WorldWideScience

Sample records for cngs reflector installed

  1. CNGS Reflector installed

    CERN Multimedia

    2006-01-01

    A major component that will help target the CNGS neutrino beam for its 732km journey through the earth's crust, from CERN to the Gran Sasso laboratory in Italy, has been installed in its final position. The transport of the huge magnetic horn reflector through the CNGS access gallery. A team from CNGS and TS/IC, and the contractors DBS, transported the magnetic horn reflector on 5th December, in a carefully conducted operation that took just under two hours. The reflector is 7m long, 1.6m in diameter and 1.6 tonnes in weight. With only a matter of centimetres to spare on either side, the reflector was transported through the CNGS access gallery, before being installed in the experiment's target chamber. The larger of two magnetic horns, the reflector will help refocus sprays of high energy pions and kaons emitted after a 0.5MW stream of protons from the Super Proton Synchrotron (SPS) strikes nucleons in a graphite target. The horns are toroidal magnetic lenses and work with high pulsed currents: 150 kA f...

  2. Transport of the CNGS reflector.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The CNGS magnetic horn reflectorwas transported on 5 December 2005 through the facility's access gallery. The reflector - a major component that will help target the CNGS neutrino beam for its 732km journey through the earth's crust, from CERN to the Gran Sasso laboratory in Italy - is 7m long, 1.6m in diameter and 1.6 tonnes in weight.

  3. Horn installed in CNGS tunnel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The horn is installed for the CERN Neutrinos to Gran Sasso (CNGS) project. Protons collide with a graphite target producing charged particles that are focussed by the magnetic field in the horn. These particles will then pass into a decay tube where they decay into neutrinos, which travel towards a detector at Gran Sasso 732 km away in Italy.

  4. The magnetic horn being installed in the CNGS target chamber

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The magnetic system that focuses the beam of particles arising from the graphite target of the CERN Neutrinos to Gran Sasso project (CNGS) has been installed in its final position in the tunnel.The CNGS secondary beam magnetic system consists of two elements: the horn and the reflector, both acting as focusing lenses for the positively-charged pions and kaons produced by proton interactions in the target.

  5. First Operational Experience Of The CNGS Facility

    Science.gov (United States)

    Gschwendtner, E.; Pardons, A.; Bruno, L.; Clement, M.; Efthymiopoulos, I.; Elsener, K.; Meddahi, M.; Rangod, S.; Vincke, H.

    2008-02-01

    The CNGS project (CERN Neutrinos to Gran Sasso) aims at directly detecting νμ-ντ oscillation. An intense muon-neutrino beam (1017νμ/day) is generated at CERN and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, where the ντ will be detected in large and complex detectors. An overview of the CNGS beam facility is given. The performance of the primary and secondary beam line during beam commissioning and physics operation is discussed. Modifications on the magnetic focusing lenses (horn and reflector) are described.

  6. $\\tau$ appearance and CNGS

    CERN Document Server

    Komatsu, M

    2002-01-01

    In December 1999, the CERN Council approved the CNGS project to explore neutrino oscillation physics in tau neutrino appearance. Super-KAMIOKANDE result indicate that the most probable solution in atmospheric neutrino disappearance is muon neutrino oscillation into a tau neutrino. CNGS is designed to detect nu /sub mu / to nu /sub tau / oscillations by a long baseline appearance experiment. CNGS a more is unique project than the other disappearance projects like K2K and NuMI. At least two experiments are in preparation in the CNGS project at LNGS. One is OPERA which was already approved in Feb. 2001 as CNGS1 using emulsion techniques which have proven their tau detection capability in Fermilab E872 DONUT. The other is ICARUS which was approved at LNGS using a liquid argon TPC. Both experiments will detect tau neutrino signal in theCNGS beam. (5 refs).

  7. CNGS Progress Report 2004

    CERN Document Server

    Bruno, L; Elsener, K; Gaillard, H; López-Hernandez, L A; Meddahi, M; Rangod, Stephane; Roesler, S; Spinks, Alan; Wilhelmsson, M; CERN. Geneva. AB Department

    2004-01-01

    The CNGS project is progressing according to schedule, with the aim to be ready for beam in spring 2006. In this paper, the project status and recent changes to the design of systems and components are summarized. The actions taken in response to the recommendations of the 2003 CNGS Review are described. This report has been drafted in view of the third CNGS Review, held in June 2004.

  8. The CNGS target

    CERN Multimedia

    Patrice Loïez

    2005-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) target ‘magazine’ of five target units. Each unit contains a series of 10-cm long graphite rods distributed over a length of 2 m. It is designed to maximize the number of secondary particles produced and hence the number of neutrinos. One unit is used at a time to prevent over heating.

  9. Design and Performance of the CNGS Secondary Beam Line

    CERN Document Server

    Gschwendtner, E; Elsener, K; Ferrari, A; Guglielmi, A; Meddahi, M; Pardons, A; Rangod, Stephane; Sala, P

    2007-01-01

    An intense muon-neutrino beam (1017nm /day) is generated at CERN and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, 732 km away from CERN. In the presently approved physics programme, it is foreseen to run the CNGS facility with 4.5.1019 protons per year for five years. During a nominal CNGS cycle, i.e. every 6s, two nominal SPS extractions of 2.4.1013 protons each at 400GeV/c are sent down the proton beam line to the target. The CNGS secondary beam line, starting with the target, has to cope with this situation, which pushes the beam line equipment and instrumentation to the limits of radiation hardness and mechanical stresses during the CNGS operation. An overview of the CNGS secondary beam line is given. Emphasis is on the target, the magnetic focusing lenses (horn and reflector) and the muon monitors. The performance of the secondary beam line during beam commissioning and physics operation is discussed and measurements are compared with simulations.

  10. The CNGS Project

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    CERN Director-General Luciano Maiani (second from the right) with Mrs Maiani in front of the tunnelling machine to excavate the 1 kilometre decay tunnel producing neutrinos for the CERN Neutrinos to Gran Sasso (CNGS) project. A beam of neutrinos will be produced at CERN by colliding a proton beam with a graphite target and manipulating the decay products. This beam will then travel 730 km to Gran Sasso, Italy where huge detectors will be used to study the phenomenon of neutrino oscillation.

  11. Welding the CNGS decay tube

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    3.6 km of welds were required for the 1 km long CERN Neutrinos to Gran Sasso (CNGS) decay tube, in which particles produced in the collision with a proton and a graphite target will decay into muons and muon neutrinos. Four highly skilled welders performed this delicate task.

  12. Sterile neutrinos at the CNGS

    CERN Document Server

    Donini, A; Meloni, D; Migliozzi, P; Terranova, F

    2007-01-01

    We study the potential of the CNGS beam in constraining the parameter space of a model with three active plus one sterile neutrino such as to explain the LSND results. We perform our analysis using the OPERA detector as a reference (our analysis can be upgraded including a detailed simulation of the ICARUS detector). We point out that the best channel to look for sterile neutrinos at the CNGS beam is numu to nutau, that is precisely the main signal for which both OPERA and ICARUS have been designed. We also analyse numu to nue oscillations. We take advantage of the expected efficiencies and backgrounds for these signals and evaluate the OPERA potential to look for sterile neutrinos. Combination of data from both channels permit to cover almost all of the allowed CP-conserving 3+1 neutrino model parameter space.

  13. Sterile neutrinos at the CNGS

    Science.gov (United States)

    Donini, Andrea; Maltoni, Michele; Meloni, Davide; Migliozzi, Pasquale; Terranova, Francesco

    2007-12-01

    We study the potential of the CNGS beam in constraining the parameter space of a model with one sterile neutrino separated from three active ones by an Script O(eV2) mass-squared difference, Δ mSBL2. We perform our analysis using the OPERA detector as a reference (our analysis can be upgraded including a detailed simulation of the ICARUS detector). We point out that the channel with the largest potential to constrain the sterile neutrino parameter space at the CNGS beam is νμ→ντ. The reason for that is twofold: first, the active-sterile mixing angle that governs this oscillation is the less constrained by present experiments; second, this is the signal for which both OPERA and ICARUS have been designed, and thus benefits from an extremely low background. In our analysis we also took into account νμ→νe oscillations. We find that the CNGS potential to look for sterile neutrinos is limited with nominal intensity of the beam, but it is significantly enhanced with a factor 2 to 10 increase in the neutrino flux. Data from both channels allow us, in this case, to constrain further the four-neutrino model parameter space. Our results hold for any value of Δ mSBL2gtrsim0.1 eV2, i.e. when oscillations driven by this mass-squared difference are averaged. We have also checked that the bound on θ13 that can be put at the CNGS is not affected by the possible existence of sterile neutrinos.

  14. CNGS: Opening the way to Gran Sasso

    CERN Multimedia

    2003-01-01

    The excavation and concreting of the underground structures of the CNGS (CERN Neutrinos to Gran Sasso) project has just been completed. The way to Gran Sasso is now open and, to mark the occasion, we are publishing a special two-part Bulletin report on the CNGS project. The first part, which appears this week, covers the facility which will allow a beam of neutrinos to be sent from CERN to INFN's underground laboratory at Gran Sasso in Italy in 2006. The second part, to appear in next week's issue, will feature the two CNGS experiments, OPERA and ICARUS.

  15. CNGS layout and systems: a progress report

    CERN Document Server

    Bruno, L; Elsener, K; Gaillard, H; López-Hernandez, L A; Maugain, J M; Meddahi, M; Rangod, Stephane; Spinks, Alan; Stevenson, G R; Wilhelmsson, M; CERN. Geneva. AB Department

    2003-01-01

    The CNGS (CERN Neutrino beam to Gran Sasso) project was described in a conceptual technical design report in 1998 (the project was then called NGS, cf. report CERN 98-02 / INFN-AE/98-05). An addendum to that report was published in 1999, describing the improvements on the design and performance, in particular in view of the nt appearance experiments to be performed with the CNGS beam (cf. report CERN-SL/99-034(DI) / INFN/AE-99-05). In the time since the publishing of these two reports, the CNGS project was approved by CERN Council and construction work started in September 2000. A further note (SL-Note-2002-012) - written on the occasion of the first CNGS External Review in February 2002 - provided an update concerning changes to the overall layout of the CNGS facility. The present paper describes further layout changes and the modifications to the design of various systems and equipment. This work has been done in preparation of the second CNGS Review, held in April 2003.

  16. CNGS: Update on secondary beam layout.

    CERN Document Server

    Ball, A E; Falaleev, V P; Grant, A L; Guglielmi, A M; Maire, G; Maugain, J M; Meddahi, M; Palladino, V; Pietropaolo, F; Rangod, Stephane; Sala, P; Vassilopoulos, N; Vincke, H H; CERN. Geneva. SPS and LEP Division

    2000-01-01

    The conceptual technical design of the CNGS (CERN neutrino beam to Gran Sasso) facility has been presented in the report CERN 98-02 / INFN-AE/98-05. An updated beam design, in particular a revised neutrino beam optimised for nu_mu - nu_tau appearance experiments, has been described in an addendum (CERN-SL/99-034(DI) / INFN-AE/99-05). In this note, a slightly modified version of the CNGS secondary beam and an update of the parameter lists is given. The changes aim at technical improvements in the CNGS secondary beam components, without compromising on the expected lifetime of the components. A slight increase of expected nu_tau charged current events at Gran Sasso has been achieved in the simulations.

  17. CNGS - CERN Neutrinos to GRAN SASSO

    CERN Document Server

    Elsener, K

    2000-01-01

    The CNGS project was approved by CERN Council in December 1999. This report gives a short description of the Muon Neutrino beam to be built at CERN in the direction of the INFN Gran Sasso underground laboratory (LNGS). The first goal of this new facility is the production of sufficient Muon Neutrino in an energy region optimised for the detection of an adequate number of Tau neutrino - produced by oscillation - at LNGS. The layout, cost, schedule and the expected beam performance of the CNGS facility is summarised.

  18. The target of the CNGS facility at CERN, which will enable the production of neutrino

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The final target system (base table, alignment table with target magazine and BPKG) was installed in the target chamber on 8 March 2006. The pictures show the material in the test set-up in the laboratory, before transportation. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust.

  19. Ventilation and air-conditioning concept for CNGS underground areas

    CERN Document Server

    Lindroos, J

    2002-01-01

    The aim of the CNGS project is to prove the existence of neutrino oscillation by generating an intense neutrino beam from CERN in the direction of the Gran Sasso laboratory in Italy, where two large neutrino detectors are built to detect the neutrinos. All the components for producing the neutrino beam will be situated in the underground tunnels, service galleries and chambers. The ventilation and air-conditioning systems installed in these underground areas have multiple tasks. Depending on the operating mode and structure to be air-conditioned, the systems are required to provide fresh air, cool the machine, dehumidify areas housing sensible equipment or assure the smoke removal in a case of a fire. This paper presents the technical solutions foreseen to meet these requirements.

  20. CERN Neutrinos to Gran Sasso (CNGS) Results from Commissioning

    CERN Document Server

    Meddahi, M; Elsener, K; Gschwendtner, E; Herr, Werner; Kain, V; Lamont, M; Wenninger, J

    2007-01-01

    The CNGS project (CERN Neutrinos to Gran Sasso) aims at directly detecting nm - nt oscillations. An intense nm beam is generated at CERN and directed towards LNGS (Laboratori Nazionali del Gran Sasso) in Italy where nt will be detected in large and complex detectors. An overview of the CNGS beam facility is given. Results from the primary and secondary beam line commissioning performed in summer 2006 are presented. Measurements are compared with expectations.

  1. The CNGS (CERN Neutrinos to Gran Sasso)

    CERN Multimedia

    CERN MultiMedia Productions & Gran Sasso Laboratory Communications

    2006-01-01

    This project aims at investigating the 'oscillation' of neutrinos. The project is motivated by the results obtained at the Superkamiokande detector in Japan and supported by other experiments, observing neutrinos produced by cosmic rays in the atmosphere. These experiments measure a significant deficit in the flux of deteced muon-type neutrinos. The features of this 'anomaly' could be explained by the hypothesis of neutrino oscillation, i.e. the conversion of a given neutrino type into another during their travel from the source to the detector (for example, muon-type to tau-type neutrino oscillation). The CNGS facility aims at directly detecting such neutrino oscillations and confirming this fascinating hypothesis with artificially produced neutrinos from an accelerator.

  2. Update of changes to CNGS layout and parameters

    CERN Document Server

    Clément, M; Gaillard, H; López-Hernandez, L A; Maugain, J M; Meddahi, M; Stevenson, G R; Vincke, H H; Wilhelmsson, M; CERN. Geneva. SPS and LHC Division

    2002-01-01

    The CNGS (CERN Neutrino beam to Gran Sasso) project was described in a conceptual technical design report in 1998 (the project was then called NGS, cf. report CERN 98-02 / INFN-AE/98-05). An addendum to that report was published in 1999, describing the improvements on the design and performance, in particular in view of the Q W appearance experiments to be performed with the CNGS beam (cf. report CERN-SL/99-034(DI) / INFN/AE-99-05). In the time since the publishing of these two reports, the CNGS project was approved by CERN Council and construction work started in September 2000. The construction schedule remains unchanged, with the first neutrinos from CERN to Gran Sasso expected in May 2005. The present note - written on the occasion of the CNGS External Review in February 2002 - provides an update concerning changes to the overall layout of the CNGS facility and some of the minor modifications, which have all been approved by the CNGS Technical Working Group since the publication of the 1999 addendum.

  3. Upgrade and Tests of the SPS Fast Extraction Kicker System for LHC and CNGS

    CERN Document Server

    Gaxiola, E; Burkel, P; Carlier, E; Castronuovo, F; Ducimetière, L; Sillanoli, Y; Timmins, M; Uythoven, J

    2004-01-01

    A fast extraction kicker system has been installed in the SPS and successfully used in extraction tests in 2003. It will serve to send beam to the anticlockwise LHC ring and the CNGS neutrino facility. The magnets and pulse generators have been recuperated from an earlier installation and upgraded to fit the present application. Hardware improvements include diode stacks as replacement of the previous dump thyratron switches, a cooling system of the magnets, sensors for its ferrite temperatures and magnetic field quality assessment. In preparation of the future use for 450 GeV/c transfer to LHC and double batch extraction at 400 GeV/c for CNGS the tests comprised extractions of single bunches, twelve bunches in a single extraction and single bunches in a double extraction. The measured kick characteristics of the upgraded system are presented, along with a discussion of Pspice simulation results. Further improvements will be discussed which are intended to make the system comply with the specifications for CN...

  4. CNGS muon monitoring: Why do we need both muon detector stations at the start-up of the CNGS neutrino beam ?

    CERN Document Server

    Ball, A E; Falaleev, V P; Ferrari, A; Grant, A; Guglielmi, A M; Meddahi, M; Pietropaolo, F; Sala, P; CERN. Geneva. SPS and LHC Division

    2002-01-01

    The CNGS design has been approved with two muon detector stations, separated by 67 metres of rock. During the recent discussions on cost reduction, it has been suggested that a possible saving would be to postpone equipping the second muon detector station. The importance of the second array of muon detectors, in particular at the start-up of CNGS, is being described in this note. It is argued that both muon detector stations must be operational from the beginning of CNGS operation.

  5. Expected signal for the TBID and the ionization chambers downstream of the CNGS target station

    CERN Document Server

    Sarchiapone, L; Gschwendtner, E; Lorenzo-Sentis, M

    2006-01-01

    Downstream of the carbon graphite target of the CNGS (CERN Neutrinos to Gran Sasso) facility at CERN a secondary emission monitor called TBID (Target Beam Instrumentation Downstream) is installed to measure the multiplicities and the left/right as well as up/down asymmetries of secondary particles from the target. Calculations show that the titanium windows used to close off the TBID vacuum tank might not withstand the highest beam intensities with small spot sizes expected at CNGS, in case the proton beam accidentally misses the 4-5 mm diameter target rods. Therefore it has been suggested to place two ionisation chambers as a backup for the TBID, located left and right of the TBID monitor. Monte Carlo simulations with the particle transport code FLUKA were performed firstly to obtain the fluence of charged particles in the region of interest and secondly to estimate the induced radioactivity (background signal) in this area. This allows to assess the actual signal/noise situation and thus to determine the op...

  6. Measurement of CNGS muon neutrino speed with Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Sanchez, P., E-mail: spokeperson-borex@lngs.infn.it [CERN, Geneva (Switzerland); Barzaghi, R. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Bellini, G. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Benziger, J. [Chemical Engineering Department, Princeton University, Princeton, NJ 08544 (United States); Betti, B.; Biagi, L. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Bick, D. [University of Hamburg, Hamburg (Germany); Bonfini, G. [INFN-Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Bravo, D. [Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buizza Avanzini, M.; Caccianiga, B. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Cadonati, L. [Physics Department, University of Massachusetts, Amherst, MA 01003 (United States); Carraro, C. [Dipartimento di Fisica, Universita e INFN, Genova 16146 (Italy); Cavalcante, P. [INFN-Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Cerretto, G. [Optics Division, INRIM (Istituto Nazionale di Ricerca Metrologica), Torino (Italy); Chavarria, A. [Physics Department, Princeton University, Princeton, NJ 08544 (United States); D' Angelo, D. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Davini, S. [Dipartimento di Fisica, Universita e INFN, Genova 16146 (Italy); Physics Department, Houston University, Houston, TX 77204-5005 (United States); De Gaetani, C. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Derbin, A. [St. Petersburg Nuclear Physics Institute, Gatchina 188350 (Russian Federation); and others

    2012-10-02

    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between an Left-Pointing-Angle-Bracket E Right-Pointing-Angle-Bracket =17 GeV muon neutrino and a particle moving at the speed of light in vacuum is {delta}t=0.8{+-}0.7{sub stat}{+-}2.9{sub sys} ns, well consistent with zero.

  7. ICARUS T600 (CNGS2) Status Report

    CERN Document Server

    Ankowski, A; Aprili, P; Arneodo, F; Baibussinov, B; Baldo-Ceolin, M; Battistoni, G; Barze, L; Benetti, P; Borio, A; Calligarich, E; Cambiaghi, M; Carbonara, F; Cavanna, F; Centro, S; Cesana, A; Cieslik, K; Cocco, A G; Dabrowska, A; Dolfini, R; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Galli, S; Gibin, D; Gigli-Berzolari, A; Giuliano, A; Graczyk, K; Gninenko, S; Guglielmi, A; Juszczak, C; Holeczek, J; Kielczewska, D; Kirsanov, M; Kisiel, J; Kozlovskii, T; Krasnikov, N; Lantz, M; Mannocchi, G; Markiewicz, M; Matveev, V; Mauri, F; Menegolli, A; Meng, G; Montanari, C; Muraro, S; Nowak, J; Palamara, O; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Polchlopek, W; Posiadala, M; Przewlocki, P; Rappoldi, A; Raselli, G L; Rondio, E; Rossella, M; Rubbia, C; Sala, P; Satta, L; Scannicchio, D; Segreto, E; Sergiampietri, F; Sobczyk, J; Stefan, D; Stepaniak, J; Sulej, R; Szarska, M; Terrani, M; Trinchero, G; Varanini, F; Ventura, S; Vignoli, C; Wachala, T; Zalewska-Bak, A; Zaremba, K; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    Since the last presentation to the SPSC committee, the ICARUS T600 detector assembly has progressed up to its completion. The cryogenic plant, the liquefier system, the read-out, the Laboratory infrastructure and the safety facilities have been installed. However the Collaboration had to face some problems that have delayed the start-up of the commissioning of the apparatus. Besides the one-month suspension of the activities in the Laboratory, following the seismic event in the l’Aquila region, delays have emerged due to the commissioning of the liquefier system, to the pressure/vacuum leaking of some wire signal feed-through flanges and to the deformation of a panel of the external thermal insulation.

  8. Results from the OPERA experiment in the CNGS beam

    Science.gov (United States)

    Di Marco, N.; OPERA Collaboration

    2016-05-01

    The OPERA experiment at the Gran Sasso underground laboratory was designed to study ν μ → ν τ oscillations in appearance mode in the CNGS neutrino beam. In this paper we report the detection of the 5 th ν τ candidate event found in the analysis of an enlarged data sample. Given the number of analysed events and the low background, ν μ → ν τ oscillations have been established with a significance of 5.1σ. The analysis of the present electron neutrino sample in the framework of the 3 + 1 sterile model is also presented. Finally the analysis of the muon charge ratio in the cosmic ray sample is discussed.

  9. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  10. Results from the OPERA experiment at the CNGS beam

    Science.gov (United States)

    Longhin, A.; OPERA Collaboration

    2015-07-01

    The OPERA experiment at the Gran Sasso underground laboratory is searching for νμ → ντ oscillations in appearance mode in the CNGS neutrino beam. Four ντ candidate events have been found so far, using a sub-sample of data from the 2008-2012 runs. Given the number of analysed events and the low background, νμ → ντ oscillations are established with a significance of 4.2 σ. In this paper the data analysis is discussed, with emphasis on the background constraints obtained using dedicated data-driven control samples. We present also the analysis of the τ neutrino and electron neutrino data in the framework of the 3+1 sterile neutrino model. The measurement of the muon charge ratio in the collected cosmic ray sample is also reported.

  11. Inflatable Reflector For Solar Power And Radio Communication

    Science.gov (United States)

    Sercel, Joel; Gilchriest, Carl; Ewell, Rich; Herman, Martin; Rascoe, Daniel L.; Nesmith, Bill J.

    1995-01-01

    Report proposes installation of lightweight inflatable reflector structure aboard spacecraft required to both derive power from sunlight and communicate with Earth by radio when apparent position of Earth is at manageably small angle from line of sight to Sun. Structure contains large-aperture paraboloidal reflector aimed toward Sun and concentrates sunlight onto photovoltaic power converter and acts as main reflector of spacecraft radio-communication system.

  12. The trigger system of the ICARUS experiment for the CNGS beam

    CERN Document Server

    Antonello, M; Benetti, P.; Boffelli, F.; Bubak, A.; Calligarich, E.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Falcone, A.; Farnese, C.; Fava, Angela; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Nicoletto, M.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2014-01-01

    The ICARUS T600 detector, with its 470 tons of active mass, is the largest liquid Argon TPC ever built. Operated for three years in the LNGS underground laboratory, it has collected thousands of CNGS neutrino beam interactions and cosmic ray events with energy spanning from tens of MeV to tens of GeV, with a trigger system based on scintillation light, charge signal on TPC wires and time information (for beam related events only). The performance of trigger system in terms of efficiency, background and live-time as a function of the event energy for the CNGS data taking is presented.

  13. 5 case studies : boiler system increases availability of hot water in CAP REIT apartment buildings while saving energy : electric-to-gas retrofit drives down energy costs and improves building performance : Novitherm heat reflector panels saves 28 per cent in heating costs for apartment building : Novitherm heat reflector panel installation with system adjustment saves 33.2 per cent in energy costs : natural gas conversion saves over $315,000 a year for condominium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    These 5 case studies presented the details of new systems and retrofits conducted by Enbridge Gas Distribution and its partners to improve the energy efficiency of various public and residential buildings. System retrofits included the installation of boiler system installed to address tenant demands on the domestic hot water systems of properties purchased purchased by the CAP REIT organization. The comprehensive program used to address the problems included replacement of the systems with high efficiency heating boilers designed to integrate space, hot water, ramp, and pool heat. A centralized controller included setback control, trend-following processors, and the isolation of heating equipment. The second case study described an electric-to-gas conversion of a make-up air unit and boiler system at an all-electric apartment building. The system was designed to address excessive air handling and water heating costs. The gas conversion included new heating and hot water boilers, as well as a number of efficiency upgrades. The third and fourth case study described the installation of Novitherm heat reflector panels at apartment buildings in Toronto. The fifth case study described a natural gas conversion project conducted at a luxury condominium. Energy savings for all 5 projects were presented. 9 figs.

  14. Solar central receiver heliostat reflector assembly

    Science.gov (United States)

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  15. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic...

  16. Data evaluation and CNGS beam localization with the precision tracker of the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Bick, D.

    2007-04-15

    In this diploma thesis, the data evaluation for the OPERA precision tracker is presented. Furthermore investigations of a precise CNGS beam localization with the precision tracker are performed. After an overview of past and present developments in neutrino physics, the OPERA detector is presented in this thesis. Emphasis is given to the precision tracker which has been partly commissioned in the end of the last year. A first analysis of the functionality with cosmic muons has been performed, as well as the inclusion of data in the OPERA software framework. Within this thesis some useful tools have been developed which are also presented. Finally, divergence effects from the nominal beam line of the CNGS neutrino beam and possible detection with the precision tracker are studied. (orig.)

  17. First events from the CNGS neutrino beam detected in the OPERA experiment

    CERN Document Server

    Acquafredda, R.; Ambrosio, M.; Anokhina, A.; Aoki, S.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bergnoli, A.; Bersani Greggio, F.; Besnier, M.; Beyer, M.; Bondil-Blin, S.; Borer, K.; Boucrot, J.; Boyarkin, V.; Bozza, C.; Brugnera, R.; Buontempo, S.; Caffari, Y.; Campagne, Jean-Eric; Carlus, B.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Ciesielski, R.; Consiglio, L.; Cozzi, M.; Dal Corso, F.; D'Ambrosio, N.; Damet, J.; De Lellis, G.; Declais, Y.; Descombes, T.; De Serio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dulach, B.; Dusini, S.; Ebert, J.; Enikeev, R.; Ereditato, A.; Esposito, L.S.; Fanin, C.; Favier, J.; Felici, G.; Ferber, T.; Fournier, L.; Franceschi, A.; Frekers, D.; Fukuda, T.; Fukushima, C.; Galkin, V.I.; Galkin, V.A.; Gallet, R.; Garfagnini, A.; Gaudiot, G.; Giacomelli, G.; Giarmana, O.; Giorgini, M.; Girard, L.; Girerd, C.; Goellnitz, C.; Goldberg, J.; Gornoushkin, Y.; Grella, G.; Grianti, F.; Guerin, C.; Guler, M.; Gustavino, C.; Hagner, C.; Hamane, T.; Hara, T.; Hauger, M.; Hess, M.; Hoshino, K.; Ieva, M.; Incurvati, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kazuyama, M.; Kim, S.H.; Kimura, M.; Knuesel, J.; Kodama, K.; Kolev, D.; Komatsu, M.; Kose, U.; Krasnoperov, A.; Kreslo, I.; Krumstein, Z.; Laktineh, I.; de La Taille, C.; Le Flour, T.; Lieunard, S.; Ljubicic, A.; Longhin, A.; Malgin, A.; Manai, K.; Mandrioli, G.; Mantello, U.; Marotta, A.; Marteau, J.; Martin-Chassard, G.; Matveev, V.; Messina, M.; Meyer, L.; Micanovic, S.; Migliozzi, P.; Miyamoto, S.; Monacelli, Piero; Monteiro, I.; Morishima, K.; Moser, U.; Muciaccia, M.T.; Mugnier, P.; Naganawa, N.; Nakamura, M.; Nakano, T.; Napolitano, T.; Natsume, M.; Niwa, K.; Nonoyama, Y.; Nozdrin, A.; Ogawa, S.; Olchevski, A.; Orlandi, D.; Ossetski, D.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pellegrino, L.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Raux, L.; Repellin, J.P.; Roganova, T.; Romano, G.; Rosa, G.; Rubbia, A.; Ryasny, V.; Ryazhskaya, O.; Ryzhikov, D.; Sadovski, A.; Sanelli, C.; Sato, O.; Sato, Y.; Saveliev, V.; Savvinov, N.; Sazhina, G.; Schembri, A.; Schmidt Parzefall, W.; Schroeder, H.; Schutz, H.U.; Scotto Lavina, L.; Sewing, J.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J.S.; Spaeti, R.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strolin, Paolo Emilio; Sugonyaev, V.; Takahashi, S.; Tereschenko, V.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tikhomirov, I.; Tolun, P.; Toshito, T.; Tsarev, V.; Tsenov, R.; Ugolino, U.; Ushida, N.; Van Beek, G.; Verguilov, V.; Vilain, P.; Votano, L.; Vuilleumier, J.L.; Waelchli, T.; Waldi, R.; Weber, M.; Wilquet, G.; Wonsak, B.; Wurth, R.; Wurtz, J.; Yakushev, V.; Yoon, C.S.; Zaitsev, Y.; Zamboni, I.; Zimmerman, R.

    2006-01-01

    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.

  18. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Aprili, P. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Baiboussinov, B.; Baldo Ceolin, M. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Benetti, P.; Calligarich, E. [Dipartimento di Fisica Nucleare e Teorica e INFN, Universita di Pavia, Via Bassi 6, I-27100, Pavia (Italy); Canci, N. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Centro, S. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Cesana, A. [INFN, Sezione di Milano e Politecnico, Via Celoria 16, I-20133, Milano (Italy); Cieslik, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Cline, D.B. [Department of Physics and Astronomy, University of California, LA (United States); Cocco, A.G. [Dipartimento di Scienze Fisiche e INFN, Universita Federico II, Napoli (Italy); Dabrowska, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Dequal, D. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Dermenev, A. [Institute for Nuclear Research of the Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Dolfini, R. [Dipartimento di Fisica Nucleare e Teorica e INFN, Universita di Pavia, Via Bassi 6, I-27100, Pavia (Italy); Farnese, C.; Fava, A. [Dipartimento di Fisica e INFN, Universita di Padova, Via Marzolo 8, I-35131, Padova (Italy); Ferrari, A. [CERN, European Laboratory for Particle Physics, CH-1211 Geneve 23 (Switzerland); and others

    2012-06-18

    At the end of the 2011 run, the CERN CNGS neutrino beam has been briefly operated in lower intensity mode with {approx}10{sup 12} p.o.t./pulse and with a proton beam structure made of four LHC-like extractions, each with a narrow width of {approx}3 ns, separated by 524 ns. This very tightly bunched beam allowed a very accurate time-of-flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. The ICARUS T600 detector (CNGS2) has collected 7 beam-associated events, consistent with the CNGS collected neutrino flux of 2.2 Multiplication-Sign 10{sup 16} p.o.t. and in agreement with the well-known characteristics of neutrino events in the LAr-TPC. The time of flight difference between the speed of light and the arriving neutrino LAr-TPC events has been analysed. The result {delta}t=0.3{+-}4.9(stat.){+-}9.0(syst.) ns is compatible with the simultaneous arrival of all events with speed equal to that of light. This is in a striking difference with the reported result of OPERA (OPERA Collaboration, 2011) claiming that high energy neutrinos from CERN arrive at LNGS {approx}60 ns earlier than expected from luminal speed.

  19. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

    CERN Document Server

    Adam, T; Altinok, O; Alvarez Sanchez, P; Aoki, S; Ariga, A; Ariga, T; Autiero, D; Badertscher, A; Dhahbi, A Ben; Bertolin, A; Bozza, C; Brugiére, T; Brunet, F; Brunetti, G; Buontempo, S; Cavanna, F; Cazes, A; Chaussard, L; Chernyavskiy, M; Chiarella, V; Chukanov, A; Colosimo, G; Crespi, M; D'Ambrosios, N; Déclais, Y; del Amo Sanchez, P; De Lellis, G; De Serio, M; Di Capua, F; Cavanna, F; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Ebert, J; Eftimiopolous, I; Egorov, O; Ereditato, A; Esposito, L S; Favier, J; Ferber, T; Fini, R A; Fukuda, T; Garfagnini, A; Giacomelli, G; Girerd, C; Giorgini, M; Giovannozzi, M; Goldberg, J; Göllnitz, C; Goncharova, L; Gornushkin, Y; Grella, G; Griantia, F; Gschewentner, E; Guerin, C; Guler, A M; Gustavino, C; Hamada, K; Hara, T; Hierholzer, M; Hollnagel, A; Ieva, M; Ishida, H; Ishiguro, K; Jakovcic, K; Jollet, C; Jones, M; Juget, F; Kamiscioglu, M; Kawada, J; Kim, S H; Kimura, M; Kitagawa, N; Klicek, B; Knuesel, J; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Lazzaro, C; Lenkeit, J; Ljubicic, A; Longhin, A; Malgin, A; Mandrioli, G; Marteau, J; Matsuo, T; Mauri, N; Mazzoni, A; Medinaceli, E; Meisel, F; Meregaglia, A; Migliozzi, P; Mikado, S; Missiaen, D; Morishima, K; Moser, U; Muciaccia, M T; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Nakatsuka, Y; Naumov, D; Nikitina, V; Ogawa, S; Okateva, N; Olchevsky, A; Palamara, O; Paoloni, A; Park, B D; Park, I G; Pastore, A; Patrizii, L; Pennacchio, E; Pessard, H; Pistillo, C; Polukhina, N; Pozzato, M; Pretzl, K; Pupilli, F; Rescigno, R; Roganova, T; Rokujo, H; Rosa, G; Rostovtseva, I; Rubbia, A; Russo, A; Sato, O; Sato, Y; Schembri, A; Schuler, J; Scotto Lavina, L; Serrano, J; Sheshukov, A; Shibuya, H; Shoziyoev, G; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Song, J S; Spinetti, M; Starkov, N; Stellacci, M; Stipcevic, M; Strauss, T; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tezuka, I; Tioukov, V; Tolun, P; Tran, T; Tufanli, S; Vilain, P; Vladimirov, M; Votano, L; Vuilleumier, J-L; Wilquet, G; Wonsak, B; Wurtz, J; Yoon, C S; Yoshida, J; Zaitsev, Y; Zemskova, S; Zghiche, A; Agafonova, N

    2012-01-01

    The OPERA neutrino experiment at the underground Gran Sasso Laboratory has measured the velocity of neutrinos from the CERN CNGS beam over a baseline of about 730 km with much higher accuracy than previous studies conducted with accelerator neutrinos. The measurement is based on high-statistics data taken by OPERA in the years 2009, 2010 and 2011. Dedicated upgrades of the CNGS timing system and of the OPERA detector, as well as a high precision geodesy campaign for the measurement of the neutrino baseline, allowed reaching comparable systematic and statistical accuracies. An early arrival time of CNGS muon neutrinos with respect to the one computed assuming the speed of light in vacuum of (60.7 \\pm 6.9 (stat.) \\pm 7.4 (sys.)) ns was measured. This anomaly corresponds to a relative difference of the muon neutrino velocity with respect to the speed of light (v-c)/c = (2.48 \\pm 0.28 (stat.) \\pm 0.30 (sys.)) \\times 10-5.

  20. CNGS, CERN Neutrinos to Gran Sasso, Five Years of Running a 500 Kilowatt Neutrino Beam Facility at CERN

    CERN Document Server

    Gschwendtner, E; Efthymiopoulos, I; Kratschmer, I; Pardons, A; Vincke, H; Wenninger, J

    2013-01-01

    The CNGS facility (CERN Neutrinos to Gran Sasso) aims at directly detecting muon to tau neutrino oscillations. An intense muon-neutrino beam (1017 muon-neutrinos/day) is generated at CERN and directed over 732 km towards the Gran Sasso National Laboratory, LNGS, in Italy, where two large and complex detectors, OPERA and ICARUS, are located. The CNGS facility started with the physics program in 2008 and delivered until the end of the physics run in 2012 more than 81% of the approved protons on target (22.5·1019 pot). An overview of the performance and experience gained in operating this 500 kW neutrino beam facility is described. Major events since the commissioning of the facility in 2006 are summarized. Highlights on the CNGS beam performance are given.

  1. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  2. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam

    CERN Document Server

    Antonello, M.; Baibussinov, B.; Ceolin, M.Baldo; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Berzolari, A.Gigli; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Mania, S.; Mannocchi, G.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Periale, L.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.; Yang, X.; Zalewska, A.; Zaremba, K.; Alvarez Sanchez, P.; Serrano, J.

    2012-01-01

    The CERN-SPS accelerator has been briefly operated in a new, lower intensity neutrino mode with ~10^12 p.o.t. /pulse and with a beam structure made of four LHC-like extractions, each with a narrow width of ~3 ns, separated by 524 ns. This very tightly bunched beam structure represents a substantial progress with respect to the ordinary operation of the CNGS beam, since it allows a very accurate time-of-flight measurement of neutrinos from CERN to LNGS on an event-to-event basis. The ICARUS T600 detector has collected 7 beam-associated events, consistent with the CNGS delivered neutrino flux of 2.2 10^16 p.o.t. and in agreement with the well known characteristics of neutrino events in the LAr-TPC. The time of flight difference between the speed of light and the arriving neutrino LAr-TPC events has been analysed. The result is compatible with the simultaneous arrival of all events with equal speed, the one of light. This is in a striking difference with the reported result of OPERA [1] that claimed that high en...

  3. Reconstruction of CNGS neutrino events in the emulsions of the OPERA experiment

    CERN Document Server

    Pozzato, Michele; Ortolani, Fabio; Mandrioli, Gianni

    2009-01-01

    The OPERA experiment aims at the direct observation of ν_mu -> ν_tau oscillations in the CNGS (CERN Neutrinos to Gran Sasso) neutrino beam produced at CERN; since the ν_e contamination in the CNGS beam is low, OPERA will also be able to study the sub-dominant oscillation channel ν_mu -> ν_e. OPERA is a large scale hybrid apparatus divided in two supermodules, each equipped with electronic detectors, an iron spectrometer and a highly segmented ~0.7 kton target section made of Emulsion Cloud Chamber (ECC) units. During my research work in the Bologna Lab. I have taken part to the set-up of the automatic scanning microscopes studying and tuning the scanning system performances and efficiencies with emulsions exposed to a test beam at CERN in 2007. Once the triggered bricks were distributed to the collaboration laboratories, my work was centered on the procedure used for the localization and the reconstruction of neutrino events.

  4. Classification of Surface Quality of Automobile Lamp—Reflector

    Institute of Scientific and Technical Information of China (English)

    袁旭军; 贺莉清; 等

    2002-01-01

    This paper introduces an installation for quickly classifying automobile's metal reflectors based on their roughness.The measuring principle and the mechanical structure are presented.Schematics of circuits and experimental results are given.Elimination and reduction of the effect of background lights or different bulbs on the measuring results are also described in detail.

  5. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  6. The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope

    Science.gov (United States)

    Sun, Z. X.; Chen, L.; Wang, J. Q.

    2016-01-01

    In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.

  7. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  8. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [University of Arizona

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  9. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  10. Freeform reflectors for architectural lighting.

    Science.gov (United States)

    Zhu, Ruidong; Hong, Qi; Zhang, Hongxia; Wu, Shin-Tson

    2015-12-14

    We propose an improved method to design freeform reflectors for architectural lighting: one for accent lighting and another for large area wall washing. The designed freeform reflectors effectively distribute light fluxes over the target surfaces, and generate appropriate illumination patterns for comfortable visual environments, which provides greater flexibility for lighting designs, allows many challenging designs, and improves energy-efficiency simultaneously.

  11. Environmental Degradation of Solar Reflectors

    Science.gov (United States)

    Bouquet, F. L.

    1985-01-01

    Report presents results of study of atmospheric degradation of large solar reflectors for power generators. Three general types of reflective surfaces investigated. Report also describes computer buildup and removal (by rain and dew) of contamination from reflectors. Data used to determine effects of soil buildup and best method and frequency of washing at various geographic locations.

  12. Cold Crystal Reflector Filter Concept

    CERN Document Server

    Muhrer, G

    2014-01-01

    In this paper the theoretical concept of a cold crystal reflector filter will be presented. The aim of this concept is to balance the shortcoming of the traditional cold polycrystalline reflector filter, which lies in the significant reduction of the neutron flux right above (in energy space) or right below (wavelength space) the first Bragg edge.

  13. The OPERA experiment. Discovery of ν{sub τ} appearance in the CNGS ν{sub μ} beam

    Energy Technology Data Exchange (ETDEWEB)

    Hollnagel, Annika [Universitaet Hamburg, Institut fuer Experimentalphysik (Germany); Collaboration: OPERA-Hamburg-Collaboration

    2016-07-01

    The long-baseline neutrino oscillation experiment OPERA has been designed for the direct observation of ν{sub τ} appearance in the CNGS ν{sub μ} beam. The OPERA detector is located at the LNGS underground laboratory, with a distance of 730 km from the neutrino source at CERN. It is a hybrid apparatus built of about 150000 Emulsion Cloud Chamber modules providing micrometric resolution and Electronic Detector elements for online readout, interaction location, and the measurement of particle charge and momentum. While CNGS beam data taking lasted from 2008 to 2012, the neutrino oscillation analysis is still ongoing: With the observation of a 5th τ neutrino event in an enlarged data sample, the experiment was recently able to report the discovery of ν{sub μ} → ν{sub τ} oscillations at a significance larger than 5 σ.

  14. Reflector Surface Error Compensation in Dual-Reflector Antennas

    Science.gov (United States)

    Jamnejad, Vahraz; Imbriale, William

    2010-01-01

    By probing the field on a small subreflector at a minimal number of points, the main reflector surface errors can be obtained and subsequently used to design a phase-correction subreflector that can compensate for main reflector errors. The compensating phase-error profile across the subreflector can be achieved either by a surface deformation or by the use of an array of elements such as patch antennas that can cause a phase shift between the incoming and outgoing fields. The second option is of primary interest here, but the methodology can be applied to either case. The patch array is most easily implemented on a planar surface. Therefore, the example of a flat subreflector and a parabolic main reflector (a Newtonian dual reflector system) is considered in this work. The subreflector is assumed to be a reflector array covered with patch elements. The phase variation on a subreflector can be detected by a small number of receiving patch elements (probes). By probing the phase change at these few selected positions on the subreflector, the phase error over the entire surface can be recovered and used to change the phase of all the patch elements covering the subreflector plane to compensate for main reflector errors. This is accomplished by using a version of sampling theorem on the circular aperture. The sampling is performed on the phase-error function on the circular aperture of the main reflector by a method developed using Zernike polynomials. This method is based upon and extended from a theory previously proposed and applied to reflector aperture integration. This sampling method provides for an exact retrieval of the coefficients of up to certain orders in the expansion of the phase function, from values on a specifically calculated set of points in radial and azimuthal directions in the polar coordinate system, on the circular reflector aperture. The corresponding points on the subreflector are then obtained and, by probing the fields at these points, a

  15. Active Reflectors: Possible Solutions Based on Reflectarrays and Fresnel Reflectors

    Directory of Open Access Journals (Sweden)

    Lorena Cabria

    2009-01-01

    Full Text Available An overview about some of the recent Spanish developments on active reflectors is presented. In the first part, a novel beamsteering active reflectarray is deeply studied. It is based on implementing in each elementary radiator an IQ modulator structure, in which amplitude and phase control of the scattered field is achieved. Finally, a special effort is made in offering solutions to overcome the active antenna integration problems. In the second part, the active concept is firstly extended to Fresnel reflectors. Thanks to the development of a proper simulator, this special structure can be easily analysed. This simulator allows the study of performance of this kind of reflectors and, applying evolutionary algorithms, to find optimal configurations of reflector in accordance with the given specifications for the conformal radiation pattern.

  16. Realization of LOS (Line of Sight) stabilization based on reflector using carrier attitude compensation method

    Science.gov (United States)

    Mao, Yao; Tian, Jing; Ma, Jia-guang

    2015-02-01

    The techonology of LOS stabilization is widely applicated in moving carrier photoelectric systems such as shipborne, airborne and so on. In application situations with compact structure, such as LOS stabilization system of unmanned aerial vehicle, LOS stabilization based on reflector is adopted, and the detector is installed on the carrier to reduce the volume of stabilized platform and loading weight. However, the LOS deflection angle through reflector and the rotation angle of the reflector has a ratio relation of 2:1, simple reflector of stable inertial space can not make the optical axis stable. To eliminate the limitation of mirror stabilizing method, this article puts forward the carrier attitude compensation method, which uses the inertial sensor installed on the carrier to measure the attitude change of the carrier, and the stabilized platform rotating half of the carrier turbulence angle to realize the LOS stabilization.

  17. Reflectors for SAR performance testing.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  18. A Novel Eddy Current Septum Magnet for SPS Extraction towards LHC and CNGS

    CERN Document Server

    Schröder, G H; Carlier, E; Dieperink, J H; Ducimetière, L; Goddard, B; Lázár, C; Mayer, M; Vossenberg, Eugène B; Weterings, W

    2000-01-01

    A new East Fast-Extraction System is under construction in the SPS, to supply particles with a maximum batch length of 7.8 us and 10.5 us to the LHC and to CNGS (CERN Neutrino to Gran Sasso), respectively. The extraction septum magnets actually used at the SPS have been designed for slow extraction over several seconds, have large cooling and electrical power demands and need frequently maintenance in a high radiation environment. A fast system of only 250 us pulse duration has therefore been developed, using a half-sine excitation pulse with a superimposed third harmonic. The short pulse duration requires very thin magnetic yoke laminations, which can not easily be stamped and stacked. Profiting from a development for the LHC beam dump kicker magnets, the yoke is therefore built-up from tape-wound cylindrical cores, employing 50 um thick Si-steel tape. Thirty two cores are stacked longitudinally to produce a yoke of 3.2 meter length. The aperture is cut radial into each cylinder. The cores are radial compres...

  19. Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam

    CERN Document Server

    Antonello, M; Benetti, P.; Boffelli, F.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dequal, D.; Dermenev, A.; Dolfini, R.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scantamburlo, E.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Stepaniak, J.; Sulej, R.; Szarska, M.; Terrani, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.; Alvarez Sanchez, P.; Biagi, L.; Barzaghi, R.; Betti, B.; Bernier, L.G.; Cerretto, G.; de Gaetani, C.; Esteban, H.; Feldmann, T.; Gonzalez Cobas, J.D.; Passoni, D.; Pettiti, V.; Pinto, L.; Serrano, J.; Spinnato, P.; Visconti, M.G.; Wlostowski, T.

    2012-01-01

    During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton beam bunches, separated by 100 ns. This tightly bunched beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing synchronization have been substantially improved for this campaign, taking ad-vantage of additional independent GPS receivers, both at CERN and LNGS as well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS. The ICARUS-T600 detector has collected 25 beam-associated events; the corresponding time of flight has been accurately evaluated, using all different time synchronization paths. The measured neutrino time of flight is compatible with the arrival of all events with speed equivalent to the one of light: the difference between the expected value based on the speed of light and the measured value is tof_...

  20. AWAKE starts the equipment installation phase

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    AWAKE is the proof-of-principle experiment whose aim is to use protons to generate powerful wakefields to accelerate an electron beam. With accelerator gradients hundreds of times higher than those used in current systems, this technique could revolutionise the field of particle acceleration. Installed in the tunnel previously used by the CNGS facility, AWAKE is completing the service installation phase and will receive the plasma cell in the coming months.   The AWAKE proton line with all the magnets installed. (Image: AWAKE collaboration.) AWAKE is the world’s first proton-driven plasma wakefield acceleration experiment. In AWAKE, a beam of protons from the SPS will be travelling through a plasma cell and this will generate a wakefield that, in turn, will accelerate an electron beam. A laser will ionise the gas in the plasma cell and seed the self-modulation instability that will trigger the wakefield in the plasma. The project aims to prove that the plasma wakefield can be driv...

  1. Proposal for the award of a contract for the supply of an overhead travelling crane and rails for the CNGS Project

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the supply of an overhead travelling crane and rails for the CNGS project. Following a market survey carried out among 102 firms in 18 Member States, a call for tenders (IT-3025/ST/CNGS) was sent on 28 May 2003 to five firms and two consortia in four Member States. By the closing date, CERN had received three tenders from two firms and a consortium in two Member States. The Finance Committee is invited to agree to the negotiation of a contract with BRUNNHUBER (DE), the lowest bidder, for the supply of an overhead travelling crane and rails for the CNGS Project for a total amount of 1 213 900 Swiss francs, not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: IT - 54%; DE - 46%.

  2. Jet screech reduction with perforated flat reflector

    Science.gov (United States)

    Khan, Md. Tawhidul Islam; Teramoto, Kenbu; Matsuo, Shigeru; Setoguchi, Toshiaki

    2008-09-01

    In the present experimental study, investigations have been carried out to evaluate the performance of the new control technique of jet screech with different perforated flat reflectors. Mainly two types of porous flat reflectors had been used in the experiment. One reflector (reflector-V) designed for placing the reflector surface vertical to the jet axis, when, another type of reflector (reflector-H) designed for placing the reflecting surface horizontal to the jet axis. In both cases the reflectors had been placed at the nozzle (base tube with uniform cross-sectional area) exit. The diameter of the reflector-V was 15D when the diameter of the reflector-H was 10D. The porous area of the reflector-V was 6D and 4.5D for reflector-H where D indicated the diameter of the nozzle exit. The placement of the reflector at the exit of the nozzle reduces the sound pressure at the nozzle exit. Thus the muted sound can not excite the unstable disturbance at the nozzle exit and the loop of the feedback mechanism disappeared, finally, the generation of jet screech be cancelled. The suction space located at the back side of the porous surface of the reflector-V improves the efficiency of the screech control technique. However, in the case of reflector-H, the receptivity process of feedback loop had been controlled by reducing the disturbances at the effective shock fronts as well as at the nozzle exit. The performance of the proposed method was verified with a flat reflector concept and good performance in jet screech suppression has been confirmed in the case of porous reflector.

  3. Jet Screech Reduction with Perforated Flat Reflector

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present experimental study, investigations have been carried out to evaluate the performance of the new control technique of jet screech with different perforated flat reflectors. Mainly two types of porous flat reflectors had been used in the experiment. One reflector (reflector-V) designed for placing the reflector surface vertical to the jet axis, when, another type of reflector (reflector-H) designed for placing the reflecting surface horizontal to the jet axis. In both cases the reflectors had been placed at the nozzle (base tube with uniform cross-sectional area)exit. The diameter of the reflector-V was 15D when the diameter of the reflector-H was 10D. The porous area of the reflector-V was 6D and 4.5D for reflector-H where D indicated the diameter of the nozzle exit. The placement of the reflector at the exit of the nozzle reduces the sound pressure at the nozzle exit. Thus the muted sound can not excite the unstable disturbance at the nozzle exit and the loop of the feedback mechanism disappeared, finally,the generation of jet screech be cancelled. The suction space located at the back side of the porous surface of the reflector-V improves the efficiency of the screech control technique. However, in the case of reflector-H, the receptivity process of feedback loop had been controlled by reducing the disturbances at the effective shock fronts as well as at the nozzle exit. The performance of the proposed method was verified with a flat reflector concept and good performance in jet screech suppression has been confirmed in the case of porous reflector.

  4. Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement

    Science.gov (United States)

    Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing

    2010-10-01

    In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.

  5. Surface Optimization Techniques for Deployable Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this and several other programs, CTD has developed TEMBOREG deployable solid-surface reflectors (TEMBOREG Reflectors) to provide future NASA and Air Force...

  6. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  7. Polarization losses in reflector antennas

    Science.gov (United States)

    Safak, M.; Yazgan, E.

    1985-08-01

    Various definitions for polarization-loss efficiency of Cassegrainian and front-fed reflectors are compared. The effects of flare angle, feed taper and the feed pattern asymmetry on the polarization-loss efficiency are investigated. The definitions based on aperture fields are shown to be inadequate and far fields must be used for calculating the polarization losses.

  8. Performance Study of a Double-Pass Thermoelectric Solar Air Collector with Flat-Plate Reflectors

    Science.gov (United States)

    Lertsatitthanakorn, C.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2012-06-01

    In this paper the results of the influence of flat-plate reflectors made of aluminum foil on the performance of a double-pass thermoelectric (TE) solar air collector are presented. The proposed TE solar collector with reflectors was composed of transparent glass, an air gap, an absorber plate, TE modules, a rectangular fin heat sink, and two flat-plate reflectors. The flat-plate reflectors were placed on two sides of the TE solar collector (east and west directions). The TE solar collector was installed on a one-axis sun-tracking system to obtain high solar radiation. Direct and reflected incident solar radiation heats up the absorber plate so that a temperature difference is created across the TE modules to generate a direct current. Only a small part of the absorbed solar radiation is converted to electricity, while the rest increases the temperature of the absorber plate. Ambient air flows through the heat sink located in the lower channel to gain heat. The heated air then flows to the upper channel, where it receives additional heating from the absorber plate. Improvements to the thermal energy and electrical power outputs of the system can be achieved by the use of the double-pass collector system with reflectors and TE technology. It was found that the optimum position of the reflectors is 60°, which gave significantly higher thermal energy and electrical power outputs compared with the TE solar collector without reflectors.

  9. Tunable reflector with active magnetic metamaterials.

    Science.gov (United States)

    Deng, Tianwei; Huang, Ruifeng; Tang, Ming-Chun; Tan, Peng Khiang

    2014-03-24

    We placed active magnetic metamaterials on metallic surface to implement a tunable reflector with excellent agile performance. By incorporating active elements into the unit cells of the magnetic metamaterial, this active magnetic metamaterial can be tuned to switch function of the reflector among a perfect absorber, a perfect reflector and a gain reflector. This brings about DC control lines to electrically tune the active magnetic metamaterial with positive loss, zero loss and even negative loss. The design, analytical and numerical simulation methods, and experimental results of the tunable reflector are presented.

  10. Installing Omeka

    Directory of Open Access Journals (Sweden)

    Jonathan Reeve

    2016-07-01

    Full Text Available Omeka.net is a useful service for Omeka beginners, but there are a few reasons why you might want to install your own copy of Omeka. Reasons include: * Upgrades. By installing Omeka yourself, you can use the latest versions of Omeka as soon as they’re released, without having to wait for Omeka.net to upgrade their system. * Plugins and themes. You can install any plugin or theme you want, without being restricted to those provided by Omeka.net. * Customizations. You can buy a custom domain name, and customize your code to achieve your desired functionality. * Control. You have control over your own backups, and you can update the server yourself so that its security is always up-to-date. * Price. There are many low-cost Virtual Private Servers (VPSs now, some of which cost only $5 per month. * Storage. Many shared hosting providers now offer unlimited storage. This is useful if you have a large media library. In this tutorial, we’ll be entering a few commands on the command line. This tutorial assumes no prior knowledge of the command line, but if you want a concise primer, consult the Programming Historian introduction to BASH. There are other ways of installing Omeka, of course, some using exclusively GUI tools. Some hosting providers even offer “one-click installs” via their control panels. Many of those methods, however, will install older versions of Omeka which are then harder to upgrade and maintain. The method outlined below may not be the easiest way to install Omeka, but it will give you some good practice with using the command line, which is a skill that will be useful if you want to manually upgrade your install, or manually install other web frameworks. (For example, this installation method is very similar to WordPress’s “Five-Minute Install”. There are four steps to this process, and it should take about an hour.

  11. Observation of νμ → ντ oscillations in the CNGS beam with the OPERA experiment

    Science.gov (United States)

    De Serio, M.

    2015-05-01

    The OPERA long-baseline neutrino experiment was exposed to the CNGS νμ beam from 2008 to 2012, collecting 19505 interactions in the target. The evidence for oscillated ντ appearance, based on the observation of three ντ candidate events, has been previously reported. A fourth candidate event has been recently found in an extended data sample, corresponding to about 89% of the final statistics. The absence of a signal from νμ → ντ oscillations is currently excluded at 4.2σ. The status of the analysis is described in detail with special emphasis on the procedures applied for the selection of signal candidate events and the assessment of efficiencies and background. The fourth ντ candidate event is presented and the significance of the observation is discussed.

  12. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated data

    CERN Document Server

    Adam, T; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Autiero, D; Badertscher, A; Dhahbi, A.Ben; Beretta, M; Bertolin, A; Bozza, C; Brugiere, T; Brugnera, R; Brunet, F; Brunetti, G; Buettner, B; Buontempo, S; Carlus, B; Cavanna, F; Cazes, A; Chaussard, L; Chernyavsky, M; Chiarella, V; Chukanov, A; D'Ambrosio, N; De Lellis, G; De Serio, M; del Amo Sanchez, P; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Esposito, L S; Favier, J; Felici, G; Ferber, T; Fini, R A; Fukuda, T; Garfagnini, A; Giacomelli, G; Girerd, C; Goellnitz, C; Goldberg, J; Golubkov, D; Gornushkin, Y; Grella, G; Grianti, F; Guerin, C; Guler, A M; Gustavino, C; Hagner, C; Hamada, K; Hara, T; Hierholzer, M; Hollnagel, A; Ishida, H; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kawada, J; Kim, J H; Kim, S H; Kimura, M; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Lauria, A; Lazzaro, C; Lenkeit, J; Ljubicic, A; Longhin, A; Mancini-Terracciano, C; Malgin, A; Mandrioli, G; Marteau, J; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Migliozzi, P; Mikado, S; Monacelli, P; Montesi, M C; Morishima, K; Moser, U; Muciaccia, M T; Nakamura, M; Nakano, T; Nakatsuka, Y; Naumov, D; Nikitina, V; Ogawa, S; Olchevsky, A; Ozaki, K; Palamara, O; Paoloni, A; Park, B D; Park, I G; Pastore, A; Patrizii, L; Pennacchio, E; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pretzl, K; Pupilli, F; Rescigno, R; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Rostovtseva, I; Rubbia, A; Russo, A; Ryazhskaya, O; Sato, O; Sato, Y; Schembri, A; Schmidt-Parzefall, W; Schuler, J; Shakiryanova, I; Sheshukov, A; Shibuya, H; Shoziyoev, G; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Song, J S; Spinetti, M; Stanco, L; Starkov, N; Stellacci, S M; Stipcevic, M; Strauss, T; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tolun, P; Tufanli, S; Vilain, P; Vladimirov, M; Votano, L; Vuilleumier, J L; Wilquet, G; Wonsak, B; Wurtz, J; Yoon, C S; Yoshida, J; Zaitsev, Y; Zemskova, S; Zghiche, A; Zimmermann, R

    2013-01-01

    In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to the 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of $\\sim$1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be $\\delta t_\

  13. Terrace retro-reflector array for poloidal polarimeter on ITER.

    Science.gov (United States)

    Imazawa, R; Kawano, Y; Ono, T; Kusama, Y

    2011-02-01

    A new concept of a terrace retro-reflector array (TERRA) as part of the poloidal polarimeter for ITER is proposed in this paper. TERRA reflects a laser light even from a high incident angle in the direction of the incident-light path, while a conventional retro-reflector array cannot. Besides, TERRA can be installed in a smaller space than a corner-cube retro-reflector. In an optical sense, TERRA is equivalent to a Littrow grating, the blaze angle of which varies, depending on the incident angle. The reflected light generates a bright and dark fringe, and the bright fringe is required to travel along the incident-light path to achieve the objects of laser-aided diagnostics. In order to investigate the propagation properties of laser light reflected by TERRA, we have developed a new diffraction formula. Conditions for the propagation of the bright fringe in the direction of the incident light have been obtained using the Littrow grating model and have been confirmed in a simulation applying the new diffraction formula. Finally, we have designed laser transmission optics using TERRA for the ITER poloidal polarimeter and have calculated the light propagation of the system. The optical design obtains a high transmission efficiency, with 88.6% of the incident power returned. These results demonstrate the feasibility of applying TERRA to the ITER poloidal polarimeter.

  14. Installation Art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    Despite its large and growing popularity – to say nothing of its near-ubiquity in the world’s art scenes and international exhibitions of contemporary art –installation art remains a form whose artistic vocabulary and conceptual basis have rarely been subjected to thorough critical examination....... In Installation Art: Between Image and Stage, Anne Ring Petersen aims to change that. She begins by exploring how installation art developed into an interdisciplinary genre in the 1960s, and how its intertwining of the visual and the performative has acted as a catalyst for the generation of new artistic...... phenomena. It investigates how it became one of today’s most widely used art forms, increasingly expanding into consumer, popular and urban cultures, where installation’s often spectacular appearance ensures that it meets contemporary demands for sense-provoking and immersive cultural experiences. The main...

  15. Installation Art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    Despite its large and growing popularity – to say nothing of its near-ubiquity in the world’s art scenes and international exhibitions of contemporary art –installation art remains a form whose artistic vocabulary and conceptual basis have rarely been subjected to thorough critical examination....... In Installation Art: Between Image and Stage, Anne Ring Petersen aims to change that. She begins by exploring how installation art developed into an interdisciplinary genre in the 1960s, and how its intertwining of the visual and the performative has acted as a catalyst for the generation of new artistic...... phenomena. It investigates how it became one of today’s most widely used art forms, increasingly expanding into consumer, popular and urban cultures, where installation’s often spectacular appearance ensures that it meets contemporary demands for sense-provoking and immersive cultural experiences. The main...

  16. Lamp with a truncated reflector cup

    Science.gov (United States)

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  17. Investigations of Bragg reflectors in nanowire lasers

    CERN Document Server

    Svendsen, Guro Kristin; Skaar, Johannes

    2011-01-01

    The reflectivity of various Bragg reflectors in connection to waveguide structures, including nanowires, has been investigated using modal reflection and transmission matrices. A semi-analytical model was applied yielding increased understanding of the diffraction effects present in such gratings. Planar waveguides and nanowire lasers are considered in particular. Two geometries are compared; Bragg reflectors within the waveguides are shown to have significant advantages compared to Bragg reflectors in the substrate, when diffraction effects are significant.

  18. Springback-Compensated, Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Inconsistent radius of curvature of replicated, composite reflector panels limit application of composites to large, segmented telescope apertures. This project...

  19. Solar thermal collectors using planar reflector

    Science.gov (United States)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  20. Cherenkov radiation oscillator without reflectors

    Science.gov (United States)

    Li, D.; Wang, Y.; Hangyo, M.; Wei, Y.; Yang, Z.; Miyamoto, S.

    2014-05-01

    This Letter presents a Cherenkov radiation oscillator with an electron beam travelling over a finitely thick plate made of negative-index materials. In such a scheme, the external reflectors required in the traditional Cherenkov oscillators are not necessary, since the electromagnetic energy flows backward in the negative-index materials, leading to inherent feedback. We theoretically analyzed the interaction between the electron beam and the electromagnetic wave, and worked out the growth rate and start current through numerical calculations. With the help of particle-in-cell simulation, the theoretical predictions are well demonstrated.

  1. Monolithic resonant optical reflector laser diodes

    Science.gov (United States)

    Hirata, T.; Suehiro, M.; Maeda, M.; Hihara, M.; Hosomatsu, H.

    1991-10-01

    The first monolithic resonant optical reflector laser diode that has a waveguide directional coupler and two DBR reflectors integrated by compositional disordering of quantum-well heterostructures is described. A linewidth of 440 kHz was obtained, and this value is expected to be greatly decreased by reducing the propagation loss in the integrated waveguide.

  2. Shaped cassegrain reflector antenna. [design equations

    Science.gov (United States)

    Rao, B. L. J.

    1973-01-01

    Design equations are developed to compute the reflector surfaces required to produce uniform illumination on the main reflector of a cassegrain system when the feed pattern is specified. The final equations are somewhat simple and straightforward to solve (using a computer) compared to the ones which exist already in the literature. Step by step procedure for solving the design equations is discussed in detail.

  3. Error analysis and distribution of the driving mechanism for large spherical radio telescope active reflector

    Institute of Scientific and Technical Information of China (English)

    Huang Peng; Tang Xiaoqiang; Wang Liping; Yao Rui

    2008-01-01

    In order to reduce the cost, 3-PRS mechanism is introduced into the application of supporting the active reflector unit of large radio telescope. The kinematic model of 3-PRS mechanism with rotational joint errors is derived to solve the error problem in actual engineering application. Then based on the error model, inverse and forward kinematics are analyzed. Because the solutions can not be analytically expressed, a numerical method is applied. Afterwards, the parasitic motion errors are analyzed using search method and empirical formulas of the maximum parasitic motion error are put forward. Finally, the tolerance is distributed using empirical formulas to avoid interference between adjacent reflector units. The analyses provide a theoretical basis for the design and installation of large radio telescope active reflector.

  4. Calculation of thermal noise in grating reflectors

    CERN Document Server

    Heinert, Daniel; Friedrich, Daniel; Hild, Stefan; Kley, Ernst-Bernhard; Leavey, Sean; Martin, Iain W; Nawrodt, Ronny; Tünnermann, Andreas; Vyatchanin, Sergey P; Yamamoto, Kazuhiro

    2013-01-01

    Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflective structures exists. In this work we present a theoretical calculation of a grating reflector's noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.

  5. Experimental search for the “LSND anomaly” with the ICARUS detector in the CNGS neutrino beam

    CERN Document Server

    Antonello, M; Benetti, P; Calligarich, E; Canci, N; Centro, S; Cesana, A; Cieslik, K; Cline, D B; Cocco, A G; Dabrowska, A; Dequal, D; Dermenev, A; Dolfini, R; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Gibin, D; Gninenko, S; Guglielmi, A; Haranczyk, M; Holeczek, J; Ivashkin, A; Kisiel, J; Kochanek, I; Lagoda, J; Mania, S; Menegolli, A; Meng, G; Montanari, C; Otwinowski, S; Piazzoli, A; Picchi, P; Pietropaolo, F; Plonski, P; Rappoldi, A; Raselli, G L; Rossella, M; Rubbia, C; Sala, P; Scantamburlo, E; Scaramelli, A; Segreto, E; Sergiampietri, F; Stefan, D; Stepaniak, J; Sulej, R; Szarska, M; Terrani, M; Varanini, F; Ventura, S; Vignoli, C; Wang, H; Yang, X; Zalewska, A; Zaremba, K

    2013-01-01

    A search for a nu_e signal, due to a LSND anomaly, with ICARUS at LNGS exposed at the CNGS neutrino beam, is hereby presented. At a distance of 730 km and with the 0-30 GeV energy interval, such anomaly is characterised by fast energy oscillations with probability averaging to 0.5*sin^2(2 theta_new). This is compared with the small but significant backgrounds due to conventional neutrino sources. The ionization along the early part of e.m. showers, has been examined wire by wire to tag the presence of an electron emitted from the vertex of the neutrino event. This is powerful eliminator of gamma converting pairs, which are generally separated from the vertex and are double minimum ionizing. In order to simulate the LSND anomaly, Montecarlo nu_e events have been generated with the nu_mu energy spectrum. These events have been used to estimate the electron identification efficiency due to visibility cuts, found to be ~74%. The present ICARUS experimental sample is based on 1091 neutrino events, about 50% of the...

  6. Optical and Durability Evaluation for Silvered Polymeric Mirrors and Reflectors: Cooperative Research and Development Final Report, CRADA Number, CRD-08-316

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.

    2014-08-01

    3M is currently developing silvered polymeric mirror reflectors as low-cost replacements for glass mirrors in concentrating solar power (CSP) systems. This effort is focused on development of reflectors comprising both metallized polymeric mirror films based on improved versions of ECP-305+ or other durable mirror film concepts and appropriate mechanically robust substrates. The objectives for this project are to reduce the system capital and operating costs and to lower the levelized cost of energy for CSP installations. The development of mirror reflectors involves work on both full reflectors and mirror films with and without coatings. Mirror reflectors must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. Mirror films must demonstrate long-term durability and maintain high reflectivity. 3M would like to augment internal capabilities to validate product performance with methods and tools developed at NREL to address these areas.

  7. Perfect Multi-Channel Flat Reflectors

    CERN Document Server

    Asadchy, V S; Elsakka, A; Albooyeh, M; Tretyakov, S A

    2016-01-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here we introduce a concept of multi-channel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions or polarization states simultaneously and independently. In particular, we reveal a possibility to create perfect multi-channel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three fundamental classes of multi-channel mirrors. Together they form a basis of all possible reflection functionalities achievable with flat periodically modulated reflectors. To demonstrate the potential of the introduced concept, we design and experimentally test one of the basis multi-channel reflectors, confirming the desired multi-channel response. Furthermore, by extending the concept to reflectors suppor...

  8. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  9. Flexible-Robotic Reflector for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Nir Shvalb

    2015-01-01

    Full Text Available Existing dish based antennas tend to have geometric morphologic distortion in the surface due to drastic thermal changes common in the space environment. In this paper we present a new concept for a dynamic antenna specially designed for communication satellites. The suggested flexible-robotic antenna is based on a dual-reflector structure, where the subreflector has a complex surface shaping robotic mechanism allowing it to fix most of the morphologic errors in the main reflector. We have implemented a set of searching algorithms allowing the hyper redundant robotic subreflector to adapt its surface to the morphologic distortions in the main reflector. The suggested new antenna was constructed and tested in an RF room in which it was able to fix the loss caused by distortion in the main reflector to the original gain in less than an hour.

  10. Handbook of reflector antennas and feed systems v.3 applications of reflectors

    CERN Document Server

    Rao, Sudhakar; Sharma, Satish K

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume III focuses on the range of reflector antenna applications, including space, terrestrial, and radar. The intent of this book volume is to provide practical applications and design information on reflector antennas used fo

  11. Easily Assembled Reflector for Solar Concentrators

    Science.gov (United States)

    Bouquet, F. L.; Hasegawa, T.

    1982-01-01

    Reflectors for concentrating solar collectors are assembled quickly and inexpensively by method that employs precontoured supports, plastic film, and adhesive to form a segmented glass mirror. New method is self-focusing, and does not require skilled labor at any stage. Contoured ribs support film and mirror segments of reflector. Nine mirror segments are bonded to sheet. Combined mirror surface closely approximates a spherical surface with a radius of curvature of 36 inches (0.91 m).

  12. Classification of Surface Quality of Automobile Lamp-Reflector%车灯表面质量分级装置

    Institute of Scientific and Technical Information of China (English)

    袁旭军; 贺莉清; 庄松龄

    2002-01-01

    This paper introduces an installation for quickly classifying automobile's metal reflectors based on their roughness. The measuring principle and the mechanical structure are presented. Schematics of circuits and experimental results are given. Elimination and reduction of the effect of background lights or different bulbs on the measuring results are also described in detail.

  13. Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    CERN Document Server

    Gousiou, E; Casas Cubillos, J; de la Gama Serrano, J

    2009-01-01

    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field.

  14. Advanced deployable reflectors for communications satellites

    Science.gov (United States)

    Lowe, Elvin; Josephs, Michael; Hedgepeth, John

    1993-02-01

    This paper discusses a concept for a deployable mesh reflector for large spacecraft antennas and the processes used in design, fabrication and testing. A set of overall reflector requirements such as stowed volume, deployed diameter and RF loss derived from system specifications are presented. The development of design and analysis tools to allow parametric studies such as facet size, number of ribs and number of rib segments is discussed. CATIA (a commercially available three-dimensional design and analysis tool) is used to perform kinematic analyses as well as to establish the database to be used by the several groups participating in the development is examined. Results of trade studies performed to reduce cost with minimum risk to product delivery are included. A thirty foot reflector has been built and tested.

  15. New principle for unpolarized wideband reflectors

    CERN Document Server

    Niraula, Manoj

    2016-01-01

    There is immense scientific interest in the properties of resonant thin films embroidered with periodic nanoscale features. This device class possesses considerable innovation potential. Accordingly, we report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with numerical methods, our elemental gratings consist of a partially-etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band that exceeds those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500-nm-wide wavelength band in the near-infrared domain. Moreover, the resonant unpolarized broadband accommodates an ultra-high-reflection band spanning ~85 nm and exceedin...

  16. Broadband Multilayered Array Antenna with EBG Reflector

    Directory of Open Access Journals (Sweden)

    P. Chen

    2013-01-01

    Full Text Available Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure. The impedance bandwidth is broadened, but meanwhile, the sidelobe of the directivity pattern and backlobe level are enlarged. A broadband stacked slot coupling microstrip antenna array with EBG structure reflector is proposed. Test results indicate that the proposed reflector structure can effectively improve the directivity pattern of stacked antenna and aperture coupled antenna, promote the front-to-back ratio, and reduce the thickness of the antenna. Therefore, it is more suitable to be applied as an airborne antenna.

  17. Surface roughness estimation of a parabolic reflector

    CERN Document Server

    Casco, Nicolás A

    2010-01-01

    Random surface deviations in a reflector antenna reduce the aperture efficiency. This communication presents a method for estimating the mean surface deviation of a parabolic reflector from a set of measured points. The proposed method takes into account systematic measurement errors, such as the offset between the origin of reference frame and the vertex of the surface, and the misalignment between the surface rotation axis and the measurement axis. The results will be applied to perform corrections to the surface of one of the 30 m diameter radiotelescopes at the Instituto Argentino de Radioastronom\\'ia (IAR).

  18. Handbook of reflector antennas and feed systems v.1 theory and design of reflectors

    CERN Document Server

    Sharma, Satish K; Shafai, Lotfollah

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume I provides a unique combination of theoretical underpinnings with design considerations and techniques. The need for knowledge in reflector antennas has grown steadily over the last two decades due to increased use in spa

  19. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  20. Vertical reflector for bifacial PV-panels

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff;

    2016-01-01

    Bifacial solar modules offer an interesting price/performance ratio, and much work has been focused on directing the ground albedo to the back of the solar cells. In this work we design and develop a reflector for a vertical bifacial panel, with the objective to optimize the energy harvest...

  1. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  2. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well...

  3. Vertical reflector for bifacial PV-panels

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar modules offer an interesting price/performance ratio, and much work has been focused on directing the ground albedo to the back of the solar cells. In this work we design and develop a reflector for a vertical bifacial panel, with the objective to optimize the energy harvest...

  4. Reflector Surface Modelling : A European Collaboration

    NARCIS (Netherlands)

    Albani, M; Balling, P.; Ettorre, M.; Gerini, G.; Maci, S.; Pontoppidan, K.; Sipus, Z.; Sjöberg, D.; Vecchi, G.; Vipiana, F.

    2007-01-01

    The topic of this paper is the work carried out in Work Package 2.3-2 of the EU network ACE. This work package is concerned with the modelling of the surfaces of modern reflector antennas. In particular the problems associated with homogenisation of periodic structures are described together with an

  5. Development of NRU reflector wall inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, R.H.; Luloff, B.V.; Zahn, N.; Simpson, N., E-mail: lumsdenr@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-06-15

    In 2009 May, the National Research Universal (NRU) calandria leaked. During the next year, the calandria was inspected with six new Non-Destructive Evaluation (NDE) techniques to determine the extent of the corrosion, repaired, and finally the repair was inspected with four additional new NDE techniques before the reactor was returned to service. The calandria is surrounded by a light-water reflector vessel fabricated from the same material as the calandria vessel. Concerns that the same corrosion mechanism had damaged the reflector vessel led to the development of a system to inspect the full circumference of the reflector wall for corrosion damage. The inspection region could only be accessed through 64 mm diameter ports, was 10 m below the port, and had to be inspected from the corroded surface. The ultrasonic technique was designed to produce a closely spaced wall thickness (WT) grid over an area of approximately 5 m2 on the corroded surface using a very small probe holder. This paper describes the Reflector Wall Inspection (RWI) development project and the system that resulted. (author)

  6. Multimode Analysis of Bragg Reflectors for Cyclotron Maser Applications

    Science.gov (United States)

    1991-02-16

    exponentially with distance in the reflector. The spatial dependance of the TMI I mode is oscillatory. Figure 3 shows the frequency dependence of the...mode reflector for a CARM oscillator resonator. Figure 4 shows the frequency dependance of the reflection and mode conversion in the reflector. In order

  7. A New Reflector Antenna Based on the Fresnel Principle

    Institute of Scientific and Technical Information of China (English)

    DUHui-ping

    2001-01-01

    A new type of reflector antenne is proposed, which applies the 1-D Fresnel zone phase correction to the classical parabolic cylindrical reflector, providing an alternative to the dval parabolic cylindrical ones discussed by Sanad and Shafai[1].The focusing characteristics of the new reflector are analyzed by physical optics method, and numerical results are illustrated to evaluate its applicability.

  8. A New Reflector Antenna Based on the Fresnel Principle

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new type of reflector antenne is proposed, which applies the 1-D Fresnel zone phase correction to the classical parabolic cylindrical reflector, providing an alternative to the dual parabolic cylindrical ones discussed by Sanad and Shafai[1]. The focusing characteristics of the new reflector are analyzed by physical optics method, and numerical results are illustrated to evaluate its applicability.

  9. APPLICATION OF QUATERNIONS FOR REFLECTOR PARAMETER

    Directory of Open Access Journals (Sweden)

    I. A. Konyakhin

    2016-09-01

    Full Text Available Subject of Research. The paper deals with application of quaternions for optimization of reflector parameters at autocollimation measurements in comparison with a matrix method. Computer-based results on the quaternionic models are presented that have given the possibility to determine conditions of measurement error reduction in view of apriori information on the rotation axis position. The practical synthesis technique for tetrahedron reflector parameters using found ratios is considered. Method. Originally, received conditions for reduction of autocollimation system measurement error are determined with the use of a matrix method for definition of an angular object position as a set of three equivalent consecutive turns about coordinate axes. At realization of these conditions the numerous recalculation of orientation parameters between various systems of coordinates is necessary that increases complexity and reduces resulting accuracy of autocollimation system at practical measurements. The method of quaternions gives the possibility to analyze the change of an absolute angular position in space, thus, there are conditions of accuracy increase regardless of the used systems of coordinates. Main Results. Researches on the mathematical model have shown, that the orthogonal arrangement of two basic constant directions for autocollimator tetrahedron reflector is optimal with respect to criterion of measurement error reduction at bisection arrangement of actual turn axis against them. Practical Relevance. On the basis of the found ratios between tetrahedron reflector angles and angles of its initial orientation parameters we have developed a practical method of reflector synthesis for autocollimation measurements in case of apriori information on an actual turn axis at monitoring measurements of the shaft or pipelines deformations.

  10. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  11. Homology Parameters for Large Axisymmetric Shaped Dual-Reflector Antennas

    Science.gov (United States)

    Ban, You; Duan, Baoyan; Wang, Congsi; Wang, Wei; Feng, Shufei; Xiang, Binbin

    2017-05-01

    We extend the concept of best-fitting paraboloids for large single and dual reflectors with conic-section surfaces to best-fit shaped surface for large dual reflectors shaped for uniform amplitude distribution. The point focus of the paraboloidal main reflector is replaced by focal lines for the main reflector and the primary subreflector focus, whereas the secondary subreflector point focus at the feed is kept. The reflector surfaces are shaped, and all rays from the main-reflector aperture to the feed meet an equal-path-length condition. This condition may be represented by a set of "homology parameters" determined by a least-squares method. Finally, we calculate the homology parameters and the root mean square of surface errors for an 8-m dual-reflector system including gravity effects for the antenna pointed toward zenith and the horizon.

  12. Silicon reflectors for external cavity lasers based on ring resonators

    Science.gov (United States)

    Wang, Chao; Li, Xia; Jin, Hao; Yu, Hui; Yang, Jianyi; Jiang, Xiaoqing

    2017-01-01

    We propose and experimentally investigate types of silicon ring reflectors on Silicon-On-Insulator (SOI) platform. These reflectors are used for realizing the silicon hybrid external cavity lasers. A suspended edge coupler is used to connect the reflective semiconductor optical amplifier (RSOA) chip and the reflectors. The properties of the reflectors and the hybrid external cavity lasers with these reflectors are illustrated. The experimental results show that all of those reflectors have a high reflectivity and the highest reflectivity can up to be 95%. The lowest insertion loss can be as low as 0.4 dB. The output power of the hybrid external cavity lasers with these reflectors can reach mW magnitude and the highest output power is 6.1 mW. Over 30 dB side mode suppression ratio is obtained.

  13. Ellisoidal reflector for measuring otoacoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Heiskanen, Vesa; Pulkki, Ville Topias

    2016-01-01

    Otoacoustic emissions (OAEs) are low-intensity sounds present in the ear canal, generated by mechanical processing in the cochlear in the inner ear. OAEs provide a noninvasive technique to sense the mechanical processing of sound in the inner ear. These signals are commonly measured by placing......, and especially SOAE at these low frequencies. In addition, blocking of the ear canal changes the impedance of the middle ear, potentially changing the transmission of acoustical energy from the inner ear to the ear canal, hampering the interpretation of the data in terms of normal listening conditions with open...... ear canal. This study presents the design and evaluation of a truncated prolate ellipsoidal reflector in combination with a large-diaphragm low-noise microphone to measure OAEs in the open ear canal of human listeners. The reflector was designed to gain information about BM processing at low...

  14. The CNGS underground structures

    CERN Multimedia

    CERN-AC/DI/MM

    2001-01-01

    The protons supplied by the SPS will travel along a transfer line some 800 metres in length before entering a 125-m long target chamber, where they will bombard a graphite target. This process will produce pions and kaons, which will decay into muons and muon neutrinos inside the 1000-metre decay tube. The neutrinos will then commence their 730-km journey through the earth's crust to the detectors at the Gran Sasso Laboratory.

  15. Simulation of parabolic reflectors for ultraviolet phototherapy

    Science.gov (United States)

    Grimes, David Robert

    2016-08-01

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  16. Simulation of parabolic reflectors for ultraviolet phototherapy.

    Science.gov (United States)

    Robert Grimes, David

    2016-08-21

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  17. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  18. Radar polarimeter measures orientation of calibration corner reflectors

    Science.gov (United States)

    Zebker, Howard A.; Norikane, Lynne

    1987-01-01

    Radar polarimeter signals from a set of trihedral corner reflectors located in the Goldstone Dry Lake in California were analyzed, and three types of scattering behavior were observed: (1) Bragg-like slightly rough surface scattering that represents the background signal from the dry lake, (2) trihedral corner reflector scattering that returns the incident polarization, and (3) two-bounce corner reflector scattering resulting from a particular alignment of a trihedral reflector. A radar calibration approach using trihedral corner reflectors should be designed such that precise alignment of the reflectors is ensured, as three-bounce and two-bounce geometries lead to very different cross sections and hence very different inferred calibration factors.

  19. Properties of wideband resonant reflectors under fully conical light incidence

    Science.gov (United States)

    Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert

    2016-03-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applications demanding wideband reflectors that are efficient and materially sparse.

  20. Preliminary design of large reflectors with flat facets

    Science.gov (United States)

    Agrawal, P. K.; Anderson, M. S.; Card, M. F.

    1981-01-01

    A concept for approximating curved antenna surfaces using flat facets is discussed. A preliminary design technique for determining the size of the reflector surface facets necessary to meet antenna surface accuracy requirements is presented. A proposed large microwave radiometer satellite (MRS) is selected as an application, and the far-field electromagnetic response of a faceted reflector surface is compared with that from a spherical reflector surface.

  1. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  2. Thermal distortion analysis of a deployable parabolic reflector

    Science.gov (United States)

    Bruck, L. R.; Honeycutt, G. H.

    1973-01-01

    A thermal distortion analysis of the ATS-6 Satellite parabolic reflector was performed using NASTRAN level 15.1. The same NASTRAN finite element method was used to conduct a one g static load analysis and a dynamic analysis of the reflector. In addition, a parametric study was made to determine which parameters had the greatest effect on the thermal distortions. The method used to model the construction of the reflector is described and the results of the analyses are presented.

  3. Properties of wideband resonant reflectors under fully conical light incidence

    OpenAIRE

    Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert

    2016-01-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors ...

  4. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  5. Jacobi-Bessel analysis of reflector antennas with elliptical apertures

    Science.gov (United States)

    Rahmat-Samii, Yahya

    1987-01-01

    Although many reflector antennas possess circular projected apertures, there are recent satellite and ground antenna applications for which it is desirable to employ reflectors with elliptical apertures. Here a modification of the Jacobi-Bessel expansion is presented for the diffraction analysis of reflectors with elliptical apertures. A comparative study is also performed between this modified Jacobi-Bessel algorithm and the one which uses the Jacobi-Bessel expansion over a circumscribing circular region. Numerical results are presented for offset reflectors with elliptical and circular apertures and the improved convergence properties of the modified algorithm are highlighted.

  6. Solgel grating waveguides for distributed Bragg reflector lasers.

    Science.gov (United States)

    Fardad, M A; Luo, H; Beregovski, Y; Fallahi, M

    1999-04-01

    Solgel grating waveguides and their application to the fabrication of external-cavity distributed Bragg reflector (DBR) lasers are demonstrated. A new composition of aluminosilicate material is developed for the fabrication of single-mode waveguides and Bragg reflectors. An average loss of <0.2 dB/cm is measured in the single-mode waveguides at 1550 nm. The reflectors show filtering greater than 97% near 1530 nm, with a bandwidth of ~0.6 nm . The Bragg reflectors are used as feedback resonators for DBR lasers. Single-mode lasing with a sidemode suppression of better than 25 dB is demonstrated.

  7. Bright color reflective displays with interlayer reflectors

    Science.gov (United States)

    Kitson, Stephen; Geisow, Adrian; Rudin, John; Taphouse, Tim

    2011-08-01

    A good solution to the reflective display of color has been a major challenge for the display industry, with very limited color gamuts demonstrated to date. Conventional side-by-side red, green and blue color filters waste two-thirds of incident light. The alternative of stacking cyan, magenta and yellow layers is also challenging -- a 10% loss per layer compounds to nearly 50% overall. Here we demonstrate an architecture that interleaves absorbing-to-clear shutters with matched wavelength selective reflectors. This increases color gamut by reducing losses and more cleanly separating the color channels, and gives much wider choice of electro-optic colorants.

  8. Manufacturing of neutron reflector frame for JMTR

    OpenAIRE

    2010-01-01

    Beryllium has been used as the neutron reflector in the Japan Materials Testing Reactor (JMTR). A beryllium frame is arranged in the JMTR core and the frame consists of 3 sections (North, East and West). Each section has 7 stories of the beryllium blocks. Each block is connected by the aluminum joints. The capsule or the beryllium plug is located in the inside of the beryllium frame. The first criticality achieved in 1968 and the frame has been replaced 6 times and now the 7th frame is being ...

  9. Hybrid grating reflectors: Origin of ultrabroad stopband

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  10. Optical Reflectance Measurements for Commonly Used Reflectors

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  11. Dielectric rod feed for compact range reflector

    CERN Document Server

    Balabukha, Nikolay P; Shapkina, Natalia E

    2014-01-01

    A dielectric rod feed with a special radiation pattern of a tabletop form used for the compact range reflector is developed and analyzed. Application of this feed increases the size of the compact range quiet zone generated by the reflector. The feed consists of the dielectric rod made of polystyren, the rod is inserted into the circular waveguide with a corrugated flange. The waveguide is excited by the H11-mode. The rod is covered by the textolite biconical bushing and has a fluoroplastic insert in the vicinity of the bushing. Mathematical modeling was used to obtain the parameters of the feed for the optimal tabletop form of the radiation pattern. The problem of the electromagnetic radiation was solved for metal-dielectric bodies of rotation by method of integral equations with further solving of the problem of the synthesis for feed parameters. The dielectric rod feed was fabricated for the X-frequency range. Feed amplitude and phase patterns were measured in the frequency range 8.2-12.5 GHz. Presented re...

  12. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.; Krishna, K.S.; Rao, D.G.; Sar, D.

    of the Chagos-Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs...

  13. LHC installation planning

    CERN Document Server

    Weisz, S

    2005-01-01

    installation of the general services, the installation of the cryogenic line (QRL), the installation of the machine elements and the hardware commissioning. While the installation of the general services is now almost finished (see presentation by Katy Foraz and Serge Grillot), several problems and delays with the QRL made it unavoidable to revise the installation strategy and to schedule a number tasks in parallel. A new compressed installation planning has been issued, that fulfils the strategic objectives and allows starting new activities with minimal delays in sectors 7-8 and 8-1. However, the shortcuts that are introduced increase the level of risk that we will have to face and the coordination of such a large and complex variety of simultaneous activities makes the project even more challenging. The document will describe how the input from the different equipment groups is taken into account by the master schedule planning team with respect to equipment availability and production as well as logistics...

  14. Study variants of hard CFRP reflector for intersatellite communication

    Science.gov (United States)

    Prosuntsov, PV; Reznik, SV; Mikhailovsky, KV; Novikov, AD; Aung, Zaw Ye

    2016-10-01

    The paper deals with the justification of space antennas reflector layout for advanced telecommunication satellites. The selection of design decisions is based on numerical simulations of heat transfer and mechanics processes characteristic of the geostationary orbit conditions. The advantages of parabolic shell of small thickness reflector scheme reinforced with star-shaped ribs on the convex side are demonstrated.

  15. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...

  16. Ellipsoidal reflector for measuring oto-acoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which ...

  17. Electrical installation calculations basic

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo

  18. Electrical installation calculations advanced

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio

  19. Electrical installations and regulations

    CERN Document Server

    Whitfield, J F

    1966-01-01

    Electrical Installations and Regulations focuses on the regulations that apply to electrical installations and the reasons for them. Topics covered range from electrical science to alternating and direct current supplies, as well as equipment for providing protection against excess current. Cables, wiring systems, and final subcircuits are also considered, along with earthing, discharge lighting, and testing and inspection.Comprised of 12 chapters, this book begins with an overview of electrical installation work, traits of a good electrician, and the regulations governing installations. The r

  20. Study of the CNGS beam and identification of muons in the Opera experiment. Optimization of the beam line from SPL-Frejus project; Etude du faisceau CNGS et identification des muons dans l'experience OPERA. Optimisation de la ligne de faisceau du projet SPL-Frejus

    Energy Technology Data Exchange (ETDEWEB)

    Cazes, A

    2004-12-15

    Neutrino oscillations are the subject of most of the experiments looking at this particle. This mechanism uses the fact that neutrinos have mass to allow the transformation from one flavour to another one. The OPERA experiment will start to take data in spring 2006. Its goal is to proof this mechanism with no ambiguity using the appearance of tau neutrinos in the CNGS beam, which is made of muon neutrinos. This thesis presents a description of neutrino beams in general, and more precisely of the CNGS beam, which is sent from CERN to Gran Sasso in Italy. The neutrino flux are recalculated, and simulations have been performed in order to study miss positioning of the beam line elements. The OPERA detector is made of bricks containing a pile of lead plates and photographic emulsion films, of two trackers and two spectrometers. The high position resolution of the emulsions (< 1 {mu}m ), allows to identify the {tau} created by the tau neutrino charged current interactions. The brick localisation is made using a scintillator array. The pattern recognition in these scintillators as well as in the spectrometers is one of the part of this thesis. Furthermore, a muon identification algorithm has been set up. It allows to reject by a factor 20 the charm background. Future of neutrino oscillation physics is the building of more and more intense neutrino beams, in order to measure the last unknown parameters ({theta}{sub 13} and {delta}{sub CP}). The project of neutrino beam from CERN to the Fr us tunnel is fully revisited in the last part of this thesis. An optimisation of all the beam line element is proposed, and allows to reach a sensitivity to {theta}{sub 13} around one degree. (author)

  1. Scattering patterns of dihedral corner reflectors with impedance surface impedances

    Science.gov (United States)

    Balanis, Constantine A.; Griesser, Timothy; Liu, Kefeng

    The radar cross section patterns of lossy dihedral corner reflectors are calculated using a uniform geometrical theory of diffraction for impedance surfaces. All terms of up to third order reflections are considered for patterns in the principal plane. The surface waves are included whenever they exist for reactive surface impedances. The dihedral corner reflectors examined have right, obtuse, and acute interior angles, and patterns over the entire 360 deg azimuthal plane are calculated. The surface impedances can be different on the four faces of the dihedral corner reflector; however, the surface impedance must be uniform over each face. Computed cross sections are compared with a moment method technique for a dielectric/ferrite absorber coating on a metallic corner reflector. The analysis of the dihedral corner reflector is important because it demonstrates many of the important scattering contributors of complex targets including both interior and exterior wedge diffraction, half-plane diffraction, and dominant multiple reflections and diffractions.

  2. Properties of wideband resonant reflectors under fully conical light incidence

    CERN Document Server

    Ko, Yeong Hwan; Lee, Kyu Jin; Magnusson, Robert

    2016-01-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applic...

  3. Broad spectrum moderators and advanced reflector filters using 208Pb

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    2015-01-01

    thermalizing property of 208Pb to design a broad spectrum moderator, i.e. a moderator which emits thermal and cold neutrons from the same position. Using 208Pb as a reflector filter material is shown to be slightly less efficient than a conventional beryllium reflector filter. However, when surrounding...... the reflector filter by a cold moderator it is possible to regain the neutrons with wavelengths below the Bragg edge, which are suppressed in the beryllium reflector filter. In both the beryllium and lead case surrounding the reflector filter with a cold moderator increases the cold brightness significantly......Cold and thermal neutrons used in neutrons scattering experiments are produced in nuclear reactors and spallation sources. The neutrons are cooled to thermal or cold temperatures in thermal and cold moderators, respectively. The present study shows that it is possible to exploit the poor...

  4. Composite technology in radar equipment. Dopler Meteo radar reflector device

    Directory of Open Access Journals (Sweden)

    A. V. Shumov

    2014-01-01

    Full Text Available The article is devoted features of the application composite materials in radar technology for example adjustment of the development technology of the reflector antenna device DMRL-S - radar for monitoring meteorological conditions.Russian and foreign analogues DMRL-S are made of aluminum, which no longer meets modern requirements for strength and weight. Also aluminum reflectors are not temperature stable. Composite materials are characterized by higher values of specific characteristics: temporary resistance, endurance limit, stiffness, elastic modulus, and less prone to cracking. The use of such materials improves the strength, rigidity and durability.For the manufacture of the DMRL-C reflector used composite materials based on epoxy resins reinforced with fiberglass (both unidirectional and woven. To increase the rigidity and weight reflector is made in the form of three-layer sandwich fiberglass panels with honeycomb core variable height. Design work was carried out in a CAD Siemens NX8.0 / Unigraphics, through which was established mathematical model layered reflector, as well as all accessories used in the manufacture. With the program NX Nastran was held strength calculation and analysis of stiffness on the finite element method.After the manufacture of the product, we measured the standard deviation of the working surface of the reflector from the theoretical surface using a three-dimensional laser scanner. Measurements were made at different angular positions of the reflector, and when loading. It is shown that the maximum strain in the operating modes of operation across the surface of the product does not exceed 4%, which will provide the most accurate operation of the product in any position of the antenna system.As a result of this work reflector design was developed, created and verified by experimental data calculation model. Reflector antenna device of the DMRL-S was manufactured and tested. The reflector was made of reinforced

  5. Deployment simulation of a deployable reflector for earth science application

    Science.gov (United States)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  6. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  7. A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

    CERN Document Server

    Baibussinov, B; Battistoni, G; Benetti, P; Borio, A; Calligarich, E; Cambiaghi, M; Cavanna, F; Centro, Sandro; Cocco, A G; Dolfini, R; Berzolari, A Gigli; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Gibin, D; Guglielmi, A M; Mannocchi, G; Mauri, F; Menegolli, A; Meng, G; Montanari, C; Palamara, O; Periale, L; Piazzoli, A; Picchi, P; Pietropaolo, F; Rappoldi, A; Raselli, G L; Rubbia, Carlo; Sala, P; Satta, G; Varanini, F; Ventura, Sandro; Vignoli, C

    2007-01-01

    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about ...

  8. Integrated 222-GHz corner-reflector antennas

    Science.gov (United States)

    Gearhart, Steven S.; Ling, Curtis C.; Rebeiz, Gabriel M.

    1991-01-01

    A high-gain monolithic millimeter-wave antenna has been designed, fabricated, and tested at 222 GHz. The structure consists of a traveling-wave antenna integrated on a 1.2-micron dielectric membrane and suspended in a longitudinal cavity etched in a silicon wafer. A new traveling-wave antenna design yields a wideband input impedance and a low cross-polarization component in the E- and quasi-H-plane patterns. A directivity of 17.7 dB and a main-beam efficiency of 88.5 percent are calculated from the 222-GHz pattern measurements. The integrated corner-reflector antenna is well suited for millimeter- and submillimeter-wave imaging applications in large f-number systems.

  9. Inline microring reflector for photonic applications

    Science.gov (United States)

    Kang, Young Mo

    The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation

  10. Laser Ranging to the Lost Lunokhod~1 Reflector

    CERN Document Server

    Murphy, T W; Battat, J B R; Hoyle, C D; Johnson, N H; McMillan, R J; Michelsen, E L; Stubbs, C W; Swanson, H E

    2011-01-01

    In 1970, the Soviet Lunokhod 1 rover delivered a French-built laser reflector to the Moon. Although a few range measurements were made within three months of its landing, these measurements---and any that may have followed---are unpublished and unavailable. The Lunokhod 1 reflector was, therefore, effectively lost until March of 2010 when images from the Lunar Reconnaissance Orbiter (LRO) provided a positive identification of the rover and determined its coordinates with uncertainties of about 100 m. This allowed the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) to quickly acquire a laser signal. The reflector appears to be in excellent condition, delivering a signal roughly four times stronger than its twin reflector on the Lunokhod 2 rover. The Lunokhod 1 reflector is especially valuable for science because it is closer to the Moon's limb than any of the other reflectors and, unlike the Lunokhod 2 reflector, we find that it is usable during the lunar day. We report the selenographic positi...

  11. Performance of a PV module augmented by a plane reflector

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, G. E; Hussein, H. M. S; Mohamad, M. A [Dokki, Giza (Egypt)

    2000-07-01

    This paper presents a comparative experimental study on the performance of a PV module augmented by a south facing titled plane reflector and another identical one without reflector. The tilt angles of the two PV modules and reflector overhang are selected to be according to a previous theoretical study by the authors. The reflector tilt angle has been changed once a month so that the reflected beams from the plane reflector cover the total surface area of the PV module all days of every month during the high solar radiation period (i.e. three hours before and after solar noon). The study has been carried out on the two PV modules for a complete year under the actual atmospheric conditions of Cairo, Egypt. The measuring system used in the study comprises a data acquisition system, a computer, an electronic load and weather station. The experimental results indicate that the plane reflector enhances the yearly output energy of the PV module y about 22%. [Spanish] Este articulo presenta un estudio comparativo experimental sobre el rendimiento de un modulo de PV aumentado por un reflector plano inclinado mirando hacia el sur y otro identico sin reflector. Los angulos de inclinacion de los dos modulos y el reflector sobresaliente se seleccionan para que esten de acuerdo con un estudio teorico previo hecho por los autores. El angulo de inclinacion del reflector se cambio una vez al mes de manera que los rayos reflejados por el reflector plano cubrieran el area total de la superficie del modulo de PV todos los dias de cada mes durante el periodo de radiacion alto (o sea tres horas antes y despues del medio dia solar). El estudio ha sido llevado a cabo en dos modulos de PV durante un ano completo bajo condiciones atmosfericas reales de El Cairo, Egipto. El sistema de medicion usado en el estudio comprende un sistema de adquisicion de datos, una computadora, una memoria electronica y una estacion climatologica. Los resultados experimentales indican que el reflector plano

  12. Incidental Reflector Comparison of Containerized Dry Fire Extinguishing Agents

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wysong, Andrew Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-14

    This document addresses the incidental reflector reactivity worth of containerized fire extinguishing agents authorized for use in PF-4 at Los Alamos National Laboratory (LANL). The intent of the document is to analyze dry fire extinguishing agent that remains in a container and is not actively being used in a fire emergency. The incidental reflector reactivity worth is determined by comparison to various thicknesses of close fitting water reflection which is commonly used to bound incidental reflectors in criticality safety evaluations. The conclusion is that even in unlimited quantities, when containerized the authorized dry fire extinguishing agents are bound by 0.4 inches of close fitting water.

  13. Identifying Reflectors in Seismic Images via Statistic and Syntactic Methods

    Directory of Open Access Journals (Sweden)

    Carlos A. Perez

    2010-04-01

    Full Text Available In geologic interpretation of seismic reflection data, accurate identification of reflectors is the foremost step to ensure proper subsurface structural definition. Reflector information, along with other data sets, is a key factor to predict the presence of hydrocarbons. In this work, mathematic and pattern recognition theory was adapted to design two statistical and two syntactic algorithms which constitute a tool in semiautomatic reflector identification. The interpretive power of these four schemes was evaluated in terms of prediction accuracy and computational speed. Among these, the semblance method was confirmed to render the greatest accuracy and speed. Syntactic methods offer an interesting alternative due to their inherently structural search method.

  14. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  15. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  16. BEAM PIPE IS INSTALLED

    CERN Multimedia

    The installation of the central section of the beam pipe into the heart of the  CMS was completed by 23 April. All the beam pipe elements have been successfully vacuum-tested and the bakeout started.  

  17. ECAL BARREL INSTALLED

    CERN Multimedia

    An important milestone was reached with the installation and test of the 36th ECAL Barrel Supermodule, completed July 27th.  The quality is exceptional: all but 28 of the 61200 channels are functional.    

  18. Space Reflector Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  19. Installation af opvaskemaskine

    DEFF Research Database (Denmark)

    Christiansen, J.; Skibstrup Eriksen, S.; Nielsen, F.

    Denne SBI-anvisning er et led i en serie om modernisering af installationerne i den ældre boligmasse. Den henvender sig til både beboere, husejere, VVS-installatører og andre interesserede. Anvisningen indeholder almene afsnit om valg og placering af opvaskemaskine, sagsforløb ved installation......, forhold til myndigheder, priser, finansieringsmuligheder m.m. Anvisningen indeholder endvidere tekniske afsnit om vandinstallation, afløb og elinstallation i forbindelse med installation af opvaskemaskine....

  20. Installing the World

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    THE art of installation is an art about concept," explains Qing Qing Chen. The artist wants her audience to look at the development of aesthetics from a pluralistic angle on life. Unlike the expressive format of "art in the frame," the art of installation belongs to the category of "non-framed art." The choice of materials used is as important to expression as the creator’s ideas. Whereas only certain materials can be

  1. Complex biopower installation

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2008-12-01

    Full Text Available It is presented the technological scheme of complex biopower installation for manufacture of the electric power, hot water and gas at use as raw material of manure, birds dung and firm organic waste products. The suggested technical solution provides practically 100 % use of energy of burnt gas due to the introduced feedback between power station and a bioreactor. Recommendations for the best use of installation in Republics Moldova are developed as well.

  2. The Novel Y-Branch With Two Reflectors

    Institute of Scientific and Technical Information of China (English)

    Ruei-Chang Lu; Yu-Pin Liao

    2003-01-01

    A novel Y-branch waveguide with two reflectors is proposed. The normalized transmitted power for the branching angle of 50°is greater than 70%, which is higher than conventional Y-branch with such wide angle.

  3. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  4. Thermomechanical analysis of large deployable space reflector antenna

    Directory of Open Access Journals (Sweden)

    Ponomarev Viktor S.

    2015-01-01

    Full Text Available In this article results of large reflector thermal condition forecast using modern numerical simulation methods are presented. The results of thermal analysis are complemented with stress-strain analysis results of the whole structure under thermal loads.

  5. Proton radiation effects on optical constants of Al film reflector

    Institute of Scientific and Technical Information of China (English)

    Liu Hai; Wei Qiang; He Shi-Yu; Zhao Dan

    2006-01-01

    The Al film reflectors can yield a high-reflectance over a broad wavelength region, and have been widely used in the spacecraft optical instruments for high quality optical applications. Under the irradiation of charged particles in the Earth radiation belt, the reflectors could be deteriorated. In order to reveal the deterioration mechanism, the change in optical constants of Al film reflector induced by proton radiation with 60 keV was studied in an environment of vacuum with heat sink. Experimental results showed that when the radiation damage primarily occurs in the Al reflecting film,the extinction coefficient k will gradually decrease with increasing radiation fluence, which results in the decrease of the energies of reflective light. Therefore, the proton radiation induced an obvious degradation of spectral reflectance in the wavelength region from 200 to 800 nm on the Al film reflector.

  6. Friction-Sensing Reflector Array Patches (FRAP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research Support Instruments, Inc. (RSI) proposes to develop the Friction-Sensing Reflector Array Patches (FRAP), a technology that will measure the shear stress...

  7. Backscattering reduction of corner reflectors using SCS technique

    Science.gov (United States)

    Ajaikumar, V.; Jose, K. A.; Aanandan, C. K.; Mohanan, P.; Nair, K. G.

    1992-10-01

    The paper reports the use of a simulated corrugated surface (SCS) to reduce radar cross section of dihedral corner reflectors. The focus is on 90-deg corner reflectors, since they are involved in many targets and normally show an enhancement in RCS. The backscattering cross section of the dihedral corner reflector, which is large due to the mutual perpendicularity of the two flat surfaces, is found to be greatly reduced for TE polarization. This simple method is determined to be very effective in reducing the RCS of corner reflectors for any corner angle by suitably selecting the parameters of SCS. This may find potential use in strategic RCS reduction of targets in defense and space applications.

  8. RCS analysis and reduction for lossy dihedral corner reflectors

    Science.gov (United States)

    Griesser, Timothy; Balanis, Constantine A.; Liu, Kefeng

    1989-05-01

    The radar-cross-section (RCS) patterns of lossy dihedral corner reflectors are calculated, using a uniform geometrical theory of diffraction for impedance surfaces. All terms of up to third-order reflections and diffractions are considered for patterns in the principal plane. The surface waves are included whenever they exist for reactive surface impedances. The dihedral corner reflectors examined have right, obtuse, and acute interior angles, and patterns over the entire 360 deg azimuthal plane are calculated. The surface impedances can be different on the four faces of the dihedral corner reflector; however, the surface impedance must be uniform over each face. Computed cross sections are compared with the results of a moment-method technique for a dielectric/ferrite absorber coating on a metallic corner reflector.

  9. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the

  10. Evaluation of the Benefits of Reflectorized Sign Posts to Drivers

    Directory of Open Access Journals (Sweden)

    Erdinç Öner

    2013-03-01

    Full Text Available In United States Federal Highway Administration (FHWA provides departments of transportation (DOTs the option of using retroreflective material on sign posts when the DOTs determine that there is a need to draw attention to the sign, especially at night. The State of Ohio Department of Transportation (ODOT required all Stop, Yield, Do Not Enter, and Wrong Way sign posts to be reflectorized with RED reflective sheeting material and all Chevron, Stop Ahead, and One/Two Large Directional Arrow sign posts to be reflectorized with YELLOW (sign background color reflective sheeting material as part of ODOT Comprehensive Highway Safety Plan and FHWA' recommendations.In this study, a photometric analysis and a human factors analysis were conducted to estimate the benefits of reflectorized sign posts to driver visual perception, driver guidance and driver comprehension. The study showed that the reflectorized sign posts improve detection, recognition, and comprehension of traffic signs for drivers, especially in nighttime driving conditions.

  11. A bionic approach to mathematical modeling the fold geometry of deployable reflector antennas on satellites

    Science.gov (United States)

    Feng, C. M.; Liu, T. S.

    2014-10-01

    Inspired from biology, this study presents a method for designing the fold geometry of deployable reflectors. Since the space available inside rockets for transporting satellites with reflector antennas is typically cylindrical in shape, and its cross-sectional area is considerably smaller than the reflector antenna after deployment, the cross-sectional area of the folded reflector must be smaller than the available rocket interior space. Membrane reflectors in aerospace are a type of lightweight structure that can be packaged compactly. To design membrane reflectors from the perspective of deployment processes, bionic applications from morphological changes of plants are investigated. Creating biologically inspired reflectors, this paper deals with fold geometry of reflectors, which imitate flower buds. This study uses mathematical formulation to describe geometric profiles of flower buds. Based on the formulation, new designs for deployable membrane reflectors derived from bionics are proposed. Adjusting parameters in the formulation of these designs leads to decreases in reflector area before deployment.

  12. Corner reflector SAR interferometry as an element of a landslide early warning system

    Science.gov (United States)

    Singer, J.; Riedmann, M.; Lang, O.; Anderssohn, J.; Thuro, K.; Wunderlich, Th.; Heunecke, O.; Minet, Ch.

    2012-04-01

    The development of efficient and cost-effective landslide monitoring techniques is the central aim of the alpEWAS research project (www.alpewas.de). Within the scope of the project a terrestrial geosensor network on a landslide site in the Bavarian Alps has been set up, consisting of low cost GNSS with subcentimeter precision, time domain reflectometry (TDR) and video tacheometry (VTPS). To increase the spatial sampling, 16 low-cost Radar Corner Reflectors (CRs) were installed on the site in 2011. The CRs are to reflect radar signals back to the TerraSAR-X radar satellite, allowing for precise displacement measurements. The subject of this study is the application of the CR SAR Interferometry (CRInSAR) technique, and the integration of the derived motion field into an early warning system for landslide monitoring based on terrestrial measurements. An accurate validation data set is realized independently of the monitoring network using millimeter precision GNSS and tacheometer measurements. The 12 CRs from Astrium Geo-Information Services employed over the test site were specifically designed for TerraSAR-X satellite passes. They are made of concrete with integrated metal plates weighing about 80 to 100 kg. They are of triangular trihedral shape with minimal dimensions to obtain a Radar Cross Section 100 times stronger than that of the surrounding area. The concrete guarantees stability against harsh weather conditions, and robustness with respect to vandalism or theft. In addition, the Technical University of Munich (TUM) and the German Aerospace Center (DLR) installed another four CRs made entirely out of aluminum, with the TUM reflectors being of similar minimum size than the Astrium reflectors. Three CRs were placed on assumed stable ground outside the slope area and shall act as reference reflectors. Since the installation date of most CRs (25/08/2011), TerraSAR-X HighResolution SpotLight data have been repeatedly acquired from ascending orbit over the test

  13. Study on Segmented Reflector Lamp Design Based on Error Analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper discusses the basic principle and design m ethod for light distribution of car lamp, introduces an important development: h igh efficient and flexible car lamp with reflecting light distribution-segmente d reflector (multi-patch) car lamp, and puts out a design method for segmented reflector based on error analysis. Unlike classical car lamp with refractive lig ht distribution, the method of reflecting light distribution gives car lamp desi gn more flexibility. In the case of guarantying the li...

  14. Reflectors for SAR performance testing-second edition

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  15. Measurement of small antenna reflector losses for radiometer calibration budget

    OpenAIRE

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation. This paper describes how such measurements are carried out as well as a suitable experimental setup. The main reflector of the European Space Agency's MIMR system is used to demonstrate the principle

  16. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiat...... radiation. The paper describes how such measurements are carried out as well as a suitable experimental set-up. The main reflector of the European Space Agency's MIMR system is used to demonstrate the principle...

  17. Differential correction method applied to measurement of the FAST reflector

    Science.gov (United States)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%-80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  18. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  19. Light Readout Optimisation using Wavelength Shifter - Reflector Combinations

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokoridis, Konstantinos, E-mail: k.mavrokoridis@liverpool.ac.uk [Department of Physics, University of Liverpool, Oliver Lodge Lab, Oxford Street, Liverpool, L69 7ZE (United Kingdom)

    2011-07-25

    The use of reflectors coated with a wavelength shifter (WLS) along with standard bialkali PMTs is an economical method for an efficient readout system for vacuum ultra violet (VUV) light produced in large liquid argon detectors. Various thicknesses of tetraphenyl butadiene (TPB) were deposited by spraying and vacuum evaporation onto both specular 3M{sup TM}-foil and diffuse Tetratex{sup TM} (TTX) reflectors. 128 nm VUV light generated in 1 bar argon gas by a 5.4 MeV {alpha} source was detected by a 3-inch bialkali borosilicate PMT within a 1 m tube lined internally with a TPB coated reflector. The light collection was recorded as a function of separation between source and PMT for each combination of coating and reflector for distances up to 1m. Reflection coefficients of TPB coated reflectors were measured using a spectroradiometer. WLS coating on the PMT window was also studied. The optimum coating and reflector combination was TPB evaporated on TTX. Measurements with coating thicknesses of 0.2 mg/cm{sup 2} and 1.0 mg/cm{sup 2} yielded a similar performance. The best PMT window coating is obtained by TPB evaporation of 0.05 mg/cm{sup 2}.

  20. Large deployable reflectors for telecom and earth observation applications

    Science.gov (United States)

    Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; van `t Klooster, K.; Santiago Prowald, J.

    2013-12-01

    Large deployable antennas are one of the key components for advanced missions in the fields of telecom and earth observation. In the recent past, missions have taken on board large deployable reflector (LDR) up to 22 m of diameter and several missions have already planned embarking large reflectors, such as the 12 m of INMARSAT XL or BIOMASS. At the moment, no European LDR providers are available and the market is dominated by Northrop-Grumman and Harris. Consequently, the development of European large reflector technology is considered a key step to maintain commercial and strategic competitiveness (ESA Large Reflector Antenna Working Group Final Report, TEC-EEA/2010.595/CM, 2010). In this scenario, the ESA General Study Project RESTEO (REflector Synergy between Telecom and Earth Observation), starting from the identification of future missions needs, has identified the most promising reflector concepts based on European heritage/technology, able to cover the largest range of potential future missions for both telecom and earth observation. This paper summarizes the activities and findings of the RESTEO Study.

  1. Scattering characteristics computation method for corner reflectors in arbitrary illumination conditions

    OpenAIRE

    Sukharevsky, Oleg I.; Vasilets, Vitaly A.; Nechitaylo, Sergey V.

    2015-01-01

    The calculation method for obtaining scattering characteristics of corner reflectors is proposed. The method allows calculating the radar cross-section of corner reflectors for arbitrary aspect angles. The method proposes separating the smooth part of reflectors and some neighborhood of their edges (including that of inner edges). The method accounts for multiple reflections between smooth parts of the reflector surface. In addition, the reflector surface can have a radar absorbing or dielect...

  2. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    OpenAIRE

    Hiroshi Tanaka

    2015-01-01

    Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then abs...

  3. Capping off installation

    CERN Multimedia

    2006-01-01

    Installation of the cathode strip chambers for the muon system on the CMS positive endcap has been completed. Technicians install one of the last muon system cathode strip chambers on the CMS positive endcap. Like successfully putting together the pieces of a giant puzzle, installation of the muon system cathode strip chambers on one of the CMS endcaps has been completed. Total installation of the cathode strip chambers (CSC) is now 91 percent complete; only one ring of chambers needs to be mounted on the remaining endcap to finish installation of the entire system. To guarantee a good fit for the 468 total endcap muon system CSCs, physicists and engineers from the collaboration spent about 10 years carefully planning the design. The endcap muon system's cables, boxes, pipes and other parts were designed and integrated using a 3D computerized model. 'It took a long time to do all the computer modelling, but in the long run it saved us an enormous amount of time because it meant that everything fit together,...

  4. Python Introduction and Installation

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available This first lesson in our section on dealing with Online Sources is designed to get you and your computer set up to start programming. We will focus on installing the relevant software – all free and reputable – and finally we will help you to get your toes wet with some simple programming that provides immediate results. In this opening module you will install the Python programming language, the Beautiful Soup HTML/XML parser, and a text editor. Screencaps provided here come from Komodo Edit, but you can use any text editor capable of working with Python. Here’s a list of other options: Python Editors. Once everything is installed, you will write your first programs, “Hello World” in Python and HTML.

  5. Electrical installation technology

    CERN Document Server

    Neidle, Michael

    1982-01-01

    Electrical Installation Technology, Third Edition covers the wide range of subjects that come under the headings of electrical science, installations, and regulations. The book discusses electromagnetism; inductance; static electricity; d.c. circuits; voltage drop and current rating; distribution; and wiring techniques. The text also describes o.c. motors and generators; a.c. motors, transformers; power-factor improvement; earthing and earth-leakage protection; testing; illumination; and the general principles of temperature and heat. Communication systems and equipment; electronics; and site

  6. Electrical installations technology

    CERN Document Server

    Whitfield, J F

    1968-01-01

    Electrical Installations Technology covers the syllabus of the City and Guilds of London Institute course No. 51, the "Electricians B Certificate”. This book is composed of 15 chapters that deal with basic electrical science and electrical installations. The introductory chapters discuss the fundamentals and basic electrical principles, including the concept of mechanics, heat, magnetic fields, electric currents, power, and energy. These chapters also explore the atomic theory of electric current and the electric circuit, conductors, and insulators. The subsequent chapter focuses on the chemis

  7. Study of back reflectors for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Mai, Y. [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China); Wan, M. [Department of Chemistry and Material Science, Hunan Institute of Humanities, Science and Technology, Loudi 417000 (China); Gao, J.; Wang, Y.; He, T.; Feng, Y.; Yin, J.; Du, J.; Wang, J.; Sun, R. [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China); Huang, Y., E-mail: y.huang@btw-solarfilms.com [Baoding Tianwei Solarfilms Co., Ltd., Baoding 071051 (China)

    2013-07-31

    In this study, the reflection properties of transparent conductive oxide (TCO) films i.e. aluminum doped zinc oxide (ZnO:Al) and boron doped zinc oxide (ZnO:B) films plus aluminum (Al) films or white polyvinyl butyral (PVB) foils, which are usually used as the combined back reflectors of thin film silicon solar cells, are investigated. Sputtered ZnO:Al films were etched in diluted hydrochloric acid (1%) to achieve rough surface structures while textured ZnO:B films were directly prepared by a low pressure chemical vapor deposition technique. It is found that the rough TCO/Al reflectors show a low total reflection, which is mainly due to the parasitic absorption by the surface plasmons at the rough TCO/Al interfaces as well as the absorption in the TCO films. Differently, the rough TCO/white PVB foil reflectors display a slightly high light reflection regardless of the influence of the rough interface without the excitation of surface plasmons. Thus, the TCO/white PVB foil back reflectors could be a good candidate with respect to light utilization when they are applied in thin film silicon solar cells. - Highlights: • White polyvinyl butyral and transparent conductive oxide materials are used. • The reflection properties of TCO/Al and TCO/white PVB foil reflectors are studied. • The ZnO:Al and ZnO:B films are used as two types of TCO materials. • TCO/white PVB foil reflector shows a high reflection compared to TCO/Al reflector.

  8. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    Science.gov (United States)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  9. Application of the OPTEX method for computing reflector parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hebert, A. [Ecole Polytechnique de Montreal, C.P. 6079 suce. Centre-Ville, Montreal QC. H3C 3A7 (Canada); Leroyer, H. [EDF - R and D, SINETICS, 1 Avenue du General de Gaulle, 92141 Clamart (France)

    2013-07-01

    We are investigating the OPTEX reflector model for obtaining few-group reflector parameters consistent with a reference power distribution in the core. In our study, the reference power distribution is obtained using a 142,872-region calculation defined over a 2D eighth-of-core pressurized water reactor and performed with the method of characteristics. The OPTEX method is based on generalized perturbation theory and uses an optimization algorithm known as parametric linear complementarity pivoting. The proposed model leads to few-group diffusion coefficients or P1-weighted macroscopic total cross sections that can be used to represent the reflector in full-core calculations. These few-group parameters can be spatially heterogeneous in order to correctly represent steel baffles present in modern pressurized water reactors. The optimal reflector parameters are compared to those obtained with a flux-volume weighting of the reflector cross sections recovered from the reference calculation. Important improvements in full-core power distribution are observed when the optimal parameters are used. (authors)

  10. Form-finding methods for deployable mesh reflector antennas

    Institute of Scientific and Technical Information of China (English)

    Li Tuanjie; Jiang Jie; Deng Hanqing; Lin Zhanchao; Wang Zuowei

    2013-01-01

    Deployable high-frequency mesh reflector antennas for future communications and obser-vations are required to obtain high gain and high directivity. In order to support these new missions, reflectors with high surface accuracy are widely required. The form-finding analysis of deployable mesh reflector antennas becomes more vital which aims to determine the initial surface profile formed by the equilibrium prestress distribution in cables to satisfy the surface accuracy requirement. In this paper, two form-finding methods for mesh reflector antennas, both of which include two steps, are pro-posed. The first step is to investigate the prestress design only for the cable net structure as the circum-ferential nodes connected to the supporting truss are assumed fixed. The second step is to optimize the prestress distribution of the boundary cables connected directly to the supporting truss considering the elastic deformation of the antenna structure. Some numerical examples are carried out and the simu-lation results demonstrate the proposed form-finding methods can warrant the deformed antenna reflector surface matches the one by design and the cable tension forces fall in a specified range.

  11. Solar Thermal Vacuum Test of Deployable Astromesh Reflector

    Science.gov (United States)

    Stegman, Matthew D.

    2009-01-01

    On September 10, 2008, a 36-hour Solar Thermal Vacuum Test of a 5m deployable mesh reflector was completed in JPL's 25' Space Simulator by the Advanced Deployable Structures Group at JPL. The testing was performed under NASA's Innovative Partnership Program (IPP) as a risk reduction effort for two JPL Decadal Survey Missions: DESDynI and SMAP. The 5.0 m aperture Astromesh reflector was provided by Northrop Grumman Aerospace Systems (NGAS) Astro Aerospace, our IPP industry partner. The testing utilized a state-of-the-art photogrammetry system to measure deformation of the reflector under LN2 cold soak, 0.25 Earth sun, 0.5 sun and 1.0 sun. An intricate network of thermocouples (approximately 200 in total) was used to determine the localized temperature across the mesh as well as on the perimeter truss of the reflector. Half of the reflector was in a fixed shadow to maximize thermal gradients. A mobility system was built for remotely actuating the cryo-vacuum capable photogrammetry camera around the circumference of the Solar Simulator. Photogrammetric resolution of 0.025 mm RMS (0.001") was achieved over the entire 5 meter aperture for each test case. The data will be used for thermo-elastic model correlation and validation, which will benefit the planned Earth Science Missions.

  12. Experimental search for the ''LSND anomaly'' with the ICARUS detector in the CNGS neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Canci, N.; Scantamburlo, E.; Segreto, E.; Stefan, D.; Vignoli, C. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); Baibussinov, B.; Centro, S.; Dequal, D.; Farnese, C.; Fava, A.; Gibin, D.; Guglielmi, A.; Meng, G.; Pietropaolo, F.; Varanini, F.; Ventura, S. [Universita di Padova (Italy); INFN, Padova (Italy); Benetti, P.; Calligarich, E.; Dolfini, R.; Menegolli, A.; Montanari, C.; Piazzoli, A.; Rappoldi, A.; Raselli, G.L.; Rossella, M. [Universita di Pavia (Italy); INFN, Pavia (Italy); Cesana, A.; Terrani, M. [Politecnico di Milano (Italy); INFN, Milano (Italy); Cieslik, K.; Dabrowska, A.; Haranczyk, M.; Szarska, M.; Zalewska, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Cline, D.B.; Otwinowski, S.; Wang, H.G.; Yang, X. [UCLA, Department of Physics, Los Angeles (United States); Cocco, A.G.; Fiorillo, G. [Universita Federico II di Napoli (Italy); INFN, Napoli (Italy); Dermenev, A.; Gninenko, S.; Kirsanov, M. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Ferrari, A. [CERN, Geneva (Switzerland); Holeczek, J.; Ivashkin, A.; Kisiel, J.; Kochanek, I.; Mania, S. [A. Soltan Institute for Nuclear Studies, Warszawa (Poland); Lagoda, J.; Stepaniak, J. [University of Silesia, Institute of Physics, Katowice (Poland); Picchi, P. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Plonski, P.; Zaremba, K. [Warsaw University of Technology, Institute for Radioelectronics, Warsaw (Poland); Rubbia, C. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); CERN, Geneva (Switzerland); Sala, P.R.; Scaramelli, A. [INFN Milano, Milano (Italy); Sergiampietri, F. [Universita di Pisa (Italy); INFN, Pisa (Italy); Sulej, R. [INFN - Laboratori Nazionali del Gran Sasso, Assergi (Italy); University of Silesia, Institute of Physics, Katowice (Poland)

    2013-03-15

    We report an early result from the ICARUS experiment on the search for a {nu}{sub {mu}} {yields} {nu}{sub e} signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of {proportional_to}730 km. The LSND anomaly would manifest as an excess of {nu}{sub e} events, characterized by a fast energy oscillation averaging approximately to sin {sup 2}(1.27{Delta} m{sup 2}{sub new}L/E{sub {nu}}){approx} 1/2 with probability P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} = 1/2 sin{sup 2}(2{theta}{sub new}). The present analysis is based on 1091 neutrino events, which are about 50 % of the ICARUS data collected in 2010-2011. Two clear {nu}{sub e} events have been found, compared with the expectation of 3.7 {+-} 0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90 % and 99 % confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities left angle P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} right angle {<=} 5.4 x 10{sup -3} and left angle P{sub {nu}{sub {mu}{yields}{nu}{sub e}}} right angle {<=} 1.1 x 10{sup -2} are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around ({Delta}m{sup 2}, sin{sup 2}(2{theta})){sub new} = (0.5 eV{sup 2}, 0.005), where there is an overall agreement (90 % CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations. (orig.)

  13. Entropy and Digital Installation

    Directory of Open Access Journals (Sweden)

    Susan Ballard

    2005-01-01

    Full Text Available This paper examines entropy as a process which introduces ideas of distributed materiality to digital installation. Beginning from an analysis of entropy as both force and probability measure within information theory and it’s extension in Ruldof Arnheim’s text ‘Entropy and Art” it develops an argument for the positive rather thannegative forces of entropy. The paper centres on a discussion of two recent works by New Zealand artists Ronnie van Hout (“On the Run”, Wellington City Gallery, NZ, 2004 and Alex Monteith (“Invisible Cities”, Physics Room Contemporary Art Space, Christchurch, NZ, 2004. Ballard suggests that entropy, rather than being a hindrance to understanding or a random chaotic force, discloses a necessary and material politics of noise present in digital installation.

  14. KuDGR- Dual Gridded Carbon Fiber Reinforced Plastic Reflector

    Science.gov (United States)

    Ihle, Alexander; Reichmann, O.; Lori, M.; Nathrath, N.; Pereira, C.; Linke, S.; Rinous, P.

    2014-06-01

    In the frame of an ESA-funded TRP activity HPS GmbH, together with INVENT GmbH and INEGI, has developed an advanced concept for dual gridded reflectors. The target frequency band is the Ku-band requiring high in-orbit thermo-elastic stability. It is a follow-on of the previous KaDGR [1] activity. The concept concerns the polarisation grid of the front and rear reflector. The grids are connected by a full CFRP monolithic peripheral ring. The demonstrator has an overall diameter of 1.4 x 1.2 m and a weight of only 4.23 kg. The design of this concept allows for smaller and larger reflectors.In the following we will present the results of the different development steps and current status of the TRP activity.

  15. Square Van Atta reflector with conducting mounting flame

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø

    1970-01-01

    the antenna elements and the reradiation from the elements as well as from the conducting plate have been taken into account. The influence of the conducting plate on the induced dipole currents has been treated using the theory of images. The scattering cross section of Van Atta reflectors with or without......A theoretical and numerical analysis of square Van Atta reflectors has been carried out with or without a conducting plate, used for mounting of the antenna elements. The Van Atta reflector investigated has antenna elements which are parallel half-wave dipoles interconnected in pairs...... by transmission lines of equal electrical length. The dipoles are placed in a plane which is parallel to the conducting plate when this is present. In the theory, each pair of antenna elements with the interconnecting transmission line is represented by an equivalent circuit. The mutual impedance between...

  16. Semitransparent Polymer Solar Cells Based on Liquid Crystal Reflectors

    Directory of Open Access Journals (Sweden)

    Shaopeng Yang

    2014-01-01

    Full Text Available The effects of liquid crystal (LC reflectors on semitransparent polymer solar cells (PSCs were investigated in this paper. By improving the cathode, we manufactured semitransparent PSCs based on the conventional PSCs. We then incorporated the LC reflector into the semitransparent PSCs, which increased the power conversion efficiency (PCE from 2.11% to 2.71%. Subsequently adjusting the concentration and spinning speed of the active layer material changed its thickness. The maximum light absorption for the active layer was obtained using the optimum thickness, and the PCE eventually reached 3.01%. These results provide a reference for selecting LC reflectors that are suitable for different active layer materials to improve the PCE of semitransparent PSCs.

  17. An active reflector antenna using a laser angle metrology system

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Jie Zhang; De-Hua Yang; Guo-Hua Zhou; Ai-Hua Li; Guo-Ping Li

    2012-01-01

    An active reflector is one of the key technologies for constructing large telescopes,especially for millimeter/sub-millimeter radio telescopes.This article introduces a new efficient laser angle metrology system for an active reflector antenna on large radio telescopes.Our experiments concentrate on developing an active reflector for improving the detection precisions and the maintenance of the surface shape in real time on the 65-meter prototype radio telescope constructed by Nanjing Institute of Astronomical Optics and Technology (NIAOT; http://65m.shao.cas.cn/).The test results indicate that the accuracy of the surface shape segmentation and maintenance has the dimensions of microns,and the time-response can be on the order of minutes.Our efforts proved to be workable for sub-millimeter radio telescopes.

  18. Beam-Steerable Flat-Panel Reflector Antenna

    Science.gov (United States)

    Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.

    2005-01-01

    Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.

  19. Leadership for Sustainable Installations

    Science.gov (United States)

    2011-04-01

    way into the lexicon of the Army and installation management ( Warnock , 2009). Accordingly, the Undersecretary of the Army is the Senior...business approach, the Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated...needed, and completing and reviewing the collection of information . Send comments regarding this burden estimate or any other aspect of this collection

  20. Installing the ALICE detector

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The huge iron yoke in the cavern at Point 2 in the LHC tunnel is prepared for the installation of the ALICE experiment. The yoke is being reused from the previous L3 experiment that was located at the same point during the LEP project from 1989 to 2000. ALICE will be inserted piece by piece into the cradle where it will be used to study collisions between two beams of lead ions.

  1. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  2. Effect of phototherapy with alumunium foil reflectors on neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Tony Ijong Dachlan

    2016-07-01

    Full Text Available Background Neonatal hyperbilirubinemia (NH is one of the most common problems in neonates, but it can be treated with blue light phototherapy. Developing countries with limited medical equipment and funds have difficulty providing effective phototherapy to treat NH, leading to increased risk of bilirubin encephalopathy. Phototherapy with white reflecting curtains can decrease the duration of phototherapy needed to reduce bilirubin levels. Objective To compare the duration of phototherapy needed in neonates with NH who underwent phototherapy with and without aluminum foil reflectors. Methods This open clinical trial was conducted from July to August 2013 at Dr. Hasan Sadikin Hospital, Bandung, Indonesia. The inclusion criteria were term neonates with uncomplicated NH presenting in their first week of life. Subjects were randomized into two groups, those who received phototherapy with or without aluminum foil reflectors. Serum bilirubin is taken at 12th, 24th, 48th hours, then every 24 hours if needed until phototherapy can be stopped according to American Academy of Pediatrics guidelines. The outcome measured was the duration of phototherapy using survival analysis. The difference between the two groups was tested by Gehan method. Results Seventy newborns who fulfilled the inclusion criteria and had similar characteristics were randomized into two groups. The duration of phototherapy needed was significantly less in the group with aluminum foil reflectors than in the group without reflectors [72 vs. 96 hours, respectively, (P<0.01]. Conclusion The required duration of phototherapy with aluminum foil reflectors is significantly less than that of phototherapy without reflectors, in neonates with NH.

  3. A better trihedral corner reflector for low grazing angles

    Science.gov (United States)

    Doerry, A. W.; Brock, B. C.

    2012-06-01

    Trihedral corner reflectors are the preferred canonical target for SAR performance evaluation for many radar development programs. The conventional trihedrals have problems with substantially reduced Radar Cross Section (RCS) at low grazing angles, unless they are tilted forward, but in which case other problems arise mainly due to multipath effects. Consequently there is a need for better low grazing angle performance for trihedrals. This is facilitated by extending the bottom plate of the trihedral reflector. A relevant analysis of RCS for an infinite ground plate is presented. Practical aspects are also discussed.

  4. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  5. Lunar Eclipse Observations Reveal Anomalous Thermal Performance of Apollo Reflectors

    CERN Document Server

    Murphy, T W; Johnson, N H; Goodrow, S D

    2013-01-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ~50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  6. Tensile-strained germanium microdisks with circular Bragg reflectors

    Science.gov (United States)

    El Kurdi, M.; Prost, M.; Ghrib, A.; Elbaz, A.; Sauvage, S.; Checoury, X.; Beaudoin, G.; Sagnes, I.; Picardi, G.; Ossikovski, R.; Boeuf, F.; Boucaud, P.

    2016-02-01

    We demonstrate the combination of germanium microdisks tensily strained by silicon nitride layers and circular Bragg reflectors. The microdisks with suspended lateral Bragg reflectors form a cavity with quality factors up to 2000 around 2 μm. This represents a key feature to achieve a microlaser with a quasi-direct band gap germanium under a 1.6% biaxial tensile strain. We show that lowering the temperature significantly improves the quality factor of the quasi-radial modes. Linewidth narrowing is observed in a range of weak continuous wave excitation powers. We finally discuss the requirements to achieve lasing with these kind of structures.

  7. New Developments in Large High Performance Shaped Reflectors

    Science.gov (United States)

    Abegg, C.; Baril, S.

    2002-01-01

    The large shaped reflectors, currently designed and manufactured at EADS LAUNCH VEHICLES, belong to a new generation of highly precise, highly stable and low mass reflectors for C/Ku-band and up to Ka-band missions. The previous EADS LAUNCH VEHICLES flight proven design was the one presented in the past at IAF and especially in 1994 and 1995, which was already at his time the in-orbit largest (3.5m x 2.6m) rigid reflector in the world for C/Ku-band missions. Operators require higher and higher performances for telecommunication antenna. And since the antenna performances are very dependent on the reflector ones, several developments of a new generation of large shaped reflectors started in the late 1990's. The first development consists in a new concept which particularly enhances the manufacturing easiness, the manufacturing distortion performances, the in-orbit distortion performances, the mass, the versatility versus a late change of coverage and versus implementation on different platforms. An extensive qualification test campaign has been successfully achieved in 2001, with outstanding performances: 30% mass gain and 50% gain of manufacturing and in-orbit accuracy with respect to previous 1995's design for the largest 3.5m x 2.6m reflectors. In parallel, developments have been led at EADS LAUNCH VEHICLES for large Ka-band mission antenna reflectors. These developments include single and dual shell reflectors with diameters up to 1.8 m. Furthermore, antenna requirements have recently led to more and more shaped profiles to fulfil RF needs. EADS LAUNCH VEHICLES has then started a development to verify the capability to manufacture very small curvature radius around 30mm, in order to provide the best product for the satellite missions. All the necessary analyses and material/processes characterisation tests have been carried out for these developments. Qualification tests have been performed or are under progress in profile measurements, sine vibration, acoustic

  8. Lunar eclipse observations reveal anomalous thermal performance of Apollo reflectors

    Science.gov (United States)

    Murphy, T. W.; McMillan, R. J.; Johnson, N. H.; Goodrow, S. D.

    2014-03-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ∼50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  9. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-05-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  10. An Optical Reflector System for the CANGAROO-II Telescope

    CERN Document Server

    Kawachi, A

    1999-01-01

    We have developed light and durable mirrors made of CFRP (Carbon Fiber Reinforced Plastics) laminates for the reflector of the new CANGAROO-II 7 m telescope. The reflector has a parabolic shape (F/1.1) with a 30 m^2 effective area which consists of 60 small spherical mirrors. The attitude of each mirror can be remotely adjusted by stepping motors. After the first adjustment work, the re ector offers a point image of about 0.14 degree (FWHM) on the optic axis. The telescope has been in operation since May 1999 with an energy threshold of ~ 300 GeV.

  11. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  12. Samus Toroid Installation Fixture

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  13. Mineral mining installation

    Energy Technology Data Exchange (ETDEWEB)

    Plevak, L.; Weirich, W.

    1982-04-20

    A longwall mineral mining installation has a longwall conveyor and a plurality of roof support units positioned side-by-side at the goaf side of the conveyor. The hydraulic appliances of the roof support units, such as their hydraulic props, hydraulic advance rams and hydraulic control valves, are supplied with pressurized hydraulic fluid from hydraulic supply lines which run along the goaf side of the conveyor. A plurality of flat, platelike intermediate members are provided at the goaf side of the conveyor. These intermediate members are formed with internal ducts for feeding the hydraulic fluid from the supply lines to the hydraulic appliances of the roof support units.

  14. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  15. Advanced reflector characterization with ultrasonic phased arrays in NDE applications.

    Science.gov (United States)

    Wilcox, Paul D; Holmes, Caroline; Drinkwater, Bruce W

    2007-08-01

    Ultrasonic arrays are increasingly widely used in nondestructive evaluation (NDE) due to their greater flexibility and potentially superior performance compared to conventional monolithic probes. The characterization of small defects remains a challenge for NDE and is of great importance for determining the impact of a defect on the integrity of a structure. In this paper, a technique for characterizing reflectors with subwavelength dimensions is described. This is achieved by post-processing the complete data set of time traces obtained from an ultrasonic array using two algorithms. The first algorithm is used to obtain information about reflector orientation and the second algorithm is used to distinguish between point-like reflectors that reflect uniformly in all directions and specular reflectors that have distinct orientations. Experimental results are presented using a commercial 64-element, 5-MHZ array on two aluminum test specimens that contain a number of machined slots and side-drilled holes. The results show that the orientation of 1-mm-long slots can be determined to within a few degrees and that the signals from 1-mm-long slots can be distinguished from that from a 1-mm-diameter circular hole. Techniques for quantifying both the orientation and the specularity of measured signals are presented and the effect of processing parameters on the accuracy of results is discussed.

  16. Large-scale Optimization of Contoured Beam Reflectors and Reflectarrays

    DEFF Research Database (Denmark)

    Borries, Oscar; Sørensen, Stig B.; Jørgensen, Erik;

    2016-01-01

    Designing a contoured beam reflector or performing a direct optimization of a reflectarray requires a mathematical optimization procedure to determine the optimum design of the antenna. A popular approach, used in the market-leading TICRA software POS, can result in computation times on the order...

  17. Consequences of nonorthogonality on the scattering properties of dihedral reflectors

    Science.gov (United States)

    Anderson, W. C.

    1987-10-01

    Small deviations from orthogonality can reduce drastically the backscattering radar cross section (RCS) of dihedral corner reflectors. The method of physical optics is used to calculate the magnitude of the reductions in RCS which result from modest departures from orthogonality. The theoretical results are then compared with experimental measurements which are found to be in very good agreement.

  18. Leaky Wave Enhanced Feeds for Multi-Beam Reflector Systems

    NARCIS (Netherlands)

    Neto, A.; Gerini, G.; Llombart, N.; Ettorre, M.; Maagt, P. de

    2011-01-01

    Abstract—This paper discusses the use of dielectric superlayers to shape the radiation pattern of focal plane feeds of a multi-beam reflector system. The shaping of the pattern is obtained by exciting a pair (TE/TM) of leaky waves that radiate incrementally as they propagate between the ground plane

  19. Optical Phased Array Using Guided Resonance with Backside Reflectors

    Science.gov (United States)

    Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  20. Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

    2011-09-01

    To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

  1. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be sui

  2. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  3. EBG Enhanced Reflector Feeds for Wide Angle Scanning Applications

    NARCIS (Netherlands)

    Neto, A.; Ettorre, M.; Gerini, G.; Maagt, P.J. de

    2008-01-01

    This work is an extension of a series of works on the use of dielectric super-layers to shape the radiation pattern of each feed composing a focal plane imaging array. Using dielectric super-layers, the spill over from the reflectors are reduced without increasing the dimensions of each aperture. Th

  4. Computer program aids dual reflector antenna system design

    Science.gov (United States)

    Firnett, P.; Gerritsen, R.; Jarvie, P.; Ludwig, A.

    1968-01-01

    Computer program aids in the design of maximum efficiency dual reflector antenna systems. It designs a shaped cassegrainian antenna which has nearly 100 percent efficiency, and accepts input parameters specifying an existing conventional antenna and produces as output the modifications necessary to conform to a shaped design.

  5. Beam spoiling a reflector antenna with conducting shim.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2012-12-01

    A horn-fed dish reflector antenna has characteristics including beam pattern that are a function of its mechanical form. The beam pattern can be altered by changing the mechanical configuration of the antenna. One way to do this is with a reflecting insert or shim added to the face of the original dish.

  6. Application of parabolic reflector on Raman analysis of gas samples

    Science.gov (United States)

    Yu, Anlan; Zuo, Duluo; Gao, Jun; Li, Bin; Wang, Xingbing

    2016-05-01

    Studies on the application of a parabolic reflector in spontaneous Raman scattering for low background Raman analysis of gas samples are reported. As an effective signal enhancing sample cell, photonic bandgap fiber (HC-PBF) or metallined capillary normally result in a strong continuous background in spectra caused by the strong Raman/fluorescence signal from the silica wall and the polymer protective film. In order to obtain enhanced signal with low background, a specially designed sample cell with double-pass and large collecting solid angle constructed by a parabolic reflector and a planar reflector was applied, of which the optical surfaces had been processed by diamond turning and coated by silver film and protective film of high-purity alumina. The influences of optical structure, polarization characteristic, collecting solid-angle and collecting efficiency of the sample cell on light propagation and signal enhancement were studied. A Raman spectrum of ambient air with signal to background ratio of 94 was acquired with an exposure time of 1 sec by an imaging spectrograph. Besides, the 3σ limits of detection (LOD) of 7 ppm for H2, 8 ppm for CO2 and 12 ppm for CO were also obtained. The sample cell mainly based on parabolic reflector will be helpful for compact and high-sensitive Raman system.

  7. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  8. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    Science.gov (United States)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  9. Control of active reflector system for radio telescope

    Science.gov (United States)

    Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao

    2016-10-01

    According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.

  10. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    Energy Technology Data Exchange (ETDEWEB)

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  11. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  12. Design of a plasmonic back reflector for silicon nanowire decorated solar cells.

    Science.gov (United States)

    Ren, Rui; Guo, Yongxin; Zhu, Rihong

    2012-10-15

    This Letter presents a crystalline silicon thin film solar cell model with Si nanowire arrays surface decoration and metallic nanostructure patterns on the back reflector. The nanostructured Ag back reflector can significantly enhance the absorption in the near-infrared spectrum. Furthermore, by inserting a ZnO:Al layer between the silicon substrate and nanostructured Ag back reflector, the absorption loss in the Ag back reflector can be clearly depressed, contributing to a maximum J(sc) of 28.4 mA/cm(2). A photocurrent enhancement of 22% is achieved compared with a SiNW solar cell with a planar Ag back reflector.

  13. Diagram of CNGS production complex

    CERN Multimedia

    Jean-Luc Caron

    2001-01-01

    Protons accelerated in the Super Proton Synchrotron (SPS) at CERN collide with a graphite target producing mainly pions and kaons, particles with short lifetimes, which decay in the decay tube, producing muon neutrinos. These neutrinos are expected to change into another type called the tau neutrino that will be looked for by a huge detector 732 km away in Gran Sasso, Italy.

  14. Digging the CNGS decay tunnel

    CERN Multimedia

    Patrice Loiez

    2002-01-01

    Products of the collision between a proton beam and a graphite target will pass through a horn containing an electric field that will produce a focused beam. These particles will decay into muon neutrinos within the tunnel that is being constructed in these images. The neutrinos will then travel 730 km to Gran Sasso in Italy where huge detectors will observe the beam to study a process called neutrino oscillation.

  15. Theoretical analysis of solar thermal collector and flat plate bottom reflector with a gap between them

    Directory of Open Access Journals (Sweden)

    Hiroshi Tanaka

    2015-11-01

    Full Text Available Augmentation of solar radiation absorbed on a flat plate solar thermal collector by a flat plate bottom reflector was numerically determined when there was a gap between the collector and reflector. The inclination of both the collector and reflector was assumed to be adjustable according to the season. A mirror-symmetric plane of the collector to the reflector was introduced, and a graphical model was proposed to calculate the amount of solar radiation reflected by the reflector and then absorbed on the collector. The performance was analyzed for three typical days at a latitude of 30°N. Solar radiation absorbed on the collector can be increased by the bottom reflector even if there is a gap between the collector and reflector. The optimum inclinations of both the collector and reflector are almost the same while the gap length is less than the lengths of the collector and reflector. However, the range of inclination of the reflector that can increase the solar radiation absorbed on the collector decreases with an increase in gap length, and the solar radiation absorbed on the collector rapidly decreased with an increase in the gap length when the reflector and/or collector were not set at a proper angle.

  16. Single and dual-Gregorian reflector antenna shaped beam far-field synthesis

    Science.gov (United States)

    Mehler, M. J.

    The direct far-field G.O. synthesis of shaped beam reflector antennas has recently been treated by Mehler, Tun and Adatia (1986). These authors use a synthesis technique which exploits complex coordinates and which is based on a method originally considered by Norris and Westcott (1976). They describe the synthesis of single reflector antennas which radiate both elliptical beams and European coverage patterns. Here this technique is extended to consider a class of dual reflector antennas which possess shaped main reflectors and conic subreflectors. An example is given of a Gregorian duel reflector antenna which radiates a cross-polar field significantly smaller than that radiated by single shaped reflector antennas. In addition, the behavior of the radiation pattern as a function of the reflector diameter is investigated.

  17. A proposal to use mercury as a reflector material for decoupled moderator system

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    It is important for a decoupled moderator system to obtain neutron pulses of a higher intensity with a narrower pulse width and a faster decay. To satisfy these requirements we propose to use mercury as a reflector material and report the neutronic performance of a mercury reflector system. The peak intensity is almost comparable to or even higher than that of the optimized lead reflector system and higher than the optimized Be reflector one. Furthermore the pulse shape is almost the same as that of optimized Be reflector system with a decoupling energy of several tens eV. A mercury reflector system does not require decouplers with a higher decoupling energy, liners nor cooling water, since mercury has a reasonably high neutron absorption cross section and could be used also as a coolant. Thus, the idea of the mercury reflector could bring about a higher neutronic performance with some engineering merits for a decoupled moderator system. (author)

  18. Optical analysis of a photovoltaic V-trough system installed in western India.

    Science.gov (United States)

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K

    2012-12-20

    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%.

  19. Gratings and Random Reflectors for Near-Infrared PIN Diodes

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David

    2007-01-01

    Crossed diffraction gratings and random reflectors have been proposed as means to increase the quantum efficiencies of InGaAs/InP positive/intrinsic/ negative (PIN) diodes designed to operate as near-infrared photodetectors. The proposal is meant especially to apply to focal-plane imaging arrays of such photodetectors to be used for near-infrared imaging. A further increase in quantum efficiency near the short-wavelength limit of the near-infrared spectrum of such a photodetector array could be effected by removing the InP substrate of the array. The use of crossed diffraction gratings and random reflectors as optical devices for increasing the quantum efficiencies of quantum-well infrared photodetectors (QWIPs) was discussed in several prior NASA Tech Briefs articles. While the optical effects of crossed gratings and random reflectors as applied to PIN photodiodes would be similar to those of crossed gratings and random reflectors as applied to QWIPs, the physical mechanisms by which these optical effects would enhance efficiency differ between the PIN-photodiode and QWIP cases: In a QWIP, the multiple-quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. A pair of crossed gratings or a random reflector scatters normally or nearly normally incident light so that a significant portion of it attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. A pair of crossed gratings or a random reflector on a PIN photodiode would also scatter light into directions away from the perpendicular to the focal plane. However, in this case, the reason for redirecting light away from the perpendicular is to increase the length of the

  20. The transient scattering mechanism of dipole array with reflector

    Institute of Scientific and Technical Information of China (English)

    Zhang Xue-Qin; Wang Jun-Hong; Li Zeng-Rui

    2008-01-01

    The transient backscattering mechanisms of a dipole array with reflector have been investigated from different aspects:time-domain,frequency-domain,and combined time-frequency domain,using 4×8 dipole arrays with reflector as an example.The data of scattering from the arrays under the incidence of Gaussian pulses are obtained by finite differential time domain method.The influences of the array structural parameters,incident wave parameters,and incident angles on the waveforms,spectrum,and time-frequency representations of the backseattered fields of the arrays are analysed and conclusions are drawn.From these characteristics and conclusions,it is possible to deduce the array structure inversely from the backscattered field.

  1. RATAN-600 - The world's biggest reflector at the 'cross roads'

    Science.gov (United States)

    Parijskij, Yurij N.

    1993-08-01

    The RATAN-600 new-technology telescope (NTT), which supplies about one-quarter of the observational material in Russia in the field of radio astronomy and more than 80 percent in the central, centimeter-decimeter range, is described. The RATAN-600 is the first multielement reflector radio telescope without any structure linking the surface elements. The functions normally performed by such structure are executed by the earth's surface. It is also the first radio telescope with a controlled-shape surface. In observations at different elevations about the horizon, the shape of its surface varies, remaining in the family of second-order surfaces. The RATAN-600 is also the first aperture-synthesis reflector-type telescope. The location of the radio telescope, its design, its modes of operation, and its future prospects are discussed.

  2. Conceptual Design of the Aluminum Reflector Antenna for DATE5

    Science.gov (United States)

    Qian, Yuan; Kan, Frank W.; Sarawit, Andrew T.; Lou, Zheng; Cheng, Jing-Quan; Wang, Hai-Ren; Zuo, Ying-Xi; Yang, Ji

    2016-08-01

    DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.

  3. Mineral mining installation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.; Rosenberg, H.; Weirich, W.

    1981-12-29

    A longwall mineral mining installation has a conveyor and a plurality of roof support units positioned side-by-side on the goaf side of the conveyor. Each roof support unit has a roof shield having an advanceable shield extension. Each unit has a first hydraulic ram for extending its shield extension, and a second hydraulic ram for advancing the conveyor. The extension of each first ram is controlled in dependence upon the retraction of one of the second rams (Either the second ram of the same unit or that of an adjacent unit). This control is effected by controlling the supply of pressurized hydraulic fluid to the first rams. In one embodiment this is carried out by a control valve which has a spring-loaded plunger which engages with a series of equispaced cams on the movable cylinder of the associated second ram. In another embodiment, the piston rods of the rams are provided with series of equispaced magnets. The cylinders of the rams are provided with sensors, which sense the magnets and generate control signals. A control box is provided to direct the control signals to control valves associated with the rams, so that the first rams are extended by the same distance as that through which the second rams are retracted.

  4. Mineral mining installation

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.

    1984-01-24

    A longwall mineral mining installation has a conveyor and a plurality of roof support units positioned side-by-side on the goaf side of the conveyor. Each roof support unit has a roof shield having an advanceable shield extension. Each unit has a first hydraulic ram for extending its shield extension, and a second hydraulic ram for advancing the conveyor. The extension of each first ram is controlled in dependence upon the retraction of one of the second rams (either the second ram of the same unit or that of an adjacent unit). This control is effected by controlling the supply of pressurized hydraulic fluid to the first rams. In one embodiment this is carried out by a control valve which has a springloaded plunger which engages with a series of equispaced cams on the movable cylinder of the associated second ram. In another embodiment, the piston rods of the rams are provided with series of equispaced magnets. The cylinders of the rams are provided with sensors, which sense the magnets and generate control signals. A control box is provided to direct the control signals to control valves associated with the rams, so that the first rams are extended by the same distance as that through which the second rams are retracted.

  5. ROS Installation and Commissioning

    CERN Multimedia

    Gorini, B

    The ATLAS Readout group (a sub-group of TDAQ) has now completed the installation and commissioning of all of the Readout System (ROS) units. Event data from ATLAS is initially handled by detector specific hardware and software, but following a Level 1 Accept the data passes from the detector specific Readout Drivers (RODs) to the ROS, the first stage of the central ATLAS DAQ. Within the final ATLAS TDAQ system the ROS stores the data and on request makes it available to the Level 2 Trigger (L2) processors and to the Event Builder (EB) as required. The ROS is implemented as a large number of PCs housing custom built cards (ROBINs) and running custom multi-threaded software. Each ROBIN card (shown below) contains buffer memories to store the data, plus a field programmable gate array ( FPGA ) and an embedded PowerPC processor for management of the memories and data requests, and is implemented as a 64-bit 66 MHz PCI card. Both the software and the ROBIN cards have been designed and developed by the Readout g...

  6. Prestack exploding reflector modeling and migration in TI media

    KAUST Repository

    Wang, H.

    2014-01-01

    Prestack depth migration in anisotropic media, especially those that exhibit tilt, can be costly using reverse time migration (RTM). We present two-way spectral extrapolation of prestack exploding reflector modeling and migration (PERM) in acoustic transversely isotropic (TI) media. We construct systematic ways to evaluate phase angles and phase velocities in dip oriented TI (DTI), vertical TI (VTI) and tilted TI (TTI) media. Migration results from the Marmousi VTI model and the BP2007 TTI model show the feasibility of our approach.

  7. Parabolic dish reflectors for solar applications approximated by simple surfaces

    OpenAIRE

    Broman, Lars; Broman, Arne

    1996-01-01

    Two different concentrating mirrors have been constructed that resemble parabolic dish reflectors. Both mirrors are made of slightly curved strips of flat, bendable material. The strips of the most simplified mirror have only large-radius circles and straight lines as boundaries. The necessary equations for making the mirrors have been derived. Also a simple way to make a stiff, lightweight frame and support for the mirror strips has been developed. Models of the mirrors have been built and s...

  8. Grating-assisted silicon-on-insulator racetrack resonator reflector.

    Science.gov (United States)

    Boeck, Robert; Caverley, Michael; Chrostowski, Lukas; Jaeger, Nicolas A F

    2015-10-05

    We experimentally demonstrate a grating-assisted silicon-on-insulator (SOI) racetrack resonator reflector with a reflect port suppression of 10.3 dB and no free spectral range. We use contra-directional grating couplers within the coupling regions of the racetrack resonator to enable suppression of all but one of the peaks within the reflect port spectrum as well as all but one of the notches within the through port spectrum.

  9. Design and testing for novel joint for wave reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Tedd, J. [SPOK ApS, Copenhagen (Denmark); Friis-Madsen, E. [Loewenmark, Copenhagen (Denmark); Frigaard, P. [Aalborg Univ., Aalborg (Denmark)

    2005-07-01

    Construction of a novel joint between the main platform and the wave reflectors of the Wave Dragon has begun. This paper describes the design and testing process behind this. Tests conducted in the facilities at Aalborg University highlighted large motions, and similar force magnitudes to the previous design. This testing has influenced the design and allowed construction to begin on refitting the joint to the 1:4.5 scale prototype Wave Dragon. (au)

  10. Theoretical analysis of a parabolic torus reflector antenna with multibeam

    Institute of Scientific and Technical Information of China (English)

    杜彪; 杨可忠; 钟顺时

    1995-01-01

    The parametric equations and the formulas of unit normal vector and surface element for aparabolic torus reflector antenna are derived and the mechanism of producing multibeam is proposed, Based on physical optics, the radiation pattern formulas for the antenna are given, with which the effects of geometric parameters on the antenna are studied. The good agreement between the calculated patterns and the measured ones shows that the theory is helpful for designing parabolic torus antennas.

  11. A SAW resonator with two-dimensional reflectors.

    Science.gov (United States)

    Solal, Marc; Gratier, Julien; Kook, Taeho

    2010-01-01

    It is known that a part of the loss of leaky SAW resonators is due to radiation of acoustic energy in the bus-bars. Many researchers are working on so-called phononic crystals. A 2-D grating of very strong reflectors allows these devices to fully reflect, for a given frequency band, any incoming wave. A new device based on the superposition of a regular SAW resonator and a 2-D periodic grating of reflectors is proposed. Several arrangements and geometries of the reflectors were studied and compared experimentally on 48 degrees rotated Y-cut lithium tantalate. In particular, a very narrow aperture (7.5 lambda) resonator was manufactured in the 900 MHz range. Because of its small size, this resonator has a resonance Q of only 575 when using the standard technology, whereas a resonance Q of 1100 was obtained for the new device without degradation of the other characteristics. Because of the narrow aperture, the admittance of the standard resonator showed a very strong parasitic above the resonance frequency, whereas this effect is drastically reduced for the new device. These results demonstrate the feasibility of the new approach.

  12. Reflector cells in the skin of Octopus dofleini.

    Science.gov (United States)

    Brocco, S L; Cloney, R A

    1980-01-01

    The cells that form the reflecting layer beneath the chromatophore organs of the octopus are conspicuous elements of its dermal chromatic system. Each flattened, ellipsoidal reflector cell in this layer bears thousands of peripherally radiating, discoidal, reflecting lamellae. Each lamella consists of a proteinaceous reflecting platelet enveloped by the plasmalemma. The lamellae average 90 nm in thickness and have variable diameters with a maximum of about 1.7 micrometer. Sets of reflecting lamellae are organized into functional units called reflectosomes. The lamellae in each reflectosome form a parallel array - similar to a stack of coins. The average number of lamellae in a reflectosome is 11. Adjacent lamellae are uniformly separated by an extracellular gap of about 60 nm in embedded specimens. The reflectosomes are randomly disposed over the surface of the reflector cell. The observed organization of the reflectosomes is compatible with its role as a quarter-wave thin-film interference device. The alternating reflecting lamellae and intelamellar spaces constitute layers of high and low refractive indices. Using measurements of the thicknesses and refractive indices of the platelets and interlamellar spaces, we have calculated that the color of reflected light should be blue - green, as seen in vivo. The sequence of events leading to the definitive arrangement of the reflectosomes is uncertain. The reflector cells of O. dofleini are compared and contrasted with the iridophores of squid.

  13. Shape control of distributed parameter reflectors using sliding mode control

    Science.gov (United States)

    Andoh, Fukashi; Washington, Gregory N.; Utkin, Vadim

    2001-08-01

    Sliding mode control has become one of the most powerful control methods for variable structure systems, a set of continuous systems with an appropriate switching logic. Its robustness properties and order reduction capability have made sliding mode control one of the most efficient tools for relatively higher order nonlinear plants operating under uncertain conditions. Piezo-electric materials possess the property of creating a charge when subjected to a mechanical strain, and of generating a strain when subjected to an electric field. Piezo-electric actuators are known to have a hysteresis due to the thermal motion and Coulomb interaction of Weiss domains. Because of the thermal effect the hysteresis of piezo-electric actuators is reproducible only with some uncertainty in experiments. The robustness of sliding mode control under uncertain conditions has an advantage in handling the hysteresis of piezo-electric actuators. In this research sliding mode control is used to control the shape of one- and two-dimensionally curved adaptive reflectors with piezo-electric actuators. Four discrete linear actuators for the one-dimensionally curved reflector and eight actuators for the two-dimensionally curved reflector are assumed.

  14. Design of Ring-Focus Elliptical Beam Reflector Antenna

    Directory of Open Access Journals (Sweden)

    Jun-Mo Wu

    2016-01-01

    Full Text Available A new method for the design of elliptical beam reflector antenna is presented in this paper. By means of the basic principles of ring-focus antenna, a circularly symmetric feed and two specially shaped reflectors are used to form an elliptical beam antenna. Firstly, the design process of this ring-focus elliptical beam antenna is studied in detail. Transition function is defined and used in the design process. Then, combining the needs of practical engineering, a ring-focus elliptical beam reflector antenna is manufactured and tested. The gain at center frequency (12 GHz is 37.7 dBi with an aperture efficiency of 74.6%. 3 dB beam-width in φ=0° and φ=90° plane is 2.6° and 1.4°, respectively. Ratio of the elliptical beam (ratio of 3 dB beam-width in φ=0° and φ=90° plane is 2.6/1.4=1.85, substantially equal to designed ratio 2. Simulating and testing results match well, which testify the effectiveness of this design method.

  15. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.

    Science.gov (United States)

    Koyama, Daisuke; Nakamura, Kentaro

    2010-05-01

    Ultrasonic manipulation of small particles, including liquid droplets, over long distances is discussed. It is well known that particles can be trapped at the nodal points of an acoustic standing wave if the particles are much smaller than the wavelength of the standing wave. We used an experimental setup consisting of a 3-mm-thick, 605-mm-long duralumin bending vibrating plate and a reflector. A bolt-clamped Langevin transducer with horn was attached to each end of the vibrating plate to generate flexural vibrations along the plate. A plane reflector with the same dimensions as the vibrating plate was installed parallel to the plate at a distance of approximately 17 mm to generate an ultrasonic standing wave between them and to trap the small particles at the nodal lines. The acoustic field and acoustic radiation force between the vibrator and reflector were calculated by finite element analysis to predict the positions of the trapped particles. The sound pressure distribution was measured experimentally using a scanning laser Doppler vibrometer. By controlling the driving phase difference between the two transducers, a flexural traveling wave can be generated along the vibrating plate, and the vertical nodal lines of the standing wave and the trapped particles can be moved. The flexural wave was excited along the vibrator at 22.5 kHz. A lattice standing wave with a wavelength of 35 mm in the length direction could be excited between the vibrator and the reflector, and polystyrene spheres with diameters of several millimeters could be trapped at the nodal lines of the standing wave. The experimental and calculated results showed good agreement for the relationship between the driving phase difference and the positions of the trapped particles. Noncontact transportation of the trapped particles over long distances could be achieved by changing the driving phase difference. The position of the trapped particles could be controlled to an accuracy of 0.046 mm/deg. An

  16. Interferometric SAR monitoring of the Vallcebre landslide (Spain using corner reflectors

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2013-04-01

    Full Text Available This paper describes the deformation monitoring of the Vallcebre landslide (Eastern Pyrenees, Spain using the Differential Interferometric Synthetic Aperture Radar (DInSAR technique and corner reflectors (CRs. The fundamental aspects of this satellite-based deformation monitoring technique are described to provide the key elements needed to fully understand and correctly interpret its results. Several technical and logistic aspects related to the use of CRs are addressed including an analysis of the suitability of DInSAR data to monitor a specific landslide, a discussion on the choice of the type of CRs, suggestions for the installation of CRs and a description of the design of a CR network. This is followed by the description of the DInSAR data analysis procedure required to derive deformation estimates starting from the main observables of the procedure, i.e., the interferometric phases. The main observation equation is analysed, discussing the role of each phase component. A detailed discussion is devoted to the phase unwrapping problem, which has a direct impact on the deformation monitoring capability. Finally, the performance of CRs for monitoring ground displacements has been tested in the Vallcebre landslide (Eastern Pyrenees, Spain. Two different periods, which provide interesting results to monitor over time the kinematics of different parts of the considered landslide unit, are analysed and described.

  17. Interferometric SAR monitoring of the Vallcebre landslide (Spain) using corner reflectors

    Science.gov (United States)

    Crosetto, M.; Gili, J. A.; Monserrat, O.; Cuevas-González, M.; Corominas, J.; Serral, D.

    2013-04-01

    This paper describes the deformation monitoring of the Vallcebre landslide (Eastern Pyrenees, Spain) using the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique and corner reflectors (CRs). The fundamental aspects of this satellite-based deformation monitoring technique are described to provide the key elements needed to fully understand and correctly interpret its results. Several technical and logistic aspects related to the use of CRs are addressed including an analysis of the suitability of DInSAR data to monitor a specific landslide, a discussion on the choice of the type of CRs, suggestions for the installation of CRs and a description of the design of a CR network. This is followed by the description of the DInSAR data analysis procedure required to derive deformation estimates starting from the main observables of the procedure, i.e., the interferometric phases. The main observation equation is analysed, discussing the role of each phase component. A detailed discussion is devoted to the phase unwrapping problem, which has a direct impact on the deformation monitoring capability. Finally, the performance of CRs for monitoring ground displacements has been tested in the Vallcebre landslide (Eastern Pyrenees, Spain). Two different periods, which provide interesting results to monitor over time the kinematics of different parts of the considered landslide unit, are analysed and described.

  18. ANALISIS PERBANDINGAN OUTPUT DAYA LISTRIK PANEL SURYA SISTEM TRACKING DENGAN SOLAR REFLECTOR

    Directory of Open Access Journals (Sweden)

    I B Kd Surya Negara

    2016-03-01

    Full Text Available Indonesia merupakan negara beriklim tropis yang memiliki intensitas radiasi matahari yang sangat besar dan intensitas radiasi tersebut berpotensi untuk dikembangkan menjadi Pembangkit Listrik Tenaga Surya. Efisiensi dari panel surya saat ini masih perlu pertimbangan lebih lanjut. Efisiensi panel surya yang rendah ini, berpengaruh pada hasil output daya listrik yang dihasilkan. Upaya untuk meningkatkan output daya listrik panel surya, yaitu dengan sistem tracking dan solar reflector. Penