect a number of complex organic species, for example methyl cyanide (CH3CN), methanol (CH3OH), propyne (CH3CCH), and ketene (CH2CO), associated with cold gas (excitation temperatures ~7 K), confirming the presence of these complex species not only in warm objects but also in cold regimes. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A117

  1. The structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni)

    Science.gov (United States)

    Erkisi, A.; Surucu, G.; Deligoz, E.

    2018-03-01

    In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA + U). We have considered two generalized-gradient spin approximation functionals, which are Perdew-Burke-Ernzerhof (PBE) and PBE for solids (PBEsol) for structural parameter calculations when it included Hubbard potential. Although the spin-polarized electronic band structures of PbCo1/2Nb1/2O3 and PbNi1/2Nb1/2O3 systems exhibit metallic property in ferromagnetic phase, a bandgap is observed in spin-down states of PbFe1/2Nb1/2O3 resulting in half-metallic behavior. The main reason for this behavior is attributed to the hybridization between d-states of transition metal atoms and p-states of oxygen atoms. The stability mechanically and the calculated mechanical properties by using elastic constants show that these compounds are mechanically stable in tetragonal phase and have anisotropic character mechanically.

  2. Thermoelectric Performance of the MXenes M2CO2 (M = Ti, Zr, or Hf)

    KAUST Repository

    Gandi, Appala

    2016-02-21

    We present the first report in which the thermoelectric properties of two-dimensional MXenes are calculated by considering both the electron and phonon transport. Specifically, we solve the transport equations of the electrons and phonons for three MXenes, M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on the thermoelectric performance. The lattice contribution to the thermal conductivity, obtained from the phonon life times, is found to be lowest in Ti2CO2 and highest in Hf2CO2 in the temperature range from 300 K to 700 K. The highest figure of merit is predicted for Ti2CO2 . The heavy mass of the electrons due to flat conduction bands results in a larger thermopower in the case of n-doping in these compounds.

  3. Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy

    Science.gov (United States)

    Della Ventura, Giancarlo; Radica, Francesco; Bellatreccia, Fabio; Cavallo, Andrea; Capitelli, Francesco; Harley, Simon

    2012-11-01

    We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ɛ = 5,200 ± 700 l mol-1 cm-2 and [II]ɛ = 13,000 ± 3,000 l mol-1 cm-2, respectively. For CO2 the integrated coefficient is \\varepsilon_{{{{CO}}_{ 2} }} = 19,000 ± 2,000 l mol-1 cm-2.

  4. Importance of collisional rates for anomalous absorption in H2CO molecule

    International Nuclear Information System (INIS)

    Sharma, Monika; Sharma, M.K.; Chandra, Suresh

    2012-01-01

    Formaldehyde (H 2 CO) is the first organic molecule identified in a number of galactic and extragalactic radio sources through its transition 1 10 –1 11 at 4.830 GHz in absorption. Later on, this transition was found in anomalous absorption. In some cosmic objects, this transition however was found in emission and even as a maser radiation. Since the transition 1 10 –1 11 of ortho-H 2 CO is considered as a unique probe of high density gas at low temperature, the study of H 2 CO has always been of great importance for astrophysicists as well as for spectroscopists. In view of the availability of better input data required for such investigation, it is worth while to investigate again about the radiations from ortho-H 2 CO. In the present study, we have investigated anomalous absorption of 1 10 –1 11 , 2 11 –2 12 and 3 12 –3 13 transitions of ortho-H 2 CO. The present results are more reliable as compared to those obtained earlier. -- Highlights: ► Accurate rotational levels and A-coefficients for H 2 CO are calculated. ► Transitions 1 10 –1 11 , 2 11 –2 12 and 3 12 –3 13 show anomalous absorption. ► Anomalous absorption is found to increase with kinetic temperature. ► Anomalous absorption may be found for n H 2 ≈10 4 cm −3 . ► Colliding partner para-H 2 may be approximated as He atom.

  5. Ionothermal Synthesis of a Novel 3D Cobalt Coordination Polymer with a Uniquely Reported Framework: [BMI]2[Co2(BTC2(H2O2

    Directory of Open Access Journals (Sweden)

    Il-Ju Ko

    2017-01-01

    Full Text Available The framework of [RMI]2[Co2(BTC2(H2O2] (RMI = 1-alkyl-3-methylimidazolium, alkyl; ethyl (EMI; propyl (PMI; butyl (BMI, which has uniquely occurred in ionothermal reactions of metal salts and H3BTC (1,3,5-benzenetricarboxylic acid, an organic ligand, reappeared in this work. Ionothermal reaction of cobalt acetate and H3BTC with [BMI]Br ionic liquid as the reaction medium yielded the novel coordination polymer [BMI]2[Co2(BTC2(H2O2] (compound B2. Similar ionothermal reactions with different [EMI]Br and [PMI]Br as the reaction media have been previously reported to produce [EMI]2[Co3(BTC2(OAc2] (compound A1 and [PMI]2[Co2(BTC2(H2O2] (compound B1, respectively. In contrast with the trinuclear secondary building unit of A1, the framework structure of B1 and B2 consists of dinuclear secondary building units in common, but with subtle distinction posed by the different size of the incorporated cations. These structural differences amidst the frameworks showed interesting aspects, including guest and void volume, and were used to explain the chemical trend observed in the system. Moreover, the physicochemical properties of the newly synthesized compound have been briefly discussed.

  6. M-theory solutions invariant under D(2,1; γ) + D(2,1;γ)

    International Nuclear Information System (INIS)

    Bachas, C.; D'Hoker, E.; Estes, J.; Krym, D.

    2014-01-01

    We simplify and extend the construction of half-BPS solutions to 11-dimensional supergravity, with isometry superalgebra D(2,1;γ) + D(2,1;γ). Their space-time has the form AdS 3 x S 3 x S 3 warped over a Riemann surface Σ. It describes near-horizon geometries of M2 branes ending on, or intersecting with, M5 branes along a common string. The general solution to the BPS equations is specified by a reduced set of data (γ, h, G), where γ is the real parameter of the isometry superalgebra, and h and G are functions on Σ whose differential equations and regularity conditions depend only on the sign of γ. The magnitude of γ enters only through the map of h,G onto the supergravity fields, thereby promoting all solutions into families parametrized by vertical stroke γ vertical stroke. By analyzing the regularity conditions for the supergravity fields, we prove two general theorems: (i) that the only solution with a 2-dimensional CFT dual is AdS 3 x S 3 x S 3 x R 2 , modulo discrete identifications of the flat R 2 , and (ii) that solutions with γ 4 /Z 2 or AdS 7 ' regions; highly-curved M5-branes; and a coordinate singularity called the ''cap''. By putting these ''Lego'' pieces together we recover all known global regular solutions with the above symmetry, including the self-dual strings on M5 for γ 0, but now promoted to families parametrized by vertical stroke γ vertical stroke. We also construct exactly new regular solutions which are asymptotic to AdS 4 /Z 2 for γ 0 solutions with highly curved M5-brane regions, which are the formal continuation of the self-dual string solutions across the decompactification point at γ = 0. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Development of the 1.6μm OPG/OPA system wavelength-controlled precisely for CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2010-12-01

    of the Japan Science and Technology Agency. Reference (1) D. Sakaisawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009.

  8. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2015-01-01

    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  9. CO2 line-mixing database and software update and its tests in the 2.1 μm and 4.3 μm regions

    International Nuclear Information System (INIS)

    Lamouroux, J.; Régalia, L.; Thomas, X.; Vander Auwera, J.; Gamache, R.R.; Hartmann, J.-M.

    2015-01-01

    An update of the former version of the database and software for the calculation of CO 2 –air absorption coefficients taking line-mixing into account [Lamouroux et al. J Quant Spectrosc Radiat Transf 2010;111:2321] is described. In this new edition, the data sets were constructed using parameters from the 2012 version of the HITRAN database and recent measurements of line-shape parameters. Among other improvements, speed-dependent profiles can now be used if line-mixing is treated within the first order approximation. This new package is tested using laboratory spectra measured in the 2.1 μm and 4.3 μm spectral regions for various pressures, temperatures and CO 2 concentration conditions. Despite improvements at 4.3 μm at room temperature, the conclusions on the quality of this update are more ambiguous at low temperature and in the 2.1 μm region. Further tests using laboratory and atmospheric spectra are thus required for the evaluation of the performances of this updated package. - Highlights: • High resolution infrared spectroscopy. • CO 2 in air. • Updated tools. • Line mixing database and software

  10. Carbon Deposition in Solid Oxide Cells during Co-Electrolysis of H2O and CO2

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    current densities from 1.5 to 2.25 A/cm2 and reactant (H2O + CO2) conversion of up to 67%. Delamination and carbon nano-fibers were observed at the Ni-YSZ|YSZ interface for two cells with a dense microstructure operated at electrolysis current densities of 2.0 and 2.25 A/cm2 and a conversion of 59% and 67...... and the active Ni-YSZ electrode. Carbon nano-fibers were only observed close to the YSZ electrolyte, indicating a very reducing atmosphere and a large over-potential gradient in the active electrode, being highest at the interface to the bulk electrolyte and decreasing toward the Ni-YSZ support.......Carbon formation during co-electrolysis of H2O and CO2 in Ni-YSZ supported Solid Oxide Electrolysis Cells (SOECs) may occur, especially at high current density and high conversion. In order to evaluate the carbon formation limits, five galvanostatic tests were performed in this work at electrolysis...

  11. 40 CFR 1065.370 - CLD CO2 and H2O quench verification.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD CO2 and H2O quench verification....370 CLD CO2 and H2O quench verification. (a) Scope and frequency. If you use a CLD analyzer to measure NOX, verify the amount of H2O and CO2 quench after installing the CLD analyzer and after major...

  12. Homoleptic Diphosphacyclobutadiene Complexes [M(η(4)-P2C2R2)(2]x- (M = Fe, Co; x=0, 1)

    NARCIS (Netherlands)

    Wolf, R.; Ehlers, A.W.; Khusniyarov, M.M.; Hartl, F.; de Bruin, B.; Long, G.J.; Grandjean, F.; Schappacher, F.M.; Pöttgen, R.; Slootweg, J.C.; Lutz, M.; Spek, A.L.; Lammertsma, K.

    2010-01-01

    The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)[Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and

  13. H2 production by reforming route in reducing CO2 emissions

    International Nuclear Information System (INIS)

    Raphaelle Imbault

    2006-01-01

    Nowadays the most common way to produce hydrogen is the Steam Methane Reforming route from natural gas. With the pressure of new environmental rules, reducing CO 2 emissions becomes a key issue. The European project Ulcos (Ultra Low CO 2 Steelmaking) has targeted to reduce of at least 50% the CO 2 emissions in steelmaking. The H 2 route (and in particular the reforming process) is one of the solutions which have been explored. The results of this study have shown that the two main ways (which can be combined) of limiting CO 2 emissions in H 2 production are to improve the energetic efficiency of the plant or to capture CO 2 . With the first way, a reduction of 20% of emissions compared to conventional plant can be reached. The second one enables to achieve a decrease of 90%. However the CO 2 capture is much more expensive and this kind of solution can be economically competitive only if high CO 2 taxes are implemented (≥40 Euros/ton). (author)

  14. Synthesis and characterization of dinuclear complexes containing the Fe(III)-F...(H2O)M(II) motif

    DEFF Research Database (Denmark)

    Ghiladi, M; Jensen, K.B.; Jiang, Jianzhong

    1999-01-01

    .818(2), 1.902(2) Å) and one of them is strongly hydrogen bonded to the water molecule on the adjacent Cu atom (F-H...O 2.653(4) Å). The metal ions in the aquafluoride complexes [(bpbp)Fe(F)2M(H2O)2][BF4]2, M=Fe or Co, are weakly antiferromagnetically coupled (J=-8 and -10 cm-1 respectively) and in [(bpbp...

  15. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1996-04-01

    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  16. Clinical Applications of CO2 and H2 Breath Test

    Directory of Open Access Journals (Sweden)

    ZHAO Si-qian;CHEN Bao-jun;LUO Zhi-fu

    2016-08-01

    Full Text Available Breath test is non-invasive, high sensitivity and high specificity. In this article, CO2 breath test, H2 breath test and their clinical applications were elaborated. The main applications of CO2 breath test include helicobacter pylori test, liver function detection, gastric emptying test, insulin resistance test, pancreatic exocrine secretion test, etc. H2 breath test can be applied in the diagnosis of lactose malabsorption and detecting small intestinal bacterial overgrowth. With further research, the breath test is expected to be applied in more diseases diagnosis.

  17. Magnetic order in Pu2M3Si5 (M = Co, Ni)

    International Nuclear Information System (INIS)

    Bauer, E D; Tobash, P H; Mitchell, J N; Kennison, J A; Ronning, F; Scott, B L; Thompson, J D

    2011-01-01

    The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of two new plutonium compounds Pu 2 M 3 Si 5 (M = Co, Ni) are reported. Pu 2 Ni 3 Si 5 crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, which can be considered a variant of the BaAl 4 tetragonal structure, while Pu 2 Co 3 Si 5 adopts the closely related monoclinic Lu 2 Co 3 Si 5 type. Magnetic order is observed in both compounds, with Pu 2 Ni 3 Si 5 ordering ferromagnetically at T C = 65 K then undergoing a transition into an antiferromagnetic state below T N = 35 K. Two successive magnetic transitions are also observed at T mag1 = 38 K and T mag2 = 5 K in Pu 2 Co 3 Si 5 . Specific heat measurements reveal that these two materials have a moderately enhanced Sommerfeld coefficient γ ∼ 100 mJ/mol Pu K 2 in the magnetic state with comparable RKKY and Kondo energy scales.

  18. Infrared Spectroscopy of Gas-Phase M+(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    Science.gov (United States)

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M + (CO 2 ) n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO 2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO 2 asymmetric stretch around 2350 cm -1 using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO 2 , consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M + (CO 2 ) 2 ] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  19. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Xu, T.; Li, Y.

    2010-12-15

    The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} mineral trapping, the presence of Fe-bearing siliciclastic and/or carbonate is more favorable to the H{sub 2}S mineral trapping.

  20. Precursory diffuse CO2 and H2S emission signatures of the 2011-2012 El Hierro submarine eruption, Canary Islands

    Science.gov (United States)

    Pérez, Nemesio M.; Padilla, Germán D.; Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Dionis, Samara; Nolasco, Dácil; Rodríguez, Fátima; Calvo, David; Hernández, Íñigo

    2012-08-01

    On October 12, 2011, a submarine eruption began 2 km off the coast of La Restinga, south of El Hierro Island. CO2 and H2S soil efflux were continuously measured during the period of volcanic unrest by using the accumulation chamber method at two different geochemical stations, HIE01 and HIE07. Recorded CO2 and H2S effluxes showed precursory signals that preceded the submarine eruption. Beginning in late August, the CO2 efflux time series started increasing at a relatively constant rate over one month, reaching a maximum of 19 gm-2d-1 one week before the onset of the submarine volcanic eruption. The H2S efflux time series at HIE07 showed a pulse in H2S emission just one day before the initiation of the submarine eruption, reaching peak values of 42 mg m-2 d-1, 10 times the average H2S efflux recorded during the observation period. Since CO2 and H2S effluxes are strongly influenced by external factors, we applied a multiple regression analysis to remove their contribution. A statistical analysis showed that the long-term trend of the filtered data is well correlated with the seismic energy. We find that these geochemical stations are important monitoring sites for evaluating the volcanic activity of El Hierro and that they demonstrate the potential of applying continuous monitoring of soil CO2 and H2S efflux to improve and optimize the detection of early warning signals of future volcanic unrest episodes at El Hierro. Continuous diffuse degassing studies would likely prove useful for monitoring other volcanoes during unrest episodes.

  1. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011).

    Science.gov (United States)

    Ferreira, Vitor F; da Rocha, David R; da Silva, Fernando C; Ferreira, Patrícia G; Boechat, Núbia A; Magalhães, Jorge L

    2013-03-01

    The triazoles represent a class of five-membered heterocyclic compounds of great importance for the preparation of new drugs with diverse biological activities because they may present several structural variations with the same numbers of carbon and nitrogen atoms. Due to the success of various triazoles that entered the pharmaceutical market and are still being used in medicines, many companies and research groups have shown interest in developing new methods of synthesis and biological evaluation of potential uses for these compounds. In this review, the authors explored aspects of patents for the 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole families, including prototypes being considered in clinical studies between 2008 and 2011. The triazoles have been studied for over a century as an important class of heterocyclic compounds and still attract considerable attention due to their broad range of biological activities. More recently, there has been considerable interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral and antiviral properties and activity against several neglected diseases. This review emphasizes recent perspective and advances in the therapeutically active 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivative patents between 2008 and 2011, covering the development of new chemical entities and new pharmaceuticals. Many studies have focused on these compounds as target structures and evaluated them in several biological targets. The preparation of 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives brings to light several issues. There is a need to find new, more efficient preparations for these triazoles that take into consideration current issues in green chemistry, energy saving and sustainability. New diseases are discovered and new viruses and bacteria continue to challenge mankind, so it is imperative to find new prototypes for these

  2. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    Directory of Open Access Journals (Sweden)

    Sean G. Young

    2016-09-01

    Full Text Available Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC curve (AUC 0.991.

  3. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  4. Syngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers

    International Nuclear Information System (INIS)

    Kleiminger, L.; Li, T.; Li, K.; Kelsall, G.H.

    2015-01-01

    Highlights: • CO 2 and/or H 2 O reduced to CO/H 2 in micro-tubular solid oxide electrolyser (MT-SOE). • MT-SOE: CO 2 , H 2 O | Ni-(ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 (YSZ) | YSZ | YSZ- La 0.8 Sr 0.2 MnO 3-δ |O 2. • −0.76 A cm −2 achieved at 1.5V and ca. 820°C for H 2 O electrolysis. • Ni wire cathode current collector gave better performance than (Ag wire+Ag paste). • C 18 O 2 in co-electrolysis could not distinguish cathodic and chemical reduction. - Abstract: CO 2 and/or H 2 O were reduced to CO/H 2 in micro-tubular solid oxide electrolysers with yttria-stabilized zirconia (YSZ) electrolyte, Ni-YSZ cermet cathode and strontium(II)-doped lanthanum manganite (LSM) oxygen-evolving anode. At 822 °C, the kinetics of CO 2 reduction were slower (ca. −0.49 A cm −2 at 1.8 V) than H 2 O reduction or co-reduction of CO 2 and H 2 O, which were comparable (ca. −0.83 to −0.77 A cm −2 at 1.8 V). Performances were improved (−0.85 and −1.1 A cm −2 for CO 2 and H 2 O electrolysis, respectively) by substituting the silver current collector with nickel and avoiding blockage of entrances to pores on the inner lumen of micro-tubes induced by silver paste applied previously to decrease contact losses. The change in current collector materials increased ohmic potential losses due to substituting the lower resistance Ag with Ni wire, but decreased electrode polarization losses by 80–93%. For co-electrolysis of CO 2 and H 2 O, isotopically-labelled C 18 O 2 was used to try to distinguish between direct cathodic reduction of CO 2 and its Ni-catalysed chemical reaction with hydrogen from reduction of steam. Unfortunately, oxygen was exchanged between C 18 O 2 and H 2 16 O, enriching oxygen-18 in the steam and substituting oxygen-16 in the carbon dioxide, so the anode off-gas isotopic fractions were meaningless. This occurred even in alumina and YSZ tubes without the micro-tubular reactor, i.e. in the absence of Ni catalyst, though not in quartz tubes

  5. 1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H-one–4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] (1/1

    Directory of Open Access Journals (Sweden)

    Krzysztof Lyczko

    2013-01-01

    Full Text Available The asymmetric unit of the title compound, C11H12N2O·C25H28N4O2, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one]. Intramolecular C—H...O hydrogen bonds occur in the latter molecule. In the crystal, C—H...O hydrogen bonds link the molecules into a two-dimensional network parallel to (001.

  6. Development of Li+ Selective Microelectrode Using PPy [3,3'-Co(1,2-C2B9H112] as a Solid Contact

    Directory of Open Access Journals (Sweden)

    Safae MERZOUK

    2014-05-01

    Full Text Available Planar all solid-contact ion-selective microelectrodes (ASC-µISEs with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide anion [3,3'-Co(1,2-C2B9H112] as a solid contact layer between the polymeric membrane sensitive to lithium (Li and the gold (Au substrate were prepared and investigated. The N,N-dicyclohexyl-N',N'-diisobutylyl-cis-cyclohexane-1,2- dicarboxamide (ETH 1810 was used as ionophore for Li recognition. The developed microelectrodes show a linear response for Li+ concentration between 6´10-5 M and 1´10-1 M with slope of 53±1 mV per decade and exhibits remarkably enhanced selectivity for Li over other cations. The calibration plots using artificial serum containing three different levels of sodium chloride (NaCl (135, 145 and 155 mM as a background electrolyte were shown a linear response with a slope of 50 mV per decade in the clinical range of interest (0.7-1.5´10-3 M Li+. The developed microelectrodes will be used to determine Li+ concentrations in serum samples of manic-depressive patients under Li treatment.

  7. Saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa

    International Nuclear Information System (INIS)

    Efika, Emmanuel C.; Hoballah, Rayane; Li, Xuesong; May, Eric F.; Nania, Manuela; Sanchez-Vicente, Yolanda; Martin Trusler, J.P.

    2016-01-01

    Highlights: • Saturated phase densities of CO_2 + H_2O were measured with a 1.5 kg · m"−"3 uncertainty. • Aqueous phase densities can be predicted within 3 kg · m"−"3 using empirical models. • The CO_2-rich phase density was within 8 kg · m"−"3 of pure CO_2 at the same (p, T). • The cubic EOS of Spycher and Pruess deviates from the data by up to about 8 kg · m"−"3. - Abstract: An apparatus consisting of an equilibrium cell connected to two vibrating tube densimeters and two syringe pumps was used to measure the saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa, with estimated average standard uncertainties of 1.5 kg · m"−"3 for the CO_2-rich phase and 1.0 kg · m"−"3 for the aqueous phase. The densimeters were housed in the same thermostat as the equilibrium cell and were calibrated in situ using pure water, CO_2 and helium. Following mixing, samples of each saturated phase were displaced sequentially at constant pressure from the equilibrium cell into the vibrating tube densimeters connected to the top (CO_2-rich phase) and bottom (aqueous phase) of the cell. The aqueous phase densities are predicted to within 3 kg · m"−"3 using empirical models for the phase compositions and partial molar volumes of each component. However, a recently developed multi-parameter equation of state (EOS) for this binary mixture, Gernert and Span [32], was found to under predict the measured aqueous phase density by up to 13 kg · m"−"3. The density of the CO_2-rich phase was always within about 8 kg · m"−"3 of the density for pure CO_2 at the same pressure and temperature; the differences were most positive near the critical density, and became negative at temperatures above about 373 K and pressures below about 10 MPa. For this phase, the multi-parameter EOS of Gernert and Span describes the measured densities to within 5 kg · m"−"3, whereas the computationally-efficient cubic EOS model of

  8. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.

    Science.gov (United States)

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B

    2012-05-29

    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  9. X-ray spectra, chemical bonding, and electron structure of ScM2Si2 (M = Fe, Co, Ni)

    International Nuclear Information System (INIS)

    Shcherba, I.D.; Kotur, B.Ya.

    1990-01-01

    In a study of the interaction of the components in the ternary systems Sc-M-Si (where M is a 3d transition metal) it was established that there are compounds of the empirical formula ScM 2 Si 2 (M = Fe, Co, Ni). They crystallize in two structural types, HfFe 2 Si 2 (the compound ScFe 2 Si 2 ) and CeGa 2 Al 2 (ScCo 2 Si 2 and ScNi 2 Si 2 ) (ref. 1), leading to different coordination environment of the atoms in the structures of the compounds. With the aim of investigating the electron structure and the type ofin these compounds, they authors made a systematic x-ray spectral investigation with simultaneous analysis of the crystal structures of ScM 2 Si 2

  10. Interaction of photoactive cis(CO)-trans(I)-Ru-(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 with anatase (1 0 1) surface

    Science.gov (United States)

    Haukka, Matti; Hirva, Pipsa

    2002-06-01

    The coordination of cis(CO)-trans(I)-Ru(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 on an anatase (1 0 1) surface was investigated using a computational density functional method. The adsorbate is able to interact with the anatase surface by one or two carboxylate substituents of the bipyridine ligand. Three of the studied coordination modes involved a single carboxylate as the binding group, including monodentate (1M), bidentate chelating (1BC) and bidentate bridging (1BB) modes. The possibility of monodentate binding via both carboxylate groups in (2M) was also studied. The results showed that the multidentate binding is clearly preferred over monodentate coordination. The stability of the modes increased in the order 1M, 1BC, 1BB and 2M. The flexibility of the bipyridine ligand was found to be the key factor in the binding via two carboxylate groups.

  11. VizieR Online Data Catalog: H2CO and CO in 4 molecular clouds (Tang+, 2013)

    Science.gov (United States)

    Tang, X. D.; Esimbek, J.; Zhou, J. J.; Wu, G.; Ji, W. G.; Okoh, D.

    2017-11-01

    From September 2010 to August 2011, we observed the H2CO lin H110α line, and the 6cm continuum with the Nanshan 25m radio telescope of Xinjiang Astronomical Observatory. >From 15 to 26 May 2011, the 12CO and 13CO observations of the four regions were carried out with the 13.7m millimeter wave telescope of Purple Mountain Observatory in Delingha. (4 data files).

  12. Synthesis and Crystal Structure of an Unprecedented Supramolecular Complex[Co2-ClO4)2(H2O)22MA

    Institute of Scientific and Technical Information of China (English)

    XU,Jing; BAI,Zhengshuai; SUN,Weiyin

    2009-01-01

    A new supramolecular framework[Co2-C104)2(H2O)22MA(1)[MA=melamine(C3H6N6)]has been syn-thesized by a hydrothermal method.Interestingly,there ale inorganic and organic building blocks with two different supramolecular synthons:(a)2D(4,4)network constructed by infinite inorganic 1D chains through interchain hy-drogen bonding interactions;(b)1D zigzag organic chains formed by hydrogen bonds, which further stack up through,ππ-interactions between the two adjacent MA molecules.The entire structure of 1 is a 3D supramolecular framework resulting from the presence of abundant hydrogen bonds between infinite[CO2-C1O4)2(H2O)2]n chains and zigzag MA chains in different sheets.1 gives a nice example of supramolecular framework based on non-covalent interactions including hydrogen bonding and π-π interactions.

  13. Comparative assessment of a 99mTc labeled H1299.2-HYNIC peptide bearing two different co-ligands for tumor-targeted imaging.

    Science.gov (United States)

    Torabizadeh, Seyedeh Atekeh; Abedi, Seyed Mohammad; Noaparast, Zohreh; Hosseinimehr, Seyed Jalal

    2017-05-01

    Peptides are a class of targeting agents that bind to cancer-specific cell surfaces. Since they specifically target cancer cells, they could be used as molecular imaging tools. In this study, the 15-mer peptide Ac-H1299.2 (YAAWPASGAWTGTAP) was conjugated with HYNIC via lysine amino acid on C-terminus and labeled with 99m Tc using tricine and EDDA/tricine as the co-ligands. These radiotracers were evaluated for potential utilization in diagnostic imaging of ovarian cancer cells (SKOV-3). The cell-specificity of these radiolabeled peptides was determined based on their binding on an ovarian cancer cell line (SKOV-3), and displaying a low affinity for lung adenocarcinoma cell line (A549) and breast cancer cell line (MCF7). Biodistribution studies were conducted in normal mice as well as in nude mice bearing SKOV-3 ovarian cancer xenografts. HYNIC-peptide was labeled with 99m Tc with more than 99% efficiency and showed high stability in buffer and serum. We observed nanomolar binding affinities for both radiolabeled peptides. The tumor uptakes were 3.27%±0.46% and 1.55%±0.20% for tricine and 2.34±1.1% and 1.09%±0.18% for EDDA/tricine at 1 and 4h after injection, respectively. A higher tumor to background ratio and lower radioactivity in the blood were observed for EDDA/tricine co-ligands, leading to clear tumor visualization in imaging with injection of this peptide. This new 99m Tc-labeled peptide selectively targeted ovarian cancer and introduction of a (EDDA/tricine) as a co-ligand improved the pharmacokinetics of 99m Tc-labeled H1299.2 for tumor imaging in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characteristics of LiMO2 (M = Co, Ni, Ni0.2Co0.8, Ni0.8Co0.2) powders prepared from solution of their acetates

    International Nuclear Information System (INIS)

    Arof, A.K.

    2008-01-01

    Stoichiometric quantities of the acetates of lithium, cobalt and nickel were dissolved in distilled water and stirred with a magnetic stirrer. After complete dissolution was obtained, the solutions were heated at 120 deg. C under continuous stirring until some dark colored powder materials were formed. These precursor materials were divided into three batches and heated at 250 deg. C (for 24 h), 370 deg. C (for 24 h) and 800 deg. C for 10 h. The precursor and calcined samples were X-rayed. The X-ray diffractograms for the prepared samples were compared to that of commercialized samples and those published in the literature. The Bragg peak with Miller indices (0 0 3) in the diffractogram of the LiNi 0.8 Co 0.2 O 2 prepared sample showed a lower intensity compared to the (1 0 4) peak. The ratio of the (0 0 3) to (1 0 4) peaks for the LiNi 0.2 Co 0.8 O 2 sample is 1.56. Lattice parameters showed that the LiCoO 2 and LiNi 0.2 Co 0.8 O 2 samples produced by the method in the present investigation have potential to exhibit good electrochemical performance when used as electrodes in lithium ion batteries

  15. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    Science.gov (United States)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-03-01

    Two one-dimensional bismuth-coordination materials, Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2), have been synthesized by hydrothermal reactions using Bi2O3, 2,6-NC5H3(CO2H)2, HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC5H3(CO2)2](OH2)F single crystals at 800 °C led to α-Bi2O3 that maintained the same morphology of the original crystals.

  16. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O

    Science.gov (United States)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile

  17. Magnetic ordering in Sc{sub 2}CoSi{sub 2}-type R{sub 2}FeSi{sub 2} (R=Gd, Tb) and R{sub 2}CoSi{sub 2} (R=Y, Gd–Er) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Pani, M. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, C. Perrone 24, 16152 Genova (Italy); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2016-09-01

    Magnetic and magnetocaloric properties of Sc{sub 2}CoSi{sub 2}-type R{sub 2}TSi{sub 2} (R=Gd–Er, T=Fe, Co) compounds have been studied using magnetization data. These indicate the presence of mixed ferromagnetic and antiferromagnetic interactions in these compounds. One observes a ferromagnetic transition followed by an antiferromagnetic order and a further possible spin-reorientation transition at low temperatures. Compared to Gd{sub 2}{Fe, Co}Si{sub 2}, the Tb{sub 2}FeSi{sub 2} and {Tb–Er}{sub 2}CoSi{sub 2} compounds exhibit remarkable hysteresis (for e.g. Tb{sub 2}FeSi{sub 2} shows residual magnetization M{sub res}/Tb=2.45 μ{sub B}, coercive field H{sub coer}=14.9 kOe, and critical field H{sub crit}~5 kOe at 5 K) possibly due to the magnetocrystalline anisotropy of the rare earth. The R{sub 2}{Fe, Co}Si{sub 2} show relatively small magnetocaloric effect (i.e. isothermal magnetic entropy change, ΔS{sub m}) around the magnetic transition temperature: the maximal value of MCE is demonstrated by Ho{sub 2}CoSi{sub 2} (ΔS{sub m}=−8.1 J/kg K at 72 K and ΔS{sub m}=−9.4 J/kg K at 23 K in field change of 50 kOe) and Er{sub 2}CoSi{sub 2} (ΔS{sub m}=−13.6 J/kg K at 32 K and ΔS{sub m}=−8.4 J/kg K at 12 K in field change of 50 kOe). - Highlights: • {Gd–Er}{sub 2}{Fe, Co}Si{sub 2} show high-temperature ferromagnetic-type transitions. • {Gd–Er}{sub 2}{Fe, Co}Si{sub 2} show low-temperature spin-reorientation transitions. • Tb{sub 2}FeSi{sub 2} and {Tb–Er}{sub 2}CoSi{sub 2} compounds exhibit low-temperature hysteresis. • Tb{sub 2}FeSi{sub 2} shows M{sub res}/Tb=2.45 μ{sub B}, H{sub coer}=14.9 kOe and H{sub crit} ~5 kOe at 5 K • Considerable magnetocaloric effect is exhibited by Ho{sub 2}CoSi{sub 2} and Er{sub 2}CoSi{sub 2}.

  18. Cationic polyhydrido cluster complexes. Crystal and molecular structures of (Ir3(Ph2P(CH2)3PPh2)3(H)7(CO))2+ and (Ir3(Ph2P(CH2)2(2-py))3(H)7)2+

    International Nuclear Information System (INIS)

    Hsienhau Wang; Casalnuovo, A.L.; Johnson, B.J.; Mueting, A.M.; Pignolet, L.H.

    1988-01-01

    Two new cationic polyhydrido cluster complexes of iridium have been synthesized and characterized by single-crystal x-ray diffraction and by ir and 1 H and 31 P NMR spectroscopy (Ir 3 (dppp) 3 (H) 7 (CO)) 2+ (2) and (Ir3 (PN) 3 (H) 7)2+ (5), where dppp = 1,3-bis(diphenylphosphino)propane and PN = 1-(2-pyridyl)-2-(diphenylphosphino)ethane, were synthesized by the reaction of CO with (Ir 3 (dppp) 3 (H) 7 ) 2+ (1) in CH 2 Cl 2 solution and H 2 with (Ir(PN)(COD)) + (4) in CH 3 OH solution, respectively. Crystal structures for both compounds is reported. The hydride positions were not located in the crystal structure analyses but were deduced from structural and 1 H NMR data. The molecular structure of 2 consists of a bilateral triangle of three iridium atoms with a carbonyl at the vertex and a chelating dppp ligand on each iridium atom. 1 H NMR data with use of acetone-d 6 as solvent showed that 2 possesses four doubly bridging hydrides and three terminal hydrides, yielding C 1 symmetry. The molecular structure of 5 consists of an approximately equilateral triangle of three iridium atoms (average Ir-Ir distance 2.746 (1) angstrom) with one PN ligand chelated to each iridium atom. 1 H NMR analysis, with use of CD 2 Cl 2 as solvent, showed that 5 has one triply bridging hydride and six terminal hydrides, giving C 3 symmetry. (Ir 3 (dppp) 3 (H) 7 (CH 3 C 6 H 4 NC)) 2+ (3) a complex structurally analogous to 2, was synthesized from 1 and p-tolyl isocyanide in CH 2 Cl 2 solution and characterized by ir and 1 H and 31 P NMR spectroscopy. 44 refs., 3 figs., 3 tabs

  19. Detailed H2 and CO Electrochemistry for a MEA Model Fueled by Syngas

    KAUST Repository

    Lee, W. Y.

    2015-07-17

    © The Electrochemical Society. SOFCs can directly oxidize CO in addition to H2, which allows them to be coupled to a gasifier. Many membrane-electrode-assembly (MEA) models neglect CO electrochemistry due to sluggish kinetics and the water-gas-shift reaction, but CO oxidation may be important for high CO-content syngas. The 1D-MEA model presented here incorporates detailed mechanisms for both H2 and CO oxidation, individually fitted to experimental data. These mechanisms are then combined into a single model, which provides a good fit to experimental data for H2/CO mixtures. Furthermore, the model fits H2/CO data best when a single chargetransfer step in the H2 mechanism is assumed to be rate-limiting for all current densities. This differs from the result for H2/H2O mixtures, where H2 adsorption becomes rate-limiting at high current densities. These results indicate that CO oxidation cannot be neglected in MEA models running on CO-rich syngas, and that CO oxidation can alter the H2 oxidation mechanism.

  20. Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O.

    Science.gov (United States)

    Tatsumi, Hiroyuki; Teramura, Kentaro; Huang, Zeai; Wang, Zheng; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2017-12-12

    Modification of the surface of Ga 2 O 3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO 2 using H 2 O as an electron donor under UV irradiation in aqueous NaHCO 3 as a pH buffer, with the rare-earth species functioning as a CO 2 capture and storage material. Isotope experiments using 13 CO 2 as a substrate clearly revealed that CO was generated from the introduced gaseous CO 2 . In the presence of the NaHCO 3 additive, the rare-earth (RE) species on the Ga 2 O 3 surface are transformed into carbonate hydrates (RE 2 (CO 3 ) 3 ·nH 2 O) and/or hydroxycarbonates (RE 2 (OH) 2(3-x) (CO 3 ) x ) which are decomposed upon photoirradiation. Consequently, Ag-loaded Yb-modified Ga 2 O 3 exhibits much higher activity (209 μmol h -1 of CO) than the pristine Ag-loaded Ga 2 O 3 . The further modification of the surface of the Yb-modified Ga 2 O 3 with Zn afforded a selectivity toward CO evolution of 80%. Thus, we successfully achieved an efficient Ag-loaded Yb- and Zn-modified Ga 2 O 3 photocatalyst with high activity and controllable selectivity, suitable for use in artificial photosynthesis.

  1. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  2. MAu2GeS4-Chalcogel (M = Co, Ni): Heterogeneous Intra- and Intermolecular Hydroamination Catalysts

    KAUST Repository

    Davaasuren, Bambar

    2017-08-08

    High surface area macroporous chalcogenide aerogels (chalcogels) MAu2GeS4 (M = Co, Ni) were prepared from K2Au2GeS4 precursor and Co(OAc)2 or NiCl2 by one-pot sol-gel metathesis reactions in aqueous media. The MAu2GeS4-chalcogels were screened for catalytic intramolecular hydroamination of 4-pentyn-1-amine substrate at different temperatures. 87% and 58% conversion was achieved at 100 °C, using CoAu2GeS4- and NiAu2GeS4-chalcogels respectively, and the reaction kinetics follows the first order. It was established that the catalytic performance of the aerogels is associated with the M(2+) centers present in the structure. Intermolecular hydroamination of aniline with 1-R-4-ethynylbenzene (R = -H, -OCH3, -Br, -F) was carried out at 100 °C using CoAu2GeS4-chalcogel catalyst, due to its promising catalytic performance. The CoAu2GeS4-chalcogel regioselectively converted the pair of substrates to respective Markovnikov products, (E)-1-(4-R-phenyl)-N-phenylethan-1-imine, with 38% to 60% conversion.

  3. MAu2GeS4-Chalcogel (M = Co, Ni): Heterogeneous Intra- and Intermolecular Hydroamination Catalysts

    KAUST Repository

    Davaasuren, Bambar; Emwas, Abdul-Hamid M.; Rothenberger, Alexander

    2017-01-01

    High surface area macroporous chalcogenide aerogels (chalcogels) MAu2GeS4 (M = Co, Ni) were prepared from K2Au2GeS4 precursor and Co(OAc)2 or NiCl2 by one-pot sol-gel metathesis reactions in aqueous media. The MAu2GeS4-chalcogels were screened for catalytic intramolecular hydroamination of 4-pentyn-1-amine substrate at different temperatures. 87% and 58% conversion was achieved at 100 °C, using CoAu2GeS4- and NiAu2GeS4-chalcogels respectively, and the reaction kinetics follows the first order. It was established that the catalytic performance of the aerogels is associated with the M(2+) centers present in the structure. Intermolecular hydroamination of aniline with 1-R-4-ethynylbenzene (R = -H, -OCH3, -Br, -F) was carried out at 100 °C using CoAu2GeS4-chalcogel catalyst, due to its promising catalytic performance. The CoAu2GeS4-chalcogel regioselectively converted the pair of substrates to respective Markovnikov products, (E)-1-(4-R-phenyl)-N-phenylethan-1-imine, with 38% to 60% conversion.

  4. Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption

    KAUST Repository

    Helali, Zeineb

    2015-04-01

    Following our strategy to analyze the metal–support interaction, we present periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, θ = 1/3) to investigate the interaction of an individual metal atom, M, with TiO2 and its consequence on the coadsorption of H and CO over M/TiO2. M under investigation varies in a systematic way from K to Zn. It is found that the presence of the support decreases or increases the strength of M–H or M–CO interaction according to the nature of M. The site of the adsorption for H and the formation of HCO/M also depend on M. From the left- to the right-hand side of the period, C and O both interact while O progressively detaches from M. On the contrary, for M = Fe–Cu, CO dissociation is more likely to happen. For CO and H coadsorption, two extreme cases emerge: For Ni, the hydrogen adsorbed should easily move on the support and CO dissociation is more likely. For Ti or Sc, H is easily coadsorbed with CO on the metal and CO hydrogenation could be the initial step. © 2015, Springer-Verlag Berlin Heidelberg.

  5. M-theory solutions invariant under D(2,1; γ) + D(2,1;γ)

    Energy Technology Data Exchange (ETDEWEB)

    Bachas, C. [Laboratoire de Physique Theorique de l' Ecole Normale Superieure Unite mixte (UMR 8549) du CNRS et de l' ENS, Paris (France); D' Hoker, E. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Estes, J. [Blackett Laboratory, Imperial College, London (United Kingdom); Krym, D. [Physics Department, New York City College of Technology, The City University of New York, Brooklyn, NY (United States)

    2014-03-06

    We simplify and extend the construction of half-BPS solutions to 11-dimensional supergravity, with isometry superalgebra D(2,1;γ) + D(2,1;γ). Their space-time has the form AdS{sub 3} x S{sup 3} x S{sup 3} warped over a Riemann surface Σ. It describes near-horizon geometries of M2 branes ending on, or intersecting with, M5 branes along a common string. The general solution to the BPS equations is specified by a reduced set of data (γ, h, G), where γ is the real parameter of the isometry superalgebra, and h and G are functions on Σ whose differential equations and regularity conditions depend only on the sign of γ. The magnitude of γ enters only through the map of h,G onto the supergravity fields, thereby promoting all solutions into families parametrized by vertical stroke γ vertical stroke. By analyzing the regularity conditions for the supergravity fields, we prove two general theorems: (i) that the only solution with a 2-dimensional CFT dual is AdS{sub 3} x S{sup 3} x S{sup 3} x R {sup 2}, modulo discrete identifications of the flat R {sup 2}, and (ii) that solutions with γ < 0 cannot have more than one asymptotic higher-dimensional AdS region. We classify the allowed singularities of h and G near the boundary of Σ, and identify four local solutions: asymptotic AdS{sub 4}/Z{sub 2} or AdS{sub 7}' regions; highly-curved M5-branes; and a coordinate singularity called the ''cap''. By putting these ''Lego'' pieces together we recover all known global regular solutions with the above symmetry, including the self-dual strings on M5 for γ <0, and the Janus solution for γ > 0, but now promoted to families parametrized by vertical stroke γ vertical stroke. We also construct exactly new regular solutions which are asymptotic to AdS{sub 4}/Z{sub 2} for γ < 0, and conjecture that they are a different superconformal limit of the self-dual string. Finally, we construct exactly γ > 0 solutions with highly curved M5

  6. Simple synthesis of multi-halogen pyrazino [1,2-a]indole-1,8(2H,5aH)-dione

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Xia; Zhao, Yu Cheng; Kong, Ling Bin; Yan, Sheng Jiao; Lin, Jun [Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, School of Chemical Science and Technology, Yunnan University, Kunming (China)

    2016-10-15

    A concise and efficient one-pot synthesis of multi-halogen pyrazino[1,2-a]indole-1,8(2H,5aH)-dione (MHPID) derivatives by the reaction of an enamino ester with multi-halogen benzoquinone derivatives is described. MHPIDs 3a–3d were obtained with good yields (78–83%) by refluxing enamino esters 1a and 1b and tetrahalogen-1,4-benzoquinones 2a and 2b for 24 h without the use of catalysts. Compounds 3e–3p were also obtained with excellent yields (69–92%) via the reaction of the phenyl-substituted enamino esters 1c–1h with tetrahalogen-1,4-benzoquinones 2a and 2b in CH3CN catalyzed by Cs2CO3. These two protocols are efficient and effective for the synthesis of MHPIDs.

  7. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao; Das, Shyamal K.; Archer, Lynden A.

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than

  8. Long-term Variability of H2CO Masers in Star-forming Regions

    Science.gov (United States)

    Andreev, N.; Araya, E. D.; Hoffman, I. M.; Hofner, P.; Kurtz, S.; Linz, H.; Olmi, L.; Lorran-Costa, I.

    2017-10-01

    We present results of a multi-epoch monitoring program on variability of 6 cm formaldehyde (H2CO) masers in the massive star-forming region NGC 7538 IRS 1 from 2008 to 2015, conducted with the Green Bank Telescope, the Westerbork Radio Telescope , and the Very Large Array. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC 7538 IRS 1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2 GHz methanol and 22.2 GHz water masers toward NGC 7538 IRS 1. The brightest maser components of CH3OH and H2O species show a decrease in flux density as a function of time. The brightest H2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2O and 12.2 GHz CH3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97 GHz CH3OH transitions in NGC 7538 IRS 1 are also reported. In addition, we observed five other 6 cm formaldehyde maser regions. We found no evidence of significant variability of the 6 cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96-0.02. All six sources were also observed in the {{{H}}}213{CO} isotopologue transition of the 6 cm H2CO line; {{{H}}}213{CO} absorption was detected in five of the sources. Estimated column density ratios [{{{H}}}212{CO}]/[{{{H}}}213{CO}] are reported.

  9. The 1:1 co-crystal of triphenyl(2,3,5,6-tetrafluorobenzylphosphonium bromide and 1,1,2,2-tetrafluoro-1,2-diiodoethane

    Directory of Open Access Journals (Sweden)

    Gabriella Cavallo

    2014-01-01

    Full Text Available The title compound, C25H18F4P+·Br−·C2F4I2, is a 1:1 co-crystal of triphenyl(2,3,5,6-tetrafluorobenzylphosphonium (TTPB bromide and 1,1,2,2-tetrafluoro-1,2-diiodoethane (TFDIE. The crystal structure consists of a framework of TTPB cations held together by C—H...Br interactions. In this framework, infinite channels along [100] are filled by TFDIE molecules held together in infinite ribbons by short F...F [2.863 (22.901 (2Å] interactions. The structure contains halogen bonds (XB and hydrogen bonds (HB in the bromide coordination sphere. TFDIE functions as a monodentate XB donor as only one I atom is linked to the Br− anion and forms a short and directional interaction [I...Br− 3.1798 (7 Å and C—I...Br− 177.76 (5°]. The coordination sphere of the bromide anion is completed by two short HBs of about 2.8 Å (for H...Br with the acidic methylene H atoms and two longer HBs of about 3.0 Å with H atoms of the phenyl rings. Surprisingly neither the second iodine atom of TFDIE nor the H atom on the tetrafluorophenyl group make any short contacts.

  10. Increased H2CO production in the outer disk around HD 163296

    Science.gov (United States)

    Carney, M. T.; Hogerheijde, M. R.; Loomis, R. A.; Salinas, V. N.; Öberg, K. I.; Qi, C.; Wilner, D. J.

    2017-09-01

    . Conclusions: There is a desorption front seen in the H2CO emission that roughly coincides with the outer edge of the 1.3 millimeter continuum. The increase in H2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption. Alternatively, there could be more efficient gas-phase production of H2CO beyond 300 AU if CO is photodisocciated in this region. The reduced datacube is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A21

  11. Investigation of H2S and CO2 Removal from Gas Streams Using Hollow Fiber Membrane Gas–liquid Contactors

    Directory of Open Access Journals (Sweden)

    S. M. Mirfendereski

    2017-07-01

    Full Text Available Chemical absorption of H2S and CO2 from CH4 was carried out in a polypropylene porous asymmetric hollow fiber membrane contactor (HFMC. A 0.5 mol L–1 aqueous solution of methyldiethanolamine (MDEA was used as chemical absorbent solution. Effects of gas flow rate, liquid flow rate, H2S concentration and CO2 concentration on the H2S outlet concentrations and CO2 removal percentage were investigated. The results showed that the removal of H2S with aqueous solution of MDEA was very high and indicated almost total removal of H2S. Experimental results also indicated that the membrane contactor was very efficient in the removal of trace H2S at high gas/ liquid flow ratio. The removal of H2S was almost complete with a recovery of more than 96 %. Using feed gas mixtures containing 5000 ppm H2S with CO2 concentrations in the range of 4–12 vol.%, the outlet H2S concentration of less than 1.0 ppm was attained with less than 4.0 vol.% of CO2 permeated and absorbed.

  12. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    Science.gov (United States)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  13. Full-dimensional quantum dynamics of CO in collision with H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Benhui; Stancil, P. C. [Department of Physics and Astronomy and the Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602 (United States); Balakrishnan, N. [Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154 (United States); Zhang, P. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Wang, X.; Bowman, J. M. [Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States); Forrey, R. C. [Department of Physics, Penn State University, Berks Campus, Reading, Pennsylvania 19610 (United States)

    2016-07-21

    Inelastic scattering computations are presented for collisions of vibrationally and rotationally excited CO with H{sub 2} in full dimension. The computations utilize a newly developed six-dimensional potential energy surface (PES) and the previously reported four-dimensional V12 PES [P. Jankowski et al., J. Chem. Phys. 138, 084307 (2013)] and incorporate full angular-momentum coupling. At low collision energies, pure rotational excitation cross sections of CO by para-, ortho-, and normal-H{sub 2} are calculated and convolved to compare with recent measurements. Good agreement with the measured data is shown except for j{sub 1} = 0 → 1 excitation of CO for very low-energy para-H{sub 2} collisions. Rovibrational quenching results are presented for initially excited CO(v{sub 1}j{sub 1}) levels with v{sub 1} = 1, j{sub 1} = 1–5 and v{sub 1} = 2, j{sub 1} = 0 for collisions with para-H{sub 2} (v{sub 2} = 0, j{sub 2} = 0) and ortho-H{sub 2} (v{sub 2} = 0, j{sub 2} = 1) over the kinetic energy range 0.1–1000 cm{sup −1}. The total quenching cross sections are found to have similar magnitudes, but increase (decrease) with j{sub 1} for collision energies above ∼300 cm{sup −1} (below ∼10 cm{sup −1}). Only minor differences are found between para- and ortho-H{sub 2} colliders for rovibrational and pure rotational transitions, except at very low collision energies. Likewise, pure rotational deexcitation of CO yields similar cross sections for the v{sub 1} = 0 and v{sub 1} = 1 vibrational levels, while rovibrational quenching from v{sub 1} = 2, j{sub 1} = 0 is a factor of ∼5 larger than that from v{sub 1} = 1, j{sub 1} = 0. Details on the PES, computed at the CCSD(T)/aug-cc-pV5Z level, and fitted with an invariant polynomial method, are also presented.

  14. Reaction of H{sub 2}S with MoRu(CO){sub 6}(dppm){sub 2} to give H{sub 2} and a bridged-sulfide product via hydrido-sulfhydryl intermediates (dppm equals Ph{sub 2}PCH{sub 2}PPh{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani-Motlagh, M. [Sistan and Baluchestan Univ., Zahedan (Iran, Islamic Republic of). Dept. of Chemistry; Safari, N. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Pamplin, C.B.; Patrick, B.O.; James, B.R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry

    2006-02-15

    The reactivity of hydrogen sulphide toward transition metal complexes was studied with particular focus on the reactions of hydrogen sulphide (H{sub 2}S) with solutions of bimetallic-dppm complexes. The complex MoRu(CO){sub 6}({mu}-dppm){sub 2} (1) (dppm equals Ph{sub 2}PCH{sub 2}PPh{sub 2}) reaction toward hydrogen sulphide was examined because of the fact that Ru is the second-row analogue of Fe and because of the key role of sulphur ligands in the Mo-Fe enzyme systems. This paper reported on the interaction of the Mo-Ru complex with hydrogen sulphide to form the bridged sulphide complex Mo(CO){sub 2}({mu}-CO)({mu}-S)(dppm){sub 2}Ru(CO) which can be synthesized with elemental sulphur. Oxidative addition of H{sub 2}S to MoRu(CO){sub 6}({mu}-dppm){sub 2} (1) at 20 degrees C in toluene yields an isolable complex formulated as Mo(CO){sub 3}({mu}-SH)({mu}-CO)({mu}-dppm){sub 2}RuH(CO) (2) via the possible intermediate Mo(CO){sub 3}({mu}-H)({mu}-CO)({mu}-dppm){sub 2}Ru(SH)(CO) (4) (dppm equals Ph{sub 2}PCH{sub 2}PPh{sub 2}) that is detectable at lower temperatures. Over 2 days, species 2 in toluene lost H{sub 2} (and CO) to yield the bridged-sulfide product, Mo(CO){sub 2}({mu}-CO)({mu}-S)({mu}-dppm){sub 2}Ru(CO) (5) that is also formed directly from the reaction of 1 with elemental sulfur. The solid-state molecular structure of 5 was determined by X-ray crystallography. A further hydrido-sulfhydryl species was found to be in equilibrium with 2 at ambient temperature. It was concluded that it is not impossible that hydrogen sulphide can react in a concerted manner with dimetallic precursors, without prior formation of an adduct. 24 refs., 2 tabs., 3 figs.

  15. Detailed CO(J = 1-0, 2-1, and 3-2) observations toward an H II region RCW 32 in the Vela Molecular Ridge

    Science.gov (United States)

    Enokiya, Rei; Sano, Hidetoshi; Hayashi, Katsuhiro; Tachihara, Kengo; Torii, Kazufumi; Yamamoto, Hiroaki; Hattori, Yusuke; Hasegawa, Yutaka; Ohama, Akio; Kimura, Kimihiro; Ogawa, Hideo; Fukui, Yasuo

    2018-05-01

    We performed CO(J = 1-0, 2-1, and 3-2) observations toward an H II region RCW 32 in the Vela Molecular Ridge. The CO gas distribution associated with the H II region was revealed for the first time at a high resolution of 22″. The results revealed three distinct velocity components which show correspondence with the optical dark lanes and/or Hα distribution. Two of the components show complementary spatial distribution which suggests collisional interaction between them at a relative velocity of ˜ 4 km s-1. Based on these results, we present a hypothesis that a cloud-cloud collision determined the cloud distribution and triggered formation of the exciting star ionizing RCW 32. The collision time scale is estimated from the cloud size and the velocity separation to be ˜2 Myr and the collision terminated ˜1 Myr ago, which is consistent with the age of the exciting star and the associated cluster. By combing the previous works on the H II regions in the Vela Molecular Ridge, we argue that the majority (at least four) of the H II regions in the Ridge were formed by triggering of cloud-cloud collision.

  16. Growth Oscillatory Zoning in Erythrite, Ideally Co3(AsO4)2·8H2O: Structural Variations in Vivianite-Group Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Antao, Sytle M.; Dhaliwal, Inayat

    2017-08-01

    The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedral dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average <M1–O>[6] = 2.122(1) Å and average <M2–O>[6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average [4], <M1–O>[6], and <M2–O>[6] distances increase linearly with V. The average distance is affected by M atoms, whereas the average distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.

  17. THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. II. THE W3 REGION IN CO J = 2-1, 13CO J = 2-1, AND CO J = 3-2 EMISSION

    International Nuclear Information System (INIS)

    Bieging, John H.; Peters, William L.

    2011-01-01

    We present fully sampled 38'' resolution maps of the CO and 13 CO J = 2-1 lines in the molecular clouds toward the H II region complex W3. The maps cover a 2. 0 0 x 1. 0 67 section of the galactic plane and span -70 to -20 km s -1 (LSR) in velocity with a resolution of ∼1.3 km s -1 . The velocity range of the images includes all the gas in the Perseus spiral arm. We also present maps of CO J = 3-2 emission for a 0. 0 5 x 0. 0 33 area containing the H II regions W3 Main and W3(OH). The J = 3-2 maps have velocity resolution of 0.87 km s -1 and 24'' angular resolution. Color figures display the peak line brightness temperature, the velocity-integrated intensity, and velocity channel maps for all three lines, and also the (CO/ 13 CO) J = 2-1 line intensity ratios as a function of velocity. The line intensity image cubes are made available in standard FITS format as electronically readable files. We compare our molecular line maps with the 1.1 mm continuum image from the BOLOCAM Galactic Plane Survey (BGPS). From our 13 CO image cube, we derive kinematic information for the 65 BGPS sources in the mapped field, in the form of Gaussian component fits.

  18. Lanthanite-(Nd), Nd2(CO3)3·8H2O

    Science.gov (United States)

    Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.

    2013-01-01

    Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octa­hydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water mol­ecules. PMID:23476479

  19. Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst

    Science.gov (United States)

    Tan, J. S.; Danh, H. T.; Singh, S.; Truong, Q. D.; Setiabudi, H. D.; Vo, D.-V. N.

    2017-06-01

    This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat -1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

  20. Biochars as Potential Adsorbers of CH4, CO2 and H2S

    Directory of Open Access Journals (Sweden)

    Sumathi Sethupathi

    2017-01-01

    Full Text Available Methane gas, as one of the major biogases, is a potential source of renewable energy for power production. Biochar can be readily used to purify biogas contaminants such as H2S and CO2. This study assessed the adsorption of CH4, H2S, and CO2 onto four different types of biochars. The adsorption dynamics of biochars were investigated in a fixed-bed column, by determining the breakthrough curves and adsorption capacities of biochars. The physicochemical properties of biochars were considered to justify the adsorption performance. The results showed that CH4 was not adsorbed well by the subjected biochars whereas CO2 and H2S were successfully captured. The H2S and CO2 breakthrough capacity were related to both the surface adsorption and chemical reaction. The adsorption capacity was in the following order: perilla > soybean stover > Korean oak > Japanese oak biochars. The simultaneous adsorption also leads to a competition of sorption sites. Biochars are a promising material for the biogas purification industry.

  1. THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Sandstrom, K. M.; Walter, F.; Leroy, A. K.; Bolatto, A. D.; Wolfire, M.; Croxall, K. V.; Crocker, A.; Draine, B. T.; Aniano, G.; Wilson, C. D.; Calzetti, D.; Kennicutt, R. C.; Galametz, M.; Donovan Meyer, J.; Usero, A.; Bigiel, F.; Brinks, E.; De Blok, W. J. G.; Dale, D.; Engelbracht, C. W.

    2013-01-01

    We present ∼kiloparsec spatial resolution maps of the CO-to-H 2 conversion factor (α CO ) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α CO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both α CO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12 CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α CO results on the more typically used 12 CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α CO and the DGR. On average, α CO = 3.1 M ☉ pc –2 (K km s –1 ) –1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α CO as a function of galactocentric radius. However, most galaxies exhibit a lower α CO value in the central kiloparsec—a factor of ∼2 below the galaxy mean, on average. In some cases, the central α CO value can be factors of 5-10 below the standard Milky Way (MW) value of α CO, M W = 4.4 M ☉ pc –2 (K km s –1 ) –1 . While for α CO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α CO for studies of nearby galaxies

  2. Measurements of CO2 Column Abundance in the Low Atmosphere Using Ground Based 1.6 μm CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    Changes in atmospheric carbon dioxide (CO2) concentration are believed to produce the largest radiative forcing for the current climate system. Accurate predictions of atmospheric CO2 concentration rely on the knowledge of its sinks and sources, transports, and its variability with time. Although this knowledge is currently unsatisfactory, numerical models use it as a way in simulating CO2 fluxes. Validating and improving the global atmospheric transport model, therefore, requires precise measurement of the CO2 concentration profile. There are two further variations on Lidar: the differential absorption Lidar (DIAL) and the integrated path differential absorption (IPDA) Lidar. DIAL/IPDA are basically for profile/total column measurement, respectively. IPDA is a special case of DIAL and can measure the total column-averaged mixing ratio of trace gases using return signals from the Earth's surface or from thick clouds based on an airborne or a satellite. We have developed a ground based 1.6 μm DIAL to measure vertical CO2 mixing ratio profiles from 0.4 to 2.5 km altitude. The goals of the CO2 DIAL are to produce atmospheric CO2 mixing ratio measurements with much smaller seasonal and diurnal biases from the ground surface. But, in the ground based lidar, return signals from around ground surface are usually suppressed in order to handle the large dynamic range. To receive the return signals as near as possible from ground surface, namely, the field of view (FOV) of the telescope must be wide enough to reduce the blind range of the lidar. While the return signals from the far distance are very weak, to enhance the sensitivity and heighten the detecting distance, the FOV must be narrow enough to suppress the sky background light, especially during the daytime measurements. To solve this problem, we propose a total column measurement method from the ground surface to 0.4 km altitude. Instead of strong signals from thick clouds such as the IPDA, the proposed method uses

  3. Multicomponent Biginelli's synthesis of 3,4-dihydropyrimidin-2(1H-ones promoted by SnCl2.2H2O

    Directory of Open Access Journals (Sweden)

    Russowsky Dennis

    2004-01-01

    Full Text Available The ability of SnCl2.2H2O as catalyst to promote the Biginelli three-component condensation reaction from a diversity of aromatic aldehydes, ethyl acetoacetate and urea or thiourea is described. The reaction was carried out in acetonitrile or ethanol as solvents in neutral media and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3.6H2O, NiCl2.6H2O and CoCl2.6H2O which were used with HCl as co-catalyst. The synthesis of 3,4-dihydropyrimidinones was achieved in good to excelent yields.

  4. Full genomic analysis of an influenza A (H1N2) virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1)pdm09 and A/Brisbane/10/2007-like H3N2 strains.

    Science.gov (United States)

    Mukherjee, Tapasi Roy; Agrawal, Anurodh S; Chakrabarti, Sekhar; Chawla-Sarkar, Mamta

    2012-10-11

    During the pandemic [Influenza A(H1N1)pdm09] period in 2009-2010, an influenza A (Inf-A) virus with H1N2 subtype (designated as A/Eastern India/N-1289/2009) was detected from a 25 years old male from Mizoram (North-eastern India). To characterize full genome of the H1N2 influenza virus. For initial detection of Influenza viruses, amplification of matrix protein (M) gene of Inf-A and B viruses was carried out by real time RT-PCR. Influenza A positive viruses are then further subtyped with HA and NA gene specific primers. Sequencing and the phylogenetic analysis was performed for the H1N2 strain to understand its origin. The outcome of this full genome study revealed a unique reassortment event where the N-1289 virus acquired it's HA gene from a 2009 pandemic H1N1 virus with swine origin and the other genes from H3N2-like viruses of human origin. This study provides information on possibility of occurrence of reassortment events during influenza season when infectivity is high and two different subtypes of Inf-A viruses co-circulate in same geographical location.

  5. Properties of M1-M2-Si-Al-O-N glasses (M1 = La or Nd, M2 = Y or Er)

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, M.J.; Nestor, E.; Hampshire, S. [Limerick Univ. (Ireland). Materials and Surface Science Inst.; Ramesh, R. [Littelfuse Ireland, Dundalk, Co. Louth (Ireland)

    2002-07-01

    Mixed lanthanide cation oxynitride glasses have been prepared in the M1 - M2 - Si-Al-O-N systems where M1 = La or Nd and M2 = Y or Er. The densities ({rho}), Young's moduli (E), microhardnesses (H{sub v}), glass transition temperatures (T{sub g}), dilatometric softening temperatures (T{sub dil}) and coefficients of thermal expansion (CTE) of 13 glasses were determined. The molar volume values (MV) calculated from density data, E, H{sub v}, T{sub g}, T{sub dil} and CTE values were all found to vary linearly with the effective cation field strength arising from the M1 and M2 modifier cations. Least squares intercept and slope values are presented which correlate each property to effective cation field strength together with error values which arise from glass and specimen preparation and measurement inconsistencies. These linear correlations clearly indicate that the overall glass structure remains the same for each of the thirteen glasses with only the modifier cation(s) having any influence. This influence appears to be a cross-linking effect, the strength of which increases as the effective cation field strength of the M1, M2 modifiers increases. (orig.)

  6. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  7. Preparation of ZrO2 thin films by CVD using H2-CO2 as oxidizer. H2-CO2 wo sanka gas ni mochiita CVD ho ni yoru ZrO2 maku no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, M; Kobayashi, C [Toto Ltd., Kitakyushu (Japan); Yamane, H; Hirai, T [Tohoku University, Sendai (Japan). Institute for Materials Research

    1993-02-01

    This report describes an outline on the results of investigation on the formation of ZrO2 films from [beta]-diketone chelate of Zr using H2/CO2 as oxidizing gas by application of the CVD method at a temperature as high as 1000[degree]C. The deposition rate is 4[mu]m/h at 650[degree]C, increases with rise of temperature and reaches 10[mu]m/h at 900-1000[degree]C. No lowering of the rate at high temperature seems to be caused by temperature dependence of water (increase of water concentration above 850[degree]C). The physical form of ZrO2 is black and amorphous at 650[degree]C; grey and tetragonal at 850[degree]C; white, monoclinic and tetragonal at 950-1000[degree]C. All of these films showed a fine-grain, polycrystalline structure at any temperature and became white by heat-treatment at 1100[degree]C for 100h. This treatment gave no change to amorphous films but transformed tetragonal films and the mixture films of tetragonal and monoclinic crystals into white monoclinic Zr films. This may be because oxygen defects were present in black and grey films of low deposition temperature due to insufficient oxydation of raw material by H2O. Instability of tetragonal crystals seems to be attributed to participation of oxygen defects. In conclusion, possibility of high-temperature film formation was confirmed. 17 refs., 4 figs.

  8. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O.

    Science.gov (United States)

    Dey, Sunita; Naidu, B S; Rao, C N R

    2016-02-14

    The effect of substitution of Al(3+), Ga(3+) and Sc(3+) ions in the Mn(3+) site of La0.5Sr0.5MnO3 on the thermochemical splitting of CO2 to generate CO has been studied in detail. Both La0.5Sr0.5Mn1-xGaxO3 and La0.5Sr0.5Mn1-xScxO3 give high yields of O2 and generate CO more efficiently than La0.5Sr0.5Mn1-xAlxO3 or the parent La0.5Sr0.5MnO3. Substitution of even 5% Sc(3+) (x = 0.05) results in a remarkable improvement in performance. Thus La0.5Sr0.5Mn0.95Sc0.05O3 produces 417 μmol g(-1) of O2 and 545 μmol g(-1) of CO, respectively, i.e. 2 and 1.7 times more O2 and CO than La0.5Sr0.5MnO3. This manganite also generates H2 satisfactorily by the thermochemical splitting of H2O.

  9. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim

    2008-10-01

    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  10. N-(2-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Xu Zhu

    2013-10-01

    Full Text Available In the title Ebselen [systematic name: (2-phenyl-1,2-benzoisoselenazol-3-(2H-one] analogue, C14H11NOSe, the benzisoselenazolyl moiety (r.m.s. deviation = 0.0209 Å is nearly perpendicular to the N-arenyl ring, making a dihedral angle of 78.15 (11°. In the crystal, molecules are linked by C—H...O and Se...O interactions into chains along the c-axis direction. The Se...O distance [2.733 (3 Å] is longer than that in Ebselen (2.571 (3 Å].

  11. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    Science.gov (United States)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  12. Are CO Observations of Interstellar Clouds Tracing the H2?

    Science.gov (United States)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.

    2010-01-01

    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  13. A novel highly efficient adsorbent {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    Science.gov (United States)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  14. Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Samantha A. [Catalysis; Kendall, Alexander J. [Department; Tyler, David R. [Department; Linehan, John C. [Catalysis; Appel, Aaron M. [Catalysis

    2017-03-17

    The water soluble Ni bis(diphosphine) complex [NiL2](BF4)2 (L = 1,2- bis(di(methoxypropyl)phosphino)ethane) and the corresponding hydride, [HNiL2]BF4, were synthesized and characterized. For HNiL2+, the hydricity was determined to be 23.2(3) kcal/mol in aqueous solution. Based on the hydricity of formate of 24.1 kcal/mol, the transfer of a hydride from HNiL2 + to CO2 to produce formate is favorable by 1 kcal/mol. Starting from either NiL2 2+ or HNiL2 + in water, catalytic hydrogenation of CO2 was observed with NaHCO3 (0.8 M) as the only additive. A maximum turnover frequency of 3.6(8) h–1 was observed at 80 °C and 51 atm of a 1:1 mixture of CO2 and H2.

  15. Effects of CO, O2, NO, H2O, and irradiation temperature on the radiation-induced oxidation of SO2

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake; Washino, Masamitsu

    1977-01-01

    When a SO 2 -H 2 O-O 2 -N 2 gaseous mixture was irradiated by electron beams of 1.5 MeV, SO 2 was easily oxidized to H 2 SO 4 . Effects of CO, O 2 , NO, H 2 O, and irradiation temperature on the radiation-induced oxidation of SO 2 were studied by measuring the SO 2 concentration gas chromatographically. The G(-SO 2 ) increased greatly at the addition of a small amount of O 2 , and then decreased gradually with an increase in the O 2 concentration, i.e., the G(-SO 2 ) values were 0.9, 8.0, and 5.3 for the 0, 0.1, and 20% O 2 concentrations at 100 0 C, respectively (Fig.4). The G(-SO 2 ) was independent of the H 2 O concentration in the range of 0.84 to 8.4% (Fig.5). The G(-SO 2 ) decreased with a rise in the irradiation temperature (Fig.6) and an apparent activation energy of the oxidation reaction of SO 2 obtained was -4.2 kcal.mol -1 . The effects of CO, NO, and O 2 on the G(-SO 2 ) showed that SO 2 was mainly oxidized by OH and O and that the contribution of OH to the oxidation of SO 2 increased with an increase in the O 2 concentration (Table 1). The rate constants for the reactions of SO 2 with OH and O, obtained from competitive reactions of SO 2 with CO and O 2 , were 5.4 x 10 11 cm 3 .mol -1 .sec -1 and 5.0 x 10 11 cm 3 .mol -1 .sec -1 , respectively. (auth.)

  16. A novel layered bimetallic phosphite intercalating with organic amines: Synthesis and characterization of Co(H2O)4Zn4(HPO3)6.C2N2H1

    International Nuclear Information System (INIS)

    Lin Zhien; Fan Wei; Gao Feifei; Chino, Naotaka; Yokoi, Toshiyuki; Okubo, Tatsuya

    2006-01-01

    A new layered cobalt-zinc phosphite, Co(H 2 O) 4 Zn 4 (HPO 3 ) 6 .C 2 N 2 H 1 has been synthesized in the presence of ethylenediamine as the structure-directing agent. The compound crystallizes in the monoclinic system, space group Cc (No. 9), a=18.2090(8), b=9.9264(7), c=15.4080(7) A, β=114.098(4) o , V=2542.3(2) A 3 , Z=4, R=0.0323, wR=0.0846. The structure consists of ZnO 4 tetrahedra, CoO 6 octahedra and HPO 3 pseudopyramids through their vertices forming bimetallic phosphite layers parallel to the ab plane. Organic cations, which reside between the inorganic layers, are mobile and can be exchanged by NH 4 + cations without the collapse of the framework

  17. Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2

    DEFF Research Database (Denmark)

    Ambus, P.; Robertson, G.P.

    1999-01-01

    Elevated atmospheric CO2 has the potential to change below-ground nutrient cycling and thereby alter the soil-atmosphere exchange of biogenic trace gases. We measured fluxes of CH4 and N2O in trembling aspen (Populus tremuloides Michx.) stands grown in open-top chambers under ambient and twice......-ambient CO2 concentrations crossed with `high' and low soil-N conditions. Flux measurements with small static chambers indicated net CH4 oxidation in the open-top chambers. Across dates, CH4 oxidation activity was significantly (P CO2 (8.7 mu g CH4-C m(-2) h(-1)) than...... with elevated CO2 (6.5 mu g CH4-C m(-2) h(-1)) in the low N soil. Likewise, across dates and soil N treatments CH4 was oxidized more rapidly (P CO2 (9.5 mu g CH4-C m(-2) h(-1)) than in chambers with elevated CO2 (8.8 mu g CH4-C m(-2) h(-1)). Methane oxidation in soils incubated...

  18. The solubility of Ni in molten Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} (52/48) in H{sub 2}/H{sub 2}O/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Andreas; Lindbergh, Goeran [KTH Chemical Science and Engineering, Department of Chemical Engineering and Technology, SE-100 44 Stockholm (Sweden); Yoshikawa, Masahiro [Central Research Institute of Electric Power Industry, Sector, Energy Conversion Engineering, Energy Engineering Research Laboratory, Yokosuka-shi, Kanagawa 240-0196 (Japan)

    2007-03-30

    In this work the solubility of a Ni-Al anode for MCFC has been studied at atmospheric pressure and two different temperatures using various gas compositions containing H{sub 2}/H{sub 2}O/CO{sub 2}. It is well known that nickel is dissolved at cathode conditions in an MCFC. However, the results in this study show that nickel can be dissolved also at the anode, indicating that the solubility increases with increasing CO{sub 2} partial pressure of the inlet gas and decreasing with increasing temperature. This agrees with the results found by other authors concerning the solubility of NiO at cathode conditions. The dissolution of Ni into the melt can proceed in two ways, either by the reduction of water or by the reduction of carbon dioxide. (author)

  19. Comparison of the one-electron oxidations of CO-bridged vs unbridged bimetallic complexes: Electron-transfer chemistry of Os2Cp2(CO)4 and Os2Cp∗2(μ-CO)2(CO)2 (Cp = η5-C5H5, Cp∗ = η5-C5Me5)

    KAUST Repository

    Laws, Derek R.

    2014-09-22

    The one-electron oxidations of two dimers of half-sandwich osmium carbonyl complexes have been examined by electrochemistry, spectro-electrochemistry, and computational methods. The all-terminal carbonyl complex Os2Cp2(CO)4 (1, Cp = η5-C5H5) undergoes a reversible one-electron anodic reaction at E1/2 = 0.41 V vs ferrocene in CH2Cl2/0.05 M [NBu4][B(C6F5)4], giving a rare example of a metal-metal bonded radical cation unsupported by bridging ligands. The IR spectrum of 1+ is consistent with an approximately 1:1 mixture of anti and gauche structures for the 33 e- radical cation in which it has retained all-terminal bonding of the CO ligands. Density functional theory (DFT) calculations, including orbital-occupancy-perturbed Mayer bond-order analyses, show that the highest-occupied molecular orbitals (HOMOs) of anti-1 and gauche-1 are metal-ligand delocalized. Removal of an electron from 1 has very little effect on the Os-Os bond order, accounting for the resistance of 1+ to heterolytic cleavage. The Os-Os bond distance is calculated to decrease by 0.10 å and 0.06 å as a consequence of one-electron oxidation of anti-1 and gauche-1, respectively. The CO-bridged complex Os2Cp∗2(μ-CO)2(CO)2 (Cp∗ = η5-C5Me5), trans-2, undergoes a more facile oxidation, E1/2 = -0.11 V, giving a persistent radical cation shown by solution IR analysis to preserve its bridged-carbonyl structure. However, ESR analysis of frozen solutions of 2+ is interpreted in terms of the presence of two isomers, most likely anti-2+ and trans-2+, at low temperature. Calculations show that the HOMO of trans-2 is highly delocalized over the metal-ligand framework, with the bridging carbonyls accounting for about half of the orbital makeup. The Os-Os bond order again changes very little with removal of an electron, and the Os-Os bond length actually undergoes minor shortening. Calculations suggest that the second isomer of 2+ has the anti all-terminal CO structure. (Figure Presented) © 2014 American

  20. Two novel Pb(II) coordination polymers (CPs) based on 4-(4-oxopyridin-1(4H)-yl) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid: Band gaps, structures, and their photoelectrocatalytic properties in CO2-saturated system

    Science.gov (United States)

    Yan, Zhi Shuo; Long, Ji Ying; Gong, Yun; Lin, Jian Hua

    2018-05-01

    Based on 4-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L1) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L2), two novel Pb(II) coordination polymers (CPs) formulated as [Pb4Cl4·(L1)2·H2O]n (CP 1), [Pb3Cl4·L2·H2O]n (CP 2) were solvothermally synthesized and characterized by single-crystal X-ray diffraction. The two novel Pb(II) CPs (CPs 1 and 2) possessed different structures. Density functional theory (DFT) calculations revealed the two CPs had different band structures yet the characteristic of semiconductors in common. Their valence band (VB) and conduction band (CB) positions were determined by Mott-Schottky and UV-visible diffuse reflectance analyses. The photoelectrocatalytic performance of the two CPs towards CO2 reduction were tested by photocurrent responses at various applied potentials. And the E =-1.4 V vs SCE (-0.74 V vs NHE) was selected as the required potential according to the regulation of photocurrent responses at various tested potentials in CO2-saturated system. The photoelectrocatalytic performance of CP 2 was superior to that of CP 1 owing to the well-matched CB position of CP 2 and CO2 reduction potentials at the required potential of -1.4 V vs SCE (-0.74 V vs NHE). In addition, the photoelectrolytic experiment were performed 1 h in the CO2-saturated 0.2 M Na2SO4 solution at the required potential of -1.4 V vs SCE (-0.74 V vs NHE) with and without illumination, and we initially demonstrated the influence of visible light in the CO2-saturated photoelectrocatalytic measurement system and the reason of stability in 1 h chronoamperometry.

  1. Thermodynamic study of (alkyl esters+{alpha},{omega}-alkyl dihalides) V. H{sub m}{sup E}andV{sub m}{sup E} for 25 binary mixtures {l_brace}xC{sub u-1}H{sub 2u-1}CO{sub 2}CH{sub 3}+(1-x){alpha},{omega}-ClCH{sub 2}(CH{sub 2}){sub v-2}CH{sub 2}Cl{r_brace}, where u=1 to 5, {alpha}=1 and v={omega}=2 to 6

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria, Canary Islands (Spain)]. E-mail: jortega@dip.ulpgc.es; Marrero, E. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria, Canary Islands (Spain)

    2007-05-15

    The experimental data of excess molar enthalpies H{sub m}{sup E} and excess molar volumes V{sub m}{sup E} are presented for a set of 25 binary mixtures comprised of the first five methyl esters C{sub u-1}H{sub 2u-1}COOCH{sub 3} (u=1 to 5) and five {alpha},{omega}-dichloroalkanes, ClCH{sub 2}(CH{sub 2}){sub v-2}CH{sub 2}Cl (v=2 to 6), obtained at a temperature of 298.15K and atmospheric pressure. Except for the mixtures with u=1 and v=2 to 6, which are all endothermic and with u=5 and v=2 to 6, which are all exothermic, the others present net endo/exothermic effects and these mixing effects evolve quasiregularly, from endothermic to exothermic, depending on the dichloroalkane present. However, the V{sub m}{sup E} are positive in most mixtures except for those corresponding to u=4,5 and v=5,6, which present contraction effects. These results indicate a set of specific interactions with simultaneous effects for V{sub m}{sup E} of expansion/contraction and for exothermic/endothermic H{sub m}{sup E} for this set of mixtures. The change in V{sub m}{sup E} with the chain length of the compounds is irregular. To achieve a good application of the UNIFAC model using the version of Dang and Tassios, parameters of the ester (G)/dichloride (G') interaction were calculated again, making a distinction, during its application, dependent on the acid part of the ester u. Hence, interaction parameters are presented as a function of u, and of the dichloroalkane chain length v. The most appropriate general expression was of the type:a{sub G/G{sup '}}={phi}(u,v)={sigma}sub(i=0)sup(n)a{sub i-1}u{sup i-1}+{sigma}sub(i=0= )sup(n)b{sub i-1}v{sup i-1}and with this proposal good estimations of enthalpies were obtained with the UNIFAC model.

  2. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    Science.gov (United States)

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. An anti CuO{sub 2}-type metal hydride square net structure in Ln{sub 2}M{sub 2}As{sub 2}H{sub x} (Ln = La or Sm, M = Ti, V, Cr, or Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Hiroshi; Park, SangWon; Hosono, Hideo [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya [Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2015-03-02

    Using a high pressure technique and the strong donating nature of H{sup -}, a new series of tetragonal La{sub 2}Fe{sub 2}Se{sub 2}O{sub 3}-type layered mixed-anion arsenides, Ln{sub 2}M{sub 2}As{sub 2}H{sub x}, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x∼3). In these compounds, an unusual M{sub 2}H square net, which has anti CuO{sub 2} square net structures accompanying two As{sup 3-} ions, is sandwiched by (LaH){sub 2} fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Aa was confirmed in La{sub 2}Ti{sub 2}As{sub 2}H{sub 2.3}, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Specific heat and thermodynamic functions of uranovanadates of the M2+(VUO6)2 · nH2O series (M2+ = Mg, Ca, Sr, Ba, Pb)

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Sulejmanov, E.V.; Trostin, V.L.; Alimzhanov, M.I.; Razuvaeva, E.A.

    1999-01-01

    Isobaric specific heat of crystal uranovanadates Ca(VUO 6 ) 2 · 8H 2 O, Ba(VUO 6 ) 2 · 4H 2 O in the temperature range of 10 - 300 K and of M 1 (VUO 6 ) 2 · 5H 2 O, (M 1 = Mg, Ca, Sr, Pb) at 80 -300 K are measured by the method of adiabatic vacuum calorimetry. The functions H 0 (T) - H 0 (0), S 0 (T), G 0 (T) - H 0 (T) for all the above-mentioned compounds in the range of 0 - 300 K have been calculated, the standard entropies and Gibbs functions of uranovanadates formation at 298.15 K being calculated as well [ru

  5. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    Science.gov (United States)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  6. Surfactant secretion is stimulated by decreased alveolar CO2

    International Nuclear Information System (INIS)

    Chander, A.; Dodia, C.R.; Gullo, J.; Fisher, A.B.

    1986-01-01

    The authors investigated the hypothesis that altered intracellular pH may modulate lung surfactant secretion. They have used isolated perfused lung preparation to investigate release of [ 3 H]choline labeled phosphatidylcholine (PC) in the alveolar space of rat lungs ventilated with 5%, 2.5%, or 0% CO 2 in air. Adult rats were injected i.p. 40uCi of [ 3 H-methyl] choline and lungs removed after 45 min. Lungs were perfused for 15 or 60 min. with KRB plus 25 mM HEPES. At the end of perfusion lungs were lavaged five times with 7 ml of ice cold saline. Lavage fluid, was centrifuged, lyophilized, and both lung and lavage fluid extracted for lipids. Lipid choline label in lavage fluid, expressed as percent of that in lung lipids, from control lungs (5% CO 2 ) showed 0.6 +/- 0.1 % at 15 min and 1.1 +/- 0.3% (mean +/- SE, n=6) label at 60 min. When perfused with 50 μM 1-isoproterenol, the label after 60 min perfusion increased to 2.76 +/- 0.33 (n=3). Ventilation with air containing 2.5% CO 2 and 0% CO 2 showed 6.1 +/- 2.1 % (n=4) and 6.4 +/- 1.8% (n=4) label in lavage fluid. Addition of 25mM sodium acetate in the perfusion medium and ventilation with 0% CO 2 in air lowered release of label to 4.2 +/- 1.4% (n=4). These results show that low pCO 2 increases surfactant PC secretion in lung and suggest that intracellular alkalosis triggers surfactant release

  7. Diaquabis[2,6-bis(4H-1,2,4-triazol-4-ylpyridine-κN2]bis(selenocyanato-κNcobalt(II

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2012-08-01

    Full Text Available In the title compound, [Co(NCSe2(C9H7N72(H2O2], the Co2+ cation is coordinated by two selenocyanate anions, two 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligands and two water molecules within a slightly distorted N4O2 octahedron. The asymmetric unit consists of one Co2+ cation, which is located on a center of inversion, as well as one selenocyanate anion, one 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligand and one water molecule in general positions. Intermolecular O—H...N hydrogen bonds join the complex molecules into layers parallel to the bc plane. The layers are linked by C—H...N and C—H...Se hydrogen bonds into a three-dimensional supramolecular architecture.

  8. Mechano-chemical pathways to H2O and CO2 splitting

    Science.gov (United States)

    Vedadi, Mohammad H.; Haas, Stephan

    2011-10-01

    The shock-induced collapse of CO2-filled nanobubbles is investigated using molecular dynamics simulations based on a reactive force field. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water and formation of O2 molecules. The dominant pathways through which splitting of water molecules occur are identified.

  9. Adiabatic burning velocity of H2-O2 mixtures diluted with CO2/N2/Ar

    International Nuclear Information System (INIS)

    Ratna Kishore, V.; Muchahary, Ringkhang; Ray, Anjan; Ravi, M.R.

    2009-01-01

    Global warming due to CO 2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO 2 , N 2 , and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO 2 , N 2 , and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H 2 /O 2 /CO 2 flames with 65% CO 2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H 2 /O 2 /CO 2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame. (author)

  10. Hard-X-ray photoelectron spectroscopy of NaxCoO2.yH2O

    International Nuclear Information System (INIS)

    Chainani, A.; Yokoya, T.; Takata, Y.; Tamasaku, K.; Taguchi, M.; Shimojima, T.; Kamakura, N.; Horiba, K.; Tsuda, S.; Shin, S.; Miwa, D.; Nishino, Y.; Ishikawa, T.; Yabashi, M.; Kobayashi, K.; Namatame, H.; Taniguchi, M.; Takada, K.; Sasaki, T.; Sakurai, H.; Takayama-Muromachi, E.

    2005-01-01

    We study the bulk electronic structure of Na x CoO 2 .yH 2 O using Hard X-ray (HX, hν = 5.95KeV) synchrotron photoelectron spectroscopy (PES). The Co 2p core level spectra show well-separated Co 3+ and Co 4+ ions. Cluster calculations suggest low spin Co 3+ and Co 4+ character, and a moderate on-site Coulomb correlation energy U dd ∼3-5.5eV. Photon-dependent valence band PES identifies Co 3d and O 2p derived states, in near agreement with band structure calculations. We discuss the importance of HX-PES for studying correlated transition metal oxides

  11. SUB-MILLIMETER TELESCOPE CO (2-1) OBSERVATIONS OF NEARBY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xue-Jian; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Zhong [Harvard-Smithsonian Center for Astrophysics, MS 66, 60 Garden Street, Cambridge, MA 02138 (United States); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhi-Yu, E-mail: xjjiang@nju.edu.cn [The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2015-01-20

    We present CO J = 2-1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M {sub *} galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV – r, and WISE color W3 – W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M {sub *} ≤10{sup 10} M {sub ☉}, the H I fraction (f {sub H} {sub I} ≡ M {sub H} {sub I}/M {sub *}) is significantly higher than that of more massive galaxies, while the H{sub 2} gas fraction (f{sub H{sub 2}} ≡ M{sub H{sub 2}}/M {sub *}) remains nearly unchanged. (2) Compared to f{sub H{sub 2}}, f {sub H} {sub I} correlates better with both M {sub *} and NUV – r. (3) A new parameter, WISE color W3 – W2 (12-4.6 μm), is introduced, which is similar to NUV – r in tracing star formation activity, and we find that W3 – W2 has a tighter anti-correlation with log f{sub H{sub 2}} than the anti-correlation of (NUV – r)-f {sub H} {sub I}, (NUV – r)-f{sub H{sub 2}}, and (W3 – W2)-f {sub H} {sub I}. This indicates that W3 – W2 can trace the H{sub 2} fraction in galaxies. For the gas ratio M{sub H{sub 2}}/M {sub H} {sub I} , only in the intermediate-M {sub *} galaxies it appears to depend on M {sub *} and NUV – r. We find a tight correlation between the molecular gas mass M{sub H{sub 2}} and 12 μm (W3) luminosities (L {sub 12} {sub μm}), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H{sub 2} mass for star-forming galaxies.

  12. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    Science.gov (United States)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  13. Eddy Covariance measurements of stable CO2 and H2O isotopologues

    Science.gov (United States)

    Braden-Behrens, Jelka; Knohl, Alexander

    2015-04-01

    The analysis of the stable isotope composition of CO2 and H2O fluxes (such as 13C, 18O and 2H in H2O and CO2) has provided valuable insights into ecosystem gas exchange. The approach builds on differences in the isotope signature of different ecosystem components that are primarily caused by the preference for or the discrimination against respective isotope species by important processes within the ecosystem (e.g. photosynthesis or leaf water diffusion). With the ongoing development of laser spectrometric methods, fast and precise measurements of isotopologue mixing ratios became possible, hence also enabling Eddy Covariance (EC) based approaches to directly measure the isotopic composition of CO2 and H2Ov net fluxes on ecosystem scale. During an eight month long measurement campaign in 2015, we plan to simultaneously measure CO2 and H2Ov isotopologue fluxes using an EC approach in a managed beech forest in Thuringia, Germany. For this purpose, we will use two different laser spectrometers for high frequency measurements of isotopic compositions: For H2Ov measurements, we will use an off axis cavity output water vapour isotope analyser (WVIA, Los Gatos Research Inc.) with 5 Hz response; and for CO2 measurements, we will use a quantum cascade laser-based system (QCLAS, Aerodyne Research Inc.) with thermoelectrically cooled detectors and up to 10 Hz measurement capability. The resulting continuous isotopologue flux measurements will be accompanied by intensive sampling campaigns on the leaf scale: Water from leaf, twig, soil and precipitation samples will be analysed in the lab using isotope ratio mass spectrometry. During data analysis we will put a focus on (i) the influence of carbon and oxygen discrimination on the isotopic signature of respective net ecosystem exchange, (ii) on the relationship between evapotranspiration and leaf water enrichment, and (iii) on the 18O exchange between carbon dioxide and water. At present, we already carried out extensive

  14. NMR Study of the S=1/2 Quantum Kagome Lattice Antiferromagnet [Cu_3(titmb)_2(CH_3CO_2)_6]・H_2O(Frustrated Systems, Field-Induced Phase Transitions and Dynamics in Quantum Spin Systems)

    OpenAIRE

    Satoru, MAEGAWA; Kenji, YOSHIOKA; Shinichi, KAWAHARA; Akira, OYAMADA; Kenichi, FUJITA; Ryohei, YAMAGUCHI; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University; Graduate School of Human and Environmental Studies, Kyoto University

    2005-01-01

    A quantum kagome lattice magnet, [Cu_3(titmb)_2(CH_3CO_2)_6]・H_2O with s=1/2 has been studied by magnetization and NMR experiments. No magnetic phase transition was observed down to 180mK. The spin-lattice relaxation rate T^_1 above 20K is almost temperature independent, while below 10K the rates decrease sharply as the temperature is decreased, and can be described as T^_1=B exp(-△/κ_BT). The field dependence on the energy gap △ has been obtained and is found to show plateaus between 3.2 and...

  15. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts

    Science.gov (United States)

    Zhu, Mengjian; Luo, Wei; Wu, Nannan; Zhang, Xue-ao; Qin, Shiqiao

    2018-04-01

    2H phase Molybdenum ditelluride (MoTe2) is a layered two-dimensional (2D) semiconductor that has recently gained extensive attention for its intriguing properties, demonstrating great potential for nanoelectronics and optoelectronics. Optimizing the electric contacts to MoTe2 is a critical step for realizing high performance devices. Here, we demonstrate Co/hBN tunnel contacts to few-layer MoTe2. In sharp contrast to the p-type conduction of Co contacted MoTe2, Co/hBN tunnel contacted MoTe2 devices show clear n-type transport properties. Our first principles calculation reveals that the inserted few-layer hBN strongly interacts with Co and significantly reduces its work-function by ˜1.2 eV, while MoTe2 itself has a much weaker influence on the work-function of Co. This allows us to build MoTe2 diodes using the mixed Co/hBN and Co contact architecture, which can be switched from p-n type to n-p type by changing the gate-voltage, paving the way for engineering multi-functional devices based on atomically thin 2D semiconductors.

