Sample records for co2 hydrate equilibria

  1. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system

    DEFF Research Database (Denmark)

    Sfaxi, Imen Ben Attouche; Durand, Isabelle; Lugo, Rafael


    We report hydrate dissociation conditions of CO2 (15 and 30mol%)+N2 (85 and 70mol%) in the presence of aqueous solutions of THF, TBAB or TBAF. The concentrations of TBAB and TBAF in the aqueous solutions are 5wt% and 9wt% while THF concentration in aqueous solution is 3mol%. Two different experim...

  2. CO2 Hydration Shell Structure and Transformation. (United States)

    Zukowski, Samual R; Mitev, Pavlin D; Hermansson, Kersti; Ben-Amotz, Dor


    The hydration-shell of CO2 is characterized using Raman multivariate curve resolution (Raman-MCR) spectroscopy combined with ab initio molecular dynamics (AIMD) vibrational density of states simulations, to validate our assignment of the experimentally observed high-frequency OH band to a weak hydrogen bond between water and CO2. Our results reveal that while the hydration-shell of CO2 is highly tetrahedral, it is also occasionally disrupted by the presence of entropically stabilized defects associated with the CO2-water hydrogen bond. Moreover, we find that the hydration-shell of CO2 undergoes a temperature-dependent structural transformation to a highly disordered (less tetrahedral) structure, reminiscent of the transformation that takes place at higher temperatures around much larger oily molecules. The biological significance of the CO2 hydration shell structural transformation is suggested by the fact that it takes place near physiological temperatures.

  3. Effect of organic matter on CO(2) hydrate phase equilibrium in phyllosilicate suspensions. (United States)

    Park, Taehyung; Kyung, Daeseung; Lee, Woojin


    In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.5-277.0 K and 14-22 bar. Organic matter inhibited the phase equilibrium of CO2 hydrate by association with water molecules. The inhibition effect decreased in the order: urea phase equilibrium, while Na-MMT (expandable clay) affected the phase equilibrium because of its interlayer cations. The CO2 hydrate equilibrium conditions, in the illite and kaolinite suspensions with organic matter, were very similar to those in the aqueous organic matter solutions. However, the equilibrium condition in the Na-MMT suspension with organic matter changed because of reduction of its inhibition effect by intercalated organic matter associated with cations in the Na-MMT interlayer.

  4. Resolving CO2 and methane hydrate formation kinetics

    NARCIS (Netherlands)

    Golombok, M.; Ineke, E.; Luzardo, J.C.R.; He, Y.Y.; Zitha, P.


    We analyse the kinetics of CO2 and methane hydrate formation. The characteristic formation times are associated with different steps of the formation process. Conditions for minimising these rate times are identified while maintaining a regime where CO2 hydrate is formed and methane remains

  5. A usage of CO2 hydrate: convenient method to increase CO2 concentration in culturing algae. (United States)

    Nakano, Sho; Chang, Kwang-Hyeon; Shijima, Atsushi; Miyamoto, Hiroyuki; Sato, Yukio; Noto, Yuji; Ha, Jin-Yong; Sakamoto, Masaki


    The addition of CO2 to algal culture systems can increase algal biomass effectively. Generally, gas bubbling is used to increase CO2 levels in culture systems; however, it is difficult to quantitatively operate to control the concentration using this method. In this study, we tested the usability of CO2 hydrate for phytoplankton culture. Specifically, green algae Pseudokirchneriella subcapitata were cultured in COMBO medium that contained dissolved CO2 hydrate, after which its effects were evaluated. The experiment was conducted according to a general bioassay procedure (OECD TG201). CO2 promoted algae growth effectively (about 2-fold relative to the control), and the decrease in pH due to dissolution of the CO2 in water recovered soon because of photosynthesis. Since the CO2 hydrate method can control a CO2 concentration easily and quantitatively, it is expected to be useful in future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, Juan G. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON (Canada); Bruusgaard, Hallvard [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Servio, Phillip, E-mail: [Department of Chemical Engineering, McGill University, Montreal, QC (Canada)


    Highlights: > Inconsistencies found in hydrate literature. > Clarification to the number of variables needed to satisfy and justify equilibrium data. > Application of phase rule to mixed hydrate systems. > Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  7. Characterization of CO2 and mixed methane/CO2 hydrates intercalated in smectites by means of atomistic calculations. (United States)

    Martos-Villa, Rubén; Mata, M Pilar; Sainz-Díaz, C Ignacio


    The recent increase in anthropogenic CO2 gas released to the atmosphere and its contribution to global warming make necessary to investigate new ways of CO2 storage. Injecting CO2 into subsurface CH4 hydrate reservoirs would displace some of the CH4 in the hydrate crystal lattice, converting simple CH4 hydrates into either simple CO2 hydrates or mixed CH4CO2 hydrates. Molecular simulations were performed to determine the structure and behavior of CO2 and mixed hydrate complexes in the interlayer of Na-rich montmorillonite and beidellite smectite. Molecular Dynamics (MD) simulations used NPT ensembles in a 4×4×1 supercell comprised of montmorillonite or beidellite with CO2 or mixed CH4/CO2 hydrate complexes in the interlayer. The smectite 2:1 layer surface helps provide a stabilizing influence on the formation of gas hydrate complexes. The type of smectite affects the stability of the smectite-hydrate complexes, where high charge located on the tetrahedral layer of the smectites disfavor the formation of hydrate complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Transport Mechanisms for CO2-CH4 Exchange and Safe CO2 Storage in Hydrate-Bearing Sandstone

    Directory of Open Access Journals (Sweden)

    Knut Arne Birkedal


    Full Text Available CO2 injection in hydrate-bearing sediments induces methane (CH4 production while benefitting from CO2 storage, as demonstrated in both core and field scale studies. CH4 hydrates have been formed repeatedly in partially water saturated Bentheim sandstones. Magnetic Resonance Imaging (MRI and CH4 consumption from pump logs have been used to verify final CH4 hydrate saturation. Gas Chromatography (GC in combination with a Mass Flow Meter was used to quantify CH4 recovery during CO2 injection. The overall aim has been to study the impact of CO2 in fractured and non-fractured samples to determine the performance of CO2-induced CH4 hydrate production. Previous efforts focused on diffusion-driven exchange from a fracture volume. This approach was limited by gas dilution, where free and produced CH4 reduced the CO2 concentration and subsequent driving force for both diffusion and exchange. This limitation was targeted by performing experiments where CO2 was injected continuously into the spacer volume to maintain a high driving force. To evaluate the effect of diffusion length multi-fractured core samples were used, which demonstrated that length was not the dominating effect on core scale. An additional set of experiments is presented on non-fractured samples, where diffusion-limited transportation was assisted by continuous CO2 injection and CH4 displacement. Loss of permeability was addressed through binary gas (N2/CO2 injection, which regained injectivity and sustained CO2-CH4 exchange.

  9. Characteristics of CO2 Hydrate Formation and Dissociation in Glass Beads and Silica Gel

    Directory of Open Access Journals (Sweden)

    Qingping Li


    Full Text Available CO2 hydrate formation and dissociation is crucial for hydrate-based CO2 capture and storage. Experimental and calculated phase equilibrium conditions of carbon dioxide (CO2 hydrate in porous medium were investigated in this study. Glass beads were used to form the porous medium. The experimental data were generated using a graphical method. The results indicated the decrease of pore size resulted in the increase of the equilibrium pressure of CO2 hydrate. Magnetic resonance imaging (MRI was used to investigate the priority formation site of CO2 hydrate in different porous media, and the results showed that the hydrate form firstly in BZ-02 glass beads under the same pressure and temperature. An improved model was used to predict CO2 hydrate equilibrium conditions, and the predictions showed good agreement with experimental measurements.

  10. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.


    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  11. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture. (United States)

    García, S; Pis, J J; Rubiera, F; Pevida, C


    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  12. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht


    In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid......–liquid) and densities are considered for the mixtures involved. Different approaches for modeling pure CO2 and mixtures are compared. CO2 is modeled as non self-associating fluid, or as self-associating component having two, three and four association sites. Moreover, when mixtures of CO2 with polar compounds (water...... for binary mixtures of CO2 and water or alcohols when the solvation between CO2 and the polar compound is explicitly accounted for, whereas the model is less satisfactory when CO2 is treated as self-associating compound....

  13. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland


    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  14. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds (United States)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.


    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  15. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system (United States)

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao


    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  16. Performance of density functionals for modeling vapor liquid equilibria of CO2 and SO2. (United States)

    Goel, Himanshu; Windom, Zachary W; Jackson, Amber A; Rai, Neeraj


    Vapor liquid equilibria (VLE) and condensed phase properties of carbon dioxide and sulfur dioxide are calculated using first principles Monte Carlo (FPMC) simulations to assess the performance of several density functionals, notably PBE-D3, BLYP-D3, PBE0-D3, M062X-D3, and rVV10. GGA functionals were used to compute complete vapor liquid coexistence curves (VLCCs) to estimate critical properties, while the hybrid and nonlocal van der Waals functionals were used only for computing density at a single state point due to the high computational cost. Our results show that the BLYP-D3 functional performs well in predicting VLE properties for both molecules when compared with other functionals. In the liquid phase, pair correlation functions reveal that there is not a significant difference in the location of the peak for the first solvation shell while the peak heights are different for different functionals. Overall, the BLYP-D3 functional is a good choice for modeling VLE of acidic gases with significant environmental implications such as CO2 and SO2 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas


    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled...... potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated...... value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems....

  18. CO2-rich fluid inclusions in greenschists, migmatites, granulites, and hydrated granulites (United States)

    Hollister, L. S.


    Data was discussed from several different terrains in which CO2-rich fluid inclusions occur despite parageneses that predict the presence of H2O-rich fluids. CO2-rich fluid inclusions, some having densities appropriate for peak-metamorphic conditions, were found in greenschists, amphibolites, migmatites, and hydrated granulites. The author suggested that there may be a common process that leads to CO2-rich secondary inclusions in metamorphic rocks.

  19. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.


    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  20. CO2-SO2 clathrate hydrate formation on early Mars

    Directory of Open Access Journals (Sweden)

    Chassefière E.


    Full Text Available Most sulfate minerals discovered on Mars are dated no earlier than the Hesperian. We showed, using a 1-D radiative-convective-photochemical model, that clathrate formation during the Noachian would have buffered the atmospheric CO2 pressure of early Mars at ~2 bar and maintained a global average surface temperature ~230 K. Because clathrates trap SO2 more favorably than CO2, all volcanically outgassed sulfur would have been trapped in Noachian Mars cryosphere, preventing a significant formation of sulfate minerals during the Noachian and inhibiting carbonates from forming at the surface in acidic water resulting from the local melting of the SO2- rich cryosphere. The massive formation of sulfate minerals at the surface of Mars during the Hesperian could be the consequence of a drop of the CO2 pressure below a 2-bar threshold value at the late Noachian-Hesperian transition, which would have released sulfur gases into the atmosphere from both the Noachian sulfur-rich cryosphere and still active Tharsis volcanism. Our hypothesis could allow to explain the formation of chaotic terrains and outflow channels, and the occurrence of episodic warm episodes facilitated by the release of SO2 to the atmosphere. These episodes could explain the formation of valley networks and the degradation of impact craters, but remain to be confirmed by further modeling.

  1. Crystal structure, stability and spectroscopic properties of methane and CO2 hydrates. (United States)

    Martos-Villa, Ruben; Francisco-Márquez, Misaela; Mata, M Pilar; Sainz-Díaz, C Ignacio


    Methane hydrates are highly present in sea-floors and in other planets and their moons. Hence, these compounds are of great interest for environment, global climate change, energy resources, and Cosmochemistry. The knowledge of stability and physical-chemical properties of methane hydrate crystal structure is important for evaluating some new green becoming technologies such as, strategies to produce natural gas from marine methane hydrates and simultaneously store CO2 as hydrates. However, some aspects related with their stability, spectroscopic and other chemical-physical properties of both hydrates are not well understood yet. The structure and stability of crystal structure of methane and CO2 hydrates have been investigated by means of calculations with empirical interatomic potentials and quantum-mechanical methods based on Hartree-Fock and Density Functional Theory (DFT) approximations. Molecular Dynamic simulations have been also performed exploring different configurations reproducing the experimental crystallographic properties. Spectroscopic properties have also been studied. Frequency shifts of the main vibration modes were observed upon the formation of these hydrates, confirming that vibration stretching peaks of C-H at 2915cm(-1) and 2905cm(-1) are due to methane in small and large cages, respectively. Similar effect is observed in the CO2 clathrates. The guest-host binding energy in these clathrates calculated with different methods are compared and discussed in terms of adequacy of empirical potentials and DFT methods for describing the interactions between gas guest and the host water cage, proving an exothermic nature of methane and CO2 hydrates formation process. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Phase equilibria and physical properties of CO2-saturated cocoa butter mixtures at elevated pressures

    NARCIS (Netherlands)

    Venter, M.J.; Willems, P.; Kareth, S.; Weidner, E.; Kuipers, N.J.M.; de Haan, A.B.


    The melting point and phase behaviour of cocoa butter under CO2 pressure were observed in a high-pressure view cell. The melting point decreases from 35 to 23 °C at CO2 pressures higher than 5 MPa. A static analytical procedure was used to measure the solubility of CO2 in cocoa butter at 40, 80 and

  3. Experimental Study on the Mechanical Properties of CH4 and CO2 Hydrate Remodeling Cores in Qilian Mountain

    Directory of Open Access Journals (Sweden)

    Tingting Luo


    Full Text Available The CH4-CO2 replacement method has attracted global attention as a new promising method for methane hydrate exploitation. In the replacement process, the mechanical stabilities of CH4 and CO2 hydrate-bearing sediments have become problems requiring attention. In this paper, considering the hydrate characteristics and burial conditions of hydrate-bearing cores, sediments matrices were formed by a mixture of kaolin clay and quartz sand, and an experimental study was focused on the failure strength of CH4 and CO2 hydrate-bearing sediments under different conditions to verify the mechanical reliability of CH4-CO2 replacement in permafrost-associated natural gas deposits. A series of triaxial shear tests were conducted on the CH4 and CO2 hydrate-bearing sediments under temperatures of −20, −10, and −5 °C, confining pressures of 2.5, 3.75, 5, 7.5, and 10 MPa, and a strain rate of 1.0 mm/min. The results indicated that the failure strength of the CO2 hydrate-bearing sediments was higher than that of the CH4 hydrate-bearing sediments under different confining pressures and temperatures; the failure strength of the CH4 and CO2 hydrate-bearing sediments increased with an increase in confining pressure at a low confining pressure state. Besides that, the failure strength of all hydrate-bearing sediments decreased with an increase in temperature; all the failure strengths of the CO2 hydrate-bearing sediments were higher than those of the CH4 hydrate-bearing sediments in different sediment matrices. The experiments proved that the hydrate-bearing sediments would be more stable than that before CH4-CO2 replacement.

  4. Evaluation of Different CH4-CO2 Replacement Processes in Hydrate-Bearing Sediments by Measuring P-Wave Velocity

    Directory of Open Access Journals (Sweden)

    Bei Liu


    Full Text Available The replacement of methane with carbon dioxide in natural gas hydrate-bearing sediments is considered a promising technology for simultaneously recovering natural gas and entrapping CO2. During the CH4-CO2 replacement process, the variations of geophysical property of the hydrate reservoir need to be adequately known. Since the acoustic wave velocity is an important geophysical property, in this work, the variations of P-wave velocity of hydrate-bearing sediments were measured during different CH4-CO2 replacement processes using pure gaseous CO2 and CO2/N2 gas mixtures. Our experimental results show that P-wave velocity continually decreased during all replacement processes. Compared with injecting pure gaseous CO2, injection of CO2/N2 mixture can promote the replacement process, however, it is found that the sediment experiences a loss of stiffness during the replacement process, especially when using CO2/N2 gas mixtures.

  5. Non-equilibrium Simulation of CO­2-hydrate Phase Transitions from Mixtures of CO2 and N2 Gases (United States)

    Qorbani Nashaqi, K.


    Storage of CO2 in aquifers is one of several options for reducing the emissions of CO2 to the atmosphere. Generally this option requires sealing integrity through layers of clay or shale. Many reservoirs have regions of temperature and pressure inside hydrate formation conditions. Whether hydrate formation can provide long term extra sealing still remains unverified in view of all co-existing phases that affect hydrate stability. Yet another storage option for CO2 is in the form of hydrate through exchange of in situ CH4 hydrate. Injection of CO2 into hydrate filled sediments is challenging due to the partial filling of pores with hydrate which results in low porosity and low permeability. Formation of new hydrate from injected CO2 will enhance these problems, Mixing N2 gas with the CO2 will increase permeability and will reduce driving forces for formation of new hydrate from pore water and injection gas. Hydrate can generally not reach thermodynamic equilibrium due to Gibbs' phase rule and the combined first and second laws of thermodynamics. These thermodynamic constraints on distribution of masses over co-existing phases are dynamically coupled to local mass- and heat-transport. Reservoir simulations are one possible method for investigation of possible scenarios related to injection of CO2 with N2 into aquifers containing CH4 hydrate. In this work we have developed prevoiusly modified RetrasoCodeBrite (RCB) simulator to handle injection of CO2/N2 gas mixtures. Hydrate formation and dissociation were determined by investigating Gibbs free energy differences between hydrate and hydrate formers. Gibbs free energy differences were calculated from changes in chemical potentials, which were obtained using non-equilibrium thermodynamic approach. Further extension of RCB has been implemented in this work through adding on-the-fly thermodynamic calculations. Correspondingly, hydrate phase transitions are calculated directly inside the code as a result of super

  6. Equilibria of ternary system acetic acid-water-CO2 under subcritical conditions

    DEFF Research Database (Denmark)

    Gutierrez, Jose M. Jimenez; Mussatto, Solange I.; Tsou, Joana

    in a very wide range of applications. However, those conditions, especially the levels of high pressure required at larger scale, involve certain equipment limitations. An alternative to overcome those restrictions is to use subcritical carbon dioxide. In order to understand the different systems......) of the ternary system HAc—H2O—CO2 at different subcritical conditions. A proposed computer model could be validated with experimental data, leading to a certain degree of adjustment due to specific factors, such as the binary interaction parameter kij, used in the model based on the Peng-Robinson EoS coupled...... it will be returned to the atmosphere (as part of the carbon cycle), CO2 is an inexpensive and clean source with numerous industrial applications in diverse fields: from chemical processes to biotechnological purposes [1]. Many of these studies have been focused on supercritical CO2, due to its broad potential uses...

  7. Phase equilibria of H{sub 2}SO{sub 4}, HNO{sub 3}, and HCl hydrates and the composition of polar stratospheric clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, P.J.; Zhang, R.; Molina, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others


    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available. 42 refs., 5 figs., 4 tabs.

  8. Adhesion of CO2 on hydrated mineral surfaces and its implications to geologic carbon sequestration (United States)

    Wang, S.; Clarens, A. F.; Tao, Z.; Persily, S. M.


    Most mineral surfaces are water wetting, which has important implications for the transport of non-aqueous phase liquids, such as CO2, through porous media. In this work, contact angle experiments were carried out wherein unusual wetting behavior was observed between mineral surfaces and liquid or supercritical CO2 under certain geochemical conditions. This behavior can be understood in the context of adhesion between the CO2 and the mineral surface. When adhesion occurs, the wettability characteristics of the surfaces are significantly altered. More importantly, the CO2 exhibits a strong affinity for the surface and is highly resistant to shear forces in the aqueous phase. A static pendant drop method was used on a variety of polished mineral surfaces to measure contact angles. The composition of the aqueous phase (e.g., pH, ionic strength) and the characteristics of the mineral surface (e.g., composition, roughness), were evaluated to understand their impact on the prevalence of adhesion. Pressure and temperature conditions were selected to represent those that would be prevalent in geologic carbon sequestration (GCS) or during leakage from target repositories. Adhesion was widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nanometers. CO2 exhibited no adhesion on mineral surfaces with higher roughness (e.g., quartz). On smoother surfaces, the CO2 is thought to have more effective contact area with the mineral, enabling the weak van der Waals forces that drive most adhesion processes. Brine chemistry also had an important role in controlling CO2 adhesion. Increases in CO2 partial pressure and ionic strength both increased the incidence of adhesion. The addition of strong acid or strong base permanently inhibited the development of adhesion. These results suggest that the development of adhesion between the CO2 and the mineral surface is dependent on the integrity and thickness of the hydration layer between the CO2

  9. Natural Gas Hydrates as CH4 Source and CO2 Sink - What do SO2 Impurities do? (United States)

    Beeskow-Strauch, B.; Schicks, J. M.; Spangenberg, E.; Erzinger, J.


    The large amounts of gas hydrates stored in natural reservoirs are thought to be a promising future energy source. The recently discussed idea of methane extraction from these formations, together with the subsequent storage of CO2 in form of gas hydrates is an elegant approach to bring forward. A number of experiments have been performed on lab scale showing the replacement of CH4 by CO2 and vice versa. For instance, Graue and Kvamme (2006) demonstrated with Magnetic Resonance Images of core plug experiments the possibility of CH4 extraction by using liquid CO2. Laser Raman investigations of Schicks et al. (2007) showed, on the other hand, the ineffectiveness and slowness of the CH4 exchange reaction with gaseous CO2. After 120 hours, only 20% CH4 were exchanged for CO2. Natural methane hydrates which include often higher hydrocarbons tend to be even more stable than pure methane hydrates (Schicks et al., 2006). Contrary to lab conditions, industrial emitted CO2 contains - despite much effort to clean it - traces of impurities. For instance, CO2 emitted from the state-of-the-art Vattenfall Oxyfuel pilot plant in Schwarze Pumpe should reach a quality of >99.7% CO2 but still contains small amounts of N2, Ar, O2, SOx and NOx (pers. comm. Dr. Rolland). Here we present a microscopic and laser Raman study in a p-T range of 1 to 4 MPa and 271 to 280K focussing on CO2 hydrate formation and CH4-exchange reaction in the presence of 1% SO2. The experiments have been performed in a small-scale cryocell. The Raman spectra show that CO2 and SO2 occupy both large and small cages of the hydrate lattice. SO2 occurs strongly enriched in the hydrate clathrate, compared to its concentration in the feed gas which causes a strong acidification of the liquid phase after hydrate dissociation. Our study reveals that the hydrate formation rate from impure CO2 is similar to that of pure CO2 hydrate but that the stability of the CO2-SO2-hydrate exceeds that of pure CO2 hydrate. The improved

  10. Modelling the phase equilibria of multicomponent mixtures containing CO2, alkanes, water, and/or alcohols using the quadrupolar CPA equation of state

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel; Kontogeorgis, Georgios


    In this work, a quadrupolar cubic plus association (qCPA) equation of state is evaluated for its ability to predict the phase equilibria of multicomponent mixtures containing CO2 and alkanes, alcohols, and/or water. A single binary interaction parameter is employed in qCPA for all binary...

  11. "Self-preservation" of CO(2) gas hydrates--surface microstructure and ice perfection. (United States)

    Falenty, Andrzej; Kuhs, Werner F


    Gas hydrates can exhibit an anomalously slow decomposition outside their thermodynamic stability field; the phenomenon is called "self-preservation" and is mostly studied at ambient pressure and at temperatures between approximately 240 K and the melting point of ice. Here, we present a combination of in situ neutron diffraction studies, pVT work, and ex situ scanning electron microscopy (SEM) on CO(2) clathrates covering a much broader p-T field, stretching from 200 to 270 K and pressures between the hydrate stability limit and 0.6 kPa (6 mbar), a pressure far outside stability. The self-preservation regime above 240 K is confirmed over a broad pressure range and appears to be caused by the annealing of an ice cover formed in the initial hydrate decomposition. Another, previously unknown regime of the self-preservation exists below this temperature, extending however only over a rather narrow pressure range. In this case, the initial ice microstructure is dominated by a fast two-dimensional growth covering rapidly the clathrate surface. All observations lend strong support to the idea that the phenomenon of self-preservation is linked to the permeability of the ice cover governed by (1) the initial microstructure of ice and/or (2) the subsequent annealing of this ice coating. The interplay of the microstructure of newly formed ice and its annealing with the ongoing decomposition reaction leads to various decomposition paths and under certain conditions to a very pronounced preservation anomaly.

  12. Gas Hydrates as a CH4 Source and a CO2 Sink: New Approaches Based on Fundamental Research (United States)

    Schicks, J. M.; Spangenberg, E.; Erzinger, J.


    The huge amount of methane, stored in the gas hydrate reservoirs of the world suggests that natural gas hydrates may be used in the future as a source of energy. A first production test was performed during the Mallik 2002 Gas Hydrate Production Research Well Program, showing that the thermal stimulation of natural gas hydrates successfully results in methane production (Dallimore et al. 2005). However, regarding the energy balance, the most efficient method for methane production from hydrates still needs to be developed. From another point of view, the sequestration of CO2 in form of gas hydrates in (marine) sediments is an interesting idea. A combination of methane production from natural gas hydrates on the one hand and CO2 - sequestration on the other hand seems to be an obvious and ideal solution. Different studies on possible methods - e.g. the exchange of CH4 with CO2 in gas hydrates (Lee et al, 2003, Graue and Kvamme, 2006) - have been published recently and demonstrated that this could be a possible way, in principle. Our own investigations on the exchange of CH4 with gaseous CO2 showed that this reaction is much too slow and inefficient to be a reasonable approach. The exchange of only 20 percent CH4 with CO2 could be detected in stable structure I hydrate crystals after 120 hours. In addition, multicomponent hydrates containing higher hydrocarbons beside methane tend to be more stable than pure methane hydrates (Schicks et al, 2006). Therefore, the application of an additional and controlled method for CH4 -hydrate destabilization seems to be necessary and might lead to an efficient release of CH4 from and CO2 inclusion into hydrates. In any case, the question of process optimization still remains. In this contribution the chances and challenges of a combination of these two processes based on experimental data will be examined. Different kinds of experiments have been performed on natural marine and permafrost gas hydrates and synthesized clathrate

  13. Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO2 Transport

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios


    for the multicomponent systems are predictions using parameters solely estimated from binary data. The target of this work is two-fold: to assess the performance of the model for mixtures of practical significance but also to identify the best modeling approach so that we can arrive to an “engineering approach......The CPA (cubic-plus-association) equation of state is applied in this work to a wide range of systems of relevance to CO2 transport. Both phase equilibria and densities over extensive temperature and pressure ranges are considered. More specifically in this study we first evaluate CPA against...... density data for both CO2 and CO2–water and for vapor–liquid equilibrium for mixtures of CO2 with various compounds present in transport systems. In all of these cases we consider various possibilities for modeling CO2 (inert, self-associating using two-, three-, and four sites) and the possibility...

  14. Equation of state modeling of the phase equilibria of asymmetric CO2+n-alkane binary systems using mixing rules cubic with respect to mole fraction

    DEFF Research Database (Denmark)

    Cismondi, Martin; Mollerup, Jørgen M.; Zabaloy, Marcelo S.


    Both the equation of state (EOS) and the quadratic mixing rules proposed by van der Waals towards the end of the XIX century were enormous contributions to the understanding and modeling of fluids phase behavior. They set the basis for a consistent and useful representation of phase equilibria...... for a great diversity of mixtures. Nevertheless, the models for representing phase equilibria and physico-chemical properties of asymmetric systems may require more flexible mixing rules than the classical quadratic van der Waals (vdW) mixing rules or their equivalent (with regard to the number of available...... interaction parameters) in modern equations of state.In particular, the phase equilibria of binary mixtures containing CO2 and heavy n-alkanes have been studied by an important number of authors and using different types of models, achieving only partially accurate results and realizing the difficulties...

  15. New constraints on kinetic isotope effects during CO2(aq) hydration and hydroxylation: Revisiting theoretical and experimental data (United States)

    Sade, Ziv; Halevy, Itay


    CO2 (de)hydration (i.e., CO2 hydration/HCO3- dehydration) and (de)hydroxylation (i.e., CO2 hydroxylation/HCO3- dehydroxylation) are key reactions in the dissolved inorganic carbon (DIC) system. Kinetic isotope effects (KIEs) during these reactions are likely to be expressed in the DIC and recorded in carbonate minerals formed during CO2 degassing or dissolution of gaseous CO2. Thus, a better understanding of KIEs during CO2 (de)hydration and (de)hydroxylation would improve interpretations of disequilibrium compositions in carbonate minerals. To date, the literature lacks direct experimental constraints on most of the oxygen KIEs associated with these reactions. In addition, theoretical estimates describe oxygen KIEs during separate individual reactions. The KIEs of the related reverse reactions were neither derived directly nor calculated from a link to the equilibrium fractionation. Consequently, KIE estimates of experimental and theoretical studies have been difficult to compare. Here we revisit experimental and theoretical data to provide new constraints on oxygen KIEs during CO2 (de)hydration and (de)hydroxylation. For this purpose, we provide a clearer definition of the KIEs and relate them both to isotopic rate constants and equilibrium fractionations. Such relations are well founded in studies of single isotope source/sink reactions, but they have not been established for reactions that involve dual isotopic sources/sinks, such as CO2 (de)hydration and (de)hydroxylation. We apply the new quantitative constraints on the KIEs to investigate fractionations during simultaneous CaCO3 precipitation and HCO3- dehydration far from equilibrium.

  16. Laser Radiation CO2 Effects in Cement Paste at Different Hydration Stages after Preparation

    Directory of Open Access Journals (Sweden)

    Moreno-Virgen M.R.


    Full Text Available In this work the changes occurring in cement pastes irradiated by 10.6µm CO2 laser at diff erent stages of hydration after preparation are presented. Raman spectroscopy, X-ray diffraction and Scanning Electronic Microscopy (SEM techniques were used to observe molecular structural changes. Intensity of cement paste Raman peaks after laser irradiation was monitored in samples irradiated 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 days after their preparation. Applied laser power changed Raman peaks intensity at 187.5cm-1, 563cm-1, 695cm-1, 750cm-1, 897cm-1, 1042cm-1 and 1159cm-1 that correspond to compounds already present in cement pastes. X-ray diffraction, SEM images and changes in the Raman peaks confirm the recrystalization of cement paste compounds into new phases (alite and belite after irradiation. The produced changes show a clear dependence on the applied laser power density and age of samples.

  17. Fast parametric relationships for the large-scale reservoir simulation of mixed CH4-CO2 gas hydrate systems (United States)

    Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.


    A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO2-CH4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this work, we present a set of fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. The mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.

  18. DFT calculation of the potential energy landscape topology and Raman spectra of type I CH4 and CO2 hydrates. (United States)

    Vidal-Vidal, Ángel; Pérez-Rodríguez, Martín; Torré, Jean-Philippe; Piñeiro, Manuel M


    CO2 and CH4 clathrate hydrates of type I were studied by means of DFT and QTAIM, in order to better understand their properties at the molecular level. Sub-cells of type I hydrates were modeled as independent rigid cages, both empty and containing guest molecules. Interaction potentials of guest molecules inside each cage, and moving from a cell to the adjacent one, were calculated using the DFT approximation B3LYP/6-311+g(d,p), considering the cases with and without long range Coulombic corrections. The selected theory level was validated by comparison of the simulated Raman spectra with the experimental ones, for the case of type I lattice at full occupation of CO2 and CH4, respectively. For this comparison, Fermi resonances of CO2 were taken into account by transforming experimental bands to the corresponding theoretical non-mixed states. On the one hand, our results confirm the validity of the theory level selected for the model. We have shown the high anisotropy of the guest-cell interaction potential of the molecules analyzed, which has implications in the formulation and use of equations of state, and in the study of transport properties as well. On the other hand, our results suggest that the concentration of guest species inside type I hydrates could be computed from the comparison of experimental and predicted Raman spectra, although there are non-trivial experimental limitations to get over for that purpose.

  19. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2valorization. (United States)

    Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco


    The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Hydrate Equilibrium Data for CO2+N-2 System in the Presence of Tetra-n-butylammonium Fluoride (TBAF) and Mixture of TBAF and Cyclopentane (CP)

    DEFF Research Database (Denmark)

    Tzirakis, Fragkiskos; Stringari, Paolo; Coquelet, Christophe


    Hydrates can be used for CO2 capture from flue gases (hydrate crystallization). In this work, hydrate equilibrium data were measured and compared with literature data. The isochoric method was used to determine the gas hydrate dissociation points. Different CO2+N2 gas mixtures were used...... in the presence of promoters such as tetra-n-butylammonium fluoride (TBAF) and mixtures of TBAF and cyclopentane (CP). The key novel aspect of this work is the use of a combination of promoters, TBAF and CP, which under certain conditions induced further pressure reduction in comparison to pure TBAF results...

  1. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media. (United States)

    Baldwin, Bernard A; Stevens, Jim; Howard, James J; Graue, Arne; Kvamme, Bjorn; Aspenes, Erick; Ersland, Geir; Husebø, Jarle; Zornes, David R


    Magnetic resonance imaging was used to monitor and quantify methane hydrate formation and exchange in porous media. Conversion of methane hydrate to carbon dioxide hydrate, when exposed to liquid carbon dioxide at 8.27 MPa and approximately 4 degrees C, was experimentally demonstrated with MRI data and verified by mass balance calculations of consumed volumes of gases and liquids. No detectable dissociation of the hydrate was measured during the exchange process.

  2. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.


    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  3. Phase equilibria in ternary (carbon dioxide + tetrahydrofuran + water) system in hydrate-forming region: Effects of carbon dioxide concentration and the occurrence of pseudo-retrograde hydrate phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, Khalik M. [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Eng, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Chemical Engineering Programme, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Witkamp, Geert-Jan [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Eng, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Peters, Cor J., E-mail: C.J.Peters@tudelft.n [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Eng, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Chemical Engineering Programme, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); The Petroleum Institute, Chemical Engineering Program, Bu Hasa Building, Room 2203, P.O. Box 2203, Abu Dhabi (United Arab Emirates)


    In the present work, the three- and four-phase hydrate equilibria of (carbon dioxide (CO{sub 2}) + tetrahydrofuran (THF) + water) system are measured by using Cailletet equipment in the temperature and pressure range of (272 to 292) K and (1.0 to 7.5) MPa, respectively, at different CO{sub 2} concentration. Throughout the study, the concentration of THF is kept constant at 5 mol% in the aqueous solution. In addition, the fluid phase transitions of L{sub W}-L{sub V}-V -> L{sub W}-L{sub V} (bubble point) and L{sub W}-L{sub V}-V -> L{sub W}-V (dew point) are determined when they are present in the ternary system. For comparison, the three-phase hydrate equilibria of binary (CO{sub 2} + H{sub 2}O) are also measured. Experimental measurements show that the addition of THF as a hydrate promoter extends hydrate stability region by elevating the hydrate equilibrium temperature at a specified pressure. The three-phase equilibrium line H-L{sub W}-V is found to be independent of the overall concentration of CO{sub 2}. Contradictory, at higher pressure, the phase equilibria of the systems are significantly influenced by the overall concentration of CO{sub 2} in the systems. A liquid-liquid phase split is observed at overall concentration of CO{sub 2} as low as 3 mol% at elevated pressure. The region is bounded by the bubble-points line (L{sub W}-L{sub V}-V -> L{sub W}-L{sub V}), dew points line (L{sub W}-L{sub V}-V -> L{sub W} + V) and the four-phase equilibrium line (H + L{sub W} + L{sub V} + V). At higher overall concentration of CO{sub 2} in the ternary system, experimental measurements show that pseudo-retrograde behaviour exists at pressure between (2.5 and 5) MPa at temperature of 290.8 K.

  4. Determination of Priority Study Areas for Coupling CO2 Storage and CH4 Gas Hydrates Recovery in the Portuguese Offshore Area

    Directory of Open Access Journals (Sweden)

    Luís Bernardes


    Full Text Available Gas hydrates in sub-seabed sediments is an unexploited source of energy with estimated reserves larger than those of conventional oil. One of the methods for recovering methane from gas hydrates involves injection of Carbon Dioxide (CO2, causing the dissociation of methane and storing CO2. The occurrence of gas hydrates offshore Portugal is well known associated to mud volcanoes in the Gulf of Cadiz. This article presents a determination of the areas with conditions for the formation of biogenic gas hydrates in Portugal’s mainland geological continental margin and assesses their overlap with CO2 hydrates stability zones defined in previous studies. The gas hydrates stability areas are defined using a transfer function recently published by other authors and takes into account the sedimentation rate, the particulate organic carbon content and the thickness of the gas hydrate stability zone. An equilibrium equation for gas hydrates, function of temperature and pressure, was adjusted using non-linear regression and the maximum stability zone thickness was found to be 798 m. The gas hydrates inventory was conducted in a Geographic Information System (GIS environment and a full compaction scenario was adopted, with localized vertical flow assumed in the accrecionary wedge where mud volcanoes occur. Four areas where temperature and pressure conditions may exist for formation of gas hydrates were defined at an average of 60 km from Portugal’s mainland coastline. Two of those areas coincide with CO2 hydrates stability areas previously defined and should be the subject of further research to evaluate the occurrence of gas hydrate and the possibility of its recovery coupled with CO2 storage in sub-seabed sediments.

  5. Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen

    A novel gas separation technique based on gas hydrate formation (solid precipitation) is investigated by means of thermodynamic modeling and experimental investigations. This process has previously been proposed for application in post-combustion carbon dioxide capture from power station flue gases......-Plus-Association equation of state and the van der Waals-Platteeuw hydrate model is presented. This model enables the performance of a thermodynamic evaluation of gas hydrate forming systems relevant for post-combustion carbon dioxide capture. All model details and complete lists of model parameters are provided. Three...... simplified carbon dioxide capture processes are simulated by use of the model. Three to four capture stages are needed in all processes to obtain a product stream richer than 95 mole percent in terms of carbon dioxide. The modeling results presented here are discouraging for the post-combustion carbon...

