WorldWideScience

Sample records for co-cu 13ign cu-ta

  1. Tuning the effective parameters in (Ta/Cu/[Ni/Co]x/Ta) multilayers with perpendicular magnetic anisotropy

    Science.gov (United States)

    Ayareh, Zohreh; Moradi, Mehrdad; Mahmoodi, Saman

    2018-06-01

    In this paper, we report perpendicular magnetic anisotropy (PMA) in a (Ta/Cu/[Ni/Co]x/Ta) multilayers structure. These typical structures usually include a multilayer of ferromagnetic and transition metal thin films. Usually, magnetic anisotropy is characterized by magnetization loops determined by magnetometer or magneto-optical Kerr effect (MOKE). The interface between ferromagnetic and metallic layers plays an important role in magnetic anisotropy evolution from out-of-plane to in-plane in (Ta/Cu/[Ni/Co]/Ta) structure. Obtained results from MOKE and magnetometry of these samples show that they have different easy axes due to change in thickness of Cu as spacer layer and difference in number of repetition of [Ni/Co] stacks.

  2. Crystal structure of the mixed-metal trisulfide BaCu1/3Ta2/3S3

    Directory of Open Access Journals (Sweden)

    Kejun Bu

    2017-05-01

    Full Text Available The mixed-metal title compound, BaCu1/3Ta2/3S3 [barium copper(II tantalum(V trisulfide], was prepared through solid-state reactions. The crystal structure adopts the BaTaS3 structure type and consists of face-sharing [MS6] (M = Ta,Cu octahedra (point-group symmetry -3m. that are condensed into infinite chains along [001]. Adjacent chains are linked through the barium cations (site symmetry -6m2, which exhibit a coordination number of twelve. The M site is occupied by 2/3 of TaV and 1/3 of CuII, whereby the average M—S distances are slightly longer than those of ordered BaTaS3. The classical charge balance of the title compound can be represented by [Ba2+] [(Ta/Cu4+] [S2−]3.

  3. Synthesis and characterization of Cu3TaIn3Se7 and CuTa2InTe4

    International Nuclear Information System (INIS)

    Calderon, E.; Munoz-Pinto, M.; Duran-Pina, S.; Quintero, M.; Quintero, E.; Morocoima, M.; Delgado, G.E.; Romero, H.; Briceno, J.M.; Fernandez, J.; Grima-Gallardo, P.

    2008-01-01

    Polycrystalline samples of Cu 3 TaIn 3 Se 7 and CuTa 2 InTe 4 were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a=5.794±0.002 A, c=11.66±0.01 A, c/a=2.01, V=391±1 A 3 and a=6.193±0.001 A, c=12.400 ±0.002A, c/a=2.00, V=475±1 A 3 , respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T=70 K (Cu 3 TaIn 3 Se 7 ) and 42 K (CuTa 2 InTe 4 ). A spin-glass transition was observed in Cu 3 TaIn 3 Se 7 with T f ∼50 K. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Tribological properties of self-lubricating Ta-Cu films

    Science.gov (United States)

    Qin, Wen; Fu, Licai; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    In this paper, Ta and TaCu films were deposited by using magnetron sputtering, and the tribological properties of the films against Si3N4 balls were investigated under the loads of 2 N and 5 N. The average grain sizes of both films are below 25 nm. Ta and TaCu films have approximate hardness. While the wear rate of TaCu film is much smaller than that of Ta film. Post-wear testing XRD, Raman and XPS revealed the formation of tantalum oxide on the worn surface of both Ta and TaCu films. Tantalum oxidation is effectively lubricating to reduce friction coefficient. So the friction coefficient of both Ta and TaCu film is about 0.45 under different applied loads. Meanwhile, the addition of Cu could increase the toughness of the film, and avoid the generation of wear debris, resulting in a significant increase in wear resistance.

  5. Synthesis and characterization of Cu{sub 3}TaIn{sub 3}Se{sub 7} and CuTa{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, E.; Munoz-Pinto, M.; Duran-Pina, S.; Quintero, M.; Quintero, E.; Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Romero, H. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida (Venezuela); Briceno, J.M.; Fernandez, J. [Laboratorio de Analisis Quimico y Estructural (LAQUEM), Departamento de Fisica, Facultad de Ciencias, Merida (Venezuela); Grima-Gallardo, P.

    2008-07-15

    Polycrystalline samples of Cu{sub 3}TaIn{sub 3}Se{sub 7} and CuTa{sub 2}InTe{sub 4} were synthesized by the usual melt and anneal technique. X-ray powder diffraction showed a single phase behavior for both samples with tetragonal symmetry and unit cell parameter values a=5.794{+-}0.002 A, c=11.66{+-}0.01 A, c/a=2.01, V=391{+-}1 A{sup 3} and a=6.193{+-}0.001 A, c=12.400 {+-}0.002A, c/a=2.00, V=475{+-}1 A{sup 3}, respectively. Differential thermal analysis (DTA) measurements suggested a complicated behavior near the melting point with several thermal transitions observed in the heating and cooling runs. From the shape of the DTA peaks it was deduced that the melting is incongruent for both materials. Magnetic susceptibility measurements (zero-field cooling and field cooling) indicated an antiferromagnetic character with transition temperatures of T=70 K (Cu{sub 3}TaIn{sub 3}Se{sub 7}) and 42 K (CuTa{sub 2}InTe{sub 4}). A spin-glass transition was observed in Cu{sub 3}TaIn{sub 3}Se{sub 7} with T{sub f}{approx}50 K. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Thermal stability of Cu/α-Ta/SiO2/Si structures

    International Nuclear Information System (INIS)

    Yuan, Z.L.; Zhang, D.H.; Li, C.Y.; Prasad, K.; Tan, C.M.

    2004-01-01

    The thermal stability of the Cu/α-Ta/SiO 2 /Si structures is investigated. Tantalum oxides are first observed at the interface between Cu and Ta due to residual oxygen in the annealing ambient at low annealing temperatures (about 600 deg. C). Ternary Cu-Ta oxides and/or Ta oxides rather than Cu oxides are found at the Cu top layer on account of the out diffusion of Ta. After high temperature annealing (up to 750 deg. C), polycrystalline Tantalum oxides (Ta 2 O 5 ) and Ta-rich silicides (Ta 5 Si 3 ) are found as dominant products due to the dissociation of SiO 2 . A severe intermixing of Cu, Ta and SiO 2 was observed after 800 deg. C annealing. First a drop and then an increase in sheet resistances were observed, the former possibly resulting from grain growth and impurities removal in Cu films, and the latter from the reduction of Cu thickness and formation of high resistivity products. The α-Ta films with a thickness of 25 nm have good barrier effectiveness up to 750 deg. C. The degradation of α-Ta film is mainly caused by self oxidation, silicidation and bidirectional diffusion

  7. Diffusion barrier performance of novel Ti/TaN double layers for Cu metallization

    International Nuclear Information System (INIS)

    Zhou, Y.M.; He, M.Z.; Xie, Z.

    2014-01-01

    Highlights: • Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum. • The Ti/TaN double layers improved the adhesion with Cu thin films and showed good diffusion barrier between Cu and SiO 2 /Si up to the annealing condition. • The failure mechanism of Ti/TaN bi-layer is similar with the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu 3 Si. - Abstract: Novel Ti/TaN double layers offering good stability as a barrier against Cu metallization have been made achievable by annealing in vacuum better than 1 × 10 −3 Pa. Ti/TaN double layers were formed on SiO 2 /Si substrates by DC magnetron sputtering and then the properties of Cu/Ti/TaN/SiO 2 /Si film stacks were studied. It was found that the Ti/TaN double layers provide good diffusion barrier between Cu and SiO 2 /Si up to 750 °C for 30 min. The XRD, Auger and EDS results show that the Cu–Si compounds like Cu 3 Si were formed by Cu diffusion through Ti/TaN barrier for the 800 °C annealed samples. It seems that the improved diffusion barrier property of Cu/Ti/TaN/SiO 2 /Si stack is due to the diffusion of nitrogen along the grain boundaries in Ti layer, which would decrease the defects in Ti film and block the diffusion path for Cu diffusion with increasing annealing temperature. The failure mechanism of Ti/TaN bi-layer is similar to the Cu/TaN/Si metallization system in which Cu atoms diffuse through the grain boundary of barrier and react with silicon to form Cu 3 Si

  8. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  9. Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios

    DEFF Research Database (Denmark)

    Giordanino, Filippo; Vennestrøm, Peter N. R.; Lundegaard, Lars Fahl

    2013-01-01

    concentration of reduced copper centres, i.e. isolated Cu+ ions located in different environments, able to form Cu+(N2), Cu+(CO)n (n = 1, 2, 3), and Cu+(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples...... an intense and finely structured d–d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22 700 cm−1 band of the mono(μ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-β apart from...

  10. Improved resistive switching phenomena and mechanism using Cu-Al alloy in a new Cu:AlO{sub x}/TaO{sub x}/TiN structure

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Maikap, S., E-mail: sidhu@mail.cgu.edu.tw [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Sreekanth, G.; Dutta, M.; Jana, D. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan (China); Chen, Y.Y.; Yang, J.R. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2015-07-15

    Highlights: • Cu:AlO{sub x} alloy is used for the first time to have defective TaO{sub x} film. • A relation in between formation voltage and RESET current has been developed. • A switching mechanism based on a thinner with dense Cu filament is demonstrated. • Good uniformity with yield of >90% and long cycles using 1 ms pulse are obtained. - Abstract: Improved resistive switching phenomena such as device-to-device uniformity, lower formation voltage (2.8 V) and RESET current, >500 program/erase cycles, longer read endurance of >10{sup 6} cycles with a program/erase pulse width of 1 μs, and data retention of >225 h under a low current compliance of 300 μA have been discussed by using Cu-Al alloy in Cu:AlO{sub x}/TaO{sub x}/TiN conductive bridging resistive random access memory (CBRAM) device for the first time. The switching mechanism is based on a thinner with dense Cu filament formation/dissolution through the defects in the Cu:AlO{sub x}/TaO{sub x}/TiN structure owing to enhance memory characteristics. These characteristics have been confirmed by measuring randomly picked 100 devices having via-hole size of 0.4 × 0.4 μm{sup 2}. The Cu-Al alloy becomes Cu:AlO{sub x} buffer layer and Ta{sub 2}O{sub 5} becomes TaO{sub x} switching layer owing to Gibbs free energy dependency. All layers and elements are observed by high-resolution transmission electron microscope (HRTEM) image and energy dispersive X-ray spectroscopy (EDX). By developing a numerical equation in between RESET current and formation voltage, it is found that a higher rate of Cu migration is observed owing to both the defective switching layer and larger size, which results a lower formation voltage and RESET current of the Cu:AlO{sub x}/TaO{sub x}/TiN structure, as compared to Cu/Ta{sub 2}O{sub 5}/TiN under external positive bias on the Cu electrode. This simple Cu:AlO{sub x}/TaO{sub x}/TiN CBRAM device is useful for future nanoscale non-volatile memory application.

  11. Sb interactions with TaC precipitates and Cu in ion-implanted α-Fe

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Myers, S.M.

    1980-01-01

    The interactions of Sb with the other species implanted into Fe to form Fe-Ta-C-Sb and Fe-Cu-Sb alloys have been examined with transmission electron microscopy and Rutherford backscattering following annealing at 873 0 K. Trapping of Sb at TaC precipitates is observed in the former alloy just as was previously observed in Fe-Ti-C-Sb. In Fe-Cu-Sb, Sb interactions are governed by the atomic ratio of Sb to Cu. For ratios between 0.2 to 0.4, the compound β-Cu 3 Sb was observed to form. For Sb to Cu ratios approx.< 0.1, fcc Cu precipitates were observed. In addition to the expected Sb dissolution in Cu, Sb trapping by Cu precipitates is also observed. The binding enthalpy of Sb at both TaC and Cu precipitates with respect to a solution site in the bcc Fe is the same as observed for TiC, approx. 0.4 eV. The constancy of the binding enthalpy at such chemically dissimilar precipitates supports the hypothesis that the trapping is due to the structural discontinuity of the precipitate-host interface. The observed Sb trapping at precipitates is of potential significance for the control of temper embrittlement in bcc steels

  12. Comparative study of Ta, TaN and Ta/TaN bi-layer barriers for Cu-ultra low-k porous polymer integration

    International Nuclear Information System (INIS)

    Yang, L.Y.; Zhang, D.H.; Li, C.Y.; Foo, P.D.

    2004-01-01

    Tantalum (Ta), TaN and bilayer Ta/TaN barriers deposited on ultra-low-k porous polymer (ULKPP) and the thermal stability of their structures are comparatively investigated using various techniques. The Ta/ultra-low-k polymer shows the smallest sheet resistance, but the poorest thermal stability, while TaN on the ultra-low-k polymer shows the highest resistance but the best thermal stability. The bi-layer Ta/TaN barrier takes the advantage of both Ta and TaN barriers and gives reasonable resistance and thermal stability. The electrical tests indicate that the Cu lines with the TaN and bi-layer Ta/TaN barriers exhibit the smaller leakage current and higher breakdown voltage compared with the Cu lines with the Ta barrier. The better thermal stability of the TaN and the bi-layer Ta/TaN barriers is mainly due to the amorphous/nanostructure and less grain boundaries of the barriers. In addition, the texture discontinuity at the Ta/TaN interfaces in the bi-layers barrier also plays an important role in reducing mutual diffusion of Ta atoms in the Ta barrier and some atoms in the ultra-low-k porous polymer

  13. CFA-13 - a bifunctional perfluorinated metal-organic framework featuring active Cu(i) and Cu(ii) sites.

    Science.gov (United States)

    Fritzsche, J; Denysenko, D; Grzywa, M; Volkmer, D

    2017-11-07

    The synthesis and crystal structure of the mixed-valent perfluorinated metal-organic framework (Me 2 NH 2 )[CFA-13] (Coordination Framework Augsburg University-13), (Me 2 NH 2 )[CuCu(tfpc) 4 ] (H 2 -tfpc = 3,5-bis(trifluoromethyl)-1H-pyrazole-4-carboxylic acid) is described. The copper-containing MOF crystallizes in the monoclinic crystal system within the space group P2 1 /n (no. 14) and the unit cell parameters are as follows: a = 22.3887(19), b = 13.6888(8), c = 21.1804(13) Å, β = 90.495(3)°, V = 6491.0(8) Å 3 . (Me 2 NH 2 )[CFA-13] features a porous 3-D structure constructed from two types of secondary building units (SBUs). Besides novel trinuclear [Cu(pz) 4 ] - coordination units, the network also exhibits Cu(ii) paddle-wheel SBUs. (Me 2 NH 2 )[CFA-13] is fully characterized by single crystal X-ray diffraction, thermogravimetric analysis, variable temperature powder X-ray diffraction, IR spectroscopy, photoluminescence, gas sorption measurements and pulse chemisorption experiments. M[CFA-13] (M = K + , Cs + ) frameworks were prepared by postsynthetic exchange of interchannel dimethylammonium cations. Moreover, it was shown that CO molecules can be selectively bound at Cu(i) sites of [Cu(pz) 4 ] - units, whereas Cu(ii) paddle-wheel units bind selectively NH 3 molecules.

  14. Flux-mediated syntheses, structural characterization and low-temperature polymorphism of the p-type semiconductor Cu2Ta4O11

    Science.gov (United States)

    King, Nacole; Sullivan, Ian; Watkins-Curry, Pilanda; Chan, Julia Y.; Maggard, Paul A.

    2016-04-01

    A new low-temperature polymorph of the copper(I)-tantalate, α-Cu2Ta4O11, has been synthesized in a molten CuCl-flux reaction at 665 °C for 1 h and characterized by powder X-ray diffraction Rietveld refinements (space group Cc (#9), a=10.734(1) Å, b = 6.2506(3) Å, c=12.887(1) Å, β = 106.070(4)°). The α-Cu2Ta4O11 phase is a lower-symmetry monoclinic polymorph of the rhombohedral Cu2Ta4O11 structure (i.e., β-Cu2Ta4O11 space group R 3 ̅ c (#167), a = 6.2190(2) Å, c=37.107(1) Å), and related crystallographically by ahex=amono/√3, bhex=bmono, and chex=3cmonosinβmono. Its structure is similar to the rhombohedral β-Cu2Ta4O11 and is composed of single layers of highly-distorted and edge-shared TaO7 and TaO6 polyhedra alternating with layers of nearly linearly-coordinated Cu(I) cations and isolated TaO6 octahedra. Temperature dependent powder X-ray diffraction data show the α-Cu2Ta4O11 phase is relatively stable under vacuum at 223 K and 298 K, but reversibly transforms to β-Cu2Ta4O11 by at least 523 K and higher temperatures. The symmetry-lowering distortions from β-Cu2Ta4O11 to α-Cu2Ta4O11 arise from the out-of-center displacements of the Ta 5d0 cations in the TaO7 pentagonal bipyramids. The UV-vis diffuse reflectance spectrum of the monoclinic α-Cu2Ta4O11 shows an indirect bandgap transition of ∼2.6 eV, with the higher-energy direct transitions starting at ∼2.7 eV. Photoelectrochemical measurements on polycrystalline films of α-Cu2Ta4O11 show strong cathodic photocurrents of ∼1.5 mA/cm2 under AM 1.5 G solar irradiation.

  15. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  16. Improvement of the crystallographic orientation of double-layered perpendicular recording media by using CoCr (Mo)/Cu intermediate layers

    International Nuclear Information System (INIS)

    Tamai, Ichiro; Yamamoto, T.; Kikukawa, A.; Tanahashi, K.; Ishikawa, A.; Futamoto, M.

    2001-01-01

    We have introduced intermediate layers of CoCr/Cu and CoCrMo/Cu between a CoCrPtB recording layer and a soft-magnetic CoTaZr underlayer. The combination of the FCC-Cu first-intermediate layer and the HCP-CoCrMo second-intermediate layer was found to enhance the c-axis vertical orientation of the CoCrPtB recording layer. In media with intermediate layers of CoCrMo/Cu, the thickness of the intermediate layers can be reduced without sacrificing good magnetic properties, and this leads to high resolutions

  17. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  18. Tuning the size-dependent He-irradiated tolerance and strengthening behavior of crystalline/amorphous Cu/Ta nanostructured multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Liang, X.Q.; Zhang, J.Y., E-mail: jinyuzhang1002@mail.xjtu.edu.cn; Wang, Y.Q.; Wu, S.H.; Zeng, F.; Wu, K.; Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn; Zhang, G.J.; Sun, J.

    2016-08-30

    Nanoindentation methodology was used to measure the hardness of Cu/Ta crystalline/amorphous nanostructured multilayers (CANMs) before and after He ion-implantation at room temperature. These CANMs have a constant modulation period (λ=25 nm) but different modulation ratios (η=h{sub Ta} / h{sub Cu}) spanning from 0.11 to 1.0. It is found that in sharp contrast to previously reported Cu/Cu-Zr CANMs by Zhang et al. [9], the He-irradiated Cu/Ta samples exhibit much greater microstructure stability without radiation-induced devitrification (RID) of glassy Ta nanolayers at smaller η (except the sample at η=1.0). Both the as-deposited and irradiated Cu/Ta CANMs manifest the monotonically increased hardness with decreasing η, however, there is an unexpected transition from size-dependent irradiation hardening at η<1.0 to softening at η≥1.0 caused by a competition between dislocation-bubble interactions in crystalline nanolayers and RID in glassy nanolayers. These findings not only provide fundamental understanding of the radiation-induced defect effect on plastic characteristics of CANMs, but also offer guidance for their microstructure sensitive design for performance optimization at a critical modulation ratio under extreme conditions.

  19. Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu 5Ta11O30 materials

    KAUST Repository

    Harb, Moussab

    2014-01-01

    We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu 5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta 11O30. It is confirmed that the Cu(i)-based multi-metal oxides possess a strong contribution of filled Cu(i) states in the valence band and of empty d0 metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications. © the Partner Organisations 2014.

  20. Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures

    Energy Technology Data Exchange (ETDEWEB)

    Deorani, Praveen; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2013-12-02

    From spin pumping measurements in Ta/Py devices for different thicknesses of Ta, we determine the spin Hall angle to be 0.021–0.033 and spin diffusion length to be 8 nm in Ta. We have also studied the effect of changing the properties of non-magnet/ferromagnet interface by adding a Cu interlayer. The experimental results show that the effective spin mixing conductance increases in the presence of Cu interlayer for Ta/Cu/Py devices whereas it decreases in Pt/Cu/Py devices. Our findings allow the tunability of the spin pumping efficiency by adding a thin interlayer at the non-magnet/ferromagnet interface.

  1. Effect of Cu Doping on the Structural and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials

    Science.gov (United States)

    Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin

    2018-04-01

    The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 (x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.

  2. Interdiffusion within model TiN/Cu and TiTaN/Cu systems synthesized by combinatorial thin film deposition

    International Nuclear Information System (INIS)

    Mühlbacher, M.

    2015-01-01

    Continued device miniaturization in microelectronics calls for a fundamental understanding of diffusion processes and damage mechanisms in the Cu metallization/TiN barrier layer system. Thus, the starting point of the present study is a combined experimental and theoretical examination of lattice diffusion in ideal single-crystal TiN/Cu stacks grown on MgO(001) by unbalanced DC magnetron sputter deposition. After a 12 h annealing treatment at 1000 °C, a uniform Cu diffusion layer of 7-12 nm is observed by scanning transmission electron microscopy and atom probe tomography (APT). Density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio of 0.92. These findings are extended to a comparison of grain boundary diffusion of Cu in dense polycrystalline TiN sputter-deposited on Si at 700 °C and underdense polycrystalline TiN grown on Si without external substrate heating. While the Cu diffusion path along dense TiN grain boundaries can be restricted to approximately 30 nm after a 1 h annealing treatment at 900 °C as visualized by 3D APT reconstructions, it already exceeds 500 nm after annealing at 700 °C in the underdense low-temperature TiN barrier. In this case, the formation of the Cu3Si phase, which characteristically grows along the close-packed directions in Si, is identified as the main damage mechanism leading to complete barrier failure. To meet the low-temperature processing needs of semiconductor industry and at the same time exploit the improved performance of dense polycrystalline barrier layers, deposition of TiTaN barriers on Si is demonstrated by a reactive hybrid high-power impulse/DC magnetron sputtering process, where barrier densification is achieved by pulsed irradiation of the growth surface with only a few at.% of energetic Ta ions without external substrate heating. These barrier layers delay the onset of Cu grain

  3. Subsolidus phase relations of the SrO-Ta2O5-CuO system at 900 °C in air

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2009-01-01

    The subsolidus phase relations of the SrO–Ta2O5–CuO system were investigated in air. The samples were equilibrated at 900 °C. The ternary oxide Sr3Ta2CuO9 compound is stable under these conditions. This phase presents a solid solution range, its actual composition being Sr3Ta2−xCu1+xO9+δ with 0.......0 ≤ x ≤ 0.2. Up to about 5 at.% Cu can be incorporated in the Sr3−xTa1+xO5.5+δ phase. Similarities with the SrO–Nb2O5–CuO system are discussed....

  4. /Cu-Al System

    Science.gov (United States)

    Kish, Orel; Froumin, Natalya; Aizenshtein, Michael; Frage, Nachum

    2014-05-01

    Wettability and interfacial interaction of the Ta2O5/Cu-Al system were studied. Pure Cu does not wet the Ta2O5 substrate, and improved spreading is achieved when relatively a high fraction of the active element (~40 at.% Al) was added. The Al2O3 and AlTaO4 phases were observed at the Ta2O5/Cu-Al interface. A thermodynamic evaluation allowed us to suggest that the lack of wetting bellow 40 at.% Al is due to the presence of a native oxide, which covers the drop. The conditions of the native oxide decomposition and the formation of the volatile Al2O suboxide strongly depend on the vacuum level during sessile drop experiments and the composition of the Cu-Al alloy. In our case, Al contents greater than 40% provides thermodynamic conditions for the formation of Al2O (as a result of Al reaction with Al2O3) and the drop spreading. It was suggested that the final contact angle in the Ta2O5/Cu-Al system (50°) is determined by Ta adsorption on the newly formed alumina interlayer.

  5. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Safaa N. Saud

    2017-01-01

    Full Text Available The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery, and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  6. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    Science.gov (United States)

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  7. Pseudomorphy, surface alloys and the role of elementary clusters on the domain orientations in the Cu/Al13Co4(100) system

    International Nuclear Information System (INIS)

    Addou, R; Shukla, A K; De Weerd, M-C; Fournee, V; Dubois, J-M; Ledieu, J; Gille, P; Widmer, R; Groening, O

    2011-01-01

    We have used the pseudo-tenfold surface of the orthorhombic Al 13 Co 4 crystal as a template for the adsorption of Cu thin films of various thicknesses deposited at different temperatures. This study has been carried out by means of low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), x-ray photoelectron spectroscopy (XPS) and x-ray photoelectron diffraction (XPD). From 300 to 573 K, Cu adatoms grow pseudomorphically up to one monolayer. At 300 K, the β-Al(Cu, Co) phase appears for coverages greater than one monolayer. For higher temperature deposition, the β-Al(Cu, Co) phase further transforms into the γ-Al 4 Cu 9 phase. Both β and γ phases grow as two (110) domains rotated by 72 0 ± 1 0 from each other. Instead of following the substrate symmetry, it is the orientations of the bipentagonal motifs present on the clean Al 13 Co 4 (100) surface that dictate the growth orientation of these domains. The initial bulk composition and structural complexity of the substrate have a minor role in the formation of the γ-Al 4 Cu 9 phase as long as the amount of Al and the Cu film thickness reach a critical stoichiometry. (paper)

  8. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  9. Magnetic properties of CaCu{sub 5}-type RNi{sub 3}TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Yao, Jinlei [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59082-970 (Brazil)

    2015-12-15

    Magnetic properties and magnetocaloric effect of CaCu{sub 5}-type RNi{sub 3}TSi (R=Gd and Tb, T=Mn, Fe, Co and Cu) compounds have been investigated. Magnetic measurements of RNi{sub 3}TSi display the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’. In contrast to GdNi{sub 3}{Mn, Fe, Co}Si, TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi{sub 4}Si (~0.5 kOe) to TbNi{sub 3}CoSi (4 kOe), TbNi{sub 3}MnSi (13 kOe) and TbNi{sub 3}FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi{sub 3}CuSi exhibits a negligible coercive field. - Graphical abstract: Magnetic measurements of RNi{sub 3}TSi show the increasing of Curie temperature and the decreasing of magnetocaloric effect and saturated magnetic moment in the row of 'RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi'. In contrast to GdNi{sub 3}{Mn, Fe, Co}Si, TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. The coercive field increases from TbNi{sub 4}Si (~0.5 kOe) to TbNi{sub 3}CoSi (4 kOe), TbNi{sub 3}MnSi (13 kOe) and TbNi{sub 3}FeSi (16 kOe) in field of 50 kOe at 5 K, whereas TbNi{sub 3}CuSi exhibits a negligible coercive field. - Highlights: • CaCu{sub 5}-type RNi{sub 3}TSi show ferromagnetic ordering (R=Gd, Tb, T=Mn–Co, Cu). • Curie point increases in ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’ row. • MCE decreases in ‘RNi{sub 3}CuSi–RNi{sub 3}NiSi–RNi{sub 3}CoSi–RNi{sub 3}MnSi–RNi{sub 3}FeSi’ row. • TbNi{sub 3}{Mn, Fe, Co}Si exhibit significant magnetic hysteresis. • The coercive field of TbNi{sub 3}MnSi and TbNi{sub 3}FeSi reach 13 kOe and 16 kOe at 5 K.

  10. Thermal stability of Py/Cu and Co/Cu giant magnetoresistance (GMR) multilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Vovk, Vitaliy

    2007-07-01

    NiFe/Cu and Co/Cu multilayer systems have been studied regarding the mechanisms of thermal degradation of the giant magnetoresistance effect (GMR). The different thermodynamics of the studied systems results in different mechanisms of the GMR degradation as shown by highest resolution nanoanalysis using the three dimensional wide angle tomographic atom probe. According to the TAP analysis, GMR deterioration in Py/Cu system occurs due to the broadening of the layer interfaces observed at 250 C. In contrast, due to the strong demixing tendency, Co/Cu multilayers remain stable up to 450 C. At higher temperatures ferromagnetic bridging of the neighboring Co layers takes place leading to the GMR breakdown. In both Py/Cu and Co/Cu systems recrystallization is induced at 350-450 C, which is accompanied by a change in the crystallographic orientation from <111> to <100> wire texture. The reaction may be utilized to produce GMR sensor layers of remarkable thermal stability. Although the systems of interest are equivalent in respect of the observed phenomenon, the Ni{sub x}Fe{sub 1-x}/Cu system is chosen for a detailed analysis because it allows a precise control of the lattice constant by varying the Fe content in the Ni{sub x}Fe{sub 1-x} layer. It is shown that the crystallographic reorientation is triggered by the minimization of lattice mismatch elastic energy. Moreover, the counteraction between the elastic and interfacial energy minimizations exerts a critical influence on the recrystallization probability. (orig.)

  11. Cu ion disordering in high ionic conductor Rb4Cu16I7Cl13

    International Nuclear Information System (INIS)

    Kawaji, Hitoshi; Atake, Tooru; Kanno, Ryoji; Izumi, Fujio; Yamamoto, Osamu.

    1993-01-01

    The properties of a high ionic conductor Rb 4 Cu 16 I 7+x Cl 13-x were studied by neutron and X-ray diffraction, and heat capacity measurements. The structure parameters of Rb 4 Cu 16 I 7.2 Cl 12.8 were obtained by the Rietveld analysis of TOF neutron diffraction data between 50 and 300 K, which showed gradual excitation of migration of Cu ions from Cu(3) site into Cu(2) site with increasing temperature from about 100 K to room temperature. The heat capacity was measured between 10 and 300 K using a high precision adiabatic calorimeter. An abnormal increase was observed in the heat capacity curve above about 100 K. The excess heat capacity showed a broad anomaly with a maximum at about 190 K. The measurements were also made of Rb 4 Cu 16 I 7 Cl 13 which showed slight different properties from Rb 4 Cu 16 I 7.2 Cl 12.8 . (author)

  12. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects

    International Nuclear Information System (INIS)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.; Washton, Nancy M.

    2017-01-01

    Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4 /Beta, and NH 4 /SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27 Al-nuclear magnetic resonance ( 27 Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further tested with standard NH 3 -SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3 -SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.

  13. CO-CO coupling on Cu facets: Coverage, strain and field effects

    International Nuclear Information System (INIS)

    Sandberg, Robert B.; Montoya, Joseph H.; Chan, Karen; Nørskov, Jens K.

    2016-01-01

    We present a DFT study on the effect of coverage, strain, and electric field on CO-CO coupling energetics on Cu (100), (111), and (211). Our calculations indicate that CO-CO coupling is facile on all three facets in the presence of a cation-induced electric field in the Helmholtz plane, with the lowest barrier on Cu(100). The CO dimerization pathway is therefore expected to play a role in C_2 formation at potentials negative of the Cu potential of zero charge, corresponding to CO_2/CO reduction conditions at high pH. Both increased *CO coverage and tensile strain further improve C-C coupling energetics on Cu (111) and (211). Since CO dimerization is facile on all 3 Cu facets, subsequent surface hydrogenation steps may also play an important role in determining the overall activity towards C_2 products. Adsorption of *CO, *H, and *OH on the 3 facets were investigated with a Pourbaix analysis. Here, the (211) facet has the largest propensity to co-adsorb *CO and *H, which would favor surface hydrogenation following CO dimerization.

  14. Effects of plasma cleaning of the Cu seed layer surface on Cu electroplating

    International Nuclear Information System (INIS)

    O, Jun Hwan; Lee, Seong Wook; Kim, Jae Bum; Lee, Chong Mu

    2001-01-01

    Effects of plasma pretreatment to Cu seed/tantalum nitride (TaN)/ borophosphosilicate glass (BPSG) samples on copper (Cu) electroplating were investigated. Copper seed layers were deposited by magnetron sputtering onto tantalum nitride barrier layers before electroplating copper in the forward pulsed mode. The Cu seed layer was cleaned by plasma H 2 and N 2 prior to electroplating a copper film. Cu films electroplated on the copper seed layer with plasma pretreatment showed better electrical and physical properties such as electrical resistivities, surface morphologies, levels of impurities, adhesion and surface roughness than those without plasma pretreatment. It is shown that carbon and metal oxide contaminants at the sputtered Cu seed/TaN surface could be effectively removed by plasma H 2 cleaning. The degree of the (111) prefered orientation of the Cu film with plasma H 2 pretreatment is as high as pulse plated Cu film without plasma pretreatment. Also, plasma H 2 precleaning is more effective in enhancing the Cu electroplating properties onto the Cu seed layer than plasma N 2 precleaning

  15. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  16. Cu-Cr Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Need, Ryan F. [Los Alamos National Laboratory

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  17. Morphological and Compositional Design of Pd-Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO2 Electroreduction.

    Science.gov (United States)

    Zhu, Wenjin; Zhang, Lei; Yang, Piaoping; Chang, Xiaoxia; Dong, Hao; Li, Ang; Hu, Congling; Huang, Zhiqi; Zhao, Zhi-Jian; Gong, Jinlong

    2018-02-01

    Electrochemical conversion of carbon dioxide (electrochemical reduction of carbon dioxide) to value-added products is a promising way to solve CO 2 emission problems. This paper describes a facile one-pot approach to synthesize palladium-copper (Pd-Cu) bimetallic catalysts with different structures. Highly efficient performance and tunable product distributions are achieved due to a coordinative function of both enriched low-coordinated sites and composition effects. The concave rhombic dodecahedral Cu 3 Pd (CRD-Cu 3 Pd) decreases the onset potential for methane (CH 4 ) by 200 mV and shows a sevenfold CH 4 current density at -1.2 V (vs reversible hydrogen electrode) compared to Cu foil. The flower-like Pd 3 Cu (FL-Pd 3 Cu) exhibits high faradaic efficiency toward CO in a wide potential range from -0.7 to -1.3 V, and reaches a fourfold CO current density at -1.3 V compared to commercial Pd black. Tafel plots and density functional theory calculations suggest that both the introduction of high-index facets and alloying contribute to the enhanced CH 4 current of CRD-Cu 3 Pd, while the alloy effect is responsible for high CO selectivity of FL-Pd 3 Cu. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Determination of Ti, Cr, Cu and Ta in niobium oxide by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Dixit, R.M.; Deshpande, S.S.

    1986-01-01

    An x-ray fluorescence method for the determination of Ti, Cr, Cu and Ta in niobium oxide has been developed. Samples/standards in powder form are mixed with boric acid in the proportion of 1:1 (400 mg. each). Double layer pellets are prepared by pressing this mixture over a primary boric acid pellet. Philips PW-1220, a semiautomatic x-ray spectrometer with tungsten target x-ray tube for excitation and LiF (200) crystal for dispersion have been used. The determination range is from 0.005 to 0.1per cent for Ti and Cr, 0.01 to 0.1per cent for Cu and 0.05 to 1per cent for Ta. (author)

  19. Directional Solidification and Liquidus Projection of the Sn-Co-Cu System

    Science.gov (United States)

    Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei

    2013-04-01

    This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.

  20. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  1. Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles.

    Science.gov (United States)

    Zhang, Renqin; McEwen, Jean-Sabin

    2018-05-22

    Cu K-edge X-ray absorption near-edge spectra (XANES) have been widely used to study the properties of Cu-SSZ-13. In this Letter, the sensitivity of the XANES features to the local environment for a Cu + cation with a linear configuration and a Cu 2+ cation with a square-linear configuration in Cu-SSZ-13 is reported. When a Cu + cation is bonded to H 2 O or NH 3 in a linear configuration, the XANES has a strong peak at around 8983 eV. The intensity of this peak decreases as the linear configuration is broken. As for the Cu 2+ cations in a square-planar configuration with a coordination number of 4, two peaks at around 8986 and 8993 eV are found. An intensity decrease for both peaks at around 8986 and 8993 eV is found in an NH 3 _4_Z 2 Cu model as the N-Cu-N angle changes from 180 to 100°. We correlate these features to the variation of the 4p state by PDOS analysis. In addition, the feature peaks for both the Cu + cation and Cu 2+ cation do not show a dependence on the Cu-N bond length. We further show that the feature peaks also change when the coordination number of the Cu cation is varied, while these feature peaks are independent of the zeolite topology. These findings help elucidate the experimental XANES features at an atomic and an electronic level.

  2. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    Science.gov (United States)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  3. Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems

    Science.gov (United States)

    Mizutani, U.; Noritake, T.; Ohsuna, T.; Takeuchi, T.

    2010-05-01

    The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga and Ni-Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co-Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.

  4. Thermal dependence of coercivity in granular CoNiCu glass coated microwires

    International Nuclear Information System (INIS)

    Zhukova, V.; Zhukov, A.; Palomares, F.J.; Pigazo, F.; Cebollada, F.; Del Val, J.J.; Garcia, C.; Gonzalez, J.M.; Gonzalez, J.

    2007-01-01

    Cu 80 Co 19 Ni 1 glass covered microwire samples with different geometric ratio, 0.13≤ρ≤0.5, has been investigated by using X-ray diffraction (XRD) and VSM technique. Our results show (i) the presence of FCC Co crystallites dispersed on the Cu matrix, (ii) the observation in all the samples of the coercivity, at room temperature, of the order of kA, exhibiting a maximum and decreased down to a value of the order of the room temperature one at 25 K. These results are discussed in terms of a distribution of superparamagnetic Co nanoparticles

  5. Giant magnetoresistance of hysteresis-free Cu/Co-based multilayers

    International Nuclear Information System (INIS)

    Huetten, A.; Hempel, T.; Schepper, W.; Kleineberg, U.; Reiss, G.

    2001-01-01

    It has been demonstrated that hysteresis-free multilayers based on {Cu/Co} and {Cu/Ni 57 Co 43 } can be experimentally realized obtaining room temperature GMR effect amplitudes from 6.5% up to 20%. A critical window for the layer thickness for hysteresis-free GMR curves can be achieved for both systems, ranging from 0.38 to 0.45 nm and 0.59 to 0.7 nm, respectively. The corresponding sensitivities range from 0.075 up to 0.114%/Oe, but are still below that of normal {Cu/Co} multilayers. Hysteresis-free multilayers based on these systems are stable up to 180 deg. C upon isochronal annealing. It is shown that hysteresis-free {Cu/Co or Ni 57 Co 43 }-multilayers are neither a solution to achieve good temperature stability nor a higher sensitivity compared with normal ones and hence are not candidates for application

  6. CO interaction with Cu(I)-MCM-22 zeolite: density function theory investigation

    International Nuclear Information System (INIS)

    Viet Thang Ho; Petr Nachtigall

    2014-01-01

    MCM-22 zeolite has been widely used in many applications for catalysis and adsorption. Especially, this material exchanged with Cu + cation (Cu(I)-MCM-22) is an active catalyst in green chemical reaction, such as decomposition of NO and N 2 O. The local geometry of Cu + in vicinity of Al (III) replacement in six different Si (IV) sites and CO interaction with the most stable Cu + in each Al site were explored using periodic density functional theory (DFT) method. Th CO stretching frequencies were computed applying the ω/r scaling method in which frequencies were determined at high quantum level (couple cluster) and CO bond length calculated at DFT level. The results showed that Cu + cation located in the channel wall position and intersection position coordinated with 3 or 2 framework oxygen atoms, respectively, before CO adsorption and Cu + cation coordinated with 2 framework oxygen atoms after CO adsorption. The interaction energies between CO and Cu + cation were in range -148 to -195 kJ/mol -1 and CO frequencies exhibit two peak at 2151 and 2159 cm -1 in good agreement with experimental data. This investigation allows to understand the Cu + location in MCM-22 and CO adsorption in Cu(I)-MCM-22 zeolite. (author)

  7. Structural and electrical properties of co-evaporated Cu(In,Ga)Se{sub 2} thin films with varied Cu contents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Young; Kim, Girim; Kim, Jongwan; Park, Jae Hwan; Lim, Donggun, E-mail: dglim@ut.ac.kr

    2013-11-01

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were fabricated with varying Cu contents. Cu/(Ga + In) ratios were varied between 0.4 and 1.02. Solar cells were then fabricated by co-evaporation using the CIGS layers as absorbers. The influences of Cu content on the cells' structural, optical and electrical properties were studied. The CIGS thin films were characterized by X-ray diffractometer, scanning electron microscopy, energy-dispersive spectroscopy, four-point probe measurement and Hall measurement. Grain size in the films increased with increasing Cu content. At a Cu/(Ga + In) ratio of 0.86, the (220/204) peak was stronger than the (112) peak and carrier concentration was 1.49 × 10{sup 16} cm{sup −3}. Optimizing the Cu content resulted in a CIGS solar cell with an efficiency of 16.5%. - Highlights: • Improvement of technique to form Cu(In,Ga)Se{sub 2} (CIGS) film by co-evaporation method • Cu/(In + Ga) ratio to improve the efficiency for CIGS thin film solar cell • Cu content effects have been analyzed. • Optimum condition of CIGS layer as an absorber of thin film solar cells.

  8. Giant magnetoresistance effect in CoZr/Cu/Co spin-valve films (abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Youssef, J. [CNRS-LMIMS, 92195 Meudon-Bellevue (France)]|[LPM Universite Mohammed V, Rabat (Morocco); Koshkina, O.; Le Gall, H. [CNRS-LMIMS, 92195 Meudon-Bellevue (France); Harfaoui, M.E. [LPMC Universite Ibn Tofail Kenitra (Morocco); Bouziane, K. [CNRS-LMIMS, 92195 Meudon-Bellevue (France); Yamani, M.E. [LPM Universite Mohammed V, Rabat (Morocco); Desvignes, J.M. [CNRS-LMIMS, 92195 Meudon-Bellevue (France)

    1997-04-01

    A high sensitivity of giant magnetoresistance (GMR) has been observed recently from soft magnetic layers such as NiFe, NiFeCo, and FeCoB. Amorphous CoZr alloys present ultrasoft properties compared to NiFe. GMR has been investigated for amorphous CoZr/Cu/Co thin films grown by rf diode sputtering using a target consisting of a Co disk partially covered with a Zr foil. The influence of the argon pressure on Cu layer deposition, Cu thickness, and Zr content on magnetic and transport properties was analyzed. The highest value of transverse GMR obtained along the easy axis is 3.6{percent} and the MR curve was saturated in a magnetic field of 100 Oe at room temperature. GMR shows scaling behavior with the sample composition. Very high sensitivity, around 1{endash}2{percent}/Oe was observed in a CoZr (3 nm)/Cu (3 nm)/Co (2 nm) sandwich. This study shows a large dependence of GMR on Cu thickness and the maximum of magnetoresistance strongly depending on the Ar pressure which modifies the interface roughness. The Zr content also influences the magnetotransport properties ({Delta}R/R and {Delta}R/R{Delta}H). The difference in coercivity between soft magnetic CoZr and hard magnetic Co layers induces antiferromagnetic alignment. Therefore a high MR ratio and field sensitivity are achieved by improving the magnetic properties of the CoZr layer.{copyright} {ital 1997 American Institute of Physics.}

  9. Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials.

    Science.gov (United States)

    Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang

    2018-03-09

    Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China

    Science.gov (United States)

    Li, Li; Xiaojing, Wang; Jihua, Liu; Xuefa, Shi

    2017-02-01

    Trace metals play an important role in biogeochemical cycling in ocean systems. However, because the use of trace metal clean sampling and analytical techniques has been limited in coastal China, there are few accurate trace metal data for that region. This work studied spatial distribution of selected dissolved trace metals (Ag, Cu, Co, Cd, and Ni) and Cu speciation in the southern Yellow Sea (SYS) and Bohai Sea (BS). In general, the average metal (Cu, Co, Cd, and Ni) concentrations found in the SYS were lower by a factor of two than those in BS, and they are comparable to dissolved trace metal concentrations in coastal seawater of the United States and Europe. Possible sources and sinks and physical and biological processes that influenced the distribution of these trace metals in the study region were further examined. Close relationships were found between the trace metal spatial distribution with local freshwater discharge and processes such as sediment resuspension and biological uptake. Ag, owing to its extremely low concentrations, exhibited a unique distribution pattern that magnified the influences from the physical and biological processes. Cu speciation in the water column showed that, in the study region, Cu was strongly complexed with organic ligands and concentrations of free cupric ion were in the range of 10-12.6-10-13.2 mol L-1. The distribution of Cu-complexing ligand, indicated by values of the side reaction coefficient α', was similar to the Chl a distribution, suggesting that in situ biota production may be one main source of Cu-complexing organic ligand.

  11. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-01-01

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. PMID:28914819

  12. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Luoxiao Zhou

    2017-09-01

    Full Text Available Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2 and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  13. Skin effect suppression for Cu/CoZrNb multilayered inductor

    Science.gov (United States)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  14. Synthesis of a new compound - Sr2CuO2CO3

    International Nuclear Information System (INIS)

    Fomichev, D.V.; Khardanov, A.L.; Antipov, E.V.; Kovba, L.M.

    1990-01-01

    A new compound of Sr 2 CuO 2 CO 3 composition, being an intermediate product of solid phase synthesis in air in SrCo 3 -CuO system at T 2 CuO 2 CO 3 have low resistance at room temperature and semiconductor type conductivity

  15. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    Science.gov (United States)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Wen, Guobin; Zhang, Minhua

    2017-08-01

    Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CHx + HCO → CHxCHO (x = 1-3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between electronic property and catalytic performance. Cu-Co bimetallic with Cu-rich surface allows Co to have higher catalytic activity through the interaction of Cu and Co atom. Then it will improve the adsorption of CO and catalytic activity of Co. Thus it is more favorable to the carbon chain growth in ethanol formation. Our study revealed the factors influencing the carbon chain growth in ethanol production and explained the internal mechanism from electronic property aspect.

  16. Thermo-Exfoliated Graphite Containing CuO/Cu2(OH3NO3:(Co2+/Fe3+ Composites: Preparation, Characterization and Catalytic Performance in CO Conversion

    Directory of Open Access Journals (Sweden)

    Vladyslav V. Lisnyak

    2010-01-01

    Full Text Available Thermo-exfoliated graphite (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites were prepared using a wet impregnation method and subsequent thermal treatment. The physicochemical characterization of the composites was carried out by powder X-ray diffraction (PXRD, scanning electron microscopy (SEM and Ar temperature-desorption techniques. The catalytic efficiency toward CO conversion to CO2 was examined under atmospheric pressure. Characterization of species adsorbed over the composites taken after the activity tests were performed by means of temperature programmed desorption massspectrometry (TPD MS. (TEG/CuO/Cu2(OH3NO3:(Co2+/Fe3+ composites show superior performance results if lower temperatures and extra treatment with H2SO4 or HNO3 are used at the preparation stages. The catalytic properties enhancements can be related to the Cu2(OH3NO3 phase providing reaction centers for the CO conversion. It has been found that prevalence of low-temperature states of desorbed CO2 over high-temperature ones in the TPD MS spectra is characteristic of the most active composite catalysts.

  17. Growth of Co on Cu(111), Subsurface growth of trilayer Co islands

    DEFF Research Database (Denmark)

    Pedersen, M.Ø.; Bönicke, I.A.; Lægsgaard, E.

    1997-01-01

    The growth of cobalt on Cu(lll) has been studied using a variable-temperature scanning tunneling microscope (STM). Al a deposition temperature of 150 K, one observes the growth of three-layer Co islands with one subsurface layer. The Co islands are surrounded by a brim of Cu. The distinction...

  18. Origin of perpendicular magnetic anisotropy of SmCo5 thin films with Cu underlayer

    International Nuclear Information System (INIS)

    Sayama, Junichi; Mizutani, Kazuki; Asahi, Toru; Ariake, Jun; Ouchi, Kazuhiro; Osaka, Tetsuya

    2006-01-01

    Effects of the Cu underlayer thickness and the addition of Cu to a Sm-Co layer on magnetic properties and microstructure of SmCo 5 thin films exhibiting perpendicular magnetic anisotropy were studied. The origin of the perpendicular magnetic anisotropy was discussed from these experimental results. A thick Cu underlayer of more than 100 nm brought about high perpendicular magnetic anisotropy leading to the squareness ratio equal to unity. The Cu addition enhanced the perpendicular magnetic anisotropy and reduced the Cu underlayer thickness required to obtain the squareness ratio of unity. X-ray diffractometry showed that the crystalline orientation of the Sm-Co layer did not correlate with that of the Cu underlayer. Auger electron spectroscopy revealed that Cu atoms were diffused up to the Sm-Co layer from the Cu underlayer. From the results, Cu atoms existing in the Sm-Co layer were suggested to be strongly related with an appearance of the perpendicular magnetic anisotropy by introducing the Cu underlayer

  19. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  20. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei, E-mail: ray521252@gmail.com [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China); Asempah, Isaac; Dong, Song-Tao; Yin, Pian-Pian [Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Jin, Lei, E-mail: ljin@nju.edu.cn [Stomatology Department, Nanjing General Hospital, Nanjing University, Medical School, Nanjing, 210002 (China)

    2017-03-31

    Highlights: • The electric field intensity accelerates the atom diffusion of Cu/Ta/Si stacks at 650 °C. • The acceleration effect is enhanced with an increment of electric field intensity. • An acceleration factor (1 + a·a{sup E/0.8}){sup 2} accelerating diffusion coefficient is determined by quantitative analysis. - Abstract: It has been shown that enhanced electric field intensity (0–4.0 kV/cm) has an obvious effect on accelerating atom diffusion in Cu/Ta/Si interconnect stacks at 650 °C. The theoretical deduction proves that diffusion coefficient is accelerated proportional to an acceleration factor (1 + a·α{sup E/0.8}){sup 2}. The analysis indicates that the accelerating effect is mainly attributed to the perturbation of the electric state of the defects and enhanced vacancy and dislocation densities.

  1. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  2. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve; Cavallo, Luigi; Poater, Albert; Vummaleti, Sai V. C.; Talarico, Giovanni

    2015-01-01

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  3. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve

    2015-11-27

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  4. Chemical interaction and adhesion characteristics at the interface of metals (Cu, Ta) and low-k cyclohexane-based plasma polymer (CHexPP) films

    International Nuclear Information System (INIS)

    Kim, K.J.; Kim, K.S.; Lee, N.-E.; Choi, J.; Jung, D.

    2001-01-01

    Chemical interaction and adhesion characteristics between metals (Cu, Ta) and low-k plasma-treated cyclohexane-based plasma polymer (CHexPP) films were studied. In order to generate new functional groups that may contribute to the improvement of adhesion between metal and plasma polymer, we performed O 2 , N 2 , and H 2 /He mixture plasma treatment on the surfaces of CHexPP films. Chemical interactions at the interface between metals (Cu, Ta) and plasma-treated CHexPP films were analyzed by x-ray photoelectron spectroscopy. The effect of plasma treatment and thermal annealing on the adhesion characteristics was measured by a tape test and scratch test. The formation of new binding states on the surface of plasma-treated CHexPP films improved adhesion characteristics between metals and CHexPP films. Thermal annealing improves the adhesion property of Cu/CHexPP films, but degrades the adhesion property of Ta/CHexPP films

  5. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarz, Lucjan; Kustrowski, Piotr; Rafalska-Lasocha, Alicja [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Majda, Dorota; Dziembaj, Roman [Regional Laboratory for Physicochemical Analyses and Structural Research, Ingardena 3, 30-060 Krakow (Poland)

    2002-01-10

    M-Mg-Al hydrotalcites (where M=Cu{sup 2+}, Co{sup 2+} and Cu{sup 2+}+Co{sup 2+}) with M ranging from 5 to 20% (as atomic ratio) were prepared by co-precipitation method. Obtained samples were characterised by XRD and TGA techniques. The influence of transition metal content on thermal decomposition of hydrotalcites was observed. Calcination of the hydrotalcites at 600C resulted in the formation of mixed oxides with surface areas in the range 71-154m{sup 2}/g. Calcined hydrotalcites were tested as catalysts in the selective reduction of NO with ammonia (NO-SCR). The catalytic activity depends on the kind of transition metal, as well as its content. For the NO-SCR the following reactivity order was found: Cu-Mg-Al>Cu-Co-Mg-Al>Co-Mg-Al. Temperature-programmed methods (TPD, TPSR, stop flow-TPD), as well as FT-IR spectroscopy have been applied to determine interaction of NO and NH{sub 3} molecules with the catalyst surface.

  6. Lack of dependence between intrinsic magnetic damping and perpendicular magnetic anisotropy in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minghong [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Wei [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Ren, Yang [School of Physics and Astronomy, Yunnan University, Kunming 650000 (China); Zhang, Zongzhi, E-mail: zzzhang@fudan.edu.cn [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Jin, Q.Y. [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2017-04-15

    The correlation between magnetic damping and perpendicular magnetic anisotropy has been investigated in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers by time-resolved magneto-optical Kerr effect. The uniaxial magnetic anisotropy constant K{sub u} is varied in the range of 3.0–3.6 Merg/cm{sup 3} by tuning either multilayer repetition number N or Cu thickness t{sub Cu}. It is found that the PMA strength K{sub u} increases with the increase of N, while the damping constant α{sub 0} keeps nearly a constant of 0.025, implying the intrinsic damping is independent of the K{sub u} tuned by N. In contrast, as t{sub Cu} increases from 2.5 to 20 nm, the α{sub 0} value rises continuously up to 0.040, in spite of the rather weak enhancement in K{sub u} and its non-monotonic variation behavior. We consider the constant α{sub 0} with N is due to the unchanged spin-orbit coupling strength at each Co/Ni interface, while the obvious enhancement in α{sub 0} with t{sub Cu} results mainly from the increased degree of spin disordering at the rougher Cu/Ni interface. - Highlights: • The perpendicular magnetic anisotropy K{sub u} is tuned in Cu(t{sub Cu})/[Ni/Co]{sub N} system. • The intrinsic magnetic damping is found to be independent K{sub u}. • Extrinsic damping increases with t{sub Cu} due to large interfacial spin disordering.

  7. Anneal-induced transformations in the transport and magnetic properties of CoCu granulars

    International Nuclear Information System (INIS)

    Miranda, M.G.M.; Antunes, A.B.; Bracho Rodriguez, G.J.; Baibich, M.N.

    2001-01-01

    The electrical and magnetic properties of granular Co 5 Cu 95 , Co 10 Cu 90 and Co 15 Cu 85 ribbons treated with different annealing procedures were measured from helium to room temperatures. The isochronous anneals had fixed heating rate and the transformations were followed by 'in situ' resistivity measurements. We found that the transformation occurs at nearly the same region of temperature for the three compositions. Besides, our results for magnetoresistance on Co 10 Cu 90 could be understood in the light of the re-dissolution of Co into the Cu matrix, as suggested in previous works (Miranda et al., J. Magn. Magn. Mater. 185 (1998) 331; da Silva et al., IEEE Trans. Mag., to appear)

  8. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  9. co-removal with nucleated Cu(II) precipitation in continuous-flow ...

    African Journals Online (AJOL)

    A compact nucleated precipitation technology using two fluidised sand columns in series was developed to pretreat model metal-plating wastewater containing high concentrations of Cu(II) and Cr(VI). Since either Cu(II) precipitation or Cr(VI) co-removal with Cu(II) precipitation was found to be highly pH dependent in batch ...

  10. Anneal-induced transformations in the transport and magnetic properties of CoCu granulars

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.G.M. E-mail: mari@if.ufrgs.br; Antunes, A.B.; Bracho Rodriguez, G.J.; Baibich, M.N

    2001-05-01

    The electrical and magnetic properties of granular Co{sub 5}Cu{sub 95}, Co{sub 10}Cu{sub 90} and Co{sub 15}Cu{sub 85} ribbons treated with different annealing procedures were measured from helium to room temperatures. The isochronous anneals had fixed heating rate and the transformations were followed by 'in situ' resistivity measurements. We found that the transformation occurs at nearly the same region of temperature for the three compositions. Besides, our results for magnetoresistance on Co{sub 10}Cu{sub 90} could be understood in the light of the re-dissolution of Co into the Cu matrix, as suggested in previous works (Miranda et al., J. Magn. Magn. Mater. 185 (1998) 331; da Silva et al., IEEE Trans. Mag., to appear)

  11. Distorted chain sites for Co- and Fe-substituted YBa2Cu3O/sub 7-δ/

    International Nuclear Information System (INIS)

    Bridges, F.; Boyce, J.B.; Claeson, T.; Geballe, T.H.; Tarascon, J.M.; Xerox Palo Alto Research Center, Palo Alto, California 94304; Physics Department, Chalmers University of Technology, S-41296 Gothenburg, Sweden; Department of Applied Physics, Stanford University, Stanford, California 94305; Bell Communications Research Laboratory, Red Bank, New Jersey 07701)

    1989-01-01

    We present x-ray-absorption fine-structure (XAFS) measurements for a series of Co- and Fe-substituted samples of YBa 2 Cu 3 O/sub 7-δ/(Y-Ba-Cu-O). Our analysis of the first- and second-neighbor environments indicates that the Co atoms primarily replace the Cu in the chain sites, the Cu(1) atoms, in Y-Ba-Cu-O, but many of these Co(1) sites and their neighboring oxygen sites are highly distorted. The first-neighbor Co-O peak consists of approximately 3.5 oxygen at 1.8 A and approximately 1.3 oxygen at 2.4 A, while the second-neighbor multipeak in the XAFS data is unexpectedly low in amplitude. Structure in this peak is inconsistent with a simple Gaussian broadening and indicates that several Co(1)-Ba distances exist. We propose an aggregation of the Co atoms into distorted, zigzag chains along the directions, with some of the Co displaced off center by approximately 0.4 A along a perpendicular direction. This model is consistent with the second-neighbor XAFS data, provides an explanation for the tetragonal structure via twinning on a microscopic scale, and accommodates excess oxygen within the Co chains. The Fe data suggest that similar chains also exist in the Fe-substituted samples. There are, however, some differences between the local environments of the Fe and Co. The primary difference is that a small but significant number of Fe atoms occupy the Cu(2) plane sites while no appreciable number of Co atoms are found on the Cu(2) sites in the more dilute samples. Finally, near-edge measurements on the Co and Fe K-absorption edges indicate that the valence is primarily +3, but a mixture of valences exists. For Co the edge position corresponds to a mixture of +2 and +3 valences, while Fe exists in a mixture of +2, +3, and +4 states

  12. Oscillatory behavior of the magnetic properties of Nd–Fe–B films with Mo and Mo–Cu additions

    International Nuclear Information System (INIS)

    Urse, M.; Grigoras, M.; Lupu, N.; Borza, F.; Chiriac, H.

    2013-01-01

    A series of Ta/NdFeB/Ta thin films with Mo and Mo–Cu additions embedded by alloying and by stratification have been prepared by r.f. sputtering. The influence of additions, their embedding mode, and annealing temperature on the structural and magnetic behavior of Ta/NdFeB/Ta thin films is presented. The use of additions of Mo and Mo–Cu leads to refined grain structure and improvement in the hard magnetic characteristics of Ta/NdFeB/Ta thin films. The Ta/[NdFeBMo(540 nm)/Ta films and Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films present enhanced coercivities and M r /M s ratios in comparison with the Ta/NdFeB(540 nm)/Ta films. The stratification of Ta/NdFeB/Ta thin films with Mo–Cu interlayers leads to an oscillatory behavior of hard magnetic characteristics of the Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films, when the thickness, d, of Mo–Cu interlayers varies by increments of 1 nm. When the thickness of Mo–Cu interlayers varies by increments of 2 nm the oscillatory behavior of the magnetic characteristics is not revealed. For a thickness of the Mo–Cu interlayer of 3 nm in the Ta/[NdFeB(180 nm)/MoCu(3 nm)] × 3/Ta thin films annealed at 650 °C, the c-axis of part of the hard magnetic Nd 2 Fe 14 B grains is oriented out-of-plane

  13. First-principles study on ferromagnetism in double perovskite Sr2AlTaO6 doped with Cu or Zn at B sites

    Science.gov (United States)

    Li, Y. D.; Wang, C. C.; Guo, Y. M.; Yu, Y.; Lu, Q. L.; Huang, S. G.; Li, Q. J.; Wang, H.; Cheng, R. L.; Liu, C. S.

    2018-05-01

    The possibilities of ferromagnetism induced by nonmagnetic dopants (Cu, Zn) in double perovskite Sr2AlTaO6 at B sites are investigated by density functional theory. Calculations reveal that substitutions at Ta-site tend to form high spin electronic configurations and could induce ferromagnetism which can be attributed to the hole-mediated p- d hybridization between Cu (or Zn) eg states and the neighboring O 2p states. The dopants preferably substitute at Al-site and adopt low spin electronic structures. Due to the smaller hole concentration and weaker covalent intensity, Sr2AlTaO6 with dopants at Al-site exhibits p-type metallic semiconductors without spin polarization.

  14. The crystallisation of Cu{sub 2}ZnSnS{sub 4} thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schurr, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)], E-mail: schurr@krist.uni-erlangen.de; Hoelzing, A.; Jost, S.; Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstrasse 20, D-10553 Berlin (Germany); Ennaoui, A.; Lux-Steiner, M. [Heterogeneous Material Systems SE II, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany); Weber, A.; Koetschau, I.; Schock, H.-W. [Technology SE III, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany)

    2009-02-02

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu{sub 2}ZnSnS{sub 4} based thin film solar cells. A kesterite based solar cell (size 0.5 cm{sup 2}) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu{sub 2}SnS{sub 3} and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu{sub 3}Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu{sub 6}Sn{sub 5} and Sn phases were detected. The formation mechanism of Cu{sub 2}SnS{sub 3} involves the binary sulphides Cu{sub 2-x}S and SnS{sub 2} in the absence of the binary precursor phase Cu{sub 6}Sn{sub 5}. The presence of Cu{sub 6}Sn{sub 5} leads to a preferred formation of Cu{sub 2}SnS{sub 3} via the reaction educts Cu{sub 2-x}S and SnS{sub 2} in the presence of a SnS{sub 2}(Cu{sub 4}SnS{sub 6}) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase.

  15. Quadruple-layered perovskite (CuCl)Ca2NaNb4O13

    International Nuclear Information System (INIS)

    Kitada, A.; Tsujimoto, Y.; Yamamoto, T.; Kobayashi, Y.; Narumi, Y.; Kindo, K.; Aczel, A.A.; Luke, G.M.; Uemura, Y.J.; Kiuchi, Y.; Ueda, Y.; Yoshimura, K.; Ajiro, Y.; Kageyama, H.

    2012-01-01

    We will present the synthesis, structure and magnetic properties of a new quadruple-layered perovskite (CuCl)Ca 2 NaNb 4 O 13 . Through a topotactic ion-exchange reaction with CuCl 2 , the precursor RbCa 2 NaNb 4 O 13 presumably having an incoherent octahederal tliting changes into (CuCl)Ca 2 NaNb 4 O 13 with a 2a p ×2a p ×2c p superstructure (tetragonal; a=7.73232(5) Å, c=39.2156(4) Å). The well-defined superstructure for the ion-exchanged product should be stabilized by the inserted CuCl 4 O 2 octahedral layers that firmly connect with neighboring perovskite layers. Magnetic studies show the absence of long-range magnetic ordering down to 2 K despite strong in-plane interactions. Aleksandrov′s group theory and Rietveld refinement of synchrotron X-ray diffraction data suggest the structure to be of I4/mmm space group with in-phase tilting along the a and b axes, a two-tilt system (++0). - Graphical Abstract: We present a quadruple-layered copper oxyhalide (CuCl)Ca 2 NaNb 4 O 13 synthesized through a topotactic ion-exchange reaction of RbCa 2 NaNb 4 O 13 with CuCl 2 . The compound has a well-defined superstructure. Magnetic studies suggest the absence of magnetic order even at 2 K. Highlights: ► (CuCl)Ca 2 NaNb 4 O 13 was prepared by ion-exchange reaction of RbCa 2 NaNb 4 O 13 with CuCl 2 . ► Compound has a 2a p ×2a p ×2c p superstructure (tetragonal; a=7.73 Å, c=39.21 Å). ► Such a well-defined superstructure was not observed in the precursor compound. ► Aleksandrov′s theory and Rietveld study suggest a (++0) octahedral tilting (I4/mmm). ► Magnetic studies revealed the absence of magnetic order down to 2 K.

  16. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  17. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin

    2016-01-01

    In this work, we accurately measure the electrical properties of individual Fe30Co61Cu9/Cu multilayered nanowires using nanomanipulators in in situ scanning electron microscopy to reveal that interfacial transition layers are influential in determining their transport behaviors. We investigate the morphology, crystal structure and chemistry of the Fe30Co61Cu9/Cu multilayered nanowires to characterize them at the nanoscale. We also compare the transport properties of these multilayered nanowires to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed analysis of the electrical data reveals that interfacial transition layers influence the electrical properties of multilayered nanowires and are likely to have a strong impact on the life of nanodevices. This work contributes to a basic understanding of the electrical parameters of individual magnetic multilayered nanowires for their application as functional building blocks and interconnecting leads in nanodevices and nanoelectronics, and also provides a clear physical picture of a single multilayered nanowire which explains its electrical resistance and its source of giant magnetoresistance. © The Royal Society of Chemistry 2016.

  18. Giant magnetoresistance in melt spun Cu85Co10Ni5

    DEFF Research Database (Denmark)

    Curiotto, Stefano; Johnson, Erik; Celegato, Federica

    2009-01-01

    CuCoNi rapidly solidified alloys are interesting because they display giant magnetoresistance (GMR). In the present work a Cu85Co10Ni5 alloy has been synthesized by melt spinning and analysed for GMR. The ribbons obtained have been annealed at different temperatures and the evolution of the crystal...... structure with annealing has been studied by X-ray diffraction. The. ne microstructure has been observed by TEM and related to the magnetic properties, investigated in a vibrating sample magnetometer. In the studied composition the magnetoresistance was found to be lower than in binary CuCo alloys without...

  19. Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le-Zhong, E-mail: lezhongli@cuit.edu.cn; Zhong, Xiao-Xi; Wang, Rui; Tu, Xiao-Qiang; Peng, Long

    2017-07-01

    Highlights: • There are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. • The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. • The anisotropy constant increases with the increase of Co substitution. • The calculated and observed values of magneton number are in close agreement with each other. - Abstract: Co-substituted NiCu ferrite nanopowders with the chemical formula Ni{sub 0.5−x}Cu{sub 0.5−x}Co{sub 2x}Fe{sub 2}O{sub 4} (0 ≤ x ≤ 0.50) were synthesized by sol-gel auto-combustion method. The effects of Co substitution on the cation distribution, structural and magnetic properties of the NiCu ferrite nanopowders have been investigated. Differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the chemical, structural and magnetic properties of the ferrite nanopowders, respectively. The DTA-TG results indicate that there are three steps of the combustion process. XRD results indicate that there are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. Furthermore, the lattice parameter increases, and the X-ray density and the average crystallite size decrease with increasing Co substitution. And the obtained particle size from TEM image is in very good agreement with the average crystallite size estimated by XRD measurements. The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. The increase of the saturation magnetization is due to the substitution of Ni{sup 2+} and Cu{sup 2+} ions with lower magnetic moment by Co{sup 2+} ions with higher magnetic moment on the octahedral sites. And the increase of the coercivity is mainly due to the increase of magnetocrystalline anisotropy energy.

  20. Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

    International Nuclear Information System (INIS)

    Dong, Yuming; Wu, Lina; Wang, Guangli; Zhao, Hui; Jiang, Pingping; Feng, Cuiyun

    2013-01-01

    A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state

  1. Magnetothermoelectric figure of merit of Co/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X. K., E-mail: xiukun.hu@ptb.de; Krzysteczko, P.; Liebing, N.; Schumacher, H. W. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig (Germany); Serrano-Guisan, S. [International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga (Portugal); Rott, K.; Reiss, G. [Fakultät für Physik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany); Kimling, J.; Böhnert, T.; Nielsch, K. [Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, D-20355 Hamburg (Germany)

    2014-03-03

    The switching of the magnetic configuration of giant magnetoresistance multilayers not only changes the electrical and thermal conductivities but also the thermopower. We study the magnetotransport and the magnetothermoelectric properties of Co/Cu multilayer devices in a lateral thermal gradient. The Seebeck coefficient reaches values up to −18 μV/K at room temperature and shows a magnetic field dependence up to 28.6% upon spin reversal. In combination with thermal conductivity data of the same Co/Cu stack, we find a magnetothermoelectric figure of merit of up to 65%. Furthermore, a magneto-power factor of up to 110% is derived.

  2. Coverage dependent photoelectron spectroscopy of CO chemisorption on Cu (111): evidence for two adsorption sites

    International Nuclear Information System (INIS)

    Jugnet, Y.; Tran, M.D.

    1978-06-01

    The ultraviolet photoelectron spectra (UPS) of CO adsorbed on (111) face of Cu are found to be dependent of coverage from exposure of 0.3L up to saturation. At lowest dose two intense molecular orbitals are observed at binding energies of 8.7 and 11.7 eV - phase I -. The intensity of two additional structures at 9.6 and 13.7 eV is fastly enhanced with increasing exposure - phase II -, more weakly bound, yielding at saturation coverage the complex four peak spectra usually reported for CO and Cu. We therefore reassign the levels at 11.7 and 8.7 eV to the 4SIGMA and overlap of molecular orbitals of CO adsorbed on top position and the levels at 13.7 and 9.6 eV to the same for CO adsorbed on bridge position

  3. Microstructural and magnetic characterizations of CoFeCu electrodeposited in self-assembled mesoporous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fortas, G., E-mail: g.fortas@gmail.com [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria); Université des Sciences et de la Technologie Houari Boumediene, Faculté des Physique, BP 32 El Alia 16111 Bab Ezzouar, Alger (Algeria); Haine, N. [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Physique, BP 32 El Alia 16111 Bab Ezzouar, Alger (Algeria); Sam, S.; Gabouze, N. [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria); Saifi, A. [Université Mouloud Mammeri, laboratoire de physique et de chimie quantique, BP No. 17 RP Hasnaoua Tizi-Ouzou 15000 (Algeria); Ouir, S. [Université Said SDB, Route De Soumaa BP 270, Blida (Algeria); Menari, H. [Centre de Recherche en Technologie des Semi-conducteur pour l’Energétique, Bd. 2 Frantz Fanon, les sept merveilles B.P.140, Alger (Algeria)

    2015-03-15

    Self-assembled mesoporous silicon with quasi-regular pore arrangements has been fabricated by the electrochemical anodization process in hydrofluoric acid solution. CoFeCu was electrodeposited in this structure from a bath containing sodium acetate as a complexing agent with a pH value of 5. The effect of current density on the morphology, the structure and the magnetic properties of CoFeCu deposit was studied by SEM, EDS, DRX and VSM. It has been shown that the morphology and structure of samples were strongly influenced by the current density and etching duration. The micrographs show the vertical and branched nanowires and also a discontinuous growth of wires. Further, the growth of a thick layer from the grain boundaries of released CoFeCu wires is produced. The magnetic hysteresis loops demonstrate that the CoFeCu nanowires exhibit easy magnetic axis perpendicular to the PS channels axis when the current density varied from 3 to 10 mA/cm{sup 2}. Nevertheless, they reveal a no magnetic anisotropy of CoFeCu nanostructures deposited only in the outside of porous silicon, probably due to the vanishing the shape anisotropy. - Highlights: • CoFeCu deposit has been electrodeposited on self assembled mesoporous silicon. • SEM observation shows that CoFeCu embedded in Porous silicon channels. • Magnetic measurements show the anisotropy magnetic behavior of CoFeCu nanostructures. • The growth rate of nanowires is enhanced with an increase of current density.

  4. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    International Nuclear Information System (INIS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R.P.

    2016-01-01

    Highlights: • Cu_1_−_xCo_xS nanoparticles were synthesized via chemical co-precipitation method. • Structural, band gap, magnetization and photocatalysis studies were carried out. • All the doped samples exhibited intrinsic room temperature ferromagnetism. • Effect of magnetic properties on photocatalytic activity was analyzed. • CuS:Co nanoparticles may find applications in photocatalytic and spintronic devices. - Abstract: Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV–vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  5. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sreelekha, N.; Subramanyam, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Physics, Raghu Engineering College, Visakhapatnam, Andrapradesh 531162 (India); Amaranatha Reddy, D. [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609735 (Korea, Republic of); Murali, G. [Department of BIN Fusion Technology & Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk (Korea, Republic of); Ramu, S. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Rahul Varma, K. [Department of Mechanical Engineering, University of California, Berkeley (United States); Vijayalakshmi, R.P., E-mail: vijayaraguru@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2016-08-15

    Highlights: • Cu{sub 1−x}Co{sub x}S nanoparticles were synthesized via chemical co-precipitation method. • Structural, band gap, magnetization and photocatalysis studies were carried out. • All the doped samples exhibited intrinsic room temperature ferromagnetism. • Effect of magnetic properties on photocatalytic activity was analyzed. • CuS:Co nanoparticles may find applications in photocatalytic and spintronic devices. - Abstract: Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV–vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  6. Crystal Structure and Antiferromagnetic Ordering of Quasi-2D [Cu(HF2)(pyz)2]TaF6 (pyz=pyrazine)

    Science.gov (United States)

    Manson, J. L.; Schlueter, J. A.; McDonald, R. D.; Singleton, J.

    2010-04-01

    The crystal structure of the title compound was determined by X-ray diffraction at 90 and 295 K. Copper(II) ions are coordinated to four bridging pyz ligands to form square layers in the ab-plane. Bridging HF2- ligands join the layers together along the c-axis to afford a tetragonal, three-dimensional (3D) framework that contains TaF6- anions in every cavity. At 295 K, the pyz rings lie exactly perpendicular to the layers and cooling to 90 K induces a canting of those rings. Magnetically, the compound exhibits 2D antiferromagnetic correlations within the 2D layers with an exchange interaction of -13.1(1) K. Weak interlayer interactions, as mediated by Cu-F-H-F-Cu, leads to long-range magnetic order below 4.2 K. Pulsed-field magnetization data at 0.5 K show a concave curvature with increasing B and reveal a saturation magnetization at 35.4 T.

  7. Selective detection of Cu2 + and Co2 + in aqueous media: Asymmetric chemosensors, crystal structure and spectroscopic studies

    Science.gov (United States)

    Dogaheh, Samira Gholizadeh; Khanmohammadi, Hamid; Carolina Sañudo, E.

    2017-05-01

    Two new azo-azomethine receptors, H2L1 and H2L2, containing hydrazine, naphthalene and different electron withdrawing groups, Cl and NO2, have been designed and synthesized for qualitative and quantitative detection of Cu2 + and Co2 + in aqueous media. The crystal structure of H2L1is reported. The H2L1was used as a chemosensor for selective detection of trace amount of Cu2 + in aqueous media. H2L2 was also applied to naked-eye distinction of Cu2 + and Co2 + from other transition metal ions in aqueous media. Detection limit of Cu2 + is 1.13 μM and 1.26 μM, in water, for H2L1 and H2L2, respectively, which are lower than the World Health Organization (WHO) recommended level. The binuclear Cu2 + and Co2 + complexes of the receptors have been also prepared and characterized using spectroscopic methods and MALDI-TOF mass analysis. Furthermore, the binding stoichiometry between the receptors upon the addition Cu2 + and Co2 + has been investigated using Job's plot. Moreover, the fluorescence emission spectra of the receptors and their metal complexes are also reported.

  8. Stress impedance effect of FeCoSiB/Cu/FeCoSiB sandwich layers on flexible substrate

    International Nuclear Information System (INIS)

    Peng, B.; Zhang, W.L.; Liu, J.D.; Zhang, W.X.

    2011-01-01

    FeCoSiB/Cu/FeCoSiB sandwich layers were deposited on flexible substrate to develop flexible stress/strain sensors. The influence of stress on the impedance of the multilayers is reported. The results show that the variation of the impedance increases with the increase in deflection of the free end of the cantilever. A relative change in impedance of 6.4% is obtained in the FeCoSiB(1.5 μm)/Cu(0.25 μm)/FeCoSiB(1.5 μm) sandwich layers at 1 MHz with deflection of 2 mm. The stress impedance effects are sensitive to the frequency of the current and the thickness of both FeCoSiB and Cu layers. The stress impedance effect increases with the increase in the thickness of FeCoSiB or Cu layers. The stress impedance effect increases slightly with the increase in frequency and decreases with the further increase in frequency, which can be understood by the stress and frequency-dependent permeability of magnetic films. - Research highlights: → We deposited FeCoSiB/Cu/FeCoSiB multilayer on flexible substrate. → We studied the stress impedance effect of FeCoSiB/Cu/FeCoSiB multilayer. → Stress impedance effect increases with thickness of both FeCoSiB and Cu layer.→ Stress impedance effect is dependent on current frequency. → Results are understood using stress and frequency-dependent permeability.

  9. Enhancement of ferromagnetic properties in Zn0.98Cu0.02O by additional Co doping

    International Nuclear Information System (INIS)

    Liu, Huilian; Zhang, Xu; Liu, Hongbo; Yang, Jinghai; Liu, Yang; Liu, Xiaoyan; Gao, Ming; Wei, Maobin; Cheng, Xin; Wang, Jian

    2013-01-01

    Highlights: •The samples were synthesized by sol–gel technology to dope up to 3% Co in ZnCuO. •After Co doped into Zn 0.98 Cu 0.02 O sample photoluminescence shows an increase in green emission. •The saturation magnetization increased with Co doping. -- Abstract: Zn 0.98 Cu 0.02 O and Zn 0.95 Cu 0.02 Co 0.03 O powders were synthesized by sol–gel method, and the effects of Co codoping on the structure, optical and magnetic properties of the Zn 0.98 Cu 0.02 O powders were studied in detail. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurement shows the Zn 0.98 Cu 0.02 O and Zn 0.95 Cu 0.02 Co 0.03 O powders were single phase with the ZnO wurtzite structure, and there was no ferromagnetic-related secondary phase in these powders. Moreover, these powders exhibited ferromagnetism at the room temperature investigated by the magnetic measurement, and the ferromagnetism of the Zn 0.98 Cu 0.02 O and Zn 0.95 Cu 0.02 Co 0.03 O samples were originated from the fact that the Cu ions and Co, Cu ions doped into the ZnO lattices, respectively. In addition, the saturation magnetization (Ms) was significantly increased with Co codoping due to the increased density of oxygen vacancies

  10. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  11. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  12. Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity

    Science.gov (United States)

    Yu, Cuiping; Cui, Jiewu; Wang, Yan; Zheng, Hongmei; Zhang, Jianfang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng

    2018-05-01

    Self-supported CuO/Cu2O@CuO/Cu2O core-shell nanowire arrays (NWAs) are successfully fabricated by a simple and efficient method in this paper. Anodized Cu(OH)2 NWAs could in-situ convert to HKUST-1 at room temperature easily. Cu(OH)2 NWAs cores and HKUST-1 shells transform into CuO/Cu2O simultaneously after calcinations and form CuO/Cu2O@CuO/Cu2O core-shell NWAs. This smart configuration of the core-shell structure not only avoids the agglomeration of the traditional MOF-derived materials in particle-shape, but also facilitates the ion diffusion and increases the active sites. This novel structure is employed as substrate to construct nonenzymatic glucose sensors. The results indicate that glucose sensor based on CuO/Cu2O@CuO/Cu2O core-shell NWAs presents ultrahigh sensitivity (10,090 μA mM-1 cm-2), low detection limit (0.48 μM) and wide linear range (0.99-1,330 μM). In addition, it also shows excellent anti-interference ability toward uric acid, ascorbic acid and L-Cysteine co-existing with glucose, good reproducibility and superior ability of real sample analysis.

  13. Subsolidus Phase Relations of the CoOx-CuO-SrO System  

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2017-01-01

    The subsolidus phase relations of the CoOx-CuO-SrO system were investigated in air. The samples were equilibrated at 900 °C. The pseudo-ternary section contains three stoichiometric binary oxide phases (Sr2CuO3, SrCuO2 and Sr14Cu24O41−δ) and a binary oxide solid solution: Sr6+xCo5O15+δ (0 ≤ x ≤ 0.......36). Two binary phases extend into the ternary system forming solid solutions, i.e., Sr14Cu24−xCoxO41−δ (0 ≤ x ≤ 5) and Sr6+xCo5−yCuyO15+δ (0 ≤ x ≤ 0.36, 0 ≤ y ≤ 1.0). The Sr6+xCo5O15+δ solid solution was found to undergo a phase separation into a mixture of Sr6Co5O15−δ and Sr14Co11O33 upon annealing...

  14. Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal

    Science.gov (United States)

    Huang, Qiang; Liu, Meiying; Zhao, Jiao; Chen, Junyu; Zeng, Guangjian; Huang, Hongye; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-01-01

    Polyethylenimine-tannins coated SiO2 (SiO2@PEI-TA) hybrid materials have been prepared via a single-step multifunctional coating with polyethylenimine (PEI) and tannins (TA), and characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The as-prepared SiO2@PEI-TA composites were examined as adsorbents to remove the Cu2+ from aqueous solution. The effects of contact time, initial Cu2+ concentration, solution pH and temperature, on Cu2+ adsorption have been investigated. The results show that the adsorption of Cu2+ onto SiO2@PEI-TA is dependent on the contact time, Cu2+ concentration, pH and temperature. The SiO2@PEI-TA composites show a 2.4-fold increase in adsorption capacity, implying that the introduction of PEI-TA coating is in favor of the Cu2+ adsorption. Based on the analysis of kinetic data, the kinetics of Cu2+ adsorption is more accurately described by the pseudo-second-order model. The equilibrium data are analyzed by Langmuir and Freundlich isotherms. Results of isotherms show that the better agreement is Freundlich isotherm model with correlation coefficient of 0.9914, which suggests that the adsorption of Cu2+ onto SiO2@PEI-TA is mainly a heterogeneous adsorption process. Thermodynamic analyses show that the adsorption interaction is actually a spontaneous and endothermic chemical process, which might involve the chemical chelation between Cu2+ and functional groups (amine and carboxyl groups) on the surface of SiO2@PEI-TA. In addition, the Cu2+ ions could desorb from SiO2@PEI-TA by using acid solution and the adsorption efficiency remains at high level after five adsorption-desorption recycles. These results provide potential applications of these novel adsorbents for the removal of heavy metal Cu2+ from aqueous solution and also provide strong evidence to support the adsorption mechanism proposed in the study.

  15. A density functional theory study of CO oxidation on CuO1-x(111).

    Science.gov (United States)

    Yang, Bing-Xing; Ye, Li-Ping; Gu, Hui-Jie; Huang, Jin-Hua; Li, Hui-Ying; Luo, Yong

    2015-08-01

    The surface structures, CO adsorption, and oxidation-reaction properties of CuO1-x(111) with different reduction degree have been investigated by using density functional theory including on-site Coulomb corrections (DFT + U). Results indicate that the reduction of Cu has a great influence on the adsorption of CO. Electron localization caused by the reduction turns Cu(2+) to Cu(+), which interacts much stronger with CO, and the adsorption strength of CO is related to the electronic interaction with the substrate as well as the structural relaxation. In particular, the electronic interaction is proved to be the decisive factor. The surfaces of CuO1-x(111) with different reduction degree all have good adsorption to CO. With the expansion of the surface reduction degree, the amount of CO that is stably adsorbed on the surface increases, while the number of surface active lattice O decreases. In general, the activity of CO oxidation first rises and then declines.

  16. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  17. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Tekgül, Atakan, E-mail: atakantekgul@gmail.com [Akdeniz University, Physics Department, Science Faculty, TR-07058 Antalya (Turkey); Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Alper, Mürsel [Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Kockar, Hakan [Balikesir University, Physics Department, Science and Literature Faculty, TR-10145 Balikesir (Turkey)

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current–time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of −0.3 and −1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices. - Highlights: • The much thinner (0.5 nm) Cu layer was used to obtain the GMR effect on the electrodeposited CoFe/Cu multilayers. • All samples exhibited GMR and the maximum GMR value was 5.5%. • The M{sub s} and the H{sub c} changed with increasing magnetic layer thickness.

  18. Synthesis of nanocrystalline Cu1-xTax composites using physical vapor deposition

    International Nuclear Information System (INIS)

    Savage, H.S.; Wang, H.; Rigsbee, J.M.

    1993-01-01

    Physical vapor deposition (PVD) processes provide the capability for creating new types of metallic, ceramic, and polymeric composites by allowing atomic-scale engineering of structure and chemistry. Because PVD processes provide the capacity for circumventing thermodynamic factors, such as solubility limits, it is possible to produce nonequilibrium alloys and materials with unique mixtures of phases. The ease by which PVD produces materials with nanocrystalline microstructures is an added benefit of these processes. This paper describes ion plating, a plasma-assisted PVD process, and its application for the development of a new class of nanoscale dispersion-strengthened Cu 1-x Ta x alloys. Copper-tantalum was selected as a model system because the extensive liquid miscibility gap and nearly zero mutual solid solubilities prevent creation of Cu-Ta alloys by conventional or rapid solidification processes. Microchemical analyses of the family of Cu 1-x Ta x alloys indicate that PVD can produce materials with any desired level of Ta. X-ray diffraction and transmission electron microscopy analyses show that the as-deposited microstructures consist generally of a Cu matrix supersaturated with Ta and containing a uniform dispersion of Ta particles with diameters below 10 nm. The Ta particles are face centered cubic (exceptionally large Ta particles, larger than ∼100 nm, are body centered cubic) and are oriented identically with the Cu matrix. Particle coarsening studies, at temperatures up to 900C and for times as long as 100 hours, indicate an extreme degree of microstructural stability. The Ta particles also appear highly effective at maintaining a submicron Cu matrix grain size even after annealing at 900C

  19. High temperature neutron powder diffraction study of the Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, Pierric, E-mail: pierric.lemoine@univ-rennes1.fr [Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex (France); Bourgès, Cédric; Barbier, Tristan [Laboratoire CRISMAT, UMR-CNRS 6508, ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 04 (France); Nassif, Vivian [CNRS Institut NEEL, F-38000 Grenoble (France); Université de Grenoble Alpes, Institut NEEL, F-38000 Grenoble (France); Cordier, Stéphane [Institut des Sciences Chimiques de Rennes, UMR-CNRS 6226, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex (France); Guilmeau, Emmanuel [Laboratoire CRISMAT, UMR-CNRS 6508, ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 04 (France)

    2017-03-15

    Ternary copper-containing sulfides Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu{sub 12}Sb{sub 4}S{sub 13} decomposes above ≈792 K into Cu{sub 3}SbS{sub 3}, and (ii) Cu{sub 4}Sn{sub 7}S{sub 16} decomposes above ≈891 K into Sn{sub 2}S{sub 3} and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu{sub 3}SnS{sub 4} stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu{sub 12}Sb{sub 4}S{sub 13} are in fair agreement with recent published data, the decomposition behavior of Cu{sub 4}Sn{sub 7}S{sub 16} differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu{sub 4}Sn{sub 7}S{sub 16} and tetrahedrite Cu{sub 12}Sb{sub 4}S{sub 13} phases at 300 K, and for the high temperature form of skinnerite Cu{sub 3}SbS{sub 3} at 843 K. - Graphical abstract: In situ neutron powder diffraction data (heating rate of 2.5 K/min) indicates that (i) the ternary Cu{sub 12}Sb{sub 4}S{sub 13} phase is stable up to 792 K and decomposes at higher temperature into Cu{sub 3}SbS{sub 3} and Cu{sub 1.5}Sb{sub 0.5}S{sub 2}, and (ii) the Cu{sub 4}Sn{sub 7}S{sub 16} phase is stable up to 891 K and decomposes at higher temperature into Sn{sub 2}S{sub 3} and a cubic phase of sphalerite ZnS-type structure. Sulfur volatilization likely occurs in order to balance the overall stoichiometry.

  20. Role of BaO/SrO layers in deciding the electronic structure of Cu0.3Co0.7Ba2-xSrxYCu2O7+δ (CoCu-1212) x = 0, 1 and 2

    International Nuclear Information System (INIS)

    Singh, Shiva Kumar; Husain, M.; Kishan, H.; Awana, V.P.S.

    2011-01-01

    Highlights: → Decrease in lattice parameters confirms replacement by Sr ion at Ba ion site. → XPS measurement shows that mixed Cu 1+/2+ and Co 3+/4+ valence state. → With increasing x, Cu valence is non-monotonous whereas Co valence is increasing. → Resistivity reveals that holes in Cu/CoO x planes are taking part in charge transport. → Paramagnetic nature is due to the presence Cu ions in Cu/CoO x chains/planes. - Abstract: In this paper we report the change in electronic structure of Cu 0.3 Co 0.7 Ba 2-x Sr x YCu 2 O 7+δ with change in structural pressure. Rietveld refined X-ray diffraction (XRD) pattern shows that the samples are phase pure. Decrease in lattice parameters with increasing x, confirms replacement by Sr ion at Ba ion site. The calculated tolerance factor of the systems is in accord with lattice parameter changes. The X-ray photoelectron spectroscopy (XPS) is made to find out the variation in ionic state of Co and Cu with ionic size variation in BaO/SrO layers. Effect of the same on the electronic structure and transport properties is explored. The XPS measurement reveals that Cu is in mixed 1+/2+ state and variation in valence state is non-monotonous with increasing x. Whereas Co is in mixed 3+/4+ state and with increasing x its valence state is increasing. The observed changes in electronic structure are subject of structural changes. The resistivity measurement shows that normal state conductivity decreases with increasing x. Resistivity behaviour indicates about holes in Cu/CoO x planes taking part in charge transport. The magnetic measurement (M-T and M-H) shows that paramagnetic nature for all the compositions. The presence of Cu ions in Cu/CoO x chains/planes results in paramagnetic behaviour.

  1. Magnetic Excitations in Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.

    2005-01-01

    Magnetic excitations in the cooperative ordered state in a weakly coupled Fe chains and Cu dimers compound Cu 2 Fe 2 Ge 4 O 13 is studied by thermal neutron scattering technique. We show that the low energy excitations up to 10 meV in wide q range are well described by spin wave theory of weakly coupled Fe chains. In higher energy range a narrow band excitation that can be associated with Cu dimers is observed at ℎω-24 meV. Both types of excitations can be understood by treating the weak coupling between Fe chains and Cu dimers at the level of Mean Field/Random Phase Approximation.

  2. Evaluaciones calorimétricas de la precipitación en aleaciones Cu-Co-Si, ricas en Cu

    Directory of Open Access Journals (Sweden)

    Donoso, Eduardo

    2001-08-01

    Full Text Available The precipitation process of cobalt and silicon atoms from supersaturated solid solutions of Cu-Co-Si for two compositions was studied by differential scanning calorimetry (DSC. Calorimetric traces analysis showed the presence of two overlapping exothermic reactions (stages 1 and 2, which can are attributed to two precipitation processes. First stage correspond to the preceding formation of a cobalt precipitate, while the second stage correspond to the formation of stoichiometric CO2Si composition which takes place by silicon diffusion to the first precipitate. Heat contents during the stages 1 and 2 are proportional to precipitates volume fractions. Activation energies of both precipitates, calculated from the Kissinger method, are consistent with those corresponding to diffussion of Co in Cu and Si in Cu. Both processes can be decribed by the Johnson-Mehl Avrami (JMA equation. Values of n are compatible with precipitate nucleation from the solid solution (stage 1 and with growth of paticles from preexisting Co precipitates. Furthermore,, the kinetic of the concentration decay of Co and Si in the matrix was estimated as function of the transformated fraction for each thermal event and from their respective volume fractions.

    Mediante calorimetría diferencial de barrido (DSC se estudió el proceso de precipitación de átomos de cobalto y silicio a partir de dos soluciones sólidas supersaturadas de Cu-Co- Si. El análisis de las trazas calorimétricas muestra la presencia de dos reacciones exotérmicas traslapadas (etapas 1 y 2, que se interpretan como la formación de dos tipos de precipitados. La primera etapa corresponde a la formación precursora de un precipitado de cobalto, en tanto que la etapa 2 corresponde a la formación de un precipitado de composición estequiométrica CO2Si producido por difusión de silicio hacia la primera partícula. Los calores liberados durante las etapas 1 y 2 son proporcionales a

  3. Synthesis and characterization of heterobimetallic complexes of the type [Cu(pn2][MCl4] where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II, and Hg(II

    Directory of Open Access Journals (Sweden)

    Seema Yadav

    2016-11-01

    Full Text Available A series of new bimetallic transition metal complexes of the type [Cu(pn2] [MCl4] have been synthesized (where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II and Hg(II, pn = 1,3-diaminopropane and characterized by elemental analysis, molar conductance, TGA, IR and electronic spectra. All the compounds are 1:1 electrolyte in DMF. The Cu(II ion is square-planar while metal ions in the anionic moiety acquire their usual tetrahedral arrangement. On the basis of these studies it is concluded that anionic moiety is electrically stabilized by its cationic counterpart.

  4. Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films

    International Nuclear Information System (INIS)

    Wijesundera, R.P.; Hidaka, M.; Koga, K.; Sakai, M.; Siripala, W.

    2006-01-01

    Cuprous oxide and copper thin films were potentiostatically electrodeposited in an acetate bath. Voltammetric curves were used to investigate the growth parameters; deposition potential, pH and temperature of the bath. Deposition potential dependency on the structural, morphological, optical and electronic properties of the films were investigated by the X-ray diffraction measurements, scanning electron micrographs, absorption measurements and dark and light current-voltage characterisations. It was observed that single phase polycrystalline Cu 2 O can be deposited from 0 to - 300 mV Vs saturated calomel electrode (SCE) and co-deposition of Cu and Cu 2 O starts at - 400 mV Vs SCE. Further increase in deposition potential from - 700 mV Vs SCE produces single phase Cu thin films. Single phase polycrystalline Cu 2 O thin films with cubic grains of 1-2 μm can be possible within the very narrow potential domain around - 200 mV Vs SCE. Enhanced photoresponse in a photoelectrochemical cell is produced by the Cu 2 O thin film prepared at - 400 mV Vs SCE, where Cu is co-deposited with Cu 2 O with random distribution of Cu spheres on the Cu 2 O surface. This study reveals that a single deposition bath can be used to deposit both Cu and Cu 2 O separately and an admixture of Cu-Cu 2 O by controlling the deposition parameters

  5. Determination of the electronic density of states near buried interfaces: Application to Co/Cu multilayers

    DEFF Research Database (Denmark)

    Nilsson, A.; Sthör, J.; Wiell, T.

    1996-01-01

    High-resolution L(3) x-ray absorption and emission spectra of Co and Cu in Co/Cu multilayers are shown to provide unique information on the occupied and unoccupied density of d states near buried interfaces. The d bands of both Co and Cu interfacial layers are shown to be considerably narrowed...

  6. Energy-dispersive X-ray fluorescence analysis of traces of heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb, U) in mineral waters after separation on the cellulose-exchanger Hyphan

    International Nuclear Information System (INIS)

    Burba, P.; Lieser, K.H.

    1979-01-01

    Trace elements in mineral water are separated in small columns on the cellulose-exchanger Hyphan, eluted by diluted hydrochloric acid, bound on 100 mg of Hyphan by shaking and determined by energy-dispersive X-ray fluorescence. The following heavy metals can be analysed quantitatively if present in water in concentrations >= 1 ppb: Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb and U. Several commercial mineral waters, a sodium chloride spring and seawater were analyzed for trace elements. The results obtained by X-ray fluorescence and by atomic absorption agree within the limits of error. (orig.) [de

  7. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    Science.gov (United States)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  8. Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst.

    Science.gov (United States)

    Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung

    2015-12-01

    Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper-derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)-induced bi-phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high-carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high-carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi-carbon fuels, including n-propanol and n-butane C3-C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Atmospheric CO2 enrichment effect on the Cu-tolerance of the C4 cordgrass Spartina densiflora.

    Science.gov (United States)

    Pérez-Romero, Jesús Alberto; Idaszkin, Yanina Lorena; Duarte, Bernardo; Baeta, Alexandra; Marques, João Carlos; Redondo-Gómez, Susana; Caçador, Isabel; Mateos-Naranjo, Enrique

    2018-01-01

    A glasshouse experiment was designed to investigate the effect of the co-occurrence of 400 and 700ppm CO 2 at 0, 15 and 45mM Cu on the Cu-tolerance of C 4 cordgrass species Spartina densiflora, by measuring growth, gas exchange, efficiency of PSII, pigments profiles, antioxidative enzyme activities and nutritional balance. Our results revealed that the rising atmospheric CO 2 mitigated growth reduction imposed by Cu in plants grown at 45mM Cu, leading to leaf Cu concentration bellow than 270mgKg -1 Cu, caused by an evident dilution effect. On the other hand, non-CO 2 enrichment plants showed leaf Cu concentration values up to 737.5mgKg -1 Cu. Furthermore, improved growth was associated with higher net photosynthetic rate (A N ). The beneficial effect of rising CO 2 on photosynthetic apparatus seems to be associated with a reduction of stomatal limitation imposed by Cu excess, which allowed these plants to maintain greater i WUE values. Also, plants grown at 45mM Cu and 700ppm CO 2 , showed higher ETR values and lower energy dissipation, which could be linked with an induction of Rubisco carboxylation and supported by the recorded amelioration of N imbalance. Furthermore, higher ETR values under CO 2 enrichment could lead to an additional consumption of reducing equivalents. Idea that was reflected in the lower values of ETR max /A N ratio, malondialdehyde (MDA) and ascorbate peroxidase (APx), guaiacol peroxidase (GPx) and superoxide dismutase (SOD) activities under Cu excess, which could indicate a lower production of ROS species under elevated CO 2 concentration, due to a better use of absorbed energy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  11. Preparation and structure characterization of SmCo5(0001) epitaxial thin films grown on Cu(111) underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    SmCo 5 (0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al 2 O 3 (0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo 5 crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo 5 epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo 5 (0001) single-crystal thin film is successfully obtained. Nucleation of SmCo 5 crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo 5 layer

  12. Novel La(Fe,Si){sub 13}/Cu composites for magnetic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P. [Department of Materials, Imperial College London, London, SW7 2AZ (United Kingdom); Cohen, Lesley F. [Department of Physics, Imperial College London, London, SW7 2AZ (United Kingdom)

    2012-11-15

    An approach to engineering magnetic refrigerant materials with defined thermal transport properties is demonstrated using the example of high magnetocaloric performance La-Fe-Si alloys. A tunability of up to 300% of the thermal conductivity can be achieved in composites consisting of a La(Fe,Si){sub 13} compound and Cu prepared by electroless copper plating without compromising the magnitude of the magnetocaloric effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Sensors of the gas CO in thin film of SnO{sub 2}:Cu; Sensores del gas CO en pelicula delgada de SnO{sub 2}:Cu

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S.; Sanchez Z, F. E., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2011-10-15

    Thin films of SnO{sub 2}:Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO{sub 2} were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO{sub 2}:Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO{sub 2}:Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  14. 2D magnetic texture analysis of Co-Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan [Balikesir Univ. (Turkey). Physics Dept.; Alper, Mursel [Uludag Univ., Bursa (Turkey). Physics Dept.

    2017-08-01

    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co{sup 2+} in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, M{sub p}(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co{sup 2+} in the electrolyte. The coefficients of Fourier series (A{sub 0} and A{sub 2n}) were also computed for 2D films. It is seen that a systematic and small decrease in A{sub 0} and an obvious decrease in A{sub 2n} (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  15. 2D magnetic texture analysis of Co-Cu films

    International Nuclear Information System (INIS)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan; Alper, Mursel

    2017-01-01

    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co"2"+ in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, M_p(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co"2"+ in the electrolyte. The coefficients of Fourier series (A_0 and A_2_n) were also computed for 2D films. It is seen that a systematic and small decrease in A_0 and an obvious decrease in A_2_n (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  16. Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Hendriksen, Peter Vang

    2017-01-01

    In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivit...

  17. Dislocations in decagonal Al-Cu-Co alloy

    International Nuclear Information System (INIS)

    Zhang, Z.; Urban, K.

    1990-01-01

    Dislocations have been observed for the first time in a decagonal quasicrystalline structure. The lattice defects found in Al 65 Cu 20 Co 15 decagonal phase give electron diffraction contrast similar to that found in normal-crystalline materials. (author). 14 refs, 3 figs

  18. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  19. A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

    Directory of Open Access Journals (Sweden)

    Ramli

    2016-12-01

    Full Text Available This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4 and nonmagnetic (CuO layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.

  20. One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO2 Quasi-Nanocubes for Enhanced Activity and Selectivity of CO2 Photoreduction to CH4.

    Science.gov (United States)

    Jin, Jingpeng; Luo, Jiang; Zan, Ling; Peng, Tianyou

    2017-11-17

    A new kind of metallic Cu-loaded brookite TiO 2 composite, in which Cu nanoclusters with a small size of 1-3 nm are decorated on brookite TiO 2 quasi nanocube (BTN) surfaces (hereafter referred to as Cu-BTN), is synthesized via a one-pot hydrothermal process and then used as photocatalyst for CO 2 reduction. It was found that the decoration of Cu nanoclusters on BTN surfaces can improve the activity and selectivity of CO 2 photoreduction to CH 4 , and 1.5 % Cu-BTN gives a maximum overall photocatalytic activity (150.9 μmol g -1  h -1 ) for CO/CH 4 production, which is ≈11.4 and ≈3.3 times higher than those of pristine BTN (13.2 μmol g -1  h -1 ) and Ag-BTN (45.2 μmol g -1  h -1 ). Moreover, the resultant Cu-BTN products can promote the selective generation of CH 4 as compared to CO due to the number of surface oxygen vacancies and the CO 2 /H 2 O adsorption behavior, which differs from that of the pristine BTN. The present results demonstrate that brookite TiO 2 would be a potential effective photocatalyst for CO 2 photoreduction, and that Cu nanoclusters can act as an inexpensive and efficient co-catalyst alternative to the commonly used noble metals to improve the photoactivity and selectivity for CO 2 reduction to CH 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tuning giant magnetoresistance in rolled-up Co-Cu nanomembranes by strain engineering.

    Science.gov (United States)

    Müller, Christian; Bof Bufon, Carlos Cesar; Makarov, Denys; Fernandez-Outon, Luis E; Macedo, Waldemar A A; Schmidt, Oliver G; Mosca, Dante Homero

    2012-11-21

    Compact rolled-up Co-Cu nanomembranes of high quality with different numbers of windings are realized by strain engineering. A profound analysis of magnetoresistance (MR) is performed for tubes with a single winding and a varied number of Co-Cu bilayers in the stack. Rolled-up nanomembranes with up to 12 Co-Cu bilayers are successfully fabricated by tailoring the strain state of the Cr bottom layer. By carrying out an angular dependent study, we ruled out the contribution from anisotropic MR and confirm that rolled-up Co-Cu multilayers exhibit giant magnetoresistance (GMR). No significant difference of MR is found for a single wound tube compared with planar devices. In contrast, MR in tubes with multiple windings is increased at low deposition rates of the Cr bottom layer, whereas the effect is not observable at higher rates, suggesting that interface roughness plays an important role in determining the GMR effect of the rolled-up nanomembranes. Furthermore, besides a linear increase of the MR with the number of windings, the self-rolling of nanomembranes substantially reduces the device footprint area.

  2. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  3. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Memarzadeh, Kaveh [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ren, Guogang [University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Allaker, Robert P., E-mail: r.p.allaker@qmul.ac.uk [Institute of Dentistry, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Newark Street, London E1 2AT (United Kingdom); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-10-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  4. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties

    International Nuclear Information System (INIS)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P.; Yang, Ke

    2016-01-01

    Objective: The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Methods: Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. Results: SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. Significance: The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. - Highlights: • Novel CoCrCu alloys were fabricated by using selective laser melting (SLM). • SLM CoCrCu alloys showed satisfied antimicrobial and antibiofilm activities. • SLM CoCrCu alloys have no cytotoxic effect on normal cells. • Other properties of SLM CoCrCu alloys were similar to SLM CoCr alloys. • SLM CoCrCu alloys have the potential to be used as coping metals.

  5. CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

    Directory of Open Access Journals (Sweden)

    M. Ahmadzadeh

    2015-04-01

    Full Text Available CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled through the pulses numbers: 200, 260, 310,360 and 410 pulses were used to deposit the CoFe layers, while 300 pulse for the Cu layers. A certain increase in coercivity and squareness of CoFe/Cu multilayer nanowires observed with increasing the CoFe layer thickness and annealing improved the coercivity and decrease squareness of CoFe/Cu multilayer nanowires. First order reversal curves after annealed showed amount domains with soft magnetic phase, it also shows decreasing spreading of distribution function along the Hu axis after annealed

  6. Effects of interfacial transition layers on the electrical properties of individual Fe 30 Co 61 Cu 9 /Cu multilayer nanowires

    KAUST Repository

    Ma, Hongbin; Zhang, Junwei; Zhang, Hong; Lan, Qianqian; Guan, Chaoshuai; Zhang, Qiang; Bai, Feiming; Peng, Yong; Zhang, Xixiang

    2016-01-01

    to those of individual pure Cu nanowires and to those of alloy Fe30Co61Cu9 nanowires. The multilayered nanowires with a 50 nm diameter had a remarkable resistivity of approximately 5.41 × 10-7 Ω m and a failure current density of 1.54 × 1011 A m-2. Detailed

  7. Synergetic effects in CO adsorption on Cu-Pd(111) alloys

    DEFF Research Database (Denmark)

    Lopez, Nuria; Nørskov, Jens Kehlet

    2001-01-01

    We present density functional calculations for the interaction of CO on different Cu-Pd(111) bulk and surface alloys. The modification of the adsorption properties with respect to hose of the adsorption on pure Cu(111) and Pd(111) is described in terms of changes in the adsorption sites...... and the change of the electronic structure occurring upon alloying. The presence of cooperative, synergetic. effects is found to be important specially for Cu-rich bulk alloys. In this case. a larger adsorption energy is found for the inactive component than for the pure inactive system. This activation induces...

  8. Effects of substrate temperature and Cu underlayer thickness on the formation of SmCo5(0001) epitaxial thin films

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmCo 5 (0001) epitaxial thin films were prepared on Cu(111) underlayers heteroepitaxially grown on Al 2 O 3 (0001) single-crystal substrates by molecular beam epitaxy. The effects of substrate temperature and Cu underlayer thickness on the crystallographic properties of SmCo 5 (0001) epitaxial films were investigated. The Cu atoms of underlayer diffuse into the SmCo 5 film and substitute the Co sites in SmCo 5 structure forming an alloy compound of Sm(Co,Cu) 5 . The ordered phase formation is enhanced with increasing the substrate temperature and with increasing the Cu underlayer thickness. The Cu atom diffusion into the SmCo 5 film is assisting the formation of Sm(Co,Cu) 5 ordered phase.

  9. CO-induced Pd segregation and the effect of subsurface Pd on CO adsorption on CuPd surfaces

    International Nuclear Information System (INIS)

    Padama, A A B; Villaos, R A B; Albia, J R; Diño, W A; Nakanishi, H; Kasai, H

    2017-01-01

    We report results of our study on the adsorption of CO on CuPd surfaces with bulk stoichiometric and nonstoichiometric layers using density functional theory (DFT). We found that the presence of Pd atoms in the subsurface layer promotes the adsorption of CO. We also observed CO-induced Pd segregation on the CuPd surface and we attribute this to the strong CO–Pd interaction. Lastly, we showed that the adsorption of CO promotes Pd–Pd interaction as compared to the pristine surface which promotes strong Cu–Pd interaction. These results indicate that CO adsorption on CuPd surfaces can be tuned by taking advantage of the CO-induced segregation and by considering the role of subsurface Pd atoms. (paper)

  10. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS2 composite coatings

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ji Heng; Yang Tao

    2011-01-01

    Research highlights: → Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. → It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved. → Combining the wear resistance of WC with the lubricating properties of Cu and MoS 2 has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS 2 used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS 2 composition in the feed powder was kept in WC-Co-Cu-MoS 2 coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS 2 coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS 2 coatings.

  11. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, Agnieszka, E-mail: agnieszka.franczak@mtm.kuleuven.be [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Department of Materials Science (MTM), KU Leuven, Kasteelpark Arenberg 44, 3001 Haverlee (Leuven) (Belgium); Levesque, Alexandra [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Zabinski, Piotr [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Li, Donggang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 314 Box, 110004 Shenyang (China); Czapkiewicz, Maciej [Department of Electronics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Kowalik, Remigiusz [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Bohr, Frédéric [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); and others

    2015-07-15

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits.

  12. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    International Nuclear Information System (INIS)

    Franczak, Agnieszka; Levesque, Alexandra; Zabinski, Piotr; Li, Donggang; Czapkiewicz, Maciej; Kowalik, Remigiusz; Bohr, Frédéric

    2015-01-01

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits

  13. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route

    International Nuclear Information System (INIS)

    Aslani, Alireza; Oroojpour, Vahid

    2011-01-01

    CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 o C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.

  14. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation

    Science.gov (United States)

    Yang, Yiqiong; Dong, Han; Wang, Yin; He, Chi; Wang, Yuxin; Zhang, Xiaodong

    2018-02-01

    A series of octahedral structure Cu-BTC derivatives were successfully achieved through direct calcination of copper based metal organic framework Cu-BTC under different atmosphere (CO reaction gas, oxidizing gas O2, reducing gas H2, inert gas Ar). The Cu-BTC derivatives were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), N2 adsorption-desorption isotherm, element analysis, H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). It is found that Cu-BTC derivative derived from MOF calcined under reaction gas/O2 (Cu-BTC-CO/Cu-BTC-O) only retain Cu2O and CuO species. In addition, a weak Cu-BTC structure and Cu particles were observed on Cu-BTC derivative derived from MOF calcined under H2 (Cu-BTC-H). Obviously differently, Cu-BTC derivative derived from MOF calcined under Ar (Cu-BTC-Ar) still retains good MOF structure. The catalytic performance for CO oxidation over Cu-BTC derivatives was studied. It was found that Cu-BTC-CO showed a smaller specific surface area (8.0 m2/g), but presented an excellent catalytic performance, long-term stability and cycling stability with a complete CO conversion temperature (T100) of 140 °C, which was ascribed to the higher Cu2O/CuO ratio, good low temperature reduction behavior and a high quantity of surface active oxygen species.

  15. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zsurzsa, S., E-mail: zsurzsa.sandor@wigner.mta.hu; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H{sub c}) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H{sub c}=H{sub co}+a/d{sup n} with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H{sub c}) and magnetoresistance. • H{sub c} depends on Co layer thickness according to H{sub c}=H{sub co}+a/d{sup n} with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  16. Interfacial properties of immiscible Co-Cu alloys

    DEFF Research Database (Denmark)

    Egry, I.; Ratke, L.; Kolbe, M.

    2010-01-01

    Using electromagnetic levitation under microgravity conditions, the interfacial properties of an Cu75Co25 alloy have been investigated in the liquid phase. This alloy exhibits a metastable liquid miscibility gap and can be prepared and levitated in a configuration consisting of a liquid cobalt-ri...

  17. Co-Cu-Au deposits in metasedimentary rocks-A preliminary report

    Science.gov (United States)

    Slack, J.F.; Causey, J.D.; Eppinger, R.G.; Gray, J.E.; Johnson, C.A.; Lund, K.I.; Schulz, K.J.

    2010-01-01

    A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of

  18. Biperiodic oscillatory coupling with the thickness of an embedded Ni layer in Co/Cu/Co/Ni/Co (100) and selection rules for the periods

    NARCIS (Netherlands)

    de Vries, J.J.; Vorst, van de M.T.H.; Johnson, M.T.; Jungblut, R.; Reinders, A.; Bloemen, P.J.H.; Coehoorn, R.; Jonge, de W.J.M.

    1996-01-01

    A biperiodic oscillation of the strength of the antiferromagnetic interlayer coupling as a function of the thickness of an embedded Ni layer has been observed in an epitaxial Cu(100)/Co/Cu/Co/Ni/Co sample with the Cu interlayer and the Ni layer in the form of wedges. As the effect originates from

  19. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  20. Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2015-01-01

    Highlights: • First time we report the synthesis of CuCo 2 O 4 nanobelts using hydrothermal method. • The spinel CuCo 2 O 4 nanobelts exhibit maximum areal capacitance of 2.42 F cm −2 . • After 1800 cycles, 127% of the initial specific capacitance was retained. - Abstract: One dimensional hierarchical CuCo 2 O 4 nanobelt like architecture was synthesized via hydrothermal method. The synthesized nanomaterial was characterized using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The TEM image clearly shows the nanobelt like architecture of CuCo 2 O 4 . The supercapacitor properties of CuCo 2 O 4 nanobelts electrode were tested using cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. The spinel CuCo 2 O 4 nanobelts exhibit maximum areal and specific capacitance of 2.42 F cm −2 (809 F g −1 ). After 1800 continuous charge-discharge cycles, 127% of the initial capacitance was retained. This superior electrochemical supercapacitor property is mainly due to increased surface area and ion transport of nanobelt like architecture. The charge transfer resistance (R ct ) value of CuCo 2 O 4 nanobelt electrode is 3.85 Ω. This high capacitance and cyclic stability demonstrate that the prepared CuCo 2 O 4 nanobelts are a promising candidate for supercapacitors.

  1. Improvement in tribological properties of atmospheric plasma-sprayed WC-Co coating followed by Cu electrochemical impregnation

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ruan Qichao; Ji Heng

    2009-01-01

    The WC-Co coating obtained by atmospheric plasma spraying (APS) was modified by Cu electrochemical impregnation. The copper has infiltrated into and filled up the pores in WC-Co coating. The tribological properties of the coating against the stainless steel ball as sliding pairs were investigated with a ball-on-disc (BOD) configuration in air at room temperature. The as-prepared samples were characterized by means of optical microscope, scanning electron microscope and X-ray diffraction. It was found that the frictional behavior of the WC-Co coating followed by Cu electrochemical impregnation was superior to that of WC-Co coating. The wear mechanism of the WC-Co coating followed by Cu electrochemical impregnation was microcutting, whilst that of a WC-Co coating was the fatigue wear. The improvement in tribological properties of the WC-Co coating followed by Cu electrochemical impregnation was attributed to the formation of self-lubricating Cu film on the wear surface which induces the transformation of wear mechanism.

  2. Cyclotron production of Cu-61

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Ráliš, Jan; Seifert, Daniel

    2013-01-01

    Roč. 40, 2 Supplement (2013), S323-S323 ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] R&D Projects: GA TA ČR TA02010797 Institutional support: RVO:61389005 Keywords : cyclotron U-120M * PET * Cu-61 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  3. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wen, Guobin [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Zhang, Minhua, E-mail: mhzhang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-08-01

    Highlights: • Calculations based on the first-principle density functional theory were carried out to study ethanol formation from syngas on Cu-Co surfaces. • The most controversial reactions in ethanol formation from syngas were researched: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions (CHx + HCO → CHxCHO (x = 1–3))). • Four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) were built to investigate the synergy of the Cu and Co components. • The PDOS of 4d orbitals and d-band center analysis of surface Cu and Co atoms of all surfaces were studied to reveal correlation between electronic property and catalytic performance. - Abstract: Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CH{sub x} + HCO → CH{sub x}CHO (x = 1–3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between

  4. Radiolabeling of antibody for epitope of human carbonic anhydrase IX (IgG M75) by 61Cu and 64Cu and its biological testing

    Czech Academy of Sciences Publication Activity Database

    Čepa, Adam; Ráliš, Jan; Pavelka, A.; Marešová, L.; Kleinová, M.; Seifert, Daniel; Sieglová, Irena; Král, Vlastimil; Polášek, Miroslav; Lebeda, Ondřej; Paúrová, M.; Lázníček, M.

    2015-01-01

    Roč. 42, S (2015), s. 465-466 ISSN 1619-7070. [28th Annual congress of the European-Association-of-Nuclear-Medicine (EANM). 10.10.2015-14.10.2015, Hamburg] R&D Projects: GA TA ČR TA02010797; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 ; RVO:68378050 Keywords : antibodies * Cu-61 * Cu-64 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; EB - Genetics ; Molecular Biology (UMG-J)

  5. Preparation of conductive Cu patterns by directly writing using nano-Cu ink

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Wenjiang; Wei, Jun [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Tan, Junjun [School of Chemical and Materials and Engineering, Hubei University of Technology, Hubei 435003 (China); Chen, Minfang, E-mail: mfchentj@126.com [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-07-01

    Conductive and air-stable Cu patterns were directly made on ordinary photo paper using a roller pen filled with nano-Cu ink, which was mainly composed of metallic Cu nanoparticles (NPs) capped with poly(N-vinylpyrrolidone) (PVP). The nano-Cu NPs were obtained via the reduction of Cu{sup 2+} ions by using an excess of hydrazine and PVP. The low sintering temperature (160 °C) in Ar atmosphere played an important role for the preparation of air-stable Cu patterns. The conductivity of a radio-frequency identification antenna made from nano-Cu ink was tested by a lamp, and its resistivity achieved 13.4 ± 0.4 μΩ cm. The Cu NPs were confirmed by means of X-ray powder diffraction and X-ray photoelectron spectra, and the Cu patterns were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. A mechanism for the high conductivity of the Cu pattern made from Cu NPs is proposed. - Highlights: • The synthesis of pure Cu is related to the reducing agent and capping agent. • The sintering under Ar atmosphere prevents Cu pattern's rapid oxidation. • The formation of the bulk Cu decreases the resistivity of the Cu pattern.

  6. Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction

    Science.gov (United States)

    Iqbal, Muzaffar; Wang, Yanjie; Hu, Haifeng; He, Meng; Hassan Shah, Aamir; Lin, Lin; Li, Pan; Shao, Kunjuan; Reda Woldu, Abebe; He, Tao

    2018-06-01

    The design of Cu2O-tipped ZnO nanorods is proposed here aiming at enhanced photoelectrochemical properties. The tip-selective deposition of Cu2O is confirmed by scanning transmission electron microscopy (STEM). The photoinduced charge behavior like charge generation, separation and transport has been thoroughly studied by UV-vis absorption analysis and different photoelectrochemical characterizations, including transient photocurrent, incident photon-to-current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS), and Mott-Schottky measurements. The photoelectrochemical characterizations clearly indicate that ZnO/Cu2O structures exhibit much higher performance than pristine ZnO, due to the formation of p-n junction, as well as the tip selective growth of Cu2O on ZnO. Photocatalytic CO2 reduction in aqueous solution under UV-visible light illumination shows that CO is the main product, and with the increase of the Cu2O content in the heterostructure, the CO yield increases. This work shows that Cu2O-tipped ZnO nanorods possess improved behavior of charge generation, separation and transport, which may work as a potential candidate for photocatalytic CO2 reduction.

  7. Magnetic and electronic properties of the Cu-substituted Weyl semimetal candidate ZrCo2Sn.

    Science.gov (United States)

    Kushwaha, S K; Wang, Zhijun; Kong, Tai; Cava, Robert

    2018-01-04

    We report that the partial substitution of Cu for Co has a significant impact on the magnetic properties of the Heusler-phase Weyl fermion candidate ZrCo2Sn. Polycrystalline samples of ZrCo2-xCuxSn (x = 0.0 to 1.0) exhibited a linearly decreasing ferromagnetic transition temperature and similarly decreasing saturated magnetic moment on increasing Cu substitution x. Materials with Cu contents near x = 1 and several other quaternary materials synthesized at the same x (ZrCoT'Sn (T' = Rh, Pd, Ni)) display what appears to be non-ferromagnetic magnetization behavior with spin glass characteristics. Electronic structure calculations suggest that the half-metallic nature of unsubstituted ZrCo2Sn is disrupted significantly by the Cu substitutions, leading to the breakdown of the magnetization vs. electron count guidelines usually followed by Heusler phases, and a more typical metallic non-spin-polarized electronic structure at high x. © 2018 IOP Publishing Ltd.

  8. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  9. Reaction mechanism of CO oxidation on Cu2O(111): A density functional study

    Science.gov (United States)

    Sun, Bao-Zhen; Chen, Wen-Kai; Xu, Yi-Jun

    2010-10-01

    The possible reaction mechanisms for CO oxidation on the perfect Cu2O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu2O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as MER1, MER2, MLH1, and MLH2, respectively): MER1 is CO(gas)+O2(ads)-->CO2(gas) MER2 is CO(gas)+O2(ads)-->CO3(ads)-->O(ads)+CO2(gas) MLH1 refers to CO(ads)+O2(ads)-->O(ads)+CO2(ads) and MLH2 refers to CO(ads)+O2(ads)-->OOCO(ads)-->O(ads)+CO2(ads). Our transition state calculations clearly reveal that MER1 and MLH2 are both viable; but MER1 mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along MER2 path, it is facile for CO3 formation, but is difficult for its decomposition, thereby CO3 species can stably exist on Cu2O(111). Of course, the reaction of CO with lattice O of Cu2O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu2O(111), CO reacts with adsorbed O, rather than lattice O, to form CO2. This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

  10. Hydrogenation of CO{sub 2} to formic acid over a Cu-embedded graphene: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Sirijaraensre, J., E-mail: fscijkp@ku.ac.th [Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries and NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology, Kasetsart University, Bangkok 10900 (Thailand); Limtrakul, J. [Department of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210 (Thailand)

    2016-02-28

    Graphical abstract: - Highlights: • The H{sub 2} molecule binds much more strongly on the Cu/dG than the CO{sub 2} molecule. • H{sub 2} dissociation occurs readily on the supported Cu atom. • The CO{sub 2} conversion is significantly promoted by the Cu-H on the graphene. - Abstract: DFT calculations were used to investigate the properties of the atomic copper embedded in the surface of graphene (Cu/dG) and the catalytic reaction pathway for the CO{sub 2} hydrogenation to formic acid (FA). The Cu/dG was active for the adsorption of the hydrogen molecule (H{sub 2}), and provided a reaction site for the heterolytic cleavage of H{sub 2}, leading to the formation of Cu-H deposited on a singly hydrogenated vacancy graphene (Cu-H/H-dG). The protonation of CO{sub 2} takes place facilely over the generated metal-hydride species (Cu-H). Under the dilution of H{sub 2}, the catalytic process would be hampered by the formation of copper-formate deposited on the H-dG due mainly to the very high energy demand for the transformation of the copper-formate to FA through the protonation from the H-dG. It was further found that the presence of H{sub 2} in the system plays a significant role in producing the FA on the Cu/dG catalyst. The copper-formate species can be converted into formic acid via the heterolytic cleavage of the second hydrogen molecule, yielding the FA and Cu-H species.

  11. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Harish, G.S.; Sreedhara Reddy, P.

    2015-01-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm −1 ) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping

  12. Design and characterization of FeCrNiCoAlCu and FeCrNiCo(AlCu){sub 0,5} multicomponent alloys; Previsao e caracterizacao de ligas multicomponentes FeCrNiCoAlCu e FeCrNiCo(AlCu){sub 0,5}

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, Carlos; Artacho, Victor Falcao [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais

    2014-07-01

    High entropy alloys using multi-element main quasi-equivalent atomic proportions and generally forms single-phase solid solution and has the ability to enhance levels of strain hardening combined with high levels of plastic deformation at room temperature. In this work two high-entropy alloys with almost similar composition were studied and the factors influencing the formation of solid solution phases (δ atomic radius difference, ΔH{sub mix} mixing enthalpy, ΔS{sub mix} mixing entropy) were evaluated. The microstructure as-cast and the compositions of phases in the two alloys were analyzed by SEM and XRD. The mechanical characterization was realized by measurements of microhardness and cold compression test. The results showed that FeCrNiCo(AlCu){sub 0,5} and FeCrNiCoAlCu alloys with δ equal to 5,7 and 4,9, respectively, form alloys with solid solutions of high entropy. However, the presence of FC and BCCC structures greatly influence the mechanical properties. (author)

  13. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    Science.gov (United States)

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  14. Synthesis and characterization of Ni(II, Cu(II and Co(III complexes with polyamine-containing macrocycles bearing an aminoethyl pendant arm

    Directory of Open Access Journals (Sweden)

    K. S. SIDDIQI

    2004-09-01

    Full Text Available Reaction of [M(ppn2]X2 (where M = Cu(II, Ni(II, Co(II and ppn = 1,3-diaminopropane with formaldehyde and ethylenediamine in methanol results in the ready formation of a 16-membered macrocyclic complex. The complexes were characterized by elemental anlysis, IR, EPR, electronic spectral data, magnetic moments and conductance measurements. The Cu(II, Ni(II and Co(III complexes are coordinated axially with both pendant groups of the hexadentate macrocycle. These pendant donors are attached to the macrocycle by a carbon chain. The electrical conductivities of the Cu(II and Ni(II chelates indicated them to be 1:2 electrolytes whilst those of Co(III is a 1:3 electrolyte in DMSO. The EPR spectrum of the copper complex exhibited G at 3.66, which indicates a considerable exchange interaction in the complex. Spectroscopic evidence suggests that in all of the complexes the metal ion is in an octahedral environment.

  15. Performance of WCN diffusion barrier for Cu multilevel interconnects

    Science.gov (United States)

    Lee, Seung Yeon; Ju, Byeong-Kwon; Kim, Yong Tae

    2018-04-01

    The electrical and thermal properties of a WCN diffusion barrier have been studied for Cu multilevel interconnects. The WCN has been prepared using an atomic layer deposition system with WF6-CH4-NH3-H2 gases and has a very low resistivity of 100 µΩ cm and 96.9% step coverage on the high-aspect-ratio vias. The thermally stable WCN maintains an amorphous state at 800 °C and Cu/WCN contact resistance remains within a 10% deviation from the initial value after 700 °C. The mean time to failure suggests that the Cu/WCN interconnects have a longer lifetime than Cu/TaN and Cu/WN interconnects because WCN prevents Cu migration owing to the stress evolution from tensile to compressive.

  16. Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Steyer, P., E-mail: philippe.steyer@insa-lyon.fr [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Joly-Pottuz, L. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Billard, A. [LERMPS-UTBM, Site de Montbéliard, 90010 Belfort Cédex (France); Qiao, J.; Cardinal, S. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sanchette, F. [LASMIS-UTT, UMR CNRS 6279, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Pelletier, J.M.; Esnouf, C. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France)

    2014-06-30

    Bulk metallic glasses have attracted considerable attention over the last decades for their outstanding mechanical features (high strength, super-elasticity) and physico-chemical properties (corrosion resistance). Recently, some attempts to assign such original behavior from bulk materials to modified surfaces have been reported in the literature based on multicomponent alloys. In this paper we focused on the opportunity to form a metallic glass coating from the binary Zr–Cu system using a magnetron co-sputtering physical vapor deposition process. The composition of the films can be easily controlled by the relative intensities applied to both pure targets, which made possible the study of the whole Zr–Cu system (from 13.4 to 85.0 at.% Cu). The chemical composition of the films was obtained by energy dispersive X-ray spectroscopy, and their microstructure was characterized by scanning and transmission electron microscopy. The thermal stability of the films was deduced from an in situ X-ray diffraction analysis (from room temperature up to 600 °C) and correlated with the results of the differential scanning calorimetry technique. Their mechanical properties were determined by nanoindentation experiments. - Highlights: • We reported deposition of Zr-Cu thin film metallic glasses by co-sputtering • Films were XRD-amorphous in a wide composition range (33.3 – 85.0 at.% Cu) • Microstructure investigation revealed some local nanodomains • We examined the thermal stability by means of in situ X-ray diffraction • Nanoindentation was used to obtained mechanical properties of thin films.

  17. Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.

    Science.gov (United States)

    Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing

    2017-10-10

    A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

  18. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    Directory of Open Access Journals (Sweden)

    Yamina Boukoberine

    2016-09-01

    Full Text Available CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in catalyst results in a decrease of the thiophene HDS activity. This decrease is probably caused by the formation of heavy compounds and the deactivation of the zeolite at high temperatures.

  19. N–Mg dual-acceptor co-doping in CuCrO{sub 2} studied by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: 1080071@hnust.edu.cn [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Nie, Guo-Zheng [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Zou, Daifeng [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Tang, Jing-Wu [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Ao, Zhimin, E-mail: Zhimin.Ao@gdut.edu.cn [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-11-25

    In this paper, N–Mg dual-acceptor co-doping in CuCrO{sub 2} is investigated by first-principles calculations. The electronic structure and formation energies of Mg substituting Cr-site, N substituting O-site, and co-doping of both Mg on Cr-site and N on O-site in CuCrO{sub 2} are calculated. It is found that the structure with N and Mg codoped at the nearest sites has the lowest energy due to a modest attractive interaction between the two dopants. Compared with single N or Mg doped CuCrO{sub 2}, the N–Mg codoped CuCrO{sub 2} has a lower formation energy and shallower transition level. In addition, the total density of states (DOS) analysis shows that more hole states appear above the Fermi level and higher DOS for N–Mg co-doping is obtained in the N–Mg codoped CuCrO{sub 2}, which is good to enhance the p-type conductivity in CuCrO{sub 2}. - Highlights: • N–Mg dual-acceptor co-doping in CuCrO{sub 2} is investigated. • N–Mg complex has a lower formation energy and shallower transition level. • More hole states appear above the Fermi level for N–Mg co-doping. • N–Mg co-doping in CuCrO{sub 2} can be expected to have more stable p-type conductivity.

  20. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.

    Science.gov (United States)

    Ren, Ling; Memarzadeh, Kaveh; Zhang, Shuyuan; Sun, Ziqing; Yang, Chunguang; Ren, Guogang; Allaker, Robert P; Yang, Ke

    2016-10-01

    The aim of this study was to fabricate a novel coping metal CoCrCu alloy using a selective laser melting (SLM) technique with antimicrobial and antibiofilm activities and to investigate its microstructure, mechanical properties, corrosion resistance and biocompatibility. Novel CoCrCu alloy was fabricated using SLM from a mixture of commercial CoCr based alloy and elemental Cu powders. SLM CoCr without Cu served as control. Antibacterial activity was analyzed using standard antimicrobial tests, and antibiofilm properties were investigated using confocal laser scanning microscope. Cu distribution and microstructure were determined using scanning electron microscope, optical microscopy and X-ray diffraction. Corrosion resistance was evaluated by potential dynamic polarization and biocompatibility measured using an MTT assay. SLM CoCrCu alloys were found to be bactericidal and able to inhibit biofilm formation. Other factors such as microstructure, mechanical properties, corrosion resistance and biocompatibility were similar to those of SLM CoCr alloys. The addition of appropriate amounts of Cu not only maintains normal beneficial properties of CoCr based alloys, but also provides SLM CoCrCu alloys with excellent antibacterial and antibiofilm capabilities. This material has the potential to be used as a coping metal for dental applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites

    Science.gov (United States)

    Dedong, Zhang; Maimaiti, Halidan; Awati, Abuduheiremu; Yisilamu, Gunisakezi; Fengchang, Sun; Ming, Wei

    2018-05-01

    The photocatalytic reduction of CO2 into hydrocarbons provides a promising approach to overcome the challenges of environmental crisis and energy shortage. Here we fabricated a cuprous oxide (Cu2O) based composite photocatalyst consisting of Cu2O/carbon nanoparticles (CNPs). To prepare the CNPs, coal samples from Wucaiwan, Xinjiang, China, were first treated with HNO3, followed by hydrogen peroxide (H2O2) oxidation to strip nanocrystalline carbon from coal. After linking with oxygen-containing group such as hydroxyl, coal-based CNPs with sp2 carbon structure and multilayer graphene lattice structure were synthesized. Subsequently, the CNPs were loaded onto the surface of Cu2O nanoparticles prepared by in-situ reduction of copper chloride (CuCl2·2H2O). The physical properties and chemical structure of the Cu2O/CNPs as well as photocatalytic activity of CO2/H2O reduction into CH3OH were measured. The results demonstrate that the Cu2O/CNPs are composed of spherical particles with diameter of 50 nm and mesoporous structure, which are suitable for CO2 adsorption. Under illumination of visible light, electron-hole pairs are generated in Cu2O. Thanks to the CNPs, the fast recombination of electron-hole pairs is suppressed. The energy gradient formed on the surface of Cu2O/CNPs facilitates the efficient separation of electron-hole pairs for CO2 reduction and H2O oxidation, leading to enhanced photocatalytic activity.

  2. Sensors of the gas CO in thin film of SnO2:Cu

    International Nuclear Information System (INIS)

    Tirado G, S.; Sanchez Z, F. E.

    2011-10-01

    Thin films of SnO 2 :Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO 2 were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO 2 :Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO 2 :Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  3. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Ying, Puyou; Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2016-06-21

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  4. Investigation of modulus hardening of various co-clusters in aged Al-Cu-Mg-Ag alloy by atom probe tomography

    International Nuclear Information System (INIS)

    Bai, Song; Liu, Zhiyi; Ying, Puyou; Wang, Jian; Li, Junlin

    2016-01-01

    The modulus hardening capability of various co-clusters in a low Cu/Mg ratio Al-Cu-Mg-Ag alloy aged at 165 °C is investigated by quantitative atom probe tomography analysis. Prolonged aging from 5 min to 2 h leads to the simultaneous increase in the critical shear stress of both Mg-Ag and Cu-Mg co-clusters. Regardless of the higher shear modulus of Cu-Mg co-clusters, calculation results show that Mg-Ag co-clusters possess a greater modulus hardening capability than Cu-Mg co-clusters, suggesting its primary contribution to the rapid hardening at the early aging stage. As aging extends from 30 min to 2 h, the increment in the critical shear stress of Mg-Ag co-clusters is lower than that of Cu-Mg co-clusters due to the precipitation of high density Ω phase. In addition, the shear modulus of Mg-Ag co-clusters is generally independent on its size at each investigated condition.

  5. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting.

    Science.gov (United States)

    Lu, Yanjin; Ren, Ling; Xu, Xiongcheng; Yang, Yang; Wu, Songquan; Luo, Jiasi; Yang, Mingyu; Liu, Lingling; Zhuang, Danhong; Yang, Ke; Lin, Jinxin

    2018-05-01

    In the study, CoCrWCu alloys with differing Cu content (2, 3, 4 wt%) were prepared by selective laser melting using mixture powders consisting of CoCrW and Cu, aiming at investigating the effect of Cu on the microstructures, mechanical properties, corrosion behavior and cytotoxicity. The SEM observations indicated that the Cu content up to 3 wt% caused the Si-rich precipitates to segregate along grain boundaries and in the grains, and EBSD analysis suggested that the Cu addition decreased the recrystallization degree and increased the grain diameter and fraction of big grains. The tensile tests found that the increasing Cu content led to a decrease of mechanical properties compared with Cu-free CoCrW alloy. The electrochemical tests revealed that the addition of Cu shifted the corrosion potential toward nobler positive, but increased the corrosion current density. Also, a more protective passive film was formed when 2 wt% Cu content was added, but the higher Cu content up to 3 wt% was detrimental to the corrosion resistance. It was noted that there was no cytotoxicity for Cu-bearing CoCrW alloys to MG-63 cell and the cells could spread well on the surfaces of studied alloys. Meanwhile, the Cu-bearing CoCrW alloy exhibited an excellent antibacterial performance against E.coli when Cu content was up to 3 wt%. It is suggested that the feasible fabrication of Cu-bearing CoCrW alloy by SLM using mixed CoCrW and Cu powders is a promising candidate for use in antibacterial oral repair products. This current study also can aid in the further design of antibacterial Cu-containing CoCrW alloying powders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect of Cu-Cr co-substitution on magnetic properties of nanocrystalline magnesium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Melikhov, Yevgen [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Nlebedim, Ikenna Cajetan [Ames Laboratory of US Department of Energy, Ames, IA 50011 (United States)

    2012-03-15

    This study deals with the temperature and composition dependence of magnetization and magnetic anisotropy of Cu{sup 2+}-Cr{sup 3+} co-substituted magnesium ferrite, Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x=0.0-0.5). The synthesized materials are characterized using thermo gravimetric analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray fluorescence, Moessbauer spectrometer, superconducting quantum interference device magnetometer and vibrating sample magnetometer. The M-H loops measured up to 50 kOe at 300, 200 and 100 K, revealed narrow hysteresis curves with a coercive field and saturation magnetization varying for different compositions. The high field regimes of these loops are modeled using the Law of Approach to saturation to extract anisotropy information and saturation magnetization. Both the saturation magnetization and the anisotropy constant are observed to increase with the decrease in temperature while decrease with the Cu-Cr co-substituents for all the samples. Explanation of the observed behavior is proposed in terms of the preference of the co-substituent ions of Cu{sup 2+} and Cr{sup 3+} and their predominant choice to substitute into the octahedral sites of the cubic spinel lattice. - Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} was synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer Present paper dealt with magnetic properties of Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4}. Black-Right-Pointing-Pointer XRD patterns revealed tetragonal distorted cubic structure of Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4}. Black-Right-Pointing-Pointer Mossbauer spectroscopy confirmed that Cu-Cr occupy octahedral sites. Black-Right-Pointing-Pointer High field regime of M-H loops was modeled using Law of Approach to saturation.

  7. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shaharun, Salina, E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Shaharun, Maizatul S., E-mail: salinashaharun@gmail.com, E-mail: maizats@petronas.com.my; Taha, Mohd F., E-mail: faisalt@petronas.com.my [Department of Fundamental and Applied Science, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Mohamad, Dasmawati, E-mail: dasmawati@kck.usm.my [School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.6–59.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.

  8. The geochemical profile of Mn, Co, Cu and Fe in Kerteh Mangrove Forest, Terengganu

    International Nuclear Information System (INIS)

    Kamaruzzaman, B.Y.; Antotina, A.; Airiza, Z.; Syalindran, S.; Ong, M.C.

    2007-01-01

    The geochemical profile of Kerteh mangrove sediments was analyzed for the vertical and horizontal distribution. The 100 cm core sediment sample and 15 surface sediments samples were taken from the field. The geochemical elements of Mn, Co, Cu and Fe of the sediments were analyzed. Geochemical proxy of Mn, Co, Cu and Fe were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The mean concentrations of Mn, Co, Cu and Fe for the vertical distribution were 210.18 μg/ g, 15.55 μg/ g, 43.65 μg/ g and 1.88 μg/ g respectively. on the other hand, the mean concentrations of the geochemical elements for horizontal distributions were 230.50 μg/ g for Mn, 17.57 μg/ g for Co, 43.381 μg/ g for Cu and 2.93 μg/ g for Fe. Enrichment factor and normalization was used to point out the level of pollution. The EF and the normalization indicated that all the geochemical elements were from the natural sources. (author)

  9. Layered structure analysis of multilayers by X-ray reflectometry using the Cu-Kβ line

    International Nuclear Information System (INIS)

    Usami, Katsuhisa; Ueda, Kazuhiro; Hirano, Tatsumi; Hoshiya, Hiroyuki; Narishige, Shinji.

    1997-01-01

    The suitability of X-ray reflectometry using the Cu-K β line for layered structure analysis of NiFe/Cu/NiFe/Ta layered films was studied. Structural parameters such as film thickness, density, and interface width can be determined more accurately than by Cu-K α1 X-ray reflectometry, owing to the abnormal dispersion effect. The standard deviations in determination of film thicknesses were within ±0.3% for NiFe and Ta films and ±0.03 nm for 2 nm Cu film. Those for the densities and interface widths were within ±2% and ±0.04 nm for all films, respectively. Analysis of some layered films regarding the change in Cu film thickness showed that in all these samples the density of the films most closely reflected the density of bulk material, and the interface width between the upper NiFe and Cu films increased with increasing Cu film thickness. (author)

  10. Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu

    International Nuclear Information System (INIS)

    Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

    1992-01-01

    Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H 2 (D 2 ), H 2 0, NH 3 and N 2 . Measurements at both low coverage and at saturation are discussed

  11. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    Science.gov (United States)

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  12. Cu(II) AND Zn(II)

    African Journals Online (AJOL)

    Preferred Customer

    SYNTHESIS OF 2,2-DIMETHYL-4-PHENYL-[1,3]-DIOXOLANE USING ZEOLITE. ENCAPSULATED Co(II), Cu(II) AND Zn(II) COMPLEXES. B.P. Nethravathi1, K. Rama Krishna Reddy2 and K.N. Mahendra1*. 1Department of Chemistry, Bangalore University, Bangalore-560001, India. 2Department of Chemistry, Government ...

  13. Magnetoresistant Co/Cu multilayers: effect of crystallographic orientation of the layers

    International Nuclear Information System (INIS)

    Boher, P.; Giron, F.; Houdy, P.; Beauvillain, P.; Chappert, C.; Veillet, P.

    1992-01-01

    In the last few years ferromagnetic/non-ferromagnetic multilayers have received considerable attention due to their great interest formagnetoresistive applications. Giant magnetoresistance has been observed in the Cu/Co system but with quite high saturation field (>>1 kOe). In this paper we report on an original way to enhance this characterisitc, using unusual fcc left angle 100 right angle cristallographic orientation. Special preparation of the right angle 100 right angle silicon substrates is investigated using in-situ kinetic ellipsometry, RHEED, grazing X-ray reflection and X-ray diffraction. We show that good quality fcc right angle 100 right angle pseudo-epitaxial copper surface can be obtained only when two conditions are fulfilled: first the silicon surface must be completely free of native oxide and second the copper buffer layer must be annealed under ultrahigh vacuum. Perfectly clean silicon surfaces are obtained by chemical etching followed by flash heating under ultrahigh vacuum. The copper buffer layer reacts with silicon and gives a textured fcc right angle 100 right angle Cu phase with a 45 rotation of the Cu left angle 100 right angle lattice with regards to the Si right angle 100 right angle one. Additional annealing leads to an homogencous interface silicide layer and improves the cristallinity of the Cu buffer layer. Cu/Co multilayers deposited on this kind of substrate show a well-defined fcc right angle 100 right angle texture for a large range of layer thickness. Oscillation of magnetoresistance with the copper thickness is observed with a period of about 10 A. The maximum of magnetoresistance is found for 20.9 A of Cu (ΔR/R∼6%), and the differential magnetoresistance is very high (ΔR/RΔH = 1.4 kOe -1 ). Combination of antiferromagnetic coupling and quadratic in-plane anisotropy of this special cristallographic orientation is responsible for this improvement. (orig.)

  14. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.

    Science.gov (United States)

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-09-07

    Gold is known currently as the most active single-element electrocatalyst for CO2 electroreduction reaction to CO. In this work, we combine Au with a second metal element, Cu, to reduce the amount of precious metal content by increasing the surface-to-mass ratio and to achieve comparable activity to Au-based catalysts. In particular, we demonstrate that the introduction of a Au-Cu bifunctional "interface" is more beneficial than a simple and conventional homogeneous alloying of Au and Cu in stabilizing the key intermediate species, *COOH. The main advantages of the proposed metal-metal bifunctional interfacial catalyst over the bimetallic alloys include that (1) utilization of active materials is improved, and (2) intrinsic properties of metals are less affected in bifunctional catalysts than in alloys, which can then facilitate a rational bifunctional design. These results demonstrate for the first time the importance of metal-metal interfaces and morphology, rather than the simple mixing of the two metals homogeneously, for enhanced catalytic synergies.

  15. Chemical reactivities of the superconducting oxides, YBa2Cu3Oy and BiSrCaCu2Oy

    International Nuclear Information System (INIS)

    Toyama, Hisashi; Mizuno, Noritaka; Misono, Makoto

    1989-01-01

    The chemical reactivities of YBa 2 Cu 3 O y and BiSrCaCu 2 O y with various gases have been studied. It was found that large quantities of NO, CO, and NO 2 were rapidly absorbed (or intercalated) in the bulk of YBa 2 Cu 3 O y (T c : 90 K) at 573 K. The amount absorbed was in the order NO ∼ CO ∼ NO 2 > O 2 ∼ CO 2 > N 2 O ∼ 0. The amount for NO was more than two times the amount of YBa 2 Cu 3 O y in molar ratio and elongation by about 0.2 angstrom along c-axis was observed. NO absorbed was almost completely recovered as NO by the evacuation at 773 K. This absorption-desorption cycle proceeded reversively. The electronic resistivity at 573 K of YBa 2 Cu 3 O y increased upon the NO absorption and was restored by the evacuation at 773 K. CO was also absorbed rapidly accompanied by evolution of CO 2 . BiSrCaCu 2 O y did not absorb either NO or CO

  16. Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se{sub 2} for solar cells applications: Microstructure and Ga in-depth alloying

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, R., E-mail: raquel.caballero@helmholtz-berlin.de [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Izquierdo-Roca, V. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain); Fontane, X. [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Kaufmann, C.A. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Alvarez-Garcia, J. [Centre de Recerca i Investigacio de Catalunya (CRIC), Trav. de Gracia 108, 08012 Barcelona (Spain); Eicke, A. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Industriestrasse 6, 70565 Stuttgart (Germany); Calvo-Barrio, L. [Lab. Analisis de Superficies, SCT, Universitat de Barcelona, Lluis Sole i Sabaris 1-3, 08028 Barcelona (Spain); Perez-Rodriguez, A. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain); Schock, H.W. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Morante, J.R. [M-2E/XaRMAE/IN2UB, Departament d' Electronica, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona (Spain)] [IREC, Catalonia Institute for Energy Research, C. Joseph Pla 2 B2, 08019 Barcelona (Spain)

    2010-05-15

    The objective of this work is to study the influence of the maximum Cu content during the deposition of Cu(In,Ga)Se{sub 2} (CIGSe) by multi-stage co-evaporation on the phases present in the final film, the film structure and the electrical properties of resulting solar cell devices. The variation of the composition is controlled by the Cu content in stage 2 of the deposition process. The different phases are identified by Raman spectroscopy. The in-depth Ga gradient distribution is investigated by in-depth resolved Raman scattering and secondary neutral mass spectroscopy. The morphology of the devices is studied by scanning electron microscopy. Efficiencies of 9.2% are obtained for ordered-vacancy-compound-based cells with a Cu/(In + Ga) ratio = 0.35, showing the system's flexibility. This work supports the current growth model: a small amount of Cu excess during the absorber process is required to obtain a quality microstructure and high performance devices.

  17. Leaching of a Cu-Co ore from Congo using sulphuric acidhydrogen peroxide leachants

    Directory of Open Access Journals (Sweden)

    Seo S.Y.

    2013-01-01

    Full Text Available A Cu-Co ore from Katinga Province, the Republic of Congo containing 1.5% Co and 1.6% Cu was tested to determine the leachability of Cu and Co using sulphuric acid and hydrogen peroxide mixtures at different conditions. Without hydrogen peroxide, the maximum extraction of copper and cobalt were found to be ~80% and ~15%, respectively when the acid concentration was varied between 0.36 - 1.1M. When hydrogen peroxide was added (0.008-0.042M, Cu recovery was enhanced to ~90%. Recoveries of ~90% of Co could be achieved at 20ºC, using leachants consisting of 0.36M sulphuric acid and 0.025M hydrogen peroxide after 3 hours. The reaction time to reach 90% Co extraction was reduced to less than 2 hours at 30ºC. Stabcal modelling of the Eh-pH diagrams shows the importance of hydrogen peroxide as a reductant. The decrease of solution potential (300-350 mV by adding hydrogen peroxide was confirmed by Eh measurements during the tests. The leaching follows the shrinking core model kinetics, where the rate constant is linearly dependent on hydrogen peroxide concentration in the range 0-0.025M and proportional to (1/r2 where r is the average radius of the mineral particles. The activation energy for the leaching process is 72.3 kJ/mol.

  18. Oxidation of a [Cu2S] complex by N2O and CO2: insights into a role of tetranuclearity in the CuZ site of nitrous oxide reductase.

    Science.gov (United States)

    Bagherzadeh, Sharareh; Mankad, Neal P

    2018-01-25

    Oxidation of a [Cu 2 (μ-S)] complex by N 2 O or CO 2 generated a [Cu 2 (μ-SO 4 )] product. In the presence of a sulfur trap, a [Cu 2 (μ-O)] species also formed from N 2 O. A [Cu 2 (μ-CS 3 )] species derived from CS 2 modeled initial reaction intermediates. These observations indicate that one role of tetranuclearity in the Cu Z catalytic site of nitrous oxide reductase is to protect the crucial S 2- ligand from oxidation.

  19. Controllable Interfacial Coupling Effects on the Magnetic Dynamic Properties of Perpendicular [Co/Ni]5/Cu/TbCo Composite Thin Films.

    Science.gov (United States)

    Tang, Minghong; Zhao, Bingcheng; Zhu, Weihua; Zhu, Zhendong; Jin, Q Y; Zhang, Zongzhi

    2018-02-07

    Dynamic magnetic properties in perpendicularly exchange-coupled [Co/Ni] 5 /Cu (t Cu = 0-2 nm)/TbCo structures show strong dependences on the interfacial antiferromagnetic strength J ex , which is controlled by the Cu interlayer thickness. The precession frequency f and effective damping constant α eff of a [Co/Ni] 5 multilayer differ distinctly for parallel (P) and antiparallel (AP) magnetization orientation states. For samples with a thin t Cu , f of the AP state is apparently higher, whereas α eff is lower than that in the P state, owing to the unidirectional exchange bias effect (H EB ) from the TbCo layer. The differences in f and α eff between the two states gradually decrease with increasing t Cu . By using a uniform precession model including an additional H EB term, the field-dependent frequency curves can be well-fitted, and the fitted H EB value is in good agreement with the experimental data. Moreover, the saturation damping constant α 0 displays a nearly linear correlation with J ex . It decreases significantly with J ex and eventually approaches a constant value of 0.027 at t Cu = 2 nm where J ex vanishes. These results provide a better understanding and effective control of magnetization dynamics in exchange-coupled composite structures for spintronic applications.

  20. Transverse excitations in liquid Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Hosokawa, S; Inui, M; Kajihara, Y; Tsutsui, S; Baron, A Q R

    2015-01-01

    Transverse acoustic (TA) excitation modes were observed in inelastic x-ray scattering spectra of liquid Fe, Cu and Zn. From the analysis of current correlation functions, we concluded that TA excitation modes can experimentally be detected through the quasi-TA branches in the longitudinal current correlation spectra in these liquid metals. The microscopic elastic constants are estimated and a characteristic difference from macroscopic polycrystalline value was found in Poisson's ratio of liquid Fe, which shows an extremely softer value of ∼0.38 compared with the macroscopic value of ∼0.275. The lifetime of the TA modes were determined to be ∼0.45 ps for liquid Fe and Cu and ∼0.55 ps for liquid Zn, reflecting different interatomic correlations between liquid transition metals and non-transition metals. The propagation length of the TA modes are ∼0.85 nm in all of liquid metals, corresponding to the size of icosahedral or similar size of cages formed instantaneously in these liquid metals. (paper)

  1. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    Science.gov (United States)

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  2. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.Heavy metals are a group of elements with specific features and natural occurrence in the environment, representing an accessory in the formation of rocks. These elements, although associated with toxicity, must be treated different from xenobiotics, since many

  3. Effect of 67Cu and 99Mo labeled tetrathiomolybdate on the distribution of 67Cu, Cu, and 99Mo in bile fractions in sheep

    International Nuclear Information System (INIS)

    Gooneratne, R.; Laarveld, B.; Christensen, D.

    1989-01-01

    The effect of intravenous administration of 67 Cu and 99 Mo labeled tetrathiomolybdate (TTM) on the appearance of 67 Cu, stable Cu, and 99 Mo in gel chromatographic fractions of bile was examined in sheep fed either 5 or 35 mg Cu kg-1 DM. Peak excretory periods of biliary 67 Cu, stable Cu, and 99 Mo were observed at 30 min-1.25 hr, 2-3 hr, and 11-13 hr after 67 Cu and after 99 Mo labeled TTM. Sephadex G-75 gel filtration of bile samples collected at 1, 3, and 12 hr after 67 Cu administration revealed two major protein peaks of molecular weights of greater than 80,000 (peak I) and 7,000 (peak II) containing both 67 Cu and Cu. But the ratio of 67 Cu in the two peaks varied with time of bile collection. The ratio of areas of peak I:II 1 hr after 67 Cu administration was approximately 0.48; at 3 hr, 0.62, and at 12 hr 1.35. Tetrathiomolybdate administration increased both 67 Cu and stable Cu in bile by severalfold and induced a major shift of Cu into the higher molecular weight protein fraction. The experiments confirm the effectiveness of TTM as a ''decoppering'' agent. Furthermore, TTM not only promoted bile Cu excretion, but it also increased the incorporation of Cu into the macromolecular fraction. This may limit enterohepatic circulation of biliary Cu and thereby cause an overall Cu depletion and a negative Cu balance

  4. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-01-01

    , especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys

  5. Structural characterization of two new quaternary chalcogenides: CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E.; Grima-Gallardo, Pedro; Nieves, Luis, E-mail: gerzon@ula.ve [Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Cabrera, Humberto [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Cientificas (IVIC), Merida (Venezuela, Bolivarian Republic of); Glenn, Jennifer R.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA (United States)

    2016-11-15

    The crystal structure of the chalcogenide compounds CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4} , two new members of the I-II{sub 2}-III-VI{sub 4} family, were characterized by Rietveld refinement using X-ray powder diffraction data. Both materials crystallize in the tetragonal space group I4-bar 2m (No. 121), Z = 2, with a stannite-type structure, with the binaries CoTe and NiTe as secondary phases. (author)

  6. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao

    2018-04-24

    Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

  7. Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors

    Science.gov (United States)

    Yan, Hailong; Lu, Yang; Zhu, Kejia; Peng, Tao; Liu, Xianming; Liu, Yunxin; Luo, Yongsong

    2018-05-01

    A series of CuCo2O4 nanostructures with different morphologies were prepared by a hydrothermal method in combination with thermal treatment. The morphology, structure and composition were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. As the electrode materials for supercapacitors, CuCo2O4 nanoneedles delivered the highest specific capacitance compared with other CuCo2O4 nanostructures. Electrochemical performance measurements demonstrate that the carbon layer can improve the electrochemical stability of CuCo2O4 nanoneedles. The CuCo2O4@C electrode exhibits a high specific capacitance of 1432.4 F g-1 at a current density of 1 A g-1, with capacitance retention of 98.2% after 3000 circles. These characteristics of CuCo2O4@C composite are mainly due to the unique one dimensional needle-liked architecture and the conducting carbon, which provide a faster ion/electron transfer rate. These excellent performances of the CuCo2O4@C electrode confirmed the material as a positive electrode for hybrid supercapacitor application.

  8. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons

    Science.gov (United States)

    Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.

    2017-01-01

    In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the , , and orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377

  9. Copper diffusion in TaN-based thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fraisse, B. [Laboratoire Structure, Proprietes et Modelisation des Solides (UMR 8580), Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Sarradin, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fries, S.G. [SGF Scientific Consultancy, Arndt str.9, D-52064 Aachen (Germany); Tedenac, J.C. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Frety, N. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-07-15

    The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.

  10. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    Science.gov (United States)

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Preparation of YBa2Cu3O7-δ powders by the thermal decomposition of a heteronuclear complex, CuY1/3Ba2/3(dhbaen)(NO3)1/3(H2O)3

    International Nuclear Information System (INIS)

    Hasegawa, E.; Aono, H.; Sadaoka, Y.; Traversa, E.

    1999-01-01

    YBa 2 Cu 3 O 7-δ powders were prepared by the thermal decomposition of a heteronuclear complex, CuY 1/3 Ba 2/3 (dhbaen)(NO 3 ) 1/3 (H 2 O) 3 . The products of the complex thermal decomposition were analyzed by TG-DTA, XRD, SEM-Auger and XPS. The decomposition of the CuY 1/3 Ba 2/3 -complex was obtained at about 500 C and the product was a mixture of oxides and carbonates. The formation of YBa 2 Cu 3 O 7-δ proceeded at 800 C, with a gradual decomposition of the carbonates. A homogeneous distribution of each element, Y, Ba, and Cu, was observed for the decomposed CuY 1/3 Ba 2/3 -complex by SEM-Auger analysis. The binding energy values of Ba3d 5/2 and O1s photolines from Ba and O in the superconductive lattice did not shift during the sputtering period. Furthermore, the formation of Ba rich regions on the surface was depressed by using the complex as a starting material for homogeneous 123-oxide, YBa 2 Cu 3 O 7-δ . (orig.)

  12. Morphological Control of Mesoporosity and Nanoparticles within Co3O4-CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance.

    Science.gov (United States)

    Pradhan, Amaresh C; Uyar, Tamer

    2017-10-18

    The one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co 3 O 4 -CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co 3 O 4 -CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co 3 O 4 -CuO NFs but also single mesoporous Co 3 O 4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co 3 O 4 nanofibers framework (Co 3 O 4 -CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co 3 O 4 -CuO NFs is due to the internal charge transfer between Co 2+ to Co 3+ and Cu 2+ , proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co 3 O 4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co 3 O 4 -CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co 3 O 4 -CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co 3 O 4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic

  13. A density functional study on properties of a Cu{sub 3}Zn material and CO adsorption onto its surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qian-Lin, E-mail: qltang@xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Duan, Xiao-Xuan; Liu, Bei; Wei, An-Qing; Liu, Sheng-Long [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Wang, Qi, E-mail: qwang@mail.xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Liang, Yan-Ping, E-mail: ypliang@mail.xidian.edu.cn [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); Ma, Xiao-Hua [Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China); State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, No. 2 South Taibai Road, Xi’an, Shaanxi 710071 (China)

    2016-02-15

    Graphical abstract: Periodic first-principles calculations have been utilized to evaluate the bulk and surface properties of a Cu{sub 3}Zn alloy. - Highlights: • The bulk and surface properties of a DO{sub 23}-Cu{sub 3}Zn alloy were studied with DFT-GGA. • The stability of Cu{sub 3}Zn surfaces correlates with the coordination of surface atoms. • Both the (1 1 4) and (2 1 4) facets are most likely observed in Cu{sub 3}Zn alloy particles. • Covalent bonding influences overwhelmingly the adsorption between CO and Cu{sub 3}Zn. - Abstract: Prior experimental and theoretical efforts have provided strong evidence that the formation of α-brass such as Cu{sub 3}Zn alloys in Cu/ZnO/Al{sub 2}O{sub 3} CO{sub 2}/CO hydrogenation catalysts enhances dramatically the catalytic activity toward methanol synthesis. In this work, a density functional theory (DFT) slab model has been adopted to get information concerning the bulk and surface properties of DO{sub 23}-like Cu{sub 3}Zn and to explore CO molecular adsorption, which will help pave the way to future rationalization of the impact of surface alloying on Cu/ZnO-based catalysis for CO{sub 2} and CO hydrogenations. Our calculations imply that the bulk modulus and cohesive energy of the binary solid solution lie between the corresponding ones for the individual components, but only the former quantity equals its composition weighted average. From the DFT-computed surface energies, the stability of Cu{sub 3}Zn surfaces was predicted to be reinforced in the sequence (1 1 0) < (1 0 1) < (1 1 1) < (1 0 0) = (0 0 1) < (2 1 4) < (1 1 4), which can be interpreted as sensitive to the density change of surface dangling bonds. The downward shifts in the C–O stretch frequency measured experimentally over methanol synthesis catalysts at successively elevated reduction temperatures were correctly reproduced by the present simulation for the adsorption of CO to take place at Cu{sub 3}Zn(1 1 4), Cu{sub 3}Zn(2 1 4) and, as a reference

  14. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  15. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    International Nuclear Information System (INIS)

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-01-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr_2O_3, CrO_2, WO_3, Cu_2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;

  16. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanjin; Zhao, Chaoqian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Guo, Sai; Gan, Yiliang [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Wu, Songquan; Lin, Junjie; Huang, Tingting [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Lin, Jinxin, E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China)

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr{sub 2}O{sub 3}, CrO{sub 2}, WO{sub 3}, Cu{sub 2}O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;.

  17. The surface chemistry of Cu in the presence of CO2 and H2O

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xingyi; Verdaguer, Albert; Herranz, Tirma; Weis, Christoph; Bluhm, Hendrik; Salmeron, Miquel

    2008-07-16

    The chemical nature of copper and copper oxide (Cu{sub 2}O) surfaces in the presence of CO{sub 2} and H{sub 2}O at room temperature was investigated using ambient pressure x-ray photoelectron spectroscopy. The studies reveal that in the presence of 0.1 torr CO{sub 2} several species form on the initially clean Cu, including carbonate CO{sub 3}{sup 2}, CO{sub 2}{sup {delta}-} and C{sup 0}, while no modifications occur on an oxidized surface. The addition of 0.1 ML Zn to the Cu results in the complete conversion of CO{sub 2}{sup {delta}-} to carbonate. In a mixture of 0.1 torr H{sub 2}O and 0.1 torr CO{sub 2}, new species are formed, including hydroxyl, formate and methoxy, with H{sub 2}O providing the hydrogen needed for the formation of hydrogenated species.

  18. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    Science.gov (United States)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-04-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (H c > 10 kOe) can be achieved without any microstructural refinement.

  19. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    Science.gov (United States)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-06-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.

  20. High yield Cu-Co CPP GMR multilayer sensors

    International Nuclear Information System (INIS)

    Spallas, J., Mao, M., Law, B., Grabner, F., Cerjan, C., O'Kane, O.