  16. Full genomic analysis of an influenza A (H1N2 virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1pdm09 and A/Brisbane/10/2007-like H3N2 strains

    Directory of Open Access Journals (Sweden)

    Mukherjee Tapasi Roy

    2012-10-01

    Full Text Available Abstract Background During the pandemic [Influenza A(H1N1pdm09] period in 2009-2010, an influenza A (Inf-A virus with H1N2 subtype (designated as A/Eastern India/N-1289/2009 was detected from a 25 years old male from Mizoram (North-eastern India. Objective To characterize full genome of the H1N2 influenza virus. Methods For initial detection of Influenza viruses, amplification of matrix protein (M gene of Inf-A and B viruses was carried out by real time RT-PCR. Influenza A positive viruses are then further subtyped with HA and NA gene specific primers. Sequencing and the phylogenetic analysis was performed for the H1N2 strain to understand its origin. Results The outcome of this full genome study revealed a unique reassortment event where the N-1289 virus acquired it’s HA gene from a 2009 pandemic H1N1 virus with swine origin and the other genes from H3N2-like viruses of human origin. Conclusions This study provides information on possibility of occurrence of reassortment events during influenza season when infectivity is high and two different subtypes of Inf-A viruses co-circulate in same geographical location.

  17. A Novel Triple-Pulsed 2-micrometer Lidar for Simultaneous and Independent CO2 and H2O Column Measurement

    Science.gov (United States)

    Yu, Jirong; Singh, Upendra; Petros, Mulugeta; Refaat, Tamer

    2015-01-01

    The study of global warming needs precisely and accurately measuring greenhouse gases concentrations in the atmosphere. CO2 and H2O are important greenhouse gases that significantly contribute to the carbon cycle and global radiation budget on Earth. NRC Decadal Survey recommends a mission for Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). 2 micron laser is a viable IPDA transmitter to measure CO2 and H2O column density from space. The objective is to demonstrate a first airborne direct detection 2 micron IPDA lidar for CO2 and H2O measurements.

  18. Synthesis and characteristics of a novel 3-D organic amine oxalate: (enH2)1.5[Bi3(C2O4)6(CO2CONHCH2CH2NH3)].6.5H2O

    International Nuclear Information System (INIS)

    Yu Xiaohong; Zhang Hanhui; Cao Yanning; Chen Yiping; Wang Zhen

    2006-01-01

    A novel 3-D compound of (enH 2 ) 1.5 [Bi 3 (C 2 O 4 ) 6 (CO 2 CONHCH 2 CH 2 NH 3 )].6.5H 2 O has been hydrothermally synthesized and characterized by IR, ultraviolet-visible diffuse reflection integral spectrum (UV-Vis DRIS), fluorescence spectra, TGA and single crystal X-ray diffraction. It crystallizes in the monoclinic system, space group C2/c with a=31.110(8)A, b=11.544(3)A, c=22.583(6)A, β=112.419(3) o , V=7497(3)A 3 , Z=8, R 1 =0.0463 and wR 2 =0.1393 for unique 7686 reflections I>2σ(I). In the title compound, the Bi atoms have eight-fold and nine-fold coordination with respect to the oxygen atoms, with the Bi atoms in distorted dodecahedron and monocapped square antiprism, respectively. The 3-D framework of the title compound contains channels and is composed of linkages between Bi atoms and oxalate units, forming honeycomb-like layers with two kinds of 6+6 membered aperture, and pillared by oxalate ligands and monamide groups. The channels have N-ethylamine oxalate monamide group - CO 2 CONHCH 2 CH 2 NH 3 + , which is formed by the in situ reaction of en and oxalate acid. At room temperature, the complex exhibits intense blue luminescence with an emission peak at 445nm

  19. Synthesis and Structural Studies on Transition Metal Complexes Derived from 4-Hydroxy-4-methyl–2-pentanone-1H-benzimidazol-2-yl-hydrazone

    Directory of Open Access Journals (Sweden)

    M. Neelamma

    2011-01-01

    Full Text Available Transition metal complexes of Cr(III, Fe(III, Mn(II, Co(II, Ni(II, Cu(II and Zn(II with a tridentate ligand, 4-hydroxy-4-methyl-2-pentanone-1H-benzimidazole-2yl-hydrazone (H-HPBH derived from the condensation of 2-hydrazinobenzimidazole and diacetone alcohol was synthesized. Characterization has been done on the basis of analytical, conductance, thermal and magnetic data, infrared, 1H NMR, electronic, mass and ESR spectral data. From analytical and thermal data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand. Divalent complexes have the general formula [M(HPBHCl(H2O2] in octahedral geometry, [M(HPBHCl] in tetrahedral and square planar stereochemistries and trivalent complexes [M(HPBHCl2(H2O] in octahedral disposition. Infrared spectral data suggest that the ligand HPBH behaves as a monobasic tridentate ligand with N: N: O donor sequence towards the metal ions. On the basis of the above physicochemical data, octahedral, tetrahedral and square planar geometries were assigned for the complexes. The ligand and metal complexes were screened for their physiological activities against E. coli and S. aureus. The order of physiological activity has been found to be Cu(II > Ni(II > Zn(II > Co(II > Cr(III > Mn(II > Fe (III > ligand against E.coli and Ni(II > Cu(II > Zn(II > Mn(II > Cr(III > Fe(III > Co(II > ligand against S. aureus.

  20. Dibromidobis[1-(2-bromobenzyl-3-(pyrimidin-2-yl-1H-imidazol-2(3H-one]copper(II

    Directory of Open Access Journals (Sweden)

    Chun-Xin Lu

    2012-06-01

    Full Text Available In the title complex, [CuBr2(C14H11BrN4O2], the CuII ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5 Å, in agreement with a classical carbonyl bond. The Cu—O bond length is 2.011 (3 Å. The two bromobenzyl rings are approximately parallel to one another, forming a dihedral angle of 70.1 (4° with the coordination plane.

  1. Production of Excess CO2 relative to methane in peatlands: a new H2 sink

    Science.gov (United States)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.

    2015-12-01

    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter

  2. Geochemical alteration of wellbore cement by CO2 or CO2+H 2 S reaction during long-term carbon storage: Original Research Article: Geochemical alteration of wellbore cement by CO2

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Laboratory, Richland WA USA; Rod, Kenton A. [Pacific Northwest National Laboratory, Richland WA USA; Jung, Hun Bok [New Jersey City University, Jersey City NJ USA; Brown, Christopher F. [Pacific Northwest National Laboratory, Richland WA USA

    2016-03-22

    Cement samples were reacted with CO2-saturated groundwater, with or without added H2S (1 wt.%), at 50°C and 10 MPa for up to 13 months (CO2 only) or for up to 3.5 months (CO2 + H2S) under static conditions. After the reaction, X-ray computed tomography images revealed that calcium carbonate precipitation (CaCO3) occurred extensively within the fractures in the cement matrix, but only partially along fractures at the cement-basalt interface. Exposure of a fractured cement sample to CO2-saturated groundwater (50°C and 10 MPa) over a period of 13 months demonstrated progressive healing of cement fractures by CaCO3(s) precipitation. After reaction with CO2 + H2S-saturated groundwater, CaCO3 (s) precipitation also occurred more extensively within the cement fracture than along the cement-basalt caprock interfaces. X-ray diffraction analysis showed that major cement carbonation products of the CO2 + H2S-saturated groundwater were calcite, aragonite, and vaterite, all consistent with cement carbonation by CO2-saturated groundwater. While pyrite is thermodynamically favored to form, due to the low H2S concentration it was not identified by XRD in this study. The cement alteration rate into neat Portland cement columns by CO2-saturated groundwater was similar at ~0.02 mm/d, regardless of the cement-curing pressure and temperature (P-T) conditions, or the presence of H2S in the brine. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2- or CO2 + H2S-saturated groundwater, whereas fractures along the cement-caprock interface are likely to remain open and vulnerable to the leakage of CO2.

  3. Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H2 and CO2.

    Science.gov (United States)

    Alfaro, Natalia; Fdz-Polanco, María; Fdz-Polanco, Fernando; Díaz, Israel

    2018-06-01

    The performance of a pilot ceramic membrane bioreactor for the bioconversion of H 2 and CO 2 to bioCH 4 was evaluated in thermophilic conditions. The loading rate was between 10 and 30 m 3  H 2 /m 3 reactor  d and the system transformed 95% of H 2 fed. The highest methane yield found was 0.22 m 3  CH 4 /m 3  H 2 , close to the maximum stoichiometric value (0.25 m 3  CH 4 /m 3  H 2 ) thus indicating that archaeas employed almost all H 2 transferred to produce CH 4 . k L a value of 268 h -1 was reached at 30 m 3  H 2 /m 3 reactor  d. DGGE and FISH revealed a remarkable archaeas increase related to the selection-effect of H 2 on community composition over time. Methanothermobacter thermautotrophicus was the archaea found with high level of similarity. This study verified the successful application of membrane technology to efficiently transfer H 2 from gas to the liquid phase, the development of a hydrogenotrophic community from a conventional thermophilic sludge and the technical feasibility of the bioconversion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  5. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  6. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  7. Coloring problem and magnetocaloric effect of Gd{sub 3}Co{sub 2.2}Si{sub 1.8}

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei, E-mail: materyao@gmail.com [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Morozkin, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Mozharivskyj, Yurij [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Gd{sub 3}Co{sub 2.2}Si{sub 1.8} adopts the Er{sub 3}Ge{sub 4} structure (space group Cmcm). Black-Right-Pointing-Pointer Si and Co show site preference. Black-Right-Pointing-Pointer The electronic factors determine the site occupation of Si and Co. Black-Right-Pointing-Pointer Gd{sub 3}Co{sub 2.2}Si{sub 1.8} order ferromagnetically below 172 K. - Abstract: The Gd{sub 3}Co{sub 2.2}Si{sub 1.8} compound was synthesized by arc melting the constituent elements and subsequent annealing at 1070 K for 120 h. It adopts the Dy{sub 3}Co{sub 2.2}Si{sub 1.8}-type structure with the space group Cmcm and the unit cell parameters of a = 4.1176(7) A, b = 10.305(2) A, c = 12.778(2) A and V = 542.2(2) A{sup 3}. The Co and Si atoms preferentially occupy the 8f and 4a/4c sites, respectively. The atomic electronegativity and electron density at a given site determine its site occupation, according to the analysis of the electronic structure. Gd{sub 3}Co{sub 2.2}Si{sub 1.8} orders ferromagnetically with the Curie temperature of 172 K. The isothermal magnetic entropy change, -{Delta}S{sub m}, reaches the maximum value of 7.09 J/kg K at 170 K for a field change of 0-50 kOe.

  8. Catalytic reduction of NOx with H2/CO/CH4 over PdMOR catalysts

    International Nuclear Information System (INIS)

    Pieterse, Johannis A.Z.; Booneveld, Saskia

    2007-01-01

    Conversion of NO x with reducing agents H 2 , CO and CH 4 , with and without O 2 , H 2 O, and CO 2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NO x to N 2 conversion with H 2 and CO (>90% conversion and N 2 selectivity) range under lean conditions. The formation of N 2 O is absent in the presence of both H 2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H 2 and CO at 450-500 K. The positive effect of cerium is significant in the case of H 2 and CH 4 reducing agent but is less obvious with H 2 /CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH 4 , 500 ppm NO, 5% O 2 , 10% H 2 O (0-1% H 2 ), N 2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NO x reduction with H 2 , CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K. (author)

  9. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration

    Directory of Open Access Journals (Sweden)

    Camille Crouzet

    2017-10-01

    Full Text Available A new process route for the valorization of BOF steel slags combining H2 production and CO2 mineral sequestration is investigated at 300°C (HT under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and PCO2 on a time-resolved basis. CO2 uptake under RT and HT are, respectively, 243 and 327 kg CO2/t of fresh steel slag, which add up with the 63 kg of atmospheric CO2 per ton already uptaken by the starting steel slag on the storage site. The CO2 gained by the sample at HT is bounded to the carbonation of brownmillerite. H2 yield decreased by about 30% in comparison to the same experiment performed without added CO2, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO2-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO2 partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1 RT carbonation prior to hydrothermal oxidation, (2 RT carbonation after hydrothermal treatment, and (3 combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  10. A thermodynamic model for the solubility of NpO2(am) in the aqueous K+-HCO3--CO32--OH--H2O system

    International Nuclear Information System (INIS)

    Rai, D.; Hess, N.J.; Felmy, A.R.; Moore, D.A.; Yui, M.

    1999-01-01

    Solubility of NpO 2 (am) was determined in the aqueous K + -HCO 3 - -CO 3 2- -OH - -H 2 O system extending to high concentrations of carbonate, bicarbonate, and mixed carbonate-hydroxide. Several reducing agents (Fe powder, Na 2 S 2 O 4 , NH 2 . NH 2 , and NH 2 OH . HCl) were tested for their effectiveness to maintain neptunium in the tetravalent state. Of these reducing agents, Na 2 S 2 O 4 was found to be the most effective. Even in the presence of Na 2 S 2 O 4 , significant oxidation of Np(IV) to Np(V) occurred in samples containing relatively low concentrations of carbonate/bicarbonate, relatively high concentrations of hydroxide, and samples equilibrated for relatively long periods. X-ray absorption spectroscopy (XAS) and solvent extraction were used to identify aqueous species and oxidation states and to help select appropriate data sets for thermodynamic interpretations. The dominant aqueous species in CO 3 2- and relatively concentrated HCO 3 - solutions was found by XAS to be Np(CO 3 ) 5 6- . Solubility of NpO 2 (am) in carbonate and bicarbonate solutions increased dramatically with increasing molal concentrations (carbonate >0.1 moles per kg H 2 O (m) and bicarbonate >0.01 m), indicating that carbonate makes strong complexes with Np(IV). The dominant Np(IV)-carbonate species that reasonably described all of the experimental data were Np(CO 3 ) 5 6- in low to high concentrations of carbonate and hydroxide and in high concentrations of bicarbonate, and Np(OH) 2 (CO 3 ) 2 2- in low concentrations of bicarbonate. The logarithm of the thermodynamic equilibrium constants for the NpO 2 (am) dissolution reactions involving these species [(NpO 2 (am) + 5 CO 3 2- + 4 H + Np(CO 3 ) 3 6- + 2 H 2 O) and (NpO 2 (am) + 2 HCO 3 - Np(OH) 2 (CO 3 ) 2 2- )] were found to be 34.85 and -4.44, respectively. These values, when combined with the solubility product of NpO 2 (am) [log K Sp = -54.9 [1, and recent unpublished data from Rai et al.

  11. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.

    Science.gov (United States)

    Saveant, Jean-Michel; Tard, Cédric

    2016-01-27

    In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.

  12. High Power OPO Laser and wavelength-controlled system for 1.6μm CO2-DIAL

    Science.gov (United States)

    Abo, M.; Nagasawa, C.; Shibata, Y.

    2009-12-01

    Unlike the existing 2.0μm CO2-DIAL, a high-energy pulse laser operating in the 1.6μm absorption band of CO2 has not been realized. Quasi phase matching (QPM) devices have high conversion efficiency and high beam quality due to their higher nonlinear optical coefficient. We adapt the PPMgLT crystal as the QPM device. The PPMgLT crystal had 3mm × 3mm apertures, and the periodically poled period was 30.9 μm, with the duty ratio close to the ideal value of 0.5. The beam quality of the pumping laser was exceed M21.2. The repetition rate was 400 Hz and the energy was 35 mJ. The pumping laser pulse was injection-seeded by the continuous-wave (CW) fiber laser, which had a narrow spectrum. The pulse pumped the PPMgLT crystal in the ring cavity with a single pass through the dielectric mirror. The PPMgLT crystal was mounted on a copper holder, and the temperature was maintained at 40 °C using a Peltier module. The holder’s temperature was stabilized to within 0.01 °C when the copper holder was covered with a plastic case. The OPO ring cavity was a singly resonant oscillator optimized for the signal wave. Single-frequency oscillation of the PPMgLT OPO was achieved by injection seeding, as described in the following. The injection seeder was a DFB laser having a power of 30mW with a 1MHz oscillation spectrum. Their oscillation wavelength was coarse tuned by temperature and fine tuned by adjusting injection currents. The partial power of the online wavelength was split in the wavelength control unit. We locked the DFB laser as an injection seeder of the online wavelength onto the line center by referencing the fiber coupled multipath gas cell (path length 800mm) containing pure CO2 at a pressure of 700 Torr. Stabilization was estimated to within 1.8MHz rms of the line center of the CO2 absorption line by monitoring the feedback signal of a wavelength-controlled unit. Injection seeding of the PPMgLT OPO was performed by matching the cavity length to the seeder

  13. Growth suppression of colorectal cancer by plant-derived multiple mAb CO17-1A × BR55 via inhibition of ERK1/2 phosphorylation.

    Science.gov (United States)

    Kwak, Dong Hoon; Moussavou, Ghislain; Lee, Ju Hyoung; Heo, Sung Youn; Ko, Kisung; Hwang, Kyung-A; Jekal, Seung-Joo; Choo, Young-Kug

    2014-11-14

    We have generated the transgenic Tabaco plants expressing multiple monoclonal antibody (mAb) CO7-1A × BR55 by cross-pollinating with mAb CO17-1A and mAb BR55. We have demonstrated the anti-cancer effect of plant-derived multiple mAb CO17-1A × BR55. We find that co-treatment of colorectal mAbs (anti-epithelial cellular adhesion molecule (EpCAM), plant-derived monoclonal antibody (mAb(P)) CO17-1A and mAb(P) CO17-1A × BR55) with RAW264.7 cells significantly inhibited the cell growth in SW620 cancer cells. In particular, multi mAb(P) CO17-1A × BR55 significantly and efficiently suppressed the growth of SW620 cancer cells compared to another mAbs. Apoptotic death-positive cells were significantly increased in the mAb(P) CO17-1A × BR55-treated. The mAb(P) CO17-1A × BR55 treatment significantly decreased the expression of B-Cell lymphoma-2 (BCl-2), but the expression of Bcl-2-associated X protein (Bax), and cleaved caspase-3 were markedly increased. In vivo, the mAb(P) CO17-1A × BR55 significantly and efficiently inhibited the growth of colon tumors compared to another mAbs. The apoptotic cell death and inhibition of pro-apoptotic proteins expression were highest by treatment with mAb(P) CO17-1A × BR55. In addition, the mAb(P) CO17-1A × BR55 significantly inhibited the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in cancer cells and tumors. Therefore, this study results suggest that multiple mAb(P) CO17-1A × BR55 has a significant effect on apoptosis-mediated anticancer by suppression of ERK1/2 phosphorylation in colon cancer compared to another mAbs. In light of these results, further clinical investigation should be conducted on mAb(P) CO17-1A × BR55 to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.

  14. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Werner, Cynthia; Kelly, Peter J.; Doukas, Michael; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert; Neal, Christina

    2013-06-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15-July 1, 2009) was 59 and 66% of the total CO2 and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27-0.56 wt.% S; whole-rock normalized values are slightly lower (0.8-1.7 wt.% CO2 and 0.22-0.47 wt.% S) and are similar to what was calculated for the 1989-90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional unerupted magma degassed in the

  15. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity.

    Directory of Open Access Journals (Sweden)

    Amit P Bhavsar

    Full Text Available To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.

  16. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  17. Crystal-field-driven redox reactions: How common minerals split H2O and CO2 into reduced H2 and C plus oxygen

    Science.gov (United States)

    Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.

    1991-01-01

    It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.

  18. Decoloration Kinetics of Waste Cooking Oil by 60Co γ-ray/H2O2

    Science.gov (United States)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-03-01

    In order to decolorize, waste cooking oil, a dark red close to black solution from homes and restaurants, was subjected to 60Co γ-ray/H2O2 treatment. By virtue of UV/Vis spectrophotometric method, the influence of Gamma irradiation to decoloration kinetics and rate constants of the waste cooking oil in the presence of H2O2 was researched. In addition, the influence of different factors such as H2O2 concentration and irradiation dose on the decoloration rate of waste cooking oil was investigated. Results indicated that the decoloration kinetics of waste cooking oil conformed to the first-order reaction. The decoloration rate increased with the increase of irradiation dose and H2O2 concentration. Saponification analysis and sensory evaluation showed that the sample by 60Co γ-ray/H2O2 treatment presented better saponification performance and sensory score. Furthermore, according to cost estimate, the cost of the 60Co γ-ray/H2O2 was lower and more feasible than the H2O2 alone for decoloration of waste cooking oil.

  19. Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries

    Science.gov (United States)

    Lin, Chaohong; Zhang, Yongzhi; Chen, Li; Lei, Ying; Ou, Junke; Guo, Yong; Yuan, Hongyan; Xiao, Dan

    2015-04-01

    LiNi1/3Co1/3Mn1/3O2 (NCM) is a promising cathode material for lithium-ion battery. In this research, a facile co-precipitation process is employed, during which the mixed solution of NH3·H2O, H2O2 (30% aqueous solution) and LiOH·H2O is added into the nitrate solution. Notably, H2O2 is introduced as the oxidant and dispersant during the co-precipitation process to oxidize the metal ions and decrease the agglomeration of the precursor by giving out O2, and then improves the specific capacity, stability and energy density of NCM. Additionally, O3 is employed to further oxidize NCM to enhance the stability during the calcination process. The obtained NCM material with single crystal structure exhibits a high initial discharge specific capacity of 208.9 mAh g-1 at 0.1 C (1 C = 280 mA g-1), an excellent cycle stability with high retained capacity of 176.3 mAh g-1 after 50 cycles, and a high initial discharge specific capacities of 150.6 mAh g-1 at 5 C even at a high cutoff potential (4.6 V).

  20. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  1. CO(J = 2 - 1) study of molecular clouds in the southwest arm of M31

    International Nuclear Information System (INIS)

    Kutner, M.L.; Verter, F.; Rickard, L.J.

    1990-01-01

    The first map of M31 in the CO(J = 2 - 1) transition, covering a 3 arcmin by 3 arcmin section of the SW arm-interarm region, is presented. The CO spectra in the arm region defined by H II regions are characterized by strong, narrow features which are interpreted here to be giant molecular clouds with masses of a few 100,000 solar masses. The interarm emission is interpreted as an ensemble of small clouds with masses of a few 10,000 solar masses. On the arm about 70 percent of the emission comes from large clouds, while off the arm essentially all of it comes from small clouds. The mass surface density on this section of M31 is about that of a comparable section of the Scutum arm of the Galaxy. The velocities of the giant clouds in the arm are shifted with respect to the rest of the molecular and atomic gas by about 15 km/s. This may be due to cloud response to passage through the spiral arm potential. 49 refs

  2. H+ irradiation effect in Co-doped BaFe2As2 single crystals

    International Nuclear Information System (INIS)

    Nakajima, Y.; Tsuchiya, Y.; Taen, T.; Tamegai, T.; Kitamura, H.; Murakami, T.

    2011-01-01

    The effect of H + irradiation on the suppression of Tc in Co-doped BaFe 2 As 2 . H + irradiation introduces nonmagnetic scattering centers. Critical Scattering rate is much higher than that expected in s±-pairing scenario. We report the suppression of the critical temperature T c in single crystalline Ba(Fe 1-x Co x ) 2 As 2 at under-, optimal-, and over-doping levels by 3 MeV proton irradiation. T c decreases and residual resistivity increases monotonically with increasing the dose. The low-temperature resistivity does not show the upturn in contrast with the α-particle irradiated NdFeAs(O,F), which suggests that proton irradiation introduces nonmagnetic scattering centers. Critical scattering rates for all samples obtained by three different ways are much higher than that expected in s±-pairing scenario based on inter-band scattering due to antiferro-magnetic spin fluctuations.

  3. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    Directory of Open Access Journals (Sweden)

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  4. Electrochromic properties of poly (1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole-co-3,4-ethylenedioxy thiophene) and its application in electrochromic devices

    Science.gov (United States)

    Tarkuc, S.; Sahmetlioglu, E.; Tanyeli, C.; Akhmedov, I. M.; Toppare, L.

    2008-06-01

    Electrochemical copolymerization of 1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole (PTP) with 3,4-ethylenedioxy thiophene (EDOT) was carried out in acetonitrile (AN)/NaClO4/LiClO4 (0.1 M) solvent-electrolyte couple via potentiodynamic electrolysis. Characterizations of the resulting copolymer were performed via cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and spectroelectrochemical analysis. Spectroelectrochemical analyses show that the copolymer of PTP with EDOT has an electronic band gap (due to π to π∗ transition) of 1.9 eV at 480 nm, with a claret red in the fully reduced form and a blue color in the fully oxidized form. Via kinetic studies, the optical contrast (ΔT %) was found to be 8% for P(PTP-co-EDOT). Results showed that the time required to reach 95% of the ultimate transmittance was 1.7 s for the copolymer. The P(PTP-co-EDOT) film was used to construct a dual type polymer electrochromic device (ECDs) with poly(3,4-ethylenedioxy thiophene) (PEDOT). Spectroelectrochemistry, electrochromic switching and open circuit memory of the device were investigated.

  5. pCO2 And pH regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    SeongHun eYoon

    2012-09-01

    Full Text Available CO2 Serves as one of the fundamental regulators of cerebral blood flow. It is widely considered that this regulation occurs through pCO2-driven changes in pH of the cerebral spinal fluid, with elevated and lowered pH causing direct relaxation and contraction of the smooth muscle, respectively. However, some findings also suggest that pCO2 acts independently of and/or in conjunction with altered pH. This action may be due to a direct effect of cerebral spinal fluid pCO2 on the smooth muscle as well as on the endothelium, nerves, and astrocytes. Findings may also point to an action of arterial pCO2 on the endothelium to regulate smooth muscle contractility. Thus, the effects of pH and pCO2 may be influenced by the absence/presence of different cell types in the various experimental preparations. Results may also be influenced by experimental parameters including myogenic tone as well as solutions containing significantly altered HCO3- concentrations, i.e., solutions routinely employed to differentiate the effects of pH from pCO2. In sum, it appears that pCO2, independently and in conjunction with pH, may regulate cerebral blood flow.

  6. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation

    KAUST Repository

    Choi, Seung Hak

    2010-12-13

    In this study, chemically cross-linked asymmetric P84® co-polyimide hollow fibre membranes with enhanced separation performance were fabricated, using a dry-wet spinning process with an innovative in-line cross-linking step. The chemical modification was conducted by controlled immersion of the coagulated fibre in an aqueous 1,5-diamino-2-methylpentane (DAMP) cross-linker solution before the take-up. The effect of the cross-linker concentration on the thermal, mechanical, chemical and gas transport properties of the membranes was investigated. FT-IR/ATR analysis was used to identify the chemical changes in the polymer, while DSC analysis confirmed the changes in the Tg and the specific heat of the polymer upon cross-linking. Chemical cross-linking with a 10 wt.% aqueous DAMP solution strongly enhanced the H2/CO2 ideal selectivity from 5.3 to 16.1, while the H2 permeance of the membranes decreased from 7.06 × 10−3 to 1.01 × 10−3 m3(STP) m−2 h−1 bar−1 for a feed pressure of 1 bar at 25 °C. The increase of selectivity with decreasing permeance is somewhat higher than the slope in the Robeson upper bound, evidencing the positive effect of the cross-linking on the separation performance of the fibres. Simultaneously, the cross-linking leads to improved mechanical resistance of the membranes, which could be further enhanced by an additional thermal treatment. The produced membranes are therefore more suitable for use under harsh conditions and have a better overall performance than the uncross-linked ones.

  7. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve; Cavallo, Luigi; Poater, Albert; Vummaleti, Sai V. C.; Talarico, Giovanni

    2015-01-01

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  8. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve

    2015-11-27

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  9. Selective detection of Cu2 + and Co2 + in aqueous media: Asymmetric chemosensors, crystal structure and spectroscopic studies

    Science.gov (United States)

    Dogaheh, Samira Gholizadeh; Khanmohammadi, Hamid; Carolina Sañudo, E.

    2017-05-01

    Two new azo-azomethine receptors, H2L1 and H2L2, containing hydrazine, naphthalene and different electron withdrawing groups, Cl and NO2, have been designed and synthesized for qualitative and quantitative detection of Cu2 + and Co2 + in aqueous media. The crystal structure of H2L1is reported. The H2L1was used as a chemosensor for selective detection of trace amount of Cu2 + in aqueous media. H2L2 was also applied to naked-eye distinction of Cu2 + and Co2 + from other transition metal ions in aqueous media. Detection limit of Cu2 + is 1.13 μM and 1.26 μM, in water, for H2L1 and H2L2, respectively, which are lower than the World Health Organization (WHO) recommended level. The binuclear Cu2 + and Co2 + complexes of the receptors have been also prepared and characterized using spectroscopic methods and MALDI-TOF mass analysis. Furthermore, the binding stoichiometry between the receptors upon the addition Cu2 + and Co2 + has been investigated using Job's plot. Moreover, the fluorescence emission spectra of the receptors and their metal complexes are also reported.

  10. Structural and physical properties of the NaxCoO2·yH2O superconducting system

    International Nuclear Information System (INIS)

    Shi, Y G; Li, J Q; Yu, H C; Zhou, Y Q; Zhang, H R; Dong, C

    2004-01-01

    The structural features and physical properties of Na x CoO 2 and Na x CoO 2 ·yH 2 O materials have been investigated. The Na x CoO 2 -yH 2 O samples, in general, undergo superconducting transitions at around 3.5 K. Energy dispersive x-ray analyses suggest that our samples have average compositions of Na 0.65 CoO 2 for the parent compounds and Na 0.26 CoO 2 ·yH 2 O for the superconducting oxyhydrates. Transmission electron microscopy observations reveal a new superstructure with wave vector q = in the parent material. This superstructure becomes very weak in the superconducting samples. Electron energy loss spectra analyses show that the Co ions have valence states of around +3.3 in Na 0.65 CoO 2 and around +3.7 in Na 0.26 CoO 2 -yH 2 O

  11. Two S-wave gap symmetry for single crystals of the superconductor BaFe1.8Co0.2As2

    International Nuclear Information System (INIS)

    Choi, Ki-Young; Kim, Soo Hyun; Choi, Changho; Jung, Myung-Hwa; Wang, X.F.; Chen, X.H.; Noh, Jae Dong; Lee, Sung-IK

    2010-01-01

    To clarify the gap structure of the iron-pnictide superconductors, we synthesized optimally doped single crystals of BaFe 1.8 Co 0.2 As 2 , which had a critical temperature, T c , of 23.6 K. The initial M-H curve was used to find the lower critical field, H c1 . The full range of the temperature dependence of H c1 was explained by using a two S-wave gap symmetry. We estimate the two gap as Δ 1 (0) = 1.64 ± 0.2 meV for the small gap and Δ 2 (0) = 6.20 ± 0.2 meV for the large gap.

  12. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    李灵均; 李新海; 王志兴; 伍凌; 郑俊超; 李金辉

    2010-01-01

    LiNi0.8Co0.1Mn0.1O2 was prepared by a chloride co-precipitation method and characterized by thermogravimetric analysis, X-ray diffractometry with Rietveld refinement,electron scanning microscopy and electrochemical measurements.Effects of lithium ion content and sintering temperature on physical and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 were also investigated. The results show that the sample synthesized at 750℃with 105%lithium content has fine particle sizes around 200 nm and homogenous sizes distribution.The initial discharge capacity for the powder is 184 mA·h/g between 2.7 and 4.3 V at 0.1C and room temperature.

  13. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  14. Synthesis and characterization of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2012-06-15

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr{sub 2}IrO{sub 4} are investigated. A complete solid solution Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO{sub 6} octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr{sub 2}IrO{sub 4}. - Graphical abstract: Solid solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO{sub 6} octahedra tilting are found to be correlated. Highlights: Black-Right-Pointing-Pointer Solid Solutions of Sr{sub 2}Ir{sub 1-x}M{sub x}O{sub 4} (M=Ti, Fe, Co) are synthesized. Black-Right-Pointing-Pointer The Sr{sub 2}Ir{sub 1-x}Ti{sub x}O{sub 4} solid solution is complete while those of Fe and Co are relatively limited. Black-Right-Pointing-Pointer The change in a cell parameter with substitution is much less than that of the c parameter. Black-Right-Pointing-Pointer Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. Black-Right-Pointing-Pointer Doping results in a suppression of the weak ferromagnetic ordering in Sr{sub 2}IrO{sub 4}.

  15. Autoradiography of H-3-pirenzepine and H-3-AFDX-384 in Mouse Brain Regions: Possible Insights into M-1, M-2, and M-4 Muscarinic Receptors Distribution

    Czech Academy of Sciences Publication Activity Database

    Valuskova, P.; Farar, V.; Forczek, Sándor; Křížová, I.; Mysliveček, J.

    2018-01-01

    Roč. 9, FEB 20 (2018), č. článku 124. ISSN 1663-9812 Institutional support: RVO:61389030 Keywords : 3 h-afdx-384 * 3 H-pirenzepine * 3 h-qnb * Autoradiography * M muscarinic receptor 1 * M muscarinic receptor 2 * M muscarinic receptor 4 Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.400, year: 2016

  16. Theoretical Investigations of CO 2 and H 2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

    KAUST Repository

    Pham, Tony

    2013-05-16

    Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal-organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF6 2- ions. This class of water stable MOMs shows great promise in practical gas sorption/separation with especially high selectivity for CO2 and variable selectivity for other energy related gases. Simulated CO2 sorption isotherms and isosteric heats of adsorption, Qst, at ambient temperatures were in excellent agreement with the experimental measurements at all pressures considered. Further, it was observed that the Qst for CO2 increases as a function of uptake in [Cu(dpa)2SiF6-i]. This suggests that nascently sorbed CO2 molecules within a channel contribute to a more energetically favorable site for additional CO2 molecules, i.e., in stark contrast to typical behavior, sorbate intermolecular interactions enhance sorption energetics with increased loading. The simulated structure at CO2 saturation shows a loading with tight packing of 8 CO2 molecules per unit cell. The CO2 molecules can be seen alternating between a vertical and horizontal alignment within a channel, with each CO2 molecule coordinating to an equatorial fluorine MOM atom. Calculated H 2 sorption isotherms and Qst values were also in good agreement with the experimental measurements in [Cu(dpa)2SiF 6-i]. H2 saturation corresponds to 10 H2 molecules per unit cell for the studied structure. Moreover, there were two observed binding sites for hydrogen sorption in [Cu(dpa)2SiF 6-i]. Simulations of a 30:70 CO2/H2 mixture, typical of syngas, in [Cu(dpa)2SiF6-i] showed that the MOM exhibited a high uptake and selectivity for CO2. In addition, it was observed that the presence of H2O had a negligible effect on the CO2 uptake and selectivity in [Cu(dpa)2SiF6-i], as simulations of a mixture containing CO2, H2, and small amounts of CO, N2, and H2O produced comparable

  17. VizieR Online Data Catalog: ATLASGAL massive clumps H2CO data (Tang+,

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Wyrowski, F.; Giannetti, A.; Menten, K. M.; Csengeri, T.; Leurini, S.; Urquhart, J. S.; Koenig, C.; Guesten, R.; Lin, Y. X.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.

    2017-11-01

    We selected the 110 brightest clumps from the ATLASGAL survey (the TOP100 sample) obeying simple IR criteria to cover a range in evolutionary stages as described in Giannetti et al. (2014, Cat. J/A+A/570/A65, Paper I) and Koenig et al. (2017, Cat. J/A+A/599/A139, Paper III). These clumps consist almost entirely of clumps that have the potential to form, or are forming, massive stars. Our observations were carried out on 2013 July and December, 2014 September and November, and 2015 April, June, July, and October with the Atacama Pathfinder EXperiment (APEX) 12m telescope located on Chajnantor (Chile). Five transitions of H2CO (J=3-2) were observed with the new MPIfR 1-mm receiver (PI230) with a beam size from 27.6" to 29.5" and integration times of 1 to 3 minutes. Five H2CO (J=4-3) transitions were observed with the FLASH receiver with a beam size ~21.4" and integration times of 2 to 4 minutes. (7 data files).

  18. Measurements of NH3 linestrengths and collisional broadening coefficients in N2, O2, CO2, and H2O near 1103.46cm-1

    KAUST Repository

    Owen, Kyle

    2013-05-01

    Laser-based ammonia gas sensors have useful applications in many fields including combustion, atmospheric monitoring, and medical diagnostics. Calibration-free trace gas sensors require the spectroscopic parameters including linestrengths and collisional broadening coefficients to be known. Ammonia\\'s strong ν2 vibrational band between 9 - 12 μm has the high absorption strength needed for sensing small concentrations. Within this band, the 1103.46cm-1 feature is one of the strongest and has minimal interference from CO2 and H2O. However, the six rotational transitions that make up this feature have not been studied previously with absorption spectroscopy due to their small line spacing ranging from 0.004 to 0.029cm-1. A tunable quantum cascade laser was used to accurately study these six transitions. A retrieval program was used to determine the linestrengths and collisional broadening coefficients based on Voigt and Galatry profiles. The experiments were performed with ammonia mixtures in nitrogen, oxygen, water vapor, and carbon dioxide at room temperature in an optical cell. These data are going to aid in the development of quantitative ammonia sensors utilizing this strong absorption feature. © 2013 Elsevier Ltd.

  19. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    Science.gov (United States)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  20. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  1. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    Science.gov (United States)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-08-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  2. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture

    KAUST Repository

    Liu, Yunyang

    2010-05-01

    Continuous and c-oriented ZIF-69 membranes were successfully synthesized on porous alpha-alumina substrates by an in situ solvothermal method. The membranes were characterized by XRD, SEM and single-gas permeation tests. The BET measurements on crystals taken from the same mother liquor that was used for membrane synthesis yield a Langmuir surface area of 1138 m(2)/g. The stability of the membrane towards heat and different solvents were studied. Single-gas permeation experiments through ZIF-69 membranes were carried out by a vacuum method at room temperature using H-2, CH4, CO, CO2 and SF6, respectively. The permeances were in the order of H-2 > CO2 > CH4 > CO > SF6. The separation of CO2/CO gas mixture was investigated by gas chromatograph (GC) and the permselectivity of CO2/CO was 3.5 +/- 0.1 with CO2 permeance of 3.6 +/- 0.3 x 10(-8) mol m(-2) s(-1) Pa-1 at room temperature. (C) 2010 Elsevier B.V. All rights reserved.

  3. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Werner, Cynthia A.; Kelly, Peter; Doukas, Michael P.; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert G.; Neal, Christina

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15–July 1, 2009) was 59 and 66% of the total CO2and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27–0.56 wt.% S; whole-rock normalized values are slightly lower (0.8–1.7 wt.% CO2 and 0.22–0.47 wt.% S) and are similar to what was calculated for the 1989–90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional

  4. Synthesis and characterization of Sr2Ir1−xMxO4 (M=Ti, Fe, Co) solid solutions

    International Nuclear Information System (INIS)

    Gatimu, Alvin J.; Berthelot, Romain; Muir, Sean; Sleight, Arthur W.; Subramanian, M.A.

    2012-01-01

    The effects of Ti, Fe and Co substitutions for Ir on the structure and on the physical properties of Sr 2 IrO 4 are investigated. A complete solid solution Sr 2 Ir 1−x Ti x O 4 is obtained while both Fe and Co doping are relatively limited. In each case however, the c-axis cell parameter and the initial IrO 6 octahedra tilting decreases with substitution. Doping with Ti, Fe and Co results in a decrease of the magnetic susceptibility and in an increase in the paramagnetic effective moment for Co and Fe doped samples and a suppression of the weak ferromagnetic ordering observed for Sr 2 IrO 4 . - Graphical abstract: Solid solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) have been synthesized and characterized by powder X-ray diffraction, magnetism and electrical measurements. Changes in the a parameter and decreases in both the c-axis cell parameters and the initial IrO 6 octahedra tilting are found to be correlated. Highlights: ► Solid Solutions of Sr 2 Ir 1−x M x O 4 (M=Ti, Fe, Co) are synthesized. ► The Sr 2 Ir 1−x Ti x O 4 solid solution is complete while those of Fe and Co are relatively limited. ► The change in a cell parameter with substitution is much less than that of the c parameter. ► Decreased tilting and the smaller size of the M cation contrastingly affect the a parameter. ► Doping results in a suppression of the weak ferromagnetic ordering in Sr 2 IrO 4 .

  5. Tuning patterning conditions by co-adsorption of gases: Br2 and H2 on Si(001).

    Science.gov (United States)

    Biswas, Sananda; Deshpande, Sadanand V; Dunn, Derren N; Narasimhan, Shobhana

    2013-11-14

    We have studied the co-adsorption of Br2 and H2 on Si(001), and obtained co-adsorption energies and the surface phase diagram as a function of the chemical potential and pressure of the two gases. To do this, we have used density functional theory calculations in combination with ab initio atomistic thermodynamics. Over large ranges of bromine and hydrogen chemical potentials, the favored configuration is found to be either one with only Br atoms adsorbed on the surface, at full coverage, in a (3 × 2) pattern, or a fully H-covered surface in a (2 × 1) structure. However, we also find regions of the phase diagram where there are configurations with either only Br atoms, or Br and H atoms, arranged in a two-atom-wide checkerboard pattern with a (4 × 2) surface unit cell. Most interestingly, we find that by co-adsorbing with H2, we bring this pattern into a region of the phase diagram corresponding to pressures that are significantly higher than those where it is observed with Br2 alone. We also find small regions of the phase diagram with several other interesting patterns.

  6. Ruthenium and osmium carbonyl nitrosyl complexes: Matrix infrared spectra and density functional calculations for M(CO){sub 2}(NO){sub 2} and M(CO)(NO) (M = Ru, Os)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhenjun [Department of Chemistry, Tongji University, Shanghai 200092 (China); Wang, Xuefeng, E-mail: xfwang@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Laser-ablated ruthenium or osmium atom reactions with CO and NO mixtures in solid argon. Black-Right-Pointing-Pointer Metal carbonyl nitrosyls including M(CO)(NO) and 18-electron configuration M(CO){sub 2}(NO){sub 2} molecules (M = Ru, Os). Black-Right-Pointing-Pointer The observed absorption bands of reaction products are identified by isotopic substitution and DFT calculations. Black-Right-Pointing-Pointer The bonding and reaction mechanism are discussed in detail. -- Abstract: Laser-ablated ruthenium or osmium atom reactions with CO and NO mixtures in solid argon produce unsaturated metal carbonyl nitrosyls including M(CO)(NO) and 18-electron configuration M(CO){sub 2}(NO){sub 2} molecules (M = Ru, Os). The observed absorption bands of reaction products are identified by isotopic substitution, isotopic ratios and isotopic distributions ({sup 13}CO, {sup 15}NO, and mixtures). DFT (B3LYP and BP86) vibrational fundamental calculations reproduce observed frequencies and isotopic shifts very well. The bonding and reaction mechanism are discussed.

  7. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO2 -H2 O into Fuels.

    Science.gov (United States)

    Zhang, Li; Kong, Guoguo; Meng, Yaping; Tian, Jinshu; Zhang, Lijie; Wan, Shaolong; Lin, Jingdong; Wang, Yong

    2017-12-08

    Photocatalytic CO 2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO 2 in the conversion of CO 2 -H 2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO 2 leads to activity 15 times higher (T=358 K; ca. 99 % CH 4 selectivity) in the conversion of CO 2 -H 2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO 2 by hydrogen atoms generated in situ by photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    Science.gov (United States)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  9. Comment on "Hydride, gold(i) and related derivatives of the unsaturated ditungsten anion [W2Cp2(μ-PCy2)(μ-CO)2]-" by M. A. Ruiz et al., Dalton Trans., 2014, 43, 16044.

    Science.gov (United States)

    Green, Malcolm L H

    2018-04-25

    Application of the covalent bond classification to the compounds [M2(η5-C5H5)2(μ-H)(μ-PCy2)(CO)2] (M = Mo, W) identifies the compounds as having two M-M bonds and a 2 electron 3 centre (2e-3c) bond incorporating the bridging hydrogen, in accord with density functional calculations, and assigns their class as ML4X4.

  10. Exceptionally High Efficient Co-Co2P@N, P-Codoped Carbon Hybrid Catalyst for Visible Light-Driven CO2-to-CO Conversion.

    Science.gov (United States)

    Fu, Wen Gan

    2018-05-02

    Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solid-state synthesis and characterization of LiCoO2 and LiNiyCo1 ...

    Indian Academy of Sciences (India)

    Unknown

    than LiCoO2 and to possibly retain good lamellar struc- ture upon repeated cycling .... Julien C, Michael S S and Ziolkiewicz S 1999 Int. J. Inorg. Mater. 1 29. Kanno R, Kubo H, Kawamoto Y, Kamiyama T, Izumi F,. Takeda Y and Takano M 1994 ...