  6. CO2 Hydrate Slurries For Rapid Chilling Of Fresh Food Products

    NARCIS (Netherlands)

    Lobregt, S.; Broeze, J.; Infante Ferreira, C.A.; Groll, Eckhard


    For rapid chilling fresh products we propose the immersion in melting carbon dioxide hydrate crystals, produced at +8 oC and 30 bar. We compare the chilling time of a specific fresh product from 30 to 4 oC making use of a “shock freezer” (2 m/s air velocity, air at -10 oC) and applying a slurry of

  7. An Experimental and Theoretical Study of CO2 Hydrate Formation Systems

    DEFF Research Database (Denmark)

    Tzirakis, Fragkiskos

    Appendix E) using as promoters tetra-n-butyl ammonium salts of bromide, fluoride and cyclopentane in collaboration with MINESParisTech in France. These chemicals are well known for their reduction capabilities of hydrate formation pressure. The results are in good accordance with the literature. Moreover......, the simultaneous combination of these chemicals achieved greater pressure reduction than if they were used separately. Then, experimental uncertainties were measured (for pressure/temperature transducers and gas chromatograph) and calculated (for the inserted quantities of water and chemicals). The uncertainties...

  8. Combining CO2 sequestration and CH4 production by means of guest exchange in a gas hydrate reservoir: two pilot scale experiments (United States)

    Heeschen, Katja U.; Spangenberg, Erik; Schicks, Judith M.; Deusner, Christian; Priegnitz, Mike; Strauch, Bettina; Bigalke, Nikolaus; Luzi-Helbing, Manja; Kossel, Elke; Haeckel, Matthias; Wang, Yi


    Methane (CH4) hydrates are considered as a player in the field of energy supply and - if applied as such - as a possible sink for the greenhouse gas carbon dioxide (CO2). Next to the more conventional production methods depressurization and thermal stimulation, an extraction of CH4 by means of CO2 injection is investigated. The method is based on the chemical potential gradient between the CH4 hydrate phase and the injected CO2 phase. Results from small-scale laboratory experiments on the replacement method indicate recovery ratios of up to 66% CH4 but also encounter major discrepancies in conversion rates. So far it has not been demonstrated with certainty that the process rates are sufficient for an energy and cost effective production of CH4 with a concurrent sequestration of CO2. In a co-operation of GFZ and GEOMAR we used LARS (Large Scale Reservoir Simulator) to investigate the CO2-CH4-replacement method combined with thermal stimulation. LARS accommodates a sample volume of 210 l and allows for the simulation of in situ conditions typically found in gas hydrate reservoirs. Based on the sample size, diverse transport mechanisms could be simulated, which are assumed to significantly alter process yields. Temperature and pressure data complemented by a high resolution electrical resistivity tomography (ERT), gas chromatography, and flow measurements serve to interpret the experiments. In two experiments 50 kg heated CO2 was injected into sediments with CH4 hydrate saturations of 50%. While in the first experiment the CO2 was injected discontinuously in a so called "huff'n puff" manner, the second experiment saw a continuous injection. Conditions within LARS were set to 13 MPa and 8˚ C, which allow for stability of pure CO2 and CH4 hydrates as well as mixed hydrates. The CO2 was heated and entered the sediment sample with temperatures of approximately 30˚ C. In this presentation we will discuss the results from the large-scale experiments and compare them with

  9. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.


    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  10. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology

    Energy Technology Data Exchange (ETDEWEB)

    Michalis, Vasileios K.; Costandy, Joseph; Economou, Ioannis G., E-mail: [Chemical Engineering Program, Texas A and M University at Qatar, P.O. Box 23847, Doha (Qatar); Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K. [Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” Aghia Paraskevi, Attiki GR-15310 (Greece)


    The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal–isobaric ensemble in order to determine the coexistence temperature (T{sub 3}) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T{sub 3}, is treated with long simulations in the range of 1000–4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T{sub 3} predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T{sub 3} of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.

  11. Reaction-driven cracking during hydration and carbonation of olivine: Implications for in situ CO2 capture and storage (United States)

    Kelemen, P. B.; Hirth, G.


    Reactions forming serpentine and/or Mg-carbonates via reaction of fluid with olivine may increase the solid volume, due to increasing solid mass and decreasing solid density, provided that fluid is supplied in an open system, and that dissolution does not remove significant solid mass. Increasing solid volume can create deviatoric stress within a rock, potentially causing fracture. In turn, this can provide a positive feedback to the alteration process, maintaining or increasing permeability and reactive surface area. This could be important - or even essential - for proposed in situ mineral carbonation for CO2 storage, and potentially for geological CO2 capture from surface waters. We use several methods to estimate the 'force of crystallization' during hydration and carbonation of olivine. The free energy changes driving these processes can potentially generate overpressures of 100's to 1000's of MPa. These potential stresses are larger for a given temperature for carbonation compared to serpentinization. Thermodynamic upper bounds can be compared to estimates based on microstructure in natural samples. Evans (Int Geol Rev 2004) and Jamtveit et al. (EPSL 2008) provide microphotographs of igneous troctolites, with interstitial plagioclase surrounding rounded olivine grains. The olivine grains are partially serpentinized, and the plagioclase has closely spaced fractures interpreted as a result of expansion during serpentinization. Strain energy due to expansion should be greater than surface energy on new fractures. Spacing and length of fractures in plagioclase yields a minimum of about 260 MPa for the differential stress. Alternatively, if fractures did not form, elastic stress in the plagioclase resulting from expansion during serpentinization should be proportional to the strain. Because some strain could be accommodated by irreversible mechanisms, such as friction and dilation on cracks and/or viscous flow, this yields a maximum stress of 270 MPa. The close

  12. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates (United States)

    Costandy, Joseph; Michalis, Vasileios K.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.


    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice.

  13. Corrigendum to "New constraints on kinetic isotope effects during CO2(aq) hydration and hydroxylation: Revisiting theoretical and experimental data" [Geochim. Cosmochim. Acta 214 (2017) 246-265 (United States)

    Sade, Ziv; Halevy, Itay


    The authors regret an error in the derivation of the link between KFFs and isotopic rate constants of CO2 hydration (Section 2.2). Considering the subset of isotopologues, C16O16O, C18O16O, H216O and H218O, there are four possible forward reactions: C16O16O + H216O → H2C16O16O16O,

  14. Two-component, ab initio potential energy surface for CO2—H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both (United States)

    Wang, Qingfeng Kee; Bowman, Joel M.


    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2—H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  15. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both. (United States)

    Wang, Qingfeng Kee; Bowman, Joel M


    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2-H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  16. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system. (United States)

    Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G


    Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.

  17. Vibrational and electronic spectroscopy of the 4-hydroxystyrene-CO2 cluster and its hydrate: a para-coumaric acid impostor. (United States)

    Smolarek, Szymon; Vdovin, Alexander; Tan, Eric M M; Buma, Wybren J


    We report on the results of high-resolution spec-troscopic studies on the 4-hydroxystyrene-CO(2) cluster. We show that these clusters are generated upon heating of para-coumaric acid, the chromophore of the photoactive yellow protein (PYP), as the result of a thermal decarboxylation process. Since the mass of the cluster and the starting material are the same, standard mass-resolved multiphoton ionization spectroscopic methods do not suffice to distinguish these clusters from para-coumaric acid. Instead, more advanced methods that include various UV and IR depletion methods need to be applied. These methods, in combination with quantum chemical calculations, enable us to unravel the structural and spectroscopic properties of 4-hydroxystyrene-CO(2) as well as of its hydrate, 4-hydroxystyrene-CO(2)-H(2)O.

  18. H2S-CO2 Reaction with Hydrated Class H Well Cement under Geologic Sequestration Conditions (United States)

    Kutchko, B. G.; Hawthorne, S.; Strazisar, B. R.; Miller, D.


    The technology to inject CO2 into geological formations is available and practiced at several locations in the world, e.g. Sleipner, Norway and the Weyburn project in Alberta, Canada. In addition to CO2, acid gas (a mixture of CO2 and H2S) injection is also currently employed and on the rise. For example, there are currently over 40 wells used for acid gas injection in Alberta, Canada. Few studies address the physical and chemical characteristics of well cement exposed to acid gas under geologic sequestration conditions. The objective of this study is to determine how oilwell cement is affected by the addition of H2S in a CO2 injection scenario. Laboratory experiments have been performed in order to determine the physical and chemical changes in cement exposed to acid gas vs. pure CO2 under simulated sequestration reservoir conditions, including both aqueous and supercritical CO2. Obvious differences were observed between the H2S-CO2 and CO2-only exposed cement. Differences were also observed between the submerged and headspace exposed portions of the samples. The H2S-CO2 exposed cement underwent a combination of carbonation and redox reactions that ultimately affected the physical properties. The outer rim of the cylindrical cement samples were characterized by a zone of carbonation and the sulfidation of tetracalcium aluminoferrites to pyrite. Beyond the carbonation rim is evidence of significant impact from the H2S in the form of ettringite and very small grains of pyrite. Ettringite is formed due to oxidation of H2S which produces sulfides which in turn reacts with Ca-compounds. The carbonation reaction lowers the pH in the cement matrix to allow dissolution of ettringite and the tetracalcium aluminoferrite for pyrite formation. Implications regarding geologic co-sequestration and wellbore integrity are significant.

  19. Natural Gas Hydrate Phase Equilibria and Kinetics : Understanding the State-Of-The-Art Équilibres des phases des hydrates de gaz naturel et cinétique

    Directory of Open Access Journals (Sweden)

    Sloan E. D.


    Full Text Available An overview is given of gas hydrate phase equilibria and kinetics. It is suggested that with only a few exceptions hydrate phase equilibrium conditions may be predicted with acceptable accuracy for industrial purposes via the current state-of-the art. Hydrate research is at a milestone, going beyond equilibrium experiments to time-dependent measurements, such as in the kinetic arena, where there is a severe paucity of date. To illustrate the concepts, two qualitative microscopic models are presented :1 the hydrate guest: cavity size ratio and2 the dissolution of apolar molecules in liquid water. Hypotheses for macroscopic phase equilibria and kinetic nucleation phenomena are given, based upon the two models. Cet article présente brièvement les équilibres des phases des hydrates de gaz naturel et leur cinétique. Il signale qu'en l'état actuel des connaissances, les conditions d'équilibre des phases des hydrates peuvent être connues, à quelques exceptions près, avec une précision acceptable dans un but industriel. La recherche sur les hydrates atteint un point décisif, elle dépasse les expériences d'équilibre et s'intéresse aux mesures variant en fonction du temps, celles de la cinétique par exemple, où les données sont particulièrement rares. Pour illustrer le concept deux modèles qualitatifs microscopiques sont présentés : 1 le rapport de grosseur hydrate hôte/cavité, et 2 la dissolution des molécules apolaires dans l'eau liquide. L'auteur émet des hypothèses relatives aux phénomènes macroscopiques d'équilibres des phases et de nucléation cinétique, basées sur ces deux modèles.

  20. Silicate and Carbonatite Melts in the Mantle: Adding CO2 to the pMELTS Thermodynamic Model of Silicate Phase Equilibria (United States)

    Antoshechkina, P. M.; Shorttle, O.


    The current rhyolite-MELTS algorithm includes a mixed H2O-CO2 vapor phase, and a self-consistent speciation model for CO2 and CaCO3 in the silicate liquid (Ghiorso & Gualda 2012; 2015). Although intended primarily to model crustal differentiation and degassing, GG15 captures much of the experimentally-observed melting behavior of CO2-rich mafic lithologies, including generation of small-degree carbonatite melts, a miscibility gap between carbonatite and silicate liquids at low P and a smooth transition to a single carbonated-silicate melt at high P (e.g. Dasgupta et al. 2007). However, solid and liquid carbonate phases were not used in calibration of GG15, and it is suitable only for P MySQL database, adapted from LEPR (Hirschmann et al. 2008). Here, we further extend our database, e.g. to include multiple carbonate phases, and combine the calibration scheme with the libalphaMELTS interface to the rhyolite-MELTS, pMELTS, and H2O-CO2 fluid thermodynamic models (see We use a Monte-Carlo type calibration approach to fit the observed phases and compositions, though stop short of a fully Bayesian formulation. The CO2-fluid experimental database has been updated to include more recent and higher P studies, adding approximately 40 pure fluid plus liquid constraints that conform to the selection criteria used in GG15. To further expand the database, we plan to use some or all of: solid carbonate-bearing experiments; coexisting silicate and carbonatite liquids; phase-present, and phase-absent constraints. As a first approximation, we include four carbonate phases: pure calcite and aragonite, and binary solutions for dolomite-ankerite and magnesite-siderite. Following GG15, we have adopted the CO2 fluid model of Duan & Zhang (2006) and added CO2 and CaCO3 species to the pMELTS liquid model. A key question that we hope to address during calibration is whether a Na2CO3 liquid species is justified instead of, or in addition to, CaCO3 for the

  1. The Effect of Additive “B” on the Properties of CO2-Hardened Foundry Sands with Hydrated Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Kamińska J.


    Full Text Available The results of own studies concerning the application of a new additive to the CO2-hardened sodium water glass foundry sands are presented. The new additive, which is a composition of aqueous solutions of modified polyalcohols, has been designated by the symbol “B” and is used as an agent improving the sand knocking out properties. The scope of studies included various mechanical and technological properties of foundry sand mixtures, such as permeability, friability, life cycle of cores and knocking out properties. Two types of water glass with different values of the silica modulus and density, designated as R145 and R150, were tested. Moulding sands used in the tests were made with the additive “B”. For comparison, a reference sand mixture with water glass but without the additive “B” was also prepared.

  2. Static demolition by calcium oxide. Part 3. Hydration properties of calcium oxide which is varied on its surface by CO2 gas flow; Seisekkai wo shuseibun to suru seiteki hasaizai. 3. Seisekkai ryushi no hyoso kaishitsu ni yoru suiwa kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, H. [ROX Japan Co. Ltd., Tokyo (Japan); Tsugeno, S.; Nagaishi, T. [Kyushu Sangyo University, Fukuoka (Japan). Faculty of Engineering


    Fast granular type static demolition agent is dominated by solid-phase surface hydration reaction, and its local hydration velocity is remarkably accelerated on solid surfaces. In some cases, such phenomena cause work defects such as boiling of hydration water and eruption of the agent by pressurized vapor. Study was made on reduction of an initial hydration velocity through surface modification by direct reaction of CO2 with CaO powder. As a result, CaCO3 with thin layer calcite structure was formed on surfaces, modifying surfaces. In dry hydration (equimolar) of modified CaO, the hydration velocity was remarkably reduced, and the utmost exothermic temperature was also lowered. A water diffusion velocity into CaO was affected and reduced probably by formation of surface carbonate layers. Jander` formula was applied as rate-determining formula of diffusion on surface reactive layers to analyze the initial stage of hydration. As the analysis result under the assumption that formation of modified layers is proportional to treatment times, it was estimated that the initial stage of hydration of CaO treated by CO2 is controlled by 1-D diffusion of water into surface CaCO3 layers. 6 refs., 12 figs., 2 tabs.

  3. Experimental observations on the competing effect of tetrahydrofuran and an electrolyte and the strength of hydrate inhibition among metal halides in mixed CO{sub 2} hydrate equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, Khalik M., E-mail: [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Universiti Teknologi PETRONAS, Chemical Engineering Programme, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Roman, Vicente R.; Witkamp, Geert-Jan [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Peters, Cor J., E-mail: C.J.Peters@tudelft.n [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Petroleum Institute, Chemical Engineering Program, Bu Hasa Building, Room 2207A, P.O. Box 2533, Abu Dhabi (United Arab Emirates)


    In the present work, experimental data on the equilibrium conditions of mixed CO{sub 2} and THF hydrates in aqueous electrolyte solutions are reported. Seven different electrolytes (metal halides) were used in this work namely sodium chloride (NaCl), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), potassium bromide (KBr), sodium fluoride (NaF), potassium chloride (KCl), and sodium bromide (NaBr). All equilibrium data were measured by using Cailletet apparatus. Throughout this work, the overall concentration of CO{sub 2} and THF were kept constant at (0.04 and 0.05) mol fraction, respectively, while the concentration of electrolytes were varied. The experimental temperature ranged from (275 to 305) K and pressure up 7.10 MPa had been applied. From the experimental results, it is concluded that THF, which is soluble in water is able to suppress the salt inhibiting effect in the range studied. In all quaternary systems studied, a four-phase hydrate equilibrium line was observed where hydrate (H), liquid water (L{sub W}), liquid organic (L{sub V}), and vapour (V) exist simultaneously at specific pressure and temperature. The formation of this four-phase equilibrium line is mainly due to a liquid-liquid phase split of (water + THF) mixture when pressurized with CO{sub 2} and the split is enhanced by the salting-out effect of the electrolytes in the quaternary system. The strength of hydrate inhibition effect among the electrolytes was compared. The results shows the hydrate inhibiting effect of the metal halides is increasing in the order NaF < KBr < NaCl < NaBr < CaCl{sub 2} < MgCl{sub 2}. Among the cations studied, the strength of hydrate inhibition increases in the following order: K{sup +} < Na{sup +} < Ca{sup 2+} < Mg{sup 2+}. Meanwhile, the strength of hydrate inhibition among the halogen anion studied decreases in the following order: Br{sup -} > Cl{sup -} > F{sup -}. Based on the results, it is suggested that the probability of formation and

  4. Constraining Hydrate-Mediated Transfer of the Greenhouse Gases CO2 and CH4 to the Ocean at Controlled Thermodynamic and Hydrodynamic Forcing


    Bigalke, Nikolaus Karl


    At pressures and temperatures prevailing in the ocean at a few hundred meters depth transfer of methane and carbon dioxide into and within the water column are influenced by the thermodynamic and kinetic stability of clathrates formed by these two greenhouse gases. Thus, a better understanding of hydrate formation and stability is essential to assess the contribution of submarine methane seepage to climate change, the hazard potential of submarine gas hydrate deposits and the feasibility and ...

  5. Vibrational and electronic spectroscopy of the 4-hydroxystyrene-CO2 cluster and its hydrate: a para-coumaric acid impostor

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Tan, E.M.M.; Buma, W.J.


    We report on the results of high-resolution spec-troscopic studies on the 4-hydroxystyrene−CO2 cluster. We show that these clusters are generated upon heating of para-coumaric acid, the chromophore of the photoactive yellow protein (PYP), as the result of a thermal decarboxylation process. Since the

  6. Hydration, hydration, hydration

    National Research Council Canada - National Science Library

    Miller, Veronica S; Bates, Graham P


    .... Although the importance of adequate hydration in combating heat stress is universally recognized, studies in a range of worker groups have demonstrated a disturbingly poor hydration level in a high...

  7. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance......, accurate predictions of the thermodynamic properties and phase equilibria of mixtures containing CO2 are challenging with classical models such as the Soave-Redlich-Kwong (SRK) equation of state (EoS). This is believed to be due to the fact, that CO2 has a large quadrupole moment which the classical models...... complicated due to parameter identifiability issues. In an attempt to quantify and illustrate these issues, the uncertainties in the pure compound parameters of CO2 were investigated using qCPA as well as different CPA approaches. The approaches employ between three and five parameters. The uncertainties...

  8. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.


    a combining rule or using an experimental value for the cross association energy). Initially, new binary interaction parameters were estimated for (CO2 + glycol) binary mixtures. Having the binary parameters from the binary systems, the model was applied in a predictive way (i.e. no parameters were adjusted...... to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed......, 2014, 2015, 2015), which is based on an investigation of about 30 multicomponent systems containing acid gases, water, alcohols, glycols and hydrocarbons, reveals that assuming cross association (solvation) of CO2 with glycols, alcohols and water or alternatively considering CO2 to be a self...

  9. The roles of surface structure, oxygen defects, and hydration in the adsorption of CO(2) on low-index ZnGa(2)O(4) surfaces: a first-principles investigation. (United States)

    Jia, Chuanyi; Fan, Weiliu; Cheng, Xiufeng; Zhao, Xian; Sun, Honggang; Li, Pan; Lin, Na


    The effects of the surface atomic and electronic structures, oxygen defects, and hydration on CO2 adsorption on ZnGa2O4(100), (110), and (111) surfaces were studied using density functional theory (DFT) slab calculations. For the perfect (100) surface, the most stable adsorption state involved the Zn-O-Ga bridge site, with an adsorption energy of 0.16 eV. In the case of the (110) and (111) surfaces, the strongest binding occurred on the Zn-O bridge sites, with much lower adsorption energies of -0.22 eV and -0.35 eV, respectively. In addition, the perfect surfaces showed CO2 activation ability, but dissociation adsorption could not proceed. The oxygen vacancies on these three surfaces (1) made the metal sites beside them carry less positive charge and further reduced the adsorption energies on these metal sites, and (2) created efficient adsorption sites that allowed even dissociative adsorption. The most favorable molecular and dissociative adsorption states both involved the O3c vacancy site of the (100) surface, and these two processes were spontaneous with adsorption energies of 0.74 eV and 0.80 eV, respectively. When H2O molecules are present on the perfect and defective surfaces, the generation of hydrogen bonds between H2O and CO2 would slightly enhance the stability of adsorption (except for that on the surface), making them energetically favorable. However, the co-adsorption of H2O could also increase the energy barriers for the decomposition reactions on the defective surfaces, making them kinetically unfavorable. Furthermore, the oxygen vacancy defects showed good activity for H2O adsorption and decomposition, as well. Thus, when both H2O and CO2 were present in the adsorption system, H2O would compete with CO2 for the oxygen vacancy sites and further decrease the amount of CO2 adsorption and decomposition. These findings have important implications for the decomposition of CO2 on the ZnGa2O4 surfaces and can provide theoretical guidance for chemists to

  10. Crystallization Experiments in the MgO-CO2-H2O system: Role of Amorphous Magnesium Carbonate Precursors in Magnesium Carbonate Hydrated Phases and Morphologies in Low Temperature Hydrothermal Fluids (United States)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.


    Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the

  11. CO 2 solubility in aqueous solutions containing Na + , Ca 2+ , Cl - , SO 4 2- and HCO 3 - : The effects of electrostricted water and ion hydration thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will; Zhang, Tongwei; Romanak, Katherine D.


    Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressures to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl- type brine with minor amounts of Mg2+, K+, Sr2+ and Br-).

  12. Modeling the dissociation conditions of salt hydrates and gas semiclathrate hydrates: application to lithium bromide, hydrogen iodide, and tetra-n-butylammonium bromide + carbon dioxide systems. (United States)

    Paricaud, Patrice


    A thermodynamic approach is proposed to determine the dissociation conditions of salt hydrates and semiclathrate hydrates. The thermodynamic properties of the liquid phase are described with the SAFT-VRE equation of state, and the solid-liquid equilibria are solved by applying the Gibbs energy minimization criterion under stoichiometric constraints. The methodology is applied to water + halide salt systems, and an excellent description of the solid-liquid coexistence curves is obtained. The approach is extended to the water + tetra-n-butylammonium bromide (TBAB) binary mixture, and an accurate representation of the solid-liquid coexistence curves and dissociation enthalpies is obtained. The van der Waals-Platteeuw (vdW-P) theory combined with the new model for salt hydrates is used to determine the dissociation temperatures of semiclathrate hydrates of TBAB + carbon dioxide. A good description of the dissociation pressures of CO(2) semiclathrate hydrates is obtained over wide temperature, pressure, and TBAB composition ranges (AAD = 10.5%). For high TBAB weight fractions the new model predicts a change of hydrate structure from type A to type B as the partial pressure of CO(2) is increased. The model can also capture a change of behavior with respect to TBAB concentration, which has been observed experimentally: an increase of the TBAB weight fraction leads to a stabilization of the gas semiclathrate hydrate at low initial TBAB concentrations below the stoichiometric composition but leads to a destabilization of the hydrate at TBAB concentrations above the stoichiometric composition.

  13. A reaction-diffusion model of CO2 influx into an oocyte. (United States)

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F; Calvetti, Daniela


    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pH(S)) and intracellular pH (pH(i)) caused by the influx of carbon dioxide (CO(2)) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO(2). In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO(2) hydration-dehydration reactions and competing equilibria among carbonic acid (H(2)CO(3))/bicarbonate (HCO(3)(-)) and a multitude of non-CO(2)/HCO(3)(-) buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that-assuming spherical radial symmetry-we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data [Musa-Aziz et al. 2009, PNAS 106 5406-5411], the model predicts that exposing the cell to extracellular 1.5% CO(2)/10 mM HCO(3)(-) (pH 7.50) causes pH(i) to fall and pH(S) to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO(2), native extra- and intracellular carbonic anhydrase-like activities, the non-CO(2)/HCO(3)(-) (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. CO2 blood test (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... The CO2 test is most often done as part of an electrolyte or basic metabolic panel. Changes in your ...

  15. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.


    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  16. Underwater CO2 Sequestration Program in Korea (United States)

    Kang, S.; Park, Y.; Choi, S.; Kim, Y.; Hwang, J.; Lee, J.


    In Korea an interdisciplinary project on underwater CO2 sequestration has been started. One of the main potential sites for the sequestration is the "DolGoRae (Dolphin)" gas field located over the southwestern part of the East/Japan Sea. We plan to deliver CO2 captured from the largest steel company in Korea (POSCO) to this site through pipe lines. To meet this end, chemical engineers study the behavior of CO2 hydrates, mechanical engineers design the pipe lines and injection systems, geologists and geological engineers survey the geological structure of the potential sites, and oceanographers assess the environmental effects. From a preliminary study, we find that we can store captured CO2 to the gas filed safely. In case the CO2 leaks from the storage site it would move to the north along the Korean coast on the average.

  17. Feasibility study of CO2 capture by anti-sublimation

    NARCIS (Netherlands)

    Schach, M.O.; Oyarzun, B.A.; Schramm, H.; Schneider, R.; Repke, J.U.


    Processes for carbon capture and storage have the drawback of high energy demand. In this work the application of CO2 capture by anti-sublimation is analyzed. The process was simulated using Aspen Plus. Process description is accomplished by phase equilibria models which are able to reproduce the

  18. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin


    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  19. Solid-Fluid Phase Equilibria for Natural Gas Processing at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longman


    Precipitation and deposition of solid components create potential risks of blocking gas passages in processes such as in LNG plants. To avoid such risks, experimental data and modelling of solid-fluid equilibrium should be used to optimize the design and operations. The objective of this work was to get a better understanding of the fundamentals of solid-fluid phase equilibrium. The specific focus of this work was to study solid-fluid phase behavior in systems of solid Co2, heavy hydrocarbons(HHC) and hydrate in equilibria with natural gas at low temperatures.Experimental methods for measuring solid-fluid equilibrium data in natural gas systems at low temperatures were extensively reviewed, and important and practical issues for designing experimental systems were summarized. The frost points in the Co2-methane systems (Co2 mole fraction 0.108 to 0.542) were measured in this work. Meanwhile, in another experimental setup, the water content in the gas phase was measured in the hydratemethane and hydrate-natural gas systems down to temperature 238.15 K. These data, together with data from other researchers, were used to verify the thermodynamic models. It is expensive and time-consuming to get experimental data at low temperatures, thus it is important to verify and use thermodynamic models to predict the solid-fluid phase behaviors. In the systems of solid Co2 and HHC in equilibrium with natural gas systems, the Soave-Redlich-Kwong (SRK) Equation of State (EOS) and simplified Perturbed-Chain Statistic Associating Fluid Theory (sPC-SAFT) EOS were used to calculate the fugacities in fluid phases. For solid phase, one fugacity model based on sublimation pressures and one model based on subcooled liquid were used. For correlating and predicting the hydrate behaviors, the Cubic-Plus-Association (CPA)EOS was used to model fluid phases and the hydrate-forming conditions were modelled by the solid solution theory of van der Waals and Platteeuw. Examples of applications of

  20. CO2 laser resurfacing. (United States)

    Fitzpatrick, R E


    The CO2 Laser offers a variety of unique features in resurfacing facial photodamage and acne scarring. These include hemostasis, efficient removal of the epidermis in a single pass, thermally induced tissue tightening, and safe, predictable tissue interaction. Knowledge of these mechanisms will result in the capability of using the CO2 laser effectively and safely whether the goal is superficial or deep treatment.

  1. CO2 uit buitenlucht

    NARCIS (Netherlands)

    Weel, van P.A.; Vanthoor, B.H.E.


    The supply of additional CO2 in a greenhouse will be restricted in the future. The concentration in outside air has risen above 400 ppm. This may open the possibility to blow this air through the canopy to increase growth. In this project, the vertical CO2 concentration was measured in a vertical

  2. Learning efficient correlated equilibria

    KAUST Repository

    Borowski, Holly P.


    The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents\\' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  3. Outsourcing CO2 Emissions (United States)

    Davis, S. J.; Caldeira, K. G.


    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  4. Peculiarities of CO2 sequestration in the Permafrost area (United States)

    Guryeva, Olga; Chuvilin, Evgeny; Moudrakovski, Igor; Lu, Hailong; Ripmeester, John; Istomin, Vladimir


    Natural gas and gas-condensate accumulations in North of Western Siberia contain an admixture of CO2 (about 0.5-1.0 mol.%). Recently, the development and transportation of natural gas in the Yamal peninsula has become of interest to Russian scientists. They suggest liquifaction of natural gas followed by delivery to consumers using icebreaking tankers. The technique of gas liquefaction requires CO2 to be absent from natural gas, and therefore the liquefaction technology includes the amine treatment of gas. This then leads to a problem with utilization of recovered CO2. It is important to note, that gas reservoirs in the northern part of Russia are situated within the Permafrost zone. The thickness of frozen sediment reaches 500 meters. That is why one of the promising places for CO2 storage can be gas-permeable collectors in under-permafrost horizons. The favorable factors for preserving CO2 in these places are as follows: low permeability of overlying frozen sediments, low temperatures, the existence of a CO2 hydrate stability zone, and the possibility of sequestration at shallow depths (less then 800-1000 meters). When CO2 (in liquid or gas phase) is pumped into the under-permafrost collectors it is possible that some CO2 migrates towards the hydrate stability zone and hydrate-saturated horizons can be formed. This can result on the one hand in the increase of effective capacity of the collector, and on the other hand, in the increase of isolating properties of cap rock. Therefore, CO2 injection sometimes can be performed without a good cap rock. In connection with the abovementioned, to elaborate an effective technology for CO2 injection it is necessary to perform a comprehensive experimental investigation with computer simulation of different utilization schemes, including the process of CO2 hydrate formation in porous media. There are two possible schemes of hydrate formation in pore medium of sediments: from liquid CO2 or the gas. The pore water in the

  5. Capnography: monitoring CO2. (United States)

    Casey, Georgina


    MONITORING RESPIRATORY and metabolic function by using capnography to measure end tidal carbon dioxide is standard practice in anaesthesia. It is also becoming more common in intensive care units and during procedural sedation. End tidal carbon dioxide (EtCO2) monitoring may also be used to assess effectiveness of cardiopulmonary resuscitation. Capnography is now emerging in general medical and surgical wards to monitor respiratory depression in patients using opioid analgesics. Using EtCO2 to monitor respiratory function offers many benefits over pulse oximetry. It is important to understand the differences between these two monitoring methods, and why capnography is increasingly favoured in many situations. An understanding of the physiological processes involved in CO2 excretion allows nurses to use capnography in a safe and meaningful way, while monitoring at-risk patients in acute care.

  6. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard


    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...... Naturfredningsforening’s lokalkomité for Lyngby blev en del af samarbejdet for at få borgerne i kommunen involveret i arbejdet med at udvikle strategier for reduktion af CO2. Siden sommeren 2007 har Videnskabsbutikken DTU, Lyngby-Taarbæk kommune og Danmarks Naturfredningsforening i Lyngby-Taarbæk samarbejdet om analyse...... og innovation i forhold til CO2-strategier....

  7. CO2 cycle (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.


    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  8. CO2NSL (Datalogger)

    DEFF Research Database (Denmark)

    Andersen, Sune Sick

    ,1500 street lamps around Copenhagen will be changed for light sources with low power consumption. Technical and Environmental turn down the energy as a part of Copenhagen goal of reducing the citys CO2 emissions by 20 percent by the end of year 2015. But how much power will the new lamps comsume? And can...

  9. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.


    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  10. CO2-neutral fuels (United States)

    Goede, A. P. H.


    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  11. Thermodynamic modeling of phase equilibria of semi-clathrate hydrates of CO2, CH4, or N2+tetra-n-butylammonium bromide aqueous solution

    DEFF Research Database (Denmark)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique


    concentration in aqueous solution. The Peng–Robinson (PR-EoS) equation of state along with re-tuned parameters of Mathias–Copeman alpha function is applied for calculation of the fugacity of gaseous hydrate former. For determination of the activity coefficient of the non-electrolyte species in the aqueous phase...

  12. Carbon dioxid sequestration in natural gas hydrates: Thermodynamic considerations (United States)

    Schicks, J. M.; Beeskow-Strauch, B.; Luzi, M.; Girod, M.; Erzinger, J.


    Due to the increasing energy demands natural gas hydrates become more and more of interest. The huge amount of hydrocarbons - mainly CH4 - stored in natural hydrate reservoirs suggest the use of natural gas hydrates as an energy resource. However, the combustion of this fossil fuel results in an undesired increase of CO2 in the atmosphere. Therefore, a combination of CH4 production on the one hand and the CO2 sequestration on the other hand seems to be ideal. Several investigations regarding the exchange reaction of CH4 with CO2 using pure methane hydrates and pure CO2 or CO2-N2-mixtures have been performed as laboratory studies in the past. Some showed exchange rates up to 85% and concluded that the driving force of this exchange reaction is the higher stability of CO2 hydrates compared to methane hydrates (e.g. Park et al. 2006). However, natural conditions may differ: natural gas hydrates may contain higher hydrocarbons or H2S, which have significant impact in terms of a higher stability of the mixed hydrate phase compared to pure CH4- and CO2-hydrates. Primary results of our investigations on the exchange reaction of a mixed CH4-C3H8-hydrate with CO2 indicates that although the stability of mixed CH4-C3H8-hydrate is significantly shifted to higher temperatures and lower pressures compared to pure CH4-, mixed CH4-CO2- and pure CO2-hydrates, it changes in the presence of CO2 from a structure II hydrate phase to form a structure I CH4-CO2-hydrate which subsequently transforms to CO2-hydrate. This process starts at the interface between gas and hydrate and continues slowly into the bulk phase. These observation lead to the following conclusions: - The driving force of the exchange reaction is less the stability with respect to temperature and pressure conditions of the hydrate phase but rather the chemical equilibrium state in terms of concentration gradients between hydrate and surrounding gas phase - After the initial formation of a CO2-CH4- or CO2 hydrate layer

  13. Institutions, Equilibria and Efficiency

    DEFF Research Database (Denmark)

    Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria...

  14. Resurrecting Equilibria Through Cycles

    DEFF Research Database (Denmark)

    Barnett, Richard C.; Bhattacharya, Joydeep; Bunzel, Helle

    In an overlapping generations model, momentary equilibria are defined as points that lie on the intergenerational offer curve, i.e., they satisfy agents' optimality conditions and market clearing at any date. However, some dynamic sequences commencing from such points may not be considered valid ...

  15. A SAFT Equation of State for the H2S-CO2-H2O-NaCl System and Applications for CO2 - H2S Transportation and Geological Storage

    National Research Council Canada - National Science Library

    Ji, Xiaoyan; Zhu, Chen


    When H2S is co-injected with CO2, we need to know thermodynamic properties and phase equilibria for the CO2-H2S- H2O-NaCl system in order to evaluate the sequestration capacity, optimal transportation...

  16. Institutions, Equilibria and Efficiency

    DEFF Research Database (Denmark)

    Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such set......Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria...... in such settings is proven under very general preference assumptions. The model is extended to include geographical location choice, a commodity space incorporating manufacturing imprecision and preferences for club-membership, schools and firms. Inefficiencies arising from household externalities or group...... in OLG, learning in OLG and in games, optimal pricing of derivative securities, the impact of heterogeneity...

  17. Competitive Sorption of CO2 and H2O in 2:1 Layer Phyllosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Loring, John S.; Glezakou, Vassiliki Alexandra; Miller, Quin R.; Chen, Jeffrey; Owen, Antionette T.; Lee, Mal Soon; Ilton, Eugene S.; Felmy, Andrew R.; McGrail, B. Peter; Thompson, Christopher J.


    The salting out effect, where increasing the ionic strength of aqueous solutions decreases the solubility of dissolved gases is a well-known phenomenon. Less explored is the opposite process where an initially anhydrous system containing a volatile, relatively non-polar component and inorganic ions is systematically hydrated. Expandable clays such as montmorillonite are ideal systems for exploring this scenario as they have readily accessible exchange sites containing cations that can be systematically dehydrated or hydrated, from near anhydrous to almost bulk-like water conditions. This phenomenon has new significance with the simultaneous implementation of geological sequestration and secondary utilization of CO2 to both mitigate climate warming and enhance extraction of methane from hydrated clay-rich formations. Here, the partitioning of CO2 and H2O between Na-, Ca-, and Mg-exchanged montmorillonite and variably hydrated supercritical CO2 (scCO2) was investigated using in situ X-ray diffraction, infrared (IR)spectroscopic titrations, and quartz crystal microbalance (QCM) measurements. Density functional theory calculations provided mechanistic insights. Structural volumetric changes were correlated to quantified changes in sorbed H2O and CO2 concentrations as a function of %H2O saturated in scCO2. Intercalation of CO2 is favored at low H2O/CO2 ratios in the interlayer region, where CO2 can solvate the interlayer cation. As the clay becomes more hydrated and the H2O/CO2 ratio increases, H2O displaces CO2 from the solvation shell of the cation and CO2 tends to segregate. This transition decreases both the entropic and enthalpic driving force for CO2 intercalation, consistent with experimentally observed loss of intercalated CO2.

  18. Forecasting global atmospheric CO2 (United States)

    Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Ciais, P.; Deutscher, N. M.; Engelen, R.; Jones, L.; Kivi, R.; Paris, J.-D.; Peuch, V.-H.; Sherlock, V.; Vermeulen, A. T.; Wennberg, P. O.; Wunch, D.


    A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and


    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec


    Full Text Available Carbon capture and storage is one way to reduce emissions of greenhouse gases in the atmosphere. Underground gas storage operations and CO2 sequestration in aquifers relay on both the proper wellbore construction and sealing properties of the cap rock. CO2 injection candidates may be new wells or old wells. In both cases, the long-term wellbore integrity (up to 1 000 years is one of the key performance criteria in the geological storage of CO2. The potential leakage paths are the migration CO2 along the wellbore due to poor cementation and flow through the cap rock. The permeability and integrity of the set cement will determine how effective it is in preventing the leakage. The integrity of the cap rock is assured by an adequate fracture gradient and by sufficient set cement around the casing across the cap rock and without a micro-annulus. CO2 storage in underground formations has revived the researc of long term influence of the injected CO2 on Portland cements and methods for improving the long term efficiency of the wellbore sealant. Some researchers predicted that set cement will fail when exposed to CO2 leading to potential leakage to the atmosphere or into underground formations that may contain potable water. Other researchers show set cement samples from 30 to 50 year-old wells (CO2 EOR projects that have maintained sealing integrity and prevented CO2 leakage, in spite of some degree of carbonation. One of reasons for the discrepancy between certain research lab tests and actual field performance measurements is the absence of standard protocol for CO2 resistance-testing devices, conditions, or procedures. This paper presents potential flow paths along the wellbore, CO2 behaviour under reservoir conditions, and geochemical alteration of hydrated Portland cement due to supercritical CO2 injection.

  20. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels (United States)

    Freeman, K. H.; Hayes, J. M.


    Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.

  1. CO2 as a refrigerant

    CERN Document Server


    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  2. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert


    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells....... In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  3. CO2 – intrinsic product, essential substrate and regulatory trigger of microbial and mammalian production processes

    Directory of Open Access Journals (Sweden)

    Bastian eBlombach


    Full Text Available Carbon dioxide formation mirrors the final carbon oxidation steps of aerobic metabolism in microbial and mammalian cells. As a consequence CO2/HCO3- dissociation equilibria arise in fermenters by the growing culture. Anaplerotic reactions make use of the abundant CO2/HCO3- levels for refueling citric acid cycle demands and for enabling oxaloacetate derived products. At the same time CO2 is released manifold in metabolic reactions via decarboxylation activity. The levels of extracellular CO2/HCO3- depend on cellular activities and physical constraints such like hydrostatic pressures, aeration and the efficiency of mixing in large-scale bioreactors. Besides, local CO2/HCO3- levels might also act as metabolic inhibitors or transcriptional effectors triggering regulatory events inside the cells. This review gives an overview about fundamental physicochemical properties of CO2/HCO3- in microbial and mammalian cultures effecting cellular physiology, production processes, metabolic activity and transcriptional regulation.

  4. Hydration lubrication

    National Research Council Canada - National Science Library

    Klein, Jacob


    The hydration lubrication paradigm, whereby hydration layers are both strongly held by the charges they surround, and so can support large pressures without being squeezed out, and at the same time...

  5. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D


    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  6. Investigation Of Hydrate Growth Rate On The Interface Between Liquid and Solid Film

    NARCIS (Netherlands)

    Zhou, H.; Infante Ferreira, C.A.; Groll, Eckhard


    Hydrate slurry has been reported to be a suitable secondary fluid for refrigeration and air-conditioning systems. The latent heat of CO2 hydrate is 387 kJ/kg under phase equilibrium condition of 7 °C and 30 bar. The utilization of CO2 hydrate slurry in air-conditioning systems is promising in

  7. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  8. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory


    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  9. Synthesis of mesoporous cerium compound for CO2 capture (United States)

    Liu, Guiqing; Tatsuda, Kou; Yoneyama, Yoshiharu; Tsubaki, Noritatsu


    A mesoporous adsorbent was simply synthesized by adding alkaline substances to cerium(III) nitric hydrate. The surface characteristics of the synthesized cerium compound were determined with BET, XRD and TEM analysis. It was found that although the specific surface areas of the synthesized cerium compounds were among about 120-200m2 per gram (BET area) which were smaller than the common used zeolite 13X (BET area 743 m2/g) and activated carbon (BET area 1079 m2/g), but the cerium compounds had excellent performances for CO2 adsorption as well as the CO2 desorption.

  10. Toroidal equilibria in spherical coordinates


    Tsui, K. H.


    The standard Grad-Shafranov equation for axisymmetric toroidal plasma equilibrium is customary expressed in cylindrical coordinates with toroidal contours, and through which benchmark equilibria are solved. An alternative approach to cast the Grad-Shafranov equation in spherical coordinates is presented. This equation, in spherical coordinates, is examined for toroidal solutions to describe low $\\beta$ Solovev and high $\\beta$ plasma equilibria in terms of elementary functions.

  11. Solid–liquid equilibria for binary and ternary systems with the Cubic-Plus-Association (CPA) equation of state

    DEFF Research Database (Denmark)

    Fettouhi, André; Thomsen, Kaj


    A systematic investigation of the CPA model's performance within solid-liquid equilibria (SLE) in binary mixtures (methane + ethane, methane + heptane, methane + benzene, methane + CO2, ethane + heptane, ethane + CO2, 1-propanol + 1,4-dioxane, ethanol + water, 2-propanol + water) is presented. Th....... The results from the binary mixtures are used to predict SLE behaviour in ternary mixtures (methane + ethane + heptane, methane + ethane + CO2). Our results are compared with experimental data found in the literature....

  12. CO2 mitigation via capture and chemical conversion in seawater. (United States)

    Rau, Greg H


    A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO(2) in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. After full equilibration with air, up to 85% of the captured carbon was retained in solution, that is, it did not degas or precipitate. Thus, above-ground CO(2) hydration and mineral carbonate scrubbing may provide a relatively simple point-source CO(2) capture and storage scheme at coastal locations. Such low-tech CO(2) mitigation could be especially relevant for retrofitting to existing power plants and for deployment in the developing world, the primary source of future CO(2) emissions. Addition of the resulting alkaline solution to the ocean may benefit marine ecosystems that are currently threatened by acidification, while also allowing the utilization of the vast potential of the sea to safely sequester anthropogenic carbon. This approach in essence hastens Nature's own very effective but slow CO(2) mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO(2) and ocean acidity on geologic times scales.

  13. Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter. (United States)

    Lee, Seungmin; Lee, Yohan; Lee, Jaehyoung; Lee, Huen; Seo, Yongwon


    The methane (CH4) - carbon dioxide (CO2) swapping phenomenon in naturally occurring gas hydrates is regarded as an attractive method of CO2 sequestration and CH4 recovery. In this study, a high pressure microdifferential scanning calorimeter (HP μ-DSC) was used to monitor and quantify the CH4 - CO2 replacement in the gas hydrate structure. The HP μ-DSC provided reliable measurements of the hydrate dissociation equilibrium and hydrate heat of dissociation for the pure and mixed gas hydrates. The hydrate dissociation equilibrium data obtained from the endothermic thermograms of the replaced gas hydrates indicate that at least 60% of CH4 is recoverable after reaction with CO2, which is consistent with the result obtained via direct dissociation of the replaced gas hydrates. The heat of dissociation values of the CH4 + CO2 hydrates were between that of the pure CH4 hydrate and that of the pure CO2 hydrate, and the values increased as the CO2 compositions in the hydrate phase increased. By monitoring the heat flows from the HP μ-DSC, it was found that the noticeable dissociation or formation of a gas hydrate was not detected during the CH4 - CO2 replacement process, which indicates that a substantial portion of CH4 hydrate does not dissociate into liquid water or ice and then forms the CH4 + CO2 hydrate. This study provides the first experimental evidence using a DSC to reveal that the conversion of the CH4 hydrate to the CH4 + CO2 hydrate occurs without significant hydrate dissociation.

  14. Collisionless current sheet equilibria (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.


    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  15. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki


    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  16. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.


    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  17. Relative equilibria of vortex arrays (United States)

    Stremler, Mark


    Experiments with vibrating and oscillating cylinders have demonstrated that exotic vortex patterns can emerge in laminar wake flows. These wakes arise when more than two vortices are generated per shedding cycle. The Karman vortex street has proven to be a useful model for investigating the standard wake flow with two vortices per period; this utility suggests that it will be instructive to investigate other singly-periodic point vortex configurations that move without change of shape or size. The existence and structure of such relative equilibria of vortex arrays will be presented. Motivation for investigating these equilibria, all of which appear to be unstable, comes from the observation that the dynamics of a system slows down in the vicinity of unstable equilibria. Thus, states close to these equilibria can remain for a relatively long time, as illustrated by recent experiments in strongly magnetized electron plasma. The investigation of the relative equilibria of vortex arrays can thus provide a `road-map' for states that may be observable in laminar wake experiments.

  18. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas


    gas molecules in the structural lattice. In this work, we quantitatively investigate the swapping behavior from injection of pure carbon dioxide and the (CO2 + N2) binary gas mixture through artificial hydrate-bearing sandstone samples by use of a core-flooding experimental apparatus. A total of 13...... of pure carbon dioxide in swapping methane from its hydrate phase; the methane recovery efficiency in brine water systems is enhanced relative to pure water systems. The replenishment of a fresh (CO2 + N2) gas mixture into the vapor phase can be considered as an efficient extraction method because 46...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  19. Partial Cooperative Equilibria: Existence and Characterization

    Directory of Open Access Journals (Sweden)

    Amandine Ghintran


    Full Text Available We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.

  20. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. (United States)

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas


    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  1. The CO2nnect activities (United States)

    Eugenia, Marcu


    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  2. Reducing cement's CO2 footprint (United States)

    van Oss, Hendrik G.


    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  3. Equilibria in Quantitative Reachability Games (United States)

    Brihaye, Thomas; Bruyère, Véronique; de Pril, Julie

    In this paper, we study turn-based quantitative multiplayer non zero-sum games played on finite graphs with reachability objectives. In this framework each player aims at reaching his own goal as soon as possible. We prove existence of finite-memory Nash (resp. secure) equilibria in multiplayer (resp. two-player) games.

  4. Liquid-vapor equilibrium of the systems butylmethylimidazolium nitrate-CO2 and hydroxypropylmethylimidazolium nitrate-CO2 at high pressure: influence of water on the phase behavior. (United States)

    Bermejo, M Dolores; Montero, Marta; Saez, Elisa; Florusse, Louw J; Kotlewska, Aleksandra J; Cocero, M José; van Rantwijk, Fred; Peters, Cor J


    Ionic liquids (IL) are receiving increasing attention due to their potential as "green" solvents, especially when used in combination with SC-CO2. In this work liquid-vapor equilibria of binary mixtures of CO2 with two imidazolium-based ionic liquids (IL) with a nitrate anion have been experimentally determined: butylmethylimidazolium nitrate (BMImNO3) and hydroxypropylmethylimidazolium nitrate (HOPMImNO3), using a Cailletet apparatus that operates according to the synthetic method. CO2 concentrations from 5 up to 30 mol % were investigated. It was found that CO2 is substantially less soluble in HOPMImNO3 than in BMImNO3. Since these ILs are very hygroscopic, water easily can be a major contaminant, causing changes in the phase behavior. In case these Ils are to be used in practical applications, for instance, together with CO2 as a medium in supercritical enzymatic reactions, it is very important to have quantitative information on how the water content will affect the phase behavior. This work presents the first systematic study on the influence of water on the solubility of carbon dioxide in hygroscopic ILs. It was observed that the presence of water reduces the absolute solubility of CO2. However, at fixed ratios of CO2/IL, the bubble point pressure remains almost unchanged with increasing water content. In order to explain the experimental results, the densities of aqueous mixtures of both ILs were determined experimentally and the excess molar volumes calculated.

  5. A SAFT Equation of State for the H2S-CO2-H2O-NaCl system and applications for CO2 - H2S transportation and geological storage


    Ji, Xiaoyan; Zhu, Chen


    When H2S is co-injected with CO2, we need to know thermodynamic properties and phase equilibria for the CO2-H2S- H2O-NaCl system in order to evaluate the sequestration capacity, optimal transportation and injection conditions, potential for pipeline corrosion, and increased risk of storage and leakage. Here, we summarize the results of the phase equilibrium and densities for CO2-sequestration related systems from a thermodynamic model that is based on statistical associating fluid theory equa...

  6. Microbial community in a sediment-hosted CO(2) lake of the southern Okinawa Trough hydrothermal system RID C-8303-2011

    DEFF Research Database (Denmark)

    Inagaki, Fumio; Kuypers, Marcel M. M.; Tsunogai, Urumu


    pavements above the CO(2) lake, decreasing to strikingly low cell numbers (107 CM-3) at the liquid CO(2)/CO(2)-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur...

  7. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai


    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  8. Outsourcing CO2 within China. (United States)

    Feng, Kuishuang; Davis, Steven J; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus


    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country's borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world's largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China's emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low-value-added but high-carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China.

  9. Phase equilibria of oleic, palmitic, stearic, linoleic and linolenic acids in supercritical CO2

    Directory of Open Access Journals (Sweden)

    P. L. Penedo


    Full Text Available The knowledge of the phase equilibrium is one of the most important factors to study the design of separation processes controlled by the equilibrium. Fatty acids are present in high concentration as by-products in vegetable oils but the equilibrium data involving these components is scarce. The objective of this work is the experimental determination of the liquid-vapor equilibrium of five binary different systems formed by carbon dioxide and palmitic acid (C16:0, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2 and linolenic acid (C18:3. The equilibrium experimental data was collected at 40, 60 and 80ºC at 60, 90 and 120 bar, at the extract and raffinate phases, using an experimental apparatus containing an extractor, a gas cylinder and pressure and temperature controllers. The data was modeled using the cubic equation of state of Peng-Robinson with the mixing rule of van der Waals with binary interaction parameters. The model was adequate to treat the experimental data at each temperature and at all the temperatures together. The best model that includes the van der Waals mixing rule with two parameters has maximum deviation of 17%. The distribution coefficients were also analyzed and it was concluded that the fractionation of the fatty acids is possible using supercritical carbon dioxide.


    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  11. Phase equilibria basic principles, applications, experimental techniques

    CERN Document Server

    Reisman, Arnold


    Phase Equilibria: Basic Principles, Applications, Experimental Techniques presents an analytical treatment in the study of the theories and principles of phase equilibria. The book is organized to afford a deep and thorough understanding of such subjects as the method of species model systems; condensed phase-vapor phase equilibria and vapor transport reactions; zone refining techniques; and nonstoichiometry. Physicists, physical chemists, engineers, and materials scientists will find the book a good reference material.

  12. Strain development in smectite clays upon exposure to CO2 (United States)

    de Jong, S. M.; Spiers, C. J.; Busch, A.


    Smectites (or swelling clays) are common constituents of claystones, mudstones and shales and are often present in the caprocks and faults sealing potential CO2 storage reservoirs. Their crystal structure is comprised of alternating silicate layers separated by an interlayer region, containing cations and water molecules. As the water molecules are easily exchanged between this region and the intergranular pore space, the structure can expand or shrink depending on factors such as temperature, water activity and clay composition. Whereas the water uptake and swelling properties of smectite clays have been studied extensively, fewer studies have been directed at possible interactions with CO2. However, several scenarios including shrinkage (dehydration) and swelling (surface adsorption or uptake of CO2 into the interlayer region) of the crystals are conceivable, which could have significant implications for caprock and fault integrity. To investigate possible effects of CO2 on the swelling properties of smectite clays, we performed unconfined volumetric strain measurements on compacted pellets of montmorillonite (SWy-1), which is a common type of smectite, and on smectite-bearing shale. This was done using an optical cell. We probed the macroscopic response of the pressed samples to assess the overall strain response to exposure to CO2 at typical P-T conditions expected in carbon dioxide storage sites, i.e. at a temperature of 45°C and CO2 pressures up to 15MPa. Samples were heat-treated prior to exposure to CO2 to obtain a defined hydration state (d001-spacing). This was determined independently using X-ray diffraction methods. Our results show that montmorillonite SWy-1 swells almost instantaneously (in a few seconds) to an equilibrium state, when placed in contact with (supercritical) CO2 for the conditions PCO2 ≤ 8 MPa, T = 45°C. Maximum swelling is observed for an initial d001 spacing of 11Å, reaching 2.4 ± 0.45% at a CO2 pressure of 15MPa. Only minor

  13. Flows due to pressure induced dissociation-formation of gas hydrates (United States)

    Agudo, J. R.; Kwon, S.; Saur, R.; Loekman, S.; Luzi, G.; Rauh, C.; Wierschem, A.; Delgado, A.


    During the last decade, Gas Hydrates (GH) have attracted the interest of the scientific community for engineering applications. Carbon dioxide hydrate (CO2H), for instance, may play an important role for capture and sequestration methods in order to reduce global climate change. Despite the extensive literature, the transport phenomena involved during CO2H formation are not yet fully understood. CO2 transfer from gas or liquid phase to the bulk of water is expected to happen not only by molecular diffusion but also driven by natural convective currents induced by CO2 dissolution in water. Using particle tracer methods, we experimentally characterize the flow velocity of the bulk of water during CO2H formation. For that purpose, CO2H is grown inside an optical cell with a volume of 12 mL at various pressures and temperatures. Due to CO2 dissolution, convection currents are noticed prior to hydrate formation. Our experimental results point to a significant correlation between this process and the subsequent hydrate formation. Two well-differentiated hydrate growth patterns were observed depending on the hydrate induction time and the corresponding CO2 concentration distribution inside water. For long induction times, CO2 can be provided from the water phase resulting in rapid growth. Short induction times resulted in slow growth at the interface creating a solid barrier accompanied by a significant drop in the flow velocity. In some cases, the hydrate layer appeared to be unstable and convection could restart.

  14. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . faulting and fluid migration, and 4. trapping of free gas beneath a hydrate seal. Experiments are being conducted to assess the impact of gas hydrate on sediment behavior, particularly with respect to slope failure and other potential geohazards....K. Paull, R. Matsumoto, P.J. Wallace, and W.P. Dillon (Eds.), Proceedings ODP, Scientific Results, v. 164 College Station, TX (Ocean Drilling Program), pp. 179-191. Dallimore, S. R., T. Uchida, and T. S. Collett, 1999, Summary, in S. R. Dallimore, T...

  15. Passive CO2 concentration in higher plants. (United States)

    Sage, Rowan F; Khoshravesh, Roxana


    Photorespiratory limitations on C3 photosynthesis are substantial in warm, low CO2 conditions. To compensate, certain plants evolved mechanisms to actively concentrate CO2 around Rubisco using ATP-supported CO2 pumps such as C4 photosynthesis. Plants can also passively accumulate CO2 without additional ATP expenditure by localizing the release of photorespired and respired CO2 around Rubisco that is diffusively isolated from peripheral air spaces. Passive accumulation of photorespired CO2 occurs when glycine decarboxylase is localized to vascular sheath cells in what is termed C2 photosynthesis, and through forming sheaths of chloroplasts around the periphery of mesophyll cells. The peripheral sheaths require photorespired CO2 to re-enter chloroplasts where it can be refixed. Passive accumulation of respiratory CO2 is common in organs such as stems, fruits and flowers, due to abundant heterotrophic tissues and high diffusive resistance along the organ periphery. Chloroplasts within these organs are able to exploit this high CO2 to reduce photorespiration. CO2 concentration can also be enhanced passively by channeling respired CO2 from roots and rhizomes into photosynthetic cells of stems and leaves via lacunae, aerenchyma and the xylem stream. Through passive CO2 concentration, C3 species likely improved their carbon economy and maintained fitness during episodes of low atmospheric CO2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The CO2 emission registries; De CO2 registers

    Energy Technology Data Exchange (ETDEWEB)

    De Witt Wijnen, H.R. [De Brauw Blackstone Westbroek, Den Haag (Netherlands)


    The European Commission has made a first draft available of the Regulation for a standardized and secured system of CO2 -emissions registries. Transactions under the European emissions trading scheme will be settled in accordance with the rules of this Regulation. This article gives a summary of the Regulation and describes the way emissions transactions are going to take place. Any person can open an account in an emissions register. The relation between the Kyoto Protocol and the Regulation is discussed, such as the role of the Commitment Period Reserve. Emission Reductions will not qualify as registered goods under Dutch law, as information on individual accounts will not be made public. [Dutch] Begin november van het vorig jaar heeft de Europese Commissie een concept voor commentaar laten circuleren van een verordening inzake een gestandaardiseerd en beveiligd stelsel van registers (de 'Register Verordening'). Aangezien er op dit moment hard gewerkt wordt aan een wijziging van de Wet milieubeheer in verband met de invoering van een hoofdstuk inzake de handel in emissierechten, lijkt het nuttig om de Register Verordening thans al te bespreken. De Wet milieubeheer zal de Register Verordening hebben te volgen. Bovendien zal kennismaking met de Register Verordening het begrip voor de beoogde werking van de toekomstige Europese emissiehandel vergroten. In dit artikel is mede gebruik gemaakt van wetenswaardigheden opgedaan tijdens een bijeenkomst met de opstellers van de Register Verordening in november 2003.

  17. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2. (United States)

    Ho, Tuan Anh; Ilgen, Anastasia


    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  18. Structure and Dynamics of Confined Water and CO2 in Clays under Supercritical Conditions (United States)

    Glezakou, V.; Lee, M.; Schaef, T.; Loring, J.; Davidson, C.; McGrail, P.


    Carbon dioxide (CO2) driven enhanced gas recovery (EGR) from depleted fractured shale gas reservoirs has the potential for producing economic benefits and providing long term storage options for anthropogenic derived CO2 emissions. However key scientific processes related to CO2:CH4 exchange rates, mineral volume changes, organic mobility, and mineral stability in the presence of acid gas injections are not well understood. In this paper, we conduct atomistic simulations to examine interactions occurring between model clay minerals and supercritical CO2 equilibrated with water or brines to identify parameters controlling adsorption and desorption of gases. Integrated within these simulations are results derived from a set of newly developed experimental techniques designed to characterize physico-chemical reactions at reservoir conditions. In a series of cell optimizations under pressures relevant to sequestration scenarios, molecular simulations within the NVT and NPT ensembles with varying water/CO2 ratios showed a range of interlayer expansion for specific cation-saturated smectites. In conjunction with experimental in situ high pressure x-ray diffraction (HXRD), semi-quantitative concentrations of interlayer H2O and CO2 were established. For example, Ca saturated smectites maintaining sub-single to single hydration states (waters during CO2 intercalation coincident with a decrease in the coordination population around the cations. Power spectra reveal rotationally constrained CO2 molecules over the silica layer of the Ca-smectite surface due to the formation of a two dimensional supercritical CO2 network at lower pressures, expanding to three-dimensions as the water content increases. Diffusion coefficients of the interlayer species determined from the molecular trajectories show dependence on the presence of CO2 and hydration state. In agreement with modeling studies, direct observations of volume changes were observed during in situ HXRD experiments when

  19. The ins and outs of CO2

    National Research Council Canada - National Science Library

    Raven, John A; Beardall, John


    ...; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases...

  20. ISLSCP II Globalview: Atmospheric CO2 Concentrations (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  1. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310...... ppmvin 1960 to 390 ppmv in 2012, probably due to human activity. A lot of research is being carried out forreducing CO2emissions from large stationary sources. Ofwhich, the carbonate looping process is anew process and has the potential to reduce CO2emissions with lower energy penalties. Most of thework...... performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof...

  2. CO2 Virtual Science Data Environment API (United States)

    National Aeronautics and Space Administration — The CO2 Virtual Data Environment is a comprehensive effort at bringing together the models, data, and tools necessary to perform research on atmospheric CO2.This...

  3. ISLSCP II Globalview: Atmospheric CO2 Concentrations (United States)

    National Aeronautics and Space Administration — ABSTRACT: The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that...

  4. Methane hydrate stability and anthropogenic climate change

    National Research Council Canada - National Science Library

    Archer, D


    .... The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2...

  5. The influence of soil carbonic anhydrase on the partitioning of gross CO2 fluxes using the oxygen isotopes of CO2 and water. (United States)

    Wingate, L.; Ogée, J.; Cuntz, M.; Seibt, U.; Peylin, P.; Genty, B.; Reiter, I.; Grace, J.; (6-9, Colleagues


    Measuring terrestrial gross CO2 fluxes at large scales presents one of the main challenges in global carbon cycle research. The oxygen isotopic composition (δ18O) of atmospheric CO2 offers the possibility to partition net CO2 fluxes into photosynthesis and respiration at ecosystem, regional and global scales. This approach relies on a detailed knowledge of the δ18O signature of the terrestrial gross CO2 fluxes. The latter reflects the δ18O of leaf and soil water because CO2 exchanges isotopically with water. This exchange can be accelerated by the enzyme carbonic anhydrase (CA). The high CA content in leaves of plants amplifies the impact of leaf photosynthesis on the δ18O of atmospheric CO2 (δa) by enhancing the equilibration of atmospheric CO2 with isotopically enriched leaf water. Here, we report that the accelerated isotopic exchange between CO2 and water due to CA activity may be a widespread phenomenon in soils as well. Across a range of ecosystems, we found that CO2 hydration was 10 to 300 times faster than the uncatalysed rate, with highest values in the hottest ecosystems. At the global scale, accounting for soil CA activity dramatically shifts the influence of soil and leaf fluxes on δa, thus changing the estimates of terrestrial gross CO2 fluxes. At a time when new laser technologies are poised to deliver more extensive data coverage of variations in δa, our finding indicates that δa signals should enable us to constrain CO2 gross fluxes in regions where this information has been particularly difficult to obtain, such as in the tropics.

  6. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study. (United States)

    Sujith, K S; Ramachandran, C N


    The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.

  7. Carbon Dioxide (CO2) in Blood (United States)

    ... Carbon Dioxide (CO2) in Blood To use the sharing features on ... please enable JavaScript. What is a Carbon Dioxide (CO2) Blood Test? Carbon dioxide (CO2) is an odorless, ...

  8. Prognose CO2-emissie glastuinbouw 2020

    NARCIS (Netherlands)

    Velden, van der Nico; Smit, Pepijn


    The greenhouse horticulture sector and government agreed in a covenant on a CO2 emission budget
    for 2020. It appeared that the 2014 CO2 emissions were considerably lower than this CO2 emission
    budget. The covenant signatories also agreed that an interim evaluation would be carried out

  9. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas


    The swapping of methane with carbon dioxide in hydrate has been proposed as a potential strategy for geologic sequestration of carbon dioxide and production of methane from natural hydrate deposits. However, this strategy requires a better understanding of the thermodynamic characteristics of CH4...... and CO2 hydrate as well as (CH4 + CO2) or (CH4 + CO2 + N2) mixed hydrates (since (CO2 + N2) gas mixture is often used as the swapping gas), along with the thermal physics property changes during gas exchange. In this study, a high pressure micro-differential scanning calorimetry (HP μ-DSC) was performed...... on synthesized gas hydrates to investigate the dissociation behavior of various hydrates. The hydrate dissociation enthalpies were determined by both μ-DSC measurement and Clapeyron equation. For the single guest molecule hydrate system, the average dissociation enthalpies of CH4 hydrate and CO2 hydrate measured...

  10. MHD equilibria with diamagnetic effects (United States)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.


    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  11. Forest succession at elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Clark, James S.; Schlesinger, William H.


    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  12. CO2 clearance by membrane lungs. (United States)

    Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H


    Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO2 than adding oxygen, but the range of CO2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO2 removal capacity. CO2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO2 removal.

  13. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. (United States)

    Inagaki, Fumio; Kuypers, Marcel M M; Tsunogai, Urumu; Ishibashi, Jun-Ichiro; Nakamura, Ko-Ichi; Treude, Tina; Ohkubo, Satoru; Nakaseama, Miwako; Gena, Kaul; Chiba, Hitoshi; Hirayama, Hisako; Nunoura, Takuro; Takai, Ken; Jørgensen, Bo B; Horikoshi, Koki; Boetius, Antje


    Increasing levels of CO2 in the atmosphere are expected to cause climatic change with negative effects on the earth's ecosystems and human society. Consequently, a variety of CO2 disposal options are discussed, including injection into the deep ocean. Because the dissolution of CO2 in seawater will decrease ambient pH considerably, negative consequences for deep-water ecosystems have been predicted. Hence, ecosystems associated with natural CO2 reservoirs in the deep sea, and the dynamics of gaseous, liquid, and solid CO2 in such environments, are of great interest to science and society. We report here a biogeochemical and microbiological characterization of a microbial community inhabiting deep-sea sediments overlying a natural CO2 lake at the Yonaguni Knoll IV hydrothermal field, southern Okinawa Trough. We found high abundances (>10(9) cm(-3)) of microbial cells in sediment pavements above the CO2 lake, decreasing to strikingly low cell numbers (10(7) cm(-3)) at the liquid CO2/CO2-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur-metabolizing chemolithotrophs within the Gamma- and Epsilonproteobacteria. The detection of functional genes related to one-carbon assimilation and the presence of highly 13C-depleted archaeal and bacterial lipid biomarkers suggest that microorganisms assimilating CO2 and/or CH4 dominate the liquid CO2 and CO2-hydrate-bearing sediments. Clearly, the Yonaguni Knoll is an exceptional natural laboratory for the study of consequences of CO2 disposal as well as of natural CO2 reservoirs as potential microbial habitats on early Earth and other celestial bodies.

  14. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel


    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  15. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris


    emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  16. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon


    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  17. Atmospheric pCO2 reconstructed across five early Eocene global warming events (United States)

    Cui, Ying; Schubert, Brian A.


    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  18. CO2 flux from Javanese mud volcanism (United States)

    Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.


    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  19. CO2 flux from Javanese mud volcanism. (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A


    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  20. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang


    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  1. On the topological stability of magnetostatic equilibria (United States)

    Tsinganos, K. C.; Rosner, R.; Distler, J.


    The topological stability of MHD equilibria is investigated by exploring the formal analogy, in the ideal MHD limit, between the topology of magnetic lines of force in coordinate space and the topology of integral surfaces of one- and two-dimensional Hamiltonian systems in phase space. It is demonstrated that in an astrophysical setting, symmetric magnetostatic equilibria satisfying the ideal MHD equations are exceptional. The principal result of the study is that previous infinitesimal perturbation theory calculations can be generalized to include finite-amplitude and symmetry-breaking effects. The effect of the ergodicity of perturbed symmetric equilibria on heat dispersal in magnetically dominated plasmas is discussed.

  2. Motion Control along Relative Equilibria

    DEFF Research Database (Denmark)

    Nordkvist, Nikolaj


    The subject of this thesis is control of mechanical systems as they evolve along the steady motions called relative equilibria. These trajectories are of interest in theory and applications and have the characterizing property that the system's body-fixed velocity is constant. For example, constant......-speed rotation about a principal axis is a relative equilibrium of a rigid body in three dimensions. We focus our study on simple mechanical control systems on Lie groups, i.e., mechanical systems with the following properties: the configuration manifold is a matrix Lie group, the total energy is equal...... on a Lie group is locally controllable along a relative equilibrium. These conditions subsume the well-known local controllability conditions for equilibrium points. Second, for systems that have fewer controls than degrees of freedom, we present a novel algorithm to control simple mechanical control...

  3. Inefficient equilibria in transition economy

    Directory of Open Access Journals (Sweden)

    Sergei Guriev


    Full Text Available The paper studies a general equilibrium in an economy where all market participants face a bid-ask spread. The spread may be caused by indirect business taxes, middlemen rent-seeking, delays in payments or liquidity constraints or price uncertainty. Wherever it comes from the spread causes inefficiency of the market equilibrium. We discuss some institutions that can decrease the inefficiency. One is second currency (barter exchange in the inter-firm transactions. It is shown that the general equilibrium in an economy with second currency is effective though is still different from Arrow–Debreu equilibrium. Another solution can be introduction of mutual trade credit. In the economy with trade credit there are multiple equilibria that are more efficient than original bid-ask spread but still not as efficient as Arrow–Debreu one, too. The implications for firms' integration and applicability to Russian economy are discussed.

  4. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2Conversion. (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing


    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  5. Urine as a CO2 absorbent. (United States)

    Aguilar, Manuel Jiménez


    The aim of this work was to investigate the effect of urine on the absorption of greenhouse gases such as CO(2). Human urine diluted with olive-oil-mill wastewaters (OMW) could be used to capture CO(2) from flue gas of coal-fired power plant and convert CO(2) emissions into valuable fertilizers (mainly, NH(4)HCO(3)) that can enhance CO(2) sequestration into soil and subsoil layers. Thus, the CO(2) emissions could be reduced between 0.1 and 1%. The proposed strategy requires further research to increase CO(2) absorption and assess the risks associated with wastewater reuse and xenobiotics in the agroecological environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll


    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  7. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup


    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  8. Bosch - An alternate CO2 reduction technology (United States)

    Heppner, D. B.; Hallick, T. M.; Clark, D. C.; Quattrone, P. D.


    The Bosch process is the most promising CO2 reduction concept for future prolonged space missions. The paper presents the design of a three-person-capacity preprototype B-CRS (Bosch-based CO2 Reduction Subsystem). It is sized to reduce 3.0 kg/d CO2 generated by the crew and to supply the product water to an O2 generation subsystem to obtain O2. The design supports future development of the B-CRS as an alternative CO2 reduction subsystem to the Sabatier-based process presently under test at NASA. The discussion covers the Bosch CO2 reduction concept, process and hardware description, performance parameters, design specifications, subsystem schematic and operation, mechanical subsystem summary, control/monitor instrumentation, and subsystem packaging. A B-CRS with a proven technological base is an attractive CO2 reduction subsystem that eliminates overboard venting.

  9. CO2 Activation over Catalytic Surfaces. (United States)

    Álvarez, Andrea; Borges, Marta; Corral-Pérez, Juan José; Olcina, Joan Giner; Hu, Lingjun; Cornu, Damien; Huang, Rui; Stoian, Dragos; Urakawa, Atsushi


    This article describes the main strategies to activate and convert carbon dioxide (CO2 ) into valuable chemicals over catalytic surfaces. Coherent elements such as common intermediates are identified in the different strategies and concisely discussed based on the reactivity of CO2 with the aim to understand the decisive factors for selective and efficient CO2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)



    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  11. Natural Gas Hydrates


    Ersland, Geir


    The experimental set-up with the MRI monitoring apparatus was capable of forming large quantities of methane hydrates in sandstone pores and monitor hydrate growth patterns for various initial conditions. Spontaneous conversion of methane hydrate to carbon dioxide hydrate occurred when methane hydrate, in porous media, was exposed to liquid carbon dioxide. The MRI images did not detect any significant increase in signal in the hydrate saturated cores that would indicate the presence of free w...

  12. CO2 capture in different carbon materials. (United States)

    Jiménez, Vicente; Ramírez-Lucas, Ana; Díaz, José Antonio; Sánchez, Paula; Romero, Amaya


    In this work, the CO(2) capture capacity of different types of carbon nanofibers (platelet, fishbone, and ribbon) and amorphous carbon have been measured at 26 °C as at different pressures. The results showed that the more graphitic carbon materials adsorbed less CO(2) than more amorphous materials. Then, the aim was to improve the CO(2) adsorption capacity of the carbon materials by increasing the porosity during the chemical activation process. After chemical activation process, the amorphous carbon and platelet CNFs increased the CO(2) adsorption capacity 1.6 times, whereas fishbone and ribbon CNFs increased their CO(2) adsorption capacity 1.1 and 8.2 times, respectively. This increase of CO(2) adsorption capacity after chemical activation was due to an increase of BET surface area and pore volume in all carbon materials. Finally, the CO(2) adsorption isotherms showed that activated amorphous carbon exhibited the best CO(2) capture capacity with 72.0 wt % of CO(2) at 26 °C and 8 bar.

  13. Global Mapping of CO2 on Enceladus (United States)

    McCord, T. B.; Combe, J. P.; Matson, D.; Johnson, T. V.


    We present the first global map of CO2 on Enceladus. The purpose is to determine whether CO2 is associated to fractures and eruptions, and if it formed recently. Cassini observed tectonic features and plumes on Enceladus, which could be caused by a warm subsurface ocean containing dissolved gases. CO2 should be one of these gases (Postberg F. et al., Nature, 2009), and some of it should be erupted and condensed onto the surface (Matson et al., Icarus, 2012). Validation of this hypothesis could be done by determining the amount, location and molecular state of the CO2. Free CO2 ice and complexed CO2 were reported on Enceladus (Brown et al., Science, 2006; Hansen, LPSC, 2010) from analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) data, and on other Saturn icy satellites (Cruikshank et al., Icarus, 2010 ; Filacchione et al., Icarus, 2010). Complexed CO2 has also been found from Galileo Near-Infrared Mapping Spectrometer (NIMS) spectra on the icy Galilean satellites (McCord et al., Science, 1997 and JGR, 1998), apparently due to both interior outgassing and radiation processing. CO2 has an asymmetric stretching mode that creates an absorption band, the wavelength position of which is sensitive to the nature of molecular associations between CO2 and their neighbors. Free CO2 ice absorbs at 4.268 μm for (Sandford and Allamandola, 1990) and CO2 complexed with other molecules absorbs at shorter wavelengths, around 4.25 μm or shorter (Chaban et al., Icarus, 2007). In VIMS spectra of Enceladus, this stretching mode absorption band is near the instrument detection limit. We utilized all VIMS data sets available that had significant spatial resolution to increase the statistics of the observations for any given location and improve the signal to noise. CO2 has also a smaller absorption at 2.7 μm, although it occurs in a range of wavelength that has higher signal-to-noise ratio by several magnitudes, because the surface of Enceladus (mostly H2O ice) has

  14. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change (United States)

    PöRtner, Hans O.; Langenbuch, Martina; Michaelidis, Basile


    Currently rising CO2 levels in atmosphere and marine surface waters as well as projected scenarios of CO2 disposal in the ocean emphasize that CO2 sensitivities need to be investigated in aquatic organisms, especially in animals which may well be the most sensitive. Moreover, to understand causes and effects, we need to identify the physiological processes that are sensitive to CO2 beyond the current emphasis on calcification. Few animals may be acutely sensitive to moderate CO2 increases, but subtle changes due to long-term exposure may already have started to be felt in a wide range of species. CO2 effects identified in invertebrate fauna from habitats characterized by oscillating CO2 levels include depressed metabolic rates and reduced ion exchange and protein synthesis rates. These result in shifts in metabolic equilibria and slowed growth. Long-term moderate hypercapnia has been observed to produce enhanced mortality with as yet unidentified cause and effect relationships. During future climate change, simultaneous shifts in temperature, CO2, and hypoxia levels will enhance sensitivity to environmental extremes relative to a change in just one of these variables. Some interactions between these variables result from joint effects on the same physiological mechanisms. Such interactions need to be considered in terms of future increases in atmospheric CO2 and its uptake by the ocean as well as in terms of currently proposed mitigation scenarios. These include purposeful injection of CO2 in the deep ocean or Fe fertilization of the surface ocean, which reduces subsurface O2 levels. The resulting ecosystem shifts could develop progressively, rather than beyond specific thresholds, such that effects parallel CO2 oscillations. It is unsure to what extent and how quickly species may adapt to permanently elevated CO2 levels by microevolutionary compensatory processes.