    1997-01-01

    We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operational devices to ≥90% per wafer and a significant reduction of the device resistance to ≤560 milliohms and of the uniformity of the device resistance to ≤3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 angstrom/Co 20 angstrom] 18 (third peak) to [Cu 20.5 angstrom/Co 12 angstrom] 30 (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% ± 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% ± 4%. The average second peak CPP sensitivity is 0.09 %/Oe ± 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs

  1. Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3

    International Nuclear Information System (INIS)

    Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.

    2006-01-01

    LaNi 3 exhibited a metallic antiferromagnetic property with T N =30 K. La(Ni 1-x Co x ) 3 with x=0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x. La(Ni 1-2z Co z Cu z ) 3 with z=0.015 exhibited a ferromagnetic property with a small T C . A La(Ni 1-y Cu y ) 3 sample with y=0.01 exhibited a Pauli-paramagnetic property; those with y=0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y=0.05 exhibited a ferromagnetic property. The gradual metamagnetic M-H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Deuterium transport in Cu, CuCrZr, and Cu/Be

    Science.gov (United States)

    Anderl, R. A.; Hankins, M. R.; Longhurst, G. R.; Pawelko, R. J.

    This paper presents the results of deuterium implantation/permeation experiments and TMAP4 simulations for a CuCrZr alloy, for OFHC-Cu and for a Cu/Be bi-layered structure at temperatures from 700 to 800 K. Experiments used a mass-analyzed, 3-keV D 3+ ion beam with particle flux densities of 5 × 10 19 to 7 × 10 19 D/m 2 s. Effective diffusivities and surface molecular recombination coefficients were derived giving Arrhenius pre-exponentials and activation energies for each material: CuCrZr alloy, (2.0 × 10 -2 m 2/s, 1.2 eV) for diffusivity and (2.9 × x10 -14 m 4/s, 1.92 eV) for surface molecular recombination coefficients; OFHC Cu, (2.1 × 10 -6 m 2/s, 0.52 eV) for diffusivity and (9.1 × 10 -18 m 4/s, 0.99 eV) for surface molecular recombination coefficients. TMAP4 simulation of permeation data measured for a Cu/Be bi-layer sample was achieved using a four-layer structure (Cu/BeO interface/Be/BeO back surface) and recommended values for diffusivity and solubility in Be, BeO and Cu.

  3. Thermochemical properties of oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems

    International Nuclear Information System (INIS)

    Moiseev, G.K.; Vatolin, N.A.; Il'inykh, N.I.

    2000-01-01

    Thermochemical properties (ΔH 0 298 , S 0 298 , H 0 298 -H 0 0 , C p (T), C p at T>T melt ) of complex oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems obtained with application of calculation methods are presented. Nonexperimental methods of estimation, revision and correction of standard formation enthalpies of inorganic compounds are described [ru

  4. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnikov, S. V., E-mail: kolesnikov@physics.msu.ru; Klavsyuk, A. L.; Saletsky, A. M. [Moscow State University, Faculty of Physics (Russian Federation)

    2015-10-15

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  5. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    Science.gov (United States)

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the

  6. Sequestration of Cu(II), Ni(II), and Co(II) by ethyleneimine immobilized on silica

    International Nuclear Information System (INIS)

    Arakaki, Luiza N.H.; Alves, Ana Paula M.; Silva Filho, Edson C. da; Fonseca, Maria G.; Oliveira, Severino F.; Espinola, Jose Geraldo P.; Airoldi, Claudio

    2007-01-01

    Thermodynamic data on interaction of Cu(II), Ni(II), and Co(II) with silica modified with ethyleneimine are obtained by calorimetric titration. The amount of ethyleneimine anchored on silica surface was estimated to be 0.70 mmol g -1 . The enthalpies of binding Ni(II), Cu(II) and Co(II), are -3.59 ± 0.001, -4.88 ± 0.001, and -7.75 ± 0.003 kJ mol -1 , respectively

  7. Magnetic rotation spectra of Co/Pt and Co/Cu multilayers in 50-90 eV region

    International Nuclear Information System (INIS)

    Saito, K.; Igeta, M.; Ejima, T.; Hatano, T.; Arai, A.; Watanabe, M.

    2005-01-01

    Faraday rotation spectra of Co/Pt multilayers were obtained in the region including Co M 2,3 and Pt N 6,7 absorption edges by using multilayer polarizers, and were transformed to magnetic circular dichroism (MCD) spectra by Kramers-Kronig analysis (KKA). From the dependence of the rotation angle on the layer thickness, it was suggested that the magnetization of Co tends to be uniform in Co layers and that of Pt is localized at Co/Pt interfaces. The orbital magnetic moment of Co was estimated to be about 0.17 μ B /Co. The similarity of electronic states around magnetized Pt site between Co/Pt multilayers and CoPt 3 alloy is suggested by the resemblance of the MCD spectra of both materials around Pt N 6,7 edges. In addition, magnetic Kerr rotation of Co/Cu multilayer was measured and was observed around Co M 2,3 and Cu M 2,3 absorption edges

  8. Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    Kim, H.; Detavenier, C.; Straten, O. van der; Rossnagel, S.M.; Kellock, A.J.; Park, D.-G.

    2005-01-01

    TaN x diffusion barriers with good barrier properties at subnanometer thickness were deposited by plasma-enhanced atomic layer deposition (PE-ALD) from pentakis(dimethylamino)Ta. Hydrogen and/or nitrogen plasma was used as reactants to produce TaN x thin films with a different nitrogen content. The film properties including the carbon and oxygen impurity content were affected by the nitrogen flow during the process. The deposited film has nanocrystalline grains with hydrogen-only plasma, while the amorphous structure was obtained for nitrogen plasma. The diffusion barrier properties of deposited TaN films for Cu interconnects have been studied by thermal stress test based on synchrotron x-ray diffraction. The results indicate that the PE-ALD TaN films are good diffusion barriers even at a small thickness as 0.6 nm. Better diffusion barrier properties were obtained for higher nitrogen content. Based on a diffusion kinetics analysis, the nanocrystalline microstructure of the films was responsible for the better diffusion barrier properties compared to polycrystalline PE-ALD TaN films deposited from TaCl 5

  9. Mixed-Matrix Membranes for CO2 and H2 Gas Separations Using Metal-Organic Framework and Mesoporus Hybrid Silicas

    International Nuclear Information System (INIS)

    Musselman, Inga; Balkus, Kenneth Jr.; Ferraris, John

    2009-01-01

    In this work, we have investigated the separation performance of polymer-based mixed-matrix membranes containing metal-organic frameworks and mesoporous hybrid silicas. The MOF/Matrimid(reg s ign) and MOP-18/Matrimid(reg s ign) membranes exhibited improved dispersion and mechanical strength that allowed high additive loadings with reduced aggregation, as is the case of the 80 wt% MOP-18/Matrimid(reg s ign) and the 80% (w/w) Cu-MOF/Matrimid(reg s ign) membranes. Membranes with up to 60% (w/w) ZIF-8 content exhibited similar mechanical strength and improved dispersion. The H 2 /CO 2 separation properties of MOF/Matrimid(reg s ign) mixed-matrix membranes was improved by either keeping the selectivity constant and increasing the permeability (MOF-5, Cu-MOF) or by improving both selectivity and permeability (ZIF-8). In the case of MOF-5/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.6 and the H 2 permeability increased from 24.4 to 53.8 Barrers. For the Cu-MOF/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.05 and the H 2 permeability increased from 17.1 to 158 Barrers. These two materials introduced porosity and uniform paths that enhanced the gas transport in the membranes. When ZIF-8/Matrimid(reg s ign) mixed-matrix membranes were studied, the H 2 /CO 2 selectivity increased from 2.9 to 4.4 and the permeability of H 2 increased from 26.5 to 35.8 Barrers. The increased H 2 /CO 2 selectivity in ZIF-8/Matrimid(reg s ign) membranes was explained by the sieving effect introduced by the ZIF-8 crystals (pore window 0.34 nm) that restricted the transport of molecules larger than H 2 . Materials with microporous and/or mesoporous cavities like carbon aerogel composites with zeolite A and zeolite Y, and membranes containing mesoporous ZSM-5 showed sieving effects for small molecules (e.g. H 2 and CO 2 ), however, the membranes were most selective for CO 2 due to the strong interaction of the zeolites with

  10. Efficient hole-transporting layer MoO_3:CuI deposited by co-evaporation in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Barkat, L.; Khelil, A.; Hssein, M.; El Jouad, Z.; Cattin, L.; Louarn, G.; Stephant, N.; Ghamnia, M.; Addou, M.; Morsli, M.; Bernede, J.C.

    2017-01-01

    In order to improve hole collection at the interface anode/electron donor in organic photovoltaic cells, it is necessary to insert a hole-transporting layer. CuI was shown to be a very efficient hole-transporting layer. However, its tendency to be quite rough tends to induce leakage currents and it is necessary to use a very slow deposition rate for CuI to avoid such negative effect. Herein, we show that the co-deposition of MoO_3 and CuI avoids this difficulty and allows deposition of a homogeneous efficient hole-collecting layer at an acceptable deposition rate. Via an XPS study, we show that blending MoO_3:CuI improves the hole collection efficiency through an increase of the gap state density. This increase is due to the formation of Mo"5"+ following interaction between MoO_3 and CuI. Not only does the co-evaporation process allow for decreasing significantly the deposition time of the hole-transporting layer, but also it increases the efficiency of the device based on the planar heterojunction, CuPc/C_6_0. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Low-Temperature Cu-Cu Bonding Using Silver Nanoparticles Fabricated by Physical Vapor Deposition

    Science.gov (United States)

    Wu, Zijian; Cai, Jian; Wang, Junqiang; Geng, Zhiting; Wang, Qian

    2018-02-01

    Silver nanoparticles (Ag NPs) fabricated by physical vapor deposition (PVD) were introduced in Cu-Cu bonding as surface modification layer. The bonding structure consisted of a Ti adhesive/barrier layer and a Cu substrate layer was fabricated on the silicon wafer. Ag NPs were deposited on the Cu surface by magnetron sputtering in a high-pressure environment and a loose structure with NPs was obtained. Shear tests were performed after bonding, and the influences of PVD pressure, bonding pressure, bonding temperature and annealing time on shear strength were assessed. Cu-Cu bonding with Ag NPs was accomplished at 200°C for 3 min under the pressure of 30 MPa without a post-annealing process, and the average bonding strength of 13.99 MPa was reached. According to cross-sectional observations, a void-free bonding interface with an Ag film thickness of around 20 nm was achieved. These results demonstrated that a reliable low-temperature short-time Cu-Cu bonding was realized by the sintering process of Ag NPs between the bonding pairs, which indicated that this bonding method could be a potential candidate for future ultra-fine pitch 3D integration.

  12. Self-Formed Barrier with Cu-Mn alloy Metallization and its Effects on Reliability

    International Nuclear Information System (INIS)

    Koike, J.; Wada, M.; Usui, T.; Nasu, H.; Takahashi, S.; Shimizu, N.; Yoshimaru, M.; Shibata, H.

    2006-01-01

    Advancement of semiconductor devices requires the realization of an ultra-thin (less than 5 nm thick) diffusion barrier layer between Cu interconnect and insulating layers. Self-forming barrier layers have been considered as an alternative barrier structure to the conventional Ta/TaN barrier layers. The present work investigated the possibility of the self-forming barrier layer using Cu-Mn alloy thin films deposited directly on SiO2. After annealing at 450 deg. C for 30 min, an amorphous oxide layer of 3-4 nm in thickness was formed uniformly at the interface. The oxide formation was accompanied by complete expulsion of Mn atoms from the Cu-Mn alloy, leading to a drastic decrease in resistivity of the film. No interdiffusion was observed between Cu and SiO2, indicating an excellent diffusion-barrier property of the interface oxide

  13. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  14. Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts"

    DEFF Research Database (Denmark)

    Nakamura, Junji; Fujitani, Tadahiro; Kuld, Sebastian

    2017-01-01

    Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO2) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments...... conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to formate rather than being fully oxidized....

  15. The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts

    International Nuclear Information System (INIS)

    Ji, Qinqin

    2017-01-01

    CO 2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO 2 . Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO 2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and good cooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO 2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO 2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO 2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO 2 and H 2 , but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g.kg -1 .h -1 ) of higher alcohols at 350 C and 50 bar. (author) [fr

  16. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    Science.gov (United States)

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiali [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Tang, Cilai [Department of Environmental Engineering, College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002 (China); Wang, Fengwu [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China); School of Civil Engineering, East China Jiaotong University, 808 Shuang Gang East Road, Nanchang, Jiangxi 330013 (China); Wu, Yonghong, E-mail: yhwu@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008 (China)

    2016-03-05

    Highlights: • Periphyton was capable of simultaneously entrapping Cu and Cd from paddy fields. • Cu and Cd bioavailability decreased with time after exposure to periphyton. • Periodic adsorption–desorption was the main mechanism used to remove Cd and Cu. • Periphyton was able to adapt to steady accumulation of Cu and Cd. • The inclusion of periphyton will help entrap heavy metals in paddy fields. - Abstract: The ubiquitous native periphyton was used to entrap Cu and Cd from paddy fields. Results showed that Cu- and Cd-hydrate species such as CuOH{sup +}, Cu{sub 2}(OH){sub 2}{sup 2+}, CdOH{sup +}, and Cu{sub 3}(OH){sub 4}{sup 2+} decreased with time in the presence of periphyton. When the initial concentrations of Cu and Cd were 10 mg/L, the heavy metal content in the periphyton fluctuated from 145.20 mg/kg to 342.42 mg/kg for Cu and from 101.75 mg/kg to 236.29 mg/kg for Cd after 2 h exposure. The concentration of Cd in periphytic cells varied from 42.93 mg/kg to 174 mg/kg after 2 h. The dominant periphyton microorganism species shifted from photoautotrophs to heterotrophs during the exposure of periphyton to Cu and Cd co-contamination. Although Cu and Cd could inhibit periphyton photosynthesis and carbon utilization, the periphyton was able to adapt to the test conditions. Cu and Cd accumulation in rice markedly decreased in the presence of periphyton while the number of rice seeds germinating was higher in the periphyton treatments. These results suggest that the inclusion of native periphyton in paddy fields provides a promising buffer to minimize the effects of Cu and Cd pollution on rice growth and food safety.

  18. Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts

    International Nuclear Information System (INIS)

    Witoon, Thongthai; Kachaban, Nantana; Donphai, Waleeporn; Kidkhunthod, Pinit; Faungnawakij, Kajornsak; Chareonpanich, Metta

    2016-01-01

    Graphical abstract: The catalyst with an optimum composition of Cu:Zn:Zr (38.2:28.6:33.2) exhibited a homogeneous dispersion of metal components, and achieved the highest methanol yield. - Highlights: • A series of CuO–ZnO–ZrO 2 catalysts with different metal compositions were prepared. • Binary CuO–ZrO 2 catalyst exhibited higher methanol selectivity. • Increasing Zn/Cu ratios provided a better inter-dispersion of metal components. • The optimum catalyst composition of Cu–Zn–Zr (CZZ-4) was 38.2:28.6:33.2. • The CZZ-4 achieved the highest methanol yield (219.7 g CH3OH kg cat −1 h −1 ) at 240 °C. - Abstract: CO 2 hydrogenation was carried out over a series of CuO–ZnO–ZrO 2 catalysts prepared via a reverse co-precipitation method. The influence of catalyst compositions on the physicochemical properties of the catalysts as well as their catalytic performance was investigated. The catalysts were characterized by means of N 2 -sorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), H 2 -temperature programmed reduction (H 2 -TPR), H 2 and CO 2 temperature-programmed desorption (H 2 - and CO 2 -TPD). The binary CuO–ZrO 2 (67:33) catalyst exhibits the highest methanol selectivity at all reaction temperature and its maximum yield of methanol (144.5 g methanol kg cat −1 h −1 ) is achieved at 280 °C, owing to the strong basic sites and the largest CuO crystallite size. The addition of Zn to the binary CuO–ZrO 2 catalyst causes a higher Cu dispersion and an increased number of active sites for CO 2 and H 2 adsorption. However, the basic strength of the ternary CuO–ZnO–ZrO 2 catalysts is lower than the binary CuO–ZrO 2 catalyst which provides the maximum yield of methanol at lower reaction tempertures (240 and 250 °C), depending on the catalyst compositions. The optimum catalyst composition of Cu–Zn–Zr (38.2:28.6:33.2) gives a superior methanol

  19. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  20. Studies of metallic species incorporation during growth of SrBi2Ta2O9 films on YBa2Cu3O7-x substrates using mass spectroscopy of recoiled ions

    International Nuclear Information System (INIS)

    Dhote, A. M.

    1999-01-01

    The incorporation of metallic species (Bi, Sr and Ta) during the growth of layered perovskite SrBi 2 Ta 2 O 9 (SBT) on a-axis oriented YBa 2 Cu 3 O 7-x (YBCO) conducting oxide substrates has been investigated using in situ low energy mass spectroscopy of recoiled ions (MSRI). This technique is capable of providing monolayer-specific surface information relevant to the growth of single and multi-component thin films and layered heterostructures. The data show a temperature dependence of metallic species incorporation during co-deposition of Sr, Bi and Ta on YBCO surfaces. At high temperatures (400 400 C. SBT films grown at temperatures ≤ 400 C and annealed in oxygen or air at 800 C exhibit a polycrystalline structure with partial a-axis orientation

  1. Synthesis of Cu and Ce co-doped ZnO nanoparticles: crystallographic, optical, molecular, morphological and magnetic studies

    Directory of Open Access Journals (Sweden)

    Rawat Mohit

    2017-07-01

    Full Text Available In the present research work, crystallographic, optical, molecular, morphological and magnetic properties of Zn1-xCuxO (ZnCu and Zn1-x-yCeyCuxO (ZnCeCu nanoparticles have been investigated. Polyvinyl alcohol (PVA coated ZnCu and ZnCeCu nanoparticles have been synthesized by chemical sol-gel method and thoroughly studied using various characterization techniques. X-ray diffraction pattern indicates the wurtzite structure of the synthesized ZnCu and ZnCeCu particles. Transmission electron microscopy analysis shows that the synthesized ZnCu and ZnCeCu particles are of spherical shape, having average sizes of 27 nm and 23 nm, respectively. The incorporation of Cu and Ce in the ZnO lattice has been confirmed through Fourier transform infrared spectroscopy. Room temperature photoluminescence spectra of the ZnO doped with Cu and co-doped Ce display two emission bands, predominant ultra-violet near-band edge emission at 409.9 nm (3 eV and a weak green-yellow emission at 432.65 nm (2.27 eV. Room temperature magnetic study confirms the diamagnetic behavior of ZnCu and ferromagnetic behavior of ZnCeCu.

  2. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    Science.gov (United States)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  3. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Xiaoliang Han

    2016-09-01

    Full Text Available In recent years, CuZr-based bulk metallic glass (BMG composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. % and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

  4. Temperature dependence of magnetic properties of Cu80Co19Ni1 thin microwires

    International Nuclear Information System (INIS)

    Garcia, C.; Zhukov, A.; Zhukova, V.; Larin, V.; Gonzalez, J.; Val, J.J. del; Knobel, M.

    2007-01-01

    In the present work, we report the studies of temperature dependence of magnetic properties in thin microwires with composition Cu 80 Co 19 Ni 1 . An extensive study of structural and magnetic characterization was realized. The structure was observed using X-ray diffraction with CuK α radiation. The magnetic measurements were carried out using a SQUID at temperatures between 5 and 300 K. The as-prepared Cu 80 Co 19 Ni 1 microwire presents a coercivity of about 80 Oe. The variation of the coercivity and remanent magnetization at 5-300 K were obtained from the hysteresis loops. From the difference of the ZFC and FC curves below T=100 K, we can assume the presence of small superparamagnetic grains embedded in the Cu matrix. Those superparamagnetic grains should be blocked at temperatures below the maximum of the magnetization observed below 50 K. The measurements show an unusual temperature dependence of the coercive field, consequence of a coexistence of blocked and unblocked particles, and the typical decreasing behaviour of the remanence increasing temperature

  5. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meixia [Hebei University of Engineering, Faculty of Material Science and Engineering (China); Guo, Qingbin, E-mail: guoqingbinhue@163.com [Hebei University of Engineering, Academic Affairs office (China); Xie, Juan; Li, Yongde; Feng, Yapeng [Hebei University of Engineering, Faculty of Material Science and Engineering (China)

    2017-01-15

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  6. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses; Estudos do desenvolvimento e caracterizacao das ligas Cu-Ni-Pt e Cu-Ni-Sn para fins eletro-eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis Carlos Elias da

    2006-07-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  7. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  8. Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles

    Science.gov (United States)

    Li, Wei; Wang, Guojing; Feng, Yimeng; Li, Zhengcao

    2018-01-01

    In this research, a kind of highly efficient semiconductor photocatalyst was fabricated by depositing CuS nanoparticles uniformly on the surface of Co-doped ZnO nanowires. ZnO nanowires were synthesized by hydrothermal method and CuS nanoparticles were modified by successive ionic layer adsorption and reaction (SILAR). By conducting methyl orange (MO) degradation experiments under the illumination of visible light, the photocatalytic activity of Co-doped ZnO nanowires modified with CuS nanoparticles was found to be nearly three times active when compared to bare ZnO nanowires. Its superior photocatalytic performance has two main reasons. The doped Co2+ ions can inhibit the recombination of photo-generated electron-hole pairs and decrease the optical bandgap, while the p-n heterostructure can enhance the visible light absorption ability and promote the separation of photo-excited charge carriers. Furthermore, the effect of the amount of deposited CuS nanoparticles on the photocatalysis was also investigated. The photocatalytic efficiency firstly raised along with the increment of SILAR cycle times and reached a maximum at 10 cycles but then decreased as the cycle times continue to increase. This originates from that an excessive amount of CuS would not only cover the active reacting sites, but also serve as recombination centers. Overall, this new nanostructure is expected to work as an efficient photocatalyst.

  9. CuCo_2O_4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2017-01-01

    Graphical abstract: The Ni- foam supported CuCo_2O_4 flowers exhibits a high specific capacity with superior long term cyclic stability. - Highlights: • This paper reports the hydrothermal preparation of CuCo_2O_4 flowers on Ni-foam. • The CuCo_2O_4 flowers exhibits maximum specific capacity of 645.1C g"−"1. • After 2000 cycles, 109% of the initial specific capacity was retained. - Abstract: The battery type CuCo_2O_4 electrode was evaluated as a positive electrode material for its hybrid supercapacitor applications. CuCo_2O_4 flowers were prepared on Ni-foam through a simple hydrothermal process and post calcination treatment. The structure and morphology of the CuCo_2O_4 flowers/Ni-foam was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy. FESEM clearly revealed the flower-like morphology, which was composed of large number of petals. The length and width of the petals ranged from approximately 5–8 μm and approximately 50–150 nm, respectively. The CuCo_2O_4 flowers/Ni-foam electrode was employed for electrochemical characterization for hybrid supercapacitor applications. The specific capacity of the CuCo_2O_4 flower-like electrode was 692.4C g"−"1 (192.3 mA h g"−"1) at a scan rate of 5 mV s"−"1. The flower-like CuCo_2O_4 electrode exhibited a maximum specific capacity of 645.1C g"−"1 (179.2 mA h g"−"1) at a specific current of 1 A g"−"1 and good long term cyclic stability. The high specific capacity, good cyclic stability, and low internal and charge transfer resistance of the CuCo_2O_4 flowers/Ni-foam electrode confirmed the suitability of the prepared material as a positive electrode for hybrid supercapacitor applications.

  10. Efficient Synthesis of Ethanol from CH4 and Syngas on a Cu-Co/TiO2 Catalyst Using a Stepwise Reactor

    Science.gov (United States)

    Zuo, Zhi-Jun; Peng, Fen; Huang, Wei

    2016-10-01

    Ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst is studied using experiments, density functional theory (DFT) and microkinetic modelling. The experimental results indicate that the active sites of ethanol synthesis from CH4 and syngas are Cu and CoO, over which the ethanol selectivity is approximately 98.30% in a continuous stepwise reactor. DFT and microkinetic modelling results show that *CH3 is the most abundant species and can be formed from *CH4 dehydrogenation or through the process of *CO hydrogenation. Next, the insertion of *CO into *CH3 forms *CH3CO. Finally, ethanol is formed through *CH3CO and *CH3COH hydrogenation. According to our results, small particles of metallic Cu and CoO as well as a strongly synergistic effect between metallic Cu and CoO are beneficial for ethanol synthesis from CH4 and syngas on a Cu-Co/TiO2 catalyst.

  11. New Cu-based catalysts supported on TiO2 films for Ullmann SnAr-type C-O coupling reactions

    NARCIS (Netherlands)

    Benaskar, F.; Engels, V.; Rebrov, E.; Patil, N.G.; Meuldijk, J.; Thuene, P.C.; Magusin, P.C.M.M.; Mezari, B.; Hessel, V.; Hulshof, L.A.; Hensen, E.J.M.; Wheatley, A.E.H.; Schouten, J.C.

    2012-01-01

    New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for CO coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles,

  12. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  13. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  14. Efficient hole-transporting layer MoO{sub 3}:CuI deposited by co-evaporation in organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Barkat, L.; Khelil, A. [Universite d' Oran 1 - Ahmed Ben Bella, LPCM2E, Oran (Algeria); Hssein, M. [Universite de Nantes, Institut des Materiaux Jean Rouxel (IMN), CNRS, UMR 6502, Nantes (France); Laboratoire Optoelectronique et Physico-chimie des Materiaux, Universite Ibn Tofail, Faculte des Sciences, Kenitra (Morocco); El Jouad, Z. [Laboratoire Optoelectronique et Physico-chimie des Materiaux, Universite Ibn Tofail, Faculte des Sciences, Kenitra (Morocco); Universite de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, Nantes (France); Cattin, L.; Louarn, G.; Stephant, N. [Universite de Nantes, Institut des Materiaux Jean Rouxel (IMN), CNRS, UMR 6502, Nantes (France); Ghamnia, M. [Universite d' Oran 1 - Ahmed Ben Bella, Laboratoire des Sciences de la Matiere Condensee (LSMC), Oran (Algeria); Addou, M. [Laboratoire Optoelectronique et Physico-chimie des Materiaux, Universite Ibn Tofail, Faculte des Sciences, Kenitra (Morocco); Morsli, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Nantes (France); Bernede, J.C. [Universite de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, Nantes (France)

    2017-01-15

    In order to improve hole collection at the interface anode/electron donor in organic photovoltaic cells, it is necessary to insert a hole-transporting layer. CuI was shown to be a very efficient hole-transporting layer. However, its tendency to be quite rough tends to induce leakage currents and it is necessary to use a very slow deposition rate for CuI to avoid such negative effect. Herein, we show that the co-deposition of MoO{sub 3} and CuI avoids this difficulty and allows deposition of a homogeneous efficient hole-collecting layer at an acceptable deposition rate. Via an XPS study, we show that blending MoO{sub 3}:CuI improves the hole collection efficiency through an increase of the gap state density. This increase is due to the formation of Mo{sup 5+} following interaction between MoO{sub 3} and CuI. Not only does the co-evaporation process allow for decreasing significantly the deposition time of the hole-transporting layer, but also it increases the efficiency of the device based on the planar heterojunction, CuPc/C{sub 60}. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Effect of strain on the structural and optical properties of Cu-N co-doped ZnO thin films

    International Nuclear Information System (INIS)

    Zhao Yue; Zhou Mintao; Li Zhao; Lv Zhiyong; Liang Xiaoyan; Min Jiahua; Wang Linjun; Shi Weimin

    2011-01-01

    Polycrystalline ZnO thin films co-doped with Cu and N have been obtained by chemical bath deposition. Introduction of Cu and N causes the change of strained stress in ZnO films, which subsequently affects the structural and optical properties. The dependence of structural and optical properties of the ZnO films on lattice strained stress is investigated by XRD measurement, SEM, PL spectrum, optical reflection and Raman spectrum. The result of photoluminescence of Cu-N co-doped ZnO films indicates that the UV emission peaks shift slightly towards higher energy side with decrease in tensile strain and vise versa. The blue-shift of the absorption edge and up-shift of E2 (high) mode of the films can be observed in the optical reflection and Raman spectra. - Highlights: →Cu-N co-doped ZnO is first prepared by the wet chemical method. → Stress is produced by the introduction of Cu and N atoms. → Effect of stress on the structural and optical properties of ZnO film is investigated. → Cu concentration will be used to control the structural and optical properties.

  16. Raman spectroscopic investigation of superconducting YBa2Cu3O7/sub -//sub x/, semiconducting YBa2Cu3O6/sub +//sub x/, and possible impurity phases

    International Nuclear Information System (INIS)

    Mascarenhas, A.; Geller, S.; Xu, L.C.; Katayama-Yoshida, H.; Pankove, J.I.; Deb, S.K.

    1988-01-01

    A Raman spectroscopic investigation of specimens of superconducting YBa 2 Cu 3 O/sub 7-//sub x/ and of the possible impurity phases YBa 2 Cu 3 O/sub 6+//sub x/ (semiconductor), Y 2 BaCuO 5 , Y 2 Cu 2 O 5 , BaCuO 2 , CuO, Y 2 O 3 , and BaCO 3 indicates that in the range 100--700 cm -1 , there are six characteristic lines belonging to the superconductor. At 13 K, these lines are at 150, 338, 441, 507, 590, and 644 cm -1 . Comparison of the Raman spectra of the superconductor and the semiconductor indicates a mode stiffening of the pair at 338 and 441 cm -1 , but a mode softening of the pair at 507 and 590 cm -1 . A factor group analysis leads to a tentative assignment of the Raman and infrared allowed modes

  17. Structural, catalytic and magnetic properties of Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Del Castillo, Hector [Laboratorio de Cinetica y Catalisis, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Bramer-Escamilla, Werner; Silva, Pedro [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} ferrite synthesized by sol-gel auto-combustion method. Black-Right-Pointing-Pointer Structural identification, magnetic and catalytic properties were investigated. Black-Right-Pointing-Pointer Characterization by TGA, DTA, XRD, SEM, TEM and VSM techniques. Black-Right-Pointing-Pointer Magnetic properties decrease with the increase of Cu{sup 2+} doping. Black-Right-Pointing-Pointer The selective conversion to N{sub 2} is higher for Cu-Co mixed ferrites. - Abstract: Copper substituted cobalt ferrite Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} (0 {<=}x {<=} 1) have been synthesized using sol-gel auto combustion method with citric acid as fuel. Structural identification, magnetic and catalytic properties were investigated using thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and their application in the selective catalytic reduction of NOx were studied. Analysis of structural properties reveals that all samples have cubic spinel structure. Room temperature magnetic hysteresis measurements as a function of magnetic field infer that the magnetic properties decrease with Cu{sup 2+} doping which may be due to the difference of the magnetic moment of Cu{sup 2+} and Co{sup 2+} ions. The higher activity of the samples in NO selective reduction to N{sub 2} occurs at 350 Degree-Sign C, reaching a maximum of 38% NO conversion and 95% of selective conversion to N{sub 2}. The compositions containing both Cu{sup 2+} and Co{sup 2+} ions are more active to the products selectivity to N{sub 2}, suggesting a synergistic effect on the active surface of ferrite and the effect of Co{sup 2+} is more pronounced than Cu{sup 2+} towards NO conversion.

  18. Influences of annealing temperature on sprayed CuFeO2 thin films

    Science.gov (United States)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  19. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  20. Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Ivanov, Ivo; Georgieva, Ventsislava; Evtimova, Bisera; Georgiev, George

    2007-02-12

    Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2'-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 micromol g(-1) of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO(3). The selectivity coefficients (S(Cu/Me)) for Me=Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 micromol L(-1) (3sigma) and 0.003 micromol L(-1) (6sigma), respectively.

  1. Metastable reduced tantalum dichalcogenides via deintercalation of mixed ionic and electronic conductors type Cu{sub y}Ta{sub 1+x}S{sub 2}; Metastabile, reduzierte Tantaldichalkogenide ueber Deintercalation von gemischten Ionen- und Elektronenleitern vom Typ Cu{sub y}Ta{sub 1+x}S{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sucha, Veronika

    2014-10-29

    The theoretical part of this thesis reviews the known polytypes occuring for reduced tantalum sulfides of type Ta{sub 1+x}S{sub 2} and copper tantalum sulfides of type Cu{sub y}Ta{sub 1+x}S{sub 2} and their respective stability ranges. This is followed by an overview of preparative methods and reactions for successful deintercalation. A detailed discussion about the various properties of layered transition metal dichalcogenides (TMDC), for example staging phenomena or the principles of host-guest structures, is included. The experimental part is divided into two main topics - chapters on ternary and binary phases. The arrangement of the subsequent chapters matches the increasing structural complexity of the phases.

  2. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-05-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  3. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-02-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  4. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  5. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  6. IR and TPD studies of the interaction of alkenes with Cu + sites in CuNaY and CuNaX zeolites of various Cu content. The heterogeneity of Cu + sites

    Science.gov (United States)

    Datka, J.; Kukulska-Zajaç, E.; Kozyra, P.

    2006-08-01

    Cu + ions in zeolites activate organic molecules containing π electrons by π back donation, which results in a distinct weakening of multiple bonds. In this study, we followed the activation of alkenes (ethene and propene) by Cu + ions in CuY and CuX zeolites of various Cu content. We also studied the strength of bonding of alkenes to Cu + ions. IR studies have shown that there are two kinds of Cu + sites of various electron donor properties. We suppose that they could be attributed to the presence of Cu + ions of various number of oxygen atoms surrounding the cation. IR studies have shown that Cu ions introduced into Y and X zeolites in the first-order (at low Cu content) form Cu + ions of stronger electron donor properties (i.e. activate alkenes to larger extend) than Cu ions introduced in the next order (at higher Cu content). IR and TPD studies of alkenes desorption evidenced that Cu + ions of stronger electron donor properties bond alkenes stronger than less electron donor ones. It suggests that π back donation has more important contribution to the strength of bonding alkenes to cation than π donation.

  7. Influence of Cu Content on the Structure, Mechanical, Friction and Wear Properties of VCN–Cu Films

    Directory of Open Access Journals (Sweden)

    Fanjing Wu

    2018-03-01

    Full Text Available VCN–Cu films with different Cu contents were deposited by reactive magnetron sputtering technique. The films were evaluated in terms of their microstructure, elemental composition, mechanical, and tribological properties by X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDS, high resolution transmission electron microscopy (HR-TEM, Raman spectrometry, nano-indentation, field emission scanning electron microscope (FE-SEM, Bruker three-dimensional (3D profiler, and high-temperature ball on disc tribo-meter. The results showed that face-centered cubic (fcc VCN, hexagonal close-packed (hcp V2CN, fcc-Cu, amorphous graphite and CNx phases co-existed in VCN–Cu films. After doping with 0.6 at.% Cu, the hardness reached a maximum value of ~32 GPa. At room temperature (RT, the friction coefficient and wear rate increased with increasing Cu content. In the temperature range of 100–500 °C, the friction coefficient decreased, but the wear rate increased with the increase of Cu content.

  8. Ca doping of TSMTG-YBa2Cu3O7-δ/Y2BaCuO5 composites

    International Nuclear Information System (INIS)

    Delorme, F.; Harnois, C.; Monot-Laffez, I.; Marinel, S.

    2002-01-01

    Calcium doped YBa 2 Cu 3 O 7-δ /Y 2 BaCuO 5 bulk samples have been synthesised by the top-seeding-melt-texture growth (TSMTG) process up to 1 wt.% of CaCO 3 . Calcium additions up to 0.25 wt.% of CaCO 3 do not change the decomposition temperature whereas additions of 1 wt.% of CaCO 3 lead to an increase of the decomposition temperature of about 10 deg. C. This difference is not important enough to change the thermal cycle used to process YBa 2 Cu 3 O 7-δ undoped bulk samples. Microstructure studies show that no precursor or secondary phases containing calcium are present in the samples. Energy dispersive spectroscopy analyses have shown that Ca is present both in the YBa 2 Cu 3 O 7-δ matrix and the Y 2 BaCuO 5 particles. The position of the calcium atoms in the superconducting matrix is discussed. The calcium doped samples present slightly depressed critical temperatures but drastically depressed critical current densities

  9. GMI effect in CuO coated Co-based amorphous ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Taysioglu, Asli Ayten [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Peksoz, Ahmet, E-mail: peksoz@uludag.edu.t [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Kaya, Yunus [Department of Chemistry, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Derebasi, Naim [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Irez, Gazi [Department of Chemistry, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey); Kaynak, Gokay [Department of Physics, Sciences and Arts Faculty, Uludag University, 16059 Gorukle, Bursa (Turkey)

    2009-11-13

    A Copper oxide (CuO) film has been grown on a surface of Co-based amorphous ribbon using chemical successive ionic layer adsorption and reaction technique, at room temperature and atmosphere pressure. The influence of coating and width of ribbon on giant magneto impedance have been investigated over a frequency range from 0.1 to 3 MHz and under a static magnetic field between -8 and +8 kA/m. The results showed that Co-based amorphous ribbons, which are coated CuO film, have a significant effect on the magnitude and operation frequency for the giant magneto impedance effect as compared to the samples without coating. The highest giant magneto impedance effect was found to be 14.90 on 5 mm width coated ribbon, which is 60% higher than the sample without coating. A surface observation of these samples has been carried out by an atomic force microscope. The AFM images reveal the difference between surfaces of coated and as-cast sample.

  10. GMI effect in CuO coated Co-based amorphous ribbons

    International Nuclear Information System (INIS)

    Taysioglu, Asli Ayten; Peksoz, Ahmet; Kaya, Yunus; Derebasi, Naim; Irez, Gazi; Kaynak, Gokay

    2009-01-01

    A Copper oxide (CuO) film has been grown on a surface of Co-based amorphous ribbon using chemical successive ionic layer adsorption and reaction technique, at room temperature and atmosphere pressure. The influence of coating and width of ribbon on giant magneto impedance have been investigated over a frequency range from 0.1 to 3 MHz and under a static magnetic field between -8 and +8 kA/m. The results showed that Co-based amorphous ribbons, which are coated CuO film, have a significant effect on the magnitude and operation frequency for the giant magneto impedance effect as compared to the samples without coating. The highest giant magneto impedance effect was found to be 14.90 on 5 mm width coated ribbon, which is 60% higher than the sample without coating. A surface observation of these samples has been carried out by an atomic force microscope. The AFM images reveal the difference between surfaces of coated and as-cast sample.

  11. The critical thickness of liners of Cu interconnects

    International Nuclear Information System (INIS)

    Jiang, Q; Zhang, S H; Li, J C

    2004-01-01

    A model for the size-dependence of activation energy is developed. With the model and Fick's second law, relationships among the liner thickness, the working life and the working temperature of a TaN liner for Cu interconnects are predicted. The predicted results of the TaN liner are in good agreement with the experimental results. Moreover, the critical thicknesses of liners of some elements are calculated

  12. Comparative study of Cu-Zr and Cu-Ru alloy films for barrier-free Cu metallization

    International Nuclear Information System (INIS)

    Wang Ying; Cao Fei; Zhang Milin; Liu Yuntao

    2011-01-01

    The properties of Cu-Zr and Cu-Ru alloy films were comparatively studied to evaluate their potential use as alloying elements. Cu alloy films were deposited on SiO 2 /Si substrates by magnetron sputtering. Samples were subsequently annealed and analyzed by four-point probe measurement, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Auger electron spectroscopy. X-ray diffraction data suggest that Cu film has preferential (111) crystal orientation and no extra peak corresponding to any compound of Cu, Zr, Ru, and Si. According to transmission electron microscopy results, Cu grains grow in size for both systems but the grain sizes of the Cu alloy films are smaller than that of pure Cu films. These results indicate that Cu-Zr film is suitable for advanced barrier-free metallization in terms of interfacial stability and lower resistivity.

  13. Photocatalytic Conversion of Carbon Dioxide Using Zn–Cu–Ga Layered Double Hydroxides Assembled with Cu Phthalocyanine: Cu in Contact with Gaseous Reactant is Needed for Methanol Generation

    Directory of Open Access Journals (Sweden)

    Kawamura Shogo

    2015-09-01

    Full Text Available Photocatalytic conversion of CO2 into fuels is an attractive option in terms of both reducing the increased concentration of atmospheric CO2 as well as generating renewable hydrocarbon fuels. It is necessary to investigate good catalysts for CO2 conversion and to clarify the mechanism irradiated by natural light. Layered Double Hydroxides (LDH have been attracting attention for CO2 photoreduction with the expectation of sorption capacity for CO2 in the layered space and tunable semiconductor properties as a result of the choice of metal cations. This study first clarifies the effects of Cu doping to LDH comprising Zn and Al or Ga. Cu could be incorporated in the cationic layers of LDH as divalent metal cations and/or interlayer anions as Cu(OH42−. The formation rates of methanol and CO were optimized for [Zn1.5Cu1.5Ga(OH8]+2Cu(OH42−·mH2O at a total rate of 560 nmol h−1 gcat−1 irradiated by UV–visible light. Cu phthalocyanine tetrasulfonate hydrate (CuPcTs4− and silver were effective as promoters of LDH for CO2 photoreduction. Especially, the total formation rate using CuPcTs-[Zn3Ga(OH8]+2CO32−·mH2O irradiated by visible light was 73% of that irradiated by UV–visible light. The promotion was based on HOMO–LUMO excitation of CuPcTs4− by visible light. The LUMO was distributed on N atoms of pyrrole rings bound to central Cu2+ ions. The photogenerated electrons diffused to the Cu site would photoreduce CO2 progressively in a similar way to inlayer and interlayer Cu sites in the LDH in this study.

  14. Microstructure, impurity and metal cap effects on Cu electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Hu, C.-K.; Gignac, L. G.; Ohm, J.; Breslin, C. M.; Huang, E.; Bonilla, G.; Liniger, E.; Rosenberg, R. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Choi, S.; Simon, A. H. [IBM Microelectronic Division, Hopewell Junction, NY 12533 (United States)

    2014-06-19

    Electromigration (EM) lifetimes and void growth of pure Cu, Cu(Mn) alloy, and pure Cu damascene lines with a CoWP cap were measured as a function of grain structure (bamboo, near bamboo, and polycrystalline) and sample temperature. The bamboo grains in a bamboo-polycrystalline grained line play the key role in reducing Cu mass flow. The variation in Cu grain size distribution among the wafers was achieved by varying the metal line height and wafer annealing process step after electroplating Cu and before or after chemical mechanical polishing. The Cu grain size was found to have a large impact on Cu EM lifetime and activation energy, especially for the lines capped with CoWP. The EM activation energy for pure Cu with a CoWP cap from near-bamboo, bamboo-polycrystalline, mostly polycrystalline to polycrystalline only line grain structures was reduced from 2.2 ± 0.2 eV, to 1.7 ± 0.1 eV, to 1.5 ± 0.1 eV, to 0.72 ± 0.05 eV, respectively. The effect of Mn in Cu grain boundary diffusion was found to be dependent on Mn concentration in Cu. The depletion of Cu at the cathode end of the Cu(Mn) line is preceded by an incubation period. Unlike pure Cu lines with void growth at the cathode end and hillocks at the anode end of the line, the hillocks grew at a starting position roughly equal to the Blech critical length from the cathode end of the Cu(Mn) polycrystalline line. The effectiveness of Mn on Cu grain boundary migration can also be qualitatively accounted for by a simple trapping model. The free migration of Cu atoms at grain boundaries is reduced by the presence of Mn due to Cu-solute binding. A large binding energy of 0.5 ± 0.1 eV was observed.

  15. Cu/Cu{sub 2}O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Anshuman [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Goswami, Navendu, E-mail: navendugoswami@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Kaushik, S.D. [UGC-DAE-Consortium for Scientific Research Mumbai Centre, R5 Shed, BARC, Mumbai 400085 (India); Tripathi, Shilpa [UGC-DAE Consortium for Scientific Research, Indore, M.P. (India)

    2016-12-30

    Highlights: The salient features of this research article are following: • Mixed phase synthesis of Cu/Cu{sub 2}O/CuO nanoparticles prepared by Exploding Wire Technique (EWT). • Predominant Cu/Cu{sub 2}O phases along with minor CuO phase revealed through XRD, TEM, Raman, FTIR, UV–Visible and PL analyses. • XPS analysis provided direct evidences of Cu{sup 2+} and Cu{sup +} along with O deficiency for prepared nanoparticles. • Room temperature weak ferromagnetic behaviour was demonstrated for Cu/Cu{sub 2}O/CuO nanoparticles. - Abstract: In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu{sub 2}O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu{sub 2}O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu{sub 2}-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu{sub 2}O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu{sub 2}O/CuO nanoparticles are reflected through UV–vis (UV–vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes

  16. CH{sub 4} dehydrogenation on Cu(1 1 1), Cu@Cu(1 1 1), Rh@Cu(1 1 1) and RhCu(1 1 1) surfaces: A comparison studies of catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Riguang; Duan, Tian [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Ling, Lixia [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Wang, Baojun, E-mail: wangbaojun@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)

    2015-06-30

    Highlights: • Adsorbed Rh atom on Cu catalyst exhibits better catalytic activity for CH{sub 4} dehydrogenation. • The adsorbed Rh atom is the reaction active center for CH{sub 4} dehydrogenation. • The morphology of Cu substrate has negligible effect on CH{sub 4} dehydrogenation. - Abstract: In the CVD growth of graphene, the reaction barriers of the dehydrogenation for hydrocarbon molecules directly decide the graphene CVD growth temperature. In this study, density functional theory method has been employed to comparatively probe into CH{sub 4} dehydrogenation on four types of Cu(1 1 1) surface, including the flat Cu(1 1 1) surface (labeled as Cu(1 1 1)) and the Cu(1 1 1) surface with one surface Cu atom substituted by one Rh atom (labeled as RhCu(1 1 1)), as well as the Cu(1 1 1) surface with one Cu or Rh adatom (labeled as Cu@Cu(1 1 1) and Rh@Cu(1 1 1), respectively). Our results show that the highest barrier of the whole CH{sub 4} dehydrogenation process is remarkably reduced from 448.7 and 418.4 kJ mol{sup −1} on the flat Cu(1 1 1) and Cu@Cu(1 1 1) surfaces to 258.9 kJ mol{sup −1} on RhCu(1 1 1) surface, and to 180.0 kJ mol{sup −1} on Rh@Cu(1 1 1) surface, indicating that the adsorbed or substituted Rh atom on Cu catalyst can exhibit better catalytic activity for CH{sub 4} complete dehydrogenation; meanwhile, since the differences for the highest barrier between Cu@Cu(1 1 1) and Cu(1 1 1) surfaces are smaller, the catalytic behaviors of Cu@Cu(1 1 1) surface are very close to the flat Cu(1 1 1) surface, suggesting that the morphology of Cu substrate does not obviously affect the dehydrogenation of CH{sub 4}, which accords with the reported experimental observations. As a result, the adsorbed or substituted Rh atom on Cu catalyst exhibit a better catalytic activity for CH{sub 4} dehydrogenation compared to the pure Cu catalyst, especially on Rh-adsorbed Cu catalyst, we can conclude that the potential of synthesizing high-quality graphene with the

  17. Titulações potenciométricas de cátions metálicos tendo como eletrodo indicador o sistema Cu/Cu(II-EDTA Potentiometric titrations of metal cations with edta using the Cu/Cu(II-EDTA system as indicator electrode

    Directory of Open Access Journals (Sweden)

    Paulo H. Pereira da Silva

    2008-01-01

    Full Text Available In potentiometric titrations of metal cations with EDTA the Hg/HgY2- system is usually used to detect the end point. However, the use of mercury has been discouraged in analytical procedures due to its toxicity. In this work the Cu/CuY2- system was used as indicator electrode for potentiometric titrations of some metal cations with EDTA. The solutions of Cu2+, Cd2+, Mn2+, Co2+ and Zn2+ were titrated with Na2EDTA solution in the presence of a small concentration of the CuY2- complex using a copper wire as indicator electrode. The potentiometric titrations with the Cu/CuY2- system showed good correlation when compared with an Hg/HgY2- system.

  18. Effects of structural modulations on the quasiparticle distribution in 2H-TaSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Haenke, Torben; Kordyuk, Alexander; Zabolotnyy, Volodymyr; Evtushinsky, Daniil; Sass, Paul; Hess, Christian; Borisenko, Sergey; Buechner, Bernd [IFW Dresden, Institute for Solid State Research, P.O. Box 270116, D-01171 Dresden (Germany); Berger, Helmut [Institut de Physique Appliquee, EPF, 1015 Lausanne (Switzerland)

    2009-07-01

    We report on a temperature dependent scanning tunneling microscopy (STM) and angle resolved photoemission (ARPES) study of the Cu intercalated dichalcogenide 2H-TaSe{sub 2}. The Cu intercalation leads not only to a lowering of the transition temperature into the commensurate charge-density wave state (CDW) but also to the formation of a {radical}(13) x {radical}(13) superstructure, previously observed for the 1T polytype only. The origin, spectroscopic appearance, and influence of these superstructures on the electronic properties of 2H-TaSe{sub 2} are discussed.

  19. Magnetic and transport properties of Co–Cu microwires with granular structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhukova, V., E-mail: valentina.zhukova@ehu.es [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Garcia, C. [Bogazici Univ., Dept Phys, TR-34342 Istanbul (Turkey); Departamento de Fisica, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaiso (Chile); Val, J.J. del; Ilyn, M. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Granovsky, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Moscow State University, Moscow, Phys. Faculty, 119991 (Russian Federation); Zhukov, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2013-09-30

    Magnetic, transport and structural properties of granular Co{sub x}–Cu{sub 100−x} (5 < x < 40 at.%) glass-coated microwires were studied. Co–Cu microwires exhibited giant magnetoresistance (GMR) effect. For x = 5% we observed the resistivity minimum at 40 K associated with the Kondo effect. For x > 10 partial evidences of granular structure have been observed. For x ≥ 30 anisotropic contribution to GMR has been observed giving rise to non-monotonic dependence of GMR on the field. Temperature dependence of magnetization measured during a cooling regime without external magnetic field and in the presence of the field shows considerable difference at low temperatures, being attributed to the presence of small Co grains embedded in the Cu matrix. By X-ray diffraction we found, that the structure of the metallic nucleus is granular consisting of two phases: fcc Cu appearing in all the samples and fcc α-Co presented only in microwires with higher Co content. For low Co content (x ≤ 10%) X-ray diffraction technique indicates that Co atoms are distributed within the Cu crystals. The quantity and the crystallite size of the formed phases strongly depend on the geometry of the microwire. The structure, magnetic and transport properties were affected by the glass coating inducing the internal stresses and affecting the quenching rate. - Highlights: ► Systematic study of magnetic and transport properties of Co-Cu microwires. ► Observation of Giant Magnetoresistance effect in Co{sub x}Cu100{sub −x} microwires. ► Observation of Kondo-like behavior in Co{sub x}Cu100{sub −x} at lower Co content (5%). ► Discussions of the effect of internal stresses on the properties of Co-Cu microwires. ► Discussion of the effect of composition on the properties of Co-Cu microwires.

  20. Study of magnetic hardening in Sm(Co/sub 1-x/Cu/sub x/)/sub 5/ alloy

    International Nuclear Information System (INIS)

    Awan, M.S.; Bhatti, A.S.; Farooque, M.

    2008-01-01

    Magnetic hardening has been examined in the samarium (Sm), cobalt (Co) and copper (Cu) fused permanent magnets by correlating the magnetic properties with annealing temperature and microstructure of the samples. For the Sm(Co/sub 1-x/Cu/sub x/)/sub 5/ system, with various copper contents (x=0, 0.2, 0.3, 0.4 and 0.5) the shape of initial magnetization curve indicated that the magnetic hardening process involved in these types of magnets consists of domain wall pinning type. This is consistent with the microstructure studies which show the existence of nonmagnetic Cu-rich precipitates in the Co-rich matrix. Copper substituted samples were annealed in the temperature range (300 -1000) degree C for 3h under the protective atmosphere of argon (Ar) gas. Both cast and annealed samples prepared by tri-arc melting technique exhibit two-phase microstructure responsible for enhanced magnetic properties. Metallographic and surface studies were carried out using a digital optical microscope (OM). X-ray diffraction (XRD) studies confirmed that the alloys solidefied in the hexagonal crystal structure. The lattice parameters and unit cell volume increase with increasing Cu content. Scanning electron microscope (SEM) coupled with energy dispersive X-ray (EDX) was used to examine the surface morphology, compositional variations, elemental segregations, formation and effect of annealing on the different phases. Later these parameters were related to the magnetic properties. Copper-rich phase precipitates in the Co- rich matrix may serves as the pinning centers for the domain wall motion. Introduction of these pinning centers improved the magnetic hardening of the alloy. Annealing the Cu-substituted alloy further improved the magnetic properties. During annealing, diffusion of copper played the key role for enhanced magnetic properties. It was found that both Cu substitution and subsequent annealing are the dominating factors determining the magnetic properties of these magnetic

  1. [Co(NH3)6]3[Cu4(OH)(CO3)8].2H2O--a new carbonato-copper(II) anion stabilized by extensive hydrogen bonding.

    Science.gov (United States)

    Abrahams, Brendan F; Haywood, Marissa G; Robson, Richard

    2004-04-21

    Addition of Co(NH3)6(3+) to aqueous solutions of Cu(II) in excess carbonate promotes the assembly of a new highly charged carbonato-copper(II) anion, [Cu4(OH)(CO3)8](9-), which contains an unusual mu4 hydroxo-bridged square Cu4 arrangement, stabilised in the crystal by no less than forty hydrogen bonds (< 3 Angstrom) to hexammine cations.

  2. Synthesis and characterization of Cu{sub 2}Se prepared by hydrothermal co-reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kegao, E-mail: liukg163@163.co [School of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Jinan 250101 (China); Liu Hong, E-mail: hongliu@sdu.edu.c [State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Wang Jiyang [State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Shi Lei [School of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Jinan 250101 (China)

    2009-09-18

    Cu{sub 2}Se compounds were synthesized by hydrothermal co-reduction at 150-200 deg. C from CuSO{sub 4}.5H{sub 2}O and SeO{sub 2} in deionized water. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM). Experimental results show that, the product powders with Cu{sub 2}Se phase obtained at 180 and 200 deg. C almost consist of regular hexagonal flakes which grow along (1 1 1) crystal plane. The side lengths between 100 and 200 nm of hexagonal flakes synthesized at 180 deg. C are much smaller than those of the product with 1.3-2 mum side length at 200 deg. C.