  12. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst

    Directory of Open Access Journals (Sweden)

    Mohamed Benadda

    2014-10-01

    Full Text Available In the present work poly (N-vinyl-2-pyrrolidone-co-methyl methacrylate copolymers were prepared successfully and cleanly by a one step process via cationic copolymerization of N-vinyl-2-pyrrolidone (NVP with methyl methacrylate (MMA, in heterogeneous phase using “Maghnite-H+” (Mag-H+ as catalyst in bulk, Maghnite is a montmorillonite sheet silicate clay exchanged with protons to produce Maghnite-H+. Temperature is varied between 20 and 80 °C. The effects of reaction temperature, amount of Mag-H+ on the yield and the intrinsic viscosity (η were investigated. A typical reaction product of poly (NVP-co- MMA was analyzed by infra red spectroscopy (FTIR and 1H-NMR, 13C-NMR spectroscopy as well as by viscosimetry. © 2014 BCREC UNDIP. All rights reservedReceived: 24th November 2013; Revised: 30th June 2014; Accepted: 8th July 2014How to Cite: Benadda, M., Ferrahi, M.I., Belbachir, M. (2014. Synthesis of Poly(N-vinyl-2-pyrrolidone-co-methyl methacrylate by Maghnite-H+ a Non-toxic Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 201-206. (doi: 10.9767/bcrec.9.3.5743.201-206Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.5743.201-206

  13. Mixed-Matrix Membranes for CO2 and H2 Gas Separations Using Metal-Organic Framework and Mesoporus Hybrid Silicas

    International Nuclear Information System (INIS)

    Musselman, Inga; Balkus, Kenneth Jr.; Ferraris, John

    2009-01-01

    In this work, we have investigated the separation performance of polymer-based mixed-matrix membranes containing metal-organic frameworks and mesoporous hybrid silicas. The MOF/Matrimid(reg s ign) and MOP-18/Matrimid(reg s ign) membranes exhibited improved dispersion and mechanical strength that allowed high additive loadings with reduced aggregation, as is the case of the 80 wt% MOP-18/Matrimid(reg s ign) and the 80% (w/w) Cu-MOF/Matrimid(reg s ign) membranes. Membranes with up to 60% (w/w) ZIF-8 content exhibited similar mechanical strength and improved dispersion. The H 2 /CO 2 separation properties of MOF/Matrimid(reg s ign) mixed-matrix membranes was improved by either keeping the selectivity constant and increasing the permeability (MOF-5, Cu-MOF) or by improving both selectivity and permeability (ZIF-8). In the case of MOF-5/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.6 and the H 2 permeability increased from 24.4 to 53.8 Barrers. For the Cu-MOF/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.05 and the H 2 permeability increased from 17.1 to 158 Barrers. These two materials introduced porosity and uniform paths that enhanced the gas transport in the membranes. When ZIF-8/Matrimid(reg s ign) mixed-matrix membranes were studied, the H 2 /CO 2 selectivity increased from 2.9 to 4.4 and the permeability of H 2 increased from 26.5 to 35.8 Barrers. The increased H 2 /CO 2 selectivity in ZIF-8/Matrimid(reg s ign) membranes was explained by the sieving effect introduced by the ZIF-8 crystals (pore window 0.34 nm) that restricted the transport of molecules larger than H 2 . Materials with microporous and/or mesoporous cavities like carbon aerogel composites with zeolite A and zeolite Y, and membranes containing mesoporous ZSM-5 showed sieving effects for small molecules (e.g. H 2 and CO 2 ), however, the membranes were most selective for CO 2 due to the strong interaction of the zeolites with

  14. The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds. V. The Sh2-235 Cloud in CO J=2-1, 13CO J=2-1, and CO J=3-2

    Science.gov (United States)

    Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta

    2016-09-01

    We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.

  15. Crystal structures of the 2:2 complex of 1,1′-(1,2-phenylenebis(3-m-tolylurea and tetrabutylammonium chloride or bromide

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2017-09-01

    Full Text Available The title compounds, tetrabutylammonium chloride–1,1′-(1,2-phenylenebis(3-m-tolylurea (1/1, C16H36N+·Cl−·C22H22N4O2 or [(n-Bu4N+·Cl−(C22H22N4O2] (I and tetrabutylammonium bromide–1,1′-(1,2-phenylenebis(3-m-tolylurea (1/1, C16H36N+·Br−·C22H22N4O2 or [(n-Bu4N+·Br−(C22H22N4O2] (II, both comprise a tetrabutylammonium cation, a halide anion and an ortho-phenylene bis-urea molecule. Each halide ion shows four N—H...X (X = Cl or Br interactions with two urea receptor sites of different bis-urea moieties. A crystallographic inversion centre leads to the formation of a 2:2 arrangement of two halide anions and two bis-urea molecules. In the crystals, the dihedral angle between the two urea groups of the bis-urea molecule in (I [defined by the four N atoms, 165.4 (2°] is slightly smaller than that in (II [167.4 (2°], which is probably due to the smaller ionic radius of chloride compared to bromide.

  16. BLIND DETECTIONS OF CO J = 1-0 IN 11 H-ATLAS GALAXIES AT z = 2.1-3.5 WITH THE GBT/ZPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A. I. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Frayer, D. T. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Smail, Ian; Swinbank, A. M. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Riechers, D. A. [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Van der Werf, P. P. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Auld, R.; Dariush, A.; Eales, S. [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bussmann, R. S. [Harvard-Smithsonian CfA, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Buttiglione, S.; De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio, I-35122 Padova (Italy); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L. [Physics Department, Imperial College London, South Kensington Campus, SW7 2AZ (United Kingdom); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dannerbauer, H. [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, 1180 Wien (Austria); Dunne, L. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Dye, S., E-mail: harris@astro.umd.edu, E-mail: ajbaker@physics.rutgers.edu [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); and others

    2012-06-20

    We report measurements of the carbon monoxide ground state rotational transition ({sup 12}C{sup 16}O J = 1-0) with the Zpectrometer ultrawideband spectrometer on the 100 m diameter Green Bank Telescope. The sample comprises 11 galaxies with redshifts between z = 2.1 and 3.5 from a total sample of 24 targets identified by Herschel-ATLAS photometric colors from the SPIRE instrument. Nine of the CO measurements are new redshift determinations, substantially adding to the number of detections of galaxies with rest-frame peak submillimeter emission near 100 {mu}m. The CO detections confirm the existence of massive gas reservoirs within these luminous dusty star-forming galaxies (DSFGs). The CO redshift distribution of the 350 {mu}m selected galaxies is strikingly similar to the optical redshifts of 850 {mu}m-selected submillimeter galaxies in 2.1 {<=} z {<=} 3.5. Spectroscopic redshifts break a temperature-redshift degeneracy; optically thin dust models fit to the far-infrared photometry indicate characteristic dust temperatures near 34 K for most of the galaxies we detect in CO. Detections of two warmer galaxies, and statistically significant nondetections, hint at warmer or molecule-poor DSFGs with redshifts that are difficult to determine from Herschel-SPIRE photometric colors alone. Many of the galaxies identified by H-ATLAS photometry are expected to be amplified by foreground gravitational lenses. Analysis of CO linewidths and luminosities provides a method for finding approximate gravitational lens magnifications {mu} from spectroscopic data alone, yielding {mu} {approx} 3-20. Corrected for magnification, most galaxy luminosities are consistent with an ultraluminous infrared galaxy classification, but three are candidate hyper-LIRGs with luminosities greater than 10{sup 13} L{sub Sun }.

  17. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  18. Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans.

    Science.gov (United States)

    Bernalier, A; Rochet, V; Leclerc, M; Doré, J; Pochart, P

    1996-08-01

    The purpose of this work was to study H2/CO2-utilizing acetogenic population in the colons of non-methane-producing individuals harboring low numbers of methanogenic archaea. Among the 50 H2-consuming acetogenic strains isolated from four fecal samples and an in vitro semi-continuous culture enrichment, with H2/CO2 as sole energy source, 20 were chosen for further studies. All isolates were Gram-positive strict anaerobes. Different morphological types were identified, providing evidence of generic diversity. All acetogenic strains characterized used H2/CO2 to form acetate as the sole metabolite, following the stoichiometric equation of reductive acetogenesis. These bacteria were also able to use a variety of organic compounds for growth. The major end product of glucose fermentation was acetate, except for strains of cocci that mainly produced lactate. Yeast extract was not necessary, but was stimulatory for growth and acetogenesis from H2/CO2.

  19. A second polymorph with composition Co3(PO4)2·H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement. PMID:21200979

  20. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  1. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  2. Magnetic properties of CoBr2.6[(1-x)H2O.xD2O

    International Nuclear Information System (INIS)

    Hijmans, J.P.A.M.

    1979-01-01

    The magnetic properties of CoBr 2 .6H 2 O and the anomalous effects upon deuteration have been studied. The experimental techniques employed are described and the high-temperature behaviour of the susceptibility analysed in terms of a crystal-field model combined with a high-temperature expansion for the exchange contribution. The high-temperature behaviour of the specific heat is studied and several kinds of experiments performed in the ordered state below Tsub(N). The XY plane anisotropy is deduced from antiferromagnetic resonance data and attention paid to the spatial dimensionality of the system. A comparison of parameters determined from experiments below and above Tsub(N) is made and the effects of deuteration discussed. (Auth.)

  3. Thermodynamic study of (alkyl esters + {alpha},{omega}-alkyl dihalides) VII. H{sub m}{sup E} and V{sub m}{sup E} for 20 binary mixtures {l_brace}xC{sub u-1}H{sub 2u-1}CO{sub 2}C{sub 3}H{sub 7} + (1 - x){alpha},{omega}-ClCH{sub 2}(CH{sub 2}){sub v-2}CH{sub 2}Cl{r_brace}, where u = 1 to 4, {alpha} = 1 and v = {omega} = 2 to 6. An analysis of behavior using the COSMO-RS methodology

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, E. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos (www.thermo.ulpgc.es), Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria, Canary Islands (Spain); Ortega, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos (www.thermo.ulpgc.es), Parque Cientifico-Tecnologico, Campus Universitario de Tafira, Universidad de Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria, Canary Islands (Spain)], E-mail: jortega@dip.ulpgc.es; Palomar, J. [Seccion de Ingenieria Quimica, Dpto. de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2009-03-15

    Summary: Excess enthalpies H{sub m}{sup E} and excess volumes V{sub m}{sup E} obtained at a temperature of 298.15 K and atmospheric pressure are presented for a set of 20 binary mixtures comprised of the first four propyl esters, C{sub u-1}H{sub 2u-1}COOC{sub 3}H{sub 7} (u = 1 to 4), and five {alpha},{omega}-dichloroalkanes, ClCH{sub 2}(CH{sub 2}){sub v-2}CH{sub 2}Cl (v = 2 to 6). All the mixtures are exothermic except for those corresponding to propyl methanoate with v {>=} 4. The V{sub m}{sup E} are positive in most mixtures except for those where v = 4, 5, 6, for V{sub m}{sup E}<0. There is a regular rise in H{sub m}{sup E} with v, while the increase in u produces a greater exothermicity in the mixing process, which becomes inverted for propyl butanoate. The variation in V{sub m}{sup E} with the chain length of the compounds of the mixtures studied is not regular since both the enthalpic and the volumetric effects are due to interactions of different nature, positive and negative. Interpretation of the behavior was assisted by applying the quantum-chemistry method COSMO-RS. This method describes qualitatively and quantitatively the contribution of the different types of interactions, electrostatic, van der Waals, and those due to the (Cl, Cl) bond in the dihalide, and the influence of the ester and dichloroalkane chains. This information was also useful to adequately modify the application of the UNIFAC group contribution model, proposing parameters for the Cl, Cl/carboxylate interaction that vary with the chain length of the compounds involved. With this modification, the results estimated by UNIFAC model can be considered good.

  4. Surface studies of UFe2 and evaluation of its catalytic properties with a 2H2:CO mixture

    International Nuclear Information System (INIS)

    Schultz, J.; Naegele, J.; Spirlet, J.C.; Colmenares, C.

    1987-01-01

    The reactivity of UFe 2 with O 2 , CO and CO 2 were studied using x-ray photoelectron spectroscopy (XPS). Adsorption of O 2 on clean UFe 2 surfaces (Fe/U ≅ 2.0), produced by argon-ion sputtering, leads to the formation of UO 2 and depletion of Fe from the surface layer probed by XPS (Fe/U ≅ 0.8). The oxidation state of Fe in this layer, as determined by XPS (Fe 2p/sub 3/2/ = 710.4 eV), is between Fe +2 and Fe +3 of pure Fe oxides. Exposure of sputtered-clean UFe 2 to CO and CO 2 results in a slight broadening of the U 4f peaks, indicating U oxidation, and some Fe depletion in the analyzed layer (Fe/U ≅ 1.7). The O ls (530.2 and 530.4 eV for CO and CO 2 , respectively) and C ls (282.7 and 282.6 eV for CO and CO 2 , respectively) indicate that dissociative chemisorption to O and C atoms occurs. UFe 2 ground into a fine powder was tested as a catalyst in a differential high-pressure flow reactor with a 2H 2 :CO gas mixture. A significant amount of methanol and hydrocarbons are produced at 577K; while hydrocarbons are the main products (>99%) at 739K. XPS analysis of the used catalyst indicates that U is present as UO/sub 2+x/ and Fe as Fe 2 O 3

  5. Rhenium Complexes Based on 2-Pyridyl-1,2,3-triazole Ligands: A New Class of CO2 Reduction Catalysts.

    Science.gov (United States)

    Ching, H Y Vincent; Wang, Xia; He, Menglan; Perujo Holland, Noemi; Guillot, Régis; Slim, Cyrine; Griveau, Sophie; Bertrand, Hélène C; Policar, Clotilde; Bedioui, Fethi; Fontecave, Marc

    2017-03-06

    A series of [Re(N^N)(CO) 3 (X)] (N^N = diimine and X = halide) complexes based on 4-(2-pyridyl)-1,2,3-triazole (pyta) and 1-(2-pyridyl)-1,2,3-triazole (tapy) diimine ligands have been prepared and electrochemically characterized. The first ligand-based reduction process is shown to be highly sensitive to the nature of the isomer as well as to the substituents on the pyridyl ring, with the peak potential changing by up to 700 mV. The abilities of this class of complexes to catalyze the electroreduction and photoreduction of CO 2 were assessed for the first time. It is found that only Re pyta complexes that have a first reduction wave with a peak potential at ca. -1.7 V vs SCE are active, producing CO as the major product, together with small amounts of H 2 and formic acid. The catalytic wave that is observed in the CVs is enhanced by the addition of water or trifluoroethanol as a proton source. Long-term controlled potential electrolysis experiments gave total Faradaic yield close to 100%. In particular, functionalization of the triazolyl ring with a 2,4,6-tri-tert-butylphenyl group provided the catalyst with a remarkable stability.

  6. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  7. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  8. Highly porous ionic rht metal-organic framework for H2 and CO2 storage and separation: A molecular simulation study

    KAUST Repository

    Babarao, Ravichandar

    2010-07-06

    The storage and separation of H2 and CO2 are investigated in a highly porous ionic rht metal-organic framework (rht-MOF) using molecular simulation. The rht-MOF possesses a cationic framework and charge-balancing extraframework NO3 - ions. Three types of unique open cages exist in the framework: rhombicuboctahedral, tetrahedral, and cuboctahedral cages. The NO3 - ions exhibit small mobility and are located at the windows connecting the tetrahedral and cuboctahedral cages. At low pressures, H2 adsorption occurs near the NO 3 - ions that act as preferential sites. With increasing pressure, H2 molecules occupy the tetrahedral and cuboctahedral cages and the intersection regions. The predicted isotherm of H2 at 77 K agrees well with the experimental data. The H2 capacity is estimated to be 2.4 wt % at 1 bar and 6.2 wt % at 50 bar, among the highest in reported MOFs. In a four-component mixture (15:75:5:5 CO2/H 2/CO/CH4) representing a typical effluent gas of H 2 production, the selectivity of CO2/H2 in rht-MOF decreases slightly with increasing pressure, then increases because of cooperative interactions, and finally decreases as a consequence of entropy effect. By comparing three ionic MOFs (rht-MOF, soc-MOF, and rho-ZMOF), we find that the selectivity increases with increasing charge density or decreasing free volume. In the presence of a trace amount of H2O, the interactions between CO2 and NO3 - ions are significantly shielded by H2O; consequently, the selectivity of CO 2/H2 decreases substantially. © 2010 American Chemical Society.

  9. The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3

    International Nuclear Information System (INIS)

    Toops, Todd J.; Walters, Arden B.; Vannice, M.A.

    2002-01-01

    The effect of CO 2 , H 2 O and SO 2 on the kinetics of NO reduction by CH 4 over unsupported La 2 O 3 has been examined between 773 and 973K in the presence of O 2 in the feed. La 2 O 3 can maintain a stable, high specific activity (mol/(sm 2 )) for NO reduction with high concentrations of CO 2 and H 2 O in the feed; however, either of these two products reversibly inhibits the activity by about one-half in the presence of excess O 2 . The catalyst is poisoned by SO 2 at these temperatures and an oxysulfate phase is formed, but partial regeneration can be achieved at 1023K. CO 2 in the feed causes the formation of lanthanum oxycarbonate, which reverts to La 2 O 3 when CO 2 is removed, but no bulk La oxyhydroxide is detected after quenching with H 2 O in the feed. The influence of CO 2 and H 2 O on kinetic behavior can be described by assuming they compete with reactants for adsorption on surface sites, including them in the site balance equation, and using the rate expression proposed previously for NO reduction by CH 4 in excess O 2 . With O 2 in the feed, integral conversions of CH 4 and O 2 frequently occurred due to the direct combustion of CH 4 by O 2 , although NO conversions remained differential; thus, an integral reactor model was chosen to analyze the data which utilized a recently determined rate equation for CH 4 combustion on La 2 O 3 in conjunction with a previously proposed model for NO reduction by CH 4 . The following rate expression described the rate of N 2 formation: N 2 T = ' NO P NO P CH 4 P O 2 0.5 / 1 + K NO P NO + K CH 4 P CH 4 + K O 2 0.5 P O 2 0.5 + K CO 2 P CO 2 + K H 2 O P H 2 O 2 . It gave a good fit to the experimental rate data for NO reduction, as well as providing enthalpies and entropies of adsorption obtained from the fitting parameters that demonstrated thermodynamic consistency and were similar to previous values. The heats of adsorption were altered somewhat when either CO 2 or H 2 O was added to the feed, and the following

  10. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Bastian, R.D.; Flanagan, K.L.

    1989-01-01

    Ruthenium disulfide catalysts have been synthesized, tested, and characterized during this period of research. It was observed that both the undoped and Cs-doped RuS[sub 2] catalysts produced alcohols and lower amounts of hydrocarbons from H[sub 2]/CO = 1.0 synthesis gas at temperatures above 300[degree]C. Calcination and catalytic testing resulted in partial reduction of the RuS[sub 2] to Ru[sup o]. Calcination under H[sub 2]S prevented the partial reduction of the RuS[sub 2] catalyst, but subsequent catalytic testing again resulted in the formation of a quantity of Ru[sup o]. A Cs-doped RuS[sub 2] catalyst was prepared, but it might have had too high of a loading of Cs. Upon testing, a lower activity was observed for the doped catalyst compared with the undoped catalyst, but the alcohol selectivity was the same for the two catalysts.

  11. Sr{sub 2}CoMoO{sub 6} anode for solid oxide fuel cell running on H{sub 2} and CH{sub 4} fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Engineering Research Center of Nano-GEO Materials of Education Ministry, China University of Geosciences, Wuhan 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Cheng, Jin-Guang; Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Mao, Zong-Qiang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2011-02-15

    The double perovskite Sr{sub 2}CoMoO{sub 6-{delta}} was investigated as a candidate anode for a solid oxide fuel cell (SOFC). Thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD) showed that the cation array is retained to 800 C in H{sub 2} atmosphere with the introduction of a limited concentration of oxide-ion vacancies. Stoichiometric Sr{sub 2}CoMoO{sub 6} has an antiferromagnetic Neel temperature T{sub N} {approx} 37 K, but after reduction in H{sub 2} at 800 C for 10 h, long-range magnetic order appears to set in above 300 K. In H{sub 2}, the electronic conductivity increases sharply with temperature in the interval 400 C < T < 500 C due to the onset of a loss of oxygen to make Sr{sub 2}CoMoO{sub 6-{delta}} a good mixed oxide-ion/electronic conductor (MIEC). With a 300-{mu}m-thick La{sub 0.8}Sr{sub 0.12}Ga{sub 0.83}Mg{sub 0.17}O{sub 2.815} (LSGM) as oxide-ion electrolyte and SrCo{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as the cathode, the Sr{sub 2}CoMoO{sub 6-{delta}} anode gave a maximum power density of 1017 mW cm{sup -2} in H{sub 2} and 634 mW cm{sup -2} in wet CH{sub 4}. A degradation of power in CH{sub 4} was observed, which could be attributed to coke build up observed by energy dispersive spectroscopy (EDS). (author)

  12. CO2, SO2, and H2S Degassing Related to the 2009 Redoubt Eruption, Alaska

    Science.gov (United States)

    Werner, C. A.; Kelly, P. J.; Evans, W.; Doukas, M. P.; McGimsey, R. G.; Neal, C. A.

    2012-12-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions with 35 airborne measurements of CO2, SO2, and H2S that span from October 2008 to August 2010. Increases in CO2 degassing were detected up to 5 months prior to the eruption and varied between 3630 and 9020 tonnes per day (t/d) in the 6 weeks prior to the eruption. Increased pre-eruptive CO2 degassing was accompanied by comparatively low S emission, resulting in molar C/S ratios that ranged between 30-60. However, the C/S ratio dropped to 2.4 coincident with the first phreatic explosion on March 15, 2009, and remained steady during the explosive (March 22 - April 4, 2009), effusive dome-building (April 5 - July 1, 2009), and waning phases (August 2009 onward) of the eruption. Observations of ice-melt rates, melt water discharge, and water chemistry in the months leading up to the eruption suggested that surface waters represented drainage from surficial, perched reservoirs of condensed magmatic steam and glacial meltwater. While the surface waters were capable of scrubbing many thousands of t/d of SO2, sampling of these fluids revealed that only a few hundred tonnes of SO2 was reacting to a dissolved component each day. This is also much less than the ~ 2100 t/d SO2 expected from degassing of magma in the upper crust (3-6.5 km), where petrologic analysis shows the final magma equilibration occurred. Thus, the high pre-eruptive C/S ratios observed could reflect bulk degassing of upper-crustal magma followed by nearly complete loss of SO2 in a magmatic-hydrothermal system. Alternatively, high C/S ratios could be attributed to degassing of low silica andesitic magma that intruded into the mid-crust in the 5 months prior to eruption; modeling suggests that mixing of this magma with pre-existing high silica andesite magma or mush would have caused a reduction of the C/S ratio to a value consistent with that measured during the eruption. Monitoring emissions regularly

  13. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2.

    Science.gov (United States)

    Wang, Xiaoqian; Chen, Zhao; Zhao, Xuyan; Yao, Tao; Chen, Wenxing; You, Rui; Zhao, Changming; Wu, Geng; Wang, Jing; Huang, Weixin; Yang, Jinlong; Hong, Xun; Wei, Shiqiang; Wu, Yuen; Li, Yadong

    2018-02-12

    The design of active, selective, and stable CO 2 reduction electrocatalysts is still challenging. A series of atomically dispersed Co catalysts with different nitrogen coordination numbers were prepared and their CO 2 electroreduction catalytic performance was explored. The best catalyst, atomically dispersed Co with two-coordinate nitrogen atoms, achieves both high selectivity and superior activity with 94 % CO formation Faradaic efficiency and a current density of 18.1mA cm -2 at an overpotential of 520 mV. The CO formation turnover frequency reaches a record value of 18 200 h -1 , surpassing most reported metal-based catalysts under comparable conditions. Our experimental and theoretical results demonstrate that lower a coordination number facilitates activation of CO 2 to the CO 2 .- intermediate and hence enhances CO 2 electroreduction activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. TiO2 promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H2 evolution

    International Nuclear Information System (INIS)

    Lin, Jing-Dong; Yan, Shi; Huang, Qin-Dong; Fan, Mei-Ting; Yuan, You-Zhu; Tan, Timothy Thatt-Yang; Liao, Dai-Wei

    2014-01-01

    TiO 2 photocatalysts modified by cobalt and nickel cocatalysts were prepared via polymerized complex method (PCM) and evaluated by photocatalytic hydrogen evolution. Hydrogen generation in 6 h for the TiO 2 promoted by cobalt and nickel (0.1%Co + 0.2%Ni/TiO 2 ) is about two times (2456 μmol H 2 ) compared to that of TiO 2 promoted only by cobalt (1180 μmol H 2 for 0.1%Co/TiO 2 ) or nickel (1127 μmol H 2 for 0.2%Ni/TiO 2 ), and mechanically mixed TiO 2 promoted by cobalt and TiO 2 promoted by nickel (0.1%Co/TiO 2 :0.2%Ni/TiO 2 = 1:1 (m/m), 1282 μmol H 2 ). The high photocatalytic H 2 evolution activity over TiO 2 promoted by cobalt and nickel is ascribed to enhanced photo response due to the presence of cobalt and nickel impurity level, and effective separation of photogenerated electrons and holes due to the synergistic effect of cobalt and nickel, which serve as active sites for H 2 evolution reaction (HER) and oxidation reaction (OR) respectively. This study demonstrates a viable strategy to design more active photocatalysts for photocatalytic H 2 evolution by substituting noble metals with more abundant elements using as HER and OR cocatalysts, respectively.

  15. Improved high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode with Tris(2,2,2-trifluoroethyl) phosphite as electrolyte additive

    International Nuclear Information System (INIS)

    Wang, Long; Ma, Yulin; Li, Qin; Cui, Yingzhi; Wang, Panpan; Cheng, Xinqun; Zuo, Pengjian; Du, Chunyu; Gao, Yunzhi

    2017-01-01

    Tris(2,2,2-trifluoroethyl) phosphite (TTFEP) is investigated as an electrolyte additive to improve the electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode at high operating voltage (4.6 V). Charge/discharge measurements demonstrate that TTFEP is effective to improve the cycling stability and rate capability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. The capacity retention of LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Li cell with 1% TTFEP-containing electrolyte reaches up to 85.4% after 100 cycles at 0.5C (1C = 160 mA g −1 ), while that of the cell with the baseline electrolyte (1 M LiPF 6 in EC/DMC electrolyte) only remains 74.2%. Moreover, the discharge capacity of the cathode with 1% TTFEP-containing electrolyte could maintain around 112.0 mAh g −1 at 4C. Based on the characterization of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), a protective interphase film formed on the cathode surface can be found due to the preferential oxidation of TTFEP, which inhibits the electrolyte decomposition and mitigates the cathode structural destruction, leading to the improved electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode at high voltage.

  16. Application of Co and Mn for a Co-Mn-Br or Co-Mn-C2H3O2 Petroleum Liquid Catalyst from the Cathode Material of Spent Lithium Ion Batteries by a Hydrometallurgical Route

    Directory of Open Access Journals (Sweden)

    Sung-Ho Joo

    2017-10-01

    Full Text Available We investigated the preparation of CMB (cobalt-manganese-bromide and CMA (cobalt-manganese-acetate liquid catalysts as petroleum liquid catalysts by simultaneously recovering Co and Mn from spent Li-ion battery cathode material. To prepare the liquid catalysts, the total preparation process for the liquid catalysts consisted of physical pre-treatments, such as grinding and sieving, and chemical processes, such as leaching, solvent extraction, and stripping. In the physical pre-treatment process, over 99% of Al was removed from material with a size of less than 0.42 mm. In the chemical process, the leaching solution as obtained under the following conditions: 2 mol/L sulfuric acid, 10 vol % H2O2, 0.1 of solid/liquid ratio, and 60 °C. In the solvent extraction process, the optimum concentration of bis (2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, the equilibrium pH, the degree of saponification, the organic phase/aqueous phase ratio isotherm, and the stripping study for the extraction of Co and Mn were investigated. As a result, Co and Mn were recovered by 0.85 M Cyanex 272 with 50% saponification in counter current two extraction stages. Finally, a CMB and CMA liquid catalyst containing 33.1 g/L Co, 29.8 g/L Mn, and 168 g/L Br and 12.67 g/L Co, 12.0 g/L Mn, and 511 g/L C2H3O2, respectively, was produced by 2 M hydrogen bromide and 50 vol % acetic acid; it was also found that a shortage in the concentration can be compensated with cobalt and manganese salts.

  17. M-shell ionization of heavy elements by 0.1-1.0 MeV/amu 1,2H and 3,4He ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Braziewicz, J.; Czarnota, M.; Bienkowski, A.; Jaskola, M.; Korman, A.; Trautmann, D.; Lapicki, G.

    2006-01-01

    The M-shell ionization in high-Z atoms by low-energy light 1 1 H, 1 2 H, 2 3 He, and 2 4 He ions have been studied systematically in the energy range 0.1-1.0 MeV/amu in order to verify the available theoretical approaches describing the M-shell ionization by charged particles in asymmetric collisions. The present low-energy data, combined with our earlier results reported for M-shell ionization by hydrogen and helium ions for higher energies, form a systematic experimental basis to test the theoretical predictions of M-shell ionization based on the plane-wave Born approximation (PWBA), the semiclassical approximation (SCA), and the binary-encounter approximation (BEA). In the PWBA based approaches the energy loss (E), Coulomb deflection (C), perturbed stationary state (PSS), and relativistic (R) effects were considered within the ECPSSR theory and its recent modification, called the ECUSAR theory, in which a description of the PSS effect was corrected to account for the united- and separated-atom (USA) electron binding energy limits. In the SCA calculations with relativistic wave functions the binding effect was included only in the limiting cases of separated-atom and united-atom limits. Possible contribution of the electron capture, multiple ionization, and recoil ionization to the M-shell vacancy production, which is dominated for light ions impact by direct single ionization process, are also discussed. The universal scaling of measured M-shell x-ray production and ionization cross sections was investigated in detail. Using the present data the isotopic effect has been studied by comparing the measured M-shell ionization cross-section ratios for equal-velocity hydrogen 1 1 H and 1 2 H as well as helium 2 3 He and 2 4 He isotopes. In addition, the ratios of measured ionization cross sections for 1 2 H and 2 4 He were used to investigate the role of the binding effect. The present results are of practical importance for the application of particle-induced x

  18. Novel Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine): Synthesis, crystal structure and magnetic properties

    Science.gov (United States)

    Smolko, Lukáš; Černák, Juraj; Kuchár, Juraj; Miklovič, Jozef; Boča, Roman

    2016-09-01

    Green crystals of Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine) were isolated from the aqueous system CoBr2 - bapen - HBr, crystallographically studied and characterized by elemental analysis and IR spectroscopy. Its ionic crystal structure is built up of [Co(bapen)Br2]+ cations and [CoBr4]2- anions. The Co(III) central atoms within the complex cations are hexacoordinated (donor set trans-N4Br2) with bromido ligands placed in the axial positions. The Co(II) atoms exhibit distorted tetrahedral coordination. Beside ionic forces weak Nsbnd H⋯Br intermolecular hydrogen bonding interactions contribute to the stability of the structure. Temperature variable magnetic measurements confirm the S = 3/2 behavior with the zero-field splitting of an intermediate strength: D/hc = 8.7 cm-1.

  19. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  20. Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the C2H2 Uptake and C2H2/C2H4 Separation Performance.

    Science.gov (United States)

    Chen, Di-Ming; Sun, Chun-Xiao; Zhang, Nan-Nan; Si, Huan-Huan; Liu, Chun-Sen; Du, Miao

    2018-03-05

    As a modulatable class of porous crystalline materials, metal-organic frameworks (MOFs) have gained intensive research attention in the domain of gas storage and separation. In this study, we report on the synthesis and gas adsorption properties of two robust MOFs with the general formula [Co 3 (μ 3 -OH)(cpt) 3 Co 3 (μ 3 -OH)(L) 3 (H 2 O) 9 ](NO 3 ) 4 (guests) n [L = 3-amino-1,2,4-triazole (1) and 3,5-diamino-1,2,4-triazole (2); Hcpt = 4-(4-carboxyphenyl)-1,2,4-triazole], which show the same pacs topology. Both MOFs are isostructural to each other and show MIL-88-type frameworks whose pore spaces are partitioned by different functionlized trinuclear 1,2,4-triazolate-based clusters. The similar framework components with different amounts of functional groups make them an ideal platform to permit a systematic gas sorption/separation study to evaluate the effects of distinctive parameters on the C 2 H 2 uptake and separation performance. Because of the presence of additional amido groups, the MOF 2 equipped with a datz-based cluster (Hdatz = 3,5-diamino-1,2,4-triazole) shows a much improved C 2 H 2 uptake capacity and separation performance over that of the MOF 1 equipped with atz-based clusters (Hatz = 3-amino-1,2,4-triazole), although the surface area of the MOF 1 is almost twice than that of the MOF 2. Moreover, the high density of open metal sites, abundant free amido groups, and charged framework give the MOF 2 an excellent C 2 H 2 separation performance, with ideal adsorbed solution theory selectivity values reaching up to 11.5 and 13 for C 2 H 2 /C 2 H 4 (1:99) and C 2 H 2 /CO 2 (50:50) at 298 K and 1 bar, showing potential for use in natural gas purification.

  1. Bis[1,3-bis(2,4,6-trimethylphenyl-2,3-dihydro-1H-imidazol-2-ylidene]dinitrosyl(tetrahydroborato-κ2H,H′tungsten(0

    Directory of Open Access Journals (Sweden)

    Heinz Berke

    2011-01-01

    Full Text Available In the title paramagnetic 19-electron neutral complex, [W(BH4(C21H24N22(NO2], the W(0 atom is coordinated by two 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene (IMes carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand. Depending on the number of coordination sites (n assigned to the BH4− ligand, the coordination geometry of the W atom may either be described as approximately trigonal–bipyramidal (n = 1 or as very distorted octahedral with the bridging H atoms filling two coordination positions (n = 2. In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å form one octahedral plane, with mutually trans-oriented carbene ligands. In the crystal, molecules are connected via C—H...O interactions.

  2. Continuous multi-plot measurements of CO2, CH4, N2O and H2O in a managed boreal forest - The importance of accounting for all greenhouse gases

    Science.gov (United States)

    Vestin, P.; Mölder, M.; Sundqvist, E.; Båth, A.; Lehner, I.; Weslien, P.; Klemedtsson, L.; Lindroth, A.

    2015-12-01

    In order to assess the effects of different management practices on the exchange of greenhouse gases (GHG), it is desirable to perform repeated and parallel measurements on both experimental and control plots. Here we demonstrate how a system system combining eddy covariance and gradient techniques can be used to perform this assessment in a managed forest ecosystem.The net effects of clear-cutting and stump harvesting on GHG fluxes were studied at the ICOS site Norunda, Sweden. Micrometeorological measurements (i.e., flux-gradient measurements in 3 m tall towers) allowed for quantification of CO2, CH4 and H2O fluxes (from May 2010) as well as N2O and H2O fluxes (from June 2011) at two stump harvested plots and two control plots. There was one wetter and one drier plot of each treatment. Air was continuously sampled at two heights in the towers and gas concentrations were analyzed for CH4, CO2, H2O (LGR DLT-100, Los Gatos Research) and N2O, H2O (QCL Mini Monitor, Aerodyne Research). Friction velocities and sensible heat fluxes were measured by sonic anemometers (Gill Windmaster, Gill Instruments Ltd). Automatic chamber measurements (CO2, CH4, H2O) were carried out in the adjacent forest stand and at the clear-cut during 2010.Average CO2 emissions for the first year ranged between 14.4-20.2 ton CO2 ha-1 yr-1. The clear-cut became waterlogged after harvest and a comparison of flux-gradient data and chamber data (from the adjacent forest stand) indicated a switch from a weak CH4 sink to a significant source at all plots. The CH4 emissions ranged between 0.8-4.5 ton CO2-eq. ha-1 yr-1. N2O emissions ranged between 0.4-2.6 ton CO2-eq. ha-1 yr-1. Enhanced N2O emission on the drier stump harvested plot was the only clear treatment effect on GHG fluxes that was observed. Mean CH4 and N2O emissions for the first year of measurements amounted up to 29% and 20% of the mean annual CO2 emissions, respectively. This highlights the importance of including all GHGs when assessing

  3. Corrosion processes and coalification of ferrtic-martensitic steels in H{sub 2}O-CO{sub 2} atmospheres; Korrosionsprozesse und Aufkohlung von ferritisch-martensitischen Staehlen in H{sub 2}O-CO{sub 2} Atmosphaeren

    Energy Technology Data Exchange (ETDEWEB)

    Huenert, Daniela

    2010-09-20

    The dissertation desribes the corrosion of steels with chromium concentrations of 1-12 percent in H{sub 2}O-CO{sub 2} atmospheres at variable pressure in the temperature range of 500-650 C and shows the corresponding degree of coalification. The investigations were carried out in a specially constructed corrosion unit which enables simulations of the power plant conditions temperature, pressure, gas composition, and gas flow rate. Above 575 C, the experimentally measured corrosion rates decrease, similar to those in hydrogen. Below 575 C, higher corrosion rates are observed in H{sub 2}O-CO{sub 2} atmospheres than in hydrogen, which is assumed to be the result of chromium fixation by the carbon formed in the corrosion process and of the existence of wuestite below this temperature. Below 600 C, temperature and pressure act independently of each other. Investigations between 600 and 625 C showed that pressure and temperature are not independent parameters with regard to oxide layer growth. The combined effect of these parameters results in higher corrosion rates and coalification depths. The dissertation describes this higher corrosion rate and coalification depth by an enhanced transport model. (orig.) [German] In der vorliegenden Arbeit wurde das Korrosionsverhalten an Stahlqualitaeten mit Chromgehalten zwischen 1 und 12 % in H{sub 2}O-CO-2-Atmosphaeren bei unterschiedlichem Druck im Temperaturbereich von 500 bis 650 C dargestellt und die parallel erfolgende Aufkohlung gezeigt. Fuer die Untersuchungen wurde eine Korrosionsanlage aufgebaut, welche die Simulation der Kraftwerksbedingungen Temperatur, Druck und Gaszusammensetzung und -geschwindigkeit erlaubt. Die experimentell bestimmten Korrosionsraten sind oberhalb von 575 C vergleichbar mit denen in Wasserdampf. Unterhalb von 575 C werden hoehere Korrosionsraten in H2O-CO2- Atmosphaeren beobachtet als in Wasserdampf, was als Folge der Fixierung des Chroms durch den waehrend des Korrosionsprozesses gebildeten

  4. H2-assisted CO2 thermochemical reduction on La0.9Ca0.1FeO3-δ membranes: a kinetics study

    KAUST Repository

    Wu, Xiao-Yu; Ghoniem, Ahmed F.

    2017-01-01

    Kinetics data for CO2 thermochemical reduction in an isothermal membrane reactor is required to identify the rate-limiting steps. Here, we report a detailed reaction kinetics study on this process supported by an La0.9Ca0.1FeO3-δ (LCF-91) membrane. The dependence of CO2 reduction rate on various operating conditions is examined such as CO2 concentration on the feed side, fuel concentrations on the sweep side and temperatures. CO2 reduction rate is proportional to the oxygen flux across the membrane, and the measured maximum fluxes are 0.191 and 0.164 μmol cm-2 s-1 with 9.5% H2 and 11.6% CO on the sweep side at 990oC, respectively. Fuel is used to maintain the chemical potential gradient across the membrane and CO is used by construction to derive the surface reaction kinetics. This membrane also exhibits stable performances for 106 hours. A resistance-network model is developed to describe the oxygen transport process and the kinetics data are parameterized using the experimental values. The model shows a transition of the rate limiting step between the surface reactions on the feed side and the sweep side depending on the operating conditions.

  5. H2-assisted CO2 thermochemical reduction on La0.9Ca0.1FeO3-δ membranes: a kinetics study

    KAUST Repository

    Wu, Xiao-Yu

    2017-11-04

    Kinetics data for CO2 thermochemical reduction in an isothermal membrane reactor is required to identify the rate-limiting steps. Here, we report a detailed reaction kinetics study on this process supported by an La0.9Ca0.1FeO3-δ (LCF-91) membrane. The dependence of CO2 reduction rate on various operating conditions is examined such as CO2 concentration on the feed side, fuel concentrations on the sweep side and temperatures. CO2 reduction rate is proportional to the oxygen flux across the membrane, and the measured maximum fluxes are 0.191 and 0.164 μmol cm-2 s-1 with 9.5% H2 and 11.6% CO on the sweep side at 990oC, respectively. Fuel is used to maintain the chemical potential gradient across the membrane and CO is used by construction to derive the surface reaction kinetics. This membrane also exhibits stable performances for 106 hours. A resistance-network model is developed to describe the oxygen transport process and the kinetics data are parameterized using the experimental values. The model shows a transition of the rate limiting step between the surface reactions on the feed side and the sweep side depending on the operating conditions.

  6. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  7. Metal organic framework absorbent platforms for removal of co2 and h2s from natural gas

    KAUST Repository

    Belmabkhout, Youssef; Eddaoudi, Mohamed; Adil, Karim; Cadiau, Amandine; Bhatt, Prashant M.

    2016-01-01

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands which have high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Methods include capturing one or more of H2S, H2O, and CO2 from fluid compositions, such as natural gas.

  8. Metal organic framework absorbent platforms for removal of co2 and h2s from natural gas

    KAUST Repository

    Belmabkhout, Youssef

    2016-10-13

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands which have high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Methods include capturing one or more of H2S, H2O, and CO2 from fluid compositions, such as natural gas.

  9. TRACING H2 COLUMN DENSITY WITH ATOMIC CARBON (C I) AND CO ISOTOPOLOGS

    International Nuclear Information System (INIS)

    Lo, N.; Bronfman, L.; Cunningham, M. R.; Jones, P. A.; Lowe, V.; Cortes, P. C.; Simon, R.; Fissel, L.; Novak, G.

    2014-01-01

    We present the first results of neutral carbon ([C I] 3 P 1 - 3 P 0 at 492 GHz) and carbon monoxide ( 13 CO, J = 1-0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and the G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [C I] has very similar spectral emission profiles to 13 CO, with comparable line widths. We find that [C I] has an opacity of 0.1-1.3 across the mapped region while the [C I]/ 13 CO peak brightness temperature ratio is between 0.2 and 0.8. The [C I] column density is an order of magnitude lower than that of 13 CO. The H 2 column density derived from [C I] is comparable to values obtained from 12 CO. Our maps show that C I is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H 2 column density calculated from both tracers (both C I and 12 CO underestimate column density), as a significant amount of the C I in the warmer gas is likely in the higher energy state transition ([C I] 3 P 2 - 3 P 1 at 810 GHz), and thus it is likely that observations of both the above [C I] transitions are needed in order to recover the total H 2 column density

  10. Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors

    Science.gov (United States)

    Taer, E.; Apriwandi, Yusriwandi, Mustika, W. S.; Zulkifli, Taslim, R.; Sugianto, Kurniasih, B.; Agustino, Dewi, P.

    2018-02-01

    The physical activation for the comparative study of carbon electrode synthesized for supercapacitor applications made from rubber wood sawdust has been performed successfully. Comparison of physical activation used in this research is based on the different gas activation such as CO2 and H2O. The CO2 and H2O activation are made by using an integrated carbonization and activation system. The carbonization process is performed in N2 atmosphere followed by CO2 and H2O activation process. The carbonization process at temperature of 600°C, the CO2 and H2O activation process at a temperature of 900°C and maintained at this condition for 2 h and 3 h. The electrochemical properties were analyzed using cyclic voltammetric (CV) method. The CV results show that the carbon electrode with CO2 activation has better capacitive properties than H2O, the highest specific capacitance obtained is 93.22 F/g for 3 h of activation time. In addition, the analysis of physical properties such as surface morphology and degree of crystallinity was also performed.

  11. Bis[2-(2-aminoethyl-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′cobalt(II chloride trihydrate

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2012-06-01

    Full Text Available In the title compound, [Co(NO3(C9H11N32]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π–π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3, 3.720 (3, 3.774 (3 and 3.926 (3 Å].

  12. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  13. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both.

    Science.gov (United States)

    Wang, Qingfeng Kee; Bowman, Joel M

    2017-10-28

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .

  14. Studies on solid solutions based on layered honeycomb-ordered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, Romain; Schmidt, Whitney; Sleight, A.W. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2012-12-15

    Three complete solid solutions between the layered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) have been prepared by conventional solid state method and investigated through X-ray diffraction, magnetism and optical measurements. All compositions are characterized by a M{sup 2+}/X{sup 6+} honeycomb ordering within the slabs and crystallize in a hexagonal unit cell. However, a structural transition based on a different stacking is observed as nickel (space group P6{sub 3}/mcm) is substituted by zinc or cobalt (space group P6{sub 3}22). All compositions exhibit a paramagnetic Curie-Weiss behavior at high temperatures; and the magnetic moment values confirm the presence of Ni{sup 2+} and/or Co{sup 2+} cations. The low-temperature antiferromagnetic order of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. The color of the obtained compositions varies from pink, to light green and white when M=Co, Ni, Zn, respectively. - Graphical abstract: The comparison between the structure of Na{sub 2}Ni{sub 2}TeO{sub 6} (left) and Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Zn) (right) evidences the stacking difference with distinct atom sequences along the hexagonal c-axis. Highlights: Black-Right-Pointing-Pointer Solid solutions between lamellar phases Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) are investigated. Black-Right-Pointing-Pointer A M{sup 2+}/X{sup 6+} honeycomb ordering characterized all the compositions. Black-Right-Pointing-Pointer A structural transition is shown when Ni is replaced by Co or Zn. Black-Right-Pointing-Pointer The low-temperature AFM ordering of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. Black-Right-Pointing-Pointer Color changes from pink to light green and white when M=Co, Ni, Zn, respectively.

  15. Photomagnetic studies on spin-crossover solid solutions containing two different metal complexes, [Fe(1-bpp)(2)](x)[M(terpy)2](1-x)[BF4]2 (M = Ru or Co).

    Science.gov (United States)

    Chastanet, Guillaume; Tovee, Clare A; Hyett, Geoffrey; Halcrow, Malcolm A; Létard, Jean-François

    2012-04-28

    The photomagnetic properties of two series of spin-crossover solid solutions, [Fe(1-bpp)(2)](x)[Ru(terpy)(2)](1-x)(BF(4))(2) and [Fe(1-bpp)(2)](x)[Co(terpy)(2)](1-x)(BF(4))(2) (1-bpp = 2,6-bis[pyrazol-1-yl]pyridine), have been investigated. For all the materials, the evolution of the T(LIESST) value, the high-spin → low-spin relaxation parameters and the LITH loops were thoroughly studied. Interestingly in the Fe:Co series, along the photo-excitation, cobalt ions are concomitantly converted from low-spin to high-spin states with the iron centres, and also fully relax after light excitation. This journal is © The Royal Society of Chemistry 2012

  16. Fluorescence tuning of 2-(1H-Benzimidazol-2-yl)phenol-ESIPT process

    International Nuclear Information System (INIS)

    Prakash, S.M.; Jayamoorthy, K.; Srinivasan, N.; Dhanalekshmi, K.I.

    2016-01-01

    Catalytic synthesis of potential chemosensor 2-(1H-Benzimidazol-2-yl)phenol (HBYP) has been prepared by three components cyclization reaction. It can behaves as a selective fluorescent sensor for the detection of Fe 3+ metal ion. HBYP has been characterized by 1 H NMR, 13 C NMR, mass spectral studies and elemental analysis. Single crystal XRD analysis has been carried out to confirm the structure of HBYP and it shows the imidazole ring is essentially planar and monoclinic crystal. Addition and increasing concentration of Fe 3+ ions into HBYP results dramatic fluorescence quenching. Other cations, including Ca 2+ , Co 2+ , Ni 2+ , Cd 2+ , Pb 2+ , Zn 2+ and Mg 2+ had little influence in the fluorescence intensity. Surprisingly reversible fluorescence enhancement has been observed with the addition of H 3 PO 4 due to the deactivation of iron complex.

  17. Hydrothermal Valorization of Steel Slags—Part I: Coupled H{sub 2} Production and CO{sub 2} Mineral Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Crouzet, Camille [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); LRCS and RS2E, CNRS-UMR7314, University Picardie Jules Verne, Amiens (France); Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille (France); Brunet, Fabrice, E-mail: fabrice.brunet@univ-grenoble-alpes.fr; Montes-Hernandez, German [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); Recham, Nadir [LRCS and RS2E, CNRS-UMR7314, University Picardie Jules Verne, Amiens (France); Findling, Nathaniel [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); Ferrasse, Jean-Henry [Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille (France); Goffé, Bruno [Aix-Marseille University, CNRS, IRD, Coll. de France, CEREGE, Aix-en-Provence (France)

    2017-10-30

    A new process route for the valorization of BOF steel slags combining H{sub 2} production and CO{sub 2} mineral sequestration is investigated at 300°C (HT) under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT) carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and P{sub CO2} on a time-resolved basis. CO{sub 2} uptake under RT and HT are, respectively, 243 and 327 kg CO{sub 2}/t of fresh steel slag, which add up with the 63 kg of atmospheric CO{sub 2} per ton already uptaken by the starting steel slag on the storage site. The CO{sub 2} gained by the sample at HT is bounded to the carbonation of brownmillerite. H{sub 2} yield decreased by about 30% in comparison to the same experiment performed without added CO{sub 2}, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO{sub 2}-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO{sub 2} partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1) RT carbonation prior to hydrothermal oxidation, (2) RT carbonation after hydrothermal treatment, and (3) combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  18. Regulated deficit irrigation can decrease soil CO2 emissions in fruit orchards

    Science.gov (United States)

    Zornoza, Raul; Acosta, José Alberto; Martínez-Martínez, Silvia; De la Rosa, Jose M.°; Faz, Angel; Pérez-Pastor, Alejandro

    2016-04-01

    Irrigation water restrictions in the Mediterranean area have created a growing interest in water conservation. Apart from environmental and economic benefits by water savings, regulated deficit irrigation (RDI) may contribute to reduce soil CO2 emissions and enhance C sequestration in soils, by decreasing microbial and root activity in response to decreased soil moisture levels. An experiment was established in four orchards (peach, apricot, Saturn peach and grape) to investigate the effects of regulated deficit irrigation (RDI) on soil CO2 emissions. Two irrigation treatments were assayed: full irrigation (FI), and RDI, irrigated as FI except for postharvest period (peach, apricot, Saturn peach) or post-veraison period (grape) were 50% of FI was applied. The application of deficit caused a significant decrease in CO2 emission rates, with rates in average of 90 mg CO2-C m-2 h-1, 120 mg CO2-C m-2 h-1, 60 mg CO2-C m-2 h-1 and 60 mg CO2-C m-2 h-1 lower than FI during the period when deficit was applied for peach, apricot, Saturn peach and grape. This confirms the high effectiveness of the RDI strategies not only to save water consumption but also to decrease soil CO2 emissions. However, monitoring during longer periods is needed to verify that this trend is long-term maintained, and assess if soil carbon stocks are increase or most CO2 emissions derive from root respiration. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  19. 5-Isobutyl-4-phenylsulfonyl-1H-pyrazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    M. Venkatesh

    2010-12-01

    Full Text Available The title compound, C13H16N2O3S, consists of two crystallographically independent molecules with similar geometries and exists in a keto form, the C=O bond lengths being 1.267 (2 and 1.254 (2 Å. In both molecules, the pyrazole rings are approximately planar, with maximum deviations of 0.017 (2 and 0.010 (2 Å, and the dihedral angles between the pyrazole and phenyl rings are 83.63 (11 and 70.07 (12°. In one molecule, an intramolecular C—H...O hydrogen bond with an S(6 ring motif is observed. In the crystal, intermolecular N—H...O and C—H...O hydrogen bonds link the molecules into two-dimensional networks parallel to the ab plane.

  20. Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R. G.; Bastian, R.

    1990-01-01

    The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}-C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X ia a S, Se, or Te, will be determined. This quarter, a fresh batch of MoS{sub 2} was synthesized, and new Cs/MoS{sub 2} catalysts were prepared by alkali doping and were tested to demonstrate that the preparation and testing procedures were reproducible by different personnel. Preparations of RuS{sub 2} and Cs/RuS{sub 2} catalysts were initiated, and the preparations and testing of these catalysts will be described in the next quarterly report. 2 refs., 1 fig., 1 tab.

  1. Continuous measurements of H2 and CO deposition onto soil: a laboratory soil chamber experiment

    Science.gov (United States)

    Ghosh, P.; Eiler, J.; Smith, N. V.; Thrift-Viveros, D. L.

    2004-12-01

    . Increased moisture content is associated with increased deposition velocities at a given steady-state concentration: for every 5 % increase in soil moisture content, the ratio of deposition velocity to steady state concentration increases by 5.13±1.3 x 10-7cm2/s/ppb. Based on these observations, we conclude that uptake rate of H2 and CO in soil increases with increase in soil moisture content over the range characteristic of unsaturated soils, in contrast to the previous observation that increasing soil moisture level from 30% to 60% caused a large drop in hydrogen uptake rate (Yonemura et al., 1999)-a situation encountered during flood or heavy down pour. Our results indicate that the H2 consuming activity of soil is rapidly activated upon wetting and reaches a maximum at about 15% moisture level. This deduction supports the results obtained by several workers (Conrad and Seiler, 1980 ; Moxley and Smith, 1997) who showed that there is an optimum moisture level for microbiological hydrogen and CO uptake in soil. [1] Rahn T., Eiler, J.M., Kitchen, N., Fessenden, J.E. Geo. Res. Letters, (2002): 29(18): art no 1888. [2] Godde, M., Meuser, K., Conrad R. Hydrogen consumption and carbon monoxide production in soils with different properties, Bio Feril Soils (2000) 32:129-134.

  2. Investigation of anti-corrosive properties of poly(aniline-co-2-pyridylamine-co-2,3-xylidine) and its nanocomposite poly(aniline-co-2-pyridylamine-co-2,3-xylidine)/ZnO on mild steel in 0.1 M HCl

    Science.gov (United States)

    Alam, Ruman; Mobin, Mohammad; Aslam, Jeenat

    2016-04-01

    A soluble terpolymer of aniline (AN), 2-pyridylamine (PA) and 2,3-xylidine (XY), poly(AN-co-PA-co-XY) and its nanocomposite with ZnO nanoparticles namely, poly(AN-co-PA-co-XY)/ZnO were synthesized by chemical oxidative polymerization employing ammonium persulfate as an oxidant. Nanocomposites of homopolymers, polyaniline/ZnO, poly(XY)/ZnO and poly(PA)/ZnO were also synthesized by following similar synthesis route. FTIR, XRD and SEM techniques were used to characterize the synthesized compounds. The synthesized compounds were chemically deposited on mild steel specimens by solvent evaporation method using N-methyl-2-pyrrolidone (NMP) as solvent and 10% epoxy resin (by weight) as binder. Anticorrosive properties of homopolymer nanocomposites, terpolymer and its nanocomposite coatings were studied in 0.1 M HCl by subjecting them to various corrosion tests which includes: free corrosion potential measurement (OCP), weight loss measurements, potentiodynamic polarization, and AC impedance technique. The surface morphology of the corroded and uncorroded coated steel specimens was evaluated using SEM. The corrosion protection performance of terpolymer nanocomposite coating was compared to the terpolymer and individual homopolymers nanocomposites coatings after 30 days immersion in corrosive medium.

  3. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structures of (μ-H)(H)Os3(CO)10(CN-t-C4H9) and (μ-H)2Os3(CO)9(CN-t-C4H9)

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembski, N.M.

    1979-01-01

    The structures of the compounds (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ) and (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ) have been revealed by x-ray crystallographic techniques. For (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ): a = 9.064 (3), b = 12.225 (3), c = 20.364 (4) A; β = 98.73 (3) 0 ; space group P2 1 /c[C/sub 2h/ 5 ], No. 14; Z = 4; d/sub calcd/ = 2.79 g cm -3 . This compound contains a triangular cluster of three osmium atoms; Os(1)--Os(2) = 2.930 (1) A, Os(1)--Os(3) = 2.876 (1) A, and Os(2)--Os(3) = 3.000 (1) A. There are ten linear terminal carbonyl groups and one linear terminal isocyanide ligand which occupies an axial coordination site. The hydrogen atoms were not observed crystallographically, but their positions are strongly inferred from considerations of molecular geometry. For (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ): a = 15.220 (8), b = 12.093 (6), c = 23.454 (5) A; space group Pbcn [D/sub 2h/ 14 ], No. 60; Z = 8; d/sub calcd/ = 2.79 g cm -3 . The compound is analogous to the parent carbonyl (μ-H) 2 Os 3 (CO) 10 and has two normal and one short osmium--osmium bonds: Os(1)--Os(2) = 2.827 (1) A, Os(1)--Os(3) = 2.828 (1) A, Os(2)--Os(3) = 2.691 (1) A. The isocyanide ligand resides in an equatorial coordination site on osmium Os(2). The hydrogen atoms were not observed but are believed to occupy bridging positions as in the parent carbonyl complex. 2 figures, 7 tables

  4. Thermodynamic study of (alkyl esters+{alpha},{omega}-alkyl dihalides) III. H{sub m}{sup E}andV{sub m}{sup E} for 20 binary mixtures {l_brace}xC{sub u-1}H{sub 2u-1}CO{sub 2}C{sub 4}H{sub 9}+(1-x){alpha},{omega}-ClCH{sub 2}(CH{sub 2}){sub v-2}CH{sub 2}Cl{r_brace}, where u=1 to 4, {alpha}=1 and v={omega}=2 to 6

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario Tafira, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria, Canary Islands (Spain)]. E-mail: jortega@dip.ulpgc.es; Marrero, E. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario Tafira, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria, Canary Islands (Spain); Toledo, F.J. [Laboratorio de Termodinamica y Fisicoquimica de Fluidos, Parque Cientifico-Tecnologico, Campus Universitario Tafira, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria, Canary Islands (Spain)

    2006-09-15

    In this article, the experimental data of excess molar enthalpies H{sub m}{sup E} and excess molar volumes V{sub m}{sup E} are presented for a set of 20 binary mixtures comprised of the first four butyl alkanoates (methanoate to butanoate) and five {alpha},{omega}-dichloroalkanes (1,2-dichloroethane to 1,6-dichlorohexane), obtained at atmospheric pressure and at a temperature of 298.15K. The results indicate the existence of specific interactions between both kinds of compounds resulting in exothermic processes for most mixtures, except for those containing butyl methanoate which give rise to net endo/exothermic effects. The V{sub m}{sup E} are positive for mixtures of (butyl esters+1,2-dichloroethane or 1,3-dichloropropane) and negative for the remaining ones. The change in H{sub m}{sup E} with the dichloroethane chain length for a same ester is regular although the V{sub m}{sup E} presents an irregular variation. It can, therefore, be deuced from this that the mixing process involves both effects, exothermic/endothermic and expansion/contraction, simultaneously. The behaviour of the mixtures is interpreted on the basis of the results observed and attributed to different effects taking place among the molecules studied. To improve application of the UNIFAC model using the version of Dang and Tassios, average values were recalculated again for parameters of the ester/chloride interaction, distinguishing, during its application, the functional group of the acid part of the ester. In spite of this, the model does not adequately reproduce the systems' behaviour.

  5. Densities, viscosities, and refractive indexes for {C2H5CO2(CH2)2CH3+C6H13OH+C6H6} at T=308.15 K

    International Nuclear Information System (INIS)

    Casas, Herminio; Garcia-Garabal, Sandra; Segade, Luisa; Cabeza, Oscar.; Franjo, Carlos; Jimenez, Eulogio

    2003-01-01

    In this work we present densities, kinematic viscosities, and refractive indexes of the ternary system {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH+C 6 H 6 } and the corresponding binary mixtures {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 6 }, {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH}, and {C 6 H 13 OH+C 6 H 6 }. All data have been measured at T=308.15 K and atmospheric pressure over the whole composition range. The excess molar volumes, dynamic viscosity deviations, and changes of the refractive index on mixing were calculated from experimental measurements. The results for binary mixtures were fitted to a polynomial relationship to estimate the coefficients and standard deviations. The Cibulka equation has been used to correlate the experimental values of ternary mixtures. Also, the experimental values obtained for the ternary mixture were used to test the empirical methods of Kohler, Jacob and Fitzner, Colinet, Tsao and Smith, Toop, Scatchard et al., and Hillert. These methods predict excess properties of the ternary mixtures from those of the involved binary mixtures. The results obtained for dynamic viscosities of the binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, McAllister, Auslaender, and Teja-Rice. Finally, the experimental refractive indexes were compared with the predicted results for the Lorentz-Lorenz, Gladstone-Dale, Wiener, Heller, and Arago-Biot equations. In all cases, we give the standard deviation between the experimental data and that calculated with the above named relations

  6. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  7. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Directory of Open Access Journals (Sweden)

    N. Saigusa

    1996-03-01

    Full Text Available The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3 dominated in early spring, and Imperata cylindrica (C4 and Andropogon virginicus (C4 grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution

  8. Seasonal change in CO2 and H2O exchange between grassland and atmosphere

    Science.gov (United States)

    Saigusa, N.; Liu, S.; Oikawa, T.; Watanabe, T.

    1996-03-01

    The seasonal change in CO2 flux over an artificial grassland was analyzed from the ecological and meteorological point of view. This grassland contains C3 and C4 plants; the three dominant species belonging to the Gramineae; Festuca elatior (C3) dominated in early spring, and Imperata cylindrica (C4) and Andropogon virginicus (C4) grew during early summer and became dominant in mid-summer. CO2 flux was measured by the gradient method, and the routinely observed data for the surface-heat budget were used to analyze the CO2 and H2O exchange between the grassland and atmosphere. From August to October in 1993, CO2 flux was reduced to around half under the same solar-radiation conditions, while H2O flux decreased 20% during the same period. The monthly values of water use efficiency, i.e., ratio of CO2 flux to H2O flux decreased from 5.8 to 3.3 mg CO2/g H2O from August to October, the Bowen ratio increased from 0.20 to 0.30, and the ratio of the bulk latent heat transfer coefficient CE to the sensible heat transfer coefficient CH was maintained around 0.40-0.50. The increase in the Bowen ratio was explained by the decrease in air temperature from 22.3 °C in August to 16.6 °C in October without considering biological effects such as stomatal closure on the individual leaves. The nearly constant CE/CH ratios suggested that the contribution ratio of canopy resistance to aerodynamic resistance did not change markedly, although the meteorological conditions changed seasonally. The decrease in the water use efficiency, however, suggested that the photosynthetic rate decreased for individual leaves from August to October under the same radiation conditions. Diurnal variations of CO2 exchange were simulated by the multi-layer canopy model taking into account the differences in the stomatal conductance and photosynthetic pathway between C3 and C4 plants. The results suggested that C4 plants played a major role in the CO2 exchange in August, the contribution of C4 plants

  9. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    Directory of Open Access Journals (Sweden)

    José Esteban Muñoz-Medina

    2015-01-01

    Full Text Available The unpredictable, evolutionary nature of the influenza A virus (IAV is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2 in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2 and in one of the main aviary subtypes responsible for zoonosis (H5N1. For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.

  10. Atomic and molecular data for H2O, CO and CO2 relevant to edge plasma impurities

    International Nuclear Information System (INIS)

    Tawara, Hiro.

    1992-10-01

    The present status of atomic and molecular data under electron impact involving the most relevant plasma impurity species (H 2 O, CO and CO 2 ) has been surveyed and some data have been compiled and evaluated. The emphasis is the cross sections for ionization, dissociation, excitation, photon emission and recombination processes. (author)

  11. Dendrimeric tweezers for recognition of fluorogenic Co{sup 2+}, Mg{sup 2+} and chromogenic Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Chandana B.; Meshram, Jyotsna S., E-mail: drjsmeshram@gmail.com

    2016-03-15

    Dendrimers are the attractive candidature for the formation of metal complexes capable of performing varied application, owing to the presence of multiple terminal groups on the exterior of the molecule has received tremendous attention. Herein, we have synthesized novel dendritic macromolecule (N′E,N‴E,N″‴E,N‴‴′E)-3,3′,3″,3‴-(ethane-1,2-diylbis(azanetriyle)) tetrakis(N'-(2-hydroxybenzyllidene)propanehydrazide) chemosensor L and its metal complexes. In the present study the application in the optical sensing for chromogenic Fe{sup 2+} and fluorogenic Co{sup 2+} and Mg{sup 2+}cation is reported. The dendrimeric chemosensor L and its metal complexes are investigated with the help of FTIR spectroscopy, Nuclear magnetic resonance ({sup 1}H NMR and {sup 13}C NMR), FT Raman Microspectroscopy, fluorescence and UV–visible spectroscopy. Thermal properties are studied using thermal gravimetric analysis. - Highlights: • Dual effect – Chromogenic and fluorogenic. Chemosensor shows chromogenic effect towards Fe{sup 2+} as well as fluorogenic effect towards Co{sup 2+}and Mg{sup 2+} cation. • From Linear fitting calibration plot for computing LOD and LOQ, it was detected that – LOD=32.3 nM, LOQ=97.8 nM. • Jobs Plot – A graph plotted [HG]={(ΔF/Fo)[H]} Vs {[H]v/([H]v+[G]v)} has maxima at 0.33 which corresponds to 1:2 stoichiometry of chemosensor L:Co{sup 2+}.

  12. Crystal structure of 1-(2,4-dimethylphenyl-2-(4-trimethylsilyl-1H-1,2,3-triazol-1-ylethanone

    Directory of Open Access Journals (Sweden)

    G. B. Venkatesh

    2014-12-01

    Full Text Available The asymmetric unit of the title compound, C15H21N3OSi, contains two molecules with similar conformations (r.m.s. overlay fit for the 20 non-H atoms = 0.163 Å. The dihedral angles between the planes of the 1,2,3-triazole and 2,4-dimethylbenzene rings are 27.0 (3 and 19.5 (3°. In the crystal, molecules are linked by very weak C—H...O and C—H...N hydrogen bonds to generate [100] chains. The chains are cross-linked by C—H...π interactions.

  13. 2-(3-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Liyun Wang

    2017-04-01

    Full Text Available In the title ebselen derivative, C14H11NOSe, the nine-membered benzisoselenazolyl ring system is approximately planar (r.m.s. deviation = 0.021 Å. The dihedral angle between its mean plane and that of the 3-methylphenyl ring is 5.37 (11°. The five-membered isoselenazolyl ring is severely strained at the Se atom: Se—N = 1.889 (2 Å, Se—Car = 1.882 (3 Å and N—Se—Car = 83.30 (10°. In the crystal, molecules are linked by C—H...O hydrogen bonds and short intermolecular Se...O contacts of 2.6917 (19 Å, forming chains along the c-axis direction. Neighbouring molecules are linked by offset π–π interactions [intercentroid distance = 3.535 (2 Å]. The chains are also linked by C—H...π interactions, forming a three-dimensional structure.

  14. Relaxation phenomena in CsCoCl3·2 H2O

    NARCIS (Netherlands)

    Flokstra, Jakob; Gerritsma, G.J.; Vermeulen, A.J.W.A; Botterman, A.C.

    1973-01-01

    Dynamic susceptibility measurements have been performed on a single crystal of CsCoCl3·2H2O at liquid temperatures by means of a Hartshorn mutual inductance bridge. At the magnetic phase transition a maximum in τabs(H) has been observed. A jump in τabs(T) has been found at the λ-point of liquid

  15. Abundances and Excitation of H2, H3+ & CO in Star-Forming Regions

    Science.gov (United States)

    Kulesa, Craig A.

    Although most of the 123 reported interstellar molecules to date have been detected through millimeter-wave emission-line spectroscopy, this technique is inapplicable to non-polar molecules like H2 and H3+, which are central to our understanding of interstellar chemistry. Thus high resolution infrared absorption-line spectroscopy bears an important role in interstellar studies: chemically important non-polar molecules can be observed, and their abundances and excitation conditions can be referred to the same ``pencil beam'' absorbing column. In particular, through a weak quadrupole absorption line spectrum at near-infrared wavelengths, the abundance of cold H2 in dark molecular clouds and star forming regions can now be accurately measured and compared along the same ``pencil beam'' line of sight with the abundance of its most commonly cited surrogate, CO, and its rare isotopomers. Also detected via infrared line absorption is the pivotal molecular ion H3+, whose abundance provides the most direct measurement of the cosmic ray ionization rate in dark molecular clouds, a process that initiates the formation of many other observed molecules there. Our growing sample of H2 and CO detections now includes detailed multi-beam studies of the ρ Ophiuchi molecular cloud and NGC 2024 in Orion. We explore the excitation and degree of ortho- and para-H2 thermalization in dark clouds, variation of the CO abundance over a cloud, and the relation of H2 column density to infrared extinction mapping, far-infrared/submillimeter dust continuum emission, and large scale submillimeter CO, [C I] and HCO+ line emission -- all commonly invoked to indirectly trace H2 during the past 30+ years. For each of the distinct velocity components seen toward some embedded young stellar objects, we are also able to determine the temperature, density, and a CO/H2 abundance ratio, thus unraveling some of the internal structure of a star-forming cloud. H2 and H3+ continue to surprise and delight us

  16. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.

    Science.gov (United States)

    Luna, Celina M; Pastori, Gabriela M; Driscoll, Simon; Groten, Karin; Bernard, Stephanie; Foyer, Christine H

    2005-01-01

    Plants co-ordinate information derived from many diverse external and internal signals to ensure appropriate control of gene expression under optimal and stress conditions. In this work, the relationships between catalase (CAT) and H2O2 during drought in wheat (Triticum aestivum L.) are studied. Drought-induced H2O2 accumulation correlated with decreases in soil water content and CO2 assimilation. Leaf H2O2 content increased even though total CAT activity doubled under severe drought conditions. Diurnal regulation of CAT1 and CAT2 mRNA abundance was apparent in all conditions and day/night CAT1 and CAT2 expression patterns were modified by mild and severe drought. The abundance of CAT1 transcripts was regulated by circadian controls that persisted in continuous darkness, while CAT2 was modulated by light. Drought decreased abundance, and modified the pattern, of CAT1 and CAT2 mRNAs. It was concluded that the complex regulation of CAT mRNA, particularly at the level of translation, allows precise control of leaf H2O2 accumulation.

  17. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H2O and D2O. Acid-base and metal ion catalysis

    International Nuclear Information System (INIS)

    Pocker, Y.; Bjorkquist, D.W.

    1977-01-01

    The approach to equilibrium between carbon dioxide and bicarbonate has been followed by zero-order kinetics both from direction of CO 2 hydration and HCO 3 - dehydration. The rates are monitored at 25.0 0 C using stopped-flow indicator technique in H 2 O as well as D 2 O. The hydration of CO 2 is subject to catalysis by H 2 O (k 0 = 2.9 x 10 -2 s -1 ) and OH - (k/sub OH - / = 6.0 x 10 3 M -1 s -1 ). The value of 0.63 for the ratio k/sub OH - //k/sub OD - / is consistent with a mechanism utilizing a direct nucleophilic attack of OH - on CO 2 . In reverse direction HCO 3 - dehydration is catalyzed predominantly by H 3 O + (k/sub H 3 O + / 4.1 x 10 4 M -1 s -1 ) and to a much lesser degree by H 2 O (k 0 = 2 x 10 -4 s -1 ). The value of 0.56 for ratio k/sub H 3 O + //kD 3 O + / indicates that HCO 3 - may be protonated either in a preequilibrium step or in a rate-determining dehydration step. Both the hydration of CO 2 and the dehydration of bicarbonate are subject to general catalysis. For CO 2 , dibasic phosphate, a zinc imidazole complex, and a copper imidazole complex all enhanced the rate of hydration with respective rate coefficients of 3 x 10 -1 , 6.0, and 2.5 M -1 s -1 . For bicarbonate, monobasic phosphate catalyzed the rate of dehydration (k/sub H 2 PO 4 - / = 1 x 10 -1 M -1 s -1 ). Additionally in going from an ionic strength of 0.1 to 1.0 there was a negligible salt effect for the water-catalyzed hydration of CO 2 . However, the rate constant for the hydronium ion catalyzed dehydration of HCO 3 - was reduced from 4.1 x 10 4 M -1 s -1 to 2.3 x 10 4 M -1 s -1 for the same change in ionic strength. Finally the rate of CO 2 uptake by the complex Co(NH 3 ) 5 OH 2 3+ was followed spectrophotometrically both in H 2 O and D 2 O to determine the solvent isotope effect for a reaction known to involve a nucleophilic attack of a Co(III)-hydroxo complex on CO 2

  18. Simultaneous Reduction of CO 2 and Splitting of H 2 O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst

    KAUST Repository

    Morlanés, Natalia

    2016-04-12

    Perfluorinated cobalt phthalocyanine (CoFPc) immobilized on carbon electrodes was found to electrocatalyze the reduction of CO2 selectively to CO in an aqueous solution. The conversion of CO2 became apparent at -0.5 V vs RHE, and the Faradaic efficiency for the CO production reached as high as 93% at -0.8 V vs RHE. Highly stable electrolysis of CO2/H2O into CO/O2 was achieved for 12 h by applying the same catalyst as the cathode for CO2 reduction and the anode for water oxidation. This result indicates the highly robust nature of the CoFPc at wide range of potentials from -0.9 V to +2.2 V vs RHE, demonstrating the potential bipolar electrolytic system for CO2/H2O electrolysis, using the single-site molecular CoFPc-based electrocatalyst, which is simple, inexpensive, robust, and efficient. © 2016 American Chemical Society.

  19. Nido-Carborane building-block reagents. 2. Bulky-substituent (alkyl)2C2B4H6 derivatives and (C6H5)2C2B4H6: synthesis and properties

    International Nuclear Information System (INIS)

    Boyter, H.A. Jr.; Grimes, R.N.

    1988-01-01

    The preparation and chemistry of nido-2,3-R 2 C 2 C 2 B 4 H 6 carboranes in which R is n-butyl, isopentyl, n-hexyl, and phenyl was investigated in order to further assess the steric and electronic influence of the R groups on the properties of the nido-C 2 B 4 cage, especially with respect to metal complexation at the C 2 B 3 face and metal-promoted oxidative fusion. The three dialkyl derivatives were prepared from the corresponding dialkylacetylenes via reaction with B 5 H 9 and triethylamine, but the diphenyl compound could not be prepared in this manner and was obtained instead in a thermal reaction of B 5 H 9 with diphenylacetylene in the absence of amine. All four carboranes are readily bridge-deprotonated by NaH in THF, and the anions of the dialkyl species, on treatment with FeCl 2 and air oxidation, generate the respective R 4 C 4 B 8 H 8 carborane fusion products were R = n-C 4 H 9 , i-C 5 H 11 or n-C 6 H 13 . The diphenylcarborane anion Ph 2 C 2 B 4 H 5 - did not form detectable metal complexes with Fe 2+ , Co 2+ , or Ni 2+ , and no evidence of a Ph 4 C 4 B 8 H 8 fusion product has been found. Treatment of Ph 2 C 2 B 4 H 6 with Cr(CO) 6 did not lead to metal coordination of the phenyl rings, unlike (PhCH 2 ) 2 C 2 B 4 H 6 , which had previously been shown to form mono- and bis(tricarbonylchromium) complexes. However, the reaction of Ph 2 C 2 B 4 H 5 - , CoCl 2 , and (PhPCH 2 ) 2 did give 1,1-(Ph 2 PCH 2 ) 2 -1-Cl-1,2,3-Co(Ph 2 C 2 B 4 H 4 ), the only case in which metal complexation of the diphenylcarborane was observed. 14 references, 3 figures, 3 tables

  20. Renewable Formate from C-H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts.

    Science.gov (United States)

    Loewen, Natalia D; Neelakantan, Taruna V; Berben, Louise A

    2017-09-19

    promote C-H bond formation. Thermochemical insights into the disparate reactivities of these clusters were achieved through hydricity measurements using SEC. We found that only [H-Fe 4 N(CO) 12 ] - and its derivative [H-Fe 4 N(CO) 11 (PPh 3 )] - have hydricities modest enough to avoid H 2 production but strong enough to make formate. [H-Fe 4 C(CO) 12 ] 2- is a stronger hydride donor, theoretically capable of making formate, but due to an overwhelming thermodynamic driving force and the increased electrostatic attraction between the more negative cluster and H + , only H 2 is observed experimentally. This illustrates the fundamental importance of controlling thermochemistry when designing new catalysts selective for C-H bond formation and establishes a hydricity range of 15.5-24.1 or 44-49 kcal mol -1 where C-H bond formation may be favored in water or MeCN, respectively.

  1. Diversification of the vacAs1m1 and vacAs2m2 strains of Helicobacter pylori in Meriones unguiculatus

    Directory of Open Access Journals (Sweden)

    Sandra Mendoza Elizalde

    2016-11-01

    Full Text Available The bacterium Helicobacter pylori exhibits great genetic diversity, and the pathogenic roles of its virulence factors have been widely studied. However, the evolutionary dynamics of H. pylori strains during stomach colonization are not well characterized. Here, we analyzed the microevolutionary dynamics of the toxigenic strain vacAs1m1, the non-toxigenic strain vacAs2m2, and a combination of both strains in an animal model over time. Meriones unguiculatus were inoculated with the following bacteria: group 1–toxigenic strain vacAs1m1/cagA+/cagE+/babA2+; ST181, group 2–non-toxigenic strain vacAs2m2/ cagA+/ cagE+/ babA2+; ST2901, and group 3–both strains. The gerbils were euthanized at different time points (3, 6, 12 and 18 months. In group 1, genetic alterations were observed at 6 and 12 months. With the combination of both strains, group 3 also exhibited genetic alterations at 3 and 18 months; moreover, a chimera, vacA m1-m2, was detected. Additionally, four new sequence types (STs were reported in the PubMLST database for H. pylori. Synonymous and non-synonymous mutations were analyzed and associated with alterations in amino acids. Microevolutionary analysis of the STs (PHYLOViZ identified in each group revealed many mutational changes in the toxigenic (vacAs1m1 and non-toxigenic (vacAs2m2 strains. Phylogenetic assessments (eBURST did not reveal clonal complexes. Our findings indicate that the toxigenic strain, vacAs1m1, and a combination of toxigenic and non-toxigenic strains acquired genetic material by recombination. The allelic combination, vacAs2m1, displayed the best adaptation in the animal model over time, and a chimera, m1-m2, was also identified, which confirmed previous reports.

  2. The sticking probability for H-2 in presence of CO on some transition metals at a hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2008-01-01

    The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits the stic......The sticking probability for H-2 on Ni, Co, Cu, Rh, Ru, Pd, it and Pt metal films supported on graphite has been investigated in a gas mixture consisting of 10 ppm carbon monoxide in hydrogen at a total pressure of 1 bar in the temperature range 40-200 degrees C. Carbon monoxide inhibits...... the sticking probability significantly for all the metals, even at 200 degrees C. In the presence of 10 ppm CO, the sticking probability increases in the order It, Pt, Ni, Co, Pd, Rh, Ru, whereas for Cu, it is below the detection limit of the measurement, even in pure H2. The sticking probability for H2...

  3. Magnetic properties of Co2-xCux(OH)PO4 (x=0, 1 and 2)

    International Nuclear Information System (INIS)

    Pedro, I. de; Jubera, V.; Rojo, J.M.; Lezama, L.; Sanchez Marcos, J.; Rodriguez Fernandez, J.; Mesa, J.L.; Rojo, T.; Arriortua, M.I.

    2004-01-01

    The isostructural Co 2-x Cu x (OH)PO 4 (x=0, 1 and 2) phases have been prepared from hydrothermal synthesis and characterized from powder X-ray diffraction. The structure consists of a three-dimensional framework in which M(1)O 5 -trigonal bipyramid dimers and M(2)O 6 -octahedral chains are simultaneously present. Magnetization measurements of Co 2 (OH)(PO 4 ) show the existence of two maxima attributed to a three-dimensional antiferromagnetic ordering at 70 K and a spin-glass-like state at 12 K. When Co 2+ is substituted by Cu 2+ ions, the spin-glass behavior disappears and the magnetic order is decreased

  4. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    Science.gov (United States)

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Measurements of CO2, CH4, H2O, and HDO over a 2-km Outdoor Path with Dual-Comb Spectroscopy

    Science.gov (United States)

    Rieker, G. B.; Giorgetta, F. R.; Coddington, I.; Swann, W. C.; Sinclair, L. C.; Cromer, C.; Baumann, E.; Newbury, N. R.; Kofler, J.; Petron, G.; Sweeney, C.; Tans, P. P.

    2013-12-01

    We demonstrate simultaneous sensing of CO2, CH4, H2O, and HDO over a 2-km outdoor open air path using dual-frequency-comb absorption spectroscopy (DCS). Our implementation of the DCS technique simultaneously offers broad spectral coverage (>8 THz, 267 cm-1) and fine spectral point spacing (100 MHz, 0.0033 cm-1) with a coherent eye-safe beam. The spectrometer, which is adapted from [Zolot et al., 2012], consists of two mutually coherent Erbium-doped fiber frequency-comb lasers which create a broad spectrum of perfectly spaced narrow linewidth frequency elements (';comb teeth') near 1.6 μm. The comb light is transmitted by a telescope and active steering mirrors from the roof of the NIST Boulder laboratory to a 50-cm flat mirror located 1 km away. The return light is received by a second telescope and carried via multimode fiber to a detector. The greenhouse gas absorption attenuates the teeth from the two combs that are coincident with the relevant molecular resonant frequencies. We purposefully offset the frequencies between the two frequency combs in a Vernier-like fashion so that each pair of comb teeth from the two combs results in a unique rf heterodyne beat frequency on the photodiode. The spectral spacing between subsequent comb teeth pairs is 100 MHz, far lower than the ~4 GHz linewidths of small molecule absorption features in the atmosphere. Because of the narrow comb linewidth, there is an essentially negligible instrument lineshape. The measured absorption spectrum can thus resolve neighboring absorption features of different species, and can be compared directly with HITRAN and recent greenhouse gas absorption models developed for satellite- and ground-based carbon observatories to determine the path-integrated concentrations of the absorbing species. Measurements covering the complete 30013←00001 absorption band of CO2 and absorption features of CH4, H2O and HDO between 1.6-1.67 μm were performed under a variety of atmospheric conditions. During

  6. Airborne testing and demonstration of a new flight system based on an Aerodyne N2O-CO2-CO-H2O mini-spectrometer

    Science.gov (United States)

    Gvakharia, A.; Kort, E. A.; Smith, M. L.; Conley, S.

    2017-12-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance. With high atmospheric backgrounds and small relative signals, N2O emissions have been challenging to observe and understand on regional scales with traditional instrumentation. Fast-response airborne measurements with high precision and accuracy can potentially bridge this observational gap. Here we present flight assessments of a new flight system based on an Aerodyne mini-spectrometer as well as a Los Gatos N2O/CO analyzer during the Fertilizer Emissions Airborne Study (FEAST). With the Scientific Aviation Mooney aircraft, we conducted test flights for both analyzers where a known calibration gas was sampled throughout the flight (`null' tests). Clear altitude/cabin-pressure dependencies were observed for both analyzers if operated in an "off-the-shelf' manner. For the remainder of test flights and the FEAST campaign we used a new flight system based on an Aerodyne mini-spectrometer with the addition of a custom pressure control/calibration system. Instead of using traditional approaches with spectral-zeros and infrequent in-flight calibrations, we employ a high-flow system with stable flow control to enable high frequency (2 minutes), short duration (15 seconds) sampling of a known calibration gas. This approach, supported by the null test, enables correction for spectral drift caused by a variety of factors while maintaining a 90% duty cycle for 1Hz sampling from an aircraft. Preliminary in-flight precisions are estimated at 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively. We also present a further 40 hours of inter-comparison in flight with a Picarro 2301-f ring-down spectrometer demonstrating consistency between CO2 and H2O measurements and no altitude dependent error.

  7. Study of the effect of pressure on electrolysis of H2O and co-electrolysis of H2O and CO2 at high temperature

    International Nuclear Information System (INIS)

    Bernadet, Lucile

    2016-01-01

    This thesis work investigates the behavior of a solid oxide cell operating under pressure in high temperature steam electrolysis and co-electrolysis mode (H 2 O and CO 2 ). The experimental study of single cell associated with the development of multi-physical models have been set up. The experiments, carried out using an original test bench developed by the CEA-Grenoble on two types of cells between 1 and 10 bar and 700 to 800 C, allowed to identify in both operating modes that the pressure has a positive or negative effect on performance depending on the cell operating point (current, voltage). In addition, gas analyzes performed in co-electrolysis led to detect in situ CH 4 production under pressure. These pressure effects were simulated by models calibrated at atmospheric pressure. Simulations analysis helped identify the pressure dependent mechanisms and propose operating conditions thanks to the establishment of operating maps. (author) [fr

  8. An experimental study on premixed CNG/H2/CO2 mixture flames

    Science.gov (United States)

    Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer

    2018-03-01

    In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  9. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    OpenAIRE

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru?Rh bimetallic catalyst using imidazole as the ligand and LiI as the promot...

  10. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region

    Science.gov (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.

    2017-12-01

    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  11. Two-component, ab initio potential energy surface for CO2H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both

    Science.gov (United States)

    Wang, Qingfeng Kee; Bowman, Joel M.

    2017-10-01

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  12. Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2): New one-dimensional Bi-coordination materials-Reversible hydration and topotactic decomposition to {alpha}-Bi{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hye Rim [Department of Chemistry Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Dong Woo [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2012-03-15

    Two one-dimensional bismuth-coordination materials, Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi{sub 2}O{sub 3}, 2,6-NC{sub 5}H{sub 3}(CO{sub 2}H){sub 2}, HF, and water at 180 Degree-Sign C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi{sup 3+} cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C led to {alpha}-Bi{sub 2}O{sub 3} that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C results in the {alpha}-Bi{sub 2}O{sub 3} rods that maintain the original morphology of the crystals. Highlights: Black-Right-Pointing-Pointer Synthesis of one-dimensional chain Bi-organic frameworks. Black-Right-Pointing-Pointer Reversible hydration reactions of Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F. Black-Right-Pointing-Pointer Topotactic decomposition maintaining the same morphology of the original crystals.

  13. 1-Propyl-1H-indole-2,3-dione

    Directory of Open Access Journals (Sweden)

    Fatima Zahrae Qachchachi

    2016-04-01

    Full Text Available In the title compound, C11H11NO2, the 1H-indole-2,3-dione unit is essentially planar, with an r.m.s. deviation of 0.0387 (13 Å. This plane makes a dihedral angle of 72.19 (17° with the plane of the propyl substituent. In the crystal, chains propagating along the b axis are formed through C—H...O hydrogen bonds.

  14. Syngas production by gasification of aquatic biomass with CO2/O2 and simultaneous removal of H2S and COS using char obtained in the gasification

    International Nuclear Information System (INIS)

    Hanaoka, Toshiaki; Hiasa, Shou; Edashige, Yusuke

    2013-01-01

    Applicability of gulfweed as feedstock for a biomass-to-liquid (BTL) process was studied for both production of gas with high syngas (CO + H 2 ) content via gasification of gulfweed and removal of gaseous impurities using char obtained in the gasification. Gulfweed as aqueous biomass was gasified with He/CO 2 /O 2 using a downdraft fixed-bed gasifier at ambient pressure and 900 °C at equivalence ratios (ER) of 0.1–0.3. The syngas content increased while the conversion to gas on a carbon basis decreased with decreasing ER. At an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%, the syngas content was maximized at 67.6% and conversion to gas on a carbon basis was 94.2%. The behavior of the desulfurization using char obtained during the gasification process at ER = 0.1 and He/CO 2 /O 2 = 0/85/15% was investigated using a downdraft fixed-bed reactor at 250–550 °C under 3 atmospheres (H 2 S/N 2 , COS/N 2 , and a mixture of gases composed of CO, CO 2 , H 2 , N 2 , CH 4 , H 2 S, COS, and steam). The char had a higher COS removal capacity at 350 °C than commercial activated carbon because (Ca,Mg)S crystals were formed during desulfurization. The char simultaneously removed H 2 S and COS from the mixture of gases at 450 °C more efficiently than did activated carbon. These results support this novel BTL process consisting of gasification of gulfweed with CO 2 /O 2 and dry gas cleaning using self-supplied bed material. -- Highlights: • A product gas with high syngas content was produced from the gasification of gulfweed with CO 2 /O 2 . • The syngas content increased with decreasing the equivalence ratio. • The syngas content was maximized at 67.6% at an ER of 0.1 and He/CO 2 /O 2 = 0/85/15%. • The char simultaneously removed H 2 S and COS from a mixture of gases at 450 °C efficiently

  15. Simultaneous mass transfer of H2S and CO2 with complex chemical reactions in an aqueous di-isopropanolamine solution = Gleichzeitige absorption von H2S und CO2 in Wässriger Di-isopropanolaminlösung

    NARCIS (Netherlands)

    Blauwhoff, P.M.M.; van Swaaij, Willibrordus Petrus Maria

    1985-01-01

    The absorption of H2S and CO2 into an aqueous di-isopropanolamine (DIPA) solution was studied experimentally and theoretically as an example of simultaneous mass transfer with complex reversible reactions. The absorption phenomena were classified into three regimes: (1) negligible mutual interaction

  16. THE METALLICITY DEPENDENCE OF THE CO {yields} H{sub 2} CONVERSION FACTOR IN z {>=} 1 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Schreiber, N. M. Foerster; Gracia-Carpio, J.; Lutz, D.; Saintonge, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Neri, R.; Cox, P. [IRAM, 300 Rue de la Piscine, 38406 St. Martin d' Heres, Grenoble (France); Sternberg, A. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bouche, N. [Department of Physics, University of California, Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Davis, M.; Newman, S. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Apartado 1143, 28800 Alcala de Henares- Madrid (Spain); Naab, T., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de [Max-Planck Institut fuer Astrophysik (MPA), Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-02-10

    We use the first systematic samples of CO millimeter emission in z {>=} 1 'main-sequence' star-forming galaxies to study the metallicity dependence of the conversion factor {alpha}{sub CO,} from CO line luminosity to molecular gas mass. The molecular gas depletion rate inferred from the ratio of the star formation rate (SFR) to CO luminosity, is {approx}1 Gyr{sup -1} for near-solar metallicity galaxies with stellar masses above M{sub S} {approx} 10{sup 11} M{sub Sun }. In this regime, the depletion rate does not vary more than a factor of two to three as a function of molecular gas surface density or redshift between z {approx} 0 and 2. Below M{sub S} the depletion rate increases rapidly with decreasing metallicity. We argue that this trend is not caused by starburst events, by changes in the physical parameters of the molecular clouds, or by the impact of the fundamental-metallicity-SFR-stellar mass relation. A more probable explanation is that the conversion factor is metallicity dependent and that star formation can occur in 'CO-dark' gas. The trend is also expected theoretically from the effect of enhanced photodissociation of CO by ultraviolet radiation at low metallicity. From the available z {approx} 0 and z {approx} 1-3 samples we constrain the slope of the log({alpha}{sub CO})-log (metallicity) relation to range between -1 and -2, fairly insensitive to the assumed slope of the gas-SFR relation. Because of the lower metallicities near the peak of the galaxy formation activity at z {approx} 1-2 compared to z {approx} 0, we suggest that molecular gas masses estimated from CO luminosities have to be substantially corrected upward for galaxies below M{sub S}.

  17. The pKR+ values of coordinated propargyl cations [Cp2Mo2(CO)4(μ-η2, η3-HC≡CCR1R2)]+

    International Nuclear Information System (INIS)

    Barinov, I.V.

    1998-01-01

    The pK R + values metal-stabilised carbocations [Cp 2 Mo 2 (CO) 4 (μ-η 2 , η 3 -HC≡CCR 1 R 2 )] + (R 1 = R 2 H, R 1 = H, R 2 = Me and R 1 = R 2 = Me) are measured in 50 % aqueous MeCN. Stability of the cations is increased on going from tertiary to primary carbocations [ru

  18. The Elusive Palladium-Diazo Adduct Captured: Synthesis, Isolation and Structural Characterization of [(ArNHC-PPh2 )Pd(η2 -N2 C(Ph)CO2 Et)].

    Science.gov (United States)

    Rull, Silvia G; Álvarez, Eleuterio; Fructos, Manuel R; Belderrain, Tomás R; Pérez, Pedro J

    2017-06-07

    The first example of a diazo palladium adduct is reported. The complexes [(ArNHC-PPh 2 )M2 -N 2 C(Ph)CO 2 Et)] (M=Ni, 3; M=Pd, 4; ArNHC-PPh 2 =3-(2,6-diisopropylphenyl)-1-[(diphenylphosphino)ethyl]imidazol-2-ylidene) were prepared by ligand exchange with styrene-coordinated precursors [(ArNHC-PPh 2 )M(styrene)] (M=Ni, 1; M=Pd, 2). Complex 4 was fully characterized, including X-ray analyses; this constitutes the first example of a diazo adduct compound with palladium, thereby closing the gap between Groups 8 and 10 regarding this type of compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ESTRUCTURA METÁLICA DE CATALIZADORES BASADOS EN PEROVSKITA La1-YCeYCo1-XFeXO3 EN METANO REFORMADO CON CO2 Y O2

    Directory of Open Access Journals (Sweden)

    Adriana García

    2011-01-01

    Full Text Available Se prepararon catalizadores metálicos estructurados constituidos por perovskitas con composiciones LaCo0.6Fe0.4O3, LaCo0.4Fe0.6O3 y La0.9Ce0.1Co0.6Fe0.4O3 soportadas sobre estructuras cónicas de una malla de acero inoxidable 316, a fin de estudiar el efecto de la estructura metálica en la reacción. Estos fueron evaluados en el reformado de metano con CO2 y O2, realizando la comparación con el mismo catalizador en polvo. Las condiciones de reacción fueron seleccionadas a partir de barridos de temperatura de reacción y de relación CH4/CO2 de la alimentación. Se alcanzó una conversión máxima de 88% y relación H2/CO de 1.6, para la perovskita de mayor contenido de Co a 850 °C y composición molar 6/1/3 en CH4/CO2/O2. Los catalizadores estructurados en forma de cono y en polvo presentaron un comportamiento similar. La sustitución de La por Ce no generó diferencias apreciables en el comportamiento catalítico. El uso de una estructura metálica similar a un empaque comercial, parece mejorar la estabilidad del catalizador de perovskita LaCo0.6Fe0.4O3 con una mayor relación H2/CO en los productos.

  20. Polymeric anionic networks using dibromine as a crosslinker; the preparation and crystal structure of [(C4H9)4N]2[Pt2Br10].(Br2)7 and [(C4H9)4N]2[PtBr4Cl2].(Br2)6.

    Science.gov (United States)

    Berkei, Michael; Bickley, Jamie F; Heaton, Brian T; Steiner, Alexander

    2002-09-21

    The reaction of M[PtX3(CO)] (M+ = [(C4H9)4N]+, X = Br, Cl) with an excess of Br2 gives the new platinum(IV) salts, [(C4H9)4N]2[Pt2Br10].(Br2)7, 1, and [(C4H9)4N]2[PtBr4Cl2].(Br2)6, 2, which, in the solid state, contain strong Br Br interactions resulting in the formation of polymeric networks; they could provide useful solid storage reservoirs for elemental bromine.

  1. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS

    International Nuclear Information System (INIS)

    Ootsubo, Takafumi; Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru; Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka; Ishiguro, Masateru; Sekiguchi, Tomohiko; Watanabe, Jun-ichi; Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi

    2012-01-01

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 μm. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H 2 O) at 2.7 μm and carbon dioxide (CO 2 ) at 4.3 μm. The fundamental vibrational band of carbon monoxide (CO) around 4.7 μm and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-μm region in some of the comets. With respect to H 2 O, gas production rate ratios of CO 2 have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO 2 /H 2 O production rate ratios in comets obtained so far. The CO 2 /H 2 O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within ∼2.5 AU, since H 2 O ice fully sublimates there. The CO 2 /H 2 O ratio in cometary ice spans from several to ∼30% among the comets observed at 2 in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  2. Flexible Li-CO{sub 2} batteries with liquid-free electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaofei; Li, Zifan; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin (China)

    2017-05-15

    Developing flexible Li-CO{sub 2} batteries is a promising approach to reuse CO{sub 2} and simultaneously supply energy to wearable electronics. However, all reported Li-CO{sub 2} batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO{sub 2} batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO{sub 4}-3 wt %SiO{sub 2} composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14 x 10{sup -2} mS cm{sup -1}) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g{sup -1}. Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg{sup -1}, and long operation time of 220 h at different degrees of bending (0-360 ) at 55 C. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The first 3D malonate bridged copper [Cu(O2C–CH2CO2H)2·2H2O]: Structure, properties and electronic structure

    International Nuclear Information System (INIS)

    Seguatni, A.; Fakhfakh, M.; Smiri, L.S.; Gressier, P.; Boucher, F.; Jouini, N.

    2012-01-01

    A new inorganic-organic compound [Cu(O 2 C–CH 2CO 2 H) 2 ·2H 2 O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)–malonic acid–H 2 O. Its framework is built up through carboxyl bridged copper where CuO 6 octahedra are elongated with an almost D 4h symmetry (4+2) due to the Jahn–Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2–300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U eff value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O 2 C–CH 2CO 2 H) 2 ·2H 2 O]: the first 3D hybrid organic–inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: ► A new organic–inorganic material with an unprecedented topology is synthesized. ► Crystallographic structure is determined using single crystal X-ray diffraction. ► Electronic structure is obtained from DFT, GGA+U calculation. ► Framework can be described as formed from CuC 4 tetrahedron sharing four corners. ► This structure can be classified as an extended diamond structure.

  4. A breakthrough in flue gas cleanup, CO2 mitigation and H2S removal

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolf; Wasas, James; Stenger, Raymond; Howell, Evan

    2010-09-15

    SWAPSOL Corp. is developing commercial processes around a newly discovered reaction that reduces H2S below detectable levels while reacting with CO2 to form water, sulfur and carsuls, a carbon-sulfur polymer. The Stenger-Wasas Process (SWAP) stands to simplify sulfur removal technology as it consumes CO2 in an exothermic reaction. The SWAP has applications in landfill, sour, flue and Claus tail gas cleanup and may replace Claus technology. Destruction of waste hydrocarbons provides a source of H2S. The primary reactions and variants have been independently verified and the chemical kinetics determined by a third party laboratory.

  5. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    Science.gov (United States)

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  6. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006.

    Science.gov (United States)

    Bauer, Katja; Richter, Martina; Wutzler, Peter; Schmidtke, Michaela

    2009-04-01

    In the flu season 2005/2006 amantadine-resistant human influenza A viruses (FLUAV) of subtype H3N2 circulated in Germany. This raises questions on the neuraminidase inhibitor (NAI) susceptibility of FLUAV. To get an answer, chemiluminescence-based neuraminidase inhibition assays were performed with 51 H1N1, H1N2, and H3N2 FLUAV isolated in Germany from 2001 to 2005/2006. According to the mean IC(50) values (0.38-0.91 nM for oseltamivir and 0.76-1.13 nM for zanamivir) most H1N1 and H3N2 FLUAV were NAI-susceptible. But, about four times higher zanamivir concentrations were necessary to inhibit neuraminidase activity of H1N2 viruses. Two H1N1 isolates were less susceptible to both drugs in NA inhibition as well as virus yield reduction assays. Results from sequence analysis of viral hemagglutinin and neuraminidase genes and evolutionary analysis of N2 gene revealed (i) different subclades for N2 in H1N2 and H3N2 FLUAV that could explain the differences in zanamivir susceptibility among these viruses and (ii) specific amino acid substitutions in the neuraminidase segment of the two less NAI-susceptible H1N1 isolates. One H3N2 was isolate proved to be a mixture of a NA deletion mutant and full-length NA viruses.

  7. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke

    2005-01-01

    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  8. System for δ13C-CO2 and xCO2 analysis of discrete gas samples by cavity ring-down spectroscopy

    Science.gov (United States)

    Dickinson, Dane; Bodé, Samuel; Boeckx, Pascal

    2017-11-01

    A method was devised for analysing small discrete gas samples (50 mL syringe) by cavity ring-down spectroscopy (CRDS). Measurements were accomplished by inletting 50 mL syringed samples into an isotopic-CO2 CRDS analyser (Picarro G2131-i) between baseline readings of a reference air standard, which produced sharp peaks in the CRDS data feed. A custom software script was developed to manage the measurement process and aggregate sample data in real time. The method was successfully tested with CO2 mole fractions (xCO2) ranging from 20 000 ppm and δ13C-CO2 values from -100 up to +30 000 ‰ in comparison to VPDB (Vienna Pee Dee Belemnite). Throughput was typically 10 samples h-1, with 13 h-1 possible under ideal conditions. The measurement failure rate in routine use was ca. 1 %. Calibration to correct for memory effects was performed with gravimetric gas standards ranging from 0.05 to 2109 ppm xCO2 and δ13C-CO2 levels varying from -27.3 to +21 740 ‰. Repeatability tests demonstrated that method precision for 50 mL samples was ca. 0.05 % in xCO2 and 0.15 ‰ in δ13C-CO2 for CO2 compositions from 300 to 2000 ppm with natural abundance 13C. Long-term method consistency was tested over a 9-month period, with results showing no systematic measurement drift over time. Standardised analysis of discrete gas samples expands the scope of application for isotopic-CO2 CRDS and enhances its potential for replacing conventional isotope ratio measurement techniques. Our method involves minimal set-up costs and can be readily implemented in Picarro G2131-i and G2201-i analysers or tailored for use with other CRDS instruments and trace gases.

  9. An experimental study on premixed CNG/H2/CO2 mixture flames

    Directory of Open Access Journals (Sweden)

    Yilmaz Ilker

    2018-03-01

    Full Text Available In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW. All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  10. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 - venting sediments (Milos Island, Greece).

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E; Ferdelman, Timothy G; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40-75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity.

  11. Room temperature CO and H2 sensing with carbon nanoparticles

    International Nuclear Information System (INIS)

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo

    2011-01-01

    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H 2 at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H 2 at room temperature even without Pd or Pt catalysts commonly used for splitting H 2 molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H 2 molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  12. One-pot fabrication of graphene sheets decorated Co2P-Co hollow nanospheres for advanced lithium ion battery anodes

    International Nuclear Information System (INIS)

    Xie, Qingshui; Zeng, Deqian; Gong, Pingyun; Huang, Jian; Ma, Yating; Wang, Laisen; Peng, Dong-Liang

    2017-01-01

    Highlights: • Co 2 P-Co hollow nanospheres with graphene sheets decoration are prepared through one-pot solution approach. • Co 2 P-Co/graphene nanocomposites reveal greatly enhanced lithium storage performances than Co 2 P-Co counterparts. • The superb electrochemical performances derive from dual modification of graphene sheets and metal Co as well as their hollow configuration. - Abstract: The fabrication of Co 2 P-Co (Co-P composites) hollow nanospheres with graphene sheets decoration through one-pot solution approach is demonstrated and their potential as the anode materials for lithium ion batteries is assessed. A large specific capacity of 929 mA h g −1 can be retained for Co-P/graphene nanocomposites at 100 mA g −1 after 200 cycles. When cycled at a large current density of 2.0C, the Co-P/graphene nanocomposites deliver a decent reversible capacity of 567 mA h g −1 , which is much higher than the theoretical capacity of traditional graphite anode (372 mA h g −1 ). The obviously enhanced lithium storage properties of Co-P/graphene nanocomposites are put down to the dual modification of graphene sheets and metal Co as well as their hollow structures.

  13. Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System

    Directory of Open Access Journals (Sweden)

    Chunjie Huang

    2015-11-01

    Full Text Available A series of CuO/ZnO/ZrO2 (CZZ catalysts with different CuO/ZnO weight ratios have been synthesized by citrate method and tested in the catalytic hydrogenation of CO2 to methanol. Experimental results showed that the catalyst with the lowest CuO/ZnO weight ratio of 2/7 exhibited the best catalytic performance with a CO2 conversion of 32.9%, 45.8% methanol selectivity, and a process delivery of 193.9 gMeOH·kgcat−1·h−1. A synergetic effect is found by systematic temperature-programmed-desorption (TPD studies. Comparing with single and di-component systems, the interaction via different components in a CZZ system provides additional active sites to adsorb more H2 and CO2 in the low temperature range, resulting in higher weight time yield (WTY of methanol.

  14. Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm)

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2014-01-01

    The thermal decomposition of Dy(III), Tb(III), Gd(III), Eu(III), and Sm(III) propionate monohydrates was studied in argon by means of simultaneous differential thermal analysis and thermogravimetry, infrared-spectroscopy, X-ray diffraction, and optical microscopy. After dehydration, which takes......, an intermediate stage involving a RE2O(C2H5CO2)4 composition was evidenced in the case of the Eu- and Sm-propionates. For all compounds, further decomposition of RE2O2CO3 into the corresponding sesquioxides (RE2O3) is accompanied by the release of CO2. The thermal decomposition of Dy- and Tb-propionates occurs...

  15. Improving Methane Production through Co-Digestion of Canola Straw and Buffalo Dung by H2O2 Pretreatment

    Directory of Open Access Journals (Sweden)

    ALTAF ALAM NOONARI

    2017-01-01

    Full Text Available In this study an effect of acidic pre-treatment on the CS (Canola Straw and BD (Buffalo Dung by anaerobic co-digestion was investigated. H2O2 (Hydrogen Peroxide is a mainly accustomed reagent, used as a bleaching agent in the different industries such as paper and wood. In the present study, it was used as a pre-treatment chemical at varying concentrations in batch reactors. The co-digestion of CS and BD was carried out in SAMPTS (Semi-Automatic Methane Potential Test System at mesophilic (37±1oC conditions. The CS was pretreated in glass bottles with different concentrations of the H2O2 for seven days. The inoculum used in the present study was an effluent of the CSTR (Continuous Stirred Tank Reactor, which was treating BD at mesophilic conditions. The specific methane production from the codigestion of canola straw and BD, by the pre-treatment of H2O2 at concentrations of 0.5, 1.0, and 1.5% were 530.8, 544.5, and 510.3 NmL CH4 g/VS, respectively. The significant reduction in the volatile solids of CS was observed at the optimum pre-treatment of 1.0% H2O2.

  16. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  17. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  18. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    ) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse...... of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. This article critically reviews the many possible technological pathways for recycling CO2 into fuels using renewable or nuclear energy, considering three stages—CO2 capture, H2O and CO2...... by Fischer–Tropsch synthesis is identified as one of the most promising, feasible routes. An analysis of the energy balance and economics of this CO2 recycling process is presented. We estimate that the full system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis...

  19. AAg2M[VO4]2 (A=Ba,Sr; M=Co,Ni): A series of ferromagnetic insulators

    Science.gov (United States)

    Möller, Angela; Amuneke, Ngozi E.; Daniel, Phillip; Lorenz, Bernd; de la Cruz, Clarina R.; Gooch, Melissa; Chu, Paul C. W.

    2012-06-01

    AAg2M[VO4]2 with A=Sr2+ or Ba2+ present a series of layered compounds featuring a triangular lattice of transition metal cations, M = Co2+ or Ni2+, connected via nonmagnetic ortho-vanadates, which provide the magnetic superexchange within the layers. For this series of insulating compounds, ferromagnetic long-range order below 10 K is suggested by magnetization and specific heat measurements and confirmed by neutron diffraction experiments. We have investigated the impact of the spacer size of A2+ separating the layers leading to a tilting of the vanadates and consequently inducing a change in the effective magnetic correlations. Magnetization and specific heat measurements corroborate the important dependence of the magnetic superexchange on the orientation of the vanadates and the respective spin system. Furthermore, the ground state properties of the spin systems, S=1 (Ni2+) and S=3/2 (Co2+) in their respective octahedral coordination of oxygen, are evaluated. Calculated magnetic moments of the single ion complexes agree well with the magnetic structure. We, furthermore, report the dependence of Tc on applied isotropic pressure suggestive of a pressure effect on the effective ferromagnetic exchange coupling constants. In addition spectroscopic investigations probing the electronic structure of the [MO6] complexes and the vibrational structure of the [VO4] units are given.

  20. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  1. The relative roles of external and internal CO(2) versus H(+) in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hypercarbia.

    Science.gov (United States)

    Perry, S F; McKendry, J E

    2001-11-01

    Fish breathing hypercarbic water encounter externally elevated P(CO(2)) and proton levels ([H(+)]) and experience an associated internal respiratory acidosis, an elevation of blood P(CO(2)) and [H(+)]. The objective of the present study was to assess the potential relative contributions of CO(2) versus H(+) in promoting the cardiorespiratory responses of dogfish (Squalus acanthias) and Atlantic salmon (Salmo salar) to hypercarbia and to evaluate the relative contributions of externally versus internally oriented receptors in dogfish. In dogfish, the preferential stimulation of externally oriented branchial chemoreceptors using bolus injections (50 ml kg(-1)) of CO(2)-enriched (4 % CO(2)) sea water into the buccal cavity caused marked cardiorespiratory responses including bradycardia (-4.1+/-0.9 min(-1)), a reduction in cardiac output (-3.2+/-0.6 ml min(-1) kg(-1)), an increase in systemic vascular resistance (+0.3+/-0.2 mmHg ml min(-1) kg(-1)), arterial hypotension (-1.6+/-0.2 mmHg) and an increase in breathing amplitude (+0.3+/-0.09 mmHg) (means +/- S.E.M., N=9-11). Similar injections of CO(2)-free sea water acidified to the corresponding pH of the hypercarbic water (pH 6.3) did not significantly affect any of the measured cardiorespiratory variables (when compared with control injections). To preferentially stimulate putative internal CO(2)/H(+) chemoreceptors, hypercarbic saline (4 % CO(2)) was injected (2 ml kg(-1)) into the caudal vein. Apart from an increase in arterial blood pressure caused by volume loading, internally injected CO(2) was without effect on any measured variable. In salmon, injection of hypercarbic water into the buccal cavity caused a bradycardia (-13.9+/-3.8 min(-1)), a decrease in cardiac output (-5.3+/-1.2 ml min(-1) kg(-1)), an increase in systemic resistance (0.33+/-0.08 mmHg ml min(-1) kg(-1)) and increases in breathing frequency (9.7+/-2.2 min(-1)) and amplitude (1.2+/-0.2 mmHg) (means +/- S.E.M., N=8-12). Apart from a small increase

  2. Effects of the pH/pCO2 control method in the growth medium of phytoplankton

    Science.gov (United States)

    Shi, D.; Xu, Y.; Morel, F. M. M.

    2009-02-01

    To study the effects of ocean acidification on the physiology of phytoplankton requires that the key chemical parameters of the growth medium, pCO2, pH and Ω (the saturation state of calcium carbonate) be carefully controlled. This is made difficult by the interdependence of these parameters. Moreover, in growing batch cultures of phytoplankton, the fixation of CO2, the uptake of nutrients and, for coccolithophores, the precipitation of calcite all change the inorganic carbon and acid-base chemistry of the medium. For example, absent pH-buffering or CO2 bubbling, a sizeable decrease in pCO2 occurs at a biomass concentration as low as 50 μM C in non-calcifying cultures. Even in cultures where pCO2 or pH is maintained constant, other chemical parameters change substantially at high cell densities. The quantification of these changes is facilitated by the use of buffer capacities. Experimentally we observe that all methods of adjustment of pCO2/pH can be used, the choice of one or the other depending on the specifics of the experiments. The mechanical effect of bubbling of cultures seems to induce more variable results than other methods of pCO2/pH control. While highly convenient, the addition of pH buffers to the medium induces changes in trace metal availability and cannot be used under trace metal-limiting conditions.

  3. An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses

    Directory of Open Access Journals (Sweden)

    Chan Chris CS

    2010-01-01

    Full Text Available Abstract Background A growing concern has raised regarding the pandemic potential of the highly pathogenic avian influenza (HPAI H5N1 viruses. Consequently, there is an urgent need to develop an effective and safe vaccine against the divergent H5N1 influenza viruses. In the present study, we designed a tetra-branched multiple antigenic peptide (MAP-based vaccine, designated M2e-MAP, which contains the sequence overlapping the highly conserved extracellular domain of matrix protein 2 (M2e of a HPAI H5N1 virus, and investigated its immune responses and cross-protection against different clades of H5N1 viruses. Results Our results showed that M2e-MAP vaccine induced strong M2e-specific IgG antibody responses following 3-dose immunization of mice with M2e-MAP in the presence of Freunds' or aluminium (alum adjuvant. M2e-MAP vaccination limited viral replication and attenuated histopathological damage in the challenged mouse lungs. The M2e-MAP-based vaccine protected immunized mice against both clade1: VN/1194 and clade2.3.4: SZ/406H H5N1 virus challenge, being able to counteract weight lost and elevate survival rate following lethal challenge of H5N1 viruses. Conclusions These results suggest that M2e-MAP presenting M2e of H5N1 virus has a great potential to be developed into an effective subunit vaccine for the prevention of infection by a broad spectrum of HPAI H5N1 viruses.

  4. The effects of CO addition on the autoignition of H-2, CH4 and CH4/H-2 fuels at high pressure in an RCM

    NARCIS (Netherlands)

    Gersen, Sander; Darmeveil, Harry; Levinsky, Howard

    2012-01-01

    Autoignition delay times of stoichiometric and fuel-lean (phi = 0.5) H-2, H-2/CO, CH4, CH4/CO, CH4/H-2 and CH4/CO/H-2 mixtures have been measured in an Rapid Compression Machine at pressures ranging from 20 to 80 bar and in the temperature range 900-1100K. The effects of CO addition on the ignition

  5. Isoreticular rare earth fcu-MOFs for the selective removal of H 2 S from CO 2 containing gases

    KAUST Repository

    Bhatt, Prashant

    2017-05-04

    In this work, we present the implementation of reticular chemistry and the molecular building block approach to unveil the appropriateness of Rare Earth (RE) based Metal-Organic Frameworks (MOFs) with fcu topology for H2S removal applications. Markedly, RE-fcu-MOFs, having different pore apertures sizes in the range of 4.7-6.0 Å and different functionalities, showed excellent properties for the removal of H2S from CO2 and CH4 containing gases such as natural gas, biogas and landfill gas. A series of cyclic mixed gas breakthrough experiments were carried out on three isoreticular fcu-MOFs, containing linkers of different lengths (between 8.4 and 5 Å), by using simulated natural gas mixture containing CO2/H2S/CH4 (5%/5%/90%) under different adsorption and regeneration conditions. The fcu-MOF platform has good H2S removal capacity with a high H2S/CO2 selectivity, outperforming benchmark materials like activated carbon and Zeolites in many aspects. The comparison of H2S removal performance with the related structures of the RE-fcu-MOFs provides insightful information to shed light on the relationship between the structural features of the MOF and its associated H2S separation properties. The excellent H2S/CO2 and H2S/CH4 selectivity of these materials offer great prospective for the production of pure H2S, with acceptable levels of CO2for Claus process to produce elemental sulfur.

  6. Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage.

    Science.gov (United States)

    Fu, Jiale; Mu, Daobin; Wu, Borong; Bi, Jiaying; Cui, Hui; Yang, Hao; Wu, Hanfeng; Wu, Feng

    2018-05-31

    An amount (5 wt %) of lithium tungstate (Li 2 WO 4 ) as an additive significantly improves the cycle and rate performances of the LiNi 0.6 Co 0.2 Mn 0.2 O 2 electrode at the cutoff voltage of 4.6 V. The 5 wt % Li 2 WO 4 -mixed LiNi 0.6 Co 0.2 Mn 0.2 O 2 electrode delivers a reversible capacity of 199.2 mA h g -1 and keeps 73.1% capacity for 200 cycles at 1 C. It retains 67.4% capacity after 200 cycles at 2 C and delivers a discharge capacity of 167.3 mA h g -1 at 10 C, while those of the pristine electrode are only 44.7% and 87.5 mA h g -1 , respectively. It is shown that the structure of the LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode material is not affected by mixing Li 2 WO 4 . The introduced Li 2 WO 4 effectively restrains the LiPF 6 and carbonate solvent decomposition by consuming PF 5 at high cutoff voltage, forming a stable cathode/electrolyte interface film with low resistance.

  7. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture

    KAUST Repository

    Wang, Weizong

    2018-01-18

    Due to the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion have become major research areas. Many investigations have already been performed regarding the single component gases, i.e. CO2 splitting and CH4 reforming, as well as for two component mixtures, i.e. dry reforming of methane (CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps towards the influence of N2 impurities have been taken, i.e. CO2/N2 and CH4/N2. In this feature article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far, and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2 and H2O, to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes, as well as for investigating the influence of N2, O2 and H2O on these processes, and even to support plasma-based multi-reforming processes.

  8. Haliotis tuberculata hemocyanin (HtH): analysis of oligomeric stability of HtH1 and HtH2, and comparison with keyhole limpet hemocyanin KLH1 and KLH2.

    Science.gov (United States)

    Harris, J R; Scheffler, D; Gebauer, W; Lehnert, R; Markl, J

    2000-12-01

    The multimeric/higher oligomeric states of the two isoforms of Haliotis tuberculata hemocyanin (HtH1 and HtH2) have been assessed by transmission electron microscopy (TEM) of negatively stained specimens, for comparison with previously published structural data from keyhole limpet hemocyanin (KLH1 and KLH2) [see Harris, J.R., Gebauer, W., Guderian, F.U., Markl, J., 1997a. Keyhole limpet hemocyanin (KLH), I: Reassociation from Immucothel followed by separation of KLH1 and KLH2. Micron, 28, 31-41; Harris, J.R., Gebauer, W., Söhngen, S.M., Nermut, M.V., Markl, J., 1997b. Keyhole limpet hemocyanin (KLH). II: Characteristic reassociation properties of purified KLH1 and KLH2. Micron, 28, 43-56; Harris, J.R., Gebauer, W., Adrian, M., Markl, J., 1998. Keyhole limpet hemocyanin (KLH): Slow in vitro reassociation of KLH1 and KLH2 from Immucothel. Micron, 29, 329-339]. In purified samples of both HtH isoforms, the hollow cylindrical ca 8MDa didecamer predominates together with a small number of decamers, but tri- and longer multidecamers are detectable only in the HtH2. The stability of the two HtH isoforms under varying ionic conditions have been monitored, thereby enabling conditions for the production of stable decamers to be established. The ability of these decamers to reform multimers in the presence of 10 and 100mM concentrations of calcium and magnesium ions in Tris-HCl buffer (pH 7.4), and also of individual HtH1 and HtH2 subunits (produced by pH 9.6 dissociation in glycine-NaOH buffer), to reassociate in the presence of calcium and magnesium ions, has been assessed. For the HtH1 decamers, the predominant multimeric product is the didecamer at 10 and 100mM calcium and magnesium concentrations, whereas for the HtH2 decamers, large numbers of multidecamers are produced, with the reaction proceeding more completely at the higher calcium and magnesium concentration. With the HtH1 subunit, reassociation in the presence of 10 and 100mM calcium and magnesium ions yielded

  9. Synthesis of 1-(2,3-dihydroxypropyl)-2-nitro-1H-imidazole-2-14C and N-(2-hydroxyethyl)-2-(2-nitro-1H-imidazol-1-YL-2-14C)acetamide

    International Nuclear Information System (INIS)

    Fong, M.T.; Leaffer, M.A.

    1986-01-01

    We have prepared the 14 C-labeled analogs of NSC 261036, 1-(2,3-dihydroxypropyl)-2-nitro-1H-imidazole-2- 14 C, and NSC 301467, N-(2-hydroxyethyl)-2-(2-nitro-1H-imidazol-1-yl-2- 14 C) acetamide, for pharmacological, drug distribution, and mechanisms of action studies. The latter is an analog designed for lower toxicity and improved properties. The former is a metabolite of, and appears to be less toxic than, misonidazole. (author)

  10. One-dimensional Co(II)/Ni(II) complexes of 2-hydroxyisophthalate: Structures and magnetic properties

    International Nuclear Information System (INIS)

    Wang, Kai; Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong; Sun, Wei-Yin; Liang, Fu-Pei

    2015-01-01

    The solvothermal reactions of 2-hydroxyisophthalic acid (H 3 ipO) with M(NO 3 ) 2 ∙6H 2 O (M=Co, Ni) afforded two complexes [Co 2 (HipO) 2 (Py) 2 (H 2 O) 2 ] (1) and [Ni(HipO)(Py)H 2 O] (2) (Py=pyridine). They exhibit similar zig-zag chain structures with the adjacent two metal centers connected by a anti-syn bridging carboxylate group from the HipO 2− ligand. The magnetic measurements reveal the dominant antiferromagnetic interactions and spin-canting in 1 while ferromagnetic interactions in 2. Both of them exhibit magnetocaloric effect (MCE) with the resulting entropy changes (−ΔS m ) of 12.51 J kg −1 K −1 when ΔH=50 kOe at 3 K for 1 and 11.01 J kg −1 K −1 when ΔH=50 kOe at 3 K for 2, representing the rare examples of one-dimensional complexes with MCE. - Graphical abstract: Synopsis: Two Co(II)/Ni(II) complexes with zig-zag chain structures have been reported. 1-Co shows cant-antiferromagnetism while 2-Ni shows ferromagnetism. Magnetocaloric effect is also found in both of them. - Highlights: • Two one-dimensional Co(II)/Ni(II) complexes were solvothermally synthesized. • The Co-complex exhibits canted antiferromagnetism. • The Ni-complex exhibits ferromagnetism. • Both of the complexes display magnetocaloric effect

  11. Absorption homogenization at wavy melt films by CO{sub 2}-lasers in contrast to 1 μm-wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexander F.H., E-mail: alexander.kaplan@ltu.se

    2015-02-15

    Highlights: • The absorption distribution of 1 μm wavelength lasers compared to 10 μm CO{sub 2}-lasers across a wavy molten steel surface is calculated, at grazing angle of incidence. • For a wide range of surface waviness parameters the CO{sub 2}-laser shows a much more homogenizing absorption behaviour than 1 μm-lasers. • Although the interaction is very complex and non-linear, it is fundamental and very distinct between CO{sub 2}-lasers and 1 μm-lasers, due to their very different Fresnel-absorption characteristics. • The strong local absorption peaks for 1 μm-lasers can cause very strong local boiling and amplification of surface waves, in good correlation to empirical experimental trends. • Such differences can in turn have strong consequences during laser materials processing like laser keyhole welding, laser drilling or laser remote fusion cutting. - Abstract: For wavy metal melts, across a wide range of their topology parameters, lasers with about 1 μm wavelength experience the highest Fresnel absorption around the shoulders of the waves. Calculations show that this induces a strong peak of the absorbed power density of the laser beam. The high temperature gradients have the potential to cause very local boiling and growth of the valleys. In contrast, for a certain parameter category the small Brewster angle for the CO{sub 2}-laser partially homogenizes the temperatures by elevated absorption at domains of grazing incidence. This has the potential to cause opposite consequences on the process, like wave smoothing.

  12. Numerical simulation of H2S and CO2 generation during SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Perez, A.; Kamp, A.M. [CHLOE, UFR Science, University of Pau, 64000, Pau (France); Soleimani, H. (IFP School (France)); Darche, G. (TOTAL, Pau (France))

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but the production of undesirable gases occurs during this process. These gases are mainly hydrogen sulphide and carbon dioxide, generated through chemical reactions triggered by high temperatures and water presence. The aim of this paper is to create a kinetic model for H2S and CO2 generation and to insert it in a reservoir simulation. This model was then tested under steam injection conditions in an SAGD system using experimental data available in the literature. The model developed successfully reproduced gas plateaus at different temperatures and results from the test showed that the model's predicted gas emissions are of the same order of magnitude as the field results. This paper presented a new kinetic model which can predict H2S and CO2 emissions of a SAGD system and could thus be used in the design of treatment facilities.

  13. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex

    Science.gov (United States)

    Das, Prasanta; Lee, Yuan-Pern

    2014-06-01

    We have recorded infrared spectra of acetyl radical (CH3CO) and CH3-CO complex in solid para-hydrogen (p-H2). Upon irradiation at 248 nm of CH3C(O)Cl/p-H2 matrices, CH3CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (ν9), 2989.11), 2915.6 (ν2), 1880.5 (ν3), 1419.9 (ν10), 1323.2 (ν5), 836.6 (ν7), and 468.1 (ν8) cm-1 were observed. When CD3C(O)Cl was used, lines of CD3CO at 2246.2 (ν9), 2244.0 (ν1), 1866.1 (ν3), 1046.7 (ν5), 1029.7 (ν4), 1027.5 (ν10), 889.1 (ν6), and 723.8 (ν7) cm-1 appeared. Previous studies characterized only three vibrational modes of CH3CO and one mode of CD3CO in solid Ar. In contrast, upon photolysis of a CH3I/CO/p-H2 matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH3-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm-1. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH3CO can be readily produced from photolysis of CH3C(O)Cl because of the diminished cage effect in solid p-H2 but not from the reaction of CH3 + CO because of the reaction barrier. Even though CH3 has nascent kinetic energy greater than 87 kJ mol-1 and internal energy ˜42 kJ mol-1 upon photodissociation of CH3I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ˜27 kJ mol-1 for the formation of CH3CO from the CH3 + CO reaction; a barrierless channel for formation of a CH3-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H2.

  14. Peculiarities of the intermediate valence state of Ce in CeM2Si2 (M = Fe, Co, Ni) compounds

    International Nuclear Information System (INIS)

    Koterlyn, M.; Shcherba, I.; Yasnitskii, R.; Koterlyn, G.

    2007-01-01

    The results of thermoelectric power and the electrical resistivity measurements connected with the intermediate valence (IV) of Ce are presented for the compounds CeM 2 Si 2 (M = Fe, Co, Ni) in the temperature range of 4-800 K. It is shown that CeM 2 Si 2 are Kondo-lattices with the coherence scale T coh ∼ 60-80 K and the so-called single-site Kondo temperature T K ∼ 10 3 K. On the example of CeNi 2 Si 2 we have studied the changes in the structure of density of f states (f-DOS) near the Fermi energy caused by atomic substitutions. The results of structural, transport, magnetic, and Ce L III X-ray absorption spectra measurements in the series Ce 1-x La x Ni 2 Si 2 (0 ≤ x ≤ 0.6), Ce(Ni 1-y Cu y ) 2 Si 2 (0 ≤ y ≤ 0.6) and CeNi 2 (Si 1-z Ge z ) 2 (0 ≤ z ≤ 0.5) are presented. We found that the IV state of Ce in the CeM 2 Si 2 is an evidence of possible opening a wide pseudogap Δ ∼ kT K within the f-DOS structure slightly above the Fermi energy

  15. Synthesis and chemistry of the open-cage cobaltaheteroborane cluster [{(η(5)-C5Me5)Co}2B2H2Se2]: a combined experimental and theoretical study.

    Science.gov (United States)

    Barik, Subrat Kumar; Dorcet, Vincent; Roisnel, Thierry; Halet, Jean-François; Ghosh, Sundargopal

    2015-08-28

    Reaction of [(η(5)-C5Me5)CoCl]2 with a two-fold excess of [LiBH4·thf] followed by heating with an excess of Se powder produces the dicobaltaselenaborane species [{(η(5)-C5Me5)Co}2B2H2Se2], , in good yield. The geometry of resembles a nido pentagonal [Co2B2Se2] bipyramid with a missing equatorial vertex. It can alternatively be seen as an open cage triple-decker cluster. Isolation of permits its reaction with [Fe2(CO)9] to give heterometallic diselenametallaborane [{(η(5)-C5Me5)Co}Fe(CO)3B2H2Se2], . The geometry of is similar to that of with one of the [(η(5)-C5Me5)Co] groups replaced by the isolobal, two-electron fragment [Fe(CO)3]. Both new compounds have been characterized by mass spectrometry, and by (1)H, (11)B and (13)C NMR spectroscopy. The structural architectures have been unequivocally established by crystallographic analysis. In addition, density functional theory calculations were performed to investigate the bonding and electronic properties. The large HOMO-LUMO gaps computed for both clusters are consistent with their thermodynamic stability. Natural bond order calculations predict the absence of metal-metal bonding interaction.

  16. Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses. Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94 HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98 PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1 PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46 discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.

  17. A structural study of [CpM(CO)3H] (M = Cr, Mo and W) by single-crystal X-ray diffraction and DFT calculations: sterically crowded yet surprisingly flexible molecules.

    Science.gov (United States)

    Burchell, Richard P L; Sirsch, Peter; Decken, Andreas; McGrady, G Sean

    2009-08-14

    The single-crystal X-ray structures of the complexes [CpCr(CO)3H] 1, [CpMo(CO)3H] 2 and [CpW(CO)3H] 3 are reported. The results indicate that 1 adopts a structure close to a distorted three-legged piano stool geometry, whereas a conventional four-legged piano stool arrangement is observed for 2 and 3. Further insight into the equilibrium geometries and potential energy surfaces of all three complexes was obtained by DFT calculations. These show that in the gas phase complex 1 also prefers a geometry close to a four-legged piano stool in line with its heavier congeners, and implying strong packing forces at work for 1 in the solid state. Comparison with their isolelectronic group 7 tricarbonyl counterparts [CpM(CO)3] (M = Mn 4 and Re 5) illustrates that 1, 2 and 3 are sterically crowded complexes. However, a surprisingly soft bending potential is evident for the M-H moiety, whose order (1 approximately = 2 < 3) correlates with the M-H bond strength rather than with the degree of congestion at the metal centre, indicating electronic rather than steric control of the potential. The calculations also reveal cooperative motions of the hydride and carbonyl ligands in the M(CO)3H unit, which allow the M-H moiety to move freely, in spite of the closeness of the four basal ligands, helping to explain the surprising flexibility of the crowded coordination sphere observed for this family of high CN complexes.

  18. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    Science.gov (United States)

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  19. Relaxation of photogenerated carriers under He, H sub 2 , CO sub 2 and O sub 2 on ZnO

    CERN Document Server

    Han, C S; Jun, J

    1998-01-01

    The relaxation process of photogenerated carriers was investigated using conductivity measurement on ZnO under He,H sub 2 ,CO sub 2 and O sub 2. The process was well explained with the rate constant of reaction or recombination of hole and electron, k sub h and k sub e (k sub h >k sub e), respectively. Generally, k sub h increased with the pressure of the gases. The slope of k sub h with respect to the pressure increased in the order of H sub 2<=He<CO sub 2 , while k sub h of O sub 2 was sensitive to the history of the sample. The relaxation process on ZnO which was exposed to oxygen at 298 K and 573 K was observed during the illumination time. From the result, it was suggested that the rate constant of photo generated excess carriers was affected by the surface barrier of the semiconductor.

  20. Hydrogen/deuterium fractionation factors of the aqueous ligand of cobalt in Co(H2O)62+ and Co(II)-substituted carbonic anhydrase

    International Nuclear Information System (INIS)

    Kassebaum, J.W.

    1988-01-01

    The author has measured the hydrogen/deuterium fractionation factor for the rapidly exchanging aqueous ligands of cobalt in Co(H 2 O) 6 2+ and in three Co(II)-substituted isozymes of carbonic anhydrase. The fractionation factor was determined from NMR relaxation rates at 300 MHz of the protons of water in mixed solutions of H 2 O and D 2 O containing these complexes. In each case, the paramagnetic contribution to 1/T 2 was greater than to 1/T 1 , consistent with a chemical shift mechanism affecting 1/T 2 . The fractionation factors obtained from T 2 were 0.73 ± 0.02 for Co(H 2 O) 6 2+ , 0.72 ± 0.02 for Co(II)-substituted carbonic anhydrase I, 0.77 ± 0.01 for Co(II)-substituted carbonic anhydrase II, and 1.00 ± 0.07 for Co(Il)-substituted carbonic anhydrase III. He concluded that fractionation factors in these cases determined from T 1 and T 2 measured isotope preferences for different populations of ligand sites. Since T 2 has a large contribution from a chemical shift mechanism, the fractionation factor determined from T 2 has a large contribution of the fractionation of inner shell ligands. The fractionation factor of Co(H 2 O) 6 2+ was used to interpret the solvent hydrogen isotope effects on the formation of complexes of cobalt with the bidentate ligands glycine, N,N-dimethylglycine, and acetylacetone. The contribution of the fractionation factor of the inner water shell in Co(H 2 O) 6 2+ did not account completely for the measured isotope effect, and that the hydrogen/deuterium fractionation of outer shell water makes a large contribution to the isotope effect on the formation of these complexes

  1. Synthesis of {sup 99m}Tc(CO){sub 3}-deoxyuridine derivatives as potential HSV1-tk gene expression imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Young [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Department of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Oh, Seung Jun [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of)], E-mail: sjoh@amc.seoul.kr; Ryu, Jin Sook [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Choi, Seon-Joo [Division of Radioisotope Production and Application, Hanaro Center, Korea Atomic Energy Research Institute, Yusongku, Taejeon 305-600 (Korea, Republic of); Ha, Hyun-Joon [Department of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Moon, Dae Hyuk [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2008-04-15

    In this study, we synthesized {sup 99m}Tc(CO){sub 3}-2'-aminomethylpyridyl-2'-deoxyuridine ({sup 99m}Tc(CO){sub 3}-AMPDU) and {sup 99m}Tc(CO){sub 3}-aminoethylpyridyl-2'-deoxyuridine ({sup 99m}Tc(CO){sub 3}-AEPDU) as potential agents for imaging the expression of the non-invasive herpes simplex virus type-1 thymidine kinase. AMPDU and AEPDU were synthesized from uridine in five chemical steps and then labeled with [{sup 99m}Tc(CO){sub 3}(H{sub 2}O){sub 3}]{sup +} (370 MBq/0.5 mL) at 100 {sup o}C for 10 min. Under optimal conditions (0.5 and 1.0 mg for AMPDU and AEPDU and heating for 10 min), the labeling efficiency was 95.3{+-}2.8% for AMPDU and 94.2{+-}5.1% for AEPDU. To validate the chemical structure of {sup 99m}Tc(CO){sub 3}-labeled compounds, we also synthesized ReBr(CO){sub 3}-AMPDU and ReBr(CO){sub 3}-AEPDU by reacting [Et{sub 4}N][ReBr{sub 3}(CO){sub 3}] and AMPDU or AEPDU in methanol at 25 {sup o}C for 6 h. {sup 99m}Tc(CO){sub 3}-AMPDU and {sup 99m}Tc(CO){sub 3}-AEPDU had the same retention time on HPLC analysis as ReBr(CO){sub 3}-AMPDU and ReBr(CO){sub 3}-AEPDU. {sup 99m}Tc(CO){sub 3}-AMPDU and {sup 99m}Tc(CO){sub 3}-AEPDU had high radiochemical stabilities of 98.1{+-}1.5% and 98.0{+-}1.7% for 6 h, respectively.

  2. Effect of Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O Promoter Catalysts on H2, CO and CH4 Concentration by CO2 Gasification of Rosa Multiflora Biomass

    Directory of Open Access Journals (Sweden)

    Tursunov Obid

    2017-11-01

    Full Text Available The thermal behaviour of the Rosa mutiflora biomass by thermogravimetric analysis was studied at heating rate 3 K min−1 from ambient temperature to 950 °C. TGA tests were performed in high purity carbon dioxide (99 998% with a flow rate 200 ml/min and 100 mg of sample, milled and sieved to a particle size below 250 µm. Moreover, yields of gasification products such as hydrogen (H2, carbon monoxide (CO and methane (CH4 were determined based on the thermovolumetric measurements of catalytic (Ni/Al2O3-SiO2 and Ni/Al2O3-SiO2 with K2O promoter catalysts and non-catalytic gasification of the Rosa multiflora biomass. Additionally, carbon conversion degrees are presented. Calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the catalytic and non-catalytic CO2 gasification processes. A high temperature of 950 °C along with Ni/Al2O3-SiO2and Ni/Al2O3-SiO2 with K2O promoter catalysts resulted in a higher conversion of Rosa multiflora biomass into gaseous yield production with greatly increasing of H2 and CO contents. Consequently, H2 and CO are the key factors to produce renewable energy and bio-gases (synthesis gas. The parameters obtained during the experimental examinations enable a tentative assessment of plant biomasses for the process of large-scale gasification in industrial sectors.

  3. Experimental observation of permeability changes in dolomite at CO2 sequestration conditions.

    Science.gov (United States)

    Tutolo, Benjamin M; Luhmann, Andrew J; Kong, Xiang-Zhao; Saar, Martin O; Seyfried, William E

    2014-02-18

    Injection of cool CO2 into geothermally warm carbonate reservoirs for storage or geothermal energy production may lower near-well temperature and lead to mass transfer along flow paths leading away from the well. To investigate this process, a dolomite core was subjected to a 650 h, high pressure, CO2 saturated, flow-through experiment. Permeability increased from 10(-15.9) to 10(-15.2) m(2) over the initial 216 h at 21 °C, decreased to 10(-16.2) m(2) over 289 h at 50 °C, largely due to thermally driven CO2 exsolution, and reached a final value of 10(-16.4) m(2) after 145 h at 100 °C due to continued exsolution and the onset of dolomite precipitation. Theoretical calculations show that CO2 exsolution results in a maximum pore space CO2 saturation of 0.5, and steady state relative permeabilities of CO2 and water on the order of 0.0065 and 0.1, respectively. Post-experiment imagery reveals matrix dissolution at low temperatures, and subsequent filling-in of flow passages at elevated temperature. Geochemical calculations indicate that reservoir fluids subjected to a thermal gradient may exsolve and precipitate up to 200 cm(3) CO2 and 1.5 cm(3) dolomite per kg of water, respectively, resulting in substantial porosity and permeability redistribution.