  15. Stability of Magnetic Equilibria in Radio Balloons


    Benford, Gregory


    Current-carrying flows, in the laboratory and in astrophysical jets, can form remarkably stable magnetic structures. Decades of experience shows that such flows often build equilibria that reverse field directions, evolving to an MHD Taylor state, which has remarkable stability properties. We model jets and the magnetic bubbles they build as reversed field pinch equilibria by assuming the driver current to be stiff in the MHD sense. Taking the jet current as rigid and a fixed function of posi...

  16. Why mixed equilibria may not be conventions

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg


    on dropping Lewis' eccentric ‘coordination' requirement as well as that of common knowledge, they are confused on whether conventions should be regarded as proper thereby precluding mixed equilibria. In this paper I argue that mixed equilibria may not be conventions, but also suggest that the reason...... for this reveals that though common knowledge is not necessary for a convention to operate, it may be utilized as to identify the conventional aspect of a given practice....

  17. Homotopy methods for counting reaction network equilibria


    Craciun, Gheorghe; Helton, J. William; Williams, Ruth J


    Dynamical system models of complex biochemical reaction networks are usually high-dimensional, nonlinear, and contain many unknown parameters. In some cases the reaction network structure dictates that positive equilibria must be unique for all values of the parameters in the model. In other cases multiple equilibria exist if and only if special relationships between these parameters are satisfied. We describe methods based on homotopy invariance of degree which allow us to determine the numb...

  18. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.


    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  19. Transcritical CO2-booster installations for supermarkets; Transkritische CO2-boosterinstallaties bij supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    Berger, M. [ECR Nederland, Hoofddorp (Netherlands); Jongejans, D. [Assumburg Koeltechniek, Uitgeest (Netherlands)


    To meet the demand for CO2 installations, Assumburg Refrigeration cooperates with a Swedish partner (Green and Cool), which provides complete CO2 packs, including well-developed software. At the moment Green and Cool now has about one hundred and fifty stores equipped with a transcritical CO2 system. [Dutch] Om aan de vraag naar CO2-installaties te kunnen voldoen, werkt Assumburg Koeltechniekdaar samen met een Zweedse partner (Green and Cool), die complete CO2-packs levert, inclusief goed ontwikkelde software. Green and Cool heeft op dit moment al zo'n honderdvijftig winkels voorzien van een transkritische CO2-installatie.

  20. CO2 capture, transport, storage and utilisation

    NARCIS (Netherlands)

    Brouwer, J.H.


    Reducing CO2 emissions requires an integrated CO2 management approach. The dependency between the different industry sectors is higher than commonly acknowledged and covers all areas; capture, transport, storage and utilisation. TNO is one of Europe’s largest independent research organisations and

  1. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda


    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  2. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry


    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  3. Membrane Technologies for CO2 Capture

    NARCIS (Netherlands)

    Simons-Fischbein, K.


    This thesis investigates the potential of membrane technology for the effective CO2/CH4 separation. The work focuses on two different membrane processes to accomplish the separation: 1) The use of a gas-liquid membrane contactor for the selective absorption of CO2 from CH4 2) The use of thin, dense

  4. CO2 capture research in the Netherlands

    NARCIS (Netherlands)

    Meerman, J.C.; Kuramochi, T.; Egmond, S. van


    The global climate is changing due to human activities. This human‑induced climate change is mainly caused by global emissions of carbon dioxide (CO2) into the atmosphere. Most scientists agree that in order to mitigate climate change, by 2050, global CO2 emissions must be reduced by at least 50%

  5. Iconic CO2 Time Series at Risk

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, S. [SRON Netherlands Institute for Space Research, 3584 CA, Utrecht (Netherlands); Badawy, B. [Max-Planck-Institute for Biogeochemistry, 07745, Jena (Germany); Vermeulen, A.T. [Energieonderzoek Centrum Nederland ECN, 1755 ZG Petten (Netherlands)] [and others


    The Mauna Loa CO2 time series is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is currently threatened by the financial crisis.

  6. Photocatalytic CO2 Activation by Water

    NARCIS (Netherlands)

    Yang, Chieh-Chao


    Photocatalytic activation of CO2 and water has potential for producing fuels by conversion of photon energy. However, the low productivity still limits practical application. In this study, the goal was to gain more fundamental insight in CO2 activation, and to provide guidelines for rational design

  7. Toxic emissions and devalued CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...

  8. Options for CO2 sequestration in Kuwait

    NARCIS (Netherlands)

    Neele, F.; Vandeweijer, V.; Mayyan, H.; Sharma, S.R.; Kamal, D.


    In preparation for future requirements to abate CO2 emission levels, a CO2 storage feasibility study was carried out for the country of Kuwait. At present, no definite plans exist to install capture facilities at the larger emission points in the country; the study presented is one of the first

  9. Monitoring Options for CO2 Storage

    NARCIS (Netherlands)

    Arts, R.; Winthaegen, P.


    This chapter provides an overview of various monitoring techniques for CO2 storage that is structured into three categories-instrumentation in a well (monitoring well); instrumentation at the (near) surface (surface geophysical methods); and sampling at the (near) surface measuring CO2

  10. Aqueous ethylenediamine for CO(2) capture. (United States)

    Zhou, Shan; Chen, Xi; Nguyen, Thu; Voice, Alexander K; Rochelle, Gary T


    Aqueous ethylenediamine (EDA) has been investigated as a solvent for CO(2) capture from flue gas. EDA can be used at 12 M (mol kg(-1) H(2)O) with an acceptable viscosity of 16 cP (1 cP=10(-3) Pa s) with 0.48 mol CO(2) per equivalent of EDA. Similar to monoethanolamine (MEA), EDA can be used up to 120 degrees C in a stripper without significant thermal degradation. Inhibitor A will effectively eliminate oxidative degradation. Above 120 degrees C, loaded EDA degrades with the production of its cyclic urea and other related compounds. Unlike piperazine, when exposed to oxidative degradation, EDA does not result in excessive foaming. Over much of the loading range, the CO(2) absorption rate with 12 M EDA is comparable to 7 M MEA. However, at typical rich loading, 12 M EDA absorbs CO(2) 2 times slower than 7 M MEA. The capacity of 12 M EDA is 0.72 mol CO(2)/(kg H(2)O+EDA) (for P(CO(2) )=0.5 to 5 kPa at 40 degrees C), which is about double that of MEA. The apparent heat of CO(2) desorption in EDA solution is 84 kJ mol(-1) CO(2); greater than most other amine systems.

  11. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng


    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  12. Zinc depolarized electrochemical CO2 concentration (United States)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.


    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  13. The ins and outs of CO2. (United States)

    Raven, John A; Beardall, John


    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3(-). The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3(-) use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3(-) active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3(-) can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3(-) pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3(-). Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. The ins and outs of CO2 (United States)

    Raven, John A.; Beardall, John


    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  15. Exploitation of marine gas hydrates: Benefits and risks (Invited) (United States)

    Wallmann, K. J.


    Vast amounts of natural gas are stored in marine gas hydrates deposited at continental margins. The global inventory of carbon bound as methane in gas hydrates is currently estimated as 1000 × 500 Gt. Large-scale national research projects located mostly in South-East Asia but also in North America and Europe are aiming to exploit these ice-like solids as new unconventional resource of natural gas. Japan, South Korea and other Asian countries are taking the lead because their national waters harbor exploitable gas hydrate deposits which could be developed to reduce the dependency of these nations on costly LGN imports. In 2013, the first successful production test was performed off Japan at water depths of ca. 1000 m demonstrating that natural gas can be released and produced from marine hydrates by lowering the pressure in the sub-seabed hydrate reservoirs. In an alternative approach, CO2 from coal power plans and other industrial sources is used to release natural gas (methane) from hydrates while CO2 is bound and stored in the sub-surface as solid hydrate. These new approaches and technologies are still in an early pre-commercial phase; the costs of field development and gas production exceed the value of natural gas being produced from the slowly dissociating hydrates. However, new technologies are currently under development in the German SUGAR project and elsewhere to reduce costs and enhance gas production rates such that gas hydrates may become commercially exploitable over the coming decade(s). The exploitation of marine gas hydrates may help to reduce CO2 emissions from the fossil fuel sector if the produced natural gas is used to replace coal and/or LNG. Hydrate development could also provide important incentives for carbon capture technologies since CO2 can be used to produce natural gas from hydrates. However, leakage of gas may occur during the production process while slope failure may be induced by the accompanying dissociation/conversion of gas

  16. Information Anatomy of Stochastic Equilibria

    Directory of Open Access Journals (Sweden)

    Sarah Marzen


    Full Text Available A stochastic nonlinear dynamical system generates information, as measured by its entropy rate. Some—the ephemeral information—is dissipated and some—the bound information—is actively stored and so affects future behavior. We derive analytic expressions for the ephemeral and bound information in the limit of infinitesimal time discretization for two classical systems that exhibit dynamical equilibria: first-order Langevin equations (i where the drift is the gradient of an analytic potential function and the diffusion matrix is invertible and (ii with a linear drift term (Ornstein–Uhlenbeck, but a noninvertible diffusion matrix. In both cases, the bound information is sensitive to the drift and diffusion, while the ephemeral information is sensitive only to the diffusion matrix and not to the drift. Notably, this information anatomy changes discontinuously as any of the diffusion coefficients vanishes, indicating that it is very sensitive to the noise structure. We then calculate the information anatomy of the stochastic cusp catastrophe and of particles diffusing in a heat bath in the overdamped limit, both examples of stochastic gradient descent on a potential landscape. Finally, we use our methods to calculate and compare approximations for the time-local predictive information for adaptive agents.

  17. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.


    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  18. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions (United States)

    Nagashima, Hironori D.; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo


    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6-8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87-0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56-0.76 in the mass fractions for 5.6-8.0 mm samples and 0.37-0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  19. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions. (United States)

    Nagashima, Hironori D; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo


    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6-8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87-0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56-0.76 in the mass fractions for 5.6-8.0 mm samples and 0.37-0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  20. Electrocatalytic Alloys for CO2 Reduction. (United States)

    He, Jingfu; Johnson, Noah J J; Huang, Aoxue; Berlinguette, Curtis P


    Electrochemically reducing CO2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO2 electrocatalysis is particularly large because of the myriad products that can be formed during CO2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO2 reduction reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Assessing the potential impact of the CO2 performance ladder on CO2 emission reduction

    NARCIS (Netherlands)

    Kornelis Blok; dr. Martijn Rietbergen


    The aim of this research is to assess the potential impact of the CO2 Performance Ladder on CO2 emission reduction. The CO2 Performance Ladder is a new green procurement scheme that has been adopted by several public authorities in the Netherlands; it is a staged certification scheme for energy and

  2. Regenerable Sorbent for CO2 Removal (United States)

    Alptekin, Gokhan; Jayaraman, Ambal


    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  3. Clathrate hydrate tuning for technological purposes (United States)

    di Profio, Pietro; Germani, Raimondo; Savelli, Gianfranco


    Gas hydrates are being increasingly considered as convenient media for gas storage and transportation as the knowledge of their properties increases, in particular as relates to methane and hydrogen. Clathrate hydrates may also represent a feasible sequestration technology for carbon dioxide, due to a well defined P/T range of stability, and several research programs are addressing this possibility. Though the understanding of the molecular structure and supramolecular interactions which are responsible of most properties of hydrates have been elucitated in recent years, the underlying theoretical physico-chemical framework is still poor, especially as relates to the role of "conditioners" (inhibitors and promoters) from the molecular/supramolecular point of view. In the present communication we show some results from our research approach which is mainly focused on the supramolecular properties of clathrate hydrate systems - and their conditioners - as a way to get access to a controlled modulation of the formation, dissociation and stabilization of gas hydrates. In particular, this communication will deal with: (a) a novel, compact apparatus for studying the main parameters of formation and dissociation of gas hydrates in a one-pot experiment, which can be easily and rapidly carried out on board of a drilling ship;[1] (b) the effects of amphiphile molecules (surfactants) as inhibitors or promoters of gas hydrate formation;[2] (c) a novel nanotechnology for a reliable and quick production of hydrogen hydrates, and its application to fuel cells;[3,4] and (d) the development of a clathrate hydrate tecnology for the sequestration and geological storage of man-made CO2, possibly with concomitant recovery of natural gas from NG hydrate fields. Furthermore, the feasibility of catalyzing the reduction of carbon dioxide to energy-rich species by hydrates is being investigated. [1] Di Profio, P., Germani, R., Savelli, G., International Patent Application PCT/IT2006

  4. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan


    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new meth...... predicted the gas hydrate formation conditions in aqueous solutions of single and mixed electrolytes. The agreement between experimental data and predictions was found to be excellent.......In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...

  5. Energy Balance of Global CO_2 Recycling and Amounts of Reduction of CO_2 Emission


    Hashimoto, K; Akiyama, E.; Habazaki, H.; Kawashima, A.; Komori, M.; SHIMAMURA, K.; Kumagai, N.


    On the basis of tailoring of amorphous alloy electrodes for seawater electrolysis to form H_2 and amorphous alloy catalysts for conversion of CO_2 to CH_4, we are proposing global CO_2 recycling : At deserts; power generation by solar energy, at coasts close to the deserts; production of H_2 by electrolysis of seawater, production of CH_4 by the reaction of H_2 and CO_2 transported, and at energy consuming districts; combustion of CH_4, recovery of CO_2 and transportation of liquefied CO_2 to...

  6. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    In January 2008 the Danish Government decided to prepare a strategy for reducing CO2 from the transport sector in Denmark. The decision to prepare the strategy was part of the follow-up to the national Infrastructure Commission report of January 2008. The preparations have been chaired...... by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020......, a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...

  7. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration


    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  8. Sustainable Process Networks for CO2 Conversion

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, P.; Pavarajam, V.

    that are thermodynamically feasible, including the co-reactants, catalysts, operating conditions and reactions. Research has revealed that there are a variety of reactions that fulfill the aforementioned criteria. The products that are formed fall into categories: fuels, bulk chemicals and specialty chemicals. While fuels...... the emissions is the conversion of CO2 into useful products, such as methanol [3]. In this work, through a computer-aided framework for process network synthesis-design, a network of feasible conversion processes that all use emitted CO2 is investigated. CO2 is emitted into the environment from various sources......, such as methanol (MeOH) have the largest market, this network will include a variety of thermodynamically feasible conversion paths [4]. From reviews of work previously done, there are ranges of possible products that are formed from CO2 and another co-reactant directly. Methanol, dimethyl ether, dimethyl...

  9. CO2 Removal from Mars EMU Project (United States)

    National Aeronautics and Space Administration — CO2 control for during ExtraVehicular Activity (EVA) on mars is challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable...

  10. Compact, High Accuracy CO2 Monitor Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  11. Compact, High Accuracy CO2 Monitor Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  12. CO2 emissions in the steel industry

    Directory of Open Access Journals (Sweden)

    M. Kundak


    Full Text Available Global CO2 emissions caused by the burning of fossil fuels over the past century are presented. Taking into consideration the total world production of more than 1,3 billion tons of steel, the steel industry produces over two billion tons of CO2. Reductions in CO2 emissions as a result of technological improvements and structural changes in steel production in industrialized countries during the past 40 years are described. Substantial further reductions in those emissions will not be possible using conventional technologies. Instead, a radical cutback may be achieved if, instead of carbon, hydrogen is used for direct iron ore reduction. The cost and the ensuing CO2 generation in the production of hydrogen as a reducing agent from various sources are analysed.

  13. Photocatalytic Conversion of CO2 on Mars (United States)

    Meier, Annie; Hare, Bryan


    Light on Mars shows potential for providing the energy means necessary for enhanced In-Situ Resource Utilization (ISRU). Through photocatalysis, the energy barrier required to convert CO2 is lowered and CH4 production is favorable.

  14. CO2 Removal from Mars EMU Project (United States)

    National Aeronautics and Space Administration — A practical CO2 control system for ExtraVehicular Activity (EVA) on Mars have not yet been developed. TDA Research, Inc. proposes to develop a durable,...

  15. CO2 binding in the (quinoline-CO2)- anionic complex (United States)

    Graham, Jacob D.; Buytendyk, Allyson M.; Wang, Yi; Kim, Seong K.; Bowen, Kit H.


    We have studied the (quinoline-CO2)- anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO2)- anionic complex has much in common with previously studied (N-heterocycle-CO2)- anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO2 in the (quinoline-CO2)- anionic complex. From the theoretical calculations, we found CO2 to be bound within the (quinoline-CO2)- anionic complex by 0.6 eV. We also showed that the excess electron is delocalized over the entire molecular framework. It is likely that the CO2 binding energies and excess electron delocalization profiles of the previously studied (N-heterocycle-CO2)- anionic complexes are quite similar to that of the (quinoline-CO2)- anionic complex. This class of complexes may have a role to play in CO2 activation and/or sequestration.

  16. Udvikling af CO2 neutralt byrumsarmatur

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Corell, Dennis Dan

    Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt.......Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt....

  17. Bifunctional Catalysts for CO2 Reduction (United States)


    product distribution as a function of catalyst composition (ligand, metal ions), electrolyte, acid and CO2 pressure. 4. Examine reaction chemistry ...alternative ligand platforms to seek transition metal complexes that would feature inner-sphere reduction chemistry with CO2 and promote the desired multi...into these polyamine based-ligands typically involves a transamination reaction with metal-amide or organometallic starting materials (e.g., M2(N

  18. Density of aqueous solutions of CO2


    Garcia, Julio E.


    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as mu...

  19. Photoacoustic CO2-Sensor for Automotive Applications


    Huber, J; C. Weber; Eberhardt, A.; Wöllenstein, J.


    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  20. Combustion of hythane diluted with CO2

    Directory of Open Access Journals (Sweden)

    Hraiech Ibtissem


    Full Text Available With increasing concern about energy shortage and environmental protection, improving engine fuel economy and reducing exhaust emissions have become major research topics in combustion and engine development. Hythane (a blend of hydrogen H2 and natural gas NG has generated a significant interest as an alternative fuel for the future. This paper describes an experimental study of the effects of CO2 addition on the stability of a turbulent jet diffusion NG-H2 flame. The mole fraction of hydrogen (% H2 in NG-H2 mixture was varied from 0% to 50%. The equivalence ratio of the hythane/CO2/air mixture was kept at stoichiometry. The results show that the lift-off height increases with the addition of CO2 at various % H2 content in hythane. However, we observe that with 20% H2, we can obtain a stable flame diluted with 40% CO2, while for 0% H2, the flame is blown out above 20% CO2. This means that the limits of flame blowing out are pushed with the additions of H2. Moreover, the results show that for %H2 content in NG-H2 fuel up to 10%, the addition of CO2 could produce lifted flame if the % CO2 is low. At higher % CO2 dilution, flame would remain attached until blow-out. This is mainly due to the fact that the dilution leads to ejection velocities very high but reactivity of the mixture does not change so the flame tends to stretch.

  1. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals (United States)

    Bourg, I. C.; Gadikota, G.; Dazas, B.


    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  2. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.


    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  3. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available BACKGROUND: CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. METHODOLOGY/PRINCIPAL FINDINGS: We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days. CONCLUSIONS/SIGNIFICANCE: Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  4. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng


    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  5. Monitoring CO2 in shock states. (United States)

    Danin, Pierre-Eric; Siegenthaler, Nils; Levraut, Jacques; Bernardin, Gilles; Dellamonica, Jean; Bendjelid, Karim


    The primary end point when treating acute shock is to restore blood circulation, mainly by reaching macrocirculatory parameters. However, even if global haemodynamic goals can be achieved, microcirculatory perfusion may remain impaired, leading to cellular hypoxia and organ damage. Interestingly, few methods are currently available to measure the adequacy of organ blood flow and tissue oxygenation. The rise in tissue partial pressure of carbon dioxide (CO2) has been observed when tissue perfusion is decreased. In this regard, tissue partial pressure of CO2 has been proposed as an early and reliable marker of tissue hypoxia even if the mechanisms of tissue partial pressure in CO2 rise during hypoperfusion remain unclear. Several technologies allow the estimation of CO2 content from different body sites: vascular, tissular (in hollow organs, mucosal or cutaneous), and airway. These tools remain poorly evaluated, and some are used but are not widely used in clinical practice. The present review clarifies the physiology of increasing tissue CO2 during hypoperfusion and underlines the specificities of the different technologies that allow bedside estimation of tissue CO2 content.

  6. Advanced CO2 Removal and Reduction System (United States)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.


    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  7. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko


    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  8. Symmetry transforms for ideal magnetohydrodynamics equilibria. (United States)

    Bogoyavlenskij, Oleg I


    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)ball lightning with dynamics of plasma inside the fireball.

  9. Multiple Equilibria in Noisy Rational Expectations Economies

    DEFF Research Database (Denmark)

    Pálvölgyi, Dömötör; Venter, Gyuri

    This paper studies equilibrium uniqueness in standard noisy rational expectations economies with asymmetric or differential information a la Grossman and Stiglitz (1980) and Hellwig (1980). We show that the standard linear equilibrium of Grossman and Stiglitz (1980) is the unique equilibrium...... with a continuous price function. However, we also construct a tractable class of equilibria with discontinuous prices that have very different economic implications, including (i) jumps and crashes, (ii) significant revisions in uninformed belief due to small changes in the market price, (iii) “upward......-sloping” demand curves, (iv) higher prices leading to future returns that are higher in expectation (price drift) and (v) more positively skewed. Discontinuous equilibria can be arbitrarily close to being fully-revealing. Finally, discontinuous equilibria with the same construction also exist in Hellwig (1980)....

  10. Exact solutions for helical magnetohydrodynamic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Villata, M. (Istituto di Fisica Generale, Universita di Torino, Via Pietro Giuria 1, I-10125 Torino (Italy)); Tsinganos, K. (Department of Physics, University of Crete and Research Center of Crete, GR-71409, Heraklion, Crete (Greece))


    Three novel classes of exact solutions of the generalized Grad--Shafranov equation for helically symmetric magnetohydrodynamic (MHD) equilibria are presented. The first two classes may be applied to helical MHD equilibria for plasma confined between two coaxial cylinders, while the third one to the modeling of helicoidal magnetic fields and flows in several recently observed astrophysical jets. The same solutions can be also used for the testing of sophisticated numerical codes. It is also shown that all helically symmetric MHD equilibria can be treated by the same general method which is employed to generate exact MHD solutions for systems possessing an ignorable coordinate in a system of three orthogonal basis vectors, although in the case of helical symmetry an [ital orthogonal] ignorable coordinate does not exist, contrary to what happens in the well-known cases of axial and translational symmetries.

  11. Hydrogen storage and carbon dioxide sequestration in TBAF semi-clathrate hydrates: Kinetics and evolution of hydrate-phase composition by in situ raman spectroscopy - Abstract -

    NARCIS (Netherlands)

    Torres Trueba, A.; Radoviæ, I.R.; Zevenbergen, J.F.; Kroon, M.C.; Peters, C.J.


    Carbon dioxide (CO2) represents almost one third of the emissions from the combustion of fossil fuels additionally, CO2 has been identified as the mayor contributor of global warming. Hydrogen (H2), on the other hand, due to its properties is considered a promising energy carrier. Clathrate hydrates

  12. Existence of pareto equilibria for multiobjective games without compactness


    Shiraishi, Yuya; Kuroiwa, Daishi


    In this paper, we investigate the existence of Pareto and weak Pareto equilibria for multiobjective games without compactness. By employing an existence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto and weak Pareto equilibria for the multiobjective games are established in a similar way to Flores-B´azan.

  13. Study on molecular controlled mining system of methane hydrate; Methane hydrate no bunshi seigyo mining ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyagawa, M.; Saito, T.; Kobayashi, H.; Karasawa, H.; Kiyono , F.; Nagaoki, R.; Yamamoto, Y.; Komai, T.; Haneda, H.; Takahashi, Y. [National Institute for Resources and Environment, Tsukuba (Japan); Nada, H. [Science and Technology Agency, Tokyo (Japan)


    Basic studies are conducted for the collection of methane from the methane hydrate that exists at levels deeper than 500m in the sea. The relationship between the hydrate generation mechanism and water cluster structure is examined by use of mass spectronomy. It is found that, among the stable liquid phase clusters, the (H2O)21H{sup +} cluster is the most stable. Stable hydrate clusters are in presence in quantities, and participate in the formation of hydrate crystal nuclei. For the elucidation of the nucleus formation mechanism, a kinetic simulation is conducted of molecules in the cohesion system consisting of water and methane molecules. Water molecules that array near methane molecules at the normal pressure is disarrayed under a higher pressure for rearray into a hydrate structure. Hydrate formation and breakdown in the three-phase equilibrium state of H2O, CH4, and CO2 at a low temperature and high pressure are tested, which discloses that supercooling is required for formation, that it is possible to extract CH4 first for replacement by guest molecule CO2 since CO2 is stabler than CH4 at a lower pressure or higher temperature, and that formation is easier to take place when the grain diameter is larger at the formation point since larger grain diameters result in a higher formation temperature. 3 figs.

  14. Carbonic anhydrase promotes the absorption rate of CO2 in post-combustion processes. (United States)

    Vinoba, Mari; Bhagiyalakshmi, Margandan; Grace, Andrews Nirmala; Kim, Dae Hoon; Yoon, Yeoil; Nam, Sung Chan; Baek, Il Hyun; Jeong, Soon Kwan


    The rate of carbon dioxide (CO2) absorption by monoethanol amine (MEA), diethanol amine (DEA), N-methyl-2,2'-iminodiethanol (MDEA), and 2-amino-2-methyl 1-propanol (AMP) solutions was found to be enhanced by the addition of bovine carbonic anhydrase (CA), has been investigated using a vapor-liquid equilibrium (VLE) device. The enthalpy (-ΔHabs) of CO2 absorption and the absorption capacities of aqueous amines were measured in the presence and/or absence of CA enzyme via differential reaction calorimeter (DRC). The reaction temperature (ΔT) under adiabatic conditions was determined based on the DRC analysis. Bicarbonate and carbamate species formation mechanisms were elucidated by (1)H and (13)C NMR spectral analysis. The overall CO2 absorption rate (flux) and rate constant (kapp) followed the order MEA > DEA > AMP > MDEA in the absence or presence of CA. Hydration of CO2 by MDEA in the presence of CA directly produced bicarbonate, whereas AMP produced unstable carbamate intermediate, then underwent hydrolytic reaction and converted to bicarbonate. The MDEA > AMP > DEA > MEA reverse ordering of the enhanced CO2 flux and kapp in the presence of CA was due to bicarbonate formation by the tertiary and sterically hindered amines. Thus, CA increased the rate of CO2 absorption by MDEA by a factor of 3 relative to the rate of absorption by MDEA alone. The thermal effects suggested that CA yielded a higher activity at 40 °C.

  15. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. (United States)

    Nakhoul, N L; Davis, B A; Romero, M F; Boron, W F


    It is generally accepted that gases such as CO2 cross cell membranes by dissolving in the membrane lipid. No role for channels or pores in gas transport has ever been demonstrated. Here we ask whether expression of the water channel aquaporin-1 (AQP1) enhances the CO2 permeability of Xenopus oocytes. We expressed AQP1 in Xenopus oocytes by injecting AQP1 cRNA, and we assessed CO2 permeability by using microelectrodes to monitor the changes in intracellular pH (pHi) produced by adding 1.5% CO2/10 mM HCO3- to (or removing it from) the extracellular solution. Oocytes normally have an undetectably low level of carbonic anhydrase (CA), which eliminates the CO2 hydration reaction as a rate-limiting step. We found that expressing AQP1 (vs. injecting water) had no measurable effect on the rate of CO2-induced pHi changes in such low-CA oocytes: adding CO2 caused pHi to fall at a mean initial rate of 11.3 x 10(-4) pH units/s in control oocytes and 13.3 x 10(-4) pH units/s in oocytes expressing AQP1. When we injected oocytes with water, and a few days later with CA, the CO2-induced pHi changes in these water/CA oocytes were more than fourfold faster than in water-injected oocytes (acidification rate, 53 x 10(-4) pH units/s). Ethoxzolamide (ETX; 10 microM), a membrane-permeant CA inhibitor, greatly slowed the pHi changes (16.5 x 10(-4) pH units/s). When we injected oocytes with AQP1 cRNA and then CA, the CO2-induced pHi changes in these AQP1/CA oocytes were approximately 40% faster than in the water/CA oocytes (75 x 10(-4) pH units/s), and ETX reduced the rates substantially (14.7 x 10(-4) pH units/s). Thus, in the presence of CA, AQP1 expression significantly increases the CO2 permeability of oocyte membranes. Possible explanations include 1) AQP1 expression alters the lipid composition of the cell membrane, 2) AQP1 expression causes overexpression of a native gas channel, and/or 3) AQP1 acts as a channel through which CO2 can permeate. Even if AQP1 should mediate a CO2 flux

  16. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2Geostorage. (United States)

    Iglauer, Stefan


    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  17. Carbon Dioxide Clusters: (CO_2)_6 to (CO_2)13 (United States)

    McKellar, A. R. W.; Oliaee, J. Norooz; Dehghany, M.; Moazzen-Ahmadi, N.


    We recenty reported assignments of specific infrared bands in the CO_2 νb{3} region (˜2350 wn) to (CO_2)_6, (CO_2)_7, (CO_2)_9, (CO_2)10, (CO_2)11, (CO_2)12, and (CO_2)13. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential. (CO_2)_6 is a symmetric top with S_6 point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO_2)13 is also an S_6 symmetric top, and consists of a single CO_2 monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry. Here we report additional CO_2 cluster results. Calculations based on the SAPT-s potential indicate that the structure of (CO_2)10 may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of (CO_2)13 and (CO_2)10. A feature observed at 2378.2 wn is assigned as a (CO_2)_6 parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of (CO_2)_6. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials. [1] J. Norooz Oliaee, M. Dehgany, N. Moazzen-Ahmadi, and A.R.W. McKellar, Phys. Chem. Chem. Phys. 13, 1297 (2011). [2] H. Takeuchi, J. Phys. Chem. A 107, 5703 (2008); C.S. Murthy, S.F. O'Shea, and I.R. McDonald, Mol. Phys. 50, 531 (1983). [3] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S.A. Kucharski, H.L. Williams, and B.M. Rice, J. Chem. Phys. 110, 3785 (1999)

  18. NMR studies of the equilibria and reaction rates in aqueous solutions of formaldehyde. (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil


    Formaldehyde has an important role in the chemical industry and in biological sciences. In dilute aqueous solutions of formaldehyde only traces of the molecular formaldehyde are present and the predominant species are methylene glycol and in lower concentrations, dimethylene glycol. The chemical equilibria and reaction rates of the hydration of formaldehyde in H2O and D2O solutions at low concentrations were studied by (1)H and (13)C NMR at various conditions of pH (1.8-7.8) and temperature (278-333 K). These measurements became possible by direct detection of formaldehyde (13)C and (1)H peaks. The equilibrium and rate constants of the dimerization reaction of methylene glycol were also measured. The rate constants for both the hydration and the dimerization reactions were measured by a new version of the conventional selective inversion transfer method. This study, together with previous published work, completes the description of dynamics and equilibria of all the processes occurring in dilute aqueous formaldehyde solutions.

  19. Direct CO2-Methanation of flue gas (United States)

    Müller, Klaus; Fleige, Michael; Rachow, Fabian; Israel, Johannes; Schmeißer, Dieter


    Already discovered by Paul Sabatier in 1902 the Hydrogenation according to CO2 + 4H2 ->CH4 + 2H2O nowadays is discussed in the course of the "Power-to-Gas" approach to utilize excess energy from renewable electricity generation in times of oversupply of electricity. We investigate the behavior of this process in a simulated flue gas atmosphere of conventional base load power plants, which could be used as constant sources of the reactant CO2. In relation to an approach related to carbon capture and cycling, the conversion of CO2 directly from the flue gas of a conventional power plant is a new aspect and has several advantages: The conversion of CO2 into methane could be integrated directly into the combustion process. Even older power plants could be upgraded and used as a possible source for CO2, in the same sense as the amine cleaning of flue gas, as a post combustion process. Further, waste heat of the power plant could be used as process energy for the catalytic reaction. Therefore the influence of different flue gas compositions such as varying contents of nitrogen and residual oxygen are tested in a laboratory scale. The heterogeneous catalysis process is investigated with regard to conversion rates, yield and selectivity and long-term stability of the Ni-catalyst. Also the influence of typical contaminations like SO2 is investigated and will be presented.

  20. CO2 and CO simulations and their source signature indicated by CO/CO2 (United States)

    Kawa, S. R.; Bian, H.


    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS_4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes from the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  1. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian


    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  2. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels. (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping


    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  3. CO2 and CO Simulations and Their Source Signature Indicated by CO/CO2 (United States)

    Kawa, Randy; Huisheng, Bian


    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS-4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes fiom the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  4. The effect of hydrate promoters on gas uptake. (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen


    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH4 storage and CO2 capture from CO2/H2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  5. Correlation of Vapor-Liquid Equilibria for Commonly Used Binary Systems in Supercritical Fluid Extraction Processes

    Directory of Open Access Journals (Sweden)

    Saeid Atashrouz


    Full Text Available In this paper, a comprehensive mathematical model is developed based on the Feed-ForwardBack Propagation Artificial Neural Network (FFBP-ANN. The model is employed for thecalculation of Vapor Liquid Equilibria (VLE of four CO2-containing binary mixtures. Themixtures include CO2 - Tertpentanol was investigated at the temperature range from 313.14 to343.15 K. The following mixtures including CO2 - Isobutanol at 313.2 to 353.2 K, CO2 - methylacetate at 308.15 to 328.15 K and CO2 - diisopropyl ether at 265.15 to 333.15 K wereinvestigated as well. The related experimental data of open literature have been used to constructthe model. The results confirm that there is a reasonable conformity between the predicted valuesand the experimental data. Additionally, the ability of the ANN model is examined by comparison with the conventional thermodynamic models and ANN model predicted VLE datawith more accuracy.

  6. A low-energy chilled ammonia process exploiting controlled solid formation for post-combustion CO2 capture. (United States)

    Sutter, Daniel; Gazzani, Matteo; Mazzotti, Marco


    A new ammonia-based process for CO2 capture from flue gas has been developed, which utilizes the formation of solid ammonium bicarbonate to increase the CO2 concentration in the regeneration section of the process. Precipitation, separation, and dissolution of the solid phase are realized in a dedicated process section, while the packed absorption and desorption columns remain free of solids. Additionally, the CO2 wash section applies solid formation to enable a reduction of the wash water consumption. A rigorous performance assessment employing the SPECCA index (Specific Primary Energy Consumption for CO2 Avoided) has been implemented to allow for a comparison of the overall energy penalty between the new process and a standard ammonia-based capture process without solid formation. A thorough understanding of the relevant solid-solid-liquid-vapor phase equilibria and an accurate modeling of them have enabled the synthesis of the process, and have inspired the development of the optimization algorithm used to screen a wide range of operating conditions in equilibrium-based process simulations. Under the assumptions on which the analysis is based, the new process with controlled solid formation achieved a SPECCA of 2.43 MJ kgCO2-1, corresponding to a reduction of 17% compared to the process without solid formation (with a SPECCA of 2.93 MJ kgCO2-1). Ways forward to confirm this significant improvement, and to increase the accuracy of the optimization are also discussed.

  7. Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source. (United States)

    Xie, Zhaojun; Zhang, Xin; Zhang, Zhang; Zhou, Zhen


    Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O2 atmosphere, while CO2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O2 batteries. In the study of CO2 contamination on metal-O2 batteries, it has been gradually found that CO2 can be utilized as the reactant gas alone; namely, metal-CO2 batteries can work. On the other hand, investigations on CO2 fixation are in focus due to the potential threat of CO2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO2 . Here, the aim is to provide a timely summary of recent achievements in metal-CO2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Measuring Nitrous Oxide Mass Transfer into Non-Aqueous CO2BOL CO2 Capture Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Freeman, Charles J.; Zwoster, Andy; Heldebrant, David J.


    This paper investigates CO2 absorption behavior in CO2BOL solvents by decoupling the physical and chemical effects using N2O as a non-reactive mimic. Absorption measurements were performed using a wetted-wall contactor. Testing was performed using a “first generation” CO2 binding organic liquid (CO2BOL), comprised of an independent base and alcohol. Measurements were made with N2O at a lean (0.06 mol CO2/mol BOL) and rich (0.26 mol CO2/mol BOL) loading, each at three temperatures (35, 45 and 55 °C). Liquid-film mass transfer coefficients (kg') were calculated by subtracting the gas film resistance – determined from a correlation from literature – from the overall mass transfer measurement. The resulting kg' values for N2O in CO2BOLs were found to be higher than that of 5 M aqueous MEA under comparable conditions, which is supported by published measurements of Henry’s coefficients for N2O in various solvents. These results suggest that the physical solubility contribution for CO2 absorption in CO2BOLs is greater than that of aqueous amines, an effect that may pertain to other non-aqueous solvents.



    Hara, H.; Fujisawa, A.


    A high-gain CO2 laser is described in which vibrationally excited N2 gas and cold CO2 gas are mixed effectively by means of the diffusion of CO2 gas into N2 gas. By using different types of mixing techniques, a maximum gain of 11 m-1 was obtained when CO2 gas was injected parallel to the expanding N2 gas flow. An output power of 4 W was obtained from an 1.2 cm active length. In addition, He gas addition to the N2 gas flow was found to decrease the small-signal gain with increasing He gas flow...

  10. Investigation into Optimal CO2 Concentration for CO2 Capture from Aluminium Production


    Mathisen, Anette; Sørensen, Henriette; Melaaen, Morten; Müller, Gunn-Iren


    Capture of CO2 from aluminum production has been simulated using Aspen Plus and Aspen Hysys. The technology used for aluminum production is the Hall-Héroult and the current cell design necessitates that large amounts of false air is supplied to the cells. This results in a CO2 concentration in the process gas at around 1 vol%, which is considered uneconomical for CO2 capture. Therefore, the aim of this investigation is to evaluate the CO2 capture from aluminum production when the process gas ...

  11. Behavior of CO2/water flow in porous media for CO2geological storage. (United States)

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen


    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Abundance of Atmospheric CO2 in Ocean Exoplanets: a Novel CO2 Deposition Mechanism (United States)

    Levi, A.; Sasselov, D.; Podolak, M.


    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO2, the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that, in a steady state, the abundance of CO2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO2 into the atmosphere to increase the greenhouse effect.

  13. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima


    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  14. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van


    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...... perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110°C...... and pressure up to 100bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2GJ/ton CO2...

  15. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.


    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  16. CW CO2 Laser Induced Chemical Reactions (United States)

    Pola, Joseph


    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  17. CO2 utilization: Developments in conversion processes

    Directory of Open Access Journals (Sweden)

    Erdogan Alper


    The potential utilization of CO2, captured at power plants, should also been taken into consideration for sustainability. This CO2 source, which is potentially a raw material for the chemical industry, will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects. Products resulting from carboxylation reactions are obvious conversions. In addition, provided that enough supply of energy from non-fossil resources, such as solar [1], is ensured, CO2 reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds, such as ethylene and acrylic acid, in addition to C1 chemicals and polymers. Presently, there are only few developing technologies which can find industrial applications. Therefore, there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally.

  18. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard


    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...... not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future....

  19. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard


    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...... profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future....

  20. Membraneless water filtration using CO2 (United States)

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick B.; Stone, Howard A.


    Water purification technologies such as microfiltration/ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles. Due to the large diffusion potential generated by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas-liquid interface depending on their surface charge. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits low energy consumption, three orders of magnitude lower than conventional microfiltration/ultrafiltration processes, and is essentially free from fouling.

  1. Cutting weeds with a CO2 laser

    DEFF Research Database (Denmark)

    Heisel, T.; Schou, Jørgen; Christensen, S.


    Stems of Chenopodium album. and Sinapis arvensis. and leaves of Lolium perenne. were cut with a CO2 laser or with a pair of scissors. Treatments were carried out on greenhouse-grown pot plants at three different growth stages and at two heights. Plant dry matter was measured 2 to 5 weeks after...... treatment. The relationship between dry weight and laser energy was analysed using a non-linear dose-response regression model. The regression parameters differed significantly between the weed species. At all growth stages and heights S. arvensis was more difficult to cut with a CO2 laser than C. album....... When stems were cut below the meristems, 0.9 and 2.3 J mm(-1) of CO2 laser energy dose was sufficient to reduce by 90% the biomass of C. album and S. arvensis respectively. Regrowth appeared when dicotyledonous plant stems were cut above meristems, indicating that it is important to cut close...

  2. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas


    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  3. Oxygen isotope fractionation in stratospheric CO2 (United States)

    Thiemens, M. H.; Jackson, T.; Mauersberger, K.; Schueler, B.; Morton, J.


    A new cryogenic collection system has been flown on board a balloon gondola to obtain separate samples of ozone and carbon dioxide without entrapping major atmospheric gases. Precision laboratory isotopic analysis of CO2 samples collected between 26 and 35.5 km show a mass-independent enrichment in both O-17 and O-18 of about 11 per mil above tropospheric values. Ozone enrichment in its heavy isotopes was 9 to 16 percent in O3-50 and 8 to 11 percent in O3-49, respectively (Schueler et al., 1990). A mechanism to explain the isotope enrichment in CO2 has been recently proposed by Yung et al. (1991). The model is based on the isotope exchange between CO2 and O3 via O(1D), resulting in a transfer of the ozone isotope enrichment to carbon dioxide. Predicted enrichment and measured values agree well.

  4. Revealing fate of CO2 leakage pathways in the Little Grand Wash Fault, Green River, Utah (United States)

    Han, K.; Han, W. S.; Watson, Z. T.; Guyant, E.; Park, E.


    To assure long-term security of geologic carbon sequestration site, evaluation of natural CO2 leakage should be preceded before actual construction of the CO2 facility by comparing natural and artificial reservoir systems. The Little Grand Wash fault is located at the northwestern margin of the Paradox Basin and roles on a bypass of deep subsurface CO2 and brine water onto the surface, e.g., cold water geyser, CO2 spring, and surface travertine deposits. CO2 degassed out from brine at the Little Grand Wash fault zone may react with formation water and minerals while migrating through the fault conduit. Leakage observed by soil CO2 flux on the fault trace shows this ongoing transition of CO2, from supersaturated condition in deep subsurface to shallow surface equilibria. The present study aims to investigate the reactions induced by changes in hydrological and mineralogical factors inside of the fault zone. The methodology to develop site-specific geochemical model of the Little Grand Wash Fault combines calculated mechanical movements of each fluid end-member, along with chemical reactions among fluid, free CO2 gas and rock formations. Reactive transport modeling was conducted to simulate these property changes inside of the fault zone, using chemistry dataset based on 86 effluent samples of CO2 geysers, springs and in situ formation water from Entrada, Carmel, and Navajo Sandstone. Meanwhile, one- and two-dimensional models were separately developed to delineate features mentioned above. The results from the 3000-year simulation showed an appearance of self-sealing processes near the surface of the fault conduit. By tracking physicochemical changes at the depth of 15 m on the 2-dimensional model, significant changes induced by fluid mixing were indicated. Calculated rates of precipitation for calcite, illite, and pyrite showed increase in 2.6 x 10-4, 2.25 x 10-5, and 3.0 x 10-6 in mineral volume fraction at the depth of 15m, respectively. Concurrently

  5. Thermodynamic modeling of naringenin protonation equilibria in ...

    Indian Academy of Sciences (India)

    The protonation equilibria for the flavonoid naringenin were studied at 25°C using combined multiwavelength spectroscopic and pH-potentiometric methods as a function of the ionic strength. Over a wide range of ionic strengths, 0.10–3.00 mol dm−3, the investigation was performed in different aqueous solutions of NaClO4 ...

  6. Intermediates and Generic Convergence to Equilibria

    DEFF Research Database (Denmark)

    Marcondes de Freitas, Michael; Wiuf, Carsten; Feliu, Elisenda


    Known graphical conditions for the generic and global convergence to equilibria of the dynamical system arising from a reaction network are shown to be invariant under the so-called successive removal of intermediates, a systematic procedure to simplify the network, making the graphical condition...

  7. Phase equilibria of carbohydrates in polar solvents

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Rasmussen, Peter


    A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...

  8. Relexation algorithms in finding Nash equilibria

    NARCIS (Netherlands)

    Berridge, S.; Krawczyk, J.B.


    Relaxation algorithms provide a powerful method of finding noncooperative equilibria in general synchronous games. Through use of the Nikaido-Isoda function, the Nash solution to a broad category of constrained, multiplayer, non-zerosum games can easily be found. We provide solutions to some simple

  9. Nash equilibria via duality and homological selection

    Indian Academy of Sciences (India)

    Keywords. Nash equilibria; Dold–Thom theorem; homological selection. 2010 Mathematics Subject Classification. Primary: 55M05, 55N45, 91A10. 1. Introduction. The main topological problem addressed in this paper is the following: Let X be a metric space and Subk(X) denote the collection of subsets of X with at most.

  10. Kronikken: Handel og handling med CO2

    DEFF Research Database (Denmark)

    Andersen, M. S.


    De fleksible mekanismer i Kyoto-aftalen fortjener indgående overvejelser, ikke kun fordi de giver mulighed for en rabat på CO2-reduktionen, men også fordi de rummer globale og sikkerhedspolitiske dimensioner som er essentielle.......De fleksible mekanismer i Kyoto-aftalen fortjener indgående overvejelser, ikke kun fordi de giver mulighed for en rabat på CO2-reduktionen, men også fordi de rummer globale og sikkerhedspolitiske dimensioner som er essentielle....

  11. Do Tree Stems Recapture Respired CO2? (United States)

    Hilman, B.; Angert, A.


    Tree stem respiration is an important, yet not well understood, component of the terrestrial carbon cycle. Predicting how trees as whole organisms respond to changes in climate and atmospheric CO2 requires understanding of the variability in the fraction of assimilated carbon allocated to respiration, versus the allocation to growth, damage repair, and to rhizosphere symbionts. Here we used the ratio of CO2 efflux/O2 influx (Apparent Respiratory Quotient, ARQ) to study stem respiration. The ARQ in trees stems is predicted to be 1.0, as a result of carbohydrates metabolism. Lower than 1.0 ARQ values may indicate a local assimilation of respired CO2, or dissolution and transport of CO2 in the xylem stream. We measured stems ARQ in 16 tree species at tropical, Mediterranean and temperate ecosystems using stem chambers and in-vitro incubations. The CO2 and O2 were measured by a system we developed, which is based on an IRGA and a Fuel-cell O2 analyzer (Hilman and Angert 2016). We found typical values of ARQ in the range of 0.4-0.8. Since incubations of detach stem tissues yielded similar ARQ values, and since the influence of natural variations in the transpiration stream on ARQ was found to be small, we conclude that the removal of the respired CO2 is not via dissolution in the xylem stream. Using 13C labeling, dark fixation of stem tissues was detected, which is most probably phosphoenolpyruvate carboxylase (PEPC) mediated. Hence, we suggest that in-stem dark fixation of respired CO2 to organic acids (e.g. malate) affects the outgoing efflux. Further research should determine if these organic acids are transported to the canopy, stored in the stem, or transported to the roots to serve as exudates. Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 2016, doi: 10.1093/treephys/tpw057

  12. 10 MW Supercritical CO2 Turbine Test

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig


    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  13. Modelling the Martian CO2 Ice Clouds (United States)

    Listowski, Constantino; Määttänen, A.; Montmessin, F.; Lefèvre, F.


    Martian CO2 ice cloud formation represents a rare phenomenon in the Solar System: the condensation of the main component of the atmosphere. Moreover, on Mars, condensation occurs in a rarefied atmosphere (large Knudsen numbers, Kn) that limits the growth efficiency. These clouds form in the polar winter troposphere and in the mesosphere near the equator. CO2 ice cloud modeling has turned out to be challenging: recent efforts (e.g. [1]) fail in explaining typical small sizes (80 nm-130 nm) observed for mesospheric clouds [2]. Supercold pockets (TWood, S. E., (1999), Ph.D. thesis, UCLA [6] Young, J. B., J. Geophys. Res., 36, 294-2956, 1993

  14. CO2 flux from Javanese mud volcanism


    Quei?er, M.; Burton, M.; Arzilli, F.; Chiarugi, A.; Marliyani, G.I; Anggara, F.; Harijoko, A.


    Abstract Studying the quantity and origin of CO2 emitted by back?arc mud volcanoes is critical to correctly model fluid?dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is r...

  15. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Environmental, energy and climate policies need fresh reflections. In order to evaluate toxics reduction policies the Stockholm Convention on Persistent Organic Pollutants is mandatory. Denmark's function as lead country for dioxin research in the context of the OSPAR Convention is contrasted...... with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter...

  16. Leak Path Development in CO2 Wells (United States)

    Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.


    Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.

  17. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren


    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  18. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.


    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  19. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard


    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  20. Carbon dioxide (CO2) utilizing strain database

    African Journals Online (AJOL)



    Oct 17, 2011 ... Culling of excess carbon dioxide from our environment is one of the major challenges to scientific communities. Many physical, chemical and biological methods have been practiced to overcome this problem. The biological means of CO2 fixation using various microorganisms is gaining importance.

  1. 76 FR 15249 - Deferral for CO2 (United States)


    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 51, 52, 70, and 71 RIN 2060-AQ79 Deferral for CO2 Emissions From Bioenergy and Other Biogenic Sources Under the Prevention of Significant Deterioration (PSD) and Title V Programs: Proposed...

  2. Artificial photosynthesis - CO2 towards methanol (United States)

    Nazimek, D.; Czech, B.


    The new insight into the problem of carbon dioxide utilization into valuable compound - methanol and then its transformation into fuel is presented. Because the highly endothermic requirements of the reaction of CO2 hydrogenation a photocatalytic route is applied. Combining of the two reactions: water splitting and CO2 hydrogenation using H2O as a source of hydrogen at the same time and place are proposed. The studies over modified TiO2 catalysts supported on Al2O3 were conducted in a self-designed circulated photocatalytic reaction system under at room temperature and constant pressure. Experimental results indicated that the highest yield of the photoreduction of CO2 with H2O were obtained using TiO2 with the active anatase phase modified by Ru and WO3 addition. The conversion was very high - almost 97% of CO2 was transformed mainly into methanol (14%vol.) and into small amount of formic and acetic acid and ester.

  3. Iconic CO2 Time Series at Risk

    NARCIS (Netherlands)

    Houweling, S.; Badawy, B.; Basu, S.; Krol, M.C.; Röckmann, T.; Vermeulen, A.


    THE STEADY RISE IN ATMOSPHERIC LONGlived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory

  4. Bosch CO2 Reduction System Development (United States)

    Holmes, R. F.; King, C. D.; Keller, E. E.


    Development of a Bosch process CO2 reduction unit was continued, and, by means of hardware modifications, the performance was substantially improved. Benefits of the hardware upgrading were demonstrated by extensive unit operation and data acquisition in the laboratory. This work was accomplished on a cold seal configuration of the Bosch unit.

  5. Harvesting Energy from CO2 Emissions

    NARCIS (Netherlands)

    Hamelers, H.V.M.; Schaetzle, O.; Paz-García, J.M.; Biesheuvel, P.M.; Buisman, C.J.N.


    When two fluids with different compositions are mixed, mixing energy is released. This holds true for both liquids and gases, though in the case of gases, no technology is yet available to harvest this energy source. Mixing the CO2 in combustion gases with air represents a source of energy with a

  6. Low transition temperature mixtures as innovative and sustainable CO2 capture solvents. (United States)

    Zubeir, Lawien F; Lacroix, Mark H M; Kroon, Maaike C


    The potential of three newly discovered low transition temperature mixtures (LTTMs) is explored as sustainable substituents for the traditional carbon dioxide (CO2) absorbents. LTTMs are mixtures of two solid compounds, a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA), which form liquids upon mixing with melting points far below those of the individual compounds. In this work the HBD is lactic acid and the HBAs are tetramethylammonium chloride, tetraethylammonium chloride, and tetrabutylammonium chloride. These compounds were found to form LTTMs for the first time at molar ratios of HBD:HBA = 2:1. First, the LTTMs were characterized by determining the thermal operating window (e.g., decomposition temperature and glass transition temperature) and the physical properties (e.g., density and viscosity). Thereafter, the phase behavior of CO2 with the LTTMs has been measured using a gravimetric magnetic suspension balance operating in the static mode at 308 and 318 K and pressures up to 2 MPa. The CO2 solubility increased with increasing chain length, increasing pressure, and decreasing temperature. The Peng-Robinson equation of state was applied to correlate the phase equilibria. From the solubility data, thermodynamic parameters were determined (e.g., Henry's law coefficient and enthalpy of absorption). The heat of absorption was found to be similar to that in conventional physical solvents (-11.21 to -14.87 kJ·mol(-1)). Furthermore, the kinetics in terms of the diffusion coefficient of CO2 in all LTTMs were determined (10(-11)-10(-10) m(2)·s(-1)). Even though the CO2 solubilities in the studied LTTMs were found to be slightly lower than those in thoroughly studied conventional physical solvents, LTTMs are a promising new class of absorbents due to their low cost, their environmentally friendly character, and their easy tunability, allowing further optimization for carbon capture.

  7. Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2. (United States)

    Paudel, Ashok; Jessop, Michael J; Stubbins, Spencer H; Champagne, Pascale; Jessop, Philip G


    The use of CO2-expanded methanol (cxMeOH) and liquid carbon dioxide (lCO2) is proposed to extract lipids from Botryococcus braunii. When compressed CO2 dissolves in methanol, the solvent expands in volume, decreases in polarity and so increases in its selectivity for biodiesel desirable lipids. Solid phase extraction of the algal extract showed that the cxMeOH extracted 21 mg of biodiesel desirable lipids per mL of organic solvent compared to 3mg/mL using either neat methanol or chloroform/methanol mixture. The non-polar lCO2 showed a high affinity for non-polar lipids. Using lCO2, it is possible to extract up to 10% neutral lipids relative to the mass of dry algae. Unlike extractions using conventional solvents, these new methods require little to no volatile, flammable, or chlorinated organic solvents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery (United States)

    Lach, Elliot


    The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.

  9. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao


    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  10. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    NARCIS (Netherlands)

    Boudreau, B.P.; Luo, Y.; Meysman, F.J.R.; Middelburg, J


    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the

  11. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue. (United States)

    Hulikova, Alzbeta; Swietach, Pawel


    The degree to which cell membranes are barriers to CO2 transport remains controversial. Proteins, such as aquaporins and Rh complex, have been proposed to facilitate CO2 transport, implying that the nonchannel component of membranes must have greatly reduced CO2 permeability. To determine whether membrane CO2 permeation is rate limiting for gas transport, the spread of CO2 across multicellular tissue growths (spheroids) was measured using intracellular pH as a spatial readout. Colorectal HCT116 cells have basal water and NH3 permeability, indicating the functional absence of aquaporins and gas channels. However, CO2 diffusivity in HCT116 spheroids was only 24 ± 4% lower than in pure water, which can be accounted for fully by volume exclusion due to proteins. Diffusivity was unaffected by blockers of aquaporins and Rh complex (Hg(2+), p-chloromercuribenzoic acid, and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid) but decreased under hypertonic conditions (by addition of 300 mOsm mannitol), which increases intracellular protein crowding. Similar CO2 diffusivity was measured in spheroids of T47D breast cells (basal water permeability) and NHDF-Ad fibroblasts (aquaporin-facilitated water permeability). In contrast, diffusivity of NH3, a smaller but less lipophilic gas, was considerably slower than in pure water, as expected from rate-limiting membrane permeation. In conclusion, membranes, even in the functional absence of proposed gas channels, do not restrict CO2 venting from tissue growths.-Hulikova, A., Swietach, P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue. © FASEB.

  12. Isolation of microorganisms from CO2 sequestration sites through enrichments under high pCO2 (United States)

    Peet, K. C.; Freedman, A. J.; Boreham, C.; Thompson, J. R.


    Carbon Capture and Storage (CCS) in geologic formations has the potential to reduce greenhouse gas emissions from fossil fuel processing and combustion. However, little is known about the effects that CO2 may have on biological activity in deep earth environments. To understand microorganisms associated with these environments, we have developed a simple high-pressure enrichment methodology to cultivate organisms capable of growth under supercritical CO2 (scCO2). Growth media targeting different subsurface functional metabolic groups is added to sterilized 316 stainless steel tubing sealed with quarter turn plug valves values and pressurized to 120-136 atm using a helium-padded CO2 tank, followed by incubation at 37 °C to achieve the scCO2 state. Repeated passages of crushed subsurface rock samples and growth media under supercritical CO2 headspaces are assessed for growth via microscopic enumeration. We have utilized this method to survey sandstone cores for microbes capable of growth under scCO2 from two different geologic sites targeted for carbon sequestration activities. Reproducible growth of microbial biomass under high pCO2 has been sustained from each site. Cell morphologies consist of primarily 1-2 μm rods and oval spores, with densities from 1E5-1E7 cells per ml of culture. We have purified and characterized a bacterial strain most closely related to Bacillus subterraneus (99% 16S rRNA identity) capable of growth under scCO2. Preliminary physiological characterization of this strain indicates it is a spore-forming facultative anaerobe able to grow in 0.5 to 50 ppt salinity. Genome sequencing and analysis currently in progress will help reveal genetic mechanisms of acclimation to high pCO2 conditions associated with geologic carbon sequestration.

  13. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology. (United States)

    Omi, Tokuya; Numano, Kayoko


    Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future.

  14. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac


    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  15. Aqueous Carbonation of Natural Brucite for CO2 Sequestration (United States)

    Zhao, L.; Sang, L.; Chen, J.; Ji, J.; Teng, H.


    Experimental study is carried out at conditions of room temperature and moderate CO2 pressure to examine the carbonation reaction of natural brucite in aqueous environment. Two sets of initial conditions are examined, one is brucite in pure water, and the other is in 1% HCl. Time-dependent XRD analysis shows that carbon fixation process begins within 30 min of the experiments irrespective of the original makeup of the slurry. Ensuing measurements by XRD and FT-IR reveal that nesquehonite (> 78%) is by far the dominant C-bearing species in the carbonate mineral product assembly. Minor product components observed in water are basic magnesium carbonate hydromagnesite and dypingite; when HCl is added in the starting slurry, chloride-bearing artinite replaces hydromagnesite. However, thermodynamic calculation suggests that the assembly of such composition is most likely a kinetically favored product at the experimental conditions which are more strongly saturated with respect to hydromagnesite and magnesite than to nesquehonite. A pseudo first-order rate law is found to best describe the time-dependent measurements for both water and HCl experiments. Moreover, fitting the rate expression to the experimental data yields a higher rate constant for the experiments performed in HCl solutions. The faster kinetics relative to that in water implies that the carbonation reaction may be a multi-stepped process, involving first the dissolution of brucite and CO2 to generate Mg2+ and CO32-, followed by precipitation of magnesium carbonate phases from aqueous solutions. This leads to our proposition that direct heterogeneous reaction between hydrated CO2 and solid phase of Mg(OH)2 is probably not the pathway for the overall carbonation process. Assuming the upper limit of carbon content Cmax = 8.7% (based upon that of nesquehonite), measured total carbon in the product Ctot show a carbonation rate of 83.9% and 94.3% for brucite in HCl and DDW at the end of 2.5 hr experiments

  16. Role of bicarbonate/CO2 in the inhibition of Escherichia coli growth by cyanate. (United States)

    Kozliak, E I; Fuchs, J A; Guilloton, M B; Anderson, P M


    Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give two CO2 molecules. The gene for cyanase is part of the cyn operon, which includes cynT and cynS, encoding carbonic anhydrase and cyanase, respectively. Carbonic anhydrase functions to prevent depletion of cellular bicarbonate during cyanate decomposition (the product CO2 can diffuse out of the cell faster than noncatalyzed hydration back to bicarbonate). Addition of cyanate to the culture medium of a delta cynT mutant strain of E. coli (having a nonfunctional carbonic anhydrase) results in depletion of cellular bicarbonate, which leads to inhibition of growth and an inability to catalyze cyanate degradation. These effects can be overcome by aeration with a higher partial CO2 pressure (M. B. Guilloton, A. F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P. M. Anderson, and J. A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). The question considered here is why depletion of bicarbonate/CO2 due to the action of cyanase on cyanate in a delta cynT strain has such an inhibitory effect. Growth of wild-type E. coli in minimal medium under conditions of limited CO2 was severely inhibited, and this inhibition could be overcome by adding certain Krebs cycle intermediates, indicating that one consequence of limiting CO2 is inhibition of carboxylation reactions. However, supplementation of the growth medium with metabolites whose syntheses are known to depend on a carboxylation reaction was not effective in overcoming inhibition related to the bicarbonate deficiency induced in the delta cynT strain by addition of cyanate. Similar results were obtained with a deltacyn strain (since cyanase is absent, this strain does not develop a bicarbonate deficiency when cyanate is added); however, as with the deltacynT strain, a higher partial CO(2) pressure in the aerating gas or expression of carbonic anhydrase activity (which contributes to a higher intercellular

  17. CO2-helium and CO2-neon mixtures at high pressures. (United States)

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F


    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  18. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.

    Energy Technology Data Exchange (ETDEWEB)

    Aubrey, Doug, P.; Teskey, Robert, O.


    • Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. • Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. • On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m-2 d-1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m-2 d-1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. • Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

  19. Modeling mineral alterations in shale reservoirs in contact with CO2 (United States)

    Maier, Uli; Tatomir, Alexandru; Sauter, Martin


    Hydraulic fracturing as well as CO2 storage, if in contact with cap rocks, can lead to alterations of the mineral phase of shale reservoirs driven by the changes in fluid composition and pressure. Underlying concepts describing the shifts in geochemical equilibria are discussed for typical shale gas mineral compositions using the geochemical codes Phreeqc and MIN3P, which have recently been upgraded to cope with the conditions of pressure and temperature in deep reservoirs. Models using field data from Heletz oil field (Israel) and the North-west-German sedimentary basins are presented. Alterations of the mineral phase over time are elucidated and their consequences on flow and transport properties of the shale gas formation.

  20. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu


    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  1. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Poulsen, S.L.; Herfort, D.


    This work investigates the hydration of blended Portland cement containing 30 wt.% Na2O-CaO-Al2O3-SiO2 (NCAS) glass particles either as the only supplementary cementitious material (SCM) or in combination with limestone, using 29Si MAS NMR, powder XRD, and thermal analyses. The NCAS glass...... represents a potential alternative to traditional SCMs, used for reduction of the CO2 emission associated with cement production. It is found that the NCAS glass takes part in the hydration reactions after about two weeks of hydration and a degree of reaction of approx. 50 % is observed after 90 days...... of hydration. The hydrated glass contributes to the formation of the calcium-silicate-hydrate (C-S-H) phase, consuming a part of the Portlandite (Ca(OH)2) formed during hydration of the Portland cement. Furthermore, the presence of the glass and limestone particles, alone or in combination, results...

  2. Modeling the operation of a three-stage fluidized bed reactor for removing CO2 from flue gases. (United States)

    Mohanty, C R; Meikap, B C


    A bubbling counter-current multistage fluidized bed reactor for the sorption of carbon dioxide (CO(2)) by hydrated lime particles was simulated employing a two-phase model, with the bubble phase assumed to be in plug flow, and the emulsion phase in plug flow and perfectly mixed flow conditions. To meet prescribed permissible limit to emit carbon dioxide from industrial flue gases, dry scrubbing of CO(2) was realized. For the evaluation, a pilot plant was built, on which also the removal efficiency of CO(2) was verified at different solids flow rates. The model results were compared with experimental data in terms of percentage removal efficiency of carbon dioxide. The comparison showed that the EGPF model agreed well with the experimental data satisfactorily. The removal efficiency was observed to be mainly influenced by flow rates of adsorbent and CO(2) concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations? (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Yorio, N. C.; Sager, J. C.


    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  4. Streamer parameters and breakdown in CO2 (United States)

    Seeger, M.; Avaheden, J.; Pancheshnyi, S.; Votteler, T.


    CO2 is a promising gas for the replacement of SF6 in high-voltage transmission and distribution networks due to its lower environmental impact. The insulation properties of CO2 are, therefore, of great interest. For this, the properties of streamers are important, since they determine the initial discharge propagation and possibly the transition to a leader. The present experimental investigation addresses the streamer inception and propagation at ambient temperature in the pressure range 0.05-0.5 MPa at both polarities. Streamer parameters, namely the stability field, radius and velocity, were deduced in uniform and in strongly non-uniform background fields. The measured breakdown fields can then be understood by streamer propagation and streamer-to-leader transition.

  5. Multiple equilibria in a simple elastocapillary system

    KAUST Repository

    Taroni, Michele


    We consider the elastocapillary interaction of a liquid drop placed between two elastic beams, which are both clamped at one end to a rigid substrate. This is a simple model system relevant to the problem of surface-tension-induced collapse of flexible micro-channels that has been observed in the manufacture of microelectromechanical systems (MEMS). We determine the conditions under which the beams remain separated, touch at a point, or stick along a portion of their length. Surprisingly, we show that in many circumstances multiple equilibrium states are possible. We develop a lubrication-type model for the flow of liquid out of equilibrium and thereby investigate the stability of the multiple equilibria. We demonstrate that for given material properties two stable equilibria may exist, and show via numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is ultimately reached. © 2012 Cambridge University Press.

  6. The pressure tensor in tangential equilibria

    Directory of Open Access Journals (Sweden)

    F. Mottez


    Full Text Available The tangential equilibria are characterized by a bulk plasma velocity and a magnetic field that are perpendicular to the gradient direction. Such equilibria can be spatially periodic (like waves, or they can separate two regions with asymptotic uniform conditions (like MHD tangential discontinuities. It is possible to compute the velocity moments of the particle distribution function. Even in very simple cases, the pressure tensor is not isotropic and not gyrotropic. The differences between a scalar pressure and the pressure tensor derived in the frame of the Maxwell-Vlasov theory are significant when the gradient scales are of the order of the Larmor radius; they concern mainly the ion pressure tensor.

  7. CO2-DISSOLVED and Aqueous Gas Separation


    Gorensek, Maximillian; Hamm, Luther; Blount, Gerald; Kervévan, Christophe; O'Neil, Kathleen


    International audience; CO2-DISSOLVED (Kervévan et al, 2014) is a multinational project funded by the French National Research Agency (ANR) with Phase II funded as one of the first Geodenergies projects. Geodenergies is a French industry-driven initiative grouping 18 companies and research organizations aiming at: (1) structuring a community of expertise to promote subsurface energy technologies that are key to a global energy transition; (2) cross-fertilizing to develop 3 emerging industrial...

  8. Aridity under conditions of increased CO2 (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.


    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  9. Continuous CO2 extractor and methods

    Energy Technology Data Exchange (ETDEWEB)

    None listed


    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  10. CO2 flux geothermometer for geothermal exploration (United States)

    Harvey, M. C.; Rowland, J. V.; Chiodini, G.; Rissmann, C. F.; Bloomberg, S.; Fridriksson, T.; Oladottir, A. A.


    A new geothermometer (TCO2 Flux) is proposed based on soil diffuse CO2 flux and shallow temperature measurements made on areas of steam heated, thermally altered ground above active geothermal systems. This CO2 flux geothermometer is based on a previously reported CO2 geothermometer that was designed for use with fumarole analysis. The new geothermometer provides a valuable additional exploration tool for estimating subsurface temperatures in high-temperature geothermal systems. Mean TCO2 Flux estimates fall within the range of deep drill hole temperatures at Wairakei (New Zealand), Tauhara (New Zealand), Rotokawa (New Zealand), Ohaaki (New Zealand), Reykjanes (Iceland) and Copahue (Argentina). The spatial distribution of geothermometry estimates is consistent with the location of major upflow zones previously reported at the Wairakei and Rotokawa geothermal systems. TCO2 Flux was also evaluated at White Island (New Zealand) and Reporoa (New Zealand), where limited sub-surface data exists. Mode TCO2 Flux at White Island is high (320 °C), the highest of the systems considered in this study. However, the geothermometer relies on mineral-water equilibrium in neutral pH reservoir fluids, and would not be reliable in such an active and acidic environment. Mean TCO2 Flux at Reporoa (310 °C) is high, which indicates Reporoa has a separate upflow from the nearby Waiotapu geothermal system; an outflow from Waiotapu would not be expected to have such high temperature.

  11. CO2 cooling for HEP experiments

    CERN Document Server

    Verlaat; Van Lysebetten, A


    The new generation silicon detectors require more efficient cooling of the front-end electronics and the silicon sensors themselves. To minimize reverse annealing of the silicon sensors the cooling temperatures need to be reduced. Other important requirements of the new generation cooling systems are a reduced mass and a maintenance free operation of the hardware inside the detector. Evaporative CO2 cooling systems are ideal for this purpose as they need smaller tubes than conventional systems. The heat transfer capability of evaporative CO2 is high. CO2 is used as cooling fluid for the LHCb-VELO and the AMS-Tracker cooling systems. A special method for the fluid circulation is developed at Nikhef to get a very stable temperature of both detectors without any active components like valves or heaters inside. This method is called 2-phase Accumulator Controlled Loop (2PACL) and is a good candidate technology for the design of the future cooling systems for the Atlas and CMS upgrades.

  12. Electrochemical CO2 Reduction: A Classification Problem. (United States)

    Bagger, Alexander; Ju, Wen; Varela, Ana Sofia; Strasser, Peter; Rossmeisl, Jan


    In this work, we propose four non-coupled binding energies of intermediates as descriptors, or "genes", for predicting the product distribution in CO2 electroreduction. Simple reactions can be understood by the Sabatier principle (catalytic activity vs. one descriptor), while more complex reactions tend to give multiple very different products and consequently the product selectivity is a more complex property to understand. We approach this, as a logistical classification problem, by grouping metals according to their major experimental product from CO2 electroreduction: H2 , CO, formic acid and beyond CO* (hydrocarbons or alcohols). We compare the groups in terms of multiple binding energies of intermediates calculated by density functional theory. Here, we find three descriptors to explain the grouping: the adsorption energies of H*, COOH*, and CO*. To further classify products beyond CO*, we carry out formaldehyde experiments on Cu, Ag, and Au and combine these results with the literature to group and differentiate alcohol or hydrocarbon products. We find that the oxygen binding (adsorption energy of CH3 O*) is an additional descriptor to explain the alcohol formation in reduction processes. Finally, the adsorption energy of the four intermediates, H*, COOH*, CO*, and CH3 O*, can be used to differentiate, group, and explain products in electrochemical reduction processes involving CO2 , CO, and carbon-oxygen compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Free boundary skin current MHD (magnetohydrodynamic) equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, M.F.


    Function theoretic methods in the complex plane are used to develop simple parametric hodograph formulae which generate sharp boundary equilibria of arbitrary shape. The related method of Gorenflo and Merkel is discussed. A numerical technique for the construction of solutions, based on one of the methods is presented. A study is made of the bifurcations of an equilibrium of general form. 28 refs., 9 figs.

  14. Designing Network Protocols for Good Equilibria (United States)


    Introduction Most modern-day networks dear to computer science—from the Internet , to the Web, to peer-to- peer and social networks—are created and used by a...equilibria, a much stronger requirement than stability (2). A second parallel is provided by work in the networking community on the BGP interdomain ...Theory of Computing (STOC), pages 663–670, 2006. 36 [19] L. Gao and J. Rexford. Stable Internet routing without global coordination. IEEE/ACM

  15. Model Microvascular Networks Can Have Many Equilibria. (United States)

    Karst, Nathaniel J; Geddes, John B; Carr, Russell T


    We show that large microvascular networks with realistic topologies, geometries, boundary conditions, and constitutive laws can exhibit many steady-state flow configurations. This is in direct contrast to most previous studies which have assumed, implicitly or explicitly, that a given network can only possess one equilibrium state. While our techniques are general and can be applied to any network, we focus on two distinct network types that model human tissues: perturbed honeycomb networks and random networks generated from Voronoi diagrams. We demonstrate that the disparity between observed and predicted flow directions reported in previous studies might be attributable to the presence of multiple equilibria. We show that the pathway effect, in which hematocrit is steadily increased along a series of diverging junctions, has important implications for equilibrium discovery, and that our estimates of the number of equilibria supported by these networks are conservative. If a more complete description of the plasma skimming effect that captures red blood cell allocation at junctions with high feed hematocrit were to be obtained empirically, then the number of equilibria found by our approach would at worst remain the same and would in all likelihood increase significantly.

  16. Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis (United States)

    Mehta, Dhagash; Daleo, Noah S.; Dörfler, Florian; Hauenstein, Jonathan D.


    Finding equilibria of the finite size Kuramoto model amounts to solving a nonlinear system of equations, which is an important yet challenging problem. We translate this into an algebraic geometry problem and use numerical methods to find all of the equilibria for various choices of coupling constants K, natural frequencies, and on different graphs. We note that for even modest sizes (N ˜ 10-20), the number of equilibria is already more than 100 000. We analyze the stability of each computed equilibrium as well as the configuration of angles. Our exploration of the equilibrium landscape leads to unexpected and possibly surprising results including non-monotonicity in the number of equilibria, a predictable pattern in the indices of equilibria, counter-examples to conjectures, multi-stable equilibrium landscapes, scenarios with only unstable equilibria, and multiple distinct extrema in the stable equilibrium distribution as a function of the number of cycles in the graph.

  17. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  18. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. (United States)

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching


    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Integration of the electrochemical depolorized CO2 concentrator with the Bosch CO2 reduction subsystem (United States)

    Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.


    Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).

  20. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.


    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  1. Gas hydrate in nature (United States)

    Ruppel, Carolyn D.


    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  2. Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite. (United States)

    Nielsen, Per M; Fago, Angela


    Carbonic anhydrase (CA) is a zinc enzyme that catalyzes hydration of carbon dioxide (CO2) and dehydration of bicarbonate in red blood cells, thus facilitating CO2 transport and excretion. Bovine CA II may also react with nitrite to generate nitric oxide, although nitrite is a known inhibitor of the CO2 hydration reaction. To address the potential in vivo interference of these reactions and the nature of nitrite binding to the enzyme, we here investigate the inhibitory effect of 10-30 mM nitrite on Michaelis-Menten kinetics of CO2 hydration and bicarbonate dehydration by stopped-flow spectroscopy. Our data show that nitrite significantly affects the apparent dissociation constant KM for CO2 (11 mM) and bicarbonate (221 mM), and the turnover number kcat for the CO2 hydration (1.467 × 10(6) s(-1)) but not for the bicarbonate dehydration (7.927 × 10(5) s(-1)). These effects demonstrate mixed and competitive inhibition for the reaction with CO2 and bicarbonate, respectively, and are consistent with nitrite binding to the active site zinc. The high apparent dissociation constant found here for CO2, bicarbonate and nitrite (16-120 mM) are all overall consistent with published data and reveal a large capacity of free enzyme available for binding each of the three substrates at their in vivo levels, with little or no significant interference among reactions. The low affinity of the enzyme for nitrite suggests that the in vivo interaction between red blood cell CA II and nitrite requires compartmentalization at the anion exchanger protein of the red cell membrane to be physiologically relevant. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Uniqueness of Nash equilibria in a quantum Cournot duopoly game (United States)

    Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi


    A quantum Cournot game whose classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties: (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.

  4. Uniqueness of Nash equilibria in a quantum Cournot duopoly game

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi [Graduate School of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)], E-mail:, E-mail:, E-mail:


    A quantum Cournot game whose classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties: (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.