  3. Tailoring oxides of copper-Cu_2O and CuO nanoparticles and evaluation of organic dyes degradation

    International Nuclear Information System (INIS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-01-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu_2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu_2O and CuO nanoparticles.

  4. Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2017-05-01

    Highlights: • Electroless plating Cu-Co-P polyalloy was firstly fabricated onto polyethylene terephthalate (PET) substrate. • An etchant-free and amine-free UV/ozonolysis irradiation method UV/ozonolysis was effective for the transition from hydrophilic to hydrophobic of PET sheet. • A time-saving and cost-effective orthogonal experiment (L{sub 9}(3){sup 4}) was utilized to optimize the plating conditions. • The optimized copper polyalloy possessed high corrosion resistance in three aggressive mediums including NaCl, NaOH and HCl, respectively. • The Cu-Co-P coated PET composite showed excellent electromagnetic interference shielding effectiveness (EMI SE > 99.999% at frequency ranging from 30 MHz to 1000 MHz). - Abstract: High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH{sub 4} solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L{sub 9}(3){sup 4}) for Cu-Co-P coating as follows: CoSO{sub 4}·7H{sub 2}O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper

  5. Development of half metallicity within mixed magnetic phase of Cu1‑x Co x MnSb alloy

    Science.gov (United States)

    Bandyopadhyay, Abhisek; Neogi, Swarup Kumar; Paul, Atanu; Meneghini, Carlo; Bandyopadhyay, Sudipta; Dasgupta, Indra; Ray, Sugata

    2018-05-01

    Cubic half-Heusler Cu1‑x Co x MnSb () compounds have been investigated both experimentally and theoretically for their magnetic, transport and electronic properties in search of possible half metallic antiferromagnetism. The systems (Cu,Co)MnSb are of particular interest as the end member alloys CuMnSb and CoMnSb are semi metallic (SM) antiferromagnetic (AFM) and half metallic (HM) ferromagnetic (FM), respectively. Clearly, Co-doping at the Cu-site of CuMnSb introduces changes in the carrier concentration at the Fermi level that may lead to half metallic ground state but there remains a persistent controversy whether the AFM to FM transition occurs simultaneously. Our experimental results reveal that the AFM to FM magnetic transition occurs through a percolation mechanism where Co-substitution gradually suppresses the AFM phase and forces FM polarization around every dopant cobalt. As a result a mixed magnetic phase is realized within this composition range while a nearly HM band structure is developed already at the 10% Co-doping. Absence of T 2 dependence in the resistivity variation at low T-region serves as an indirect proof of opening up an energy gap at the Fermi surface in one of the spin channels. This is further corroborated by the ab initio electronic structure calculations that suggests that a nearly ferromagnetic half-metallic ground state is stabilized by Sb-p holes produced upon Co doping.

  6. A-site ordered perovskite CaCu3Cu2Ir2O12−δ with square-planar and octahedral coordinated Cu ions

    International Nuclear Information System (INIS)

    Zhao Qing; Wang Qing-Tao; Yin Yun-Yu; Dai Jian-Hong; Shen Xi; Yang Jun-Ye; Yu Ri-Cheng; Long You-Wen; Hu Zhi-Wei; Li Xiao-Dong

    2016-01-01

    A novel CaCu 3 Cu 2 Ir 2 O 12−δ polycrystalline sample was synthesized at 8 GPa and 1373 K. Rietveld structural analysis shows that this compound crystallizes in an -type A-site ordered perovskite structure with space group Im-3. X-ray absorption spectra reveal a +2-charge state for both the square-planar and octahedral coordinated Cu ions, and the valence state of Ir is found to be about +5. Although the A-site Ca and the A′-site Cu 2+ are 1:3 ordered at fixed atomic positions, the distribution of B-site Cu 2+ and Ir 5+ is disorderly. As a result, no long-range magnetic ordering is observed at temperatures down to 2 K. Electrical transport and heat capacity measurements demonstrate itinerant electronic behavior. The crystal structure is stable with pressure up to 35.7 GPa at room temperature. (paper)

  7. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Qu, Jun; He, Xiaoman; Chen, Min; Hu, Huimin; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu_2(OH)_2CO_3) and aluminum hydroxide (Al(OH)_3) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  8. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Hu, Huimin [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 China (China)

    2017-04-15

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu{sub 2}(OH){sub 2}CO{sub 3}) and aluminum hydroxide (Al(OH){sub 3}) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  9. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Science.gov (United States)

    Sahai, Anshuman; Goswami, Navendu; Kaushik, S. D.; Tripathi, Shilpa

    2016-12-01

    In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu2O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu2O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu2-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu2O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu2O/CuO nanoparticles are reflected through UV-vis (UV-vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes occurring therein. Iterative X-ray photoelectron spectroscopy (XPS) fitting of core level spectra of Cu (2p3/2) and O (1s), divulges presence of Cu2+ and Cu+ in the lattice with an interesting evidence of O deficiency in the lattice structure and surface adsorption. Magnetic analysis illustrates that the prepared nanomaterial demonstrates ferromagnetic behaviour at room temperature.

  10. Generation of Cu–In alloy surfaces from CuInO2 as selective catalytic sites for CO2 electroreduction

    KAUST Repository

    Jedidi, Abdesslem

    2015-08-11

    The lack of availability of efficient, selective and stable electrocatalysts is a major hindrance for scalable CO2 reduction processes. Herein, we report the generation of Cu–In alloy surfaces for electrochemical reduction of CO2 from mixed metal oxides of CuInO2 as the starting material. The material successfully generates selective active sites to form CO from CO2 electroreduction at mild overpotentials. Density functional theory (DFT) indicates that the site occupation of the inert In occurs more on the specific sites of Cu. In addition, while In atoms do not preferentially adsorb H or CO, Cu atoms, which neighbor the In atoms, alters the preference of their adsorption. This preference for site occupation and altered adsorption may account for the improved selectivity over that observed for Cu metal. This study demonstrates an example of a scalable synthesis method of bimetallic surfaces utilized with the mixed oxide precursor having the diversity of metal choice, which may drastically alter the electrocatalytic performance, as presented herein.

  11. Generation of Cu–In alloy surfaces from CuInO2 as selective catalytic sites for CO2 electroreduction

    KAUST Repository

    Jedidi, Abdesslem; Rasul, Shahid; Masih, Dilshad; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    The lack of availability of efficient, selective and stable electrocatalysts is a major hindrance for scalable CO2 reduction processes. Herein, we report the generation of Cu–In alloy surfaces for electrochemical reduction of CO2 from mixed metal oxides of CuInO2 as the starting material. The material successfully generates selective active sites to form CO from CO2 electroreduction at mild overpotentials. Density functional theory (DFT) indicates that the site occupation of the inert In occurs more on the specific sites of Cu. In addition, while In atoms do not preferentially adsorb H or CO, Cu atoms, which neighbor the In atoms, alters the preference of their adsorption. This preference for site occupation and altered adsorption may account for the improved selectivity over that observed for Cu metal. This study demonstrates an example of a scalable synthesis method of bimetallic surfaces utilized with the mixed oxide precursor having the diversity of metal choice, which may drastically alter the electrocatalytic performance, as presented herein.

  12. Control of Co content and SOFC cathode performance in Y1-ySr2+yCu3-xCoxO7+δ

    Science.gov (United States)

    Šimo, F.; Payne, J. L.; Demont, A.; Sayers, R.; Li, Ming; Collins, C. M.; Pitcher, M. J.; Claridge, J. B.; Rosseinsky, M. J.

    2014-11-01

    The electrochemical performance of the layered perovskite YSr2Cu3-xCoxO7+δ, a potential solid oxide fuel cell (SOFC) cathode, is improved by increasing the Co content from x = 1.00 to a maximum of x = 1.30. Single phase samples with x > 1.00 are obtained by tuning the Y/Sr ratio, yielding the composition Y1-ySr2+yCu3-xCoxO7+δ (where y ≤ 0.05). The high temperature structure of Y0.95Sr2.05Cu1.7Co1.3O7+δ at 740 °C is characterised by powder neutron diffraction and the potential of this Co-enriched material as a SOFC cathode is investigated by combining AC impedance spectroscopy, four-probe DC conductivity and powder XRD measurements to determine its electrochemical properties along with its thermal stability and compatibility with a range of commercially available electrolytes. The material is shown to be compatible with doped ceria electrolytes at 900 °C.

  13. Enhancement of seeding for electroless Cu plating of metallic barrier layers by using alkyl self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chung, Yu-Cheng [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Fang, Jau-Shiung [Department of Materials Science and Engineering, National Formosa University, Huwei 632, Taiwan (China); Cheng, Yi-Lung [Department of Electrical Engineering, National Chi-Nan University, Puli, Nantou 545, Taiwan (China); Chen, Giin-Shan, E-mail: gschen@fcu.edu.tw [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2017-05-31

    Highlights: • Ta barrier layers are used as model substrates for seeding of electroless plating. • Ta layers seeded with Ta-OH yield seeds with limited density and large size (>10 nm). • Substantial improvement of seeding is obtained with functionalized SAMs. • The mechanism of seeding improvement by functionalized SAMs is clearly clarified. - Abstract: Tethering a self-assembled monolayer (SAM) on ultralow-k (porous) dielectric materials as a seed-trapping layer for electroless Cu plating has been extensively studied. By contrast, literature on direct electroless Cu plating of metallic barrier layers assisted by SAMs is scarce. Therefore, Ta, a crucial component of barrier materials for Cu interconnect metallization, was investigated as a model substrate for a new seeding (Ni catalyst formation) process of electroless Cu plating. Transmission and scanning electron microscopies indicated that catalytic particles formed on Ta films through Ta−OH groups tend to become aggregates with an average size of 14 nm and density of 2 × 10{sup 15} m{sup −2}. By contrast, Ta films with a plasma-functionalized SAM tightly bound catalytic particles without agglomeration, thus yielding a markedly smaller size (3 nm) and higher density (3 × 10{sup 16} m{sup −2}; one order greater than those formed by other novel methods). X-ray photoelectron spectroscopy clearly identified the types of material species and functional groups induced at each step of the seeding process. Moreover, the phase of the catalytic particles, either nickel alkoxide, Ni(OH){sub 2}, or metallic Ni, along with the seed-bonding mechanism, was also unambiguously distinguished. The enhancement of film-formation quality of Cu by the new seeding process was thus demonstrated.

  14. Tailoring Graphene Morphology and Orientation on Cu(100), Cu(110), and Cu(111)

    Science.gov (United States)

    Jacobberger, Robert; Arnold, Michael

    2013-03-01

    Graphene CVD on Cu is phenomenologically complex, yielding diverse crystal morphologies, such as lobes, dendrites, stars, and hexagons, of various orientations. We present a comprehensive study of the evolution of these morphologies as a function of Cu surface orientation, pressure, H2:CH4, and nucleation density. Growth was studied on ultra-smooth, epitaxial Cu films inside Cu enclosures to minimize factors that normally complicate growth. With low H2:CH4, Mullins-Sekerka instabilities propagate to form dendrites, indicating transport limited growth. In LPCVD, the dendrites extend hundreds of microns in the 100, 111, and 110 directions on Cu(100), (110), and (111) and are perturbed by twin boundaries. In APCVD, multiple preferred dendrite orientations exist. With increasing H2:CH4, the dendritic nature of growth is suppressed. In LPCVD, square, rectangle, and hexagon crystals form on Cu(100), (110) and (111), reflecting the Cu crystallography. In APCVD, the morphology becomes hexagonal on each surface. If given ample time, every growth regime yields high-quality monolayers with D:G Raman ratio rationally tailor the graphene crystal morphology and orientation.

  15. Research progress in photolectric materials of CuFeS2

    Science.gov (United States)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  16. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Hideaki; Kubo, Yuki; Jimbo, Kazuo; Maw, Win Shwe; Katagiri, Hironori; Yamazaki, Makoto; Oishi, Koichiro; Takeuchi, Akiko [Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2009-05-15

    Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were prepared by sulfurization of electrodeposited Cu-Zn-Sn precursors. The Cu-Zn-Sn precursors were deposited on Mo-coated glass substrates in a one-step process from an electrolyte containing copper (II) sulfate pentahydrate, zinc sulfate heptahydrate, tin (II) chloride dehydrate and tri-sodium citrate dehydrate. The precursors were sulfurized by annealing with sulfur at temperatures of 580 C and 600 C in an N{sub 2} atmosphere. X-ray diffraction peaks attributable to CZTS were detected in the sulfurized films. Photovoltaic cells with the structure glass/Mo/CZTS/ CdS/ZnO:Al/Al were fabricated using the CZTS films by sulfurizing the electrodeposited precursors. The best photovoltaic cell performance was obtained with Zn-rich samples. An open-circuit voltage of 540 mV, a short-circuit current of 12.6 mA/cm{sup 2} and an efficiency of 3.16% were achieved. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Seed-mediated co-reduction in a large lattice mismatch system: synthesis of Pd-Cu nanostructures.

    Science.gov (United States)

    Kunz, Meredith R; McClain, Sophia M; Chen, Dennis P; Koczkur, Kallum M; Weiner, Rebecca G; Skrabalak, Sara E

    2017-06-08

    Metal nanoparticles (NPs) are of interest for applications in catalysis, electronics, chemical sensing, and more. Their utility is dictated by their composition and physical parameters such as particle size, particle shape, and overall architecture (e.g., hollow vs. solid). Interestingly, the addition of a second metal to create bimetallic NPs adds multifunctionality, with new emergent properties common. However, synthesizing structurally defined bimetallic NPs remains a great challenge. One synthetic pathway to architecturally controlled bimetallic NPs is seed-mediated co-reduction (SMCR) in which two metal precursors are simultaneously co-reduced to deposit metal onto shape-controlled metal seeds, which direct the overgrowth. Previously demonstrated in a Au-Pd system, here SMCR is applied to a system with a larger lattice mismatch between the depositing metals: Pd and Cu (7% mismatch for Pd-Cu vs. 4% for Au-Pd). Through manipulation of precursor reduction kinetics, the morphology and bimetallic distribution of the resultant NPs can be tuned to achieve eight-branched Pd-Cu heterostructures with Cu localized at the tips of the Pd nanocubes as well as branched Pd-Cu alloyed nanostructures and polyhedra. Significantly, the symmetry of the seeds can be transferred to the final nanostructures. This study expands our understanding of SMCR as a route to structurally defined bimetallic nanostructures and the synthesis of multicomponent nanomaterials more generally.

  18. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons

    International Nuclear Information System (INIS)

    Avila, Mario; Morales, J.R.; Riquelme, H.O.

    1996-01-01

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, β + ) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 ± 0,1 MeV energy has been obtained total yields of 1,103 ± 0,011 μCl/μAh medium for 62 Cu and of 0,148 ± 0,015 μCl/μAh for 64 Cu

  19. Synthesis, Crystal Structure, and Electroconducting Properties of a 1D Mixed-Valence Cu(I–Cu(II Coordination Polymer with a Dicyclohexyl Dithiocarbamate Ligand

    Directory of Open Access Journals (Sweden)

    Kenji Nakatani

    2015-04-01

    Full Text Available A new mixed-valence Cu(I–Cu(II 1D coordination polymer, [CuI4CuIIBr4(Cy2dtc2]n, with an infinite chain structure is synthesized by the reaction of Cu(Cy2dtc2 (Cy2dtc− = dicyclohexyl dithiocarbamate, C13H22NS2 with CuBr·S(CH32. The as-synthesized polymer consists of mononuclear copper(II units of CuII(Cy2dtc2 and tetranuclear copper(I cluster units, CuI4Br4. In the cluster unit, all the CuI ions have distorted trigonal pyramidal coordination geometries, and the CuI–CuI or CuI–CuII distances between the nearest copper ions are shorter than the sum of van der Waals radii for Cu–Cu.

  20. Estudio teórico de las propiedades elásticas de los minerales Cu3TMSe4 (TM = V, Nb, Ta por medio de cálculos atomísticos de primeros principios Theoretical study of the elastic properties of the minerals Cu3TMSe4 (TM = V, Nb, Ta by means of atomistic first-principles calculations

    Directory of Open Access Journals (Sweden)

    Carlos Mario Ruiz

    2011-06-01

    Full Text Available Las propiedades elásticas de la familia de los minerales isoestructurales Cu3VSe4, Cu3NbSe4 y Cu3TaSe4 han sido calculadas por primera vez usandoel estado del arte en cálculos atomísticos de primeros-principios, utilizandola Teoría de los Funcionales de la Densidad y la Aproximación del Gradiente Generalizado para el funcional de la energía de intercambio-correlación. Laspropiedades elásticas calculadas son el módulo volumétrico (B, las constantes elásticas (c11, c12 y c44, el factor de anisotropía de Zener (A, el módulo de cizalladura isotrópico (G, el módulo de Young (Y, y la razón de Poisson(ν. A través de estas cantidades también hemos calculado otras propiedades termodinámicas tales como la velocidad promedio del sonido transversal (st y longitudinal (sl y la temperatura de Debye (ΘD. Los valores calculados de B, c11, c12 y c44, G, Y , y ν nos llevan a la conclusión que estos compuestosson compresibles, frágiles y quebradizos.The elastic properties of the family of isostructural minerals Cu3VSe4, Cu3NbSe4 and Cu3TaSe4 have been calculated for the first time using the state of the art in first-principles atomistic calculations, using Density Functional Theory and the Generalized Gradient Approximation for the exchangecorrelation energy functional. The elastic properties calculated are bulk modulus (B, the elastic constants (c11, c12 and c44, the Zener anisotropy factor (A, the isotropic shear modulus (G, the Young modulus (Y , and the Poisson ratio (. By means of these quantities we also computed other thermodynamic properties such as the average transversal (st and longitudinal (sl sound velocities and the Debye temperature (D. The calculated values of B, c11, c12 and c44, G, Y and lead us to the conclusion that these compounds are compressible, fragile and brittle.

  1. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants

    Science.gov (United States)

    Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong

    2018-03-01

    In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.

  2. CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Rashad

    2013-01-01

    Full Text Available Copper oxide and cobalt oxide (CuO, Co3O4 nanocrystals (NCs have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and atomic force microscopy (AFM measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co3O4 nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM images of the nanocrystals (NCs sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co3O4 nanostructures, and the full width at half maximum (FWHM of the peaks indicates a small particle size of the nanocrystals.

  3. Experimental evidence for 1/3 magnetization plateau in the diamond chain compound Cu3(CO3)2(OH)2

    OpenAIRE

    菊池, 彦光; 藤井, 裕; 千葉, 明朗; 光藤, 誠太郎; 出原, 敏孝

    2003-01-01

    The magnetic susceptibility, high field magnetization and specific heat of Cu3(CO3)2(OH)2, an actual material for the frustrating diamond chain spin model, have been measured using single crystals. Two broad peaks were observed at around 22 and 5 K both in the magnetic susceptibility and the specific hear. The magnetization curve had a definite plateau at one third of the saturation magnetization.

  4. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  5. Electronic structure and high thermoelectric properties of a new material Ba{sub 3}Cu{sub 20}Te{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui, E-mail: kuiziyang@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China); Wu, Jinghe [Department of Physics and Electronic Engineering, Henan Institute of Education, Zhengzhou, 450046 (China); Zhang, Jing; Ma, Dongwei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China)

    2016-09-05

    The electronic structure and high thermoelectric properties of Ba{sub 3}Cu{sub 20}Te{sub 13} are studied using first principles calculations and the semiclassical Boltzmann theory. The coexistence of ionic and covalent bonding in Ba{sub 3}Cu{sub 20}Te{sub 13} indicates that it is a Zintl phase compound. The calculated band structure shows that the compound is a semiconductor with an indirect band gap ∼0.45 eV, which is an appropriate band for the high thermoelectric performance. The transport calculations based on the electronic structure indicate that it exhibits relatively large Seebeck coefficients, high electrical conductivities, and high power factor. For Ba{sub 3}Cu{sub 20}Te{sub 13}, the n-type doping may achieve a higher thermoelectric performance than that of p-type doping. It is worth noting that the thermoelectric parameters of Ba{sub 3}Cu{sub 20}Te{sub 13} are comparable or larger than that of Ca{sub 5}Al{sub 2}Sb{sub 6}, a typical Zintl compound representative with high thermoelectric performance. - Highlights: • The electronic structure and thermoelectric(TE) properties are firstly studied. • The heavy and light bands near the Fermi level benefit TE properties. • The comparison indicates Ba{sub 3}Cu{sub 20}Te{sub 13} is a potential high TE material.

  6. Fundamental absorption edge in CuIn5Se8 and CuGa3Se5 single crystals

    International Nuclear Information System (INIS)

    Leon, M.; Merino, J.M.; Levcenko, S.; Nateprov, A.; Tezlevan, V.; Arushanov, E.; Syrbu, N.N.

    2006-01-01

    Optical absorption spectra of CuIn 5 Se 8 and CuGa 3 Se 5 single crystals have been investigated. The energy gap E g for CuIn 5 Se 8 (CuGa 3 Se 5 ) was found to be varied from 1.27(1.79) to 1.21(1.71) eV in the temperature range between 10 and 300 K. The temperature dependence of E g was studied by means of the Einstein model and the Paessler model. The Einstein temperature {222(267)K}, the Debye temperature {310(380)K}, a dimensionless constant related to the electron-phonon coupling {1.62(2.65)} as well as an effective energy {20 (24) meV} and a cut-off phonon energy {35(39) meV} have been estimated for CuIn 5 Se 8 (CuGa 3 Se 5 ). It was also found that the major contribution of phonons to the shift of E g versus temperature in CuIn 5 Se 8 (CuGa 3 Se 5 ) is mainly from optical phonons. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Magnetic and structural properties of Cu0.85Fe0.15O system synthesized by co-precipitation

    International Nuclear Information System (INIS)

    Colorado, H. D.; Pérez Alcázar, G. A.

    2011-01-01

    Cu 0.94 Fe 0.06 O and Cu 0.85 Fe 0.15 O samples were synthesized by using the co-precipitation chemical method. Starting from aqueous solutions of copper nitrate, CuO (NO 3 ) 2 3H 2 O, iron nitrate, Fe (NO 3 ) 3 9H 2 O and sodium hydroxide as precipitating agent, NaOH. The precipitate of three samples for Cu 0.94 Fe 0.06 O and five for Cu 0.85 Fe 0.15 O of fine powder were calcined for 5 h at different temperatures. The obtained X rays diffraction patterns refined by the Rietveld method show the CuO characteristic pattern, showing that the Fe atoms enter to replace Cu atoms. Furthermore, it was obtained that the crystallite size decreases with calcination temperatures for Cu 0.94 Fe 0.06 O. The transmission Mössbauer spectroscopy showed that the samples present a disordered paramagnetic behavior due to the big value of the half-width of line of the quadrupolar splitting. Vibrating sample magnetometry confirms the paramagnetic character. The XRD results indicate that the material is nanostructured, due that the crystallite sizes are of the order of 10 nm for Cu 0.94 Fe 0.06 O and 40 nm for Cu 0.85 Fe 0.15 O.

  8. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  9. Coercive force changes in Sm(CoFeCuZr)z during step-like heat treatments

    International Nuclear Information System (INIS)

    Puzanova, T.Z.; Shchegoleva, N.N.; Sakhnova, L.V.; Majkov, V.G.; Shur, Ya.S.; Nikolaeva, N.V.

    1987-01-01

    Sm(Co 0.67 Fe 0.22 Cu 0.08 Zr 0.03 ) 8.35 alloy, contaning two homogeneous solid solutions SmM 6.85 and SmM 7.75 (M=Co, Fe, Cu, Zr) after high-temperature treatment, is investigated. It is shown, that after isothermal tempering at 800 deg C, SmM 6.85 and SmM 7.75 are close by microstructure and their coercive forces change in a different way during step-like cooling within 700-400 deg C interval. Possibility of producing material, single-phase in magnetic relation, is discussed

  10. A study on the cementation of Cu, Ni and Co ions with Mn powders in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae-Woo [Daejin University, Pochun-gun(Korea); Ahn, Jong-Gwan [Korea Univ., Seoul(Korea); Park, Kyung-Ho [Korea Institute of Geology Mining and Materials, Taejeon (Korea)

    2000-06-30

    A study on the cementation for the recovery of Cu, Ni and Co with Mn metallic powders in leaching solution from the manganese nodule that have removed Fe ions was studied. The results showed that the recovery efficiencies of metal ions with Mn powders increased when the temperature, pH and the concentration of chloride ions were increased in mixed solution. And the recovery efficiencies of Cu was 98% and not changed with the addition amounts of Mn powders but, in case of Co and Ni, the recovery efficiencies were increased with the addition amounts. The particle size of precipitate was about 5 {mu}m. From the results of experiment we proposed the two-step cementation process for the recovery of Cu, Ni and Co with Mn powders. (author). 9 refs., 4 tabs., 14 figs.

  11. Probabilistically-Cued Patterns Trump Perfect Cues in Statistical Language Learning.

    Science.gov (United States)

    Lany, Jill; Gómez, Rebecca L

    2013-01-01

    Probabilistically-cued co-occurrence relationships between word categories are common in natural languages but difficult to acquire. For example, in English, determiner-noun and auxiliary-verb dependencies both involve co-occurrence relationships, but determiner-noun relationships are more reliably marked by correlated distributional and phonological cues, and appear to be learned more readily. We tested whether experience with co-occurrence relationships that are more reliable promotes learning those that are less reliable using an artificial language paradigm. Prior experience with deterministically-cued contingencies did not promote learning of less reliably-cued structure, nor did prior experience with relationships instantiated in the same vocabulary. In contrast, prior experience with probabilistically-cued co-occurrence relationships instantiated in different vocabulary did enhance learning. Thus, experience with co-occurrence relationships sharing underlying structure but not vocabulary may be an important factor in learning grammatical patterns. Furthermore, experience with probabilistically-cued co-occurrence relationships, despite their difficultly for naïve learners, lays an important foundation for learning novel probabilistic structure.

  12. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting.

    Science.gov (United States)

    Luo, Jiasi; Wu, Songquan; Lu, Yanjin; Guo, Sai; Yang, Yang; Zhao, Chaoqian; Lin, Junjie; Huang, Tingting; Lin, Jinxin

    2018-03-19

    Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111}  type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E corr and lower corrosion current density I corr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.

  13. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 Catalysts for Direct NO Decomposition

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christiansen, Sofie E.

    2006-01-01

    Cu-ZSM-5 has for many years been recognized as a unique catalyst for direct NO decomposition. Here, it is discovered that both Cu-ZSM-11 and Cu-ZSM-12 are about twice as active as Cu-ZSM-5. This difference is attributed to the active sites located almost exclusively in the straight zeolite pores...

  14. Fine scale remobilisation of Fe, Mn, Co, Ni, Cu and Cd in contaminated marine sediment

    DEFF Research Database (Denmark)

    Tankere-Muller, Sophie; Zhang, Hao; Davison, William

    2007-01-01

    to less than 0.3 μM. With both DET and DGT measurements, there were sharply defined maxima of Cu and Cd within 2 mm of the sediment water interface, consistent with their release from organic material as it is oxidised. There was a Co maximum about 5–8 mm lower than the Cu and Cd maxima, apparently...... coincidental with Mn mobilisation. While there were clear Ni maxima, their location appeared to vary from being coincident with Co to a few mm above the Co maxima. The remobilisation of metals could not be explained by the pH gradients in the near-surface sediments. As sulphate reduction rates were appreciable...

  15. Electromigration in Cu(Al) and Cu(Mn) damascene lines

    Science.gov (United States)

    Hu, C.-K.; Ohm, J.; Gignac, L. M.; Breslin, C. M.; Mittal, S.; Bonilla, G.; Edelstein, D.; Rosenberg, R.; Choi, S.; An, J. J.; Simon, A. H.; Angyal, M. S.; Clevenger, L.; Maniscalco, J.; Nogami, T.; Penny, C.; Kim, B. Y.

    2012-05-01

    The effects of impurities, Mn or Al, on interface and grain boundary electromigration (EM) in Cu damascene lines were investigated. The addition of Mn or Al solute caused a reduction in diffusivity at the Cu/dielectric cap interface and the EM activation energies for both Cu-alloys were found to increase by about 0.2 eV as compared to pure Cu. Mn mitigated and Al enhanced Cu grain boundary diffusion; however, no significant mitigation in Cu grain boundary diffusion was observed in low Mn concentration samples. The activation energies for Cu grain boundary diffusion were found to be 0.74 ± 0.05 eV and 0.77 ± 0.05 eV for 1.5 μm wide polycrystalline lines with pure Cu and Cu (0.5 at. % Mn) seeds, respectively. The effective charge number in Cu grain boundaries Z*GB was estimated from drift velocity and was found to be about -0.4. A significant enhancement in EM lifetimes for Cu(Al) or low Mn concentration bamboo-polycrystalline and near-bamboo grain structures was observed but not for polycrystalline-only alloy lines. These results indicated that the existence of bamboo grains in bamboo-polycrystalline lines played a critical role in slowing down the EM-induced void growth rate. The bamboo grains act as Cu diffusion blocking boundaries for grain boundary mass flow, thus generating a mechanical stress-induced back flow counterbalancing the EM force, which is the equality known as the "Blech short length effect."

  16. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  17. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Mýrdal, Jón Steinar Garðarsson; Hansen, Heine Anton

    2015-01-01

    Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core–shell nano-particle consists of a copper core interspersed....... This shows that the mixed Cu135@Au174 core–shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates....... that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles...

  18. Effects of Glucopone 215 CSUP Concentration on Size and Magnetic Property of Co-Ni-Cu Nanoparticles Prepared by Electrodeposition Method

    International Nuclear Information System (INIS)

    Abdul Razak Daud; Setia Budi; Shahidan Radiman

    2011-01-01

    Co-Ni-Cu nanoparticles were prepared by electrodeposition method at co-deposition potential of -925 mV (SCE) from sulphate solution (0.018 M Co 2+ + 0.180 M Ni 2+ + 0.002 M Cu 2+ ), both in the presence and in the absence of surfactant, Glucopone 215 CSUP. The effect of surfactant concentration on size and magnetic properties of Co-Ni-Cu nanoparticles produced was investigated. Surface morphology was analyzed using a field emission scanning electron microscope (FESEM) while its magnetic properties were investigated by a vibrating sampel magnetometer (VSM). Co-Ni-Cu nanoparticles prepared from the Glucopone 215 CSUP- containing solution were spherical with nanometer size. The finest particles were about 50 nm obtained when 5 v% of surfactant was used which was the highest surfactant concentration studied in this work. Coercivity (H c ) of the samples prepared from electrolytes containing surfactant was higher than those of prepared without surfactant. (author)

  19. Effect of nano Co reinforcements on the structure of the Sn-3.0Ag-0.5Cu solder in liquid and after reflow solid states

    Energy Technology Data Exchange (ETDEWEB)

    Yakymovych, Andriy, E-mail: yakymovych@univie.ac.at [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria); Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Mudry, Stepan; Shtablavyi, Ihor [Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Ipser, Herbert [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria)

    2016-09-15

    Sn-Ag-Cu (SAC) alloys are commonly recognized as lead-free solders employed in the electronics industry. However, some disadvantages in mechanical properties and their higher melting temperatures compared to Pb-Sn solders prompt new research relating to reinforcement of existing SAC solders. One of the ways to reinforce these solder materials is the formation of composites with nanoparticles as filler materials. Accordingly, this study presents structural features of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} solders with up to 0.8 wt% nano Co. The effect of nano-sized Co particles was investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD) in both liquid and solid states, and scanning electron microscopy (SEM). The experimental data of DTA are compared with available literature data for bulk Sn-3.0Ag-0.5Cu alloy to check the capability of minor nano-inclusions to decrease the melting temperature of the SAC solder. The combination of structural data in liquid and solid states provides important information about the structural transformations of liquid Sn-3.0Ag-0.5Cu alloys caused by minor Co additions and the phase formation during crystallization. Furthermore, scanning electron microscopy has shown the mutual substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases, respectively. - Highlights: • Differential thermal analysis of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} alloys. • Structural transformations of liquid Sn-3.0Ag-0.5Cu solder by minor Co additions. • Structure data of the solid quaternary (Sn-3.0Ag-0.5Cu){sub 100−x}(Co){sub x} alloys. • Substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases.

  20. Magnetism of coherent Co and Ni thin films on Cu(111) and Au(111) substrates: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Zelený, Martin, E-mail: zeleny@fme.vutbr.cz; Dlouhý, Ivo

    2017-02-15

    We present an ab initio study of structural and magnetic properties of coherent Co and Ni thin films on Cu(111) and Au(111) substrates with thicknesses of up to 6 monolayers. All studied films on Cu(111) substrates prefer structures close their ground state (hcp for Co and fcc for Ni), whereas only the hcp stacking sequence has been found for both films on Au(111) substrates. All studied films exhibit instability of the first monolayer with respect to decomposition into 2-monolayer- or 3-monolayer-high islands, which is in agreement with experimental findings. All studied films are also ferromagnetic, nevertheless the Ni/Cu(111) films reduce their magnetic moments in the layer adjacent to the substrate due to a stronger Cu–Ni interaction at the interface. The magnetic anisotropy of a Co film does not depend on the film thickness: all the studied Co/Au(111) films exhibit a perpendicular magnetic anisotropy, whereas all the Co/Cu(111) films prefer in-plane magnetization. On the other hand, both Ni films change their preference for in-plane orientation of their easy axis to out-of-plane orientation at a critical thickness of 2 monolayers, however, the magnetic anisotropy energies for films thicker than 1 monolayer are smaller than 1 meV/Ni atom. These behaviors of magnetic anisotropy do not depend on the structure of the studied films. - Highlights: • All films exhibit instability of the first monolayer and prefer grow in islands. • The Cu–Ni interaction is responsible for reduced Ni magnetic moments in Ni/Cu(111) films. • The Co/Au(111) and Co/Cu(111) films show different orientations of magnetic anisotropy. • The Ni films exhibit in-plane magnetization only for single monolayer. • Behaviors of magnetic anisotropy do not depend on the structure of the studied films.

  1. Preparation and structural, optical, magnetic, and electrical characterization of Mn{sup 2+}/Co{sup 2+}/Cu{sup 2+} doped hematite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Srikrishna Ramya, S.I., E-mail: ramyaskr@gmail.com; Mahadevan, C.K.

    2014-03-15

    Pure and Mn{sup 2+} / Co{sup 2+} / Cu{sup 2+} doped (1 and 2 at.%) spherical hematite (α-Fe{sub 2}O{sub 3})nanocrystals have been synthesized by a simple solvothermal method using a domestic microwave oven. XRD measurements confirm that all the seven nanocrystals prepared consist of nanocrystalline hematite phase without any other phases. The energy dispersive X-ray and Fourier transform infrared spectral analyses confirm the phase purity of the nanocrystals prepared. TEM analysis shows the average particle sizes within the range 33–51 nm. Optical absorption measurements indicate that all the three dopants enhance the optical transmittance and reflectance. A red shift is observed in the bandgap energy values estimated from optical absorption and reflectance spectra. Results of magnetic measurements made at room temperature using a vibrating sample magnetometer indicate significant changes in the magnetic properties (coercivity, retentivity and saturationmagnetization) due to doping. Results of magnetic measurements indicate significant changes in the magnetic properties. Results of AC electrical measurements made at various temperatures in the range 40–130 °C and frequencies in the range 100 Hz –1 MHz indicate low dielectric constants and AC electrical conductivities and consequently show the occurrence of nanoconfined states. -- Graphical abstract: The indexed X-ray diffraction (XRD) patterns of all the seven nanocrystals indicate the rhombohedral structure of hematite (JCPDS card No.13-0534). No impurity phase like oxides of Mn or Co or Cu was detected above equipment limit. The average crystallite (grain) sizes estimated using the Scherrer's formula. Highlights: • Pure and Mn/Co/Cu-doped hematite nanocrystals have been prepared. • The method adopted for the preparation is simple, economical and scalable. • Prepared nanocrystals are spherical in shape with good crystallinity and phase purity. • Mn/Co/Cu-doping enhances the optical

  2. Kinetics of carbon monoxide oxidation over modified supported CuO catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Loc, Luu Cam; Tri, Nguyen; Cuong, Hoang Tien; Thoang, Ho Si [Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City (Viet Nam). Inst. of Chemical Technology; Agafonov, Yu.A.; Gaidai, N.A.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2013-11-01

    The following supported on {gamma}-Al{sub 2}O{sub 3} catalysts: 10(wt.)%CuO (CuAl), 10%CuO+10%Cr{sub 2}O{sub 3} (CuCrAl) and 10%CuO+20%CeO{sub 2} (CuCeAl) were under the investigation. Physico-chemical characteristics of the catalysts were determined by the methods of BET, X-ray Diffraction (XRD), and Temperature-Programmed Reduction (TPR). A strong interaction of copper with support in CuAl resulted in the formation of low active copper aluminates. The bi-oxide CuCrAl was more active than CuAl owing to the formation of high catalytically active spinel CuCr{sub 2}O{sub 4}. The fact of very high activity of the sample CuCeAl can be explained by the presence of the catalytically active form of CuO-CeO{sub 2}-Al{sub 2}O{sub 3}. The kinetics of CO total oxidation was studied in a gradientless flow-circulating system at the temperature range between 200 C and 270 C. The values of initial partial pressures of carbon monoxide (P{sup o}{sub CO}), oxygen (P{sup o}{sub O2}), and specially added carbon dioxide (P{sup o}{sub CO{sub 2}}) were varied in ranges (hPa): 10 / 45; 33 / 100, and 0 / 30, respectively. (orig.)

  3. Cu(InGa)Se{sub 2} absorber formation by in-situ, low-temperature annealing of co-evaporated bilayer (InGa){sub 2}Se{sub 3}/CuSe precursors

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kyeongchan; Kim, Woo Kyoung, E-mail: wkim@ynu.ac.kr

    2015-12-01

    Chalcopyrite Cu(InGa)Se{sub 2} (CIGS) absorbers were fabricated by the formation of bilayer stacked glass/Mo/(InGa){sub 2}Se{sub 3}/CuSe precursors followed by in-situ thermal annealing at 450 °C for approximately 10 min in a vacuum evaporator. The material properties (e.g., crystal orientation, compositional depth profile, and overall composition) and device performance of the resulting CIGS absorbers were compared with those of the CIGS absorbers formed by conventional 1-stage and 3-stage CIGS formation processes at a similar temperature. X-ray diffraction confirmed that the 1-stage co-evaporation and in-situ annealing of the bilayer precursor produced a polycrystalline CIGS absorber without a specific texture, whereas the CIGS absorber formed by the 3-stage process showed a highly (220) preferred orientation. Secondary ion mass spectrometry revealed Ga accumulation at the bottom of CIGS formed by in-situ annealing of the bilayer precursors. The cell efficiency of the device with the CIGS absorber formed by the in-situ, low-temperature (450 °C) annealing of bilayer stacked glass/Mo/(InGa){sub 2}Se{sub 3}/CuSe precursors was comparable to that produced by the conventional 3-stage process at a similar temperature. - Highlights: • Annealing of (InGa){sub 2}Se{sub 3}/CuSe precursors was compared with coevaporation process. • In-situ annealing of (InGa){sub 2}Se{sub 3}/CuSe precursors at 450 °C produced about 9% solar cell. • Ga profile within Cu(InGa)Se{sub 2} depended on process profile during co-evaporation.

  4. Electron microscopy of an Al-Cu of 1.3 at% obtained by implantation

    International Nuclear Information System (INIS)

    Cartraud, M.; Guillot, J.; Templier, C.; Louzolo, P.

    1985-01-01

    An Al-Cu alloy of 1.3 at% is obtained by implantation of Cu ions in thin foils of aluminium. The purpose of the electron-microscope study is to determine the ageing reactions of this alloy as compared with those occuring in the quenched solid solution. It has been shown that the implantation temperature is an essential parameter in the unmixing process. After a 77 K implantation 8 months of ageing at 20 0 C are necessary to obtain the first stages of unmixing characterized by the formation of Guinier-Prestion I zones, whereas after an implantation at room-temperature, the THETA'' phase is directly observed. The behaviour of the solid solution obtained at 77 K is similar to the conventional Al-Cu solid solution. On the contrary, during the implantation at room-temperature, the unmixing is already started and this fact can be explained on account of an enhanced diffusion. (orig./R)

  5. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses

    International Nuclear Information System (INIS)

    Silva, Luis Carlos Elias da

    2006-01-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  6. Recurrent intergrowths in the topotactic reduction process of LaBaCuCoO5.2.

    Science.gov (United States)

    Ruiz-González, Luisa; Boulahya, Khalid; Parras, Marina; Alonso, José; González-Calbet, José M

    2002-12-16

    A new perovskite-related oxide with the LaBaCuCoO5.2 composition has been stabilised. Its structure can be described as formed by the recurrent intergrowth of two alternating blocks of YBaCuFeO5 (2ac, i.e., two-fold perovskite superlattice) and YBa2Fe3O8 (3ac) structural types. From the starting material LaBaCuCoO5.2-delta (delta = 0), the rigorous control of the oxygen content has allowed the stabilisation of three new five fold perovskite-related superstructures with the compositions delta = 0.4, 0.8 and 1.1, which can also be described as recurrent intergrowths of two blocks showing 2ac and 3ac periodicity. The reduction process takes place through the 3ac periodic blocks, when 0 topotactic reaction, since their basic structure is kept through the reduction process.

  7. Preparation and characterization of co-evaporated Cu{sub 2}ZnGeSe{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Uday Bhaskar, P.; Suresh Babu, G.; Kishore Kumar, Y.B.; Sundara Raja, V., E-mail: sundararajav@rediffmail.com

    2013-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGSe), a member of Cu{sub 2}–II–IV–VI{sub 4} family, is a promising material for solar cell absorber layer in thin film heterojunction solar cells like Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} which have been explored in recent years as alternate to CuInGaSe{sub 2} solar cells. The effect of substrate temperature (523 K–723 K) on the growth of CZGSe films is investigated by studying their structural, morphological and optical properties. Raman spectroscopy studies have been done to identify the phases in addition to X-ray diffraction studies. CZGSe films deposited at different substrate temperatures and annealed at 723 K in selenium atmosphere are Cu-rich and Ge-poor and contained secondary phases Cu{sub (2−x)}Se and ZnSe. CZGSe films obtained by reducing the starting Cu mass by 10% were found to be single phase with stannite structure, the lattice parameters being a = 0.563 nm, c = 1.101 nm. The direct optical band gap of CZGSe films is found to be 1.63 eV which is close to ideal band gap of 1.50 eV for the highest photovoltaic conversion efficiency. The films are found to be p-type. - Highlights: • Synthesis of Cu{sub 2}ZnGeSe{sub 4} films for solar cell absorber layer • Effect of substrate temperature on the growth of co-evaporated Cu{sub 2}ZnGeSe{sub 4} films • X-ray diffraction, Raman and morphological studies of Cu{sub 2}ZnGeSe{sub 4} thin films.

  8. Fabrication and testing of a CoNiCu/Cu CPP-GMR nanowire-based microfluidic biosensor

    International Nuclear Information System (INIS)

    Bellamkonda, Ramya; John, Tom; Mathew, Bobby; DeCoster, Mark; Hegab, Hisham; Davis, Despina

    2010-01-01

    Giant magneto resistance (GMR)-based microfluidic biosensors are used in applications involving the detection, analysis, enumeration and characterization of magnetic nano-particles attached to biological mediums such as antibodies and DNA. Here we introduce a novel multilayered CoNiCu/Cu nanowire GMR-based microfluidic biosensor. The current perpendicular to the plane of multilayers (CPP)-nanowires GMR was used as the core sensing material in the biosensor which responds to magnetic fields depending on the concentration and the flow velocity of bio-nano-magnetic fluids. The device was tested with different control solutions such as DI-water, mineral oil, phosphate buffered saline (PBS), ferrofluid, polystyrene superparamagnetic beads (PSB) and Dynabeads sheep anti-rabbit IgG. The nanowire array resistance decreased with an increase in the ferrofluid concentration, and a maximum 15.8% relative GMR was observed for the undiluted ferrofluid. The sensor was also responding differently to various ferrofluid flow rates. The GMR device showed variation in the output signal when the PSB and Dynabeads of different dilutions were pumped through it. When the tests were performed with pulsing potentials (150 mV and 200 mV), an increased GMR response was identified at higher voltages for PSB and Dynabeads sheep anti-rabbit IgG.

  9. NMR studies of interfaces, strain and anisotropy in Co/Cu multilayers

    International Nuclear Information System (INIS)

    Thomson, T.; Riedi, P.C.

    1999-01-01

    59 Co NMR studies of multilayers are able to give three direct pieces of information: (i) the crystal phase of Co, fcc (217.4 MHz), hcp (220-228 MHz) and in exotic cases bcc (198 MHz) for films measured at T= 4.2 K, (ii) the nature of the interfaces from low frequency satellite lines, and (iii) the strain state deduced from small changes in the line positions. Extensive studies of Co/Cu multilayer interfacial structures as a function of deposition technique, layer thickness, substrate/buffer layer structure and annealing temperature have been undertaken. This work has shed new light on the relationship between interfacial structure and magnetoresistance and in particular has demonstrated that flat, atomic scale, interfaces lead to greater magnetoresistance. The difference between the Co and Cu lattice constant results in an extensive, tensile in-plane strain developing in Co layers provided that some epitaxial registry is present. Information on strain effects can be obtained from the position and width of the NMR lines. The magnetic anisotropy field can be determined by measuring the field dependence of the enhancement effect due to electronic magnetisation. This provides unique insight into the distribution of magnetic anisotropy within the Co layers, as the enhancement can be investigated independently for each NMR line and, hence, provides environment specific information on magnetic anisotropy at the interfaces and in the interior of the layers

  10. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  11. Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials

    International Nuclear Information System (INIS)

    Xu, Yi-Tao; Guo, Ying; Song, Le-Xin; Zhang, Kai; Yuen, Matthew M.F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-01-01

    Cuprous oxide (Cu 2 O) sub-microspheres @ reduced graphene oxide (rGO) nanosheets core-shell composites with 3D architecture are successfully fabricated by a one-step method through co-reduction of irregular cupric citrate and graphene oxide nanosheets at room temperature. Comparing to the bare Cu 2 O sub-microspheres and the simple physical mixture of Cu 2 O and rGO (Cu 2 O-rGO-M), the Cu 2 O@rGO electrodes demonstrate dramatically improved capacity, cyclic stability and rate capability as anode materials for lithium ion batteries. At a low current density of 100 mA∙g −1 , Cu 2 O@rGO electrodes deliver a discharge capacity of 534 mAh∙g −1 after 50 cycles, retaining 94% of the initial capacity. Under a higher current density of 1000 mA∙g −1 , Cu 2 O@rGO electrodes exhibit a discharge capacity of 181 mAh∙g −1 after 200 cycles, approximately 4 times larger than that of bare Cu 2 O sub-microsphere electrodes. The rate capacity retention of Cu 2 O@rGO electrode is 74% at 200 mA∙g −1 and 38% at 1000 mA∙g −1 relative to 100 mA∙g −1 , much better than that for Cu 2 O-rGO-M (52% and 34%) and bare Cu 2 O electrodes (13% and 3%,). The enhanced electrochemical performance for Cu 2 O@rGO might be ascribed to the rGO coating and 3D architecture. The outer coated rGO nanosheets could provide additional 3D conductive networks as well as serve as the buffer layers for accommodating the large volume change of the inner Cu 2 O sub-microspheres during the charge-discharge cycling

  12. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production

    Science.gov (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao

    2017-07-01

    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  13. Determination of k{sub 0} for {sup 63}Cu(n,γ){sup 64}Cu reaction with covariance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Livia F.; Dias, Mauro S.; Koskinas, Marina F.; Yamazaki, Ione M.; Semmler, Renato, E-mail: lfbarros@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Nowadays the k{sub 0} Method is one of the most used procedures on Neutron Activation Analysis (NAA). For an element of interest, the parameter k{sub 0} can be used to determine its mass concentration. The recommended nuclear data has been investigated, and the measurement of this parameter for {sup 63}Cu(n,γ){sup 64}Cu reaction was motivated by some discrepancies that were observed in the literature. The irradiations were performed near the core of the IEA-R1 4.5 MW nuclear research reactor of the Nuclear and Energy Research Institute – IPEN-CNEN/SP, in São Paulo, Brazil. Two irradiations were carried out in sequence, using two sets of samples: the first one with a cadmium cover around the samples and the second one without it. The activity measurements were carried out in a previously calibrated HPGe gamma-ray spectrometer. Standard sources of {sup 152}Eu, {sup 133}Ba, {sup 60}Co and {sup 13}'7Cs supplied by the IAEA with gamma transitions ranging from 121 keV to 1408 keV were used in order to obtain the HPGe gamma-ray peak efficiency as a function of the energy. The covariance matrix methodology was applied to all uncertainties involved. The resulting value of k{sub 0} for {sup 63}Cu(n,γ){sup 64}Cu reaction for the gamma transition energy of the formed isotope {sup 64}Cu 1345.77 keV was 4.99 x 10{sup -4} (78).This final value for k{sub 0} has been compared with the literature. (author)

  14. Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies

    Science.gov (United States)

    Çevik, U.; Baltaş, H.

    2007-03-01

    The mass attenuation coefficients for Bi, Pb, Sr, Ca, Cu metals, Bi2O3, PbO, SrCO3, CaO, CuO compounds and solid-state forms of Bi1.7Pb0.3Sr2Ca2Cu3O10 superconductor were determined at 57.5, 65.2, 77.1, 87.3, 94.6, 122 and 136 keV energies. The samples were irradiated using a 57Co point source emitted 122 and 136 keV γ-ray energies. The X-ray energies were obtained using secondary targets such as Ta, Bi2O3 and (CH3COO)2UO22H2O. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. The effect of absorption edges on electron density, effective atomic numbers and their variation with photon energy in composite superconductor samples was discussed. Obtained values were compared with theoretical values.

  15. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  16. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    International Nuclear Information System (INIS)

    Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2013-01-01

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  17. Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop

    International Nuclear Information System (INIS)

    Martínez, I.; Romano, M.C.; Fernández, J.R.; Chiesa, P.; Murillo, R.; Abanades, J.C.

    2014-01-01

    Highlights: • Process design of a H 2 production plant based on a novel Ca/Cu looping process is presented. • CuO reduction with syngas provides energy for CaCO 3 calcination. • The effect of operating conditions on plant performance indexes is analysed. • Carbon capture efficiencies of around 94% are obtained. • Around 6% points of equivalent H 2 efficiency improvement on conventional reforming. - Abstract: A detailed and comprehensive design of a H 2 production plant based on a novel Ca/Cu chemical looping process is presented in this work. This H 2 production process is based on the sorption-enhanced reforming concept using natural gas together with a CaO/CaCO 3 chemical loop. A second Cu/CuO loop is incorporated to supply energy for the calcination of the CaCO 3 via the reduction of CuO with a fuel gas. A comprehensive energy integration description of the different gas streams available in the plant is provided to allow a thermodynamic assessment of the process and to highlight its advantages and drawbacks. Hydrogen equivalent efficiencies of up to 77% are feasible with this novel Ca/Cu looping process, using an active reforming catalyst based on Pt, high oxidation temperatures and moderate gas velocities in the fixed bed system, which are around 6% points above the efficiency of a reference H 2 production plant based on conventional steam reforming including CO 2 capture with MDEA. Non-converted carbon compounds in the reforming stage are removed as CO 2 in the calcination stage of the Ca/Cu looping process, which will be compressed and sent for storage. Carbon capture efficiencies of around 94% can be obtained with this Ca/Cu looping process, which are significantly higher than those obtained in the reference plant that uses MDEA absorption (around 85%). Additional advantages, such as its compact design and the use of cheaper materials compared to other commercial processes for H 2 production with CO 2 capture, confirm the potential of the Ca/Cu

  18. Equilibrium Sorption studies of Fe, Cu and Co ions in aqueous ...

    African Journals Online (AJOL)

    Recinius Communis Linn a commonly found herbal plant was used to prepare activated carbon by physicochemical activation method. The sorption capacity of this bio-resource material to remove Fe(III), Cu(II) and Co(II) from aqueous solutions was determined by batch tests. The influences of important parameters such as ...

  19. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Stuckey, Jason W. [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Neaman, Alexander [Facultad de Agronomia, P. Universidad Catolica de Valparaiso, Centro Regional de Estudios en Alimentos Saludables (Chile); Ravella, Ramesh; Komarneni, Sridhar [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States); Martinez, Carmen Enid [Department of Crop and Soil Sciences, Pennsylvania State University, 116 ASI Building, University Park, PA 16802 (United States)], E-mail: cem17@psu.edu

    2009-01-15

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg{sup -1} and Sector 3: pH 4.2, total Cu = 112 mg Cu kg{sup -1}) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg{sup -1} (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils. - In situ remediation of Cu-contaminated soils with a synthetic mica (Na-2-mica) will aid in re-vegetative efforts.