  4. 2,2-Dimethyl-2,3-dihydro-1H-perimidine

    Directory of Open Access Journals (Sweden)

    Sarah Maloney

    2013-02-01

    Full Text Available The title compound, C13H14N2, was obtained from reaction of diaminonaphthalene with acetone. In both independent molecules in the asymmetric unit, the tricyclic perimidine consists of a planar (r.m.s. deviations = 0.0125 and 0.0181 Å naphthalene ring system and an envelope conformation C4N2 ringwith the NCN group hinged with respect to the naphthalene backbone by 36.9 (2 and 41.3 (2° in the two independent molecules. The methyl substituents are arranged approximately axial and equatorial on the apical C atom. In the crystal, one of the N—H groups of one independent molecule is involved in classical N—H...N hydrogen bonding. Short intermolecular (C/N—H...π(arene interactions, near the short T-shaped limit, link molecules in the absence of strong acceptors.

  5. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    International Nuclear Information System (INIS)

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-01-01

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  6. Layered P2-Na 2/3 Co 1/2 Ti 1/2 O 2 as a high-performance cathode material for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sabi, Noha; Doubaji, Siham; Hashimoto, Kazuki; Komaba, Shinichi; Amine, Khalil; Solhy, Abderrahim; Manoun, Bouchaib; Bilal, Essaid; Saadoune, Ismael

    2017-02-01

    Layered oxides are regarded as promising cathode materials for sodium-ion batteries. We present Na2/3Co1/2Ti1/2O2 as a potential new cathode material for sodium-ion batteries. The crystal features and morphology of the pristine powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cathode material is evaluated in galvanostatic charge-discharge and galvanostatic intermittent titration tests, as well as ex-situ X-ray diffraction analysis. Synthesized by a high-temperature solid state reaction, Na2/3Co1/2Ti1/2O2 crystallizes in P2-type structure with P6(3)/mmc space group. The material presents reversible electrochemical behavior and delivers a specific discharge capacity of 100 mAh g(-1) when tested in Na half cells between 2.0 and 4.2 V (vs. Na+/Na), with capacity retention of 98% after 50 cycles. Furthermore, the electrochemical cycling of this titanium-containing material evidenced a reduction of the potential jumps recorded in the NaxCoO2 parent phase, revealing a positive impact of Ti substitution for Co. The ex-situ XRD measurements confirmed the reversibility and stability of the material. No structural changes were observed in the XRD patterns, and the P2-type structure was stable during the charge/discharge process between 2.0 and 4.2 V vs. Na+/Na. These outcomes will contribute to the progress of developing low cost electrode materials for sodium-ion batteries. (C) 2017 Elsevier B.V. All rights reserved.

  7. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO{sub 2} IN 18 COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Ootsubo, Takafumi [Astronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, Asahikawa Campus, Hokumon 9, Asahikawa, Hokkaido 070-8621 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi, E-mail: ootsubo@astr.tohoku.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-10

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 {mu}m. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H{sub 2}O) at 2.7 {mu}m and carbon dioxide (CO{sub 2}) at 4.3 {mu}m. The fundamental vibrational band of carbon monoxide (CO) around 4.7 {mu}m and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-{mu}m region in some of the comets. With respect to H{sub 2}O, gas production rate ratios of CO{sub 2} have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO{sub 2}/H{sub 2}O production rate ratios in comets obtained so far. The CO{sub 2}/H{sub 2}O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within {approx}2.5 AU, since H{sub 2}O ice fully sublimates there. The CO{sub 2}/H{sub 2}O ratio in cometary ice spans from several to {approx}30% among the comets observed at <2.5 AU (13 out of the 17 comets). Alternatively, the ratio of CO/CO{sub 2} in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  8. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  9. Fischer-Tropsch Synthesis: Influence of CO Conversion on Selectivities H2/CO Usage Ratios and Catalyst Stability for a 0.27 percent Ru 25 percent Co/Al2O3 using a Slurry Phase Reactor

    Energy Technology Data Exchange (ETDEWEB)

    W Ma; G Jacobs; Y Ji; T Bhatelia; D Bukur; S Khalid; B Davis

    2011-12-31

    The effect of CO conversion on hydrocarbon selectivities (i.e., CH{sub 4}, C{sub 5+}, olefin and paraffin), H{sub 2}/CO usage ratios, CO{sub 2} selectivity, and catalyst stability over a wide range of CO conversion (12-94%) on 0.27%Ru-25%Co/Al{sub 2}O{sub 3} catalyst was studied under the conditions of 220 C, 1.5 MPa, H{sub 2}/CO feed ratio of 2.1 and gas space velocities of 0.3-15 NL/g-cat/h in a 1-L continuously stirred tank reactor (CSTR). Catalyst samples were withdrawn from the CSTR at different CO conversion levels, and Co phases (Co, CoO) in the slurry samples were characterized by XANES, and in the case of the fresh catalysts, EXAFS as well. Ru was responsible for increasing the extent of Co reduction, thus boosting the active site density. At 1%Ru loading, EXAFS indicates that coordination of Ru at the atomic level was virtually solely with Co. It was found that the selectivities to CH{sub 4}, C{sub 5+}, and CO{sub 2} on the Co catalyst are functions of CO conversion. At high CO conversions, i.e. above 80%, CH{sub 4} selectivity experienced a change in the trend, and began to increase, and CO{sub 2} selectivity experienced a rapid increase. H{sub 2}/CO usage ratio and olefin content were found to decrease with increasing CO conversion in the range of 12-94%. The observed results are consistent with water reoxidation of Co during FTS at high conversion. XANES spectroscopy of used catalyst samples displayed spectra consistent with the presence of more CoO at higher CO conversion levels.

  10. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries.

    Science.gov (United States)

    He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo

    2017-06-01

    In view of the importance of environmental protection and resource recovery, recycling of spent lithium-ion batteries (LIBs) and electrode scraps generated during manufacturing processes is quite necessary. An environmentally sound leaching process for the recovery of Li, Ni, Co, and Mn from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps was investigated in this study. Eh-pH diagrams were used to determine suitable leaching conditions. Operating variables affecting the leaching efficiencies for Li, Ni, Co, and Mn from LiNi 1/3 Co 1/3 Mn 1/3 O 2 , such as the H 2 SO 4 concentration, temperature, H 2 O 2 concentration, stirring speed, and pulp density, were investigated to determine the most efficient conditions for leaching. The leaching efficiencies for Li, Ni, Co, and Mn reached 99.7% under the optimized conditions of 1M H 2 SO 4 , 1vol% H 2 O 2 , 400rpm stirring speed, 40g/L pulp density, and 60min leaching time at 40°C. The leaching kinetics of LiNi 1/3 Co 1/3 Mn 1/3 O 2 were found to be significantly faster than those of LiCoO 2 . Based on the variation in the weight fraction of the metal in the residue, the "cubic rate law" was revised as follows: θ(1-f) 1/3 =(1-kt/r 0 ρ), which could characterize the leaching kinetics optimally. The activation energies were determined to be 64.98, 65.16, 66.12, and 66.04kJ/mol for Li, Ni, Co, and Mn, respectively, indicating that the leaching process was controlled by the rate of surface chemical reactions. Finally, a simple process was proposed for the recovery of valuable metals from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 3-Methyl-1-(prop-2-en-1-ylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Youssef Ramli

    2010-07-01

    Full Text Available In the molecule of the title compound, C12H12N2O, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15 Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2°. The crystal packing is stabilized by offset π–π stacking between the quinoxaline rings [centroid–centroid distance = 3.8832 (9 Å].

  12. Enhanced competitive adsorption of CO2 and H2 on graphyne: A density functional theory study

    Directory of Open Access Journals (Sweden)

    Hyuk Jae Kwon

    2017-12-01

    Full Text Available Adsorption using carbon-based materials has been established to be a feasible method for separating carbon dioxide and hydrogen to mitigate the emission of carbon dioxide into the atmosphere and for the collection of fuel for energy sources, simultaneously. We carried out density functional theory calculation with dispersion correction to investigate the physisorption characteristics of carbon allotropes such as graphene and graphyne for the competitive adsorption of CO2 and H2. It is worth noting that the graphyne represented preferable adsorption energies, short bond lengths and energy charges for both gases, compared with the characteristics observed with graphene. We found that in graphyne, both the affinitive adsorption of CO2, and the competitive adsorption of CO2 and H2, took place at the hollow site between acetylene links, which do not exist in graphene. We demonstrate that in the presence of H2, the CO2 adsorption selectivity of graphyne is higher than that of graphene, because of the improved electronic properties resulting from the acetylene links.

  13. Synthesis, Characterization and Biological Evaluation of Mononuclear Dichloro-bis[2-(2-chloro-6,7-substituted Quinolin-3-yl-1H-benzo[d]imidazole]Co(II Complexes

    Directory of Open Access Journals (Sweden)

    Minaxi Samatbhai Maru

    2015-06-01

    Full Text Available A series of Co(II complexes 3¢a-g of 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g were prepared and characterized by various spectroscopic and physico-chemical methods viz. FT-IR, ESI mass, 1H NMR, 13C NMR and UV-Visible spectroscopy, Thermogravimetric analysis, Magnetic susceptibility, Molar conductance and Elemental analysis. The 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g have been synthesized by cyclocondensation of benzene-1,2-diamine with 2-chloroquinoline-3-carbaldehydes by using ceric ammonium nitrate as a catalyst in presence of hydrogen peroxide as an oxidant. The structures of all ligands were confirmed by IR, Mass, UV-Visible, 1H NMR and 13C NMR spectroscopy. All ligands 3a-g and their Co(II complexes 3¢a-g were screened for their in vitro antimicrobial activity using twofold serial dilution technique against standard MTCC strains of two Gram-positive Staphylococcus aureus and Streptococcus pyogenes, two Gram-negative Escherichia coli and Pseudomonas aeruginosa bacteria and three Candida albicans, Aspergillus niger and Aspergillus clavatus fungus in comparison with standard drugs. All ligands 3a-g and complexes 3¢a-g also evaluated for antimycobacterial activity against standard Mycobacterium tuberculosis H37Rv strain. DOI: http://dx.doi.org/10.17807/orbital.v7i2.530

  14. Synthesis of (R)-5-(Di[2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one-([3H]U-86170) and (R)-5-([2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo(4,5,1-ij) quinolin-2(1H)-one ([3H]U-91356)

    International Nuclear Information System (INIS)

    Moon, M.W.; Hsi, R.S.P.

    1992-01-01

    (R)-5-(diallylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (12b) was prepared in 9% overall yield from 3-aminoquinoline. Reaction of 12b in ethyl acetate with tritium gas in presence of a 5% platinum on carbon catalyst afforded a mixture of (R)-5-(di[2,3- 3 H 2 ]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]-quinolin-2(1H)-one ([ 3 H]U-86170, 69 Ci/mmol) and (R)-5-([2,3- 3 H 2 ]-propylamino)5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H)-one ( [ 3 H]U-91356, 34 Ci/mmol) which was separated by preparative reverse-phase chromatography. U-86170 and U-91356 are potent dopamine D2 agonists. The labelled compounds are useful for drug disposition studies. [ 3 H]U-86170 is also useful as a dopamine D2 agonist radioligand for receptor binding studies. (author)

  15. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Lee, Myung-Hun; Komaba, Shinichi; Kumagai, Naoaki; Sun, Yang-Kook

    2005-01-01

    In attempts to prepare layered Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 , hydrothermal method was employed. The hydrothermal precursor, [Ni 1/3 Co 1/3 Mn 1/3 ](OH) 2 , was synthesized via a coprecipitation route. The sphere-shaped powder precursor was hydrothermally reacted with LiOH aqueous solution at 170 deg. C for 4 days in autoclave. From X-ray diffraction and scanning electron microscopic studies, it was found that the as-hydrothermally prepared powders were crystallized to layered α-NaFeO 2 structure and the particles had spherical shape. The as-prepared Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 delivered an initial discharge of about 110 mA h g -1 due to lower crystallinity. Heat treatment of the hydrothermal product at 800 deg. C was significantly effective to improve the structural integrity, which consequently affected the increase in the discharge capacity to 157 (4.3 V cut-off) and 182 mA h g -1 (4.6 V cut-off) at 25 deg. C with good reversibility

  16. Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions.

    Science.gov (United States)

    Lee, Jun-Yeop; Yun, Jong-Il

    2013-07-21

    The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.

  17. Selective photocatalytic reduction of CO{sub 2} by H{sub 2}O/H{sub 2} to CH{sub 4} and CH{sub 3}OH over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad, E-mail: mtahir@cheme.utm.my [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, Punjab (Pakistan); Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia)

    2016-12-15

    Highlights: • Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalysts tested for CO{sub 2} photoreduction with H{sub 2}O/H{sub 2}. • Production of CH{sub 4} and CH{sub 3}OH depends on reductants type and metal-loading to TiO{sub 2}. • CH{sub 4} production over Cu-In/TiO{sub 2} was 1.5 fold more than In/TiO{sub 2} and 5 times the TiO{sub 2}. • The Cu-promoted CH{sub 3}OH production while In gave more CH{sub 4} with water vapors. • The H{sub 2} reductant gave negative effect for CH{sub 4} but enhanced CH{sub 3}OH production. - Abstract: Photocatalytic CO{sub 2} reduction by H{sub 2}O and/or H{sub 2} reductant to selective fuels over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N{sub 2} adsorption-desorption, UV–vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO{sub 2}, oxidized as Cu{sup 2+} and In{sup 3+}, promoted efficient separation of photo-generated electron/hole pairs (e{sup −}/h{sup +}). The results indicate that the reduction rate of CO{sub 2} by H{sub 2}O to CH{sub 4} approached to 181 μmol g{sup −1} h{sup −1} using 0.5% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst, a 1.53 fold higher than the production rate over the 3% In{sub 2}O{sub 3}/TiO{sub 2} and 5 times the amount produced over the pure TiO{sub 2}. In addition, Cu was found to promote efficient production of CH{sub 3}OH and yield rate reached to 68 μmol g{sup −1} h{sup −1} over 1% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H{sub 2} reductant was less favorable for CH{sub 4} production, yet a significant amount of CH{sub 4} and CH{sub 3}OH were obtained using a mixture of H{sub 2}O/H{sub 2} reductant. Therefore, Cu-loaded In{sub 2}O{sub 3}/TiO{sub 2} catalyst has shown to be capable for

  18. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.

    1991-01-01

    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  19. 1-(1-Hydroxy-9H-carbazol-2-yl-3-methylbut-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Matthias Zeller

    2010-02-01

    Full Text Available The title compound, C17H15NO2, was prepared as one of two products of the AlCl3/POCl3-catalysed reaction of 9-carbazol-1-ol with 3,3-dimethyacrylic acid. It crystallizes with two crystallographically independent molecules, A and B, which are virtually superimposable but not related by any translational or other pseudosymmetry. Both independent molecules are almost planar [r.m.s. deviations from planarity = 0.053 (1 and 0.079 (1 Å in A and B, respectively] and contain an intramolecular O—H...O hydrogen bond. Each type of molecules is connected via pairs of N—H...O hydrogen bonds, forming centrosymmetric A2 and B2 dimers which are, in turn, arranged in offset π-stacks extending along the a-axis direction. The offset of the dimers and the tilt angle of the molecules allows the formation of alternating C—H...π interactions between A and B molecules of parallel stacks.

  20. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).

    Science.gov (United States)

    Pandey, Krishna K

    2012-03-21

    Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of

  1. Adsorption Isotherms of Cs+, Co2+, Zn2+ and Eu3+ on Zirconium Vanadate Ion-Exchanger

    International Nuclear Information System (INIS)

    Shady, S.A.; El-Ashery, S.M.; El-Naggar, I.M.

    2009-01-01

    Zirconium vanadate had been prepared by the dropwise addition of 0.1 M sodium vanadate and 0.1 M zirconyl chloride by molar ratio of zirconium/vanadium 2. Exchange isotherms for Cs + /H + , Co 2+ /H + ,Zn 2+ /H + and Eu 3+ /H + have been determined at 25, 40 and 60 degree C. Besides, it was proved that cesium, cobalt, zinc and europium are chemically adsorbed. Moreover, the heat of adsorption of these ions on zirconium vanadate had been calculated and indicated that zirconium vanadate is of endothermic behavior towards these ions

  2. Enhancing caries resistance with a short-pulsed CO2 9.3-μm laser: a laboratory study (Conference Presentation)

    Science.gov (United States)

    Rechmann, Peter; Rechmann, Beate M.; Groves, William H.; Le, Charles; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2016-02-01

    The objective of this laboratory study was to test whether irradiation with a new 9.3µm microsecond short-pulsed CO2-laser enhances enamel caries resistance with and without additional fluoride applications. 101 human enamel samples were divided into 7 groups. Each group was treated with different laser parameters (Carbon-dioxide laser, wavelength 9.3µm, 43Hz pulse-repetition rate, pulse duration between 3μs to 7μs (1.5mJ/pulse to 2.9mJ/pulse). Using a pH-cycling model and cross-sectional microhardness testing determined the mean relative mineral loss delta Z (∆Z) for each group. The pH-cycling was performed with or without additional fluoride. The CO2 9.3μm short-pulsed laser energy rendered enamel caries resistant with and without additional fluoride use.

  3. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  4. CO2 Reforming of CH4 by Atmospheric Pressure Abnormal Glow Plasma

    International Nuclear Information System (INIS)

    Chen Qi; Dai Wei; Tao Xumei; Yu Hui; Dai Xiaoyan; Yin Yongxiang

    2006-01-01

    A novel plasma atmospheric pressure abnormal glow discharge was used to investigate synthesis gas production from reforming methane and carbon dioxide. Special attentions were paid to the discharge characteristics and CH 4 , CO 2 conversion, H 2 , CO selectivity, and ratio of H 2 /CO varied with the changing of discharging power, the total flux, and the ratio of CH 4 /CO 2 . Experiments were performed in wider operation variables, the discharging power of 240 to 600 W, the CH 4 /CO 2 of 0.2 to 1.0 and the total flux of 140 to 500 mL/min. The experiments showed that the conversion of CH 4 and CO 2 was up to 91.9% and 83.2%, the selectivity of CO and H 2 was also up to 80% and 90% and H 2 /CO mole ratio was 0.2 to 1.2, respectively. A brief analysis for discharge characteristics and the experimental results were given

  5. Thermodynamic modeling of the CaO-SiO2-CaCO3-HCaCO2O closed and open system at 25ºC

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    2003-06-01

    Full Text Available This paper reports on a thermodynamic calculation-based study of the CaO-SiOCaCO2-CaCOCaCO3-HCaCO2O closed system at 25 °C, conducted to determine the range of carbonate ion concentrations at which each phase of the system is stable. Portlandite (CH and the CSH gel were found to be stable for carbonate ion concentrations of less than or equal to 7.62 X 10-3 mM/kg and 1.62 x 10-2 mM/kg, respectively. The CSH gel was found to remain stable in the system at pH values ranging from 10.18 to 10.48. In the CaO-SiO2-H2O open system at 25 °C, likewise studied, with PCO2 held constant at atmospheric values, only hydrated silica (SH and calcite were found to be stable.En este trabajo se estudia el sistema CaO2-CaCO3-H2O, cerrado y a 25 ºC a través de cálculos termodinámicos, y se determina el rango de concentración de ion carbonato en el que son estables cada una de las fases del sistema. Se concluye que la portlandita (CH y el gel CSH son estables para concentraciones de ion carbonato iguales o inferiores a 7,62 X 10-3 niM/kg y 1,62 x 10-2 mM/kg respectivamente. El rango de pH en el que el gel CSH es estable en el sistema es 10,18-10,48. También se estudia el sistema CaO-SiO2-H2O a 25 °C, en sistema abierto a PCO2 constante e igual a la de dicho gas en la atmósfera, encontrando que solo la sílice hidratada (SH y la calcita son estables en dicho sistema.

  6. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  7. Solubility Modeling of the Binary Systems Fe(NO3)3–H2O, Co(NO3)2H2O and the Ternary System Fe(NO3)3–Co(NO3)2H2O with the Extended Universal Quasichemical (UNIQUAC) Model

    DEFF Research Database (Denmark)

    Arrad, Mouad; Kaddami, Mohammed; Goundali, Bahija El

    2016-01-01

    Solubility modeling in the binary system Fe(NO3)3–H2O, Co(NO3)2H2O and the ternary system Fe(NO3)3–Co(NO3)2H2O is presented. The extended UNIQUAC model was applied to the thermodynamic assessment of the investigated systems. The model parameters obtained were regressed simultaneously using...... the available databank but with more experimental points, recently published in the open literature. A revision of previously published parameters for the cobalt ion and new parameters for the iron(III) nitrate system are presented. Based on this set of parameters, the equilibrium constants of hydrates...

  8. The pH and pCO2 dependence of sulfate reduction in shallow-sea hydrothermal CO2 – venting sediments (Milos Island, Greece)

    Science.gov (United States)

    Bayraktarov, Elisa; Price, Roy E.; Ferdelman, Timothy G.; Finster, Kai

    2013-01-01

    Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive 35S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release. Sediments differed in their physicochemical characteristics with distance from the main site of fluid discharge. Adjacent to the vent site (T ~40–75°C, pH ~5), maximal sulfate reduction rates (SRR) were observed between pH 5 and 6. SR in hydrothermally influenced sediments decreased at neutral pH. Sediments unaffected by hydrothermal venting (T ~26°C, pH ~8) expressed the highest SRR between pH 6 and 7. Further experiments investigating the effect of pCO2 on SR revealed a steep decrease in activity when the partial pressure increased from 2 to 3 bar. Findings suggest that sulfate reducing microbial communities associated with hydrothermal vent system are adapted to low pH and high CO2, while communities at control sites required a higher pH for optimal activity. PMID:23658555

  9. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2

    International Nuclear Information System (INIS)

    Li, Su-Juan; Du, Ji-Min; Zhang, Jia-Ping; Zhang, Meng-Jie; Chen, Jing

    2014-01-01

    We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H 2 O 2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoO x NPs or graphene sheets only, the new electrode displays larger oxidative current response to H 2 O 2 , probably due to the synergistic effects between the graphene sheets and the CoO x NPs. The sensor responds to H 2 O 2 with a sensitivity of 148.6 μA mM1 cm −2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H 2 O 2 in hydrogen peroxide samples. (author)

  10. Parameters of thermoelectric power and electronic structure of Yb-based compounds of YbM2X2(M=Fe,Co,Ni,Cu; X=Si,Ge) type

    International Nuclear Information System (INIS)

    Levin, E.M.; Kuzhel', B.S.

    1990-01-01

    Thermoelectric power of Yb-based intermetallic alloys YbM 2 Si 2 (M-Co,Ni,Cu) and YbM 2 Ge 2 (M=Fe,Co,Ni) have been investigated and found to have anomalous low-temperature peaks conditioned by intermediate Yb valency. Calculation of electronic structure parameters performed in frames of the localized Fermi-liquid model using experimental data on the thermoelectric power is in good agreement with results of YbCu 2 Si 2 band structure calculation based on the experimental value of the electronic heat capacity with regard for the (2J+1) - fold Yb 2+ degeneration

  11. Characteristics of CO2 release from forest soil in the mountains near Beijing.

    Science.gov (United States)

    Sun, Xiang Yang; Gao, Cheng Da; Zhang, Lin; Li, Su Yan; Qiao, Yong

    2011-04-01

    CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from - 341 to 1,193 mg m(-2) h(-1), and the mean value over all three forests and sampling times was 286 mg m(-2) h(-1). CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.

  12. Evaluation of Ca3(Co,M2O6 (M=Co, Fe, Mn, Ni as new cathode materials for solid-oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Fushao Li

    2015-10-01

    Full Text Available Series compounds Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni with hexagonal crystal structure were prepared by sol–gel route as the cathode materials for solid oxide fuel cells (SOFCs. Effects of the varied atomic compositions on the structure, electrical conductivity, thermal expansion and electrochemical performance were systematically evaluated. Experimental results showed that the lattice parameters of Ca3(Co0.9Fe0.12O6 and Ca3(Co0.9Mn0.12O6 were both expanded to certain degree. Electron-doping and hole-doping effects were expected in Ca3(Co0.9Mn0.12O6 and Ca3(Co0.9Ni0.12O6 respectively according to the chemical states of constituent elements and thermal-activated behavior of electrical conductivity. Thermal expansion coefficients (TEC of Ca3(Co0.9M0.12O6 were measured to be distributed around 16×10−6 K−1, and compositional elements of Fe, Mn, and Ni were especially beneficial for alleviation of the thermal expansion problem of cathode materials. By using Ca3(Co0.9M0.12O6 as the cathodes operated at 800 °C, the interfacial area-specific resistance varied in the order of M=Co=Mn, and the over-potential increased in the order of M=Fe≈M=Co=Ni. Among all of these compounds, Ca3(Co0.9Fe0.12O6 showed the best electrochemical performance and the power density as high as ca. 500 mW cm−2 at 800 °C achieved in the single cell with La0.8Sr0.2Ga0.83Mg0.17O2.815 as electrolyte and Ni–Ce0.8Sm0.2O1.9 as anode. Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni can be used as the cost-effective cathode materials for SOFCs.

  13. NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar

    International Nuclear Information System (INIS)

    Jeong Park; Kyunghwan Lee; Keeman Lee

    2002-01-01

    Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H 2 /CO 2 /Ar have been numerically simulated with detailed chemistry. The combination of H 2 , CO 2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO 2 . A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO 2 , N 2 O and Fenimore are taken into account to separately evaluate the effects of CO 2 addition on NO emission characteristics. The increase of added CO 2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO 2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N 2 O and NO 2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO 2 quantity increase, NO production is remarkably augmented. (Author)

  14. Technologies for direct production of flexible H2/CO synthesis gas

    International Nuclear Information System (INIS)

    Song Xueping; Guo Zhancheng

    2006-01-01

    The use of synthesis gas offers the opportunity to furnish a broad range of environmentally clean fuels and high value chemicals. However, synthesis gas manufacturing systems based on natural gas are capital intensive, and hence, there is great interest in technologies for cost effective synthesis gas production. Direct production of synthesis gas with flexible H 2 /CO ratio, which is in agreement with the stoichiometric ratios required by major synthesis gas based petrochemicals, can decrease the capital investment as well as the operating cost. Although CO 2 reforming and catalytic partial oxidation can directly produce desirable H 2 /CO synthesis gas, they are complicated and continued studies are necessary. In fact, direct production of flexible H 2 /CO synthesis gas can be obtained by optimizing the process schemes based on steam reforming and autothermal reforming as well as partial oxidation. This paper reviews the state of the art of the technologies

  15. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties

    Science.gov (United States)

    Li, Jingfa; Xiong, Shenglin; Li, Xiaowei; Qian, Yitai

    2013-02-01

    A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo2O4 and CoMn2O4 quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn2O4 pores than those of MnCo2O4 are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g-1, the resultant MnCo2O4 and CoMn2O4 quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g-1, respectively. In particular, the MnCo2O4 samples could deliver a reversible capacity as high as 610 mA h g-1 even at a higher current density of 400 mA g-1 with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo2O4 microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li+ insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co

  16. Biological H{sub 2} from syngas and from H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Maness, P.C.; Markov, S.; Martin, S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    The two stand-alone objectives of the research are to economically produce neat H{sub 2} in the near term from biomass (thermally gasified to syngas) and in the mid term from H{sub 2}O using cyanobacteria or algae with an oxygen-tolerant bacterial hydrogenase. Photosynthetic bacteria have four different terminal enzymes that mediate their H{sub 2} metabolisms-nitrogenase, uptake hydrogenase, fermentative hydrogenase, and carbon monoxide-linked hydrogenase. Each has been microbiologically and biochemically examined for their potential to specifically generate H{sub 2} in large-scale processes. Based on measurements of maximal activities, stabilities, energy requirements, equilibria, and partial pressures of the H{sub 2} producing reactions, the CO-linked hydrogenase is easily the most suited for practical applications. The enzyme mediates H{sub 2} production from CO at rates up to 1.5 mmol/min/g cell dry weight at near ambient temperature and pressure. Hydrogen can be produced and evolved at linear rates up to at least 2 atmospheres of partial pressure (100% CO). The rate-limiting step with high cell density suspensions is the mass transfer of CO into the aqueous phase. Bioreactor designs have been examined which enhance the mass transfer. Hollow-fiber bioreactors with bacterial cells immobilized on the fiber surfaces evolve H{sub 2} at ambient pressure at rates of about 0.3-0.7 mmol/min/g cdw. One such reactor has been producing H{sub 2} from CO continuously for 9 months with only occasional changes of liquid medium. A trickle-filter reactor with bacteria immobilized on beads removed from a bulk water phase and a pumped-bubble coil reactor with bacteria in suspension are also being examined.

  17. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture

    KAUST Repository

    Wang, Weizong; Snoeckx, Ramses; Zhang, Xuming; Cha, Min; Bogaerts, Annemie

    2018-01-01

    performed regarding the single component gases, i.e. CO2 splitting and CH4 reforming, as well as for two component mixtures, i.e. dry reforming of methane (CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2

  18. Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its use in Supercapacitors.

    Science.gov (United States)

    Thi Xuyen, Nguyen; Ting, Jyh-Ming

    2017-12-06

    Molybdenum disulfide (MoS 2 ) nanoflowers consisting of hybridized 1T/2H phases have been synthesized by using a microwave-assisted hydrothermal (MTH) method. The concentration of the 1T phase, ranging from 40 % to 73 %, is controlled by simply adjusting the ratio of the Mo and S precursors. By using the hybridized 1T/2H MoS 2 as an electrode material, it was demonstrated that the resulting supercapacitor performance is dominated by the 1T phase concentration. It was found that a supercapacitor with 73 % 1T phase exhibits excellent capacitance of 259 F g -1 and great cyclic stability after 1000 cycles. The formation mechanism of the MHT-synthesized hybridized 1T/2H MoS 2 is also reported. More importantly, the mechanism also explains the observed relationship between the 1T phase concentration and the ratio of the Mo and S precursors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancement of electrochemical performance of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 by surface modification with MnO_2

    International Nuclear Information System (INIS)

    Guo, Xin; Cong, Li-Na; Zhao, Qin; Tai, Ling-Hua; Wu, Xing-Long; Zhang, Jing-Ping; Wang, Rong-Shun; Xie, Hai-Ming; Sun, Li-Qun

    2015-01-01

    LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is successfully coated with MnO_2 by a chemical deposition method. The X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) results demonstrate that MnO_2 forms a thin layer on the surface of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 without destroying the crystal structure of the core material. Compared with pristine LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2, the MnO_2-coated sample shows enhanced electrochemical performance especially the rate capability. Even at a current density of 750 mA g"−"1, the discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is 155.15 mAh g"−"1, while that of the pristine electrode is only 132.84 mAh g"−"1 in the range of 2.5–4.5 V. The cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) curves show that the MnO_2 coating layer reacts with Li"+ during cycling, which is responsible for the higher discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2. Electrochemical impedance spectroscopy (EIS) results confirmed that the MnO_2 coating layer plays an important role in reducing the charge transfer resistance on the electrolyte–electrode interfaces. - Highlights: • MnO_2 coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 cathode material is synthesized for the first time. • MnO_2 offers available sites for insertion of extracted lithium. • The preserved surface and crystal structures results in the improved kinetics.

  20. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-08-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air–sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air–sea CO2 uptake of 10.6 mmol m−2 sea ice d−1 or to 3.3 ton km−2 ice floe week−1. This is markedly higher than the estimated primary production within the ice floe of 0.3–1.3 mmol m−2 sea ice d−1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  1. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan M s 8.0 earthquake in western Sichuan, China.

    Science.gov (United States)

    Zhou, Xiaocheng; Chen, Zhi; Cui, Yueju

    2016-10-01

    The concentrations and flux of CO2, (222)Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean [Formula: see text] of -20.4 ‰ and by a mean CO2 flux of 88.1 g m(-2) day(-1), which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m(-2) day(-1) in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m(-2) s(-1); (3) the soil Hg flux was lower, ranging from -2.5 to 18.7 n g m(-2h(-1) and increased from south to north. The mean flux over the all profiles was 4.2 n g m(-2h(-1). The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km(2) were approximately 0.57 Mt year(-1) and 688.19 g year(-1). It is recommended that land-use planners should

  2. An analysis of pH, pO2 and pCO2 in the peritoneal fluid of dogs with ascites of various etiologies.

    Science.gov (United States)

    Glińska-Suchocka, K; Sławuta, P; Jankowski, M; Kubiak, K; Spużak, J; Borusewicz, P

    2016-01-01

    The aim of the study was to assess pH, pO2 and pCO2 in peritoneal fluid. The study was conducted on a group of 22 dogs with symptoms of ascites. Group 1 consisted of 4 dogs with adenocarcinoma, group 2--of 6 dogs with glomerulonephritis, group 3 of 8 dogs with hepatic cirrhosis and group 4 of 4 dogs with bacterial peritonitis. An abdominal cavity puncture was performed in all dogs and the fluid was drawn into a heparinized syringe in order to assess pH, pO2 and pCO2 . The analysis of pH in the peritoneal fluid revealed statistically significant differences between group 4 and groups 1 (p=0.01), 2 (p=0.01), and 3 (p=0.01). The lowest pH value compared to the other studied groups was recorded in group 4. In group 4, the pO2 was the lowest compared to the other groups (group 1 p=0.01, group 2 p=0.01, group 3 p=0.01). The value of pCO2 was the highest in group 4 compared to groups 1, 2, and 3. The study found statistically significant differences in pH, pCO2 and pCO2 between group 4 (the group of dogs with bacterial peritonitis) and the other groups of dogs. This was probably linked to the pathogenesis of peritonitis. As a result of an inflammatory reaction within the peritoneal cavity, there is an increase in fibrin accumulations leading to a decreased oxygen supply causing the oxidative glucose metabolism to change into a non-oxidative glucose metabolism. This, in turn, causes a decrease in pH, acidosis, and a low oxidoreduction potential. It also impairs phagocytosis and activates proteolytic enzymes which create ideal conditions for the growth of anaerobic bacteria. The obtained results indicate that the pH, pO2 and pCO2 may be used to differentiate bacterial peritonitis from ascites of other etiologies.

  3. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    Science.gov (United States)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  4. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O2, pH, and CO 2 Gradients in the Rhizosphere.

    Science.gov (United States)

    Koop-Jakobsen, Ketil; Mueller, Peter; Meier, Robert J; Liebsch, Gregor; Jensen, Kai

    2018-01-01

    In many wetland plants, belowground transport of O 2 via aerenchyma tissue and subsequent O 2 loss across root surfaces generates small oxic root zones at depth in the rhizosphere with important consequences for carbon and nutrient cycling. This study demonstrates how roots of the intertidal salt-marsh plant Spartina anglica affect not only O 2 , but also pH and CO 2 dynamics, resulting in distinct gradients of O 2 , pH, and CO 2 in the rhizosphere. A novel planar optode system (VisiSens TD ® , PreSens GmbH) was used for taking high-resolution 2D-images of the O 2 , pH, and CO 2 distribution around roots during alternating light-dark cycles. Belowground sediment oxygenation was detected in the immediate vicinity of the roots, resulting in oxic root zones with a 1.7 mm radius from the root surface. CO 2 accumulated around the roots, reaching a concentration up to threefold higher than the background concentration, and generally affected a larger area within a radius of 12.6 mm from the root surface. This contributed to a lowering of pH by 0.6 units around the roots. The O 2 , pH, and CO 2 distribution was recorded on the same individual roots over diurnal light cycles in order to investigate the interlinkage between sediment oxygenation and CO 2 and pH patterns. In the rhizosphere, oxic root zones showed higher oxygen concentrations during illumination of the aboveground biomass. In darkness, intraspecific differences were observed, where some plants maintained oxic root zones in darkness, while others did not. However, the temporal variation in sediment oxygenation was not reflected in the temporal variations of pH and CO 2 around the roots, which were unaffected by changing light conditions at all times. This demonstrates that plant-mediated sediment oxygenation fueling microbial decomposition and chemical oxidation has limited impact on the dynamics of pH and CO 2 in S. anglica rhizospheres, which may in turn be controlled by other processes such as root

  5. Modeling the Deep Impact Near-nucleus Observations of H2O and CO2 in Comet 9P/Tempel 1 Using Asymmetric Spherical Coupled Escape Probability

    Science.gov (United States)

    Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.

    2018-04-01

    We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).

  6. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  7. Emission of SO2, CO2, and H2S from Augustine Volcano, 2002-2008: Chapter 26 in The 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    McGee, Kenneth A.; Doukas, Michael P.; McGimsey, Robert G.; Neal, Christina A.; Wessels, Rick L.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.

    2010-01-01

    Airborne surveillance of gas emissions from Augustine Volcano and other Cook Inlet volcanoes began in 1990 to identify baseline emission levels during noneruptive conditions. Gas measurements at Augustine for SO2, CO2, and H2S showed essentially no evidence of anomalous degassing through spring 2005. Neither did a measurement on May 10, 2005, right after the onset of low level seismicity and inflation. The following measurement, on December 20, 2005, showed Augustine to be degassing about 600 metric tons per day (t/d) of SO2, and by January 4, 2006, only 7 days before the first explosive event, SO2 emissions had climbed to ten times that amount. Maximum emission rates measured during the subsequent eruption were: 8,930 t/d SO2 (February 24, 2006), 1,800 t/d CO2 (March 9, 2006), and 4.3 t/d H2S (January 19, 2006). In total, 45 measurements for SO2 were made from December 2005 through the end of 2008, with 19 each for CO2 and H2S during the same period. Molar CO2/SO2 ratios averaged about 1.6. In general, SO2 emissions appeared to increase during inflation of the volcanic edifice, whereas CO2 emissions were at their highest during the period of deflation associated with the vigorous effusive phase of the eruption in March. High SO2 was probably associated with degassing of shallow magma, whereas high CO2 likely reflected deep (>4 km) magma recharge of the sub-volcanic plumbing system, For the 2005–6 period, the volcano released a total of about 1.5×106 tons of CO2 to the atmosphere, a level similar to the annual output of a medium-sized natural-gas-fired powerplant. Augustine also emitted about 8×105 tons of SO2, similar to that produced by the 1976 and 1986 eruptions of the volcano.

  8. Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland

    International Nuclear Information System (INIS)

    McNamara, N.P.; Plant, T.; Oakley, S.; Ward, S.; Wood, C.; Ostle, N.

    2008-01-01

    Peatlands are long term carbon catchments that sink atmospheric carbon dioxide (CO 2 ) and source methane (CH 4 ). In the uplands of the United Kingdom ombrotrophic blanket peatlands commonly exist within Calluna vulgaris (L.) dominated moorland ecosystems. These landscapes contain a range of topographical features that influence local hydrology, climate and plant community composition. In this study we examined the variation in ecosystem CO 2 respiration and net CH 4 fluxes from typical plant-soil systems in dendritic drainage gullies and adjacent blanket peat during the growing season. Typically, Eriophorum spp., Sphagnum spp. and mixed grasses occupied gullies while C. vulgaris dominated in adjacent blanket peat. Gross CO 2 respiration was highest in the areas of Eriophorum spp. (650 ± 140 mg CO 2 m -2 h -1 ) compared to those with Sphagnum spp. (338 ± 49 mg CO 2 m -2 h -1 ), mixed grasses (342 ± 91 mg CO 2 m -2 h -1 ) and C. vulgaris (174 ± 63 mg CO 2 m -2 h -1 ). Measurements of the net CH 4 flux showed higher fluxes from the Eriophorum spp (2.2 ± 0.6 mg CH 4 m -2 h -1 ) locations compared to the Sphagnum spp. (0.6 ± 0.4 mg CH 4 m -2 h -1 ), mixed grasses (0.1 ±0.1 mg CH 4 m -2 h -1 ) and a negligible flux detected from C. vulgaris (0.0 ± 0.0 mg CH 4 m -2 h -1 ) locations. A GIS approach was applied to calculate the contribution of gullies to landscape scale greenhouse gas fluxes. Findings from the Moor House National Nature Reserve in the UK showed that although gullies occupied only 9.3% of the total land surface, gullies accounted for 95.8% and 21.6% of the peatland net CH 4 and CO 2 respiratory fluxes, respectively. The implication of these findings is that the relative contribution of characteristic gully systems need to be considered in estimates of landscape scale peatland greenhouse gas fluxes

  9. Kinetics of the reactions H+C2H4->C2H5, H+C2H5->2CH3 and CH3+C2H5->products studies by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Sillesen, A.; Ratajczak, E.; Pagsberg, P.

    1993-01-01

    Formation of methyl radicals via the consecutive reactions H+C2H4+M-->C2H5+M (1) and H+C2H5-->CH3+CH3 (2a) was initiated by pulse radiolysis of 10-100 mbar H-2 in the presence of ethylene. The kinetics of CH3 Were studied by monitoring the transient infrared absorption at the Q(3, 3) line of the ...

  10. A simple and highly selective ‘turn-on’ type fluorescence chemodosimeter for Hg2+ based on 1-(2-phenyl-2H-[1,2,3]triazole-4-carbonyl)thiosemicarbazide

    International Nuclear Information System (INIS)

    Lin, Hui; Shi, Wei; Tian, Yong; Ma, Fudong; Xu, Linxian; Ma, Junchi; Hui, Yonghai; Xie, Zhengfeng

    2015-01-01

    1-(2-phenyl-2H-[1,2,3]triazole-4-carbonyl)-4- (4-methylphenyl)thiosemicarbazide (M1) has been synthesized and investigated as a fluorescence chemodosimeter for Hg 2+ in dimethylsulfoxide. Highly selective ‘turn-on’ fluorescence alterations of M1 were observed upon the addition of Hg 2+ . Detection limit of Hg 2+ by M1 reaches ~3.7×10 −8 mol/L (evaluated by 3σ criteria).The coexistent metal ions rendered no obvious interference toward the optical response of M1 for Hg 2+ .The mechanism of M1 for the recognition of Hg 2+ has been investigated by FT-IR, 1 H NMR and MS analyses. - Highlights: • A type of thiosemicarbazide-derivatived compound (M1) was synthesized. • The fluorescence of M1 displayed highly selective ‘turn-on’ type fluorescence alteration with the presence of Hg 2+ . • Detection limit of ~3.7×10 −8 M for Hg 2+ can be obtained by this probing system. • Hg 2+ -induced intramolecular desulfurization and cyclization process of thiosemicarbazide moieties is the plausible probing mechanism

  11. Preparation of 2H- and 13C-labelled precursors of 2-hydroxy-1, 3-butadiene

    International Nuclear Information System (INIS)

    Turecek, F.

    1987-01-01

    2-exo-Vinylbicyclo[2.2.1]hept-5-en-2-ols, specifically labelled with 2 H at C-3 and in the vinyl group were prepared from bicyclo[2.2.1]hept-5-en-2-one in several steps. [4- 13 C]oct-1-en-3-one was prepared in five steps from 13 CO 2 . These compounds serve as precursors for the preparation of specifically labelled neutral and ionized 2-hydroxy-1, 3-butadienes. (author)

  12. VU6010608, a Novel mGlu7 NAM from a Series of N-(2-(1H-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides.

    Science.gov (United States)

    Reed, Carson W; McGowan, Kevin M; Spearing, Paul K; Stansley, Branden J; Roenfanz, Hanna F; Engers, Darren W; Rodriguez, Alice L; Engelberg, Eileen M; Luscombe, Vincent B; Loch, Matthew T; Remke, Daniel H; Rook, Jerri M; Blobaum, Anna L; Conn, P Jeffrey; Niswender, Colleen M; Lindsley, Craig W

    2017-12-14

    Herein, we report the structure-activity relationships within a series of mGlu 7 NAMs based on an N -(2-(1 H -1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamide core with excellent CNS penetration ( K p 1.9-5.8 and K p,uu 0.4-1.4). Analogues in this series displayed steep SAR. Of these, VU6010608 ( 11a ) emerged with robust efficacy in blocking high frequency stimulated long-term potentiation in electrophysiology studies.

  13. Theory of gastric CO2 ventilation and its control during respiratory acidosis: implications for central chemosensitivity, pH regulation, and diseases causing chronic CO2 retention.

    Science.gov (United States)

    Dean, Jay B

    2011-02-15

    The theory of gastric CO(2) ventilation describes a previously unrecognized reflex mechanism controlled by neurons in the caudal solitary complex (cSC) for non-alveolar elimination of systemic CO(2) during respiratory acidosis. Neurons in the cSC, which is a site of CO(2) chemosensitivity for cardiorespiratory control, also control various gastroesophageal reflexes that remove CO(2) from blood. CO(2) is consumed in the production of gastric acid and bicarbonate in the gastric epithelium and then reconstituted as CO(2) in the stomach lumen from the reaction between H(+) and HCO(3)(-). Respiratory acidosis and gastric CO(2) distension induce cSC/vagovagal mediated transient relaxations of the lower esophageal sphincter to vent gastric CO(2) upwards by bulk flow along an abdominal-to-esophageal (=intrapleural) pressure gradient the magnitude of which increases during abdominal (gastric) compression caused by increased contractions of respiratory muscles. Esophageal distension induces cSC/nucleus ambiguus/vagovagal reflex relaxation of the upper esophageal sphincter and CO(2) is vented into the pharynx and mixed with pulmonary gas during expiration or, alternatively, during eructation. It is proposed that gastric CO(2) ventilation provides explanations for (1) the postprandial increase in expired CO(2) and (2) the negative P(blood - expired)CO₂difference that occurs with increased inspired CO(2). Furthermore, it is postulated that gastric CO(2) ventilation and alveolar CO(2) ventilation are coordinated under dual control by CO(2) chemosensitive neurons in the cSC. This new theory, therefore, presupposes a level of neural control and coordination between two previously presumed dissimilar organ systems and supports the notion that different sites of CO(2) chemosensitivity address different aspects of whole body pH regulation. Consequently, not all sites of central chemosensitivity are equal regarding the mechanism(s) activated for CO(2) elimination. A distributed CO(2

  14. Fluctuation dynamics near the quantum critical point in the S=1/2 Ising chain CoNb{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Steffen; Engelmayer, Johannes; Lorenz, Thomas; Hemberger, Joachim [II. Physikalisches Institut, Koeln Univ. (Germany)

    2016-07-01

    CoNb{sub 2}O{sub 6} is a model system for quantum phase transitions in magnetic field. Its structure consists of layers of CoO{sub 6} octahedrons separated by non-magnetic NbO{sub 6} layers. The edge-sharing oxygen octahedrons link the Co{sup 2+} spins via Co-O-Co superexchange and form 1D ferromagnetic zigzag chains along the orthorhombic c axis. Crystal field effects lead to an easy-axis anisotropy of the Co{sup 2+} moments in the ac plane and to an effective spin-1/2 chain system. The 1D spin system can be described by the Ising model. At T=0 K a transverse magnetic field can induce a quantum phase transition from a long range ferromagnetic state into a quantum paramagnetic state. Employing measurements of the complex AC-susceptibility in the frequency range 10 MHz < ν < 5 GHz for temperatures down to 50 mK we investigate the slowing down of the magnetic fluctuation dynamics in the vicinity of the critical field at μ{sub 0}H=5.25 T.