  5. CO2-Responsive Polymer-Functionalized Au Nanoparticles for CO2 Sensor. (United States)

    Ma, Ying; Promthaveepong, Kittithat; Li, Nan


    Metallic nanoparticles (NPs) coated with stimuli-responsive polymers (SRPs) exhibit tunable optical properties responding to external stimuli and show promising sensing applications. We present a new CO2-responsive polymer, poly(N-(3-amidino)-aniline) (PNAAN), coated gold NPs (AuNPs) synthesized by directly reducing HAuCl4 with a CO2-responsive monomer N-(3-amidino)-aniline (NAAN). The amidine group of PNAAN can be protonated into a hydrophilic amidinium group by dissolved CO2 (dCO2). This induces the PNAAN to swell and detach from the AuNP surface, resulting in AuNP aggregation and color change. By monitoring the UV absorbance change of AuNPs, a sensitive dCO2 sensor with a linear range of 0.0132 to 0.1584 hPa and a limit of detection (LOD) of 0.0024 hPa is developed. This method shows dramatic improvement in sensitivity and convenience of sample preparation compared with the previously reported dCO2 sensor.

  6. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus


    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)



    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  8. Enceladus' near-surface CO2 gas pockets and surface frost deposits (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Thomas B.; Radebaugh, Jani; Singh, Sandeep


    Solid CO2 surface deposits were reported in Enceladus' South Polar Region by Brown et al. (2006). They noted that such volatile deposits are temporary and posited ongoing replenishment. We present a model for this replenishment by expanding on the Matson et al. (2012) model of subsurface heat and chemical transport in Enceladus. Our model explains the distributions of both CO2 frost and complexed CO2 clathrate hydrate as seen in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. We trace the journey of CO2 from a subsurface ocean. The ocean-water circulation model of Matson et al. (2012) brings water up to near the surface where gas exsolves to form bubbles. Some of the CO2 bubbles are trapped and form pockets of gas in recesses at the bottom of the uppermost ice layer. When fissures break open these pockets, the CO2 gas is vented. Gas pocket venting is episodic compared to the more or less continuous eruptive plumes, emanating from the "tiger stripes", that are supported by plume chambers. Two styles of gas pocket venting are considered: (1) seeps, and (2) blowouts. The presence of CO2 frost patches suggests that the pocket gas slowly seeped through fractured, cold ice and when some of the gas reached the surface it was cold enough to condense (i.e., T ∼70 to ∼119 K). If the fissure opening is large, a blowout occurs. The rapid escape of gas and drop in pocket pressure causes water in the pocket to boil and create many small aerosol droplets of seawater. These may be carried along by the erupting gas. Electrically charged droplets can couple to the magnetosphere, and be dragged away from Enceladus. Most of the CO2 blowout gas escapes from Enceladus and the remainder is distributed globally. However, CO2 trapped in a clathrate structure does not escape. It is much heavier and slower moving than the CO2 gas. Its motion is ballistic and has an average range of about 17 km. Thus, it contributes to deposits in the vicinity of the vent. Local heat

  9. CO2 condensation is a serious limit to the deglaciation of Earth-like planets (United States)

    Turbet, Martin; Forget, Francois; Leconte, Jeremy; Charnay, Benjamin; Tobie, Gabriel


    It is widely believed that the carbonate-silicate cycle is the main agent, through volcanism, to trigger deglaciations by CO2 greenhouse warming on Earth and on Earth-like planets when they get in a frozen state. Here we use a 3D Global Climate Model to simulate the ability of planets initially completely frozen to escape from glaciation episodes by accumulating enough gaseous CO2. The model includes CO2 condensation and sublimation processes and the water cycle. We find that planets with Earth-like characteristics (size, mass, obliquity, rotation rate, etc.) orbiting a Sun-like star may never be able to escape from a glaciation era, if their orbital distance is greater than ∼1.27 Astronomical Units (Flux 0.6), this critical limit could occur at a significantly lower equivalent distance (or higher insolation). For each possible configuration, we show that the amount of CO2 that can be trapped in the polar caps depends on the efficiency of CO2 ice to flow laterally as well as its gravitational stability relative to subsurface water ice. We find that a frozen Earth-like planet located at 1.30 AU of a Sun-like star could store as much as 1.5, 4.5 and 15 bars of dry ice at the poles, for internal heat fluxes of 100, 30 and 10 mW m-2, respectively. But these amounts are in fact lower limits. For planets with a significant water ice cover, we show that CO2 ice deposits should be gravitationally unstable. They get buried beneath the water ice cover in geologically short timescales of ∼104 yrs, mainly controlled by the viscosity of water ice. CO2 would be permanently sequestered underneath the water ice cover, in the form of CO2 liquids, CO2 clathrate hydrates and/or dissolved in subglacial water reservoirs (if any). This would considerably increase the amount of CO2 trapped and further reduce the probability of deglaciation.

  10. Effective Use of Natural CO2-RICH Systems for Stakeholder Communication: CO2FACTS.ORG (United States)

    Olson, H. C.; Romanak, K.; Osborne, V.; Hovorka, S. D.; Clift, S.; Castner, A.


    The impact of using natural analogues as an avenue for communicating about CO2 injection and storage technology with stakeholders has been addressed by previous researchers, e.g., Romanak et al (2011), Dixon et al (2011). Analogies between natural CO2-rich systems and engineered CO2 storage are not necessarily straightforward, and stakeholder opinion is often based on factors other than technical accuracy of information (e.g., lack of trust, confidence, and fear). In order to enhance this communication pathway, STORE (Sequestration Training, Outreach, Research and Education), the outreach arm of the Gulf Coast Carbon Center at The University of Texas at Austin, has created an online resource ( to help stakeholders better understand the injection and storage of CO2 underground. The online resource includes frequently asked questions (FAQs) for a variety of CO2-storage-related issues, including those related to natural analogues, and uses examples of natural systems of CO2 release for communication. The content targets various levels of technical education and understanding. A unique feature of the online resource is its approach to verification of information. Each FAQ and example is "fact-checked" by an actual expert in the field. Part of this verification process is to provide an online link to background, credentials, scientific research and images of actual experts in the field at natural release sites. This approach helps put a face to, and potentially builds a relationship of trust with, the scientist behind the technical information. Videos of experts discussing natural systems and their similarities and differences with CO2 injection and storage sites are also part of the resource. Stakeholders commonly draw incorrect parallels between natural disasters that gain attention in the media (e.g., Lake Nyos) and CO2 injection and storage technology. The video images available at are a useful tool for assuaging environmental fears

  11. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during laparoscopic surgery: changes in pH, arterial partial Pressure of Carbon Dioxide (PaCo 2 ) and End Tidal Carbon Dioxide (EtCO ... EtCO2 is still a good non-invasive monitor for estimation of PaCO2 during low tidal volume ventilation during pneumoperitoneum.

  12. In silico screening of zeolite membranes for CO2 capture

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.


    The separation of CO2/H-2, CO2/CH4, and CO2/N-2 mixtures is of practical importance for CO2 capture and other applications in the processing industries. Use of membranes with microporous layers of zeolites, metal-organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) offer

  13. On the application of binary correction factors in lattice distortion calculations for methane clathrate hydrates (United States)

    Lasich, Matthew; Mohammadi, Amir H.; Bolton, Kim; Vrabec, Jadran; Ramjugernath, Deresh


    The lattice distortion theory of Zele and co-workers is an attractive method for amending calculated phase equilibria of clathrate hydrates, since only two molecular computations are required. The perturbation energy between the empty and loaded clathrate hydrate lattice is the quantity of interest. The effect of binary correction factors applied to the Lorentz and Berthelot combining rules for the intermolecular interaction between gas and water particles is investigated. There are clear trends for the perturbation energy and lattice constant in terms of the binary correction factors, although there is significant sensitivity to the force field parameterization of the gas species.

  14. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas


    Carbon dioxide (CO2) capture through hydrate crystallization is a promising method among the new approaches for mitigating carbon emissions into the atmosphere. In this work, we investigate a combination of tetrahydrofuran (THF) and cyclopentane (CP) on the kinetics of flue gas (CO2:20 mol %/N2...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  15. Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

    Directory of Open Access Journals (Sweden)

    Upadhyay Praveenkumar


    Full Text Available The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydrogenation reaction, both the homogeneous as well as heterogeneous catalytic systems were discussed along with the effect of solvent systems on reaction kinetics.

  16. Atmospheric CO2 uptake throughout bio-enhanced brucite-water reaction at Montecastelli serpentinites (Italy) (United States)

    Bedini, Federica; Boschi, Chiara; Ménez, Benedicte; Perchiazzi, Natale; Zanchetta, Giovanni


    In the last several years, interactions between microorganisms and minerals have intrigued and catched the interest of the scientific community. Montecastelli serpentinites (Tuscany, Italy) are characterized by CO2-mineral carbonation, an important process which leads to spontaneous formation of carbonate phases uptaking atmospheric CO2. In the studied areas carbonate precipitates, mainly hydrated Mg-carbonates, are present in form of crusts, coating and spherules on exposed rock surfaces, and filling rock fractures. Petrographic and mineralogical observations revealed that Tuscan brucite-rich serpentinites hosts preserve their original chemical compositions with typical mesh-textured serpentine (± brucite) after olivine, magnetite-rich mesh rims and relicts of primary spinel. Representative hydrated carbonate samples have been collected in three different areas and analyzed to investigate the role of biological activity and its influence in the serpentine-hydrated Mg-carbonates reaction. The different types of whitish precipitates have been selected under binocular microscope for XRD analyses performed at the Dipartimento di Scienze della Terra (University of Pisa, Italy): their mineralogical composition consists of mainly hydromagnesite and variable amount of other metastable carbonate phases (i.e. nesquehonite, manasseite, pyroaurite, brugnatellite and aragonite). Moreover, the crystallinity analysis of whitish crust and spherules have been carried out by detailed and quantitative XRD analyses to testify a possible biologically controlled growth, inasmuch as the crystal structure of biominerals could be affected by many lattice defects (i.e. dislocations, twinning, etc.) and this observation cause low crystallinity of the mineral. The presence of microbial cells and relicts of organic matter has already been detected by confocal laser scanning microscopy (CLSM) combined with Raman spectromicroscopy in a previous study (Bedini et al., 2013). The presence of

  17. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords (United States)

    Torres, Rodrigo; Pantoja, Silvio; Harada, Naomi; GonzáLez, Humberto E.; Daneri, Giovanni; Frangopulos, MáXimo; Rutllant, José A.; Duarte, Carlos M.; Rúiz-Halpern, Sergio; Mayol, Eva; Fukasawa, Masao


    Carbon system parameters measured during several expeditions along the coast of Chile (23°S-56°S) have been used to show the main spatial and temporal trends of air-sea CO2 fluxes in the coastal waters of the eastern South Pacific. Chilean coastal waters are characterized by strong pCO2 gradients between the atmosphere and the surface water, with high spatial and temporal variability. On average, the direction of the carbon flux changes from CO2 outgassing at the coastal upwelling region to CO2 sequestering at the nonupwelling fjord region in Chilean Patagonia. Estimations of surface water pCO2 along the Patagonian fjord region showed that, while minimum pCO2 levels (strong CO2 undersaturation) occurs during the spring and summer period, maximum levels (including CO2 supersaturation) occur during the austral winter. CO2 uptake in the Patagonia fjord region during spring-summer is within the order of -5 mol C m-2 yr-1, indicating a significant regional sink of atmospheric CO2 during that season. We suggest that the CO2 sink at Patagonia most probably exceeds the CO2 source exerted by the coastal upwelling system off central northern Chile.

  18. CO2 Geological Storage in Olivine Rich Basaltic Aquifers: New Insights From Flow-Through Experiments (United States)

    Peuble, S.; Godard, M.; Luquot, L.; Gouze, P.


    Injection of CO2-rich fluids into basaltic aquifers is one of the methods envisaged for mitigation of increasing atmospheric CO2. Basalts are rich in Mg, Fe and Ca and have a high potential to trap CO2 as carbonate minerals. However, the role of reaction-transport processes has yet to be investigated in order to predict the capacity and sustainability for CO2 storage of these highly reactive systems. We present the results of three flow-through experiments performed at 180°C and total pressure 12 MPa. NaHCO3 rich water (0.5 mol/L) mixed with CO2 (PCO2 = 10 MPa) was injected through sintered analogues of olivine-accumulation zones in basaltic flows (~ 95% olivine Fo87, MORB glass, minor chromite). The injection rate was 1 mL/h for exp. 1 and 2, and 0.1 mL/h for exp. 3. The initial porosity and permeability of samples ranges from 3 to 7% and 250.10-18 to 2500.10-18 m2 respectively. All experiments show a strong permeability decrease (down to 10-18 m2) after 90 hours for exp. 1 and 2, earlier for exp 3. Yet dissolution occurs: high concentrations of Zr and Al and of Co in the outlet fluids indicate dissolution of basaltic glass and olivine respectively. Si concentration changes reveal a more complex system with olivine dissolution and the precipitation of Si rich phases: we observed the growth of relatively large (up to 5 microns) Mg-Fe rich phyllosilicates mostly perpendicular to olivine surface. This reaction is typically associated to hydration of (ultra-)mafic rocks and may explain the decrease in permeability during experiments. Finally, the low Ca and Mg fluid concentrations suggest trapping by Ca-Mg rich phases. Ankerite and dolomite were identified by Raman spectrometry in the reacted samples after exp. 1 and 2, while exp. 3 was characterized by precipitation of well-developed and abundant magnesite (Mg0.88 Fe0.11 Ca0.01 CO3) replacing dissolved olivine. Carbonation appears to be an efficient process: ~ 0.015g of CO2 per gram of sample is stored as carbonates

  19. Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials (United States)

    Lee, Sinah; Kang, Kyu-Young; Jeong, Myung-Joon; Potthast, Antje; Liebner, Falk


    Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step for cellulose aerogel production is to dissolve cellulose, and hydrated calcium thiocyanate molten salt is one of the most effective solvents for preparing porous material. Cellulose aerogels were prepared from dissolved cellulose samples of different degree of polymerization (DP) and drying methods, and tested with shrinkage, density and mechanical strength. Supercritical CO2 dried cellulose aerogels shrank less compared to freeze-dried cellulose aerogels, whereas the densities were increased according to the DP increases in both cellulose aerogels. Furthermore, scanning electron microscope (SEM) images showed that the higher DP cellulose aerogels were more uniform with micro-porous structure. Regarding the mechanical strength of cellulose aerogels, supercritical CO2 dried cellulose aerogels with higher molecular weight were much more solid.

  20. Internal flow and deformation of a liquid CO2 drop rising through water (United States)

    Steytler, Louis L.; Pearlstein, Arne J.


    We report computations of the steady axisymmetric flow in and around a deformable liquid drop of CO2 ascending through a water column under the action of buoyancy, a problem relevant to risk assessment for sub-seabed carbon sequestration and storage. In these initial computations, we consider several drop densities, corresponding to different depths in the ocean, and neglect dissolution of CO2 into the surrounding water and formation of a hydrate film at the drop/water interface. The results, which extend our previous work (Bozzi et al., J. Fluid Mech. 336, 1-32, 1997) to the case in which the dynamic viscosities of the dispersed and continuous phases are unequal, show that the degree of deformation and internal circulation depend strongly on drop size. Supported by the International Institute for Carbon-Neutral Energy Research, sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology.


    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen


    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  2. Methane hydrates and contemporary climate change (United States)

    Ruppel, Carolyn D.


    As the evidence for warming climate became better established in the latter part of the 20th century (IPCC 2001), some scientists raised the alarm that large quantities of methane (CH4) might be liberated by widespread destabilization of climate-sensitive gas hydrate deposits trapped in marine and permafrost-associated sediments (Bohannon 2008, Krey et al. 2009, Mascarelli 2009). Even if only a fraction of the liberated CH4 were to reach the atmosphere, the potency of CH4 as a greenhouse gas (GHG) and the persistence of its oxidative product (CO2) heightened concerns that gas hydrate dissociation could represent a slow tipping point (Archer et al. 2009) for Earth's contemporary period of climate change.

  3. Method for tracing simulated CO2 leak in terrestrial environment with a 13CO2 tracer (United States)

    Moni, Christophe; Rasse, Daniel


    Facilities for the geological storage of carbon dioxide (CO2) as part of carbon capture and storage (CCS) schemes will be designed to prevent any leakage from the defined 'storage complex'. However, developing regulations and guidance throughout the world (e.g. the EC Directive and the USEPA Vulnerability Evaluation Framework) recognize the importance of assessing the potential for environmental impacts from CO2 storage. RISCS, a European (FP7) project, aims to improve understanding of those impacts that could plausibly occur in the hypothetical case that unexpected leakage occurs. As part of the RISCS project the potential impacts that an unexpected CO2 leaks might have on a cropland ecosystems was investigated. A CO2 exposure field experiment based on CO2 injection at 85 cm depth under an oats culture was designed. To facilitate the characterization of the simulated leaking zone the gas used for injection was produced from natural gas and had a δ13C of -46‰. The aim of the present communication is to depict how the injected gas was traced within the soil-vegetation-atmosphere continuum using 13CO2 continuous cavity ring-down spectrometry (CRDS). Four subsurface experimental injection plots (6m x 3m) were set up. In order to test the effects of different intensity of leakage, the field experiment was designed as to create a longitudinal CO2 gradient for each plot. For this purpose gas supply pipes were inserted at one extremity of each plot at the base of a 45 cm thick layer of sand buried 40 cm below the surface under the clayey plough layer of Norwegian moraine soils. Soil CO2 concentration and isotopic signature were punctually recorded: 1) in the soil at 20 cm depth at 6 positions distributed on the central transect, 2) at the surface following a (50x50 cm) grid sampling pattern, and 3) in the canopy atmosphere at 10, 20, 30 cm along three longitudinal transects (seven sampling point per transect). Soil CO2 fluxes and isotopic signature were finally

  4. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... fired power by selectively capturing CO2 from flue gases. High capital and high operational costs of this process are the major obstacles of industrial implementation. In the field of CCS the chemical absorption process is the most mature technology. The use of kinetic rate promoters that enhance...

  5. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M


    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...... C and pressure up to 100 bars [1]. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The energy requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that an energy requirement for the desorber...

  6. Hydrate equilibrium data for the CO2 + N2 system with the use of tetra-n-butylammonium bromide (TBAB), cyclopentane (CP) and their mixture

    DEFF Research Database (Denmark)

    Tzirakis, Fragkiskos; Stringari, Paolo; von Solms, Nicolas


    Carbon Dioxide capture and sequestration (CCS) is nowadays an important area of research for decreasing CO2 emissions worldwide. Hydrates can become of great importance in the future as they form the basis for a new technology that can be used for CO2 capture from flue gases (hydrate...

  7. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    Directory of Open Access Journals (Sweden)

    D. de Beer


    Full Text Available This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan. The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR and anaerobic methane oxidation (AOM. Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7–15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000–1700 mM, which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  8. Choice of satellite-based CO2 product (XCO¬2, vertical profile) alters surface CO2 flux estimate (United States)

    Liu, J.; Bowman, K. W.; Lee, M.; Henze, D. K.; Fisher, J. B.; Frankenberg, C.; Polhamus, A.


    The ACOS (Atmospheric CO2 Observations from Space) algorithm provides column-averaged CO2 products in units of dry-air mole fraction (XCO2) based on GOSAT radiances. However, XCO2 is derived from a linear transformation of the CO2 vertical profiles estimated from the ACOS retrieval algorithm. In theory, XCO2 vertical columns should provide no more information than the original CO2 profiles. However, the different sensitivities of either CO2 profiles or XCO2 to transport errors can significantly alter surface CO2 flux estimates. Though it has been argued that XCO2 may be less sensitive to transport error than CO2 vertical profiles, there is no study so far investigating the actual impact on surface CO2 flux estimation due to the choice of observation format, which could have significant impact on future satellite CO2 profile mission concepts. In this presentation, we will present the sensitivity of surface CO2 flux estimation to a suite of CO2 observation products, which includes CO2 vertical profiles, XCO2, and the lowest 3 levels of CO2 from CO2 vertical profiles. The CO2 observations are ACOS products covering from July 2009 to June 2010. We will present both OSSE and real observation experiments. In the OSSE experiments, we will present both perfect model experiments and experiments with model errors that are introduced by changing the planetary boundary height. In the real observations, we will show the annual and seasonal CO2 flux as function of regions from using the three observation products. The accuracy of CO2 flux estimation will be examined by comparing CO2 concentrations forced by posterior CO2 flux to independent CO2 observations. The surface CO2 flux estimation framework is based on GEOS-Chem adjoint model that is developed by the Carbon Monitoring Study flux pilot project.

  9. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)


    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  10. Feasibility of Large-Scale Ocean CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Brewer


    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  11. CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels (United States)

    de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert


    Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2

  12. Sulfur Isotope Analysis of Minerals and Fluids in a Natural CO2 Reservoir, Green River, Utah (United States)

    Chen, F.; Kampman, N.; Bickle, M. J.; Busch, A.; Turchyn, A. V.


    Predicting the security of geological CO2 storage sites requires an understanding of the geochemical behavior of the stored CO2, especially of fluid-rock reactions in reservoirs, caprocks and fault zones. Factors that may influence geochemical behavior include co-injection of sulfur gases along with the CO2, either in acid-gas disposal or as contaminants in CO2 storage sites, and microbial activity, such as bacterial sulfate reduction. The latter may play an important role in buffering the redox chemistry of subsurface fluids, which could affect toxic trace metal mobilization and transport in acidic CO2-rich fluids. These processes involving sulfur are poorly understood. Natural CO2-reservoirs provide natural laboratories, where the flow and reactions of the CO2-charged fluids and the activity of microbial communities are integrated over sufficient time-scales to aid prediction of long-term CO2 storage. This study reports on sulfur isotope analyses of sulfate and sulfide minerals in rock core and in CO2-charged fluids collected from a stacked sequence of natural CO2 reservoirs at Green River, Utah. Scientific drilling adjacent to a CO2-degassing normal fault to a depth of 325m retrieved core and fluid samples from two CO2 reservoirs in the Entrada and Navajo Sandstones and from the intervening Carmel Formation caprock. Fluid samples were collected from CO2-charged springs that discharge through the faults. Sulfur exists as sulfate in the fluids, as sedimentary gypsum beds in the Carmel Formation, as remobilized gypsum veins within a fault damage zone in the Carmel Fm. and in the Entrada Sandstone, and as disseminated pyrite and pyrite-mineralized open fractures throughout the cored interval. We use the stable sulfur (δ34S) and oxygen (δ18OSO4) isotopes of the sulfate, gypsum, and pyrite to understand the source of sulfur in the reservoir as well as the timing of gypsum vein and pyrite formation. The hydration water of the gypsum is also reported to explore the

  13. Accelerated weathering of limestone for CO2 mitigation opportunities for the stone and cement industries (United States)

    Langer, W.H.; Juan, C.A.S.; Rau, G.H.; Caldeira, K.


    Large amounts of limestone fines coproduced during the processing of crushed limestone may be useful in the sequestration of carbon dioxide (CO 2). Accelerated weathering of limestone (AWL) is proposed as a low-tech method to capture and sequester CO2 from fossil fuel-fired power plants and other point-sources such as cement manufacturing. AWL reactants are readily available, inexpensive, and environmentally benign. Waste CO 2 is hydrated with water to produce carbonic acid, which then reacts with and is neutralized by limestone fines, thus converting CO2 gas to dissolved calcium bicarbonate. AWL waste products can be disposed of in the ocean. Feasibility requires access to an inexpensive source of limestone and to seawater, thus limiting AWL facilities within about 10 km of the coastline. The majority of U.S. coastal power generating facilities are within economical transport distance of limestone resources. AWL presents opportunities for collaborative efforts among the crushed stone industry, electrical utilities, cement manufactures, and research scientists.

  14. Global CO2 emissions from cement production (United States)

    Andrew, Robbie M.


    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at" target="_blank">

  15. Public Acceptance for Geological CO2-Storage (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team


    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  16. Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion (United States)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA


    Carbon capture and storage (CCS) is the recent promising technology aimed at reducing greenhouse gas emission. Like many other developed technologies, CCS is faced with great challenges such as pipeline transportation failure due to corrosion. There are many factors contributing to steel corrosion during the pipeline transportation of carbon dioxide (CO2). This study focuses on CO2 partial pressure and different phases of CO2 as some of the factors contributing to steel corrosion. Carbon steel was used as a testing specimen. High pressure reactor was used in this study to compress CO2 from low to high pressures ultimately changing the CO2 from gaseous phase to gas/liquid phase (subcritical) and to dense phase (supercritical). Weight loss method was employed to determine the corrosion rate while scanning electron microscopy (SEM) and X-Ray diffraction (XRD) were used to study the carbon steel morphology and phase analysis. Using low magnification digital camera, the type of corrosion that took place on the carbon steel surface was identified.

  17. Hydrates of nat­ural gas in continental margins (United States)

    Kvenvolden, K.A.; Barnard, L.A.


    Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.

  18. A Sea Floor Methane Hydrate Displacement Experiment Using N2 Gas (United States)

    Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Zhang, X.; Hester, K.


    The production of free methane gas from solid methane hydrate accumulations presents a considerable challenge. The presently preferred procedure is pressure reduction whereby the relief of pressure to a condition outside the hydrate phase boundary creates a gas phase. The reaction is endothermic and thus a problematic water ice phase can form if the extraction of gas is too rapid, limiting the applicability of this procedure. Additionally, the removal of the formation water in contact with the hydrate phase is required before meaningful pressure reduction can be attained -- and this can take time. An alternate approach that has been suggested is the injection of liquid CO2 into the formation, thereby displacing the formation water. Formation of a solid CO2 hydrate is thermodynamically favored under these conditions. Competition between CH4 and CO2 for the hydrate host water molecules can occur displacing CH4 from the solid to the gas phase with formation of a solid CO2 hydrate. We have investigated another alternate approach with displacement of the surrounding bulk water phase by N2 gas, resulting in rapid release of CH4 gas and complete loss of the solid hydrate phase. Our experiment was carried out at the Southern Summit of Hydrate Ridge, offshore Oregon, at 780m depth. There we harvested hydrate fragments from surficial sediments using the robotic arm of the ROV Doc Ricketts. Specimens of the hydrate were collected about 1m above the sediment surface in an inverted funnel with a mesh covered neck as they floated upwards. The accumulated hydrate was transferred to an inverted glass cylinder, and N2 gas was carefully injected into this container. Displacement of the water phase occurred and when the floating hydrate material approached the lower rim the gas injection was stopped and the cylinder placed upon a flat metal plate effectively sealing the system. We returned to this site after 7 days to measure progress, and observed complete loss of the hydrate phase

  19. International Collaboration on CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter H. Israelsson; E. Eric Adams


    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be

  20. Intermittent Water Injection on Top of Continuous CO2 Injection to Co-Optimize Oil Recovery and CO2-Storage


    Pranoto, Arif


    Master's thesis in Petroleum engineering The objective of this project is to maximize oil recovery and the CO2 stored during CO2-EOR. To reach that goal there are two important things to be achieved: gas production rate reduction and the oil production rate improvement. To attain the co-optimization, the following CO2 injection approaches were compared: CO2 continuous injection, WAG, Continuous water injection over continuous CO2 injection, and intermittent water injection over continuous ...

  1. Exogenous empirical-evidence equilibria in perfect-monitoring repeated games yield correlated equilibria

    KAUST Repository

    Dudebout, Nicolas


    This paper proves that exogenous empirical-evidence equilibria (xEEEs) in perfect-monitoring repeated games induce correlated equilibria of the associated one-shot game. An empirical-evidence equilibrium (EEE) is a solution concept for stochastic games. At equilibrium, agents\\' strategies are optimal with respect to models of their opponents. These models satisfy a consistency condition with respect to the actual behavior of the opponents. As such, EEEs replace the full-rationality requirement of Nash equilibria by a consistency-based bounded-rationality one. In this paper, the framework of empirical evidence is summarized, with an emphasis on perfect-monitoring repeated games. A less constraining notion of consistency is introduced. The fact that an xEEE in a perfect-monitoring repeated game induces a correlated equilibrium on the underlying one-shot game is proven. This result and the new notion of consistency are illustrated on the hawk-dove game. Finally, a method to build specific correlated equilibria from xEEEs is derived.

  2. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan


    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... reservoirs and in many situations alternating injection of water and CO2 is required to stabilize the injection front. Both scenarios involve a large amount of water, making CO2 solubility in brine, which is around ten times higher than methane solubility, a non-negligible factor in the relevant reservoir...... simulations. In our previous study, a 1-D slimtube simulator, which rigorously accounts for both CO2 solubility in brine and water content in hydrocarbon phases using the Peng-Robinson EoS modified by Soreide and Whitson, has been used to investigate the influence of CO2 solubility on the simulation...

  3. Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test. (United States)

    Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun


    This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.

  4. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)



    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  5. Photocatalytic Reduction of Low Concentration of CO2. (United States)

    Nakajima, Takuya; Tamaki, Yusuke; Ueno, Kazuki; Kato, Eishiro; Nishikawa, Tetsuya; Ohkubo, Kei; Yamazaki, Yasuomi; Morimoto, Tatsuki; Ishitani, Osamu


    A novel molecular photocatalytic system with not only high reduction ability of CO2 but also high capture ability of CO2 has been developed using a Ru(II)-Re(I) dinuclear complex as a photocatalyst. By using this photocatalytic system, CO2 of 10% concentration could be selectively converted to CO with almost same photocatalysis to that under a pure CO2 atmosphere (TONCO > 1000, ΦCO > 0.4). Even 0.5% concentration of CO2 was reduced with 60% initial efficiency of CO formation by using the same system compared to that using pure CO2 (TONCO > 200). The Re(I) catalyst unit in the photocatalyst can efficiently capture CO2, which proceeds CO2 insertion to the Re-O bond, and then reduce the captured CO2 by using an electron supplied from the photochemically reduced Ru photosensitizer unit.

  6. CO(2) Inhibits Respiration in Leaves of Rumex crispus L. (United States)

    Amthor, J S; Koch, G W; Bloom, A J


    Curly dock (Rumex crispus L.) was grown from seed in a glasshouse at an ambient CO(2) partial pressure of about 35 pascals. Apparent respiration rate (CO(2) efflux in the dark) of expanded leaves was then measured at ambient CO(2) partial pressure of 5 to 95 pascals. Calculated intercellular CO(2) partial pressure was proportional to ambient CO(2) partial pressure in these short-term experiments. The CO(2) level strongly affected apparent respiration rate: a doubling of the partial pressure of CO(2) typically inhibited respiration by 25 to 30%, whereas a decrease in CO(2) elicited a corresponding increase in respiration. These responses were readily reversible. A flexible, sensitive regulatory interaction between CO(2) (a byproduct of respiration) and some component(s) of heterotrophic metabolism is indicated.

  7. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)



    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  8. Reducing CO2 from shipping – do non-CO2 effects matter?

    Directory of Open Access Journals (Sweden)

    M. S. Eide


    Full Text Available Shipping is a growing sector in the global economy, and it contributions to global CO2 emissions are expected to increase. CO2 emissions from the world shipping fleet will likely be regulated in the near future, and studies have shown that significant emission reductions can be achieved at low cost. Regulations are being discussed for both existing ships as well as for future additions to the fleet. In this study a plausible CO2 emission reduction inventory is constructed for the cargo fleet existing in 2010, as well as for container ships, bulk ships and tankers separately. In the reduction inventories, CO2 emissions are reduced by 25–32% relative to baseline by applying 15 technical and operational emission reduction measures in accordance with a ship-type-specific cost-effectiveness criterion, and 9 other emission compounds are changed as a technical implication of reducing CO2. The overall climate and environmental effects of the changes to all 10 emission components in the reduction inventory are assessed using a chemical transport model, radiative forcing (RF models and a simple climate model. We find substantial environmental and health benefits with up to 5% reduction in surface ozone levels, 15% reductions in surface sulfate and 10% reductions in wet deposition of sulfate in certain regions exposed to heavy ship traffic. The major ship types show distinctly different contributions in specific locations. For instance, the container fleet contributes 50% of the sulfate decline on the west coast of North America. The global radiative forcing from a 1 yr emission equal to the difference between baseline and reduction inventory shows an initial strong positive forcing from non-CO2 compounds. This warming effect is due to reduced cooling by aerosols and methane. After approximately 25 yr, the non-CO2 forcing is balanced by the CO2 forcing. For the global mean temperature change, we find a shift from warming to cooling after approximately 60

  9. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005-2008)

    DEFF Research Database (Denmark)

    Fonseca, José; Dohrn, Ralf; Peper, Stephanie


    %) have carbon dioxide as one of the components. Information on 206 pure components, 535 ternary systems of which 355 (66%) contain carbon dioxide, 163 multicomponent and complex systems, and 207 systems with hydrates is given. A continuation of the review series is planned, covering the years from 2009......A review of systems is given, for which experimental high-pressure phase-equilibrium data were published in the period between 2005 and 2008, continuing a series of reviews. To find candidates for articles that are of interest for this survey a three-stage search strategy was used including...... a systematic search of the contents of the 17 most important journals of the field. Experimental methods for the investigation of high-pressure phase equilibria were classified, described and illustrated using examples from articles of the period between 2005 and 2008. For the systems investigated...

  10. From serpentinization to carbonation: New insights from a CO2 injection experiment (United States)

    Klein, Frieder; McCollom, Thomas M.


    We injected a CO2-rich hydrous fluid of seawater chlorinity into an ongoing, mildly reducing (H2(aq)≈3 mmol/kg) serpentinization experiment at 230 °C and 35 MPa to examine the changes in fluid chemistry and mineralogy during mineral carbonation. The chemistry of 11 fluid samples was measured, speciated, and compared with MgO-SiO2-H2O-CO2 (MSHC) phase equilibria to approximate the reaction pathway from serpentinization to carbonation. Although the overall system was in apparent disequilibrium, the speciated activities of dissolved silica (aSiO2(aq)) and carbon dioxide (aCO2(aq)) evolved roughly along MSHC equilibrium phase boundaries, indicative of 4 distinct mineral assemblages over time: (1) serpentine-brucite (± magnesite) before the injection, to (2) serpentine-talc-magnesite 2 h after the injection, to (3) quartz-magnesite (48 h after injection), and (4) metastable olivine-magnesite (623 h after injection) until the experiment was terminated. Inspection of the solid reaction products revealed the presence of serpentine, magnesite, minor talc, and magnetite, in addition to relict olivine. Although quartz was saturated over a short segment of the experiment, it was not found in the solid reaction products. A marked and rapid change in fluid chemistry suggests that serpentinization ceased and precipitation of magnesite initiated immediately after the injection. A sharp decrease in pH after the injection promoted the dissolution of brucite and olivine, which liberated SiO2(aq) and dissolved Mg. Dissolved Mg was efficiently removed from the solution via magnesite precipitation, whereas the formation of talc was relatively sluggish. This process accounts for an increase in aSiO2(aq) to quartz saturation shortly after the injection of the CO2-rich fluid. Molecular dihydrogen (H2(aq)) was generated during serpentinization of olivine by oxidation of ferrous iron before the injection; however, no additional H2(aq) was generated after the injection. Speciation

  11. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng


    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  12. Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates

    Directory of Open Access Journals (Sweden)

    V. Romanova


    Full Text Available Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an ice-covered Earth. Changing only one boundary or initial condition, the model produces solutions with at least some ice-free oceans in the low latitudes. Using some combination of these forcing parameters, a full Earth's glaciation is obtained. We find that the most significant factor leading to an ice-covered Earth is the high land albedo in combination with initial temperatures set equal to the freezing point. Oceanic heat transport and orography play only a minor role for the climate state. Extremely low concentrations of CO2 also appear to be insufficient to provoke a runaway ice-albedo feedback, but the strong deviations in surface air temperatures in the Northern Hemisphere point to the existence of a strong nonlinearity in the system. Finally, we argue that the initial condition determines whether the system can go into a completely ice covered state, indicating multiple equilibria, a feature known from simple energy balance models.

  13. Molecular Dynamics Study of the Interactions Between Minerals and Gas Hydrate Species (United States)

    Kvamme, B.; Leirvik, K. N.; Olsen, R.; Kuznetsova, T.


    The need for knowledge on gas hydrate "host" and "guest" interactions with reservoir rocks comes from the two folded exploitation of gas hydrates. On one hand natural gas hydrates represent an immense energy source, on the other hand carbon sequestration in the form of CO2 hydrates represents a long-term storage of carbon dioxide. Whether one's goal is to extract methane from natural gas hydrates or store carbon dioxide in the form of hydrates, it requires an understanding of the complex phenomena involving coupled dynamics of hydrates and hydrate stability in porous media. Hydrates can never attach directly to solid mineral surfaces because of the incompatibility of charges between the mineral surfaces and the hydrates. However, adsorption of water and carbon dioxide on mineral surfaces may favor heterogeneous nucleation of hydrate in the immediate vicinity. Different surfaces have their own specific adsorption preferences and corresponding adsorption thermodynamics. We have selected calcite, a common mineral found in porous media. Using molecular dynamics we have initially focused on the water interface in order to evaluate the "host" interactions towards the surface. We also aimed at evaluating the model before including guest molecules.

  14. Cement/caprock fracture healing experiments to assess the integrity of CO2 injection wells (United States)

    Du Frane, W. L.; Mason, H. E.; Walsh, S. D.; Ruddle, D. G.; Carroll, S.


    surfaces exposed to CO2-rich brine were heavily reacted, as evidenced by coatings of rust-colored amorphous material. X-ray micro-tomography images revealed a series of reaction zones consistent with the results of related experiments by other researchers [e.g. Kutchko et al. 2007]. The mechanical properties of the individual reaction zones were evaluated by nano-indentation. Sampling during runs indicated that brine with pCO2 = 3 MPa became substantially enriched in Ca, Si, and Al, whereas composition of output brine with pCO2 = 0 MPa had little change over the run duration. The enrichment of Al in the brine with pCO2 = 3 MPa indicates that both Al -bearing minerals and amorphous calcium-silicate-hydrate (CSH) dissolved from the cement. Geochemical reaction pathways were further characterized in the reacted zones with the cement by scanning electron microscope, x-ray diffraction, and solid state NMR spectroscopy. These results suggest that the evolution of fractures in our experiments are determined by 3 competing factors: 1) swelling of CSH through hydration from the brine, 2) dissolution of cement into brine containing CO2, and 3) mechanical weakening of cement by chemical reaction with CO2. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and Contract DE-AC52-07NA27344.

  15. Cycles and Multiple Equilibria in the Market for Durable Lemons

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); V.A. Karamychev (Vladimir)


    textabstractWe investigate the nature of market failure in a dynamic version of Akerlof (1970) where identical cohorts of a durable good enter the market over time. In the dynamic model, equilibria with qualitatively different properties emerge. Typically, in equilibria of the dynamic model, sellers

  16. Supercritical CO2 as a substitute of volatile hydrocarbons; Superkritisch CO2 vervangt vluchtige koolwaterstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, G. (ed.)


    In many cases supercritical carbon dioxide can replace volatile hydrocarbons in extraction processes. Currently gaseous or liquid CO2 is already used for industrial purification processes, extraction of caffeine from coffee and as a solvent for paint. Although supercritical extraction s a batch process the technique can be applied as a continuous process. [Dutch] In processen waar vluchtige koolwaterstoffen worden ingezet om stoffen te extraheren, biedt superkritisch CO2 een milieuvriendelijk alternatief. Het koolzuur dat zowel in de vloeistof- als gasfase zit, wordt dan ook steeds meer ingezet in extractieprocessen.

  17. Responses of soil CO2 efflux to changes in plant CO2 uptake and transpiration (United States)

    Balogh, János; de Luca, Giulia; Mészáros, Ádám; Trieber, Júlia; Gecse, Bernadett; Fóti, Szilvia; Pintér, Krisztina; Nagy, Zoltán


    Biotic drivers of soil respiration represent a significant supply-side (plant) control of the process. Those biotic drivers that integrate over longer time periods are useful in describing the phenological changes and physiological state of the vegetation, but they are not suitable to explain the diel variability of soil respiration. Two plant physiological processes, acting in opposite directions, could be relevant at diel timescale: (1) photosynthesis, and (2) transpiration. Firstly, it was recently found that photosynthesis has a time-lagged (a few hours) positive effect on the respiration of roots and root-associated microbes. This can be explainedby an increase in easily accessible non-structural hydrocarbon sources for the roots and root-associated organisms within this period. Secondly, it was found that the effect of transpiration could reduce root respiration due to CO2 transport through the transpiration stream, and this effect is expected to be immediate. Removing the effect of the abiotic drivers from the soil efflux signal could help to clarify the role of other driving variables. In the present study, we conducted manipulation measurements in lab environment to be able to detect the effects of the plant physiological variables (CO2 uptake, transpiration) on soil CO2 efflux. Plant individuals were planted into field soil samples in small pots. Transpiration manipulation was done by regulating vapour pressure of the air around the plant canopy and by inhibitors. Photosynthesis manipulation consisted of programmed absence of light. Isotopic signatures of soil respiration were used for estimating the contribution of the autotrophic and heterotrophic soil respiration components. 13CO2 concentration of the CO2 efflux of the different soil components was measured continuously in open system by cavity ring-down spectroscopy (Picarro G1101-i gas analyser). Keeling-plot approach was also used to calculate the isotopic signals of the sources. According to the

  18. Modeling Kinetics of CO2 (Carbon Dioxide Mineral Sequestration in Heterogeneous Aqueous Suspensions Systems of Cement Dust

    Directory of Open Access Journals (Sweden)

    Henryk Świnder


    Full Text Available The necessity to reduce CO2 emission in the environment has encouraged people to search for solutions for its safe capture and storage. Known methods for carbon dioxide mineral sequestration are based primarily on the use of its binding reaction with metal oxides, mainly earth metals. Increasingly important, due to the availability and price, are processes based on the suspension of various wastes such as fly ash, cement dust or furnace slag. Due to the complexity of the mineral sequestration of CO2 in water-waste suspensions, an important issue is to determine the reaction mechanisms. This applies mainly to the initial period of the transformation phase of mineral wastes, and consequently with the occurrence of a number of transition states of ionic equilibria. The mechanisms and reaction rates in the various stages of the process of CO2 mineral sequestration in heterogeneous systems containing selected wastes are defined herein. This paper presents a method of modeling kinetics of this type of process, developed on the basis of the results of the absorption of CO2 thanks to the aqueous suspension of fly ash and cement dust. This allowed for the transfer of obtained experimental results into the mathematical formula, using the invariant function method, used to describe the processes.

  19. FY 2000 report on the results of the project on the R and D of the global environmental industry technology. R and D of the technology for predicting environmental effects associated with the CO2 ocean sequestration (Development of the technology for predicting environmental effects in the area around the CO2 discharge point and survey for supporting study); 2000 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo. Nisanka tanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu (CO2 horyuten shuhen'iki no kankyo eikyo yosoku gijutsu no kaihatsu narabini kenkyu shien chosa)

    Energy Technology Data Exchange (ETDEWEB)



    To obtain the technical outlook for CO2 ocean sequestration by CO2 discharge into the intermediate layer, the R and D was conducted of the technology for predicting environmental effects in the area around the CO2 discharge point, and the FY 2000 results were summed up. In the elucidation study of the behavior at the time of discharging liquid CO2, the melting process of CO2 droplets discharged/dispersed into the seawater of the intermediate layer was observed, and the specific phenomenon of hydrate formation in the process of CO2 droplet formation was grasped. As to the technology for sending CO2 into the ocean and diluting it, experimental study was made of CO2 transportation technology from on the sea to the intermediate layer, technology for rapid dilution immediately after discharge, etc. About the indoor experiment on the CO2 influence on marine organisms, experiment on the CO2 influence was carried out using shells, sea urchin, red sea bream, etc. In the developmental study of models for predicting environmental effects in the area around the CO2 discharge point, the 3D two-phase flow LES model was developed as a model for predicting the CO2 behavior, and the simulation of the liquid CO2 discharge was made at the planned experimental site. The model for evaluation of the biological influence was also made which can consider the interaction between two kinds of organisms. (NEDO)

  20. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels


    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  1. High gain, multiatmosphere CO2 laser amplifier (United States)

    Stuart, G. C.; Houtman, H.; Meyer, J.


    A novel TE discharge, 15-mm aperture, multiatmosphere, CO2 laser amplifier is described, with measured electrical characteristics and gain measurements on the 9.294-micron, 9R (16) line. The electrical circuit used in this amplifier is a realistic alternative to the Marx bank or conventional LC inversion circuit and, similarly, it would be useful for excitation of other gas lasers as well. This automatically preionized, double-sided, fourfold LC inversion circuit uses only one spark gap, and it is shown to provide small-signal gains of 5.7 percent/cm, at 120 J/l atm and 10 atm. The generalization to an n-stage device, which would be suitable for higher pressures, and larger apertures, is discussed.

  2. CO2 laser therapy of rhinophyma (United States)

    Voigt, Peggy; Jovanovic, Sergije; Sedlmaier, Benedikt W.


    Laser treatment of skin changes has become common practice in recent years. High absorption of the CO2 laser wavelength in water is responsible for its low penetration dpt in biological tissue. Shortening the tissue exposure time minimizes thermic side effects of laser radiation such as carbonization and coagulation. This can be achieved with scanner systems that move the focused laser beam over a defined area by microprocessor-controlled rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scar/span>s, scars after common acne, wrinkles and rhinophyma. Laser ablation of rhinophyma is a stress-minimizing procedure for the surgeon and the patient, since it is nearly bloodless and can be performed under local anaesthesia. Cosmetically favorable reepithelization of the lasered surfaces is achieved within a very short period of time.

  3. Smart Transportation CO2 Emission Reduction Strategies (United States)

    Tarulescu, S.; Tarulescu, R.; Soica, A.; Leahu, C. I.


    Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

  4. Enhanced Molecular Sieve CO2 Removal Evaluation (United States)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen


    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  5. Phase Locking of CO(2) Lasers. (United States)

    Weingartner, W; Schröder, K; Schuöcker, D


    A method of phase locking two CO(2) lasers by radiation exchange is presented. This phase-locking was achieved by use of a copper prism as a beam folding device in the resonators and extraction of the output radiation by a common output coupler. Energy exchange led to a phase-locked state if several locking conditions were fulfilled. The amount of radiation injected from one resonator to the second cavity could be adjusted by movement of the prism. The influence of the strength of coupling on the locking range was studied. The beat signal between the two unlocked lasers could be measured, whereas in the case of phase-locked operation twice the intensity was detected. Despite the inclusion of several assumptions, a simplified mathematical model delivered good agreement between calculated and experimental results.

  6. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna


    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  7. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts (United States)

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne


    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  8. Plasma Equilibria With Stochastic Magnetic Fields (United States)

    Krommes, J. A.; Reiman, A. H.


    Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.

  9. Janus Reactors with Highly Efficient Enzymatic CO2Nanocascade at Air-Liquid Interface. (United States)

    Gao, Song; Mohammad, Munirah; Yang, Hao-Cheng; Xu, Jia; Liang, Kang; Hou, Jingwei; Chen, Vicki


    Though enzymatic cascade reactors have been the subject of intense research over the past few years, their application is still limited by the complicated fabrication protocols, unsatisfactory stability and lack of effective reactor designs. In addition, the spatial positioning of the cascade reactor has so far not been investigated, which is of significant importance for biphase catalytic reaction systems. Inspired by the Janus properties of the lipid cellular membrane, here we show a highly efficient Janus gas-liquid reactor for CO 2 hydration and conversion. Within the Janus reactor, nanocascades containing the nanoscale compartmentalized carbonic anhydrase and formic dehydrogenase were positioned at a well-defined gas-liquid interface, with a high substrate concentration gradient. The Janus reactor exhibited 2.5 times higher CO 2 hydration efficiency compared with the conventional gas-liquid contactor with pristine membranes, and the formic acid conversion rate can reach approximately 90%. Through this work, we provide evidence that the spatial arrangement of the nanocascade is also crucial to efficient reactions, and the Janus reactor can be a promising candidate for the biphase catalytic reactions in environmental, biological and energy aspects.

  10. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.


    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have

  11. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux (United States)

    Doug P. Aubrey; Robert O. Teskey


    Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests...


    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec


    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  13. CO2-ECBM and CO2 Sequestration in Polish Coal Seam – Experimental Study

    Directory of Open Access Journals (Sweden)

    Paweł Baran


    Originality/value: The results indicate successful sorption of carbon dioxide in each experiment. This provides the rationale to study the application of the coal tested to obtain methane genetic origin genetic methane with the use of the CO2 injection.

  14. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR. (United States)

    Surface, J Andrew; Skemer, Philip; Hayes, Sophia E; Conradi, Mark S


    We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions.

  15. Methane Hydrates: Chapter 8 (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott


    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  16. Combustion of Methane Hydrate (United States)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding

  17. Novel Long-Term CO2 Removal System Project (United States)

    National Aeronautics and Space Administration — Current Technology for CO2 removal from enclosed air of spacecraft utilizes LiOH canisters for CO2 absorption. This absorption is irreversible so longer flights...

  18. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  19. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina


    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio......-soundings and standard measurements of the CO2 concentration near the ground. The method was used to derive the regional flux of CO2 over an agricultural site at Zealand in Denmark during an experiment on 12–13 June 2006. The regional fluxes of CO2 represent a combination of agricultural and forest surface conditions....... It was found that the regional flux of CO2 in broad terms follows the behavior of the flux of CO2 at the agricultural (grassland) and the deciduous forest station. The regional flux is comparable not only in size but also in the diurnal (daytime) cycle of CO2 fluxes at the two stations....

  20. Non-CO2 Greenhouse Gases: International Emissions and Projections (United States)

    EPA August 2011 report on global non-CO2 emissions projections (1990-2030) for emissions of non-CO2 greenhouse gases (methane, nitrous oxide, and fluorinated greenhouse gases) from more than twenty emissions sources.

  1. Understanding and predicting trends in north Atlantic CO2 uptake (United States)

    Halloran, Paul; Lebehot, Alice; Watson, Andy; McNeall, Doug; Ford, David; Schuster, Ute


    To determine the maximum carbon dioxide (CO2) emissions society must commit to, to remain below a given atmospheric CO2 threshold, the scientific community must robustly quantify what proportion of human emitted CO2 will be taken up by the land and marine carbon reservoirs. The North Atlantic Ocean is the most intense marine sink of anthropogenic CO2 on the planet, accounting for about a fifth of the global oceanic anthropogenic CO2 uptake, despite covering just 15% of the global ocean area. Carefully assessing uncertainties, we quantify the real-world trend in North Atlantic CO2 uptake over the past two decades. Comparing this to results from state-of-the-art climate models, we find that models are systematically underestimating the observed CO2 uptake trend. By performing a set of targeted climate model simulations, we diagnose and account for this bias, and produce the first set of observation-informed future ocean CO2 uptake predictions.

  2. Chemical reduction of CO2 facilitated by C-nucleophiles. (United States)

    Janes, Trevor; Yang, Yanxin; Song, Datong


    The abundance of atmospheric CO2 presents both an opportunity and a challenge for synthetic chemists to transform CO2 into value-added products. A promising strategy involves CO2 reduction driven by the energy stored in chemical bonds and promoted by molecules containing nucleophilic carbon sites. This approach allows the synthesis of new C-C or C-H bonds from CO2-derived carbon. The first part of this Feature article deals with uncatalyzed reductions of CO2 such as insertion into metal-carbon bonds and reactivity towards multidentate actor ligands and metal-free compounds. The second part covers catalytic reduction of CO2 in which a nucleophilic C-site is involved. This review brings together two general approaches in the chemical CO2 reduction field, showing how the discovery of fundamental reactivity of CO2 leads to synthetic applications, and proposes directions for further development.

  3. A generic analysis of energy use and solvent selection for CO2 separation from post-combustion flue gases (United States)

    Lu, Y.; Chen, S.; Rostam-Abadi, M.


    A thermodynamic calculation was performed to determine the theoretical minimum energy used to separate CO2 from a coal combustion flue gas in a typical adsorption-desorption system. Under ideal conditions, the minimum energy required to separate CO2 from post-combustion flue gas and produce pure CO2 at 1 atmospheric pressure was only about 1183 kJ/kg CO2. This amount could double with the addition of the driving forces of mass and heat transfer and the adverse impacts of absorption heat release on adsorption capacity. Thermodynamic analyses were also performed for the aqueous amine-based absorption process. Two CO2 reaction mechanisms, the carbamate formation reaction with primary/secondary amines and the CO2 hydration reaction with tertiary amines, were included in the absorption reaction. The reaction heat, sensible heat, and stripping heat were all important to the total heat requirement. The heat use of an ideal tertiary amine amounted to 2786 kJ/kg, compared to 3211 kJ/kg for an ideal primary amine. The heat usage of an ideal amine was about 20% lower than that of commercially available amines. Optimizing the absorption process configuration could further reduce energy use. This is an abstract of a paper presented at the 2008 AIChE Spring National Meeting (New Orleans, LA 4/6-10/2008).

  4. Effect of electrolytes and soil mineral surfaces on N2O hydrate formation kinetics (United States)

    Kyung, D.; Ha, S.; Lee, W.


    Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by IPCC (Intergovernmental Panel on Climate Change) and its global warming potential (GWP) is 310 times higher than that of carbon dioxide (CO2). Gas hydrates are unique crystalline compounds that trap suitable guest gas molecules (size between 0.35 and 0.9 nm) stably inside the hydrogen-bonded water cages via van der Waals interaction under high pressure and low temperature conditions. N2O has similar properties (e.g. van der Waals diameter, molar mass, density, etc.) with CO2 except for polarity and it was revealed that both N2O and CO2 can be formed as hydrate s-I in natural environment. In this study, we have identified the effect of electrolytes (NaCl, KCl, CaCl2, MgCl2) and solid surfaces (illite, nontronite, sphalerite, kaolinite, montmorillonite) on the N2O hydrate formation kinetics. The hydrate formation experiments were conducted by injecting N2O gas into the soil mineral suspensions with and without electrolytes in a 50mL pressurized vessel. The formation of N2O hydrate in aqueous electrolyte solutions was slower than that in deionized water. Ion charge and size were significant factors affecting N2O hydrate formation kinetic in electrolytes solutions. The addition of soil mineral suspensions accelerated the formation of N2O hydrate in the electrolyte solutions. Surface area and ionic strength of soil minerals highly influenced on formation kinetic of N2O hydrate. The hydrate formation times in the solid suspensions without electrolytes were very similar to that in the deionized water. The results obtained from this research could be indirectly applied to the fate of N2O sequestered into geological formations as well as its storage as a form of N2O hydrate.

  5. Atmospheric measurement of point source fossil fuel CO2 emissions (United States)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.


    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  6. Can elevated CO(2) improve salt tolerance in olive trees? (United States)

    Melgar, Juan Carlos; Syvertsen, James P; García-Sánchez, Francisco


    We compared growth, leaf gas exchange characteristics, water relations, chlorophyll fluorescence, and Na(+) and Cl(-) concentration of two cultivars ('Koroneiki' and 'Picual') of olive (Olea europaea L.) trees in response to high salinity (NaCl 100mM) and elevated CO(2) (eCO(2)) concentration (700microLL(-1)). The cultivar 'Koroneiki' is considered to be more salt sensitive than the relatively salt-tolerant 'Picual'. After 3 months of treatment, the 9-month-old cuttings of 'Koroneiki' had significantly greater shoot growth, and net CO(2) assimilation (A(CO(2))) at eCO(2) than at ambient CO(2), but this difference disappeared under salt stress. Growth and A(CO(2)) of 'Picual' did not respond to eCO(2) regardless of salinity treatment. Stomatal conductance (g(s)) and leaf transpiration were decreased at eCO(2) such that leaf water use efficiency (WUE) increased in both cultivars regardless of saline treatment. Salt stress increased leaf Na(+) and Cl(-) concentration, reduced growth and leaf osmotic potential, but increased leaf turgor compared with non-salinized control plants of both cultivars. Salinity decreased A(CO(2)), g(s), and WUE, but internal CO(2) concentrations in the mesophyll were not affected. eCO(2) increased the sensitivity of PSII and chlorophyll concentration to salinity. eCO(2) did not affect leaf or root Na(+) or Cl(-) concentrations in salt-tolerant 'Picual', but eCO(2) decreased leaf and root Na(+) concentration and root Cl(-) concentration in the more salt-sensitive 'Koroneiki'. Na(+) and Cl(-) accumulation was associated with the lower water use in 'Koroneiki' but not in 'Picual'. Although eCO(2) increased WUE in salinized leaves and decreased salt ion uptake in the relatively salt-tolerant 'Koroneiki', growth of these young olive trees was not affected by eCO(2).

  7. CO2 and C2H2 in cold nanodroplets of oxygenated organic molecules and water (United States)

    Devlin, J. Paul; Balcı, F. Mine; Maşlakcı, Zafer; Uras-Aytemiz, Nevin


    Recent demonstrations of subsecond and microsecond timescales for formation of clathrate hydrate nanocrystals hint at future methods of control of environmental and industrial gases such as CO2 and methane. Combined results from cold-chamber and supersonic-nozzle [A. S. Bhabhe, "Experimental study of condensation and freezing in a supersonic nozzle," Ph.D. thesis (Ohio State University, 2012), Chap. 7] experiments indicate extremely rapid encagement of components of all-vapor pre-mixtures. The extreme rates are derived from (a) the all-vapor premixing of the gas-hydrate components and (b) catalytic activity of certain oxygenated organic large-cage guests. Premixing presents no obvious barrier to large-scale conditions of formation. Further, from sequential efforts of the groups of Trout and Buch, a credible defect-based model of the catalysis mechanism exists for guidance. Since the catalyst-generated defects are both mobile and abundant, it is often unnecessary for a high percentage of the cages to be occupied by a molecular catalyst. Droplets represent the liquid phase that bridges the premixed vapor and clathrate hydrate phases but few data exist for the droplets themselves. Here we describe a focused computational and FTIR spectroscopic effort to characterize the aerosol droplets of the all-vapor cold-chamber methodology. Computational data for CO2 and C2H2, hetero-dimerized with each of the organic catalysts and water, closely match spectroscopic redshift patterns in both magnitude and direction. Though vibrational frequency shifts are an order of magnitude greater for the acetylene stretch mode, both CO2 and C2H2 experience redshift values that increase from that for an 80% water-methanol solvent through the solvent series to approximately doubled values for tetrahydrofuran and trimethylene oxide (TMO) droplets. The TMO solvent properties extend to a 50 mol.% solution of CO2, more than an order of magnitude greater than for the water-methanol solvent mixture

  8. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field]. (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua


    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  9. CO2 (dry ice) cleaning system (United States)

    Barnett, Donald M.


    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  10. A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling

    NARCIS (Netherlands)

    Banerjee, S.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.


    Surfactants soluble in liquid CO2 are rare and knowledge on interfacial and self-assembly behaviour is fragmented. We found that polyoxyethylene (5) isooctylphenyl ether is interfacially active at the water–liquid CO2 interface. Water–liquid CO2 interfacial tension was measured at various surfactant

  11. Activation of CO2 by phosphinoamide hafnium complexes. (United States)

    Sgro, Michael J; Stephan, Douglas W


    Hf-phosphinoamide cation complexes behave as metal-based frustrated Lewis pairs and bind one or two equivalent of CO2 and in as well can activate CO2 in a bimetallic fashion to give a pseudo-tetrahedral P2CO2 fragment linking two Hf centres.

  12. CO2-laserchirurgie van leukoplakie van het mondslijmvlies

    NARCIS (Netherlands)

    Roodenburg, Johannes Leendert Nicolaas


    The purpose of this investigation is: 1. to gain an insight into the direct effect of CO2-laserlight on oral mucosa; 2. to study the healing of oral mucosa after being damaged by CO2-laserlight; 3. to evaluate the CO2-laserevaporataion as a treatment modality for oral leukoplakia. ... Zie: Summary

  13. Impacts: economic trade-offs for CO2 impurity specification

    NARCIS (Netherlands)

    Eickhoff, C.; Neele, F.P.; Hammer, M.; DiBiagio, M.; Hofstee, C.; Koenen, M.; Fischer, S.; Isaenko, A.; Brown, A.; Kovacs, T.


    The IMPACTS project has a stated broad objective to develop the knowledge base of CO2 quality required for establishing norms and regulations to ensure safe and reliable design, construction and operation of CO2 pipelines and injection equipment, and safe long-term geological storage of CO2. More

  14. Thermogravimetric and model-free kinetic studies on CO2 ...

    Indian Academy of Sciences (India)

    Coal gasification with CO 2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO 2 mitigation policies through simultaneous CO 2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals fromthe ...

  15. Ventilation in Sewers Quantified by Measurements of CO2

    DEFF Research Database (Denmark)

    Fuglsang, Emil Dietz; Vollertsen, Jes; Nielsen, Asbjørn Haaning


    H, alkalinity and sewer-air CO2 concentrations. An intercepting sewer was studied and an average sewer-air retention time of approximately 1.5-2.5 hours was found at CO2 levels around 4-6 times the natural background. Also an upstream sub-catchment was studied. In this part of the sewer system the level of CO2...

  16. Designing an oscillating CO2 concentration experiment for field chambers (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  17. Designing an oscillating CO2 concentration experiment for fild chambers (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  18. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès


    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  19. End tidal CO2 versus arterial CO2 monitoring in patients undergoing coronary artery bypass graft

    Directory of Open Access Journals (Sweden)

    Hassani E


    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Measuring end tidal carbon dioxide (ETCo2 is one of the methods used for estimating arterial carbon dioxide (PaCo2 during general anesthesia. ETCo2 measurements maybe obviate the need for repeating arterial puncture for determination of arterial PaCo2. This study performed to determine the accuracy of ETCo2 levels as a measure of PaCo2 levels in patients undergoing coronary artery bypass graft and also to evaluate variation of the gradient between PaCo2 and ETCo2, peri- cardiopulmonary bypass operation."n"nMethods: In a prospective, cross-sectional study, a total of 40 patients with age 57±11 (35-73 years old undergoing coronary artery bypass graft were enrolled. ETCo2 levels (mmHg were recorded using side stream capnography at the time of arterial blood gas sampling, before (T0 and after (T1 cardiopulmonary bypass."n"nResults: Mean P(a-ETCo2 at T0 was 4.3±4.4mmHg, with the mean PaCo2, 33±6mmHg and mean ETCo2, 29±5mmHg and these values at T1 were 4.5±4.1mmHg, 33±5mmHg and 29±2mmHg respectively. There was no variation of the mean gradient (PaCo2-PETCo2 during, before and after cardiopulmonary bypass (p>0.870. Significant correlation was found between ETCo2 and PaCo2 at T0 and T1 (r=0.754 and 0

  20. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger


    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  1. Hydration testing of athletes. (United States)

    Oppliger, Robert A; Bartok, Cynthia


    Dehydration not only reduces athletic performance, but also places athletes at risk of health problems and even death. For athletes, monitoring hydration has significant value in maximising performance during training and competition. It also offers medical personnel the opportunity to reduce health risks in situations where athletes engage in intentional weight loss. Simple non-invasive techniques, including weight monitoring and urine tests, can provide useful information. Bioimpedance methods tend to be easy to use and fairly inexpensive, but generally lack the precision and accuracy necessary for hydration monitoring. Blood tests appear to be the most accurate monitoring method, but are impractical because of cost and invasiveness. Although future research is needed to determine which hydration tests are the most accurate, we encourage sports teams to develop and implement hydration monitoring protocols based on the currently available methods. Medical personnel can use this information to maximise their team's athletic performance and minimise heat- and dehydration-related health risks to athletes.

  2. Hydrate morphology: Physical properties of sands with patchy hydrate saturation (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.


    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  3. Near-infrared spectroscopic study of a water-in-supercritical CO2 microemulsion as a function of the water content. (United States)

    Takebayashi, Yoshihiro; Sagisaka, Masanobu; Sue, Kiwamu; Yoda, Satoshi; Hakuta, Yukiya; Furuya, Takeshi


    A water-in-supercritical CO(2) microemulsion is a reverse micelle encapsulating a nanometer-size water droplet dispersed in supercritical CO(2). In the microemulsion solution, water exists not only in the reverse micelle but also in the solvent CO(2). For quantitative analysis of the water distribution, near-infrared spectra of water + CO(2) and water + surfactant + CO(2) mixtures were measured over a wide range of water/CO(2) ratios from 0.1 to 1.0 wt% at 60 °C and 30.0 MPa. The stretching combination band of water was decomposed into two components, a sharp one peaked at 7194 cm(-1) assigned to monomeric water dissolved in CO(2) and a broad one around 7000 cm(-1) corresponding to aggregated water in the microemulsion. Integrated molar absorptivities of these types of water were negligibly different from each other, despite the different hydrogen-bonding environments. The spectral decomposition revealed that water is distributed mainly into CO(2) at water contents smaller than 0.5 wt% and then is introduced into the microemulsion after saturation of water in CO(2) and full hydration of the surfactant headgroup. © 2011 American Chemical Society

  4. CO2 Condensation Models for Mars (United States)

    Colaprete, A.; Haberle, R.


    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  5. Removing extra CO2 in COPD patients. (United States)

    Lund, Laura W; Federspiel, William J


    For patients experiencing acute respiratory failure due to a severe exacerbation of chronic obstructive pulmonary disease (COPD), noninvasive positive pressure ventilation has been shown to significantly reduce mortality and hospital length of stay compared to respiratory support with invasive mechanical ventilation. Despite continued improvements in the administration of noninvasive ventilation (NIV), refractory hypercapnia and hypercapnic acidosis continue to prevent its successful use in many patients. Recent advances in extracorporeal gas exchange technology have led to the development of systems designed to be safer and simpler by focusing on the clinical benefits of partial extracorporeal carbon dioxide removal (ECCO2R), as opposed to full cardiopulmonary support. While the use of ECCO2R has been studied in the treatment of acute respiratory distress syndrome (ARDS), its use for acute hypercapnic respiratory during COPD exacerbations has not been evaluated until recently. This review will focus on literature published over the last year on the use of ECCO2R for removing extra CO2 in patients experiencing an acute exacerbation of COPD.


    Energy Technology Data Exchange (ETDEWEB)

    CHU, M.S.; PARKS, P.B.


    OAK B202 TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE. Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). Straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids, 3, 67 (1971)] on tokamak equilibrium to these plasmas leads to apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e. no negative currents can be driven in the central region.

  7. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.


    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  8. Thermodynamic Properties of CO2 Mixtures and Their Applications in Advanced Power Cycles with CO2 Capture Processes


    Li, Hailong


    The thermodynamic properties of CO2-mixtures are essential for the design and operation of CO2 Capture and Storage (CCS) systems. A better understanding of the thermodynamic properties of CO2 mixtures could provide a scientific basis to define a proper guideline of CO2 purity and impure components for the CCS processes according to technical, safety and environmental requirements. However the available accurate experimental data cannot cover the whole operation conditions of CCS processes. In...

  9. Greenhouse gas capture. Norwegian test facility for CO2-technology; Broeikasgasvangers. Noors testcentrum voor CO2-technologie

    Energy Technology Data Exchange (ETDEWEB)

    Van Velzen, T.


    In Norway a large research center on the capture of CO2 will be opened in the spring of 2012: the CO2 Technology Centre Mongstad. It allows companies to test concepts for CCS (carbon dioxide capture and storage) [Dutch] In Noorwegen wordt in de lente van 2012 een groot centrum voor onderzoek naar het afvangen van CO2 geopend: het CO2 Technology Centre Mongstad. Daar kunnen bedrijven hun concepten voor CCS beproeven.

  10. CO2 niet meer dan genoeg: Teelt van Tomaat in 2012 bij Improvement Centre met lichtafhankelijk doseren van CO2

    NARCIS (Netherlands)

    Gelder, de A.; Warmenhoven, M.G.; Dieleman, J.A.; Klapwijk, P.; Baar, van P.H.


    Wageningen UR Glastuinbouw heeft met financiering van Kas als Energiebron en Samenwerken aan Vaardigheden onderzoek gedaan naar efficienter gebruik van CO2. In een kasproef bij GreenQ/Improvement Centre is een CO2 doseerstrategie getest, waarbij iets meer CO2 wordt gegeven dan er op basis van de

  11. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.


    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  12. The effects of CO2-differentiated vehicle tax systems on car choice, CO2 emissions and tax revenues

    NARCIS (Netherlands)

    Kok, R.


    This paper assesses the impacts of a CO2-differentiated tax policy designed to influence car purchasing trends towards lower CO2 emitting vehicles in the Netherlands. Since 2009, gasoline and diesel cars up to 110 and 95 gram CO2 per km are exempted from the vehicle registration tax (VRT). In

  13. Application of ammonia and CO2 in supermarkets; Toepassing van ammoniak en CO2 in supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    Stoecker, W.F.; Hrnjak, P.J. [University of Illinois, Urbana-Champaign, IL (United States); Infante Ferreiria, C.A. [Technische Universiteit Delft, Delft (Netherlands)


    The application of microchannel condensers in ammonia installations makes it possible to go down as far as 18 g NH3 per kW refrigeration. The use of ammonia in combination with CO2 contributes to economic effective and energy efficient solutions for supermarket applications. In this article also the experiences in Sweden, Denmark and Italy with indirect, cascade and transcritical supermarket refrigeration systems with carbon dioxide are described. 8 refs.

  14. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen


    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  15. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, Reid B.; Schechter, David S.


    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  16. Close pairs of relative equilibria for identical point vortices

    DEFF Research Database (Denmark)

    Dirksen, Tobias; Aref, Hassan


    Numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane reveals configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. New numerical solutions of this kind are found...... also has this property, and new relative equilibria close to the nested, symmetrically arranged, regular heptagons have been found. The centered regular nonagon is also marginally stable. Again, a new family of close relative equilibria has been found. The closest relative equilibrium pairs occur...

  17. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan


    simulations. In our previous study, a 1-D slimtube simulator, which rigorously accounts for both CO2 solubility in brine and water content in hydrocarbon phases using the Peng-Robinson EoS modified by Soreide and Whitson, has been used to investigate the influence of CO2 solubility on the simulation...

  18. Effect of Layer Charge on CO2and H2O Intercalations in Swelling Clays. (United States)

    Rao, Qi; Leng, Yongsheng


    The effect of layer charge on the intercalation of supercritical carbon dioxide (scCO 2 )-H 2 O mixture in Na-montmorillonite clay interlayers under T = 323 K and P = 90 bar geologic sequestration conditions has been further investigated. This effect includes the charge amount and its location (within either octahedral or tetrahedral layers due to isomorphic substitutions). Two clay models with different layer charges are used in this study. Simulation results show that the increase of charge amount shifts the monolayer-to-bilayer (1W-to-2W) hydration transition toward the lower relative humidity (RH), increasing water sorption at the expense of reducing the overall sorption amount of CO 2 in the clay interlayer. However, the combination of the influence of charge amount and charge location leads to insignificant changes in equilibrium basal spacings of the high- and low-charge clays. Molecular dynamics simulations show that the CO 2 dimers, which are frequently seen in low-charge clay interlayers, vanish in high-charge clay interlayers even at low RH of 30%.

  19. Sequestering CO2 in the Built Environment (United States)

    Constantz, B. R.


    Calera’s Carbonate Mineralization by Aqueous Precipitation (CMAP) technology with beneficial reuse has been called, “game-changing” by Carl Pope, Director of the Sierra Club. Calera offers a solution to the scale of the carbon problem. By capturing carbon into the built environment through carbonate mineralization, Calera provides a sound and cost-effective alternative to Geologic Sequestration and Terrestrial Sequestration. The CMAP technology permanently converts carbon dioxide into a mineral form that can be stored above ground, or used as a building material. The process produces a suite of carbonate-containing minerals of various polymorphic forms. Calera product can be substituted into blends with ordinary Portland cements and used as aggregate to produce concrete with reduced carbon, carbon neutral, or carbon negative footprints. For each ton of product produced, approximately half a ton of carbon dioxide can be sequestered using the Calera process. Coal and natural gas are composed of predominately istopically light carbon, as the carbon in the fuel is plant-derived. Thus, power plant CO2 emissions have relatively low δ13C values.The carbon species throughout the CMAP process are identified through measuring the inorganic carbon content, δ13C values of the dissolved carbonate species, and the product carbonate minerals. Measuring δ13C allows for tracking the flue gas CO2 throughout the capture process. Initial analysis of the capture of propane flue gas (δ13C ˜ -25 ‰) with seawater (δ13C ˜ -10 ‰) and industrial brucite tailings from a retired magnesium oxide plant in Moss Landing, CA (δ13C ˜ -7 ‰ from residual calcite) produced carbonate mineral products with a δ13C value of ˜ -20 ‰. This isotopically light carbon, transformed from flue gas to stable carbonate minerals, can be transferred and tracked through the capture process, and finally to the built environment. CMAP provides an economical solution to global warming by producing

  20. Monitoring and Modeling CO2 Dynamics in the Vadose Zone near an Abandoned Historic Oil Well: Implications for Detecting CO2 Leakage at Geological CO2 Sequestration Sites (United States)

    Yang, C.; Romanak, K.; Hovorka, S.; Reedy, R. C.; Trevino, R.; Scanlon, B. R.


    Soil-gas monitoring is proposed for detecting CO2 leakage at geological CO2 sequestration sites. At the Cranfield oil field, about 25 km east of Natchez, Mississippi, an integrated near-surface monitoring program is being implemented where supercritical CO2 is being injected for enhanced oil recovery (EOR). The purpose of the study is to understand how natural factors may affect soil CO2 monitoring at geologic carbon storage sites. A near-surface observatory, constructed on an engineered well pad near a 1950’s era open pit and plugged and abandoned well, was used to monitor atmospheric parameters such as air temperature, relative humility, barometric pressure, wind speed and direction, solar radiation, and precipitation. Soil temperature, soil CO2 concentrations, water content, and matric potential were also monitored at various depths to a maximum of 5 m in the vadose zone. The integrated monitoring system was installed in September 2009 and continued collecting data each half hour for about 240 days. CO2 concentrations measured at 1.5 m depth are about two times that of atmospheric CO2 concentrations and show daily fluctuations. However, CO2 concentrations measured at 3 m depth decreased from 11% in November 2009 to 9% in January 2010, then gradually increased to 10.5% in June 2010. There should be no CO2 contribution from root respiration because the engineered pad is bare of vegetation. Monitored CO2 in the vadose zone at this site most likely is derived from oxidation of methane with a suspected source related to the 1950’s era plugged and abandoned well. A 1-D numerical model was also used to simulate variably saturated water flow, CO2 transport, CH4 oxidation for understanding mechanisms that dominate CO2 transport at this site. Results of this study suggest that CO2 transport in the vadose zone is very complicated and can be affected by many factors including precipitation, barometric pressure, soil temperature, oxidation of methane, and therefore may

  1. Atmospheric measurement of point source fossil CO2 emissions (United States)

    Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.


    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.

  2. Use of sediment CO2 by submersed rooted plants. (United States)

    Winkel, Anders; Borum, Jens


    Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO(2) availability. The present study examined to what extent five species of submersed freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO(2) from the sediment. Gross photosynthesis was measured in two-compartment split chambers with low inorganic carbon availability in leaf compartments and variable CO(2) availability (0 to >8 mmol L(-1)) in root compartments. Photosynthetic rates based on root-supplied CO(2) were compared with maximum rates obtained at saturating leaf CO(2) availability, and (14)C experiments were conducted for two species to localize bottlenecks for utilization of sediment CO(2). All species except Hydrocotyle were able to use sediment CO(2), however, with variable efficiency, and with the isoetid, Lobelia, as clearly the most effective and the elodeid, Ludwigia, as the least efficient. At a water column CO(2) concentration in equilibrium with air, Lobelia, Lilaeopsis and Vallisneria covered >75% of their CO(2) requirements by sediment uptake, and sediment CO(2) contributed substantially to photosynthesis at water CO(2) concentrations up to 1000 micromol L(-1). For all species except Ludwigia, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO(2). For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves. Submersed plants other than isoetids can utilize sediment CO(2), and small and medium sized elodeids with high root to shoot area in particular may benefit substantially from uptake of sediment CO(2) in low alkaline lakes.

  3. Subsurface oxide plays a critical role in CO2activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. (United States)

    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J


    A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.

  4. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach (United States)

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.


    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  5. Reactivity of organic complexes at mineral-CO2-H2O interfaces (United States)

    Miller, Q. R.; Schaef, T.; Kaszuba, J. P.; Qiu, L.; Bowden, M. E.; McGrail, B. P.


    Understanding the interactions between minerals and organics in H2O-CO2 fluids is important, as they are the two most abundant volatiles in the crust. CO2-rich fluids in natural and anthropogenic environments, such as metamorphic aureoles and carbon storage reservoirs, respectively, produce a complex geochemical setting in which CO2-rich fluids containing dissolved water and organic compounds interact with rocks and minerals. We have undertaken experimental and theoretical studies to evaluate how organics impact carbonate mineralization and to determine the partitioning behavior of organic complexes between CO2, H2O, and mineral interfaces. The first groups of experiments have clarified how the type and concentration of simple organic ligands impact the degree and type of carbonation in interfacial water films. In these experiments, salts of simple organic ligands were equilibrated with wet supercritical CO2, which was reacted with the model mineral forsterite (Mg2SiO4). The forsterite dissolution and coupled carbonate precipitation reactions were followed with time-resolved pressurized X-ray diffraction (XRD) at 50 °C and 90 bar. The extent of carbonation and the relative abundance of anhydrous magnesite (MgCO3) precipitated relative to hydrated nesquehonite (MgCO3·3H2O) was impacted by the type of organic ligand. Magnesite enhancement was observed with the trend of citrate>oxalate≈malonate>acetate>organic-free control. This indicates that the organic ligands complexed Mg2+ in the interfacial water film environment and helped alleviate kinetic barriers to magnesite formation. Additional XRD experiments with varying concentrations of citrate verified the dependence of magnesite enhancement and the degree of overall carbonation on the amount of organic present in the water film. Lastly, our ongoing work concerning the partitioning of organic and metal-organic complexes between CO2, H2O, and interfacial water films will be presented. This experimental work, which

  6. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen


    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  7. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks. (United States)

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B


    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  8. New Approaches for the Production of Hydrocarbons from Hydrate Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Ronny Giese


    Full Text Available The presence of natural gas hydrates at all active and passive continental margins has been proven. Their global occurrence as well as the fact that huge amounts of methane and other lighter hydrocarbons are stored in natural gas hydrates has led to the idea of using hydrate bearing sediments as an energy resource. However, natural gas hydrates remain stable as long as they are in mechanical, thermal and chemical equilibrium with their environment. Thus, for the production of gas from hydrate bearing sediments, at least one of these equilibrium states must be disturbed by depressurization, heating or addition of chemicals such as CO2. Depressurization, thermal or chemical stimulation may be used alone or in combination, but the idea of producing hydrocarbons from hydrate bearing sediments by CO2 injection suggests the potential of an almost emission free use of this unconventional natural gas resource. However, up to now there are still open questions regarding all three production principles. Within the framework of the German national research project SUGAR the thermal stimulation method by use of in situ combustion was developed and tested on a pilot plant scale and the CH4-CO2 swapping process in gas hydrates studied on a molecular level. Microscopy, confocal Raman spectroscopy and X-ray diffraction were used for in situ investigations of the CO2-hydrocarbon exchange process in gas hydrates and its driving forces. For the thermal stimulation a heat exchange reactor was designed and tested for the exothermal catalytic oxidation of methane. Furthermore, a large scale reservoir simulator was realized to synthesize hydrates in sediments under conditions similar to nature and to test the efficiency of the reactor. Thermocouples placed in the reservoir simulator with a total volume of 425 L collect data regarding the propagation of the heat front. In addition, CH4 sensors are placed in the water saturated sediment to detect the distribution of CH4

  9. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. (United States)

    Wang, Sibo; Hou, Yidong; Wang, Xinchen


    The synthesis of uniform MnCo2O4 microspheres and their cooperation with a visible light harvester to achieve efficient photocatalytic CO2 reduction under ambient conditions are reported here. The MnCo2O4 materials were prepared by a facile two-step solvothermal-calcination method and were characterized by XRD, SEM, TEM, EDX, XPS, elemental mapping, and N2 adsorption measurements. By using the MnCo2O4 microspheres as a heterogeneous cocatalyst, the photocatalytic performance of the CO2-to-CO conversion catalysis was remarkably enhanced, and no decrease in the promotional effect of the cocatalyst was observed after repeatedly operating the reaction for six cycles. (13)CO2 isotope tracer experiments verified that the CO product originated from the CO2 reactant. The effect of synthetic conditions and various reaction parameters on the photocatalytic activity of the system were investigated and optimized. The stability of the MnCo2O4 cocatalyst in the CO2 reduction system was confirmed by several techniques. Moreover, a possible mechanism for MnCo2O4-cocatalyzed CO2 photoreduction catalysis is proposed.

  10. Research on the physical properties of supercritical CO2 and the log evaluation of CO2-bearing volcanic reservoirs (United States)

    Pan, Baozhi; Lei, Jian; Zhang, Lihua; Guo, Yuhang


    CO2-bearing reservoirs are difficult to distinguish from other natural gas reservoirs during gas explorations. Due to the lack of physical parameters for supercritical CO2, particularly neutron porosity, at present a hydrocarbon gas log evaluation method is used to evaluate CO2-bearing reservoirs. The differences in the physical properties of hydrocarbon and CO2 gases have led to serious errors. In this study, the deep volcanic rock of the Songliao Basin was the research area. In accordance with the relationship between the density and acoustic velocity of supercritical CO2 and temperature and pressure, the regularity between the CO2 density and acoustic velocity, and the depth of the area was established. A neutron logging simulation was completed based on a Monte Carlo method. Through the simulation of the wet limestone neutron logging, the relationship between the count rate ratio of short and long space detectors and the neutron porosity was acquired. Then, the nature of the supercritical CO2 neutron moderation was obtained. With consideration given to the complexity of the volcanic rock mineral composition, a volcanic rock volume model was established, and the matrix neutron and density parameters were acquired using the ECS log. The properties of CO2 were applied in the log evaluation of the CO2-bearing volcanic reservoirs in the southern Songliao Basin. The porosity and saturation of CO2 were obtained, and a reasonable application was achieved in the CO2-bearing reservoir.

  11. Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: results from a free-air CO2 enrichment study. (United States)

    Burkart, S; Manderscheid, R; Weigel, H-J


    Sugar beet (Beta vulgaris ssp. altissima Döll) was grown in the field under free-air CO(2) enrichment (FACE, 550 ppm) and different nitrogen (N) supply (2001: 126 (N100) and 63 kg.ha(-1) (N50); 2004: 156 (N100) and 75 kg.ha(-1)) during two crop rotations. Canopy CO(2) exchange rates (CCER) were measured during the main growth phase (leaf area index > or =2) using a dynamic chamber system. Canopy CO(2) exchange data were analysed with respect to treatment effects on seasonal means and light use efficiency and light response characteristics. CO(2) enrichment enhanced CCER throughout the season. However, in both years, CCER declined after the second half of August independent of radiation and [CO(2)]. Elevated [CO(2)] strongly stimulated CCER on a seasonal basis, whereas the reduction of CCER caused by low N was below 10% and not significant. There were no effects of N on daily radiation use efficiency of carbon gain calculated from CCER data, but a strong enhancement by CO(2) enrichment. CCER closely tracked diurnal variations in incident photosynthetic photon flux density (PPFD, mumol.m(-2).s(-1)). The relationship between CCER and incident PPFD was curvilinear. In both seasons, initial slopes and maximum rates (CCER(max)) were determined from two 6-day periods using these relationships. The first period was measured after canopy closure (first half of July) and the second in the second half of August. In the first period, elevated [CO(2)] increased the initial slopes. Low N supply affected neither the initial slopes nor their response to elevated [CO(2)] in either period. In contrast to initial slopes, N stress limited the [CO(2)] response of CCER(max) in the first period. In the second period, however, this interaction of [CO(2)] and N on CCER(max) was completely dominated by a general decline of CCER(max) whereas no general decline of the initial slopes occurred in the second period. This response of light response parameters to [CO(2)] and N suggests that, in

  12. Microbial growth under a high-pressure CO2 environment (United States)

    Thompson, J. R.; Hernandez, H. H.


    Carbon capture and storage (CCS) of CO2 has the potential to significantly reduce the emission of greenhouse gasses associated with fossil fuel combustion. The largest potential for storing captured CO2 in the United Sates is in deep geologic saline formations. Currently, little is known about the effects of CO2 storage on biologically active microbial communities found in the deep earth biosphere. Therefore, to investigate how deep earth microbial communities will be affected by the storage of CO2, we have built a high-pressure microbial growth system in which microbial samples are subjected to a supercritical CO2 (scCO2) environment. Recently we have isolated a microbial consortium that is capable of growth and extracellular matrix production in nutrient media under a supercritical CO2 headspace. This consortium was cultivated from hydrocarbon residues associated with saline formation waters and includes members of the gram-positive Bacillus genus. The cultivation of actively growing cells in an environment containing scCO2 is unexpected based on previous experimental evidence of microbial sterilization attributed to the acidic, desiccating, and solvent-like properties of scCO2. Such microbial consortia have potential for development as (i) biofilm barriers for geological carbon-dioxide sequestration, and as (ii) agents of biocatalysis in environmentally-friendly supercritical (sc) CO2 solvent systems. The discovery that microbes can remain biologically active, and grow, in these environments opens new frontiers for the use of self-regenerating biological systems in engineering applications.

  13. Metal-Free Carbon Materials for CO2 Electrochemical Reduction. (United States)

    Duan, Xiaochuan; Xu, Jiantie; Wei, Zengxi; Ma, Jianmin; Guo, Shaojun; Wang, Shuangyin; Liu, Huakun; Dou, Shixue


    The rapid increase of the CO2 concentration in the Earth's atmosphere has resulted in numerous environmental issues, such as global warming, ocean acidification, melting of the polar ice, rising sea level, and extinction of species. To search for suitable and capable catalytic systems for CO2 conversion, electrochemical reduction of CO2 (CO2 RR) holds great promise. Emerging heterogeneous carbon materials have been considered as promising metal-free electrocatalysts for the CO2 RR, owing to their abundant natural resources, tailorable porous structures, resistance to acids and bases, high-temperature stability, and environmental friendliness. They exhibit remarkable CO2 RR properties, including catalytic activity, long durability, and high selectivity. Here, various carbon materials (e.g., carbon fibers, carbon nanotubes, graphene, diamond, nanoporous carbon, and graphene dots) with heteroatom doping (e.g., N, S, and B) that can be used as metal-free catalysts for the CO2 RR are highlighted. Recent advances regarding the identification of active sites for the CO2 RR and the pathway of reduction of CO2 to the final product are comprehensively reviewed. Additionally, the emerging challenges and some perspectives on the development of heteroatom-doped carbon materials as metal-free electrocatalysts for the CO2 RR are included. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Waste benefits of CO2 policies in Japan. (United States)

    Gielen, D J; Moriguchi, Y


    A linear programming model REAP (Regional Environmental strategy Analysis Program) has been developed for the analysis of the consequences of a CO2 tax for petrochemical products such as plastics (CO2, carbon dioxide, is the most important greenhouse gas). Special attention has been paid to the impacts on waste management. The results suggest that a 10,000 Y t(-1) CO2 tax would result in a significant reduction of CO2 emissions in the petrochemical life cycle, ranging from 40 Mt in 2015 to 70 Mt CO2 in later decades (more than 50% emission reduction). Waste quantities will be reduced simultaneously. The CO2 tax results in an 18% reduction of plastic waste weight in 2015 (3 Mt waste). Lower tax levels that may be politically more acceptable would result in proportionally lower environmental benefits. CO2 benefits and waste benefits of a CO2 tax are of equal importance in policy terms. Apart from changes in waste volume, CO2 taxes would affect the cost-effectiveness of waste handling technologies. Energy recovery in industrial kilns may replace conventional waste incineration. Recycling constitutes half of the total waste treatment. Given these results, current investments in new incineration capacity may suffer from insufficient waste availability during the next two decades in case CO2 taxes are introduced. A third effect of a CO2 tax is a significant increase of waste transportation. The results show that this increase is concentrated in the central part of Honshu (Kinki, Chubu & Kanto). Such transportation can result in new local environmental impacts that should be analysed in more detail. Given the strong impact of CO2 taxes on waste quantities and waste treatment it is recommended to co-ordinate CO2 policies and solid waste policies.

  15. Forecasting CO2 emissions in the Persian Gulf States

    Directory of Open Access Journals (Sweden)

    F.A. Olabemiwo


    Full Text Available The Persian Gulf States (Bahrain. Iran, Iraq, Qatar, Saudi Arabia, Kuwait and United Arab Emirate have dominated the oil and gas sector since the discovery of oil in the region. They are the world largest producers of crude oil, producing about 35 and 25 percent of the world natural gas and crude oil respectively. The use of fossil fuels is directly linked to the release of CO2 into the environment. CO2 accounts for 58.8 percent of all greenhouse gases released via human activities, consequently, presenting a malign impact on the environment through climate change, global warming, biodiversity, acid rain and desertification among others. Due to its importance, the data on CO2 emission obtained from US EIA from 1980 – 2010 was regressed using least square techniques and projections were made to the year 2050. Results indicated that each country’s p-value was less than 0.05 which implies that the models can be used for predicting CO2 emissions into the future. The data shows the emission of CO2 by countries from the highest to the lowest in 2016 as: Iran (590.72 Mtonnes; 7.58 tonnes of CO2/person > Saudi Arabia (471.82 Mtonnes; 18 tonnes of CO2/person > UAE (218.58 Mtonnes; 41.31 tonnes of CO2/person > Iraq (114.01 Mtonees; 3.71 tonnes of CO2/person > Kuwait (92.58 Mtonnes; 36.31 tonnes of CO2/person > Qatar (68.26 Mtonnes; 37 tonnes of CO2/person > Bahrain (33.16 Mtonnes; 27.5 tonnes of CO2/person". The sequence from the country with highest emission (Iran to the country with lowest emission (Bahrain will remain the same until 2050. A projection depicting a 7.7 percent yearly increase in CO2 emission in the Persian Gulf States.

  16. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.


    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  17. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids. (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong


    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  18. Mixed Nash equilibria in Eisert-Lewenstein-Wilkens (ELW) games (United States)

    Bolonek-Lasoń, Katarzyna; Kosiński, Piotr


    The classification of all mixed Nash equilibria for the original ELW game is presented. It is based on the quaternionic form of the game proposed by Landsburg (Proc. Am. Math. Soc. 139 (2011), 4423; Rochester Working Paper No 524 (2006); Wiley Encyclopedia of Operations Research and Management Science (Wiley and Sons, New York, (2011)). This approach allows to reduce the problem of finding the Nash equilibria to relatively simple analysis of the extrema of certain quadratic forms.

  19. N-Acetylcysteine plus Saline Hydration versus Saline Hydration

    African Journals Online (AJOL)

    ) in patients undergoing coronary angiography pretreated with N-acetylcysteine NAC plus saline hydration or saline hydration alone and to determine the association between various risk factors and RCIN. Methods: Patients were ...

  20. Efficient purification of His-tagged protein by superparamagnetic Fe3O4/Au-ANTA-Co2+ nanoparticles. (United States)

    Zhang, Lianying; Zhu, Xinjun; Jiao, Dejie; Sun, Yongling; Sun, Hanwen


    Superparamagnetic Fe3O4/Au nanoparticles were synthesized and surface modified with mercaptopropionic acid (MPA), followed by conjugating Nα,Nα-Bis(carboxymethyl)-l-lysine hydrate (ANTA) and subsequently chelating Co(2+). The resulting Fe3O4/Au-ANTA-Co(2+) nanoparticles have an average size of 210 nm in aqueous solution, and a magnetization of 36 emu/g, endowing the magnetic nanoparticles with excellent magnetic responsivity and dispersity. The Co(2+) ions in the magnetic nanoparticle shell provide docking site for histidine, and the Fe3O4/Au-ANTA-Co(2+) nanoparticles exhibit excellent performance in binding of a His-tagged protein with a binding capacity of 74 μg/mg. The magnetic nanoparticles show highly selective purification of the His-tagged protein from Escherichia coli lysate. Therefore, the obtained Fe3O4/Au-ANTA-Co(2+) nanoparticles exhibited excellent performance in the direct separation of His-tagged protein from cell lysate. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane (United States)

    Pohlman, John W.; Greinert, Jens; Ruppel, Carolyn; Silyakova, Anna; Vielstädte, Lisa; Casso, Michael; Mienert, Jürgen; Bünz, Stefan


    Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (-33,300 ± 7,900 μmol m-2ṡd-1) twice that of surrounding waters and ˜1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m-2ṡd-1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

  2. Biofiksasi CO2 Oleh Mikroalga Chlamydomonas sp dalam Photobioreaktor Tubular

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto


    Full Text Available Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of

  3. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords


    Torres, Rodrigo; Duarte, Carlos M.; Ruiz-Halpern, Sergio; Fukasawa, Masao


    Carbon system parameters measured during several expeditions along the coast of Chile (23°S-56°S) have been used to show the main spatial and temporal trends of air-sea CO2 fluxes in the coastal waters of the eastern South Pacific. Chilean coastal waters are characterized by strong pCO2 gradients between the atmosphere and the surface water, with high spatial and temporal variability. On average, the direction of the carbon flux changes from CO2 outgassing at the coastal upwelling region to C...

  4. Microbial dissolution of calcite at T = 28 °C and ambient pCO 2 (United States)

    Jacobson, Andrew D.; Wu, Lingling


    This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species ( Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO 2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH 4+ as an N source, and H 2PO 4- as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H 2O-CO 2-CaCO 3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH 4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H 2CO 3 generated by dissolution of atmospheric CO 2 (H 2CO 3 + CaCO 3 → Ca 2+ + 2HCO 3-) and H + released during NH 4+ uptake (H + + CaCO 3 → Ca 2+ + HCO 3-). Reaction with H 2CO 3 and H + supplied ˜45% and 55% of the total Ca 2+ and ˜60% and 40% of the total HCO 3-, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH 4+ was ˜2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H 2CO 3. In lactate bearing reactors, most H + generated by NH 4+ uptake reacted with HCO 3- produced by lactate oxidation to yield CO 2 and H 2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H 2CO 3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because

  5. Recent enlightening strategies for co2 capture: a review (United States)

    Yuan, Peng; Qiu, Ziyang; Liu, Jia


    The global climate change has seriously affected the survival and prosperity of mankind, where greenhouse effect owing to atmospheric carbon dioxide (CO2) enrichment is a great cause. Accordingly, a series of down-to-earth measures need to be implemented urgently to control the output of CO2. As CO2 capture appears as a core issue in developing low-carbon economy, this review provides a comprehensive introduction of recent CO2 capture technologies used in power plants or other industries. Strategies for CO2 capture, e.g. pre-combustion, post-combustion and oxyfuel combustion, are covered in this article. Another enlightening technology for CO2 capture based on fluidized beds is intensively discussed.

  6. Financial development and sectoral CO2emissions in Malaysia. (United States)

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof


    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  7. A Circular Bioeconomy with Biobased Products from CO2 Sequestration. (United States)

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G


    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. CO2 measurements during transcranial Doppler examinations in headache patients

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg


    Transcranial Doppler (TCD) examinations are increasingly being used in studies of headache pathophysiology. Because blood velocity is highly dependent on PCO2, these parameters should be measured simultaneously. The most common way of performing measurements during TCD examinations is as end......-tidal pCO2 with a capnograph. When patients are nauseated and vomit, as in migraine, the mask or mouthpiece connected to the capnograph represents a problem. We therefore evaluated whether a transcutaneous pCO2 electrode was as useful as the capnograph for pCO2 measurements in TCD examinations. We...... conclude that this is not the case, and recommend capnographic end-tidal pCO2 measurements during TCD examinations. However, transcutaneous pCO2 measurements may represent a supplement to spot measurements of end-tidal pCO2 in stable conditions when long-term monitoring is needed, and the mask...

  9. CO2 Storage related Groundwater Impacts and Protection (United States)

    Fischer, Sebastian; Knopf, Stefan; May, Franz; Rebscher, Dorothee


    Injection of CO2 into the deep subsurface will affect physical and chemical conditions in the storage environment. Hence, geological CO2 storage can have potential impacts on groundwater resources. Shallow freshwater can only be affected if leakage pathways facilitate the ascent of CO2 or saline formation water. Leakage associated with CO2 storage cannot be excluded, but potential environmental impacts could be reduced by selecting suitable storage locations. In the framework of risk assessment, testing of models and scenarios against operational data has to be performed repeatedly in order to predict the long-term fate of CO2. Monitoring of a storage site should reveal any deviations from expected storage performance, so that corrective measures can be taken. Comprehensive R & D activities and experience from several storage projects will enhance the state of knowledge on geological CO2 storage, thus enabling safe storage operations at well-characterised and carefully selected storage sites while meeting the requirements of groundwater protection.

  10. Climate-dependent CO2 emissions from lakes (United States)

    Kosten, Sarian; Roland, FáBio; da Motta Marques, David M. L.; van Nes, Egbert H.; Mazzeo, NéStor; Sternberg, Leonel Da S. L.; Scheffer, Marten; Cole, Jon J.


    Inland waters, just as the world's oceans, play an important role in the global carbon cycle. While lakes and reservoirs typically emit CO2, they also bury carbon in their sediment. The net CO2 emission is largely the result of the decomposition or preservation of terrestrially supplied carbon. What regulates the balance between CO2 emission and carbon burial is not known, but climate change and temperature have been hypothesized to influence both processes. We analyzed patterns in carbon dioxide partial pressure (pCO2) in 83 shallow lakes over a large climatic gradient in South America and found a strong, positive correlation with temperature. The higher pCO2 in warmer lakes may be caused by a higher, temperature-dependent mineralization of organic carbon. This pattern suggests that cool lakes may start to emit more CO2 when they warm up because of climate change.

  11. Non-CO2 greenhouse gases and climate change. (United States)

    Montzka, S A; Dlugokencky, E J; Butler, J H


    Earth's climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO(2)) from fossil fuel combustion. Anthropogenic emissions of non-CO(2) greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO(2) greenhouse gases have much shorter lifetimes than CO(2), so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO(2), reducing non-CO(2) greenhouse gas emissions would be a relatively quick way of contributing to this goal.

  12. CO2 emission benefit of diesel (versus gasoline) powered vehicles. (United States)

    Sullivan, J L; Baker, R E; Boyer, B A; Hammerle, R H; Kenney, T E; Muniz, L; Wallington, T J


    Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015.


    Directory of Open Access Journals (Sweden)

    Milan Drabik


    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed


    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell


    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  15. Inhibited phase behavior of gas hydrates in graphene oxide: influences of surface and geometric constraints. (United States)

    Kim, Daeok; Kim, Dae Woo; Lim, Hyung-Kyu; Jeon, Jiwon; Kim, Hyungjun; Jung, Hee-Tae; Lee, Huen


    Porous materials have provided us unprecedented opportunities to develop emerging technologies such as molecular storage systems and separation mechanisms. Pores have also been used as supports to contain gas hydrates for the application in gas treatments. Necessarily, an exact understanding of the properties of gas hydrates in confining pores is important. Here, we investigated the formation of CO2, CH4 and N2 hydrates in non-interlamellar voids in graphene oxide (GO), and their thermodynamic behaviors. For that, low temperature XRD and P-T traces were conducted to analyze the water structure and confirm hydrate formation, respectively, in GO after its exposure to gaseous molecules. Confinement and strong interaction of water with the hydrophilic surface of graphene oxide reduce water activity, which leads to the inhibited phase behavior of gas hydrates.

  16. Numerical Study on CO2-Brine-Rock Interaction of Enhanced Geothermal Systems with CO2 as Heat Transmission Fluid

    Directory of Open Access Journals (Sweden)

    Wan Yuyu


    Full Text Available Enhanced Geothermal Systems (EGS with CO2 instead of water as heat transmission fluid is an attractive concept for both geothermal resources development and CO2 geological sequestration. Previous studies show that CO2 has lots of favorable properties as heat transmission fluid and also can offer geologic storage of CO2 as an ancillary benefit. However, after CO2 injection into geological formations, chemical reaction between brine and rock can change chemical characteristics of saline and properties of rock such as porosity and permeability. Is this advantage or disadvantage for EGS operating? To answer this question, we have performed chemically reactive transport modeling to investigate fluid-rock interactions and CO2 mineral carbonation of Enhanced Geothermal Systems (EGS site at Desert Peak (Nevada operated with CO2. The simulation results show that (1 injection CO2 can create a core zone fulfilled with CO2 as main working domain for EGS, and (2 CO2 storage can induced self-enhancing alteration of EGS.

  17. Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water. (United States)

    Romanos, George E; Zubeir, Lawien F; Likodimos, Vlassis; Falaras, Polycarpos; Kroon, Maaike C; Iliev, Boyan; Adamova, Gabriela; Schubert, Thomas J S


    Absorption of carbon dioxide and water in 1-butyl-3-methylimidazoliun tricyanomethanide ([C4C1im][TCM]) and 1-octyl-3-methylimidazolium tricyanomethanide ([C8C1im][TCM]) ionic liquids (ILs) was systematically investigated for the first time as a function of the H2O content by means of a gravimetric system together with in-situ Raman spectroscopy, excess molar volume (V(E)), and viscosity deviation measurements. Although CO2 absorption was marginally affected by water at low H2O molar fractions for both ILs, an increase of the H2O content resulted in a marked enhancement of both the CO2 solubility (ca. 4-fold) and diffusivity (ca. 10-fold) in the binary [C(n)C1im][TCM]/H2O systems, in contrast to the weak and/or detrimental influence of water in most physically and chemically CO2-absorbing ILs. In-situ Raman spectroscopy on the IL/CO2 systems verified that CO2 is physically absorbed in the dry ILs with no significant effect on their structural organization. A pronounced variation of distinct tricyanomethanide Raman modes was disclosed in the [C(n)C1im][TCM]/H2O mixtures, attesting to the gradual disruption of the anion-cation coupling by the hydrogen-bonded water molecules to the [TCM](-) anions, in accordance with the positive excess molar volumes and negative viscosity deviations for the binary systems. Most importantly, CO2 absorption in the ILs/H2O mixtures at high water concentrations revealed that the [TCM](-) Raman modes tend to restore their original state for the heavily hydrated ILs, in qualitative agreement with the intriguing nonmonotonous transients of CO2 absorption kinetics unveiled by the gravimetric measurements for the hybrid solvents. A molecular exchange mechanism between CO2 in the gas phase and H2O in the liquid phase was thereby proposed to explain the enhanced CO2 absorption in the hybrid [C(n)C1im][TCM]//H2O solvents based on the subtle competition between the TCM-H2O and TCM-CO2 interactions, which renders these ILs very promising for CO2

  18. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion (United States)

    Saeki, Tazu; Patra, Prabir K.


    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  19. CO2 laser welding of magnesium alloys (United States)

    Dhahri, Mohammed; Masse, Jean Eric; Mathieu, J. F.; Barreau, Gerard; Autric, Michel L.


    Metallic alloys with a low mass density can be considered to be basic materials in aeronautic and automotive industry. Magnesium alloys have better properties than aluminum alloys in respect of their low density and high resistance to traction. The main problems of magnesium alloy welding are the inflammability, the crack formation and the appearance of porosity during the solidification. The laser tool is efficient to overcome the difficulties of manufacturing by conventional processing. Besides, the laser processing mainly using shielding gases allows an effective protection of the metal against the action of oxygen and a small heat affected zone. In this paper, we present experimental results about 5 kW CO2 laser welding of 4 mm-thick magnesium alloy plates provided by Eurocopter France. The focused laser beam has about 0.15 mm of diameter. We have investigated the following sample: WE43, alloy recommended in aeronautic and space applications, is constituted with Mg, Y, Zr, rare earth. More ductile, it can be used at high temperatures until 250 degrees Celsius for times longer than 5000 hours without effects on its mechanical properties. A sample of RZ5 (French Norm: GZ4TR, United States Norm ZE41) is composed of Mg, Zn, Zr, La, rare earth. This alloy has excellent properties of foundry and it allows to the realization of components with complex form. Also, it has a good resistance and important properties of tightness. The parameters of the process were optimized in the following fields: laser power: 2 to 5 kW, welding speed: 1 to 4.5 m/min, focal position: -3 mm to +3 mm below or on the top of the metal surface, shielding gas: helium with a flow of 10 to 60 l/min at 4 bars. Metallurgical analyses and mechanical control are made (macroscopic structure, microscopic structure, interpretations of the structures and localization of possible defects, analyse phases, chemical composition, hardness, tensile test etc.) to understand the parameters influence of welding

  20. Global CO2 Levels and the Calvin Cycle (United States)


    half of the total CO2 fixed world-wide is processed by marine algae . Presently, three mechanisms have been described by which CO 2 may be...information on the autotrophic process in eukaryotes has been derived almost exclusively from terrestrial plants and green algae (the Chlorophyta...However, two additional supertaxa of plants also fix CO 2. The Chromophyta represent a large assemblage of algae that include the diatoms and

  1. CO2 hydrogenation to hydrocarbons over iron nanoparticles ...

    Indian Academy of Sciences (India)

    Hydrogenation of CO2 to hydrocarbons over iron nanoparticles supported on oxygen- functionalized multi-walled carbon nanotubes was studied in a fixed-bed U-tube reactor at 25 bar with a. H2:CO2 ratio of 3. Conversion of CO2 was approximately 35% yielding C1–C5 products at 360. ◦. C with methane and CO as major ...

  2. Holiday CO2: Inference from the Salt Lake City data (United States)

    Ryoo, J.; Fung, I. Y.; Ehleringer, J. R.; Stephens, B. B.


    A network of high-frequency CO2 sensors has been established in Salt Lake City (SLC), Utah (, and the annual/monthly pattern of CO2 variability is consistent with a priori estimates of CO2 fluxes (McKain et al., 2012). Here we ask if short-term changes in anthropogenic sources can be detected, and present a case study of Thanksgiving holiday, when traffic and energy use patterns are expected to be different from that during the rest of the month. CO2 mole fraction is much higher during the Thanksgiving holidays than the other days in November 2008 for all 5 sites in SLC, and a similar pattern is found in other years. Taking into account that the wind speed is relatively low in downtown SLC compared to the other SLC sites, the downtown site is further investigated to minimize the meteorological influence on CO2. In order to understand the relative contributions to the high level of CO2 during the Thanksgiving holidays, we carried out a multiple linear regression (MLR) analysis of the rate of CO2 change against various sources. Mobile CO2 sources are assumed to be proportional to local traffic data and residential CO2 sources are assumed to depend exponentially on temperature. Vulcan data were used to specify the other anthropogenic sources (commercial, industrial, nonroad, electricity, aircraft, and cement). The MLR analysis shows that during the Thanksgiving holidays CO2 contributions from residential and commercial CO2 are larger than that during the rest of November, and mobile sources represent only a relatively small contribution. The study demonstrates the feasibility of detecting changes in urban source contributions using high-frequency measurements in combination with daily PBL height and local traffic volume data.

  3. Simulating Remediation of CO2 Leakage from Geological Storage Sites (United States)

    Zhang, Y.; Oldenburg, C. M.; Benson, S. M.


    One strategy to reduce net greenhouse gas emissions is to inject carbon dioxide (CO2) deep into subsurface formations where presumably it would be stored indefinitely. Although geologic storage formations will be carefully selected, CO2 injected into a target formation may unexpectedly migrate upwards and ultimately seep out at the ground surface, creating a potential hazard to human beings and ecosystems. In this case, CO2 that has leaked from the geologic storage site is considered a contaminant, and remediation strategies such as passive venting and active pumping are needed. The purpose of this study is to investigate remediation strategies for CO2 leakage from geologic storage sites. We use the integral finite-difference code TOUGH2 to simulate the remediation of CO2 in subsurface systems. We consider the components of water, CO2 and air, and model flow and transport in aqueous and gas phases subject to a variety of initial and boundary conditions including passive venting and active pumping. We have investigated the time it takes for a gas plume of CO2 to be removed from the vadose zone both by natural attenuation processes and by active extraction wells. The time for removal is parameterized in terms of a CO2 plume half-life, defined as the time required for one-half of the CO2 mass to be removed. Initial simulations show that barometric pressure fluctuations enhance the removal of CO2 from the vadose zone, but that CO2 trapped near the water table is difficult to remove by either passive or active remediation approaches. This work was supported by a Cooperative Research and Development Agreement (CRADA) between BP Corporation North America, as part of the CO2 Capture Project (CCP), and the U.S. Department of Energy (DOE) through the National Energy Technologies Laboratory (NETL), and by the U.S. Department of Energy under contract DE-AC03-76SF00098.

  4. CO2^{*} chemiluminescence study at low and elevated pressures (United States)

    Kopp, M.; Brower, M.; Mathieu, O.; Petersen, E.; Güthe, F.


    Chemiluminescence experiments have been performed to assess the state of current CO2^{*} kinetics modeling. The difficulty with modeling CO2^{*} lies in its broad emission spectrum, making it a challenge to isolate it from background emission of species such as CH∗ and CH2O∗. Experiments were performed in a mixture of 0.0005H2+0.01N2O+0.03CO+0.9595Ar in an attempt to isolate CO2^{*} emission. Temperatures ranged from 1654 K to 2221 K at two average pressures, 1.4 and 10.4 atm. The unique time histories of the various chemiluminescence species in the unconventional mixture employed at these conditions allow for easy identification of the CO2^{*} concentration. Two different wavelengths to capture CO2^{*} were used; one optical filter was centered at 415 nm and the other at 458 nm. The use of these two different wavelengths was done to verify that broadband CO2^{*} was in fact being captured, and not emission from other species such as CH∗ and CH2O∗. As a baseline for time history and peak magnitude comparison, OH∗ emission was captured at 307 nm simultaneously with the two CO2^{*} filters. The results from the two CO2^{*} filters were consistent with each other, implying that indeed the same species (i.e., CO2^{*}) was being measured at both wavelengths. A first-generation kinetics model for CO2^{*} and CH2O∗ was developed, since no comprehensively validated one exists to date. CH2O∗ and CH∗ were ruled out as being present in the experiments at any measurable level, based on calculations and comparisons with the data. Agreement with the CO2^{*} model was only fair, which necessitates future improvements for a better understanding of CO2^{*} chemiluminescence as well as the kinetics of the ground state species.

  5. Corrosion studies on casing steel in CO2 storage environments

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Benedictus, T.


    The corrosion behavior of casing steel N80 in brine plus CO2 was studied in autoclave to simulate the CO2 storage environment. The brine solution used in the study contained 130 g/l NaCl, 22.2 g/l CaCl2 and 4 g/l MgCl2. The CO2 was charged in the autoclave at different pressures (60, 80 and 100 bar)

  6. CO 2 hydrogenation to hydrocarbons over iron nanoparticles ...

    Indian Academy of Sciences (India)

    Hydrogenation of CO2 to hydrocarbons over iron nanoparticles supported on oxygenfunctionalized multi-walled carbon nanotubes was studied in a fixed-bed U-tube reactor at 25 bar with a H2:CO2 ratio of 3. Conversion of CO2 was approximately 35% yielding C1-C5 products at 360°C with methane and CO as major ...

  7. CO2 laser resurfacing of the face and neck. (United States)

    Goldman, M P


    Laser resurfacing with the short-pulsed, high-energy CO2 laser has been used to treat photodamaged skin and acne scars. Efficacy and safety have been demonstrated with this technique since 1992. Newer treatment methods, including sequential or combination treatment with the Er:YAG laser have led to increased efficacy with a decrease in adverse sequelae. This article details the author's experience with CO2 laser resurfacing and promotes the use of sequential CO2/Er:YAG laser resurfacing.

  8. System-level modeling for geological storage of CO2


    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.


    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  9. Activation of CO2 by supported Cu clusters. (United States)

    Iyemperumal, Satish Kumar; Deskins, N Aaron


    Catalytic reduction of carbon dioxide to useful chemicals is a potent way to mitigate this greenhouse gas, but the challenge lies in finding active reduction catalysts. Using density functional theory we studied CO2 activation over TiO2-supported Cu clusters of size 1-4 atoms. The linear to bent transformation of CO2 is necessary for activation, and we found that all the clusters stabilized bent CO2, along with a significant gain of electrons on the CO2 (indicative of activation). On all the TiO2 supported Cu clusters, the interfacial sites were found to stabilize the bent CO2 adsorption, where the active site of adsorption on Cu dimer, trimer and tetramer was on the Cu atom farthest away from the TiO2 surface. Particularly, the Cu dimer stabilized bent CO2 very strongly, although this species was found to be unstable on the surface. A synthesis technique that could stabilize the Cu dimer could therefore lead to a very active catalyst. Furthermore we found (using vibrational and charge analysis) that the active sites for the CO2 activation predominantly had 0 and +1 oxidation states; the oxidation state of Cu is known to directly affect CO2 reduction activity. Our study shows TiO2-supported small Cu clusters can be active catalysts for CO2 reduction and also provides further motivation for theoretical and experimental studies of metal clusters.

  10. Investigation of CO2precursors in roasted coffee. (United States)

    Wang, Xiuju; Lim, Loong-Tak


    Two CO 2 formation pathways (chlorogenic acid (CGA) degradation and Maillard reaction) during coffee roasting were investigated. CGA is shown not a major contributor to CO 2 formation, as heating of this compound under typical roasting conditions did not release a large quantity of CO 2 . However, heating of a CGA moiety, caffeic acid, resulted in high yield of CO 2 (>98%), suggesting that CGA hydrolysis could be the rate limiting step for CO 2 formation from CGA. A large amount of CO 2 was detected from glycine-sucrose model system under coffee roasting conditions, implying the importance of Maillard reactions in CO 2 formation. Further studies on the heating of various components isolated from green coffee beans showed that CO 2 was generated from various green coffee components, including water insoluble proteins and polysaccharides. Around 50% of CO 2 was formed from thermal reactions of lower molecular weight compounds that represent ∼25% by weight in green coffee. Copyright © 2016 Elsevier Ltd. All rights reserved.