  20. Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane

    Science.gov (United States)

    Liu, Yang; Zhang, Jun; Guan, Huijuan; Zhao, Yafei; Yang, Jing-He; Zhang, Bing

    2018-01-01

    In present work, we prepared the bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes (Cu-Co/PDDA-HNTs) by a deposition-reduction technique at room temperature. The analysis of XRD, SEM, TEM, HAADF-STEM and XPS were employed to systematically investigate the morphology, particle size, structure and surface properties of the nanocomposite. The results reveal that the PDDA coating with thickness of ∼15 nm could be formed on the surface of HNTs, and the existence of PDDA is beneficial to deposit Cu and Co nanoparticles (NPs) with high dispersibility on the surface. While the cost-effective nanocomposite was used for the hydrolytic dehydrogenation of ammonia-borane (NH3BH3), the nanocatalyst showed extraordinary catalytic properties with high total turnover frequency of 30.8 molH2/(molmetal min), low activation energy of 35.15 kJ mol-1 and high recycling stability (>90% conversion at 10th reuse). These results indicate that the bimetallic Cu-Co nanocatalysts on PDDA functionalized HNTs have particular potential for application in release hydrogen process.

  1. The role of support morphology on the performance of Cu/ZnO-catalyst for hydrogenation of CO{sub 2} to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Tasfy, Sara Faiz Hanna, E-mail: miss25208@gmail.com; Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my; Shaharun, Maizatul Shima, E-mail: maizats@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering Chemical Engineering Department of Fundamental and Applied Sciences Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    The effects of SBA-15 support morphology on the activity of Cu/ZnO catalyst in the hydrogenation of CO{sub 2} to methanol was investigated. In the hydrogenation of CO{sub 2} to methanol at 210°C, 2.25 MPa, H{sub 2}/CO{sub 2} ratio of three remarkable difference was obtained using Cu/ZnO catalyst supported on SBA-15 with different morphology. The catalysts were characterized using N{sub 2}-adsorption, field emission scanning microscopy (FESEM/EDX), transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR). Characterization of the catalyst showed that support morphology, surface area, metals dispersion, and reducibility influenced the catalytic performance. On the fiber-shaped SBA-15, copper dispersion was 29 % whereas on the spherical-shaped SBA-15, the dispersion was 20 %. The experimental results showed that the catalyst supported over fiber-shaped SBA-15 exhibit higher CO{sub 2} conversion (13.96 %) and methanol selectivity (91.32 %) compare to catalyst supported over spherical-shaped SBA-15.

  2. Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst

    Science.gov (United States)

    Fuku, X.; Kaviyarasu, K.; Matinise, N.; Maaza, M.

    2016-09-01

    A novel ternary Punica granatum L-Cu/Cu2O/CuO/ZnO nanocomposite was successfully synthesised via green route. In this work, we demonstrate that the green synthesis of metal oxides is more viable and facile compare to other methods, i.e., physical and chemical routes while presenting a potential electrode for energy applications. The prepared nanocomposite was characterised by both microscopic and spectroscopic techniques. High-resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) techniques revealed different transitional phases with an average nanocrystallite size of 29-20 mm. It was observed that the nanocomposites changed from amorphous-slightly crystalline Cu/Cu2O to polycrystalline Cu/Cu2O/CuO/ZnO at different calcination temperatures (room temperature-RT- 600 °C). The Cu/Cu2O/ZnO/CuO metal oxides proved to be highly crystalline and showed irregularly distributed particles with different sizes. Meanwhile, Fourier transform infrared (FTIR) spectroscopy confirmed the purity while together with ultraviolet-visible (UV-Vis) spectroscopy proved the proposed mechanism of the synthesised nanocomposite. UV-Vis showed improved catalytic activity of the prepared metal oxides, evident by narrow band gap energy. The redox and electrochemical properties of the prepared nanocomposite were achieved by cyclic voltammetry (CV), electrochemical impedance (EIS) and galvanostatic charge-discharge (GCD). The maximum specific capacitance ( C s) was calculated to be 241 F g-1 at 50 mV s-1 for Cu/Cu2O/CuO/ZnO nanoplatelets structured electrode. Moreover, all the CuO nanostructures reveal better power performance, excellent rate as well as long term cycling stability. Such a study will encourages a new design for a wide spectrum of materials for smart electronic device applications.

  3. Deciphering ligands' interaction with Cu and Cu2O nanocrystal surfaces by NMR solution tools.

    Science.gov (United States)

    Glaria, Arnaud; Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Turrin, Cédric-Olivier; Chaudret, Bruno; Fau, Pierre

    2015-01-12

    The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6-9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface Cu(I) sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re-dissolution of Cu(II) species at the expense of the nanocrystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cu-62, Cu-64 and Cu-66 production with 4.2 MeV deuterons; Produccion de {sup 62} Cu y {sup 64} Cu con deuterones de 4,2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Mario; Morales, J R; Riquelme, H O [Chile Univ., Santiago (Chile). Facultad de Ciencias. Dept. de Fisica

    1997-12-31

    Full text: The natural copper irradiation with deuterons produces the Cu-62, Cu-64 and Cu-66 radionuclides. Of two radioisotopes, those with deficiencies in neutrons, are applied in nuclear medicine diagnostic processes, mainly for the nuclear characteristic of the decay modes. The positron emitters, of short life mean Cu-62 (9.1 min, {beta}{sup +}) and Cu(12.7 h), are radionuclides applied in radio pharmacological preparation for brain, core, blood flux studies. The radiochemical process consists in the de solution of the irradiated metallic copper target, in acid medium. The result solution, can be neutralized with a base or a buffer at wished pH. Using a deuteron beam of 4,2 {+-} 0,1 MeV energy has been obtained total yields of 1,103 {+-} 0,011 {mu}Cl/{mu}Ah medium for 62 Cu and of 0,148 {+-} 0,015 {mu}Cl/{mu}Ah for 64 Cu.

  5. Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability

    Energy Technology Data Exchange (ETDEWEB)

    Song, James [Institute; The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 646515, Pullman, Washington 99164, United States; Wang, Yilin [Institute; Walter, Eric D. [Environmental; Washton, Nancy M. [Environmental; Mei, Donghai [Institute; Kovarik, Libor [Environmental; Engelhard, Mark H. [Environmental; Prodinger, Sebastian [Institute; Wang, Yong [Institute; The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 646515, Pullman, Washington 99164, United States; Peden, Charles H. F. [Institute; Gao, Feng [Institute

    2017-11-03

    The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  6. Local structure analysis of Cu(In,Ga)Se{sub 2} by X-ray fluorescence holography

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho; Kitamura, Yuma [Faculty of Engineering, Ehime University, Matsuyama 790-8577 (Japan); Happo, Naohisa [Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Hosokawa, Shinya [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Hayashi, Kouichi [Faculty of Engineering, Nagoya Institute of technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2017-06-15

    X-ray Fluorescence Holography (XFH) study of Cu(In,Ga)Se{sub 2} single crystals has been performed using an inverse mode. Energies of incident X-ray are from 9.2 to 13.2 keV. The Cu-Kα X-ray fluorescence hologram has been constructed, and atomic images were reconstructed using Barton's algorithm. Dependence of fluorescent X-ray, either Cu or Ga, on the reconstructed atomic images of CuIn{sub 0.2}Ga{sub 0.8}Se{sub 2} was examined. The atomic image of CuIn{sub 0.2}Ga{sub 0.8}Se{sub 2} was compared with that of CuIn{sub 0.8}Ga{sub 0.2}Se{sub 2}. The reconstructed atomic images of the cation (Cu, Ga, and In) plane and that of the anion (Se) plane are discussed in terms of the alloy composition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Ion irradiation effects in structural and magnetic properties of Co/Cu multilayers

    International Nuclear Information System (INIS)

    Sakamoto, Isao; Okazaki, Satoshi; Koike, Masaki; Honda, Shigeo

    2012-01-01

    400 keV Ar ion (the Ar ion) and 50 keV He ion (the He ion) irradiations were performed in order to elucidate roles of Co/Cu interfacial structures in physical origins of giant magnetoresistance (GMR) in the [Co (2 nm)/Cu (2 nm)] 30 multilayers (MLs). The magnetoresistance (MR) ratio after the Ar ion irradiation decreases abruptly with increasing Ar ion fluence. On the other hand, the MR ratio after the He ion irradiation decreases slowly with increasing He ion fluence. The Ar ion irradiation induces the decrease in the difference (R max − R sat ) between the maximum resistance (R max ) and the saturated resistance (R sat ) under in-plane magnetic field and the increase in the R sat , although the effect of the He ion irradiation is not remarkable. The decrease in the (R max − R sat ) rather than the increase in the R sat seems to be effective for the decrease in the MR ratios after the Ar ion and the He ion irradiation. The increase in the R sat implies the mixing of Co atoms in Cu layers. The antiferromagnetic coupling fraction (AFF) estimated from the magnetization curves after the Ar ion and the He ion irradiation shows the similar behavior with the MR ratio as a function of ion fluence. Therefore, although the degrees of the irradiation effects by the Ar ion and the He ions are different, we suggest the relation between the GMR and the AFF affected by the ion-induced interfacial structures accompanied with the atomic mixing in the interfacial region.

  8. Improved flux-pinning properties of REBa{sub 2}Cu{sub 3}O{sub 7-z} films by low-level Co doping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao; Pu, Minghua; Wang, Weiwei; Lei, Ming [Key Laboratory of Magnetic Levitation and Maglev Trains, Ministry of Education of China, Superconductivity R and D Centre (SRDC), Southwest Jiaotong University, Erhuanlu Beiyiduan 111, 610031 Chengdu (China); Cheng, Cuihua [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, 2052 NSW, Sydney (Australia); Zhao, Yong [Key Laboratory of Magnetic Levitation and Maglev Trains, Ministry of Education of China, Superconductivity R and D Centre (SRDC), Southwest Jiaotong University, Erhuanlu Beiyiduan 111, 610031 Chengdu (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, 2052 NSW, Sydney (Australia)

    2011-09-15

    Biaxially textured REBa{sub 2}Cu{sub 3-x}Co{sub x}O{sub 7-z} (RE = Gd,Y) films were prepared on (00l) LaAlO{sub 3} substrate using self-developed fluorine-free chemical solution deposition (CSD) approach. The in-field J{sub c} values are significantly improved for REBa{sub 2}Cu{sub 3-x}Co{sub x}O{sub 7-z} films through low-level Co doping. Co-doped GdBa{sub 2}Cu{sub 3}O{sub 7-z} film shows the highest J{sub c} values at higher temperatures and fields, whereas the J{sub c} values of Co-doped YBa{sub 2}Cu{sub 3}O{sub 7-z} film surpass that of other films at lower temperatures and fields. In addition, the volume pinning force densities of films with Co doping have been distinctly enhanced in the applied fields, indicating improved flux-pinning properties. The possible reasons are discussed in detail. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  10. Deposition of CuIn(Se,S)2 thin films by sulfurization of selenized Cu/In alloys

    International Nuclear Information System (INIS)

    Sheppard, C.J.; Alberts, V.; Bekker, W.J.

    2004-01-01

    The relatively small band gap values (close to 1eV) of CuInSe 2 thin films limits the conversion efficiencies of completed CuInSe 2 /CdS/ZnO solar cell devices. In the case of traditional two-stage growth techniques, limited success has been achieved to increase the band gap by substituting indium with gallium. In this study, sputtered copper-indium alloys were exposed to a H 2 Se/Ar atmosphere under defined conditions in order to produce partially reacted CuInSe 2 structures. These films were subsequently exposed to a H 2 S/Ar atmosphere to produce monophasic CuIn(Se, S) 2 quaternary alloys. The homogeneous incorporation of S into CuInSe 2 led to a systematic shift in the lattice parameters and band gap of the ab- sorber films. From these studies optimum selenization/sulfurization conditions were determined for the deposition of homogeneous CuIn(Se,S) 2 thin films with an optimum band gap values between 1.15 and 1.2 eV. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    Science.gov (United States)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  12. Cu/Cu{sub 2}O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoli, E-mail: zhaoxiaoli_zxl@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Tan, Yixin [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wu, Fengchang, E-mail: wu_fengchang@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Niu, Hongyun [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Tang, Zhi [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Cai, Yaqi [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Giesy, John P. [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-11-15

    A simple, novel method for synthesis of Cu/Cu{sub 2}O/CuO on surfaces of carbon (Cu/Cu{sub 2}O/CuO@C) as a non-noble-metal catalyst for reduction of organic compounds is presented. Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less expensive. Characterization of the Cu/Cu{sub 2}O/CuO@C composites by high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), infrared spectroscopy and Raman analysis, revealed that it was composed of graphitized carbon with numerous nanoparticles (100 nm in diameter) of Cu/CuO/Cu{sub 2}O that were uniformly distributed on internal and external surfaces of the carbon support. Gallic acid (GA) has been used as both organic ligand and carbon precursor with metal organic frameworks (MOFs) as the sacrificial template and metal oxide precursor in this green synthesis. The material combined the advantages of MOFs and Cu-containing materials, the porous structure provided a large contact area and channels for the pollutions, which results in more rapid catalytic degradation of pollutants and leads to greater efficiency of catalysis. The material gave excellent catalytic performance for organic dyes and phenols. In this study, Cu/Cu{sub 2}O/CuO@C was used as catalytic to reduce 4-NP, which has been usually adopted as a model reaction to check the catalytic ability. Catalytic experiment results show that 4-NP was degraded approximately 3 min by use of 0.04 mg of catalyst and the conversion of pollutants can reach more than 99%. The catalyst exhibited little change in efficacy after being utilized five times. Rates of degradation of dyes, such as Methylene blue (MB) and Rhodamine B (RhB) and phenolic compounds such as O-Nitrophenol (O-NP) and 2-Nitroaniline (2-NA) were all similar. - Highlights: • We present an effective catalyst for reductive degradation of organic dyes and phenols in water. • Compared with noble metals, Cu/Cu{sub 2}O/CuO@C particles are more efficient and less

  13. Co-deposition of CuO and Mn1.5Co1.5O4 powders on Crofer22APU by electrophoretic method: Structural, compositional modifications and corrosion properties

    DEFF Research Database (Denmark)

    Molin, S.; Sabato, A. G.; Javed, H.

    2018-01-01

    of a mixed (Cu,Mn,Co)3O4 spinel. By the incorporation of Cu, the density of the coatings improved. Scanning and transmission electron microscopy observations, supplemented with energy dispersive spectroscopy, confirmed dissolution of Cu in the spinel phase. For the un-doped Mn1.5Co1.5O4 both the tetragonal...... and cubic phases are detected at room temperature by X-ray diffractometry, whereas the addition of Cu seems to stabilize the cubic phase. Initial (∼1000 h) high temperature corrosion evaluation at 800 °C in air showed promising properties of the mixed spinel coating....

  14. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi; Hagiwara, Toshiya; Fujii, Kyoko; Kojima, Masayuki; Shinoda, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  15. Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control

    KAUST Repository

    Somekawa, Shouichi

    2011-12-01

    Volatile organic compounds (VOCs) present at ppm levels were decomposed over the catalyst CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45 in mol) in an attempt to scale up for industrial odor control. In addition to enhancing the catalytic activity, CuO-Co3O4 and CeO2 helped, respectively, to maintain the strength of the pelleted catalysts and inhibit their sintering. Using toluene as a VOC model compound, kinetic analysis of the total oxidation to carbon dioxide was conducted. The odor emitted from paint-drying processes could be eliminated effectively using CuO-Co3O4-CeO2 (Cu:Co:Ce = 10:45:45) pelleted catalysts (188 ml) in a large-scale system. © 2011 Elsevier B.V. All rights reserved.

  16. Mass transport modelling for the electroreduction of CO2 on Cu nanowires

    Science.gov (United States)

    Raciti, David; Mao, Mark; Wang, Chao

    2018-01-01

    Mass transport plays an important role in CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, {{{{HCO}}}3}-,{{{{CO}}}3}2- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for CO2 reduction is discussed in terms of a fine balance among the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of CO2 reduction electrocatalysis on high-surface-area catalysts.

  17. A flexible angle sensor made from MWNT/CuO/Cu{sub 2}O nanocomposite films deposited by an electrophoretic co-deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Toboonsung, Buppachat, E-mail: buppachattt@yahoo.co.th [Physics and General Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000 (Thailand); Singjai, Pisith, E-mail: singjai@hotmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer MWNT/CuO/Cu{sub 2}Onanocomposite films were coated on a PET sheet. Black-Right-Pointing-Pointer The film resistance and application as angle sensor were investigated. Black-Right-Pointing-Pointer Thesensor showed a linear relation between the film resistance and the bending angle. Black-Right-Pointing-Pointer A minimum loop area and a high stability in sensitivity over a thousand bending cycles were obtained. - Abstract: A flexible angle sensor was prepared using an electrophoretic co-deposition process to form nanocomposite networks of multi-wall carbon nanotube/cupric oxide/cuprous oxide (MWNT/CuO/Cu{sub 2}O) on a polyethylene terephthalate (PET) sheet. The deposition method used copper and stainless steel electrodes, and the effects of varying of electrode separation, MWNT concentration in deionized water, voltage and deposition time were studied. The film resistance of the as-deposited samples decreased with increasing the MWNT concentration up to 0.3 mg/ml. The angle sensor showed a linear relation between the film resistance and the bending angle, a relationship that was illustrated with loop area and sensitivity data. The best angle sensor was successfully made with an electrode separation of 8 mm, a concentration of 0.3 mg/ml, a voltage of 10 V and a deposition time of 3 h, parameters that resulted in a minimum loop area and the most stability in sensitivity over a thousand bending cycles.

  18. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.

  19. Oxidation of Cu(II) aminopolycarboxylates by carbonate radical. A flash photolysis study

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.

    1999-01-01

    Reactions of carbonate radical (CO 3 -. ) generated by photolysis or by radiolysis of a carbonate solution, with Cu(II) complexes of aminopolycarboxylic acids viz., Cu(II)ethylenediamine tetraacetate [Cu II EDTA] 2- and Cu(II)-iminodiacetate [Cu II IDA] were studied at pH 10.5 and ionic strength 0.2 mol x dm -3 . Time-resolved spectroscopy and kinetics for the transients were studied using flash photolysis and stable products arising from the ligand degradation of the complex were ascertained by steady-state radiolysis experiments. From the kinetic data it is observed that CO 3 -. radical reacts initially with Cu II -complex to form a transient intermediate having maximum absorption at 335 nm and 430 nm. From the subsequent reactions of this intermediate it was assigned to be Cu III .species. This Cu(III) species undergoes intermolecular electron transfer with the Cu II -complex to give a radical intermediate which again slowly reacts with Cu II -complex to give a long lived species containing Cu-C bond. This long lived species, however, slowly decomposed to give glyoxalic reaction between Cu III -complex and a suitable donor, the one electron reduction potential for [Cu III EDTA] 1- /[Cu II EDTA] 2- and [Cu III IDA] +1 /Cu II IDA was determined. (author)

  20. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID.

    Science.gov (United States)

    Puydinger Dos Santos, Marcos Vinicius; Szkudlarek, Aleksandra; Rydosz, Artur; Guerra-Nuñez, Carlos; Béron, Fanny; Pirota, Kleber Roberto; Moshkalev, Stanislav; Diniz, José Alexandre; Utke, Ivo

    2018-01-01

    Non-noble metals, such as Cu and Co, as well as noble metals, such as Au, can be used in a number modern technological applications, which include advanced scanning-probe systems, magnetic memory and storage, ferroelectric tunnel junction memristors, metal interconnects for high performance integrated circuits in microelectronics and nano-optics applications, especially in the areas of plasmonics and metamaterials. Focused-electron-beam-induced deposition (FEBID) is a maskless direct-write tool capable of defining 3-dimensional metal deposits at nanometre scale for above applications. However, codeposition of organic ligands when using organometallic precursors is a typical problem that limits FEBID of pure metal nanostructures. In this work, we present a comparative study using a post-growth annealing protocol at 100, 200, and 300 °C under high vacuum on deposits obtained from Co 2 (CO) 8 , Cu(II)(hfac) 2 , and Me 2 Au(acac) to study improvements on composition and electrical conductivity. Although the as-deposited material was similar for all precursors, metal grains embedded in a carbonaceous matrix, the post-growth annealing results differed. Cu-containing deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit for temperatures above 100 °C, due to the migration of Cu atoms from the carbonaceous matrix containing carbon, oxygen, and fluorine atoms. The average size of the Cu crystals doubles between 100 and 300 °C of annealing temperature, while the composition remains constant. In contrast, for Co-containing deposits oxygen release was observed upon annealing, while the carbon content remained approximately constant; the cobalt atoms coalesced to form a metallic film. The as-deposited Au-containing material shows subnanometric grains that coalesce at 100 °C, maintaining the same average size at annealing temperatures up to 300 °C. Raman analysis suggests that the amorphous carbonaceous matrix of the as-written Co

  1. On the nature of the Cu-rich aggregates in brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Brendan; Robison, Gregory; Osborn, Jenna; Kay, Martin; Thompson, Peter; Davis, Katherine; Zakharova, Taisiya; Antipova, Olga; Pushkar, Yulia

    2017-04-01

    Fulfilling a bevy of biological roles, copper is an essential metal for healthy brain function. Cu dyshomeostasis has been demonstrated to be involved in some neurological conditions including Menkes and Alzheimer’s diseases. We have previously reported localized Cu-rich aggregates in astrocytes of the subventricular zone (SVZ) in rodent brains with Cu concentrations in the hundreds of millimolar. Metallothionein, a cysteine-rich protein critical to metal homeostasis and known to participate in a variety of neuroprotective and neuroregenerative processes, was proposed as a binding protein. Here, we present an analysis of metallothionein(1,2) knockout (MTKO) mice and age-matched controls using X-ray fluorescence microscopy. In large structures such as the corpus callosum, cortex, and striatum, there is no significant difference in Cu, Fe, or Zn concentrations in MTKO mice compared to age-matched controls. In the astrocyte-rich subventricular zone where Cu-rich aggregates reside, approximately 1/3 as many Cu-rich aggregates persist in MTKO mice resulting in a decrease in periventricular Cu concentration. Aggregates in both wild-type and MTKO mice show XANES spectra characteristic of CuxSy multimetallic clusters and have similar [S]/[Cu] ratios. Consistent with assignment as a CuxSy multimetallic cluster, the astrocyte-rich SVZ of both MTKO and wild-type mice exhibit autofluorescent bodies, though MTKO mice exhibit fewer. Furthermore, XRF imaging of Au-labeled lysosomes and ubiquitin demonstrates a lack of co-localization with Cu-rich aggregates suggesting they are not involved in a degradation pathway. Overall, these data suggest that Cu in aggregates is bound by either metallothionein-3 or a yet unknown protein similar to metallothionein.

  2. Synthesis of Cu2O, CuCl, and Cu2OCl2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... 800 nm and ∼2 ps laser pulses. Cu2O NPs exhibited two-photon absorption at lower peak intensities while three-photon absorption was observed at higher peak intensities. Other samples exhibited two-photon absorption at all peak intensities. Keywords. Picosecond; laser ablation; copper complex; ...

  3. Improvisation of mechanical and electrical properties of Cu by reinforcing MWCNT using modified electro-co-deposition process

    Science.gov (United States)

    Belgamwar, Sachin U.; Sharma, N. N.

    2018-04-01

    Multi-walled Carbon nanotubes–copper (MWCNT/Cu) composite powders with variable MWCNT content were synthesized by modified electro-co-deposition method. The electro-co-deposited MWCNT/Cu powders were consolidated by conventional compaction and sintering process. The consolidated products were then hot rolled and cold drawn to fine wires. The MWCNT/Cu composite wire samples were characterized for electrical and mechanical properties. We have been able to achieve an increase of around 8% in electrical conductivity of the form wires repeatedly. It has been observed that there was gradual improvement in the properties with reinforcement of MWCNT in the copper matrix. The betterment of electrical property has been achieved with simultaneous improvement in mechanical properties of the wire. The yield strength of MWCNT/Cu composite wire was found to be four times and the tensile strength two times greater than that of pure copper. The improved properties are attributed to the proper distribution of MWCNTs in the copper matrix and excellent interfacial bonding between MWCNT and composite copper fabricated by the modified method.

  4. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    Science.gov (United States)

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  5. Synthesis and structures of two new Cu(I) frameworks bearing1,3 ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-016-1100-6. Synthesis and structures of two new Cu(I) frameworks bearing1,3-bis(4-pyridyl)propane and inorganic linkers. ZHAOBO HUa, BO LIb,∗, WENQIANG JUa, YUNING LIANGa and ZILU CHENa,∗. aState Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources,.

  6. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    International Nuclear Information System (INIS)

    Wolny-Marszalek, M.

    2007-10-01

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  7. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Wolny-Marszalek, M [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego str., 31-342, Cracow (Poland)

    2007-10-15

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  8. Synthesis and photocatalytic activity of CuY{sub y}Fe{sub 2-y}O{sub 4}-CuCo{sub 2}O{sub 4} nanocomposites for H{sub 2} evolution under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jianhui; Yang, Haihua; Yao, Maohai; Han, Yong [Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Shuyuan Load, Yueyang, Hunan 414000 (China); College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Tang, Yougen; Lu, Zhouguang [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Zheng, Shuqin [Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Shuyuan Load, Yueyang, Hunan 414000 (China)

    2009-11-15

    Spinel-type CuY{sub y}Fe{sub 2-y}O{sub 4}-CuCo{sub 2}O{sub 4} nanocomposites have been successfully synthesized via a facile citric acid (CA)-assisted sol-gel method. And the as-synthesized nanocomposites have been characterized by techniques of X-ray diffraction (XRD), nitrogen adsorption BET method, and transmission electron microscopy (TEM). The samples are composed of primary ultrafine nanoparticles with nearly spherical morphology and mean particle size of about 80 nm. Moreover, the photocatalytic H{sub 2} evolution activity of the as-obtained samples has been evaluated from aqueous oxalic acid solution under visible light irradiation. The influence of photocatalyst type, calcination temperature, Y{sup 3+} doping content, and the durability of the as-obtained photocatalyst have been investigated in detail. The best photocatalytic H{sub 2} evolution activity was obtained over the as-synthesized CuY{sub 0.08}Fe{sub 1.92}O{sub 4}-CuCo{sub 2}O{sub 4} nanocomposite. (author)

  9. Adsorption Properties of the Cu(115) Surface

    DEFF Research Database (Denmark)

    Godowski, P. J.; Groso, A.; Hoffmann, S. V.

    2010-01-01

    The interfaces: K/Cu(115) and CO/Cu(115) have been characterized using surface sensitive techniques, including low energy electron diffraction and photoelectron spectroscopy. K adatoms show tendency to occupy the sites close to the step edges. At low temperature (near 125 K), after completion of ...

  10. In-situ XRD study of alloyed Cu2ZnSnSe4-CuInSe2 thin films for solar cells

    International Nuclear Information System (INIS)

    Hartnauer, Stefan; Wägele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland

    2015-01-01

    We investigate the growth of Cu 2 ZnSnSe 4 -CuInSe 2 (CZTISe) thin films using a 2-stage (Cu-rich/Cu-free) co-evaporation process under simultaneous application of in-situ angle dispersive X-ray diffraction (XRD). In-situ XRD allows monitoring the phase formation during preparation. A variation of the content of indium in CZTISe leads to a change in the lattice constant. Single phase CZTISe is formed in a wide range, while at high In contents a phase separation is detected. Because of different thermal expansion coefficients, the X-ray diffraction peaks of ZnSe and CZTISe can be distinguished at elevated substrate temperatures. The formation of ZnSe appears to be inhibited even for low indium content. In-situ XRD shows no detectable sign for the formation of ZnSe. First solar cells of CZTISe have been prepared and show comparable performance to CZTSe. - Highlights: • In-situ XRD study of two-stage co-evaporated Cu 2 ZnSnSe 4 -CuInSe 2 alloyed thin films. • No detection of ZnSe with in-situ XRD due to Indium incorporation • Comparable efficiency of alloyed solar cells

  11. Study of new rubber to steel adhesive systems based on Co(II and Cu(II sulphides coats

    Directory of Open Access Journals (Sweden)

    Labaj Ivan

    2018-01-01

    Full Text Available The presented paper deals with the preparation of new rubber to steel adhesive systems using the steel surface treatment with deposition of adhesive coats based on Co(II and Cu(II sulphides. Efficiency of new prepared adhesive systems containing Co(II and Cu(II sulphides has been compared with the efficiency of double layer adhesive system commonly used in industry. The chemical composition of prepared adhesive systems was determined using the EDX analysis. Scanning Electron Microscopy (SEM was used for study of topography and microstructure of prepared rubber to steel adhesive systems (Co(II, Cu(II sulphide, double layer adhesive system. For determination of adhesion strength between rubber blends and metal pieces with various adhesive systems deposited on these pieces, the test according to ASTM D429 standard relating to Rubber to metal adhesion, method A was used. For all test samples, the same type of rubber blend and the same curing conditions have been used.

  12. Structure and magnetism of ultrathin Co and Fe films epitaxially grown on Pd/Cu(0 0 1)

    International Nuclear Information System (INIS)

    Lu, Y.F.; Przybylski, M.; Yan, L.; Barthel, J.; Meyerheim, H.L.; Kirschner, J.

    2005-01-01

    A contribution originating from the Co/Pd and Fe/Pd interfaces to the magneto-optical Kerr effect (MOKE) rotation is analyzed for Co and/or Fe films grown on a Pd-buffer-monolayer on Cu(0 0 1). A clear increase of the MOKE signal in comparison to the Co(Fe) films grown directly on Cu(0 0 1) is detected. An interpretation is supported by similar observations for Co films grown on Pd(1 1 0) and Pd(0 0 1). In particular, the sign reversal of the Kerr loops with increasing thickness of the Co(Fe) films is discussed. Magneto-optical effects are separated from the real magnetization and its dependence on the film thickness

  13. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ramli, A.T.; Saleh, M.A.; Saripan, M.I.; Alzimami, K.; Min Ung, Ngie

    2013-01-01

    New glasses Li 2 CO 3 –K 2 CO 3 –H 3 BO 3 (LKB) co-doped with CuO and MgO, or with TiO 2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5–4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on 60 Co dose is linear in the range of 1–1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. - Highlights: • Enhancement of about three times has been shown with the increment of MgO. • A comparison was carried out between the TL responses of the prepared dosimeters and TLD-100. • The prepared dosimeters show simple glow curve, low Z material and excellent reproducibility. • The TL measurements show a linear dose response in a long span of exposures. • The electron response shows 1.18 times greater than photon response for the prepared dosimeters

  14. Superparamagnetism in CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grima-Gallardo, P.; Alvarado, F.; Munoz, M.; Duran, S.; Quintero, M.; Nieves, L.; Quintero, E.; Tovar, R.; Morocoima, M. [Centro de Estudios en Semiconductores (CES), Fac. Ciencias, Dpto. Fisica, Universidad de Los Andes, Merida (Venezuela); Ramos, M.A. [Laboratorio de Difraccion y Fluorescencia de Rayos-X, Instituto Zuliano de Investigaciones Tecnologicas (INZIT), La Canada de Urdaneta, Estado Zulia (Venezuela)

    2012-06-15

    The temperature dependencies of DC magnetic susceptibilities, {chi}(T), of CuFeInTe{sub 3} and CuFeGaTe{sub 3} alloys were measured in a SQUID apparatus using the protocol of field cooling (FC) and zero FC (ZFC). The FC curves of both samples reflect a weak ferromagnetic (or ferrimagnetic) behavior with a nearly constant value of {chi}(T) in the measured temperature range (2-300 K) indicating that the critical temperatures (T{sub c}) are >300 K. The ZFC curves diverges from FC, showing irreversibility temperatures (T{sub irr}) of {proportional_to}250 K for CuFeInTe{sub 3} and >300 K for CuFeGaTe{sub 3}, suggesting that we are dealing with cluster-glass systems in a superparamagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna; Currier, Neal; Peden, Charles H. F.; Yezerets, Aleksey

    2017-04-01

    In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposed an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements

  16. Tuning of magnetic frustration in S = 1 / 2 Kagomé lattices {[Cu3(CO3)2(bpe)3](CLO4)2}n and {[Cu3(CO3)2(bpy)3](CLO4)2}n through rigid and flexible ligands

    Science.gov (United States)

    Ajeesh, M. O.; Yogi, A.; Padmanabhan, M.; Nath, R.

    2015-04-01

    Single crystalline and polycrystalline samples of S = 1 / 2 Kagomé lattices { [Cu3(CO3)2(bpe)3 ](CLO4)2 } n and { [Cu3(CO3)2(bpy)3 ](CLO4)2 } n, respectively were synthesized. Their structural and magnetic properties were characterized by means of x-ray diffraction and magnetization measurements. Both compounds crystalize in a hexagonal structure (space group P-6) consisting of CuO4 Kagomé layers in the ab-plane but linked along c direction through either rigid bpy or flexible bpe ligands to form 3D frame works. Magnetic measurements reveal that both the compounds undergo ferromagnetic ordering (TC) at low temperatures and the TC and the extent of frustration could be tuned by changing the nature of the pillar ligands. {[Cu3(CO3)2(bpe)3](CLO4)2}n which is made up of flexible bpe ligands has a TC of 5.7 K and a Curie-Weiss temperature (θCW) of -39.7 K giving rise to a frustration parameter of |θCW | /TC ≃ 6.96. But the replacement of bpe by a more rigid and electronically delocalized bpy ligand leads to an enhanced TC ≃ 9.3 K and a reduced frustration parameter of |θCW | /TC ≃ 3.54.

  17. Synthesis of Cu 2 O, CuCl, and Cu2OCl 2 nanoparticles by ultrafast ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... We have also performed nonlinear optical studies of colloidal nanoparticles using Z-scan technique at 800 nm and ∼2 ps laser pulses. Cu2O NPs exhibited two-photon absorption at lower peak intensities while three-photon absorption was observed at higher peak intensities. Other samples exhibited ...

  18. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress.

    Science.gov (United States)

    Huang, Guoyong; Guo, Guangguang; Yao, Shiyuan; Zhang, Na; Hu, Hongqing

    2016-01-01

    Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations.

  19. Stability of Cu-Precipitates in Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Torsten E. M. Staab

    2018-06-01

    Full Text Available We present first principle calculations on formation and binding energies for Cu and Zn as solute atoms forming small clusters up to nine atoms in Al-Cu and Al-Zn alloys. We employ a density-functional approach implemented using projector-augmented waves and plane wave expansions. We find that some structures, in which Cu atoms are closely packed on {100}-planes, turn out to be extraordinary stable. We compare the results with existing numerical or experimental data when possible. We find that Cu atoms precipitating in the form of two-dimensional platelets on {100}-planes in the fcc aluminum are more stable than three-dimensional structures consisting of the same number of Cu-atoms. The preference turns out to be opposite for Zn in Al. Both observations are in agreement with experimental observations.

  20. Stability of a Cu0.7Co2.3O4 electrode during the oxygen evolution reaction for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho

    2018-01-01

    The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.

  1. New alkali metal diphosphates how materials to preserve the security of the environment: CsNaCu(P2O7), Rb2Cu(P2O7) and CsNaCo(P2O7) synthesis and crystal structure determination

    Science.gov (United States)

    Chernyatieva, Anastasiya; Filatova, Alyona; Spiridonova, Dariya; Krivovichev, Sergey

    2013-04-01

    tetrahedra and P2O7 groups. The structure of the [Co(P2O7)]2-framework in more detail. The phosphate groups and tetrahedra coordinate cobalt ions form topology. This is a unique 4-coordination topology, where Co and P2O7 groups in the structure are topologically equivalent. References CHERNYATIEVA, A. P., KRIVOVICHEV, S. V., SPIRIDONOVA, D. V. (2008): International conference «Inorganic Materials» Dresden (2008) P3 - 143. CHERNYATIEVA, A. P, SPIRIDONOVA, D. V., KRIVOVICHEV, S. V. The crystal structures of two new synthetic compounds CsNaCu(P2O7) and Rb2Cu(P2O7), Acta Mineralogica-Petrographica (2012) Vol.7, p.25 EL MAADI, A., BOUKHARI, A., HOLT, E.M. (1995) Journal of Alloys Compounds, 223: 13-17. HUANG, Q., HWU, S. J., MO, X. H. (2001): Angewandte Chemie - International Edition, 40: 1690-1693.

  2. The applicability of the vortex glass model in the layered superconductor Cu0.03TaS2

    International Nuclear Information System (INIS)

    Lu Junchao; Zhu Xiangde; Pi Li; Qu Zhe; Tan Shun; Zhang Yuheng

    2011-01-01

    The vortex glass theory has been successfully employed to describe the vortex phase state of high T C superconductors (HTSCs). Its validity can be examined by scaling the current-voltage isotherms with appropriate exponents and a universal scaling function. However, this second order phase transition model is not applicable for the layered superconductor Cu 0.03 TaS 2 due to its weak pinning, which could be proved by the peak effect in the M-H loop. Finally, we give the different pinning mechanisms with H||ab and H||c. Vortex strings and pancake vortices are formed under parallel and perpendicular magnetic fields, respectively. The vortex strings are pinned by normal layers in layered superconductors, while the pancake vortices are connected by Josephson coupling.

  3. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  4. Microstructure development of in situ porous TiO/Cu composites

    International Nuclear Information System (INIS)

    Qin, Q.D.; Huang, B.W.; Li, W.; Shao, F.

    2016-01-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti_2CO and Cu powder. Ti_2CO powder is produced by the carbothermic reduction of titanium dioxide (TiO_2) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  5. Exploring Cu2O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    International Nuclear Information System (INIS)

    Feng, Li-Chao; Xie, Ning; Shao, Wen-Zhu; Zhen, Liang; Ivanov, V.V.

    2014-01-01

    Highlights: • Cu 2 O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu 2 O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO 2 and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu 2 O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu 2 O/Cu was investigated in Na 3 AlF 6 –CaF 2 –Al 2 O 3 electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu 2 O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling content of Cu phase. The calculated corrosion rate

  6. Manipulating a Co adatom on a stepped Cu surface by an STM tip: A theoretical study

    International Nuclear Information System (INIS)

    Liu, L.; Huang, R.Z.; Sun, Y.S.N.; Du, C.C.; Zhang, R.J.; Zheng, Y.X.; Wu, Y.X.

    2014-01-01

    A successful atomic manipulation may be influenced by many factors such as bias voltage, tip structure and manipulation modes et al. Here, performing atomic-scale simulations with ab initio based many-body potentials, we have studied the vertical and lateral manipulation of a single Co adatom on metallic Cu surfaces using STM tips at zero bias voltage. A suitable scheme for manipulating the Co adatom on a Cu(5 5 4) surface is proposed. The optimum tip height for a successful lateral manipulation is determined and the reliability of the lateral manipulation of the adatom on the stepped surface is assessed

  7. One-step synthesis and microstructure of CuO-SDC composites

    Energy Technology Data Exchange (ETDEWEB)

    Firmino, H.C.T.; Araujo, A.J.M.; Dutra, R.P.S.; Macedo, D.A., E-mail: hellentorrano@hotmail.com, E-mail: allanjp1993@hotmail.com, E-mail: ricardopsd@gmail.com, E-mail: damaced@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nascimento, R.M., E-mail: rmaribondo@ufrnet.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Rajesh, S., E-mail: rajeshayr@gmail.com [University of Aveiro (Portugal)

    2017-01-15

    An in situ one step synthesis route based on the polymeric precursor method was used to produce dual phase CuO-samaria doped ceria (SDC) nanocomposite powders. This chemical route allowed to obtain composite powders with reduced particle size and uniform distribution of Cu, Ce and Sm elements. The particulate material was characterized by powder X-ray diffraction (XRD) combined with Rietveld refinement. CuO-SDC sintered in air between 950 to 1050 °C and subsequently reduced to Cu-SDC cermets were further characterized by XRD and scanning electron microscopy. The open porosity was measured using the Archimedes' principle. Suitable microstructures for both charge transfer and mass transport processes (30 to 45% porosity) were attained in Cu-SDC cermets previously fired at 1000 to 1050 °C. Overall results indicated that CuO-SDC composites and Cu-SDC cermets with potential application as anodes for solid oxide fuel cells (SOFCs) can be obtained by microstructural design. An anode supported half-cell was prepared by co-pressing and co-firing gadolinia doped ceria (CGO) and the herein synthesized CuO-SDC nanocomposite powder. (author)

  8. The electrochemical properties of melt-spun Al-Si-Cu alloys

    International Nuclear Information System (INIS)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing; Sun Zhanbo; Song Xiaoping; Yang Sen; Wang Liqun

    2011-01-01

    Highlights: → Non-equilibrium Al 75-X Si 25 Cu X alloys exhibit high lithiation storages. → The lithiation mechanism is different from melt-spun Al-Si-Mn system. → The structural evolution is mitigated in the non-equilibrium alloys. → Volume variation is alleviated due to the co-existence of Al 2 Cu, α-Si and α-Al. - Abstract: Melt spinning was used to prepare Al 75-X Si 25 Cu X (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al 2 Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al 74 Si 25 Cu 1 and Al 71 Si 25 Cu 4 anodes exhibited initial discharge specific capacities of 1539 mAh g -1 , 1324 mAh g -1 and reversible capacities above 472 mAh g -1 , 508 mAh g -1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al 2 Cu for the present alloys.

  9. Investigation of Conversion CO2 to Fuel by TiN nanotube-Cu nanoparticle

    Directory of Open Access Journals (Sweden)

    Leila Mahdavian

    2017-01-01

    Full Text Available The CO and CO2 effects are global warming, acid rain, limit visibility, decreases UV radiation; yellow/black color over cities and so on. In this study, convention of CO2 and H2O to CH4 and O2 near TiN- nanotube with Cu-nanoparticle calculated by Density Functional Theory (DFT methods. We have studied the structural, total energy, thermodynamic properties of these systems at room temperature. All the geometry optimization structures were carried out using GAMESS program package under Linux. DFT optimized their intermediates and transient states. The results have shown a sensitivity enhancement in resistance and capacitance when CO2 and H2O are converted to CH4 and O2. TiN-nanotube used photo-catalytic reactivity for the reduction of CO2 with H2O to form CH4 and O2 at 298K. The calculations are done in state them between of three TiN-nanotubes near Cu-nanoparticle.The calculation shown which heat reaction formation (∆H is endothermic for this reaction. This reaction needs to sun, photo active or other energy in the presence of visible light for doing.

  10. Growth and transport properties of multilayer superconducting films of Nd1.83Co0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gupta, A.; Gross, R.; Olsson, E.; Segmuller, A.; Koren, G.

    1990-01-01

    This paper reports on strained multilayer thin films of YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x that have been prepared by laser ablation deposition. For individual layers below a critical layer thickness of about 250 Angstrom, coherency strain compresses the Nd 1.83 Ce 0.17 CuO x lattice and expands the YBa 2 Cu 3 O 7-δ lattice. The orthorhombic distortion in the YBa 2 Cu 3 O 7-δ layers is also removed. Depending on their oxygen content, either the YBa 2 Cu 3 O 7-δ , or the Nd 1.83 Ce 0.17 CuO x layers are superconducting in these multilayers. The strain-induced structural modification has a significant influence on the superconducting transition temperature and critical current density of the YBa 2 Cu 3 O 7-δ layers. Zero field critical current densities as high as 1.1 x 10 7 A/cm 2 at 77K have been measured for the YBa 2 Cu 3 O 7-δ layers

  11. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Jiamusi University, Jiamusi 154007 (China); Zheng, Lanlan [Jiamusi University, Jiamusi 154007 (China); Liu, Jie [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Dept. of Prosthodontics, The Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003 (China); Bai, Bing [Dept. of Prosthodontics, School of Stomatology, China Medical University, Liaoning Institute of Dental Research, Shenyang 110001 (China); Liu, Cong [Jiamusi University, Jiamusi 154007 (China)

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation.

  12. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Zheng, Lanlan; Liu, Jie; Bai, Bing; Liu, Cong

    2015-01-01

    The cell toxicity and the cell function of Ti–Cu sintered alloys with different Cu contents (2, 5, 10 and 25 wt.%, respectively) have been investigated in comparison with commercial pure titanium in order to assess the influence of Cu content on the cell biocompatibility of the Ti–Cu alloys. The cytotoxicity was studied by examining the MG63 cell response by CCK8 assessment. The cell morphology was evaluated by acridine orange/ethidium bromide (AO/EB) fluorescence and observed under scanning electronic microscopy (SEM). The cell function was monitored by measuring the AKP activity. It has been shown by the AO/EB morphology results that the cell death on both cp-Ti sample and Ti–Cu samples is due to apoptosis rather than necrosis. Although more apoptotic cells were found on the Ti–2Cu and Ti–5Cu samples, no evidence of Cu content dependent manner of apoptosis has been found. SEM observation indicated very good cell adhesion and spread on the cp-Ti sample and the Ti–Cu samples with different Cu contents. CCK8 results displayed that increase in the Cu content in Ti–Cu alloys does not bring about any difference in the cell viability. In addition, AKP test results indicated that no difference in the differentiation of MG63 was found between the cp-Ti and the Ti–Cu samples and among the Ti–Cu samples. All results indicated that Ti–Cu alloys exhibit very good cell biocompatibility and the Cu content up to 25 wt.% in the Ti–Cu alloys has no influence on the cell proliferation and differentiation. - Highlights: • The effect of Cu content on the cell biocompatibility has been investigated. • Cu content shows no influence on the cell proliferation. • Cu content shows no effect on the cell differentiation

  13. Renal Cu and Na excretion and hepatic Cu metabolism in both Cu acclimated and non acclimated rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Grosell, M.; Hogstrand, C.; Wood, C.M.

    1998-01-01

    protein depending on whether the Cu is derived from recent branchial uptake or is already present in the plasma prior to Cu-64 exposure. The plasma Cu pool derived from recent branchial uptake and the Cu pool present in the plasma prior to Cu-64 exposure is accessible to renal excretion to different...... Na+ efflux decreased by 40%, which was largely due to increased tubular Na+ reabsorption. Renal compensation for the impaired branchial Na+ uptake, seen during Cu exposure, thus seems to be involved in Cu acclimation in rainbow trout. (C) 1998 Elsevier Science B.V....

  14. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hang; Tang, Zhiyong; Zhang, Kang; Wang, Lei; Shi, Huimin; Zhang, Guanhua; Duan, Huigao

    2017-01-01

    Ternary transition metal oxides have received intense research interest as electrode materials for lithium ion batteries, due to their high specific capacity originating from the synergic effects of multiple metal active sites. Reducing the size of metal oxides nanoparticles and dispersing these nanoparticles in carbon matrix are considering effective strategies to improve the electrochemical performance of transition metal oxides. Ternary CuCo 2 O 4 nanoclusters ultra-uniformly dispersed in carbon nanofiber matrix forming a pseudo-solid-solution structure are successfully synthesized by a facile electrospinning method followed by an appropriate annealing process. As the anodic electrode for lithium ion batteries, the pseudo-solid-solution CuCo 2 O 4 /C electrode exhibits a high reversible specific capacity, improved rate capacity and excellent cycling stability. A discharge capacity of 865 mAh g −1 is obtained at the current density of 200 mA g −1 after 400 cycles. Surprisingly, the electrode still retains about 610 mAh g −1 after 800 cycles even at the current density of 600 mA g −1 . The superior lithium storage performance of the pseudo-solid-solution CuCo 2 O 4 /C composites is mainly attributed to the unique amorphous structure. The ultrafine CuCo 2 O 4 nanoclusters uniformly dispersed in carbon matrix can buffer the volume change and improve the conductivity of the metal oxide based electrode, guaranteeing the structure stability and fast electron transfer.

  15. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    OpenAIRE

    Leandro Trinta de Farias; Aderval Severino Luna; Dalva Cristina Baptista do Lago; Lilian Ferreira de Senna

    2008-01-01

    Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00), with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition p...

  16. Soft-template-synthesis of hollow CuO/Co{sub 3}O{sub 4} composites for pseudo-capacitive electrode: A synergetic effect on electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kuaibing, E-mail: wangkb@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093 (China); Lv, Bo; Wu, Hua; Luo, Xuefei; Xu, Jiangyan [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Geng, Zhirong [State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093 (China)

    2016-12-15

    Hollow CuO/Co{sub 3}O{sub 4} hybrids, which inherited from its coordination polymer precursor consisting of sheets layer and nanoparticles layer composites, were synthesized and characterized by SEM, EDX, XRD and XPS. To assess its electrochemical capacitive performances, cyclic voltammetry, galvanostatic charging-discharging measurements and A.C. impedance tests were performed successively. The CuO/Co{sub 3}O{sub 4} hybrids had higher capacitance and lower charge transfer resistance than bare Co{sub 3}O{sub 4} nanostructures, revealing that it provided a protection layer and produced a synergistic effect due to the existence of CuO layer. The distinct synergistic effect could be further confirmed by endurance cycling tests. The capacitance of the CuO/Co{sub 3}O{sub 4} hybrids was 111% retained after 500 cycles at a charging rate of 1.0 A g{sup −1} and remained an intense growth trend after 2000 cycles at scan rate of 200 mV s{sup −1}. - Graphical abstract: Hollow CuO/Co{sub 3}O{sub 4} hybrids are synthesized and display a peculiar synergetic effect on the resulting performances, which can further be evaluated and confirmed by series of electrochemical measurements. - Highlights: • Hollow CuO/Co{sub 3}O{sub 4} hybrids are synthesized from bimetallic-Schiff base polymer precursors. • The capacitance of the CuO/Co{sub 3}O{sub 4} hybrids keeps a growth tendency after 2000 cycles. • A synergetic effect is found for the hybrids in electrochemical energy storage process.

  17. Prospects of chemically deposited CoS-CU2S coatings for solar ...

    African Journals Online (AJOL)

    The thin films of Cu2S deposited on CoS-precoated glass substrates from chemical baths and annealed at 100oC were found to have desirable solar control characteristics superior to commercial tinted glass and magnetron sputtered multilayer metallic solar control coatings. These include: transmission spectra in the ...

  18. Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}: A new telluro-phosphate with S=1/2 Heisenberg chain

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Mingjun [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Shipeng; Lu, Jun; Sun, Young [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, R.K., E-mail: rkli@mail.ipc.ac.cn [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-15

    A new telluro-phosphate compound Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} with S=1/2 Heisenberg chain has been successfully synthesized by solid state reaction and grown by flux method. Single crystal X-ray diffraction reveals that Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} crystallizes into a monoclinic space group C2/c and cell parameters of a=17.647(3) Å, b=7.255(2) Å, c=9.191(2) Å and β=100.16 (3)°. In the structure of Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, one dimensional [CuTePO{sub 7}]{sup 3−} chains are formed by tetrahedral PO{sub 4} and trigonal bi-pyramidal TeO{sub 4} joining square planar CuO{sub 4} groups. Those [CuTePO{sub 7}]{sup 3−} chains are inter-connected by sharing one oxygen atom from the TeO{sub 4} group to form two dimensional layers. Magnetic susceptibility and specific heat measurements confirm that the title compound is a model one dimensional Heisenberg antiferromagnetic chain system. - Graphical abstract: Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, containing (CuTePO{sub 7}){sup 3−} chains formed by PO{sub 4} and TeO{sub 4} joining CuO{sub 4} groups, shows typical 1D Heisenberg antiferromagnetic chain model behavior as confirmed by magnetic measurements. - Highlights: • New telluro-phosphate Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} has been grown. • It features layered structure composed of [CuTePO{sub 7}]{sup 3−} chains and TeO{sub 4} groups. • It shows the Heisenberg antiferromagnetic chain behavior. • It is transparent in the range of 1000–2500 nm with a UV absorption edge of 393 nm.

  19. Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin

    Science.gov (United States)

    Bookstrom, Arthur A.; Box, Stephen E.; Cossette, Pamela M.; Frost, Thomas P.; Gillerman, Virginia; King, George; Zirakparvar, N. Alex

    2016-01-01

    The Blackbird cobalt-copper (Co-Cu) district in the Salmon River Mountains of east-central Idaho occupies the central part of the Idaho cobalt belt—a northwest-elongate, 55-km-long belt of Co-Cu occurrences, hosted in grayish siliciclastic metasedimentary strata of the Lemhi subbasin (of the Mesoproterozoic Belt-Purcell Basin). The Blackbird district contains at least eight stratabound ore zones and many discordant lodes, mostly in the upper part of the banded siltite unit of the Apple Creek Formation of Yellow Lake, which generally consists of interbedded siltite and argillite. In the Blackbird mine area, argillite beds in six stratigraphic intervals are altered to biotitite containing over 75 vol% of greenish hydrothermal biotite, which is preferentially mineralized.Past production and currently estimated resources of the Blackbird district total ~17 Mt of ore, averaging 0.74% Co, 1.4% Cu, and 1.0 ppm Au (not including downdip projections of ore zones that are open downward). A compilation of relative-age relationships and isotopic age determinations indicates that most cobalt mineralization occurred in Mesoproterozoic time, whereas most copper mineralization occurred in Cretaceous time.Mesoproterozoic cobaltite mineralization accompanied and followed dynamothermal metamorphism and bimodal plutonism during the Middle Mesoproterozoic East Kootenay orogeny (ca. 1379–1325 Ma), and also accompanied Grenvilleage (Late Mesoproterozoic) thermal metamorphism (ca. 1200–1000 Ma). Stratabound cobaltite-biotite ore zones typically contain cobaltite1 in a matrix of biotitite ± tourmaline ± minor xenotime (ca. 1370–1320 Ma) ± minor chalcopyrite ± sparse allanite ± sparse microscopic native gold in cobaltite. Such cobaltite-biotite lodes are locally folded into tight F2 folds with axial-planar S2 cleavage and schistosity. Discordant replacement-style lodes of cobaltite2-biotite ore ± xenotime2 (ca. 1320–1270 Ma) commonly follow S2fractures and fabrics

  20. Microstructure development of in situ porous TiO/Cu composites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Q.D., E-mail: 58124812@qq.com [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Huang, B.W. [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Li, W. [Department of Materials Engineering, Zhengzhou Technology College, No. 81 Zhengshang Road, Zhengzhou, 450051 (China); Shao, F. [2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China)

    2016-07-05

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti{sub 2}CO and Cu powder. Ti{sub 2}CO powder is produced by the carbothermic reduction of titanium dioxide (TiO{sub 2}) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  1. Cu-Zr-Ag bulk metallic glasses based on Cu8Zr5 icosahedron

    International Nuclear Information System (INIS)

    Xia Junhai; Qiang Jianbing; Wang Yingmin; Wang Qing; Dong Chuang

    2007-01-01

    Based on the cluster line criterion, the Ag addition into the Cu 8 Zr 5 cluster composition is investigated for the search of ternary Cu-Zr-Ag bulk metallic glasses with high glass forming abilities. Two initial binary compositions Cu 0.618 Zr 0.382 and Cu 0.64 Zr 0.36 are selected. The former one corresponds to a deep eutectic point; it is also the composition of the Cu 8 Zr 5 icosahedron, which is derived from the Cu 8 Zr 3 structure. The latter one, which can be regarded as the Cu 8 Zr 5 cluster plus a glue atom Cu, is the best glass-forming composition in the Cu-Zr binary system. Two composition lines (Cu 0.618 Zr 0.382 ) 1-x Ag x and (Cu 0.64 Zr 0.36 ) 1-x Ag x are thus constructed in the Cu-Zr-Ag system by linking these two compositions with the third constitute Ag. A series of Cu-Zr-Ag bulk metallic glasses are found with 2-8 at.% Ag contents in both composition lines. The optimum composition (Cu 0.618 Zr 0.382 ) 0.92 Ag 0.08 within the searched region with the highest T g /T l = 0.633, is located along the cluster line (Cu 0.618 Zr 0.382 ) 1-x Ag x , where the deep eutectic Cu 0.618 Zr 0.382 exactly corresponds to the dense packing cluster Cu 8 Zr 5 . The alloying mechanism is discussed in the light of atomic size and electron concentration factors

  2. Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying

    Science.gov (United States)

    Barman, Sajib K.; Huda, Muhammad N.

    2018-04-01

    As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.

  3. Characterization of p-CuI prepared by the SILAR technique on Cu-tape/n-CuInS2 for solar cells

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Ennaoui, A.; Guminskaya, T.; Dittrich, Th.; Bohne, W.; Roehrich, J.; Strub, E.; Lux-Steiner, M.Ch.

    2005-01-01

    CuI has been synthesized at room temperature on Cu-tape/n-CuInS 2 by using the SILAR technique (successive ionic layer adsorption and reaction). The influence of wet chemical iodine treatment on the CuI has been investigated in more detail. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), elastic recoil detection analysis (ERDA) and surface photovoltage (SPV) techniques. The CuI films contain the no. gammano. -phase of the Zinkblende structure. The crystallites are preferentially oriented in the (111) direction. After wet chemical iodine treatment, the fibrous surface morphology changed to a more dense CuI film with larger crystallites. Oxides could not be detected on the CuI surface. The density of surface states of CIS decreased after the CuI deposition. The importance of the wet chemical iodine treatment for the performance of Cu-tape/n-CuInS 2 /p-CuI solar cells has been demonstrated

  4. Finite Element Method Analysis of Nanoscratch Test for the Evaluation of Interface Adhesion Strength in Cu Thin Films on Si Substrate

    Science.gov (United States)

    Sekiguchi, Atsuko; Koike, Junichi

    2008-01-01

    Mechanical processes of the nanoscratch test are investigated using a finite element analysis of Cu/Ta/SiO2/Si multilayer films. The calculated stress distribution at the moment of delamination suggests that delamination occurs in a small region of approximately 100 nm. The driving force for delamination is the stress concentration due to strain-incompatibility at the Cu/Ta interface resulting from the large plastic deformation in Cu. The degree of stress concentration is found to depend on internal variables, such as plastic deformation, residual stress, and the elastic modulus, and on the magnitude of lateral force.

  5. Cu diffusion as an alternative method for nanopatterned CuTCNQ film growth

    International Nuclear Information System (INIS)

    Capitán, M J; Álvarez, J; Miranda, R; Navío, C

    2016-01-01

    In this paper we show by means of ‘in situ’ x-ray diffraction studies that CuTCNQ formation from Cu(solid)–TCNQ(solid tetracyanoquinodimethane) goes through Cu diffusion at room temperature. The film quality depends on the TCNQ evaporation rate. At low evaporation rate we get a single phase-I CuTCNQ film very well crystallized and well oriented. The film has a CuTCNQ(0 2 0) orientation. The film is formed by CuTCNQ nanorods of a very homogeneous size. The film homogeneity has also been seen by atomic force microscopy (AFM). The electronic properties of the film have been measured by x-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS). Thus, the Cu-diffusion method has arisen as a very simple, clean and efficient method to grow localized CuTCNQ nanorods on Cu, opening up new insights for technological applications. (paper)

  6. A magneto-optic technique for studying magnetization reversal processes and anisotropies applied to Co/Cu/Co trilayer structures

    Science.gov (United States)

    Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.

    1993-05-01

    We report the magnetization reversal and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 and 27 Å) trilayer structures prepared by MBE on a 500-Å Ge/GaAs(110) epilayer. We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal MOKE measurements. For the samples examined, coherent rotation of the magnetization vector is observed when the magnetic field is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths. An absence of antiferromagnetic (AF) coupling has been observed previously [W. F. Egelhoff, Jr. and M. T. Kief, Phys. Rev. B 45, 7795 (1992)] in contrast to recent results, indicating that AF coupling [M. T. Johnson et al., Phys. Rev. Lett. 69, 969 (1992)] and GMR [D. Grieg et al., J. Magn. Magn. Mater. 110, L239 (1992)] can occur in Co/Cu(111)/Co structures grown by MBE, but these properties are sensitively dependent on growth conditions. The absence of coupling in our samples is attributed to the presence of a significant interface roughness induced by the Ge epilayer. The uniaxial anisotropies are assumed to arise from strain or defects induced in the film.

  7. Controllable synthesis and enhanced photocatalytic properties of Cu2O/Cu31S16 composites

    International Nuclear Information System (INIS)

    Liu, Xueqin; Li, Zhen; Zhang, Qiang; Li, Fei

    2012-01-01

    Highlights: ► Facile sonochemical route. ► The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled. ► Structure and optical properties of Cu 2 O/Cu 31 S 16 were discussed. ► Enhanced photocatalytic property of Cu 2 O/Cu 31 S 16 . ► Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles. -- Abstract: The controlled synthesis of Cu 2 O/Cu 31 S 16 microcomposites with hierarchical structures had been prepared via a convenient sonochemical route. Ultrasonic irradiation of a mixture of Cu 2 O and (NH 2 ) 2 CS in an aqueous medium yielded Cu 2 O/Cu 31 S 16 composites. The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled by adjusting the synthesis time. The Cu 31 S 16 layer not only protected and stabilized Cu 2 O particles, but also prohibited the recombination of photogenerated electrons–holes pair between Cu 31 S 16 and Cu 2 O. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) spectra, ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize the products. Photocatalytic performance of the Cu 2 O/Cu 31 S 16 hierarchical structures was evaluated by measuring the decomposition rate of methyl orange solution under natural light. To the best of our knowledge, this is the first report on the preparation and photocatalytic activity of Cu 2 O/Cu 31 S 16 microcomposite. Additionally, the Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles during photocatalytic process since the photocatalytic activity of the second reused architecture sample was much higher than that of pure Cu 2 O. The Cu 2 O/Cu 31 S 16 microcomposites may be a good promising candidate for wastewater treatment.

  8. The electrochemical properties of melt-spun Al-Si-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Linping; Wang Fei; Liang Pu; Song Xianlei; Hu Qing [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Sun Zhanbo, E-mail: szb@mail.xjtu.edu.cn [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Song Xiaoping; Yang Sen; Wang Liqun [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2011-10-03

    Highlights: {yields} Non-equilibrium Al{sub 75-X}Si{sub 25}Cu{sub X} alloys exhibit high lithiation storages. {yields} The lithiation mechanism is different from melt-spun Al-Si-Mn system. {yields} The structural evolution is mitigated in the non-equilibrium alloys. {yields} Volume variation is alleviated due to the co-existence of Al{sub 2}Cu, {alpha}-Si and {alpha}-Al. - Abstract: Melt spinning was used to prepare Al{sub 75-X}Si{sub 25}Cu{sub X} (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, {alpha}-Si and Al{sub 2}Cu co-existed in the alloys. Nano-scaled {alpha}-Al grains, as the matrix, formed in the as-quenched ribbons. The Al{sub 74}Si{sub 25}Cu{sub 1} and Al{sub 71}Si{sub 25}Cu{sub 4} anodes exhibited initial discharge specific capacities of 1539 mAh g{sup -1}, 1324 mAh g{sup -1} and reversible capacities above 472 mAh g{sup -1}, 508 mAh g{sup -1} at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al-Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled {alpha}-Al, {alpha}-Si, and Al{sub 2}Cu for the present alloys.

  9. On the stability of the CO adsorption-induced and self-organized CuPt surface alloy

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Chorkendorff, Ib

    2010-01-01

    The stability of the recently discovered CO-induced and self-organized CuPt surface alloy was explored at near ambient pressures of O-2 (200 mbar) at room temperature, in a CO + H-2 mix (P-tot = 220 mbar, 4% CO) from room temperature to 573 K, as well as in a CO + H2O mix (P-tot = 17 mbar, 50% CO...

  10. Magnetic and structural properties of Cu{sub 0.85}Fe{sub 0.15}O system synthesized by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H. D., E-mail: herdacom@gmail.com; Perez Alcazar, G. A. [Universidad del Valle, Departamento de Fisica (Colombia)

    2011-11-15

    Cu{sub 0.94}Fe{sub 0.06}O and Cu{sub 0.85}Fe{sub 0.15}O samples were synthesized by using the co-precipitation chemical method. Starting from aqueous solutions of copper nitrate, CuO (NO{sub 3}){sub 2} 3H{sub 2}O, iron nitrate, Fe (NO{sub 3}){sub 3} 9H{sub 2}O and sodium hydroxide as precipitating agent, NaOH. The precipitate of three samples for Cu{sub 0.94}Fe{sub 0.06}O and five for Cu{sub 0.85}Fe{sub 0.15}O of fine powder were calcined for 5 h at different temperatures. The obtained X rays diffraction patterns refined by the Rietveld method show the CuO characteristic pattern, showing that the Fe atoms enter to replace Cu atoms. Furthermore, it was obtained that the crystallite size decreases with calcination temperatures for Cu{sub 0.94}Fe{sub 0.06}O. The transmission Moessbauer spectroscopy showed that the samples present a disordered paramagnetic behavior due to the big value of the half-width of line of the quadrupolar splitting. Vibrating sample magnetometry confirms the paramagnetic character. The XRD results indicate that the material is nanostructured, due that the crystallite sizes are of the order of 10 nm for Cu{sub 0.94}Fe{sub 0.06}O and 40 nm for Cu{sub 0.85}Fe{sub 0.15}O.

  11. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip; Tan, Hua; Polshettiwar, Vivek

    2012-01-01

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  12. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity

    KAUST Repository

    Sarawade, Pradip

    2012-11-06

    We studied the effects of various surfactants on the shape and morphology of three metal organic frameworks (MOFs), i.e., Co-MOF, Cu-MOF, and In-MOF, which were synthesized under microwave irradiation. The as-synthesized materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen sorption. The effects of microwave irradiation time, temperature, and surfactant template were investigated. The synthetic parameters, including the type of surfactant template and the reaction temperature, played crucial roles in the size, shape, and morphology of the MOF microcrystals. We also evaluated these MOFs as sorbents for capturing CO2. Of the synthesized materials, Cu-MOF demonstrated the highest CO2 capture capacity, even at atmospheric pressure and ambient temperature. © 2012 American Chemical Society.

  13. Effects of the Electrodeposition Time in the Synthesis of Carbon-Supported Pt(Cu and Pt-Ru(Cu Core-Shell Electrocatalysts for Polymer Electrolye Fuel Cells

    Directory of Open Access Journals (Sweden)

    Griselda Caballero-Manrique

    2016-08-01

    Full Text Available Pt(Cu/C and Pt-Ru(Cu/C electrocatalysts with core-shell structure supported on Vulcan Carbon XC72R have been synthesized by potentiostatic deposition of Cu nanoparticles on the support, galvanic exchange with Pt and spontaneous deposition of Ru species. The duration of the electrodeposition time of the different species has been modified and the obtained electrocatalysts have been characterized using electrochemical and structural techniques. The High Resolution Transmission Electron Microscopy (HRTEM, Fast Fourier Transform (FFT and Energy Dispersive X-ray (EDX microanalyses allowed the determining of the effects of the electrodeposition time on the nanoparticle size and composition. The best conditions identified from Cyclic Voltammetry (CV corresponded to onset potentials for CO and methanol oxidation on Pt-Ru(Cu/C of 0.41 and 0.32 V vs. the Reversible Hydrogen Electrode (RHE, respectively, which were smaller by about 0.05 V than those determined for Ru-decorated commercial Pt/C. The CO oxidation peak potentials were about 0.1 V smaller when compared to commercial Pt/C and Pt-Ru/C. The positive effect of Cu was related to its electronic effect on the Pt shells and also to the generation of new active sites for CO oxidation. The synthesis conditions to obtain the best performance for CO and methanol oxidation on the core-shell Pt-Ru(Cu/C electrocatalysts were identified. When compared to previous results in literature for methanol, ethanol and formic acid oxidation on Pt(Cu/C catalysts, the present results suggest an additional positive effect of the deposited Ru species due to the introduction of the bifunctional mechanism for CO oxidation.

  14. Soft-template-synthesis of hollow CuO/Co3O4 composites for pseudo-capacitive electrode: A synergetic effect on electrochemical performance

    Science.gov (United States)

    Wang, Kuaibing; Lv, Bo; Wu, Hua; Luo, Xuefei; Xu, Jiangyan; Geng, Zhirong

    2016-12-01

    Hollow CuO/Co3O4 hybrids, which inherited from its coordination polymer precursor consisting of sheets layer and nanoparticles layer composites, were synthesized and characterized by SEM, EDX, XRD and XPS. To assess its electrochemical capacitive performances, cyclic voltammetry, galvanostatic charging-discharging measurements and A.C. impedance tests were performed successively. The CuO/Co3O4 hybrids had higher capacitance and lower charge transfer resistance than bare Co3O4 nanostructures, revealing that it provided a protection layer and produced a synergistic effect due to the existence of CuO layer. The distinct synergistic effect could be further confirmed by endurance cycling tests. The capacitance of the CuO/Co3O4 hybrids was 111% retained after 500 cycles at a charging rate of 1.0 A g-1 and remained an intense growth trend after 2000 cycles at scan rate of 200 mV s-1.

  15. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays.

    Science.gov (United States)

    Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Wu, Shishan; Yan, Chenglin

    2015-10-23

    We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm(-3) (∼40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm(-3), which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm(-3) after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices.

  16. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays

    Science.gov (United States)

    Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Wu, Shishan; Yan, Chenglin

    2015-10-01

    We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm-3 (˜40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm-3, which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm-3 after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices.

  17. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    Science.gov (United States)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  18. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 'C for 3 hours. As the annealing temperature was raised from 300 to 900 'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  19. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.

    2013-08-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 \\'C for 3 hours. As the annealing temperature was raised from 300 to 900 \\'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  20. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.

    Science.gov (United States)

    Reske, Rulle; Mistry, Hemma; Behafarid, Farzad; Roldan Cuenya, Beatriz; Strasser, Peter

    2014-05-14

    A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

  1. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  2. Direct laser sintered WC-10Co/Cu nanocomposites

    Science.gov (United States)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  3. Direct laser sintered WC-10Co/Cu nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gu Dongdong [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)], E-mail: dongdonggu@nuaa.edu.cn; Shen Yifu [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)

    2008-04-30

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  4. Direct laser sintered WC-10Co/Cu nanocomposites

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu

    2008-01-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa

  5. Immobilization of Cu(II) in KIT-6 supported Co{sub 3}O{sub 4} and catalytic performance for epoxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baitao, E-mail: btli@scut.edu.cn; Luo, Xin; Zhu, Yanrun; Wang, Xiujun, E-mail: xjwangcn@scut.edu.cn

    2015-12-30

    Graphical abstract: - Highlights: • Cu-containing cobaltosic oxide composite supported by KIT-6 was synthesized. • Calcination temperature (250 and 550 °C) affected the catalyst structure. • Cu{sup 2+} was successfully embedded in spinel structure when calcined at 550 °C. • Hybrid CuO and Co{sub 3}O{sub 4} were remained in the catalyst through 250 °C treatment. • Enhancement in selectivity of styrene oxide was obtained for Cu-spinel catalyst. - Abstract: KIT-6 is a cage type three dimensional cubic mesoporous silicate with Ia3d type structure, which shows scintillating promise in nanocasting, surface functionality, metal incorporation, and pharmaceutics. Nevertheless, little attention was paid to its application as support in heterogeneous catalysts. Cu-containing cobaltosic oxide spinel composite supported by mesoporous silica KIT-6 was synthesized via impregnation method and subsequent calcination under different temperatures. The prepared ordered materials were characterized by X-ray diffraction, N{sub 2} adsorption–desorption, transmission electron microscopy, atomic adsorption spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The results showed that Cu{sup 2+} was successfully embedded in spinel structure when calcined at 550 °C, in contrast, the samples through thermal treatment at 250 °C remained hybrid composition of CuO and Co{sub 3}O{sub 4}. Catalytic performance of mesoporous materials was evaluated for epoxidation of styrene in the presence of tert-butylhydroperoxide as oxidant. Among a range of prepared materials, a significant enhancement in styrene conversion and selectivity of styrene oxide was obtained for Cu-spinel catalysts, in comparison with hybrid oxide. A dramatic decrease in catalytic activities was found while KIT-6 support was removed, due to the partial destruction of ordered structure of Cu–Co oxide. Consequently, the catalytic behaviors were chiefly ascribed to copper species and their textural

  6. Ionized vapor deposition of antimicrobial Ti–Cu films with controlledcopper release

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Wulff, H.; Kšírová, Petra; Zietz, C.; Drache, S.; Čada, Martin; Hubička, Zdeněk; Bader, R.; Tichý, M.; Helm, Ch.A.; Hippler, R.

    2014-01-01

    Roč. 550, JAN (2014), s. 389-3947 ISSN 0040-6090 R&D Projects: GA TA ČR TA01010517; GA ČR(CZ) GAP205/11/0386 Institutional support: RVO:68378271 Keywords : titanium, * copper * thin films * Ti–Cu films * high power impulse magnetron sputtering * X-ray diffraction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.759, year: 2014 http://www.sciencedirect.com/science/article/pii/S0040609013018166

  7. A Highly Efficient Adsorbent Cu-Perusian Blue@Nanodiamond for Cesium in Diluted Artificial Seawater and Soil-Treated Wastewater.

    Science.gov (United States)

    Matsumoto, Kazuko; Yamato, Hideyuki; Kakimoto, Seishiro; Yamashita, Takeshi; Wada, Ryutaro; Tanaka, Yoshiaki; Akita, Masakazu; Fujimura, Tadamasa

    2018-04-11

    A new adsorbent Cu-Perussian blue@Nanodiamond (Cu-PB@DND) for Cs + removal was prepared and characterized with IR, SEM, X-ray diffraction, particle size analysis, and zeta-potential. The adsorbent consists of a core of aggregated detonation nanodiamond (DND) particles with the surface treated with Cu-PB. Cesium adsorption was studied in two modes; a co-precipitation mode and a batch mode. In the co-precipitation mode, DND, CuCl 2 , and K 4 [Fe(CN) 6 ] were added sequentially to a Cs + solution in diluted artificial seawater. In the batch mode, adsorbent Cu-PB@DND was dispersed into a Cs + solution with stirring. The distribution coefficient (K d ) of the co-precipitation mode was 8.8 × 10 7 (mL/g) at Cs + 6.6 ppm in 0.07% seawater. The K d value of the batch mode was 1.3 × 10 6 (mL/g). Precipitation of Cs + -incorporated particles was complete, and post filtration was not necessary. Excess copper and iron ions were completely removed and were not detected in the supernatant. The adsorption data for Cu-PB@DND were analyzed by assuming Langmuir isotherm and a good fit was obtained with a maximum adsorption capacity Q max of 759 mg/g. The co-precipitation method was also applied to soil-treated wastewater.

  8. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  9. Characterization of p-CuI prepared by the SILAR technique on Cu-tape/n-CuInS{sub 2} for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany)]. E-mail: brsankapal@rediffmail.com; Ennaoui, A. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Guminskaya, T. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Dittrich, Th. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Bohne, W. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Strub, E. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany); Lux-Steiner, M.Ch. [Hahn-Meitner-Institut, Glienicker Strasse 100, D-14109, Berlin (Germany)

    2005-06-01

    CuI has been synthesized at room temperature on Cu-tape/n-CuInS{sub 2} by using the SILAR technique (successive ionic layer adsorption and reaction). The influence of wet chemical iodine treatment on the CuI has been investigated in more detail. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), elastic recoil detection analysis (ERDA) and surface photovoltage (SPV) techniques. The CuI films contain the no. gammano. -phase of the Zinkblende structure. The crystallites are preferentially oriented in the (111) direction. After wet chemical iodine treatment, the fibrous surface morphology changed to a more dense CuI film with larger crystallites. Oxides could not be detected on the CuI surface. The density of surface states of CIS decreased after the CuI deposition. The importance of the wet chemical iodine treatment for the performance of Cu-tape/n-CuInS{sub 2}/p-CuI solar cells has been demonstrated.

  10. Mass Transport Modeling for The Electroreduction of CO2 on Cu Nanowires.

    Science.gov (United States)

    Raciti, David; Mao, Mark; Wang, Chao

    2017-11-20

    Mass transport plays an important role in the CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, HCO3-, CO32- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for the CO2 reduction is discussed in terms of a fine balance of the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of the CO2 reduction electrocatalysis on high-surface-area catalysts. © 2017 IOP Publishing Ltd.

  11. Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanghui; Yi, Hong; Zhang, Guoting; Deng, Yi; Bai, Ruopeng; Zhang, Heng; Miller, Jeffrey T.; Kropf, Arthur J.; Bunel, Emilio E.; Lei, Aiwen

    2014-01-06

    ABSTRACT: X-ray absorption spectroscopy and in situ electron paramagnetic resonance evidence were provided for the reduction of Cu(II) to Cu(I) species by alkynes in the presence of tetramethylethylenediamine (TMEDA), in which TMEDA plays dual roles as both ligand and base. The structures of the starting Cu(II) species and the obtained Cu(I) species were determined as (TMEDA)- CuCl2 and [(TMEDA)CuCl]2 dimer, respectively.

  12. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    Science.gov (United States)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  13. Surface-reconstructed Cu Electrode via a Facile Electrochemical Anodization-Reduction Process for Low Overpotential CO 2 reduction

    KAUST Repository

    Min, Shixiong

    2017-03-21

    A high-surface-area Cu electrode, fabricated by a simple electrochemical anodization-reduction method, exhibits high activity and selectivity for CO2 reduction at low overpotential in 0.1 M KHCO3 solution. A faradaic efficiency of 37% for HCOOH and 27% for CO production was achieved with the current density of 1.5 mA cm-2 at −0.64 V vs. RHE, much higher than that of polycrystalline Cu. The enhanced catalytic performance is a result of the formation of the high electrochemical active surface area and high density of preferred low-index facets.

  14. The influence of dietary Cu and diabetes on tissue 67Cu retention kinetics in rats

    International Nuclear Information System (INIS)

    Uriu-Hare, J.Y.; Rucker, R.B.; Keen, C.L.

    1991-01-01

    Compared to controls, diabetes results in higher plasma, liver and kidney Cu concentrations. Since alterations in Cu metabolism may be associated with diabetic pathology, the authors investigated how Cu metabolism is affected by diabetes and dietary Cu intake. Nondiabetic and STZ diabetic rats were fed Cu suppl. or Cu def. diets for 5 wks. Rats were intubated with 28 μCi 67 Cu and killed after 8, 16, 24, 32, 64, or 128 h. There were marked effects of both diet and diabetes on 67 Cu metabolism. Independent of diabetes, deficient rats had a higher % of retained 67 Cu, in liver, plasma, RBC, muscle, spleen, brain, lung, uterus, and intestine than adequate Cu rats. Independent of dietary Cu, diabetic rats had a lower % of retained 67 Cu in liver, plasma, RBC, muscle, spleen, lung, bone, pancreas, skin, uterus and heart than controls. Differential effects were noted for kidney; adequate Cu diabetic rats had a higher % of retained 67 Cu than all other groups. Marked effects of both diet and diabetes were evident when tissue Cu turnover was examined. Compared to Cu suppl. rats, Cu def. rats had a slower turnover of 67 Cu, in liver, plasma, intestine, pancreas, eye, brain, muscle, spleen, lung and heart. Diabetic rats had a slower turnover of 67 Cu than nondiabetic rats in liver, plasma, intestine, pancreas, eye, kidney, RBC and uterus. The data imply that a focus on Cu metabolism with regard to cellular Cu trafficking and pathology may be warranted

  15. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuechun [School of Materials Science and Engineering, Yunnan University, Kunming (China); Chen, Xiuhua, E-mail: chenxh@ynu.edu.cn [School of Materials Science and Engineering, Yunnan University, Kunming (China); Ma, Wenhui [National Engineering Laboratory of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming (China); Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei [School of Materials Science and Engineering, Yunnan University, Kunming (China)

    2017-02-28

    Highlights: • In this paper, the electroless deposited NiCrB thin film was mainly in the form of NiB, CrB{sub 2} compounds and elementary Ni. • The sheet resistance of NiCrB thin film was 3.043 Ω/□, it is smaller than that of the widely used Ta, TaN and TiN diffusion barrier layers. • Annealing experiments showed that the failure temperature of NiCrB thin film regarding Cu diffusion was 900 °C. • NiCrB barrier layer crystallized after 900 °C annealing, Cu grains arrived at Si-substrate through grain boundaries, resulting in the formation of Cu{sub 3}Si. • Eelectroless deposited NiCrB film also had good oxidation resistance, it is expected to become an anti-oxidant layer of copper interconnection. - Abstract: NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO{sub 2}/Si and NiCrB/Cu/NiCrB/SiO{sub 2}/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu{sub 3}Si.

  16. Reducibility and Oxidation Activity of Cu Ions in Zeolites. Effect of Cu Ion Coordination and Zeolite Framework Composition

    Czech Academy of Sciences Publication Activity Database

    Bulánek, R.; Wichterlová, Blanka; Sobalík, Zdeněk; Tichý, J.

    2001-01-01

    Roč. 31, č. 1 (2001), s. 13-25 ISSN 0926-3373 R&D Projects: GA AV ČR IBS4040016 Grant - others:VW Stiftung(DE) 1/72937 Institutional research plan: CEZ:AV0Z4040901 Keywords : Cu ions * Cu-ZSM-5 * TPR by hydrogen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.643, year: 2001

  17. Co-{alpha}Al{sub 2}O{sub 3}-Cu as shaped catalyst in NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chamoun, R. [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Universite Libanaise, Faculte des Sciences II, Laboratoire de physique appliquee, 90656 Jdeidet El Metn (Lebanon); Demirci, U.B.; Miele, P. [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Zaatar, Y.; Khoury, A. [Universite Libanaise, Faculte des Sciences II, Laboratoire de physique appliquee, 90656 Jdeidet El Metn (Lebanon)

    2010-07-15

    A study about catalytic films of Co-supported-over-{alpha}Al{sub 2}O{sub 3} fabricated by electrophoretic deposition (EPD) is reported, the as-prepared shaped catalysts being intended to catalyze NaBH{sub 4} hydrolysis. Co-{alpha}Al{sub 2}O{sub 3} supported over Cu substrate can be prepared by a 2-step route: (i) preparation of the supported catalyst Co-{alpha}Al{sub 2}O{sub 3} (in powder form) by wet impregnation of CoCl{sub 2} over {alpha}Al{sub 2}O{sub 3}, followed by a reduction, and (ii) fabrication of Co-{alpha}Al{sub 2}O{sub 3}-Cu (thin film over Cu) by EPD. Both types of catalysts, whatever their form, are highly efficient in hydrolyzing NaBH{sub 4}, conversions of 100% and HGRs of tens of mL(H{sub 2}) min{sup -1} being achieved at 60-80 C. The Co-{alpha}Al{sub 2}O{sub 3}-Cu catalysts are even more reactive than the Co-{alpha}Al{sub 2}O{sub 3} catalysts because the surface of the former materials becomes much more acid than that of the latter ones in the course of the EPD process. The respective rate laws and reaction kinetics have been determined. Independently on the catalyst form, apparent activation energies of about 52 kJ mol{sup -1} and positive reaction orders versus the initial NaBH{sub 4} concentration (i.e. 0.3-0.7) were calculated, suggesting that the EPD does not affect the reaction mechanisms. Besides, it is showed that the hydrolysis is really catalytic as well as typical of a heterogeneous process. For example, an apparent reaction order versus the Co content of 0.9 was calculated. All of these results among others are reported and discussed in the present article. (author)

  18. Copper interactions in TlCu7S4 and TlCu7Se4

    International Nuclear Information System (INIS)

    Noren, L.; Delaplane, R.G.; Berger, R.

    1999-01-01

    Complete text of publication follows. The copper chalcogenides ACu 7 S 4 (A=NH 4 + , Tl + , Rb + ) are quasi-one-dimensional metals at ambient and higher temperatures which is due to the high mobility of copper in these structures. TlCu 7 S 4 and TlCu 7 Se 4 are isostructural compounds, space group I4/m, which can be described on the basis of a TlX 8 cube with two different Cu sites, Cu(1) and Cu(2). Cu(2)-Cu(2) zigzag chains run along the c axis with only 3/4 occupation of the Cu(2) sites. However, these two compounds differ in behaviour on cooling. The sulphide shows a polymorphic first-order transition to the CsAg 7 S 4 type (P4/n) owing to ordering of the vacancies in the Cu(2)-Cu(2) chains. In order to study the nature of the Cu(2) order/disorder in the two title compounds, a series of neutron diffraction measurements (both Bragg and diffuse scattering) were made at several temperatures from 40 to 713 K on the instrument SLAD at Studsvik. The structure at each temperature was modelled using RMC techniques. The resulting configuration show that as the temperature increases, there is a marked increase in the mobility of the Cu atoms in the Cu(2)-Cu(2) chains for TlCu 7 S 4 but not for TlCu 7 Se 4 . This is due to the initial difference in the Cu(2)-Cu(2) distances, only 2.2A for the thiocuprate, but 2.7A in the selenocuprate which explains the relative ease for Cu(2) ordering in the latter case. (author)

  19. Behavior of CuP and OFHC Cu anodes under electrodeposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, G.S.; Schrott, A.G.; Horkans, J.; Andricacos, P.C. (International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center); Isaacs, H.S. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Films formed on CuP (with 0.05 wt % P) and OFHC Cu anodes in electroplating solutions were studied by X-ray Photoelectron Spectroscopy, X-ray Absorption Spectroscopy, electrochemical methods, and a newly developed gravimetric technique. The black film formed on CuP in Cl-containing solutions was found to resemble a porous sponge composed of CuCl but laden/with concentrated CuSO{sub 4} solution. The difference between the buoyancy-corrected measured mass change and the charge-equivalent mass change was found to have two components: a reversible part that comes and goes as the current is turned on and off, and an irreversible part that remains on the surface and increase in mass with time. The irreversible part results from the anodic film, which increases linearly with charge density but independent of current density. The reversible part of the mass change arises from the weight of the diffusion layer. In contrast to CuP, OFHC Cu releases much more Cu{sup +1} during anodic polarization and forms a poorly-adherent anodic film that is considerably heavier than the black film for a given charge density.

  20. Behavior of CuP and OFHC Cu anodes under electrodeposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, G.S.; Schrott, A.G.; Horkans, J.; Andricacos, P.C. [International Business Machines Corp., Yorktown Heights, NY (United States). Thomas J. Watson Research Center; Isaacs, H.S. [Brookhaven National Lab., Upton, NY (United States)

    1992-08-01

    Films formed on CuP (with 0.05 wt % P) and OFHC Cu anodes in electroplating solutions were studied by X-ray Photoelectron Spectroscopy, X-ray Absorption Spectroscopy, electrochemical methods, and a newly developed gravimetric technique. The black film formed on CuP in Cl-containing solutions was found to resemble a porous sponge composed of CuCl but laden/with concentrated CuSO{sub 4} solution. The difference between the buoyancy-corrected measured mass change and the charge-equivalent mass change was found to have two components: a reversible part that comes and goes as the current is turned on and off, and an irreversible part that remains on the surface and increase in mass with time. The irreversible part results from the anodic film, which increases linearly with charge density but independent of current density. The reversible part of the mass change arises from the weight of the diffusion layer. In contrast to CuP, OFHC Cu releases much more Cu{sup +1} during anodic polarization and forms a poorly-adherent anodic film that is considerably heavier than the black film for a given charge density.

  1. In Situ Study of Reduction Process of CuO Paste and Its Effect on Bondability of Cu-to-Cu Joints

    Science.gov (United States)

    Yao, Takafumi; Matsuda, Tomoki; Sano, Tomokazu; Morikawa, Chiaki; Ohbuchi, Atsushi; Yashiro, Hisashi; Hirose, Akio

    2018-04-01

    A bonding method utilizing redox reactions of metallic oxide microparticles achieves metal-to-metal bonding in air, which can be alternative to lead-rich high-melting point solder. However, it is known that the degree of the reduction of metallic oxide microparticles have an influence on the joint strength using this bonding method. In this paper, the reduction behavior of CuO paste and its effect on Cu-to-Cu joints were investigated through simultaneous microstructure-related x-ray diffraction and differential scanning calorimetry measurements. The CuO microparticles in the paste were gradually reduced to submicron Cu2O particles at 210-250°C. Subsequently, Cu nanoparticles were generated instantaneously at 300-315°C. There was a marked difference in the strengths of the joints formed at 300°C and 350°C. Thus, the Cu nanoparticles play a critical role in sintering-based bonding using CuO paste. Furthermore, once the Cu nanoparticles have formed, the joint strength increases with higher bonding temperature (from 350°C to 500°C) and pressure (5-15 MPa), which can exceed the strength of Pb-5Sn solder at higher temperature and pressure.

  2. CuGaTe2-CuAlTe2 system

    International Nuclear Information System (INIS)

    Bodnar', I.V.

    2003-01-01

    The results of studies on the chemical interaction in the CuGaTe 2 -CuAlTe 2 as well as on the thermal and optical properties of the formed solid solutions are presented. It is shown, that continuous number of solid solutions are formed in the CuGaTe 2 -CuAlTe 2 system, which crystallize in the chalcopyrite structure. The diagram of state of this system is plotted. The thermal expansion of these materials is studied through the dilatometric method. The linear dependence of the thermal expansion coefficient on the composition is established. The concentration dependences of the forbidden zone width diverge from the linearity [ru

  3. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic Compounds in Methanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Norbert Köpfle

    2017-02-01

    Full Text Available The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active and CO2-selective states upon contact to the methanol steam reforming mixture. For Cu-Zr, selected nominal stoichiometries ranging from Cu:Zr = 9:2 over 2:1 to 1:2 have been prepared by mixing the respective amounts of metallic Cu and Zr to yield different Cu-Zr bulk phases as initial catalyst structures. In addition, the methanol steam reforming performance of two Pd-Zr systems, that is, a bulk system with a nominal Pd:Zr = 2:1 stoichiometry and an inverse model system consisting of CVD-grown ZrOxHy layers on a polycrystalline Pd foil, has been comparatively assessed. While the CO2-selectivity and the overall catalytic performance of the Cu-Zr system is promising due to operando formation of a catalytically beneficial Cu-ZrO2 interface, the case for Pd-Zr is different. For both Pd-Zr systems, the low-temperature coking tendency, the high water-activation temperature and the CO2-selectivity spoiling inverse WGS reaction limit the use of the Pd-Zr systems for selective MSR applications, although alloying of Pd with Zr opens water activation channels to increase the CO2 selectivity.

  4. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion

    International Nuclear Information System (INIS)

    Green, Mark A.; Mathias, Carla J.; Willis, Lynn R.; Handa, Rajash K.; Lacy, Jeffrey L.; Miller, Michael A.; Hutchins, Gary D.

    2007-01-01

    The copper(II) complex of ethylglyoxal bis(thiosemicarbazone) (Cu-ETS) was evaluated as a positron emission tomography (PET) radiopharmaceutical for assessment of regional renal perfusion. Methods: The concordance of renal flow estimates obtained with 11- and 15-μm microspheres was confirmed in four immature farm pigs using co-injected 46 Sc- and 57 Co-microspheres administered into the left ventricle. With the use of both immature farm pigs (n=3) and mature Goettingen minipigs (n=6), regional renal radiocopper uptake following intravenous [ 64 Cu]Cu-ETS administration was compared to microsphere measurements of renal perfusion. The distribution and kinetics of [ 64 Cu]Cu-ETS were further studied by PET imaging of the kidneys. The rate of [ 64 Cu]Cu-ETS decomposition by blood was evaluated in vitro, employing octanol extraction to recover intact [ 64 Cu]Cu-ETS. Results: The co-injected 11- and 15-μm microspheres provided similar estimates of renal flow. A linear relationship was observed between the renal uptake of intravenous [ 64 Cu]Cu-ETS and regional renal perfusion measured using microspheres. [ 64 Cu]Cu-ETS provided high-quality PET kidney images demonstrating the expected count gradient from high-flow outer cortex to low-flow medulla. When incubated with pig blood in vitro at 37 o C, the [ 64 Cu]Cu-ETS radiopharmaceutical was observed to decompose with a half-time of 2.8 min. Conclusion: Cu-ETS appears suitable for use as a PET radiopharmaceutical for evaluation of regional renal perfusion, affording renal uptake of radiocopper that varies linearly with microsphere perfusion measurements. Quantification of renal perfusion (in ml min -1 g -1 ) with [ 60,61,62,64 Cu]Cu-ETS will require correcting the arterial input function for the fraction of blood radiocopper remaining present as the intact Cu-ETS radiopharmaceutical, since the Cu-ETS chelate has limited chemical stability in blood. Rapid octanol extraction of blood samples appears suitable as an approach

  5. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In–48Sn/Cu solder interconnects under current stressing

    International Nuclear Information System (INIS)

    Li, Yi; Lim, Adeline B.Y.; Luo, Kaiming; Chen, Zhong; Wu, Fengshun; Chan, Y.C.

    2016-01-01

    The evolution of microstructure in Cu/In–48Sn/Cu solder bump interconnects at a current density of 0.7 × 10"4 A/cm"2 and ambient temperature of 55 °C has been investigated. During electromigration, tin (Sn) atoms migrated from cathode to anode, while indium (In) atoms migrated from anode to cathode. As a result, the segregation of the Sn-rich phase and the In-rich phase occurred. A Sn-rich layer and an In-rich layer were formed at the anode and the cathode, respectively. The accumulation rate of the Sn-rich layer was 1.98 × 10"−"9 cm/s. The atomic flux of Sn was calculated to be approximately 1.83 × 10"1"3 atoms/cm"2s. The product of the diffusivity and the effective charge number of Sn was determined to be approximately 3.13 × 10"−"1"0 cm"2/s. The In–48Sn/Cu IMC showed a two layer structure of Cu_6(Sn,In)_5, adjacent to the Cu, and Cu(In,Sn)_2, adjacent to the solder. Both the cathode IMC and the anode IMC thickened with increasing electromigration time. The IMC evolution during electromigration was strongly influenced by the migration of Cu atoms from cathode to anode and the accumulation of Sn-rich and In-rich layers. During electromigration, the Cu(In,Sn)_2 at the cathode interface thickened significantly, with a spalling characteristic, due to the accumulation of In-rich layer and the migration of Cu atoms - while the Cu(In,Sn)_2 at the anode interface reduced obviously, due to the accumulation of Sn-rich layer. The mechanism of electromigration-induced failure in Cu/In–48Sn/Cu interconnects was the cathode Cu dissolution-induced solder melt, which led to the rapid consumption of Cu in the cathode pad during liquid-state electromigration and this finally led to the failure. - Highlights: • Sn migrates to the anode, while In migrates to the cathode, during EM in Cu/In–48Sn/Cu. • The atomic flux of Sn has been calculated. • The interfacial IMCs were identified as: Cu_6(Sn,In)_5 + Cu(In,Sn)_2. • The interface evolution is strongly

  6. The effect of inducing uniform Cu growth on formation of electroless Cu seed layer

    International Nuclear Information System (INIS)

    Lim, Taeho; Kim, Myung Jun; Park, Kyung Ju; Kim, Kwang Hwan; Choe, Seunghoe; Lee, Young-Soo; Kim, Jae Jeong

    2014-01-01

    The uniformity of Cu growth on Pd nanocatalysts was controlled by using organic additives in the formation of electroless Cu seed layers. Polyethylene glycol (PEG, Mw. 8000) not only reduced the deposition rate but also improved the uniformity of Cu growth on each Pd nanocatalyst during the seed layer formation. The stronger suppression effect of PEG on Cu than on Pd reduced the difference in the deposition rate between the two surfaces, resulting in the uniform deposition. Meanwhile, bis(3-sulfopropyl) disulfide degraded the uniformity by strong and nonselective suppression. The sheet resistance measurement and atomic force microscopy imaging revealed that the uniform Cu growth by PEG was more advantageous for the formation of a thin and smooth Cu seed layer than the non-uniform growth. The uniform Cu growth also had a positive influence on the subsequent Cu electrodeposition: the 60-nm-thick electrodeposited Cu film on the Cu seed layer showed low resistivity (2.70 μΩ·cm), low surface roughness (6.98 nm), and good adhesion strength. - Highlights: • Uniform Cu growth on Pd was achieved in formation of electroless Cu seed layer. • PEG addition to electroless bath improved the uniformity of Cu growth on Pd. • A thin, smooth and continuous Cu seed layer was obtained with PEG. • Adhesion strength of the Cu seed layer was also improved with PEG. • The uniformity improvement positively affected subsequent Cu electrodeposition

  7. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically co-deposited CuO/polypyrrole nanosheet arrays

    International Nuclear Information System (INIS)

    Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Shen, Xiaowei; Liu, Xuejun; Yan, Chenglin; Wu, Shishan

    2015-01-01

    We introduce a new method for fabricating unique on-chip supercapacitors based on CuO/polypyrrole core/shell nanosheet arrays by means of direct electrochemical co-deposition on interdigital-like electrodes. The prepared all-solid-state device demonstrates exceptionally high specific capacitance of 1275.5 F cm"−"3 (∼40 times larger than that of CuO-only supercapacitors) and high-energy-density of 28.35 mWh cm"−"3, which are both significantly greater than other solid-state supercapacitors. More importantly, the device maintains approximately 100% capacity retention at 2.5 A cm"−"3 after 3000 cycles. The in situ co-deposition of CuO/polypyrrole nanosheets on interdigital substrate enables effective charge transport, electrode fabrication integrity, and device integration. Because of their high energy, power density, and stable cycling stability, these newly developed on-chip supercapacitors permit fast, reliable applications in portable and miniaturized electronic devices. (paper)

  8. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  9. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  10. Synthesis, characterization and investigation of the spectroscopic properties of novel peripherally 2,3,5-trimethylphenoxy substituted Cu and Co phthalocyanines, the computational and experimental studies of the 4-(2,3,5-trimethylphenoxyphthalonitrile

    Directory of Open Access Journals (Sweden)

    Nesuhi Akdemir

    2016-11-01

    Full Text Available 4-(2,3,5-trimethylphenoxyphthalonitrile (3 was firstly prepared via aromatic nucleophilic substitution reaction and characterized by FT-IR, mass spectrometry, 1H and 13C NMR techniques. The molecular structure of the compound (3 was optimized using Density Functional Theory (DFT/B3LYP method with 6-311G(d,p basis set in the ground state. The molecular geometric parameters which were obtained by X-ray single crystal diffraction method and the spectral results were compared with computed bond lengths and angles, vibrational frequencies and 1H, 13C NMR chemical shifts values of the compound (3. Also, Cu(II and Co(II phthalocyanines were synthesized by the treatment of dinitrile derivative with anhydrous CuCl2 or CoCl2 under N2 atmosphere in dry n-pentanol at 140oC. The new compounds have been determined by elemental analysis, FT-IR and electronic absorption. The UV-Vis spectra of the Cu(II and Co(II phthalocyanines were recorded with different concentration in THF and also with different solvents as DMF, DMSO, DCM, CHCl3, toluene.

  11. Crystal structures of CCa2CuO5 and CSr1.9Ca1.1Cu2O7 refined from single crystal data

    International Nuclear Information System (INIS)

    Kopnin, E.M.; Matveev, A.T.; Salamakha, P.S.; Sato, A.; Takayama-Muromachi, E.

    2003-01-01

    Single crystals were grown for new layered oxycarbonates CCa 2 CuO 5 and CSr 1.9 Ca 1.1 Cu 2 O 7 at 6 GPa using a belt-type apparatus. Their crystal structures were determined using single crystal X-ray diffraction data with R1(wR2)=0.0294(0.0659) and 0.0199(0.0457) for CCa 2 CuO 5 and CSr 1.9 Ca 1.1 Cu 2 O 7 , respectively. These phases crystallize in the space group P4/mmm (No. 123), Z=1 with a=3.8157(1) Angst, c=7.1426(3) Angst for CCa 2 CuO 5 and a=3.8753(1) Angst, c=10.6765(5) Angst for CSr 1.9 Ca 1.1 Cu 2 O 7 . In contrast to CSr 2 CuO 5 , no ordering in the orientation of the triangular CO 3 groups was revealed in CCa 2 CuO 5 and CSr 1.9 Ca 1.1 Cu 2 O 7

  12. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong; Yang, Xiulin; Lu, Ang-Yu; Tseng, Chien-Chih; Hedhili, Mohamed N.; Li, Lain-Jong; Huang, Kuo-Wei

    2016-01-01

    for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open

  13. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    Science.gov (United States)

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. Copyright © 2014. Published by Elsevier B.V.

  14. Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes.

    Science.gov (United States)

    Kumar, Mohan; Kumara Swamy, B E

    2016-01-01

    The Co3O4/CuO composite nanopowder (NP) was synthesized by a mechanochemical method and characterized by using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The synthesized Co3O4/CuO NP was used as a modified carbon paste electrode (MCPE) and further the bare carbon paste and Co3O4/CuO NP modified carbon paste was heated at different temperatures (100, 150, 200 and 250 °C) for 10 min. The Co3O4/CuO NP MCPE was used to study the consequences of scan rate and dopamine concentration. Furthermore the preheated modified electrodes were used to study the electrochemical response to dopamine (DA), ascorbic acid (AA) and uric acid (UA). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Structural and electronic properties of the adsorbed and defected Cu nanowires: A density-functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ying-Ni [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Zhang, Jian-Min, E-mail: jianm_zhang@yahoo.com [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Fan, Xiao-Xi [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Xu, Ke-Wei [College of Physics and Mechanical and Electronic Engineering, Xian University of Arts and Science, Xian 710065, Shaanxi (China)

    2014-12-01

    Using first-principles calculations based on density-functional theory, we systematically investigate the influence of adsorbates (CO molecule and O atom) and defects (adsorb one extra Cu atom and monovacancy) on the structural and electronic properties of Cu{sub 5-1}NW and Cu{sub 6-1}NW. For both nanowires, CO molecule prefers to adsorb on the top site, while O atom prefers to adsorb on the center site. The hybridization between the CO and Cu states is dominated by the donation–backdonation process, which leads to the formation of bonding/antibonding pairs, 5σ{sub b}/5σ{sub a} and 2π{sub b}{sup ⁎}/2π{sub a}{sup ⁎}. The larger adsorption energies, larger charge transfers to O adatom and larger decrease in quantum conductance 3G{sub 0} for an O atom adsorbed on the Cu{sub 5-1}NW and Cu{sub 6-1}NW show both Cu{sub 5-1}NW and Cu{sub 6-1}NW can be used as an O sensor. Furthermore, the decrease in quantum conductance 1G{sub 0} for a CO molecule adsorbed on the Cu{sub 6-1}NW also shows the Cu{sub 6-1}NW can be used to detect CO molecule. So we expect these results may have implications for CuNW based chemical sensing. High adsorption energy of one extra Cu atom and relatively low formation energy of a monovacancy suggest that these two types of defects are likely to occur in the fabrication of CuNWs. One extra Cu atom does not decrease the quantum conductance, while a Cu monovacancy leads to a drop of the quantum conductance.

  16. Electrical conductivity in AlN-CuO composites

    International Nuclear Information System (INIS)

    Azad, A.M.; Cheng, H.S.

    1999-01-01

    Water vapor is an important constituent of any gas and in many applications is regarded as a contaminant that needs to be monitored and controlled. It is also immense importance in the pyrohydrolytic reaction of new exotic non-oxide engineering ceramics such as silicon carbide and silicon nitride. Together with CO/sub 2/, water vapor is the largest contributor to the 'greenhouse' effect. Thus there is a need for greater attention to humidity sensor selection for a given application. AlN-CuO composites (2% is equal or < CuO is equal or < 50% by weight) have been studied to exploit them as novel humidity sensors over wide ranges of moisture levels and temperature. Development of benign microstructure with open porosity has been attempted by varying the composition and firing conditions. The impedance data acquired on the composites over the frequency range 5 Hz to 13 MHz, revealed a bulk response in the form of a single semicircular relaxation in the complex Z/sup */-plane. A systematic variation of electrical conductivity with CuO content in the composites has been explained in the light of percolation theory. (author)

  17. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram

    International Nuclear Information System (INIS)

    Zeng, K.J.; Haemaelaeinen, M.; Lilius, K.

    1995-01-01

    In the available experimental information on the Cu-Cr-Zr ternary system, there exist different opinions concerning the phase relationships in the Cu-rich corner of Cu-Cr-Zr phase diagram. Glazov et al. and Zakharov et al. investigated the Cu-rich corner of the Cu-Cr-Zr phase diagram within the composition range up to 3.5 Cr and 3.5 Zr (wt. %). A quasi-eutectic reaction L → (Cu) + αCr 2 Zr was observed to occur at 1,020 C and several isothermal sections were constructed within the temperature range from 600 to 1,000 C to show the (Cu)-αCr 2 Zr two phase equilibrium. Therefore, a pseudobinary Cu-Cr 2 Zr system was supposed. Afterwards, Dawakatsu et al, Fedorov et al, and Kuznetsov et al studied the cu-rich corner of the phase diagram in a wider composition range up to 5 Cr and 20 Zr (at.%). Contrary to Glazov et al. and Zakharov et al., they found no Cr 2 Zr phase in their samples. Hence, the pseudobinary Cu-Cr 2 Zr system does not exist. In this study an experimental investigation is presented on the phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram at 940 C in order to clear up the confusion

  18. Magnetic behavior in heterometallic one-dimensional chains or octanuclear complex regularly aligned with metal-metal bonds as -Rh-Rh-Pt-Cu-Pt

    Science.gov (United States)

    Uemura, Kazuhiro

    2018-06-01

    Heterometallic one-dimensional chains, [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}]n(PF6)2n (1 and 2, piam = pivalamidate) and [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}2](CF3CO2)2(ClO4)2·2H2O (3), are paramagnetic one-dimensional chains or octanuclear complexes that are either aligned as -Rh-Rh-Pt-Cu-Pt- (1 and 2) or as Pt-Cu-Pt-Rh-Rh-Pt-Cu-Pt (3) with metal-metal bonds. Compounds 1-3 have rare structures, from the standpoint of that the paramagnetic species of Cu atoms are linked by direct metal-metal bonds. Magnetic susceptibility measurements for 1-3 performed at temperatures of 2 K-300 K indicated that the unpaired electrons localize in the Cu 3dx2-y2 orbitals, where S = 1/2 Cu(II) atoms are weakly antiferromagnetically coupled with J = -0.35 cm-1 (1), -0.47 cm-1 (2), and -0.45 cm-1 (3).

  19. Role of heat on the development of electrochemical sensors on bare and modified Co{sub 3}O{sub 4}/CuO composite nanopowder carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mohan; Kumara Swamy, B.E., E-mail: kumaraswamy21@yahoo.com

    2016-01-01

    The Co{sub 3}O{sub 4}/CuO composite nanopowder (NP) was synthesized by a mechanochemical method and characterized by using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The synthesized Co{sub 3}O{sub 4}/CuO NP was used as a modified carbon paste electrode (MCPE) and further the bare carbon paste and Co{sub 3}O{sub 4}/CuO NP modified carbon paste was heated at different temperatures (100, 150, 200 and 250 °C) for 10 min. The Co{sub 3}O{sub 4}/CuO NP MCPE was used to study the consequences of scan rate and dopamine concentration. Furthermore the preheated modified electrodes were used to study the electrochemical response to dopamine (DA), ascorbic acid (AA) and uric acid (UA). - Highlights: • Co{sub 3}O{sub 4}/CuO composite nanopowders (NPs) are prepared by the mechanochemical method. • Co{sub 3}O{sub 4}/CuO was used as a modified electrode for detection of DA, AA and UA. • The role of temperature on the sensor development was studied. • The modified carbon paste electrode shows good sensitivity to DA and UA.

  20. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu

    International Nuclear Information System (INIS)

    Wakelin, Steven; Gerard, Emily; Black, Amanda; Hamonts, Kelly; Condron, Leo; Yuan, Tong; Nostrand, Joy van; Zhou, Jizhong; O'Callaghan, Maureen

    2014-01-01

    Pollution induced community tolerance (PICT) to Cu 2+ , and co-tolerance to nanoparticulate Cu, ionic silver (Ag + ), and vancomycin were measured in field soils treated with Cu 2+ 15 years previously. EC 50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO 2 ; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P  2+ , and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag + and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P  + or vancomycin. • Tolerance not due to shifts in community composition or resistance genes. - Pollution induced community tolerance to Cu was linked with increased metabolic quotient but not changes in community composition or abundance of metal resistance genes in a field soil

  1. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  2. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  3. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.

    Science.gov (United States)

    Gawande, Manoj B; Goswami, Anandarup; Felpin, François-Xavier; Asefa, Tewodros; Huang, Xiaoxi; Silva, Rafael; Zou, Xiaoxin; Zboril, Radek; Varma, Rajender S

    2016-03-23

    The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis. The synthesis part discusses numerous preparative protocols for Cu and Cu-based nanoparticles, whereas the application sections describe their utility as catalysts, including electrocatalysis, photocatalysis, and gas-phase catalysis. We believe this critical appraisal will provide necessary background information to further advance the applications of Cu-based nanostructured materials in catalysis.

  4. Electronic structure, chemical bonding, phase stability, and ground-state properties of YNi2-x(Co/Cu)xB2C

    International Nuclear Information System (INIS)

    Ravindran, P.; Johansson, B.; Eriksson, O.

    1998-01-01

    In order to understand the role of Ni site substitution on the electronic structure and chemical bonding in YNi 2 B 2 C, we have made systematic electronic-structure studies on YNi 2 B 2 C as a function of Co and Cu substitution using the supercell approach within the local density approximation. The equilibrium volume, bulk modulus (B 0 ) and its pressure derivative (B 0 ' ), Grueneisen constant (γ G ), Debye temperature (Θ D ), cohesive energy (E c ), and heat of formation (ΔH) are calculated for YNi 2-x (Co/Cu) x B 2 C (x=0,0.5,1.0,1.5,2). From the total energy, electron-energy band structure, site decomposed density of states, and charge-density contour we have analyzed the structural stability and chemical bonding behavior of YNi 2 B 2 C as a function of Co/Cu substitution. We find that the simple rigid band model successfully explains the electronic structure and structural stability of Co/Cu substitution for Ni. In addition to studying the chemical bonding and electronic structure we present a somewhat speculative analysis of the general trends in the behavior of critical temperature for superconductivity as a function of alloying. copyright 1998 The American Physical Society

  5. Novel monoclinic zirconolite in Bi2O3–CuO–Ta2O5 ternary system: Phase equilibria, structural and electrical properties

    International Nuclear Information System (INIS)

    Tan, K.B.; Chon, M.P.; Khaw, C.C.; Zainal, Z.; Taufiq Yap, Y.H.; Tan, P.Y.

    2014-01-01

    Highlights: • Novel BCT monoclinic zirconolite phase was prepared through solid state reaction. • Comprehensive study of reaction mechanism was performed by careful firing control. • Qualitative structural and phase analyses were conducted. • Electrical response in broad range of temperature and frequency was investigated. - Abstract: Synthesis of novel monoclinic zirconolite, Bi 1.92 Cu 0.08 (Cu 0.3 Ta 0.7 ) 2 O 7.06 (β-BCT) using solid state reaction had been finalised at the firing temperature of 900 °C over 24 h. The X–ray diffraction pattern of β-BCT was fully indexed on a monoclinic symmetry, space group, C2/c with lattice constants, a = 13.1052 (8), b = 7.6749 (5), c = 12.162 (6), α = γ = 90° and β = 101.32° (1), respectively. The reaction mechanism study indicated phase formation was greatly influenced by the reaction between intermediate bismuth tantalate binary phases and CuO at elevated temperatures. β-BCT was thermally stable up to a temperature of 900 °C and contained spherulite grains with sizes ranging from 1 to 14 μm. Electrical properties of this material were characterised over a broad temperature range covering temperatures from 10 K to 874 K. At the temperature of 304 K, two semicircles were discernible in complex Cole–Cole plot showing an insulating grain boundary with C gb = 6.63 × 10 −9 F cm −1 and a bulk response capacitance, C b = 6.74 × 10 −12 F cm −1 . The Power law frequency-dependent ac conductivity of β-BCT was apparent in three frequency regimes; a low–frequency plateau regime, a high-frequency plateau regime and a dispersive regime taking place in the temperature range of 220–576 K. The frequency-dependent ac conductivity of β-BCT with increasing temperature was attributed to the thermal activated electrical conduction mechanism within the structure

  6. Enthalpy of mixing of liquid Cu-Fe-Hf alloys at 1873 K

    Energy Technology Data Exchange (ETDEWEB)

    Agraval, Pavel; Turchanin, Mikhail [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Dreval, Liya [Donbass State Engineering Academy, Kramatorsk (Ukraine). Metallurgical Dept.; Materials Science International Services GmbH (MSI), Stuttgart (Germany)

    2016-12-15

    In the ternary Cu-Fe-Hf system, the mixing enthalpies of liquid alloys were investigated at 1873 K using a high-temperature isoperibolic calorimeter. The experiments were performed along the sections x{sub Cu}/x{sub Fe} = 3/1, 1/1 at x{sub Hf} = 0-0.47 and along the section x{sub Cu}/x{sub Fe} = 1/3 at x{sub Hf} = 0-0.13. The limiting partial enthalpies of mixing of undercooled liquid hafnium in liquid Cu-Fe alloys, Δ{sub mix} anti H{sub Hf}{sup ∞}, are (-122 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 3/1), (-106 ± 9) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/1), and (-105 ± 2) kJ mol{sup -1} (section x{sub Cu}/x{sub Fe} = 1/3). In the investigated composition range, the integral mixing enthalpies are sign-changing. For the integral mixing enthalpy, an analytical expression was obtained by the least squares fit of the experimental results using the Redlich-Kister-Muggianu polynomial.

  7. Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Fangwei; Zhang, Hui, E-mail: meszhanghui@zju.edu.cn; Qi, Yue; Wang, Jiazheng; Du, Ning; Yang, Deren

    2013-09-05

    Highlights: •Nanostructured SnCo/Cu electrodes have been successfully fabricated. •A simple electrodeposition approach was employed. •The Cu arrays offer large surface area and improve electronic/ionic conductivity. •The electrodes show improved performance as anode for Li-ion batteries. •The improved performance was attributed to the nanostructured current collectors. -- Abstract: In this article, we report a two-step electrodeposition method for the synthesis of Cu/SnCo core–shell rod-shaped arrays as anodes of lithium-ion batteries. Firstly, the arrayed Cu nanorods with diameters of 200 nm were fabricated on a Cu foil through an electrodeposition method with alumina oxide membrane (AAO) as the template. Secondly, the SnCo alloy shells were subsequently electrodeposited on the surface of the rod-shaped Cu arrays to form the hybrid nanostructures. These hybrid electrodes delivered the enhanced cyclic performance and high rate capability serving as the anode materials for lithium-ion batteries. The improved electrochemical performance might be attributed to the large surface-to-volume area, sufficient buffering space, and high electronic conductivity associated with these 3-dimensional (3D) nanostructures.

  8. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu.

    Science.gov (United States)

    Wakelin, Steven; Gerard, Emily; Black, Amanda; Hamonts, Kelly; Condron, Leo; Yuan, Tong; van Nostrand, Joy; Zhou, Jizhong; O'Callaghan, Maureen

    2014-07-01

    Pollution induced community tolerance (PICT) to Cu(2+), and co-tolerance to nanoparticulate Cu, ionic silver (Ag(+)), and vancomycin were measured in field soils treated with Cu(2+) 15 years previously. EC50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO2; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P < 0.05) associated with tolerance to addition of new Cu(2+), and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag(+) and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P < 0.05) with increased metabolic quotient, potentially indicating that the community directed more energy towards cellular maintenance rather than biomass production. Neither bacterial or fungal community composition nor changes in the abundance of genes involved with metal resistance were related to PICT or co-tolerance mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. New complexes of Co(II, Ni(II, Cu(II with Schiff base N,N’-bis-(3-methoxy-saliciliden-3,3’-dimethylbenzidine

    Directory of Open Access Journals (Sweden)

    Alan Ionela

    2013-01-01

    Full Text Available The new N,N’-bis-(3-methoxy-saliciliden-3,3’-dimetilbenzidine (H2L Schiff base and complexes with Co(II, Ni(II and Cu(II of type [M(HLCl(H2O] (M=Co(II, Cu(II [M2L(H2O4]X2 (M=Co(II, X=ClO4 and M=Cu(II, X=NO3 and [M2L(CH3COO2] (M=Co(II, Ni(II, Cu(II were synthesised. The ligand and complexes were characterized by elemental analysis, conductibility measurements, magnetic moments at room temperature, IR, NMR, UV-VIS-NIR, EPR spectra and thermogravimetric analysis. A molar ratio of 1:1 or 1:2 between ligand and metal was determined from the elemental analysis. Except for perchlorate complex that behave as electrolyte, the rest of complexes are non-electrolytes. The spectral data suggest a tetrahedral, pseudo-tetrahedral or square-planar stereochemistry respectively, data confirmed by magnetic behaviour of complexes. The antimicrobial tests indicate a fungicide effect both for ligand and complexes.

  10. Cu(II) and Co(II) complexes of benzimidazole derivative: Structures, catecholase like activities and interaction studies with hydrogen peroxide

    Science.gov (United States)

    Kumari, Babli; Adhikari, Sangita; Matalobos, Jesús Sanmartín; Das, Debasis

    2018-01-01

    Present study describes the synthesis and single crystal X-ray structures of two metal complexes of benzimidazole derivative (PBI), viz. the Cu(II) complex, [Cu(PBI)2(NCS)]ClO4 (1) and a Co(II) complex, [Co(PBI)2(NCS)1.75Cl0.25] (2). The Cu(II) complex (1) shows catecholase like activity having Kcat = 1.84 × 104 h-1. Moreover, interactions of the complexes with hydrogen peroxide have been investigated using fluorescence spectroscopy. The interaction constant of 1 and 2 for H2O2 are 6.67 × 102 M-1 and 1.049 × 103 M-1 while their detection limits for H2O2 are 3.37 × 10-7 M and 2.46 × 10-7 M respectively.

  11. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction

    DEFF Research Database (Denmark)

    Hammershøi, Peter S.; Vennestrøm, Peter N. R.; Falsig, Hanne

    2018-01-01

    behavior and mechanisms of a Cu-SAPO-34 catalyst were studied with reactor tests and DFT calculations. Exposure of the catalyst to two different SO2 concentrations and durations, but with the same total SO2 exposure, calculated as the product of partial pressure of SO2 and exposure time, lead to the same...... degree of deactivation. Exposure of the Cu-SAPO-34 catalyst to SO2 in the presence and absence of NO and NH3 at different temperatures between 200–600 °C showed different trends for the deactivation. Below 400 °C, the S/Cu ratio on the catalyst increased with temperature in absence of NO and NH3, while...... showing that SO2 and SO3, which is possibly formed by oxidation of SO2 over Cu sites, interact similar with Cu in Cu-SAPO-34 and Cu-SSZ-13....

  12. Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Grosell, M.; Hogstrand, C.; Wood, C.M.

    1997-01-01

    -acclimation clearly involves changes in copper accumulation kinetics in the plasma. The acclimated fish showed a 65% reduced Cu-64 accumulation after 65 h and an increased turnover of Cu in the plasma compared to the non-acclimated fish. Total Cu in the plasma increased by 59% after 3 h of exposure in the non...... aortic catheter. By measuring both Cu-64 accumulation and total Cu concentrations, we were able to analyse the ongoing uptake and turnover of ambient Cu, independent of any Cu already present in the fish. Plasma accounted for at least 90% of the Cu-64 labelled Cu present in the blood and Cu...... h of exposure. Acclimation did not have an unambiguous effect on branchial Cu uptake and differences in branchial uptake could not explain the reduced accumulation in the plasma. The rapidly exchangeable Cu pools were 54% in the gills and 33% in the liver, suggesting a considerable hepatic Cu...

  13. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G. Ranga

    2013-02-01

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu2(OH)2CO3 possesses monomodal channel-type pores with largely improved surface area (~43 m2 g-1) and pore volume (0.163 cm3 g-1). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM-1 cm-2 and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the

  14. Interfacial effects of the Cu{sub 2}O nano-dots decorated Co{sub 3}O{sub 4} nanorods array and its photocatalytic activity for cleaving organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, X.P. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yu, J.S. [Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, CT 06516 (United States); Xu, H.M.; Chen, W.X.; Hu, W. [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chen, G.L., E-mail: glchen@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-30

    Highlights: • Co{sub 3}O{sub 4} rods were grown on plasma treated Ti foil. • Cu{sub 2}O QDs were uniformly distributed on the surface of nanorods. • Ti/Co{sub 3}O{sub 4}/Cu{sub 2}O exhibited visible light photocatalytic activity with KHSO{sub 5}. • Degradation mechanism was supported by ESR technique and radical scavenger tests. • The heterojunction was highly stable even after recycling many times. - Abstract: A heterogeneous nanocomposite catalyst constructed by the Co{sub 3}O{sub 4} nanorods decorated with the Cu{sub 2}O quantum dots (QDs) were successfully synthesized via a simple hydrothermal method followed by an oxidation-reduction processing. The fabricated Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite was characterized by the SEM, TEM, XPS, XRD, UV–vis and PL, and the (2 2 0) and (3 1 1) facets of the Co{sub 3}O{sub 4} were exposed. Compared with the original Co{sub 3}O{sub 4} nanorods with an average diameter of 350 nm, a substantial decrease in the band gap was observed after doping the nanorods with the Cu{sub 2}O QDs (average diameter of 5 nm). Such a dramatic decrease in the band gap indicated a significant enhancement of the photocatalytic activities under visible light. The methylene blue (MB) dye and the phenol were used as model organic pollutants, and the Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite catalyst exhibited both high catalytic activity and good recycling stability. The catalytic activities of the Cu{sub 2}O/Co{sub 3}O{sub 4}/potassium monopersulfate triple salt (PMS) system for cleaving the MB and the phenol were dependent on the dosages of the Cu{sub 2}O QDs, and the calculated degradation rates achieved by 7.0 wt% Cu{sub 2}O/Co{sub 3}O{sub 4} nanocomposite catalyst were about 11.3 and 1.8 times than that of the pristine Co{sub 3}O{sub 4} nanorod catalyst for the MB and the phenol, respectively. The reactive species of ·O{sub 2}{sup −} and the holes were determined to be the main active species for the phenol photocatalytic

  15. [CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].

    Science.gov (United States)

    Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai

    2016-05-15

    Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components.

  16. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    Science.gov (United States)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-10-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper ( 16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  17. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    International Nuclear Information System (INIS)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-01-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper (∼16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  18. Structure and magnetic properties of CoxCu1−x nanowires in self-assembled arrays

    International Nuclear Information System (INIS)

    Almasi Kashi, M.; Ramazani, A.; Adelnia Najafabadi, F.

    2012-01-01

    Highlights: ► Role of non-magnetic Cu on the microstructure and magnetic properties of Co x Cu 1−x nanowires. ► Composition variation through ac pulse electrodeposition. ► Replacement of Co with Cu by electroless phenomenon during the off-time between pulses. - Abstract: CoCu alloy nanowire arrays were ac-pulse electrodeposited into porous anodic aluminum oxide. The effect of off-time between pulses and Cu concentration on the magnetic properties, crystalline structure and weight percentage of Co x Cu 1−x alloy nanowires have been studied by alternating gradient force magnetometer (AGFM), X-ray diffraction pattern (XRD) and energy dispersed spectrometry (EDS), respectively. Increasing the off-time between pulses decreased the weight percentage of Co in the range of (x = 0.84 − 0.24). Results of EDS were in accordance with saturation magnetization per unit area of the samples. Coexistence of a moderate off-time and Cu concentration provided excellent conditions for fabrication of the composite nanowires which were proved by XRD patterns.

  19. Electrodeposition and Thermoelectric Properties of Cu-Se Binary Compound Films

    Science.gov (United States)

    Yang, Mengqian; Shen, Zhengwu; Liu, Xiaoqing; Wang, Wei

    2016-03-01

    Cu-Se binary compound films have been prepared by electrodeposition from solutions containing CuSO4, H2SeO3, and H2SO4 and their composition, structure, and thermoelectric performance analyzed. Moving the depositing potential negatively increased the Cu content in the film, remarkably so for relatively low Cu2+ concentration in the solution. X-ray diffraction analysis showed that the phase composition of the films varied with their Cu content. Cu-Se binary compound films electrodeposited from solutions with different concentration ratios of CuSO4 to H2SeO3 showed two different phases: α-Cu2- x Se (monoclinic) with Se content in the range of 33.3 at.% to 33.8 at.%, and β-Cu2Se (cubic) with Se content in the range of 35.3 at.% to 36.0 at.%. The highest power factor for electrodeposited Cu2- x Se film was 0.13 mW/(K2 m) with Seebeck coefficient of 56.0 μV/K.

  20. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nesreen S. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Menzel, Robert [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Wang, Yifan [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Garcia-Gallastegui, Ainara [Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Mokhtar, Mohamed, E-mail: mmokhtar2000@yahoo.com [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia)

    2017-02-15

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH. - Graphical abstract: CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. - Highlights: • CuAl LDH/GO and CoAl LDH/GO hybrid materials with different LDH compositions were prepared. • Hybrids were fully characterised and their catalytic efficiency over the Classic Ullman Reaction was studied. • CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) in 25 min reaction times. • GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs. • After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  1. Microstructure and mechanical properties of two Z-phase strengthened 12%Cr martensitic steels: the effects of Cu and C

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Masoud, E-mail: masoud.rashidi@chalmers.se [Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Johansson, Lennart [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden); Andrén, Hans-Olof; Liu, Fang [Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden)

    2017-05-10

    Z-phase strengthened 12% Cr steels are designed to combine good corrosion and creep resistance for applications in fossil fuel power plants with steam temperatures up to 650 °C. Two trial Z-phase strengthened steels were investigated, Z-steel with ultra-low C content, and ZCuC-steel with relatively high C content and Cu addition. The Z-steel has better creep strength; however, the alloy has low impact toughness due to the formation of continuous Laves-phase films at grain boundaries. Atom probe tomography, transmission electron microscopy, and scanning electron microscopy were employed to study the effects of C and Cu on the microstructure of the two steels in the as-tempered condition, and after ageing for different times. The Z-steel shows a fast transformation from TaN to Z-phase. The relatively high C content in the ZCuC-steel resulted in the formation of two categories of MX: Ta(C, N) and TaN. The phase transformation from Ta(C, N) to Z-phase is slower compared to that from TaN to Z-phase. In addition, precipitation of M{sub 23}C{sub 6} and Cu particles in the ZCuC-steel led to easier nucleation of Laves-phase, and hence a much improved toughness.

  2. The crystal structure of Cu1.78Bi4.73Se8, an N=3 pavonite homologue with a Cu-for-Bi substitution

    DEFF Research Database (Denmark)

    Makovicky, Emil; Søtofte, Inger; Karup-Møller, Sven

    2006-01-01

    Abstract: Cu1.78Bi4.73Se8, synthesized in a dry phase system Cu-Bi-Se at 450 degrees C, is monoclinic, a = 13.759 angstrom, b = 4.168 angstrom, c = 14.683 angstrom, beta = 115.61 degrees, space group C2/m. It is an N = 3 member of the pavonite homologous series, with the composition limits Cu1.96Bi...

  3. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Salinas, D. Hurtado; Dominguez, A. Bustamante; Najarro, D. Acosta; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J. Albino; Majima, Y.

    2012-01-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO 2 /Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution CuCu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO was detected. Pure Cu 2 O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300–550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current–voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: ► The crystallization and electrical resistivity of oxides in a Cu films are studied. ► In annealing Cu films, the phase evolution Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO occurs. ► A resistivity phase diagram, obtained from the current–voltage response, is presented. ► Some decreases in the resistivity may be related to the crystallization.

  4. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Green, Mark A. [Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: magreen@purdue.edu; Mathias, Carla J. [Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States); Willis, Lynn R. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Handa, Rajash K. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX 77054 (United States); Miller, Michael A. [Department of Radiology and the Indiana Center of Excellence in Biomedical Imaging, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Hutchins, Gary D. [Department of Radiology and the Indiana Center of Excellence in Biomedical Imaging, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2007-04-15

    The copper(II) complex of ethylglyoxal bis(thiosemicarbazone) (Cu-ETS) was evaluated as a positron emission tomography (PET) radiopharmaceutical for assessment of regional renal perfusion. Methods: The concordance of renal flow estimates obtained with 11- and 15-{mu}m microspheres was confirmed in four immature farm pigs using co-injected {sup 46}Sc- and {sup 57}Co-microspheres administered into the left ventricle. With the use of both immature farm pigs (n=3) and mature Goettingen minipigs (n=6), regional renal radiocopper uptake following intravenous [{sup 64}Cu]Cu-ETS administration was compared to microsphere measurements of renal perfusion. The distribution and kinetics of [{sup 64}Cu]Cu-ETS were further studied by PET imaging of the kidneys. The rate of [{sup 64}Cu]Cu-ETS decomposition by blood was evaluated in vitro, employing octanol extraction to recover intact [{sup 64}Cu]Cu-ETS. Results: The co-injected 11- and 15-{mu}m microspheres provided similar estimates of renal flow. A linear relationship was observed between the renal uptake of intravenous [{sup 64}Cu]Cu-ETS and regional renal perfusion measured using microspheres. [{sup 64}Cu]Cu-ETS provided high-quality PET kidney images demonstrating the expected count gradient from high-flow outer cortex to low-flow medulla. When incubated with pig blood in vitro at 37{sup o}C, the [{sup 64}Cu]Cu-ETS radiopharmaceutical was observed to decompose with a half-time of 2.8 min. Conclusion: Cu-ETS appears suitable for use as a PET radiopharmaceutical for evaluation of regional renal perfusion, affording renal uptake of radiocopper that varies linearly with microsphere perfusion measurements. Quantification of renal perfusion (in ml min{sup -1} g{sup -1}) with [{sup 60,61,62,64}Cu]Cu-ETS will require correcting the arterial input function for the fraction of blood radiocopper remaining present as the intact Cu-ETS radiopharmaceutical, since the Cu-ETS chelate has limited chemical stability in blood. Rapid octanol

  5. Wheatstone bridge-giant magnetoresistance (GMR) sensors based on Co/Cu multilayers for bio-detection applications

    Science.gov (United States)

    Antarnusa, G.; Elda Swastika, P.; Suharyadi, E.

    2018-04-01

    A Wheatstone bridge-giant magnetoresistance (GMR) sensor was successfully developed for a potential biomaterial detection. In order to achieve this, a giant magnetoresistive [Co(1.5nm/Cu(1.0nm)]20 multilayer structures have been fabricated by DC magnetron sputtering method, showing a magnetoresistance (MR) of 2.7%. The X-Ray diffraction (XRD) patterns showed that Co/Cu film multilayer has a high degree of crystallinity with a single peak corresponding to face-centered cubic (111) structure at 2θ = 44.1°. Co/Cu multilayers exhibit a soft magnetic behavior with the saturation magnetization (Ms) of 1489 emu/cc and the coercivity (Hc) of 11.2 Oe. The magnetite Fe3O4 nanoparticles used as a bimolecular labels (nanotags) were synthesized via co-precipitation method, exhibiting a soft magnetic behavior with Ms of 77.16 emu/g and Hc of 49 Oe. XRD patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and it grew in their inverse spinel structure with an average size of around 10 nm. The GMR sensor design was used to detect a biomolecules of streptavidin magnetic particles with concentration 10, 20, 30, and 40 μl/ml and α-amylase enzyme with consentration 10, 20, 30, and 40 μl/ml captured using polyethylene glycol (PEG)/Fe3O4 nanoparticles. Various applied magnetic fields of 0-650 Gauss have been performed using electromagnetic with the various currents of 0-5 A. Here, the final value of the output voltage signals for the streptavidin magnetic particles concentration is 1.2 mV (10 μl/ml). The output voltage changes with the increase of concentration. It was reported that the output voltage signal of the Wheatstone bridge exhibits log-linear function in real time measurement of the concentration of streptavidin magnetic particles and α-amylase enzyme respectively, making the sensor suitable for use as a biomolecule concentration detector. Thus, the combination of Co/Cu multilayer, Wheatstone bridge, magnetite and PEG polymer

  6. Effects of CuO co-doping on γ-ray irradiation resistance of active ions doped phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhihuan [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); ENEA-UTTMAT, Via Anguillarese 301, 00123 Rome (Italy); Baccaro, Stefania; Cemmi, Alessia [ENEA-UTTMAT, Via Anguillarese 301, 00123 Rome (Italy); Shen, Wei [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2013-09-15

    The effect of copper ion doping on the γ-ray irradiation resistance of Mn{sup 2+} and Pr{sup 3+} doped phosphate glasses has been studied. UV–visible transmission spectra and photoluminescence spectra have been measured before and after γ-irradiation to characterize the radiation-induced defects. The electron paramagnetic resonance spectra of the irradiated samples with, and without Cu ions have been compared to show the ability of Cu ions to suppress the generation of radiation-induced color centers. The differential transmission spectra and the radiation-induced absorption coefficients have also been calculated for discussion of the observed phenomena. The much improved γ-irradiation resistance of Mn{sup 2+} and Pr{sup 3+} doped phosphate glasses has been demonstrated through CuO co-doping.

  7. Approaching the limit of Cu(II)/Cu(I) mixed valency in a Cu(I)Br2-N-methylquinoxalinium hybrid compound.

    Science.gov (United States)

    Leblanc, Nicolas; Sproules, Stephen; Pasquier, Claude; Auban-Senzier, Pascale; Raffy, Helene; Powell, Annie K

    2015-08-18

    A novel 1D hybrid salt (MQ)[CuBr2]∞ (MQ = N-methylquinoxalinium) is reported. Structural, spectroscopic and magnetic investigations reveal a minimal Cu(II) doping of less than 0.1%. However it is not possible to distinguish Cu(I) and Cu(II). The unusually close packing of the organic moieties and the dark brown colour of the crystals suggest a defect electronic structure.

  8. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  9. Synthesis of Fluorinated Amphiphilic Block Copolymers Based on PEGMA, HEMA, and MMA via ATRP and CuAAC Click Chemistry

    OpenAIRE

    Erol, Fatime Eren; Sinirlioglu, Deniz; Cosgun, Sedat; Muftuoglu, Ali Ekrem

    2014-01-01

    Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP) and Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC) was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA) random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-M...

  10. High-temperature stability of Au/Pd/Cu and Au/Pd(P)/Cu surface finishes

    Science.gov (United States)

    Ho, C. E.; Hsieh, W. Z.; Lee, P. T.; Huang, Y. H.; Kuo, T. T.

    2018-03-01

    Thermal reliability of Au/Pd/Cu and Au/Pd(4-6 wt.% P)/Cu trilayers in the isothermal annealing at 180 °C were investigated by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and transmission electron microscopy (TEM). The pure Pd film possessed a nanocrystalline structure with numerous grain boundaries, thereby facilitating the interdiffusion between Au and Cu. Out-diffusion of Cu through Pd and Au grain boundaries yielded a significant amount of Cu oxides (CuO and Cu2O) over the Au surface and gave rise to void formation in the Cu film. By contrast, the Pd(P) film was amorphous and served as a good diffusion barrier against Cu diffusion. The results of this study indicated that amorphous Pd(P) possessed better oxidation resistance and thermal reliability than crystalline Pd.

  11. 3d-metal doping (Fe,Co,Ni,Zn) of the high Tc perovskite YBa2Cu3O(7-y)

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Greene, L.H.; Hull, G.W.; Bagley, B.G.

    1988-01-01

    The structural, magnetic and superconducting properties of the mixed compounds YBa 2 Cu(3-x)M(x)O(7-y) (M = Ni,Zn,Fe, and Co) are reported. Values of y, determined by titration, are found to be dependent on the nature and amount of the doping. The range of solubility is greater for the Fe and Co compounds (x = 1) than for those with Ni or Zn (x = 0.3). The undoped material is orthorhombic and remains orthorhombic after substitution for Cu by Ni or Zn, whereas a tetragonal phase is observed when Fe, Co are substituted for Cu. DC resistance and AC susceptibility measurements show that Tc is depressed from 90K (x = 0) to 45K (x = 0.2) for both the Ni- and Zn-doped compounds, and Tc is destroyed in the Fe- and Co-doped compounds when x reaches 0.4. It is suggested that a valence of two be assigned to the Ni and Zn and three to the Fe and Co ions. 8 references

  12. Computer simulation of the structure of liquid metal halides RbBr, CuCl, CuBr, CuI, and AgBr

    International Nuclear Information System (INIS)

    Belashchenko, D.K.; Ostrovskij, O.I.

    2003-01-01

    The computerized models of the RbBr, AgBr, CuCl, CuBr and CuI liquid ion systems of 498 ions dimension are simulated at the temperatures of 753-960 K on the basis of the known diffraction data through the BELION algorithm. Good agreement of diffraction and model partial pair correlation functions (PPCF), excluding the PPCF first peaks heights, is obtained in all the cases. The simulation is carried out by the varied ion charges (the atomization energy values, close to the real ones, are obtained by ion charges ±1.00 for the RbBr, ±1.15 for AgBr, ±1.20 for CuCl, ±1.48 for CuBr and ±1.367 for CuI). The noncoulomb contributions in the interparticle potentials are calculated [ru

  13. Enhancement in CO2 Adsorption Capacity and Selectivity in the Chalcogenide Aerogel CuSb2S4 by Post-synthetic Modification with LiCl

    KAUST Repository

    Ahmed, Ejaz

    2015-09-11

    The new chalcogel CuSb2S4 was obtained by reacting Cu(OAc)2·H2O with KSbS2 in a water/formamide mixture at room temperature. In order to modify the gas adsorption capacity the synthesized CuSb2S4 aerogel was loaded with different amounts of LiCl. CO2 adsorption measurements on the CuSb2S4 aerogel before and after treatment with LiCl showed more than three times increased uptake of the LiCl-modified chalcogel. The selectivities of the gas pairs CO2/H2 and CO2/CH4 in the LiCl-treated chalcogel are 235 and 105 respectively and amongst the highest reported for chalcogenide-based aerogels. In comparison with other porous materials like zeolites, activated carbon and most of the Metal Organic Frameworks (MOFs) or Porous Organic Frameworks (POFs), our synthesized aerogels show good air and moisture stability. Although, the CO2 storage capacity of our aerogels is relatively low, however the selectivity of CO2 over H2 or CH4 in LiCl-loaded aerogels are higher than in zeolites, activated carbon as well as some MOFs like Cu-BTC and MOF-5 etc.

  14. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Hekmat-Ardakan, Alireza [École Polytechnique de Montréal, Dép. de Génie Chimique, P.O. Box 6079, Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (β),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(θ) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  15. Species dependence of [64Cu]Cu-Bis(thiosemicarbazone) radiopharmaceutical binding to serum albumins

    International Nuclear Information System (INIS)

    Basken, Nathan E.; Mathias, Carla J.; Lipka, Alexander E.; Green, Mark A.

    2008-01-01

    Introduction: Interactions of three copper(II) bis(thiosemicarbazone) positron emission tomography radiopharmaceuticals with human serum albumin, and the serum albumins of four additional mammalian species, were evaluated. Methods: 64 Cu-labeled diacetyl bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-ATSM), pyruvaldehyde bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-PTSM) and ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) were synthesized and their binding to human, canine, rat, baboon and porcine serum albumins quantified by ultrafiltration. Protein binding was also measured for each tracer in human, porcine, rat and mouse serum. Results: The interaction of these neutral, lipophilic copper chelates with serum albumin is highly compound- and species-dependent. Cu-PTSM and Cu-ATSM exhibit particularly high affinity for human serum albumin (HSA), while the albumin binding of Cu-ETS is relatively insensitive to species. At HSA concentrations of 40 mg/ml, '% free' (non-albumin-bound) levels of radiopharmaceutical were 4.0±0.1%, 5.3±0.2% and 38.6±0.8% for Cu-PTSM, Cu-ATSM and Cu-ETS, respectively. Conclusions: Species-dependent variations in radiopharmaceutical binding to serum albumin may need to be considered when using animal models to predict the distribution and kinetics of these compounds in humans

  16. Preparation-Properties Relation of Mn-Cu Hopcalite Catalyst

    OpenAIRE

    Ardita Mele; Ilo Mele; Altin Mele

    2012-01-01

    Problem statement: The Mn-Cu hopcalite catalyst was used for the conversion of CO to CO2 at low temperatures. It was the catalyst of choice in the gas masks for respiratory protection in mines, aircrafts, military, spatial laboratories. Approach: The efficiency of hopcalite catalyst depends on its surface parameters. Its surface characteristics can be influenced from the chosen way of the MnO2 and CuO precipitation and from the pressure of pelletizing. Results: The hopcalite samples has been ...

  17. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo

    2012-01-01

    Cu and Cu 2 O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO 3 ) 2 and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH ≥ 7, the pure Cu 2 O films can be deposited. Especially, at pH = 11, the deposited Cu 2 O films exhibited cubic surface morphology exposing mainly {100} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: ► Cu and Cu 2 O films were prepared by facile electrodeposition. ► Electrodeposition was preformed in electrolyte at different pH values. ► Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. ► Semi-spherical Cu 2 O films were obtained with solution at 11 pH and stirred for 2 weeks. ► The possible growth mechanism of semi-spherical Cu 2 O films was discussed.

  18. The activation energy for loop growth in Cu and Cu-Ni alloys

    International Nuclear Information System (INIS)

    Barlow, P.; Leffers, T.; Singh, B.N.

    1978-08-01

    The apparent activation energy for the growth of interstitial dislocation loops in copper, Cu-1%Ni, Cu-2%Ni, and Cu-5%Ni during high voltage electron microscope irradiation was determined. The apparent activation energy for loop growth in all these materials can be taken to be 0.34eV+-0.02eV. This value together with the corresponding value of 0.44eV+-0.02eV determined earlier for Cu-10%Ni is discussed with reference to the void growth rates observed in these materials. The apparent activation energy for loop growth in copper (and in Cu-1%Ni that has a void growth rate similar to that in pure copper) is interpreted as twice the vacancy migration energy (indicating that divacancies do not play any significant role). For the materials with higher Ni content (in which the void growth rate is much lower than that in Cu and Cu-1%Ni) the measured apparent activation energy is interpreted to be characteristic of loops positioned fairly close to the foil surface and not of loops in ''bulk material''. From the present results in combination with the earlier results for Cu-10%Ni it is concluded that interstitial trapping is the most likely explanation of the reduced void growth rate in Cu-Ni alloys. (author)

  19. X-ray attenuation coefficient measurements for photon energies 4.508-13.375 keV in Cu, Cr and their compounds and the validity of the mixture rule

    International Nuclear Information System (INIS)

    Turgut, Ue.; Simsek, Oe.; Bueyuekkasap, E.; Ertugrul, M.

    2004-01-01

    To investigate the validity of the mixture rule which is used to compute the mass attenuation coefficients in compounds, the total mass attenuation coefficients for Cu, Cr elements and Cu 2 O, CuC 2 O 4 , CuCl 2 ·2H 2 O, Cu(C 2 H 3 O 2 ) 2 ·H 2 O, Cr 2 O 3 , Cr(NO 3 ) 3 , Cr 2 (SO 4 ) 3 ·H 2 O, Cr 3 (CH 3 CO 7 )(OH) 2 compounds were measured at photon energies between 4.508 and 13.375 keV by using the secondary excitation method. Ti, Mn, Fe, Ni, Zn, Ge, As, Rb elements were used as secondary exciters. 59.5 keV gamma rays emitted from an 241 Am annular source were used to excite the secondary exciters and Kα (K-L 3 , L 2 ) rays emitted from the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Our measurements indicate that the mixture rule is not a suitable method for the computation of mass attenuation coefficients of compounds especially at an energy that is near the absorption edge. Obtained values were compared with theoretical values

  20. Decomposition mechanism of formic acid on Cu (111) surface: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao, E-mail: jiangzhao@mail.xjtu.edu.cn; Qin, Pei; Fang, Tao

    2017-02-28

    Highlights: • Adsorption and decomposition mechanism of HCOOH on Cu (111) were investigated using DFT calculations. • The stable co-adsorption configurations of related intermediates were identified. • Five dissociation pathways of HCOOH via initial H−O, C−H and C−O bond scissions were considered and analyzed. - Abstract: The study of formic acid decomposition on transition metal surfaces is important to obtain useful information for vapor phase catalysis involving HCOOH and for the development of direct formic acid fuel cells. In this study, periodic density functional theory calculations have been employed to investigate the dissociation pathways of HCOOH on Cu (111) surface. About adsorption, it is found that the adsorption of HCOO, COOH, HCO, CO, OH and H on Cu (111) are considered chemisorption, whereas HCOOH, CO{sub 2}, H{sub 2}O and H{sub 2} have the weak interaction with Cu (111) surface. Furthermore, the minimum energy pathways are analyzed for the decomposition of HCOOH to CO{sub 2} and CO through the scission of H−O, C−H and C−O bonds. It is found that HCOOH, HCOO and COOH prefer to dissociate in the related reactions rather than desorb. For the decomposition, it is indicated that HCO and COOH are the main dissociated intermediates of trans-HCOOH, CO{sub 2} is the main dissociated intermediates of bidentate-HCOO, and CO is the main dissociated product of cis-COOH. The co-adsorbed H atom is beneficial for the formation of CO{sub 2} from cis-COOH. Besides, it is found that the most favorable path for HCOOH decomposition on Cu (111) surface is HCOOH-HCO-CO (Path 5), where the step of CO formation from HCO dehydrogenation is considered to be the rate-determining step. The results also show that CO is preferentially formed as the dominant product of HCOOH on Cu (111) surface.

  1. Giant Cu 2p Resonances in CuO Valence-Band Photoemission

    NARCIS (Netherlands)

    Tjeng, L.H.; Chen, C.T.; Ghijsen, J.; Rudolf, P.; Sette, F.

    1991-01-01

    We report the observation of a giant resonance in the Cu 2p resonant-photoemission spectra of CuO. The study allows the unambiguous identification of the local Cu 3d8 configuration in the valence-band photoemission spectrum, providing conclusive evidence for the charge-transfer nature of the

  2. A density functional theory study of the adsorption behaviour of CO{sub 2} on Cu{sub 2}O surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Abhishek Kumar, E-mail: akmishra@ddn.upes.ac.in, E-mail: abhishek.mishra@ucl.ac.uk, E-mail: deleeuwn@cardiff.ac.uk [Research & Development, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007 (India); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Roldan, Alberto [School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT (United Kingdom); Leeuw, Nora H. de, E-mail: akmishra@ddn.upes.ac.in, E-mail: abhishek.mishra@ucl.ac.uk, E-mail: deleeuwn@cardiff.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT (United Kingdom)

    2016-07-28

    Copper has many applications, particularly in electro-catalysis, where the oxidation state of the copper electrode plays a significant role in the selectivity towards products. Although copper-based materials have clear potential as catalysts in the reduction of CO{sub 2} and conversion to products, fundamental understanding of CO{sub 2} adsorption and activation on different copper oxide surfaces is still limited. We have used DFT+U methodology to study the surface reconstruction of the three most exposed (111), (110), and (001) surfaces of Cu{sub 2}O with different possible terminations. Considering several adsorbate geometries, we have investigated CO{sub 2} adsorption on five different possible terminations and proposed eight different configurations in which CO{sub 2} binds with the surface. Similar to earlier findings, CO{sub 2} binds weakly with the most stable Cu{sub 2}O(111):O surface showing no molecular activation, whereas a number of other surfaces, which can appear in the Cu{sub 2}O particles morphology, show stronger binding as well as activation of the CO{sub 2} molecule. Different CO{sub 2} coverages were studied and a detailed structural and electronic charge analysis is presented. The activation of the CO{sub 2} molecule is characterized by structural transformations and charge transfer between the surface and the CO{sub 2} molecule, which is further confirmed by considerable red shifts in the vibrational frequencies.

  3. Diffusion of Cu+ in β-phase CuI

    International Nuclear Information System (INIS)

    Johansson, J.X.M.Z.; Skoeld, K.; Joergensen, J.E.

    1992-01-01

    Measurements of ionic diffusion of Cu + in solid CuI in the β-phase is carried out with a non-destructive radioactive tracer technique, utilizing coincidence counting of the annihilation gammas from the positron decay of 64 Cu. The diffusion coefficient and the activation energy for the diffusion are evaluated. The experimental results show distinct diffusion character in the β-phase which differs from those in the γ- and α-phases. The β-phase diffusion properties together with the previous results for γ-and α-phases will provide valuable guidance for MD calculations, in which the diffusion coefficients and activation energies have been overestimated and the γ-β phase transition does not appear. The ionic conductivity of CuI estimated from tracer diffusion results and the Nernst-Einstein relation are compared with values from electro-chemical methods. In all three phases the conductivities obtained from electro-chemical methods are much lower than those calculated from the measured tracer diffusion coefficients. (author). 7 refs.; 4 figs.; 2 tabs

  4. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit

    2017-01-01

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm"2 is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  5. Highly enhanced photocurrent of novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films for photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gohel, Jignasa V.; Jana, A.K.; Singh, Mohit [Sardar Vallabhbhai National Institute of Technology, Chemical Engineering Department, Surat, Gujarat (India)

    2017-08-15

    A novel quantum-dot-co-sensitized PbS-Hg/CdS/Cu:ZnO thin films synthesized by low-cost process. The properties of ZnO are also enhanced by doping and co-doping. It is also compared with quantum-dot co-sensitization. Optical properties, crystal structure, morphology, and photocurrent are characterized by UV-Vis spectroscopy, XRD, SEM, and solar simulator, respectively. The bandgap is interestingly reduced highly to 2.6 eV for Ag co-doped Cu:ZnO. It is unprecedentedly reduced to 2.1 eV and even 1.97 eV for CdS and PbS-Hg QD-sensitized thin films, respectively. An exceptionally enhanced photocurrent of 17.1 mA/cm{sup 2} is achieved with PbS-Hg-co-sensitized CdS-sensitized Cu:ZnO thin film. This is an excellent achievement, which highly supports the potential of low-cost solar conversion. (orig.)

  6. Preparation, characterization and catalytic behavior of hierachically porous CuO/α-Fe2O3/SiO2 composite material for CO and o-DCB oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Ma; Xi Feng; Xuan He; Hongwen Guo; Lu Lü

    2011-01-01

    Hierachically porous (HP) CuO/α-Fe2O3/SiO2 composite material was fabricated by sol-gel method and multi-hydrothermal processes using HP-SiO2 as support.The resulting material was characterized by N2 adsorption-desorption,X-ray diffraction and scanning electron microscopy.The as-prepared CuO/Fe2O3/HP-SiO2 sample,with α-Fe2O3 and CuO nanocrystals,possessed a co-continuous skeleton,through-macroporous and mesoporous structure.Its catalytic behavior for CO and o-DCB oxidation was investigated.The result showed that CuO/Fe2O3/HP-SiO2 catalyst exhibited high catalytic activity for both CO and o-DCB oxidation,indicating its potential application in combined abatement of CO and chlorinated volatile organic compounds.

  7. Mechanical properties of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass with different geometric confinements

    Science.gov (United States)

    Zhang, Changqin; Zhang, Haifeng; Sun, Qilei; Liu, Kegao

    2018-03-01

    Zr41.2Ti13.8Ni10Cu12.5Be22.5 (Vit 1) bulk metallic glass with Cu sleeves at different positions was prepared by the Cu mold casting method, and the effects of different geometric confinements offered by Cu sleeves on the mechanical properties of Vit 1 were investigated. It was found that the mechanical properties were prominently influenced by different geometric confinements and the plasticity could be modified by optimizing the positions of Cu sleeves. The results revealed that shear band initiation and propagation could be efficiently intervened by changing the radial boundary restraints, which led to quite different mechanical behaviors.

  8. Soil solution dynamics of Cu and Zn in a Cu- and Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction.

    Science.gov (United States)

    Luo, Y M; Yan, W D; Christie, P

    2001-01-01

    A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.

  9. Spin dynamics in CuO and Cu[sub 1[minus][ital x

    Energy Technology Data Exchange (ETDEWEB)

    Carretta, P.; Corti, M.; Rigamonti, A. (Department of Physics Alessandro Volta,' ' University of Pavia, Via Bassi 6, 27100 Pavia (Italy))

    1993-08-01

    [sup 63]Cu nuclear quadrupole resonance (NQR), nuclear antiferromagnetic resonance (AFNMR), and spin-lattice relaxation, as well as [sup 7]Li NMR and relaxation measurements in CuO and in Cu[sub 1[minus][ital x

  10. COPPER RESISTANT STRAIN CANDIDA TROPICALIS RomCu5 INTERACTION WITH SOLUBLE AND INSOLUBLE COPPER COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ie. P. Prekrasna

    2015-10-01

    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  11. Novel CuCr_2O_4 embedded CuO nanocomposites for efficient photodegradation of organic dyes

    International Nuclear Information System (INIS)

    Mageshwari, K.; Sathyamoorthy, R.; Lee, Jeong Yong; Park, Jinsub

    2015-01-01

    Graphical abstract: - Highlights: • Novel CuO–CuCr_2O_4 nanocomposites synthesized by reflux condensation method. • Methyl orange and methylene blue dye degradation studied under UV light irradiation. • Nanocomposites characterized by XRD, FESEM, TEM, EDX, UV–vis DRS and PL. • CuCr_2O_4 loading effectively enhanced the catalytic activity of CuO. - Abstract: Novel photocatalyst based on CuO–CuCr_2O_4 nanocomposites was synthesized for different Cr"3"+ concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr_2O_4 as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr"3"+ in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO–CuCr_2O_4 nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr_2O_4 loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO–CuCr_2O_4 nanocomposites can be attributed to the presence of CuCr_2O_4 as an electron acceptor, which improves the effective charge separation in CuO.

  12. Fabrication of Cu-riched W–Cu composites by combustion synthesis and melt-infiltration in ultrahigh-gravity field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Guo, Shibin; Liu, Guanghua; Chen, Yixiang [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jiangtao, E-mail: ljt0012@vip.sina.com [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-15

    Unadulterated Cu-riched W–Cu composites of W27–Cu73, W34–Cu66, W40–Cu60, W49–Cu51 and W56–Cu44 have been prepared by a novel method called combustion synthesis and melt-infiltration in ultrahigh-gravity field, of which W27–Cu73 and W34–Cu66 showed good ductility and W40–Cu60, W49–Cu51 and W56–Cu44 were brittle. In this technique, Cu melt accompanied with a great amount of heat was produced by thermit reaction and infiltrated into W–Cu powder bed. When the powder bed was Cu-riched powder bed such as W50–Cu50 or W60–Cu40, Cu melt would go through the powder bed, reach the bottom of the graphite crucible and then form a heat dissipation channel. Thus the cooling rate was so fast that the product was mixed up with impurity. The problem can be solved by putting some W powders under W50–Cu50 or W60–Cu40 powder bed to prevent the formation of heat dissipation channel.

  13. Synthesis of DME by CO2 hydrogenation over La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Zhang Yajing

    2017-01-01

    Full Text Available A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD, N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR, ammonia temperature programmed desorption (NH3-TPD, and X-ray photoelectron spectroscopy (XPS techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3% and DME selectivity (57.3% were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.

  14. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph

    International Nuclear Information System (INIS)

    Roque-Malherbe, R.; Lozano, C.; Polanco, R.; Marquez, F.; Lugo, F.; Hernandez-Maldonado, A.; Primera-Pedrozo, J.N.

    2011-01-01

    A careful structural characterization was carried out to unequivocally determine the structure of the synthesized material. The TGA, DRIFTS and a Pawley fitting of the XRD powder profiles indicate that the hydrated and in situ dehydrated polymorph crystallizes in the orthorhombic space group Pnma. Meanwhile, the CO 2 isosteric heat of adsorption appears to be independent of loading with an average value of 30 kJ/mol. This translates to a physisorption type interaction, where the adsorption energy corresponding to wall and lateral interactions are mutually compensated to produce, an apparently, homogeneous adsorption energy. The somewhat high adsorption energy is probably due to the confinement of the CO 2 molecules in the nitroprusside pores. Statistical Physics and the Dubinin theory for pore volume filling allowed model the CO 2 equilibrium adsorption process in Cu-nitroprusside. A DRIFTS test for the adsorbed CO 2 displayed a peak at about 2338 cm -1 that was assigned to a contribution due to physical adsorption of the molecule. Another peak found at 2362 cm -1 evidenced that this molecule interacts with the Cu 2+ , which appears to act as an electron accepting Lewis acid site. The aim of the present paper is to report a Pnma stable Cu-nitroprusside polymorph obtained by the precipitation method that can adsorb carbon dioxide. -- Graphical abstract: The adsorption space of a very well characterized Cu-nitroprusside polymorph, applying carbon dioxide as probe molecule, was studied. Display Omitted Highlights: → Accurate information about the geometry of the adsorption space was provided. → Truthful data about the interactions within the adsorption space was presented. → The structure of the tested Cu-NP polymorph was established. → Was evidenced adsorbed CO 2 molecules in the form of weakly bonded adducts. → Is proposed that adsorbed molecules could change the Cu-NP magnetic properties.

  15. Properties of the CuGaSe2 and CuInSe2 (001) surface

    International Nuclear Information System (INIS)

    Deniozou, T.

    2005-01-01

    The main task of this work was to investigate the (001) CuGaSe 2 and CuInSe 2 surface in dependence of preparation and stoichiometry. The knowledge of the atomic structure as well as other surface properties is important in respect to optimization of novel thin film solar cells. For the characterization of the layers mainly Auger electron Spectroscopy, low-energy electron diffraction and photoelectron spectroscopy were implemented. The development of an appropriate procedure with Ar + sputtering and annealing combined with decapping enabled the preparation of clean and well-ordered surfaces. Different surface structures were observed in dependence of the layer preparation and composition. A (4 x 1) reconstruction was observed for the first time on CuGaSe 2 layers grown with a moderate Cu-excess after preparation by sputtering and annealing. Similarly a (4 x 2) reconstruction was detected on CuInSe2 surfaces of Cu-poor layers. A reconstruction could be also observed on Cu-poorer layers, however the facets/steps could not be completely removed. Cu-richer layers were facet-free, however the observed reconstruction was also weaker. Thus it was shown that in contrary to recent expectations, according to which only the (112) surface is stable, also the (001) can be stable under particular conditions. The appearance of facets or steps is correlated with the presence of CuIn 3 Se 5 or CuGa 3 Se 5 phases. This information is furthermore important for the understanding of grain boundaries in polycrystalline CuGaSe 2 and CuInSe 2 . Binding energy shifts were observed for the first time on all Se3d, In4d, Ga3d, Cu3d core levels of the reconstructed surfaces. By comparison with results from the literature from the similar ZnSe (100) surface a modell for the (4 x 2) reconstruction was proposed. The surface components in the Se3d, In4d and Cu3d emission were attributed to Se dimers or In and Cu adatoms respectively. The x 1 periodicity of the (4 x 1) reconstruction of CuGaSe 2 is

  16. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  17. Synthesis and characterisation of Co-Co(OH)2 composite anode material on Cu current collector for energy storage devices

    Science.gov (United States)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2017-04-01

    A Co-Co(OH)2 modified electrode on inexpensive Cu substrate was synthesized at room temperature and demonstrated to be a promising anode material for energy storage devices. A modified Co film was obtained potentiostatically and was then potentiodynamically treated with KOH solution to form Co(OH)2. Co-Co(OH)2 coatings were obtained and were dominated by Co(OH)2 at the oxidized side, whereas Co dominant Co-Co(OH)2 occurred at the reduced side (-1.1 V). As OH- ions were able to diffuse into (out of) the film during oxidation (reduction) and did not react with the Cu current collector, the Co-Co(OH)2 electrode can be used as an anode material in energy storage devices. Although the specific capacitance of the electrodes varied depending on thickness, the redox reaction between the modified electrode and KOH electrolyte remained the same consisting of a surface-controlled and diffusion-controlled mechanism which had a desirable fast charge and discharge property. Capacity values remained constant after 250 cycles as the film evolved. Overall capacity retention was 84% for the film after 450 scans. A specific capacitance of 549 F g-1 was obtained for the Co-Co(OH)2 composite electrode in 6 M KOH at a scan rate of 5 mV s-1 and 73% of capacitance was retained when the scan rate was increased to 100 mV s-1.

  18. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  19. Separations on a cellulose exchanger with salicylic acid as functional group. [Fe/sup 3//sup+//Cu/sup 2//sup+/, Cu/sup 2//sup+//Ni/sup 2//sup+//, and Cu/sup 2//sup+//Cu complex separations

    Energy Technology Data Exchange (ETDEWEB)

    Burba, P; Lieser, K H [Technische Hochschule Darmstadt (F.R. Germany). Fachbereich Anorganische Chemie und Kernchemie

    1976-07-01

    The use of a cellulose compound containing salicylic acid as functional group (capacity 0.6 mequ./g) for different problems is described. The seperations Fe/sup 3 +//Cu/sup 2 +/ and Cu/sup 2 +//Ni/sup 2 +/ in aqueous solutions are achieved smoothly at pH 2 and 2.5 resp. In organic solvents (pyridine) copper ions are separated from copper complexes as shown by the examples Cu/sup 2 +//(Cu(mnt)/sub 2/)/sup 2 -/ (mnt = maleonitril-1,2-dithiolate) and Cu/sup 2 +//dibenzo(b.i.)(5.9.14.18)tetraazacyclotetradecene-copper (Cu(chel)). The complex (Cu(mnt)/sub 2/)/sup 2 -/ can be labelled with Cu-64 on a separation column, whereas (Cu-(chel)) is substition inert.

  20. Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with N,N'-ethylenebis (2-hydroxy-4-methylpropiophenoneimine)

    International Nuclear Information System (INIS)

    Patel, M.M.; Patel, M.R.; Patel, M.N.; Patel, R.P.

    1982-01-01

    Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with the schiff base, N,N'-ethylenebis(2-hydroxy-4-methylpropiophenoneimine)(4-MeOHPEN), have been synthesised and characterised on the basis of elemental analyses, conductivity, magnetic moment, electronic and infrared spectral data. Square-planar structures are suggested for Cu(II), Ni(II) and Co(II) complexes while a distorted square-pyramidal structure is suggested for the oxovanadium(IV) complex. (author)