  15. Adsorption properties of CO, H{sub 2} and CH{sub 4} over Pd/γ-Al{sub 2}O{sub 3} catalyst: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zijian; Wang, Ben, E-mail: benwang@hust.edu.cn; Yu, Jie; Ma, Chuan; Qu, Qinggong; Zeng, Zhao; Xiang, Jun; Hu, Song; Sun, Lushi, E-mail: sunlushi@hust.edu.cn

    2016-11-30

    Highlights: • Model of dimer Pd supported on γ-Al{sub 2}O{sub 3} (1 1 0) surface was established. • CO, H{sub 2} and CH{sub 4} adsorption on clean γ-Al{sub 2}O{sub 3} and on Pd/γ-Al{sub 2}O{sub 3} surface was studied by DFT calculations. • CO, H{sub 2} and CH{sub 4} adsorptions are energetically more favorable in the presence of dimer Pd. • Mechanism of CO, H{sub 2} and CH{sub 4} adsorption on Pd/γ-Al{sub 2}O{sub 3} (1 1 0) surface was explained. - Abstract: Density functional theory (DFT) calculations were employed to investigate the adsorption characteristics of carbon monoxide (CO), hydrogen (H{sub 2}), and methane (CH{sub 4}) on the surface of clean γ-Al{sub 2}O{sub 3} and Pd supported γ-Al{sub 2}O{sub 3}, which is of significant for catalytic combustion. The adsorption intensities of the three gas molecules in pure γ-Al{sub 2}O{sub 3} (1 1 0) and Pd/γ-Al{sub 2}O{sub 3} (1 1 0) were in the order of CO > H{sub 2} > CH{sub 4}. The corresponding adsorption energies on the Pd/γ-Al{sub 2}O{sub 3} (1 1 0) surface were at least three times higher than those on γ-Al{sub 2}O{sub 3} (1 1 0). Anlysis of Mulliken population and partial density of states (PDOS) showed that the adsorption mechanisms were as follow: (a) CO stably adsorbed on the bridge site of dimer Pd with two C−Pd bonds because of charges transfer from the surface to CO, and the triple bond (C≡O) was broken to a double bond (C=O); (b) H{sub 2} was dissociated into hydrogen atoms on the dimer Pd and produced a stable planar configuration; and (c) the tetrahedral structure of CH{sub 4} was destroyed on the surface and formed a −CH{sub 3} species bonded to the Pd atom, which contributes to the orbital hybridization between C and Pd atoms.

  16. Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation.

    Science.gov (United States)

    Arokiyanathan, Agnes Lincy; Lakshmipathi, Senthilkumar

    2017-11-18

    A computational study of metal difluorides (MF 2 ; M = Ca to Zn) and their interactions with carbon dioxide and water molecules was performed. The structural parameter values obtained and the results of AIM analysis and energy decomposition analysis indicated that the Ca-F bond is weaker and less ionic than the bonds in the transition metal difluorides. A deformation density plot revealed the stablizing influence of the Jahn-Teller effect in nonlinear MF 2 molecules (e.g., where M= Sc, Ti, Cr). An anaysis of the metal K-edge peaks of the difluorides showed that shifts in the edge energy were due to the combined effects of the ionicity, effective nuclear charge, and the spin state of the metal. The interactions of CO 2 with ScF 2 (Scc3 geometry) and TiF 2 (Tic2 geometry) caused CO 2 to shift from its usual linear geometry to a bent geometry (η 2 (C=O) binding mode), while it retained its linear geometry (η 1 (O) binding mode) when it interacted with the other metal difluorides. Energy decomposition analysis showed that, among the various geometries considered, the Scc3 and Tic2 geometries possessed the highest interaction energies and orbital interaction energies. Heavier transition metal difluorides showed stronger affinities for H 2 O, whereas the lighter transition metal (Sc and Ti) difluorides preferred CO 2 . Overall, the results of this study suggest that fluorides of lighter transition metals with partially filled d orbitals (e.g., Sc and Ti) could be used for CO 2 capture under moist conditions. Graphical abstract Interaction of metal difluorides with carbon dioxide and water.

  17. Measurement of OCS, CO2, CO and H2O aboard NASA's WB-57 High Altitude Platform Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    Science.gov (United States)

    Leen, J. B.; Owano, T. G.; Du, X.; Gardner, A.; Gupta, M.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere. In the troposphere, OCS is irreversibly consumed during photosynthesis and may serve as a tracer for gross primary production (GPP). Its primary sources are ocean outgassing, industrial processes, and biomass burning. Its primary sinks are vegetation and soils. Despite the importance of OCS in atmospheric processes, the OCS atmospheric budget is poorly determined and has high uncertainty. OCS is typically monitored using either canisters analyzed by gas chromatography or integrated atmospheric column measurements. Improved in-situ terrestrial flux and airborne measurements are required to constrain the OCS budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. Los Gatos Research has developed a flight capable mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to simultaneously quantify OCS, CO2, CO, and H2O in ambient air at up to 2 Hz. The prototype was tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1s in 1 sec) and linear (R2 > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). Cross-interference measurements showed no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm) or CO. We report on high altitude measurements made aboard NASA's WB-57 research aircraft. Two research flights were conducted from Houston, TX. The concentration of OCS, CO2, CO, and H2O were continuously recorded from sea level to approximately 60,000 feet. The concentration of OCS was observed to increase with altitude through the troposphere due to the

  18. Infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite: DFT study

    International Nuclear Information System (INIS)

    Jiang Shujun; Huang Shiping; Tu Weixia; Zhu Jiqin

    2009-01-01

    The infrared spectra and stability of CO and H 2 O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag + cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag + cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, -5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag + (CO) 2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag + ion at 2211 cm -1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag + (CO) 2 complex shift to 2231 cm -1 and 2205 cm -1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H 2 O complex shifts to 2199 cm -1 , the symmetric and antisymmetric O-H stretching frequencies are 3390 cm -1 and 3869 cm -1 , respectively. The Gibbs free energy change (ΔG H 2 O ) is -6.58 kcal/mol as a H 2 O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H 2 O complex is more stable at room temperature

  19. Transport and use of CO2 in the xylem sap of Populus deltoides

    International Nuclear Information System (INIS)

    Stringer, J.W.; Kimmerer, T.W.

    1990-01-01

    Results of recent experiments indicate an internal cycling of respiratory CO 2 in woody plants. The CO 2 concentration of xylem sap expressed from the twigs of field grown Populus deltoides ranged from .14 to .50 mM. The pH of the xylem sap was 5.7 to 6.7, providing a significant bicarbonate concentration in many samples. Total dissolved inorganic carbon (DIC = CO 2 + H 2 CO 3 + HCO 3 - ) was 0.5 mM to 1.3 mM. Results from the analysis of xylem sap of 10 other species of woody plants were similar. To determine the fate of DIC delivered to the leaves of Populus deltoides, excised leaves were fed 1mM NaHCO 3 (2 μCi NaH 14 CO 3 ml -1 ). Less than 0.4% of the label escaped from the leaves, and ≥93% was fixed. Of the carbon fixed 56% of the 14 C was found in the petiole and midrib, and 14% was in the major veins, with the remaining 30% in the minor veins and lamina. Shading of the peptiole and midrib of leaves decreased the amount of fixed carbon in these tissues to 38% and increased the amount in the lamina to 55%

  20. Synthesis and Cytotoxic Evaluation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones

    Directory of Open Access Journals (Sweden)

    INGRID C. CHIPOLINE

    2018-02-01

    Full Text Available ABSTRACT The 1,2-naphthoquinone compound was previously considered active against solid tumors. Moreover, glycosidase inhibitors such as 1,2,3-1H triazoles has been pointed out as efficient compounds in anticancer activity studies. Thus, a series of eleven 1,2-naphthoquinones tethered in C2 to 1,2,3-1H-triazoles 9a-k were designed, synthesized and their cytotoxic activity evaluated using HCT-116 (colon adenocarcinoma, MCF-7 (breast adenocarcinoma and RPE (human nontumor cell line from retinal epithelium. The chemical synthesis was performed from C-3 allylation of lawsone followed by iodocyclization with subsequent nucleophilic displacement with sodium azide and, finally, the 1,3-dipolar cycloaddition catalyzed by Cu(I with terminal alkynes led to the formation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones in good yields. Compounds containing aromatic group linked to 1,2,3-triazole ring (9c, 9d, 9e, 9i presented superior cytotoxic activity against cancer cell lines with IC50 in the range of 0.74 to 4.4 µM indicating that the presence of aromatic rings substituents in the 1,2,3-1H-triazole moiety is probably responsible for the improved cytotoxic activity.

  1. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    Science.gov (United States)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  2. Anomalous absorption in H2CN and CH2CN molecules

    Indian Academy of Sciences (India)

    Abstract. Structures of H2CN and CH2CN molecules are similar to that of H2CO mole- cule. The H2CO has shown anomalous absorption for its transition 111 − 110 at 4.8 GHz in a number of cool molecular clouds. Though the molecules H2CN and CH2CN have been identified in TMC-1 and Sgr B2 through some ...

  3. Carbon Dioxide and Water Vapor Concentrations, Co-spectra and Fluxes from Latest Standardized Automated CO2/H2O Flux Systems versus Established Analyzer Models

    Science.gov (United States)

    Burba, G. G.; Kathilankal, J. C.; Begashaw, I.; Franzen, D.; Welles, J.; McDermitt, D. K.

    2017-12-01

    Spatial and temporal flux data coverage have improved significantly in recent years, due to standardization, automation and management of data collection, and better handling of the generated data. With more stations and networks, larger data streams from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process.These tools should produce standardized verifiable datasets, and provide a way to cross-share the standardized data with external collaborators to leverage available funding, and promote data analyses and publications. In 2015, new open-path and enclosed flux measurement systems1 were developed, based on established gas analyzer models2,3, with the goal of improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In 2017, the new open-path system was further refined to simplify hardware configuration, and to reduce power consumption and cost. Additionally, all new systems incorporate complete automated on-site flux calculations using EddyPro® Software4 run by a weatherized remotely-accessible microcomputer to provide standardized traceable data sets for fluxes and supporting variables. This presentation will describe details and results from the field tests of the new flux systems, in comparison to older models and reference instruments. References:1 Burba G., W. Miller, I. Begashaw, G. Fratini, F. Griessbaum, J. Kathilankal, L. Xu, D. Franz, E. Joseph, E. Larmanou, S. Miller, D. Papale, S. Sabbatini, T. Sachs, R. Sakai, D. McDermitt, 2017. Comparison of CO2 Concentrations, Co-spectra and Flux Measurements between Latest Standardized Automated CO2/H2O Flux Systems and Older Gas Analysers. 10th ICDC Conference, Switzerland: 21-25/08 2 Metzger, S., G. Burba, S. Burns, P. Blanken, J. Li, H. Luo, R. Zulueta, 2016. Optimization of an enclosed gas analyzer sampling system for measuring eddy

  4. Temperature-Dependent Evolution of the Oxidation States of Cobalt and Platinum in Co 1x Pt x Clusters under H 2 and CO + H 2 Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette; Tyo, Eric C.; Pellin, Michael J.; Reinhart, Benjamin; Seifert, Sönke; Chen, Xinqi; Dupuis, Veronique; Vajda, Stefan

    2016-09-29

    Co1-xPtx clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al2O3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged duster samples were characterized by grazing-incidence X-ray absorption spectroscopy (GIXAS) and then pretreated with diluted hydrogen and further exposed to the mixture of diluted CO and H-2 up to 225 degrees C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the dusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the dusters. For example, a low Pt/Co ratio (x <= 0.5) facilitates the formation of Co(OH)(2), whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co3O4 composition instead through the formation of a Co-Pt core-shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co1-xPtx alloy dusters. The obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.

  5. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  6. Rhodium(III)-Catalyzed [3+2]/[5+2] Annulation of 4-Aryl 1,2,3-Triazoles with Internal Alkynes through Dual C(sp2)-H Functionalization.

    Science.gov (United States)

    Yang, Yuan; Zhou, Ming-Bo; Ouyang, Xuan-Hui; Pi, Rui; Song, Ren-Jie; Li, Jin-Heng

    2015-05-26

    A rhodium(III)-catalyzed [3+2]/[5+2] annulation of 4-aryl 1-tosyl-1,2,3-triazoles with internal alkynes is presented. This transformation provides straightforward access to indeno[1,7-cd]azepine architectures through a sequence involving the formation of a rhodium(III) azavinyl carbene, dual C(sp(2))-H functionalization, and [3+2]/[5+2] annulation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystal structure of bis{μ2-2,2′-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diylbis(methylene]bis(4-oxo-4H-pyran-3-olato}dicobaltcalcium bis(perchlorate 1.36-hydrate

    Directory of Open Access Journals (Sweden)

    Patrizia Rossi

    2017-12-01

    Full Text Available The title compound, [CaCo2(C22H30N4O62](ClO42·1.36H2O or {Ca[Co(H–2L1]22ClO4·1.36H2O {where L1 is 4,10-bis[(3-hydroxy-4-pyron-2-ylmethyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane}, is a trinuclear complex whose asymmetric unit comprises a quarter of the {Ca[Co(H–2L1]2}2+ trinuclear complex, half of a perchlorate ion and 0.34-water molecules. In the neutral [Co(H–2L1] moiety, the cobalt ion is hexacoordinated in a trigonal–prismatic fashion by the surrounding N4O2 donor set. A Ca2+ cation holds together two neutral [Co(H–2L1] moieties and is octacoordinated in a distorted trigonal–dodecahedral fashion by the surrounding O atoms belonging to the deprotonated oxide and carbonyl groups of two [Co(H–2L1] units. The coordination of the CoII cation preorganizes L1 and an electron-rich area forms, which is able to host hard metal ions. The comparison between the present structure and the previously published ones suggests a high versatility of this ligand; indeed, hard metal ions with different nature and dimensions lead to complexes having different stoichiometry (mono- and dinuclear monomers and trinuclear dimers or even a polymeric structure. The heterotrinuclear CoII–CaII–CoII complexes are connected in three dimensions via weak C—H...O hydrogen bonds, which are also responsible for the interactions with the perchlorate anions and the lattice water molecules. The perchlorate anion is disordered about a twofold rotation axis and was refined giving the two positions a fixed occupancy factor of 0.5. The crystal studied was refined as a two-component inversion twin [BASF parameter = 0.14 (4].

  8. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.

    Science.gov (United States)

    Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel

    2017-03-22

    The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thermodynamic study of (alkyl esters+α,ω-alkyl dihalides) I: HmE and VmE for 25 binary mixtures {xCu-1H2u-1CO2C2H5+(1-x)α,ω-ClCH2(CH2)v-2CH2Cl}, where u=1 to 5, α=1 and v=ω=2 to 6

    International Nuclear Information System (INIS)

    Ortega, J.; Marrero, E.; Toledo, F.J.; Espiau, F.

    2005-01-01

    This article presents the experimental data of H m E and V m E , obtained at atmospheric pressure and at a temperature of 298.15K, for a set of 25 binary mixtures composed of the first 5 ethyl alkanoates (methanoate to pentanoate) and five α,ω-dichloroalkanes (1,2-dichloroethane to 1,6-dichlorohexane). Quantitatively, and with only a few exceptions, small values are obtained for the excess properties and the results imply that specific interactions exist between both types of compounds, with exothermic process for most mixtures, but with the exception of some that contain ethyl methanoate and ethanoate. The change in enthalpies with increasing length of the dichloroalkane chain for the same ester is regular, and also the change in H m E with the acid portion of the ethyl ester. However, the change in excess volumes does not present such a regular variation. A behavioural structural model is established to explain the results of the excess properties. Experimental values of H m E and V m E were correlated, as a function of ester concentration, x with a new expression which uses the so-called active fraction as a variable and which, in turn, is a function of this concentration. The application of two versions of the UNIFAC group contribution models produces no good estimations of H m E .

  10. Catalytic conversion of CO2 into valuable products

    International Nuclear Information System (INIS)

    Pham-Huu, C.; Ledoux, M.J.

    2008-01-01

    Complete text of publication follows: Synthesis gas, a mixture of H 2 and CO, is an important feed-stock for several chemical processes operated in the production of methanol and synthetic fuels through a Fischer- Tropsch synthesis. Synthesis gas is produced via an endothermic steam reforming of methane (CH 4 + H 2 O → CO + 3H 2 , ΔH = +225.4 kJ.mol -1 ), catalytic or direct partial oxidation of methane (CH 4 + (1/2)O 2CO + 2H 2 , ΔH -38 kJ.mol -1 ) and CO 2 reforming of methane (CH 4 + CO 22CO + 2H 2 , ΔH= +247 kJ.mol -1 ). The main disadvantage of these processes is the high coke formation, essentially in the nano-filament form, which may cause severe deactivation of the catalyst by pore or active site blocking and sometimes, physical disintegration of the catalyst body causing a high pressure drop along the catalyst bed and even, in some cases, inducing damage to the reactor itself. Previous results obtained in the catalytic partial oxidation of methane have shown that due to the hot spot and carbon nano-filaments formation, especially in the case of the CO 2 reforming, the alumina-based catalyst in an extrudate form was broken into powder which induces a significant pressure drop across the catalytic bed. In the case of endothermic reactions, steam and CO 2 reforming, the temperature drop within the catalyst bed could also modified the activity of the catalyst. Silicon carbide (SiC) exhibits a high thermal conductivity, a high resistance towards oxidation, a high mechanical strength, and chemical inertness, all of which make it a good candidate for use as catalyst support in several endothermic and exothermic reactions such as dehydrogenation, selective partial oxidation, and Fischer-Tropsch synthesis. The gas-solid reaction allows the preparation of SiC with medium surface area, i.e. 10 to 40 m 2 .g -1 , and controlled macroscopic shape, i.e. grains, extrudates or foam, for it subsequence use as catalyst support. In addition, due to its chemical

  11. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    Science.gov (United States)

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  12. Release of N 2, CH 4, CO 2, and H 2O from surface ices on Enceladus

    Science.gov (United States)

    Hodyss, Robert; Goguen, Jay D.; Johnson, Paul V.; Campbell, Colin; Kanik, Isik

    2008-09-01

    We vapor deposit at 20 K a mixture of gases with the specific Enceladus plume composition measured in situ by the Cassini INMS [Waite, J.H., Combi, M.R., Ip, W.H., Cravens, T.E., McNutt, R.L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., Tseng, W.L., 2006. Science 311, 1419-1422] to form a mixed molecular ice. As the sample is slowly warmed, we monitor the escaping gas quantity and composition with a mass spectrometer. Pioneering studies [Schmitt, B., Klinger, J., 1987. Different trapping mechanisms of gases by water ice and their relevance for comet nuclei. In: Rolfe, E.J., Battrick, B. (Eds.), Diversity and Similarity of Comets. SP-278. ESA, Noordwijk, The Netherlands, pp. 613-619; Bar-Nun, A., Kleinfeld, I., Kochavi, E., 1988. Phys. Rev. B 38, 7749-7754; Bar-Nun, A., Kleinfeld, I., 1989. Icarus 80, 243-253] have shown that significant quantities of volatile gases can be trapped in a water ice matrix well above the temperature at which the pure volatile ice would sublime. For our Enceladus ice mixture, a composition of escaping gases similar to that detected by Cassini in the Enceladus plume can be generated by the sublimation of the H 2O:CO 2:CH 4:N 2 mixture at temperatures between 135 and 155 K, comparable to the high temperatures inferred from the CIRS measurements [Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C., 2006. Science 311, 1401-1405] of the Enceladus "tiger stripes." This suggests that the gas escape phenomena that we measure in our experiments are an important process contributing to the gases emitted from Enceladus. A similar experiment for ice deposited at 70 K shows that both the processes of volatile trapping and release are temperature dependent over the temperature range relevant to Enceladus.

  13. Modification of Ga2O3 by an Ag-Cr core-shell cocatalyst enhances photocatalytic CO evolution for the conversion of CO2 by H2O.

    Science.gov (United States)

    Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2018-01-25

    A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.

  14. Diastereoisomers of 2-benzyl-2, 3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol: potential anti-inflammatory agents.

    Science.gov (United States)

    Sheridan, Helen; Walsh, John J; Cogan, Carina; Jordan, Michael; McCabe, Tom; Passante, Egle; Frankish, Neil H

    2009-10-15

    The synthesis and biological activity of the novel diastereoisomers of 2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol is reported. The 2,2-coupled indane dimers were synthesised by coupling of the silyl enol ether of 1-indanone with the dimethyl ketal of 2-indanone. The coupled product was directly alkylated to give the racemic ketone which was reduced to the diastereoisomeric alcohols. The alcohols were separated and their relative stereochemistry was established by X-ray crystallography. These molecules demonstrate significant anti-inflammatory activity in vivo and in vitro and may represent a new class of anti-inflammatory agent.

  15. Total scattering cross-sections for the systems nH2 + nH2, pH2 + pH2, nD2 + nD2, oD2 + oD2 and HD + HD for relative energies below ten milli-electron volts

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1979-01-01

    Relative total scattering cross sections for nH 2 + nH 2 , pH 2 + pH 2 , nD 2 + nD 2 , oD 2 + oD 2 , and HD + HD were measured with inclined nozzle beams derived from nozzle sources and intersecting at 21 0 . Both nozzles could be varied in temperature from 4.2K to 300K to provide the velocity range for the cross sections. The use of a parahydrogen converter allowed the measurement of the pH 2 + pH 2 and oD 2 + oD 2 cross sections. Cross sections for the H 2 + H 2 were measured over a relative velocity range of 200 m/s to 1450 m/s. The nH 2 + nH 2 results show an undulation in the velocity range between 350 m/s and 400 m/s that corresponds to a l = 3 orbiting resonance. Analysis of the pH 2 + pH 2 cross section indicates a l = 4 orbiting resonance near 586 m/s. This resonance has a peak energy of 1.79 meV and a measured energy width of 1.05 meV, both which agree well with theoretical predictions. The D 2 + D 2 cross sections have been measured in the velocity range between 190 m/s and 1000 m/s. No orbiting resonances have been observed, but in the oD 2 + oD 2 cross section a deep minimum between the l = 4 and the l = 5 resonances at low velocities is clearly suggested. Initial measurements of the HD + HD cross section suggests the presence of the l = 4 orbiting resonance near a relative velocity of 300 m/s. The experimental results for each system were normalized to the total cross sections, which were convoluted to account for experimental velocity and angular dispersions. Three different potentials were considered, but a chi-square fit of the data indicates that the Schaefer and Meyer potential, which has been theoretically obtained from first principles, provides the best overall description of the hydrogen systems in the low collisional energy range

  16. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  17. Effect of Sintering Temperature on Microstructure, Chemical Stability and Electrical Properties of Transition Metal or Yb-Doped BaZr0.1Ce0.7Y0.1M0.1O3-δ (M = Fe, Ni, Co and Yb

    Directory of Open Access Journals (Sweden)

    Behzad eMirfakhraei

    2014-03-01

    Full Text Available Perovskite-type BaZr0.1Ce0.7Y0.1M0.1O3-δ (M = Fe, Ni, Co and Yb (BZCY-M oxides were synthesized using the conventional solid-state reaction method at 1350-1550 oC in air in order to investigate the effect of dopants on sintering, crystal structure, chemical stability under CO2 and H2S, and electrical transport properties. The formation of the single-phase perovskite-type structure with an orthorhombic space group Imam was confirmed by Rietveld refinement using powder X-ray diffraction (PXRD for the Fe, Co, Ni and Yb-doped samples. The BZCY-Co and BZCY-Ni oxides show a total electrical conductivity of 0.01 and 8 × 10-3 Scm-1 at 600 oC in wet H2 with an activation energy of 0.36 and 0.41 eV, respectively. Scanning electron microscopy (SEM and energy-dispersive X-ray analysis (EDX revealed Ba and Co rich secondary phase at the grain-boundaries, which may explain the enhancement in the total conductivity of the BZCY-Co. However, ex-solution of Ni at higher sintering temperatures, especially at 1550 oC, decreases the total conductivity of the BZCY-Ni material. The Co and Ni dopants act as a sintering aid and form dense pellets at a lower sintering temperature of 1250 oC. The Fe, Co and Ni-doped BZCY-M samples synthesized at 1350 oC show stability in 30 ppm H2S/H2 at 800 oC, and increasing the firing temperature to 1550 oC, enhanced the chemical stability in CO2 / N2 (1: 2 at 25-900 oC. The BZCY-Co and Ni compounds with high conductivity in wet H2 could be considered as possible anodes for intermediate temperature solid oxide fuel cells (IT-SOFCs.

  18. (E-6-Amino-1,3-dimethyl-5-[(pyridin-2-ylmethylideneamino]pyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Irvin Booysen

    2011-09-01

    Full Text Available In the title compound, C12H13N5O2, a Schiff-base-derived chelate ligand, the non-aromatic heterocycle and its substituents essentially occupy one common plane (r.m.s. of fitted non-H atoms = 0.0503 Å. The N=C bond is E-configured. Intracyclic angles in the pyridine moiety cover the range 117.6 (2–124.1 (2°. Intra- and intermolecular N—H...N and N—H...O hydrogen bonds are observed in the crystal structure, as are intra- and intermolecular C—H...O contacts which, in total, connect the molecules into a three-dimensional network. The shortest ring-centroid-to-ring-centroid distance of 3.5831 (14 Å is between the two different types of six-membered rings.

  19. Thermodynamic study of (alkyl esters+α,ω-alkyl dihalides) II: HmE and VmE for 25 binary mixtures {xCu-1H2u-1CO2C2H5+(1-x)α,ω-BrCH2(CH2)v-2CH2Br}, where u=1 to 5, α=1 and v=ω=2 to 6

    International Nuclear Information System (INIS)

    Ortega, J.; Navas, A.; Placido, J.; Toledo, F.J.

    2006-01-01

    Excess molar enthalpies H m E , and excess molar volumes V m E , have been determined experimentally at constant conditions of atmospheric pressure and a temperature of T=298.15K, for a set of 25 binary mixtures, composed of ethyl alkanoate (methanoate to pentanoate) with each of the α,ω-dibromoalkanes (1,2-dibromoethane to 1,6-dibromohexane), presenting the values of excess quantities Y m E as a function of the ester composition x. Most of the mixtures presented V m E >0, except those formed by 1,5-dibromopentane and 1,6-dibromohexane with propanoate, butanoate and ethyl pentanoate, for which V m E m E are made using two versions of the UNIFAC group contribution model. The version proposed by Dang and Tassios produces unacceptable estimations, while the version of Gmehling et al. produces results closer to experimentals.

  20. Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

    Science.gov (United States)

    Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae

    2018-04-16

    Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis, characterization and application of 1-(2-cyanoethyl-3-(3-methoxypropaneimidazolium bromide for CO2 capture

    Directory of Open Access Journals (Sweden)

    Ravichandar Shantini

    2017-01-01

    Full Text Available Amine scrubbing is dominating in carbon dioxide (CO2 capturing technology because of its high affinity towards CO2. However, the drawbacks of amine solvents are its high corrosivity and volatility. Ionic liquids (ILs have gained a lot of attention in recent years for CO2 capturing and have been proposed to be one of the promising alternative to the conventional solvents. The objective of this research is to design a new imidazolium based ether-nitrile functionalized ionic liquid of low viscosity to improve CO2 capturing. The molecular structure of the ionic liquid were confirmed by 1H NMR, 13C NMR and FTIR. The thermal properties; glass transition temperature, thermal decomposition temperature, and their physical properties; water content and density were determined. The solubility of CO2 in the synthesized ionic liquid was measured using pressure drop method. They showed high thermal stability above 200°C and the glass transition temperature was -49.80°C. The CO2 sorption in the newly synthesized IL was 0.08, 0.12, 0.29, 1.01, 2.30 mol of CO2/mol of IL at pressures 1, 5, 10, 15 and 20 bar respectively.

  2. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  3. Synthesis and reactivity towards diiodine of palladium(II) and platinum(II) complexes with non-cyclic and cyclic ligands (C6H3{CH=NR1R2}2-2,6)-. End-on diiodine-platinum(II) bonding in macrocyclic [PtI(C6H3{CH2NMe(CH2)7MeNCH2}-2,6)(h1-I2)

    NARCIS (Netherlands)

    Koten, G. van; Beek, J.A.M. van; Dekker, G.P.C.M.; Wissing, E.; Zoutberg, M.C.; Stam, C.H.

    1990-01-01

    Several new organo-platinum(II) and -palladium(II) complexes [MX(C{6}H{3}{CH{2}NR}1{R}2{}{2}-2, 6)] (X = halide, M = Pt, Pd; R}1{ = R}2{ = Et; R}2{ = Me, R}1{ = }t{Bu, M = Pt: R}2{ = Me, R}1{ = Ph) have been synthesized from [PtCl{2}(SEt{2}){2}] or [PdCl{2}(COD)] (COD = 1, 5-cyclooctadiene) by

  4. Modeling CO, CO2, and H2O Ice Abundances in the Envelopes of Young Stellar Objects in the Magellanic Clouds

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2018-02-01

    Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.

  5. MNK Controls mTORC1:Substrate Association through Regulation of TELO2 Binding with mTORC1

    Directory of Open Access Journals (Sweden)

    Michael C. Brown

    2017-02-01

    Full Text Available The mechanistic target of rapamycin (mTOR integrates numerous stimuli and coordinates the adaptive response of many cellular processes. To accomplish this, mTOR associates with distinct co-factors that determine its signaling output. While many of these co-factors are known, in many cases their function and regulation remain opaque. The MAPK-interacting kinase (MNK contributes to rapamycin resistance in cancer cells. Here, we demonstrate that MNK sustains mTORC1 activity following rapamycin treatment and contributes to mTORC1 signaling following T cell activation and growth stimuli in cancer cells. We determine that MNK engages with mTORC1, promotes mTORC1 association with the phosphatidyl inositol 3′ kinase-related kinase (PIKK stabilizer, TELO2, and facilitates mTORC1:substrate binding. Moreover, our data suggest that DEPTOR, the endogenous inhibitor of mTOR, opposes mTORC1:substrate association by preventing TELO2:mTORC1 binding. Thus, MNK orchestrates counterbalancing forces that regulate mTORC1 enzymatic activity.

  6. Electrochemical performance of co-doped Li1.2Mn0.6Ni0.2O2 cathode materials

    CSIR Research Space (South Africa)

    David, K

    2013-04-01

    Full Text Available The composite material has a xLi2MnO3·(1-x)LiMO2 (M = Mn, Co, Ni) structure has been considered as one of the most promising cathode materials for advanced lithium-ion batteries due to their low-cost and high capacity (> 200 mAh g−1) between 4.8 V...

  7. Ethyl 5-cyano-4-[2-(2,4-dichlorophenoxyacetamido]-1-phenyl-1H-pyrrole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2009-08-01

    Full Text Available In the title compound, C22H17Cl2N3O4, the pyrrole ring and the 2,4-dichlorophenyl group form a dihedral angle of 8.14 (13°; the phenyl ring is twisted with respect to the pyrrole ring, forming a dihedral angle of 60.77 (14°. The C=O bond length is 1.213 (3 Å, indicating that the molecule is in the keto form, associated with a –CONH– group, and the amide group adopts the usual trans conformation. The molecule is stabilized by an intramolecular N—H...O hydrogen-bonding interaction. In the crystal, the stacked molecules exhibit intermolecular C—H...O and C—H...N hydrogen-bonding interactions.

  8. Improving methane production through co-digestion of canola straw and buffalo dung by H/sub 2/O/sub 2/ pretreatment

    International Nuclear Information System (INIS)

    Noonari, A.A.; Sahito, A.R.; Brohi, K.M.

    2017-01-01

    In this study an effect of acidic pre-treatment on the CS (Canola Straw) and BD (Buffalo Dung) by anaerobic co-digestion was investigated. H2O2 (Hydrogen Peroxide) is a mainly accustomed reagent, used as a bleaching agent in the different industries such as paper and wood. In the present study, it was used as a pre-treatment chemical at varying concentrations in batch reactors. The co-digestion of CS and BD was carried out in SAMPTS (Semi-Automatic Methane Potential Test System) at mesophilic (37+-1oC) conditions. The CS was pretreated in glass bottles with different concentrations of the H2O2 for seven days. The inoculum used in the present study was an effluent of the CSTR (Continuous Stirred Tank Reactor), which was treating BD at mesophilic conditions. The specific methane production from the codigestion of canola straw and BD, by the pre-treatment of H2O2 at concentrations of 0.5, 1.0, and 1.5% were 530.8, 544.5, and 510.3 NmL CH4 g/VS, respectively. The significant reduction in the volatile solids of CS was observed at the optimum pre-treatment of 1.0% H2O2. (author)

  9. BROAD N2H+ EMISSION TOWARD THE PROTOSTELLAR SHOCK L1157-B1

    International Nuclear Information System (INIS)

    Codella, C.; Fontani, F.; Gómez-Ruiz, A.; Vasta, M.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Podio, L.; Benedettini, M.; Busquet, G.; Caselli, P.

    2013-01-01

    We present the first detection of N 2 H + toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ∼0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N 2 H + (1-0) line originated from the dense (≥10 5 cm –3 ) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N 2 H + column density of a few 10 12 cm –2 corresponding to an abundance of (2-8) × 10 –9 . The N 2 H + abundance can be matched by a model of quiescent gas evolved for more than 10 4 yr, i.e., for more than the shock kinematical age (≅2000 yr). Modeling of C-shocks confirms that the abundance of N 2 H + is not increased by the passage of the shock. In summary, N 2 H + is a fossil record of the pre-shock gas, formed when the density of the gas was around 10 4 cm –3 , and then further compressed and accelerated by the shock

  10. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    Science.gov (United States)

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  11. Asymmetric 1,8/13,2,x-M2C2B10 14-vertex metallacarboranes by direct electrophilic insertion reactions; the VCD and BHD methods in critical analysis of cage C atom positions.

    Science.gov (United States)

    McAnaw, Amelia; Lopez, Maria Elena; Ellis, David; Rosair, Georgina M; Welch, Alan J

    2014-04-07

    The isolation of six isomeric, low-symmetry, dicobaltacarboranes with bicapped hexagonal antiprismatic cage structures, always in low yield, is described from reactions in which 13-vertex cobaltacarborane anions and sources of cobalt-containing cations were present. The vertex-to-centroid distance (VCD) and boron-H distance (BHD) methods are used to locate the correct C atom positions in the cages, thus allowing the compounds to be identified as 1,13-Cp2-1,13,2,10-closo-Co2C2B10H12 (1), 1,8-Cp2-3-OEt-1,8,2,10-closo-Co2C2B10H11 (2), 1,13-Cp2-1,13,2,9-closo-Co2C2B10H12 (3), 1,8-Cp2-1,8,2,4-closo-Co2C2B10H12 (4), 1,13-Cp2-1,13,2,4-closo-Co2C2B10H12 (5) and 1,8-Cp2-1,8,2,5-closo-Co2C2B10H12 (6). It is shown that a common alternative method of cage C atom identification, using refined (as B) U(eq) values, does not work well, at least in these cases. Having identified the correct isomeric forms of the six dicobaltacarboranes, their syntheses are tentatively rationalised in terms of the direct electrophilic insertion of a {CpCo(+)} fragment into [CpCoC2B10](-) anions and it is demonstrated that compounds 1, 4, 5 and 6 can be successfully prepared by deliberately performing such reactions.

  12. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.

    Science.gov (United States)

    Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo

    2012-08-21

    A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.

  13. THE DISTRIBUTION AND CHEMISTRY OF H2CO IN THE DM TAU PROTOPLANETARY DISK

    International Nuclear Information System (INIS)

    Loomis, Ryan A.; Öberg, Karin I.; Guzman, Viviana V.; Cleeves, L. Ilsedore; Andrews, Sean M.

    2015-01-01

    H 2 CO ice on dust grains is an important precursor of complex organic molecules (COMs). H 2 CO gas can be readily observed in protoplanetary disks and may be used to trace COM chemistry. However, its utility as a COM probe is currently limited by a lack of constraints on the relative contributions of two different formation pathways: on icy grain surfaces and in the gas phase. We use archival Atacama Large (sub-)Millimeter Array observations of the resolved distribution of H 2 CO emission in the disk around the young low-mass star DM Tau to assess the relative importance of these formation routes. The observed H 2 CO emission has a centrally peaked and radially broad brightness profile (extending out to 500 AU). We compare these observations with disk chemistry models with and without grain-surface formation reactions and find that both gas and grain-surface chemistry are necessary to explain the spatial distribution of the emission. Gas-phase H 2 CO production is responsible for the observed central peak, while grain-surface chemistry is required to reproduce the emission exterior to the CO snow line (where H 2 CO mainly forms through the hydrogenation of CO ice before being non-thermally desorbed). These observations demonstrate that both gas and grain-surface pathways contribute to the observed H 2 CO in disks and that their relative contributions depend strongly on distance from the host star

  14. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  15. Sustaining 1,2-Dichloroethane Degradation in Nanoscale Zero-Valent Iron induced Fenton system by using Sequential H2O2 Addition at Natural pH

    Science.gov (United States)

    Phenrat, T.; Le, T. S. T.

    2017-12-01

    1,2-Dichloroethane (1,2-DCA) is a prevalent subsurface contaminant found in groundwater and soil around the world. Nanoscale zero-valent iron (NZVI) is a promising in situ remediation agent for chlorinated organics. Nevertheless, 1,2-DCA is recalcitrant to reductive dechlorination using NZVI. Chemical oxidation using Fenton's reaction with conventional Fe2+ is a valid option for 1,2-DCA remediation with a major technical challenge, i.e. aquifer acidification is needed to maintain Fe2+ for catalytic reaction. In this work, NZVI Fenton's process at neutral pH was applied to degrade 1,2-DCA at high concentration (2,000 mg/L) representing dissolved 1,2-DCA concentration close to non-aqueous phase liquid source zone. Instead of using acidification to maintain dissolved Fe2+ concentration, NZVI Fenton's process is self-catalytic based on oxidative dissolution of NZVI in the present of H2O2. Interfacial H+ is produced at NZVI surface to provide appropriate local pH which continuously releases Fe2+ for Fenton's reaction. Approximately, 87% of 1,2-DCA was degraded at neutral pH with the pseudo first-order rate constant of 0.98 hour-1 using 10 g/L of NZVI and 200 mM of H2O2. However, the reaction was prohibited quickly within 3 hours presumably due to the rapid depletion of H2O2. The application of sequential H2O2 addition provided a better approach to prevent rapid inhibition via controlling the H2O2 concentration in the system to be sufficient but not excess, thus resulting in the higher degradation efficiency (the pseudo first-order rate constant of 0.49 hour-1 and 99 % degradation in 8 hours). Using NZVI with sequential H2O2 addition was also successful in degrading 1,2-DCA sorbed on to soil, yielding 99% removal of 1,2-DCA within 16 hours at the rate constant of 0.23 hour-1, around two times slower than in the system without soil presumably due to rate-limited 1,2-DCA desorption from soil. Mechanistic understanding of how sequential addition of H2O2, in comparison to

  16. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H2O2 Fenton-like system.

    Science.gov (United States)

    Cheng, Min; Zeng, Guangming; Huang, Danlian; Lai, Cui; Liu, Yang; Zhang, Chen; Wan, Jia; Hu, Liang; Zhou, Chengyun; Xiong, Weiping

    2018-07-01

    The presence of antibiotics in aquatic environments has attracted global concern. Fenton process is an attractive yet challenging method for antibiotics degradation, especially when such a reaction can be conducted at neutral pH values. In this study, a novel composite Fe/Co catalyst was synthesized via the modification of steel converter slag (SCS) by salicylic acid-methanol (SAM) and cobalt nitrate (Co(NO 3 ) 2 ). The catalysts were characterized by N 2 -Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that the Co-SAM-SCS/H 2 O 2 Fenton-like system was very effective for sulfamethazine (SMZ) degradation at a wide pH range. At initial pH of 7.0, the degradation rate of SMZ in Co-SAM-SCS/H 2 O 2 system was 2.48, 3.20, 6.18, and 16.21 times of that in Fe-SAM-SCS/H 2 O 2 , SAM-SCS/H 2 O 2 , Co(NO 3 ) 2 /H 2 O 2 and SCS/H 2 O 2 system, respectively. The preliminary analysis suggested that high surface area of Co-SAM-SCS sample and synergistic effect between introduced Co and SAM-SCS are responsible for the efficient catalytic activity. During the degradation, three main intermediates were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Based on this, a possible degradation pathway was proposed. The SEM images, XRD patterns and XPS spectra before and after the reactions demonstrate that the crystal and chemical structure of Co-SAM-SCS after five cycles are almost unchanged. Besides, the Co-SAM-SCS presented low iron and cobalt leaching (0.17 mg/L and 2.36 mg/L, respectively). The studied Fenton-like process also showed high degradation of SMZ in river water and municipal wastewater. The progress will bring valuable insights to develop high-performance heterogeneous Fenton-like catalysts for environmental remediation. Copyright © 2018

  17. Structural study of CH4, CO2 and H2O clusters containing from several tens to several thousands of molecules

    Science.gov (United States)

    Torchet, G.; Farges, J.; de Feraudy, M. F.; Raoult, B.

    Clusters are produced during the free jet expansion of gaseous CH4, CO2 or H2O. For a given stagnation temperature To, the mean cluster size is easily increased by increasing the stagnation pressure p0. On the other hand, the cluster temperature does not depend on stagnation conditions but mainly on properties of the condensed gas. An electron diffraction analysis provides information about the cluster structure. Depending on whether the diffraction patterns exhibit crystalline lines or not, the structure is worked out either by using crystallographic methods or by constructing cluster models. When they contain more than a few thousand molecules, clusters show a crystalline structure identical to that of one phase, namely, the cubic phase, known in bulk solid: plastic phase (CH4), unique solid phase (CO2) or metastable cubic phase (H2O). When decreasing the cluster size, the studied compounds behave quite differently: CO2 clusters keep the same crystalline structure, CH4 clusters show the multilayer icosahedral structure wich has been found in rare gas clusters, and H2O clusters adopt a disordered structure different from the amorphous structures of bulk ice. Des agrégats sont produits au cours de la détente en jet libre des gaz CH4, CO2 ou H2O. Pour une température initiale donnée To, on accroît facilement la taille moyenne des agrégats en augmentant la pression initiale po . Par contre, la température des agrégats dépend principalement des propriétés du gaz condensé. Une analyse par diffraction électronique permet l'étude de la structure des agrégats. Selon que les diagrammes de diffraction contiennent ou non des raies cristallines, on a recours soit à des méthodes cristallographiques soit à la construction de modèles d'agrégats. Lorsqu'ils renferment plus de quelques milliers de molécules, les agrégats adoptent la structure cristalline de l'une des phases connues du solide massif et plus précisément la phase cubique : phase plastique pour

  18. The stability evaluation of lime mud as transesterification catalyst in resisting CO2 and H2O for biodiesel production

    International Nuclear Information System (INIS)

    Li, Hui; Niu, Sheng-li; Lu, Chun-mei; Cheng, Shi-qing

    2015-01-01

    Highlights: • Lime mud (LM) is pretreated with calcination, hydration and desiccation. • The alkali solubility is the amount of alkali compounds dissolved in methanol. • The soluble alkali amount in LM700-H is higher than that of CaO–H. • LM700 possesses a stronger capability than CaO in resisting H 2 O and CO 2 . - Abstract: The most outstanding property of the heterogeneous transesterification catalysts is recyclable, but their catalytic activity may be depressed for the absorption of moisture (H 2 O) and carbon dioxide (CO 2 ) in air, especially for the basic ones. Lime mud (LM) is effective in catalyzing transesterification, yet its property in resisting H 2 O and CO 2 is indistinct, which should be emphasized. In this study, the LM based transesterification catalyst is prepared through calcinations. Then, it is hydrated and desiccated to simulate the contamination by H 2 O and CO 2 . Further, the fresh and the contaminated catalysts are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Hammette indicator, Brunauer–Emmett–Teller (BET) surface area and soluble alkali examination, to reveal the mechanism of LM in resisting H 2 O and CO 2 . Meanwhile, the analytical grade calcium oxide (CaO) is chosen for comparison. Finally, to comprehensively investigate the influences of H 2 O and CO 2 on LM in catalyzing transesterification, the factors of the catalyst addition percentage, molar ratio of methanol to oil and transesterification temperature are evaluated

  19. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  20. Reactions between olivine and CO2-rich seawater at 300 °C: Implications for H2 generation and CO2 sequestration on the early Earth

    Directory of Open Access Journals (Sweden)

    Hisahiro Ueda

    2017-03-01

    Full Text Available To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentration (ΣCO2 in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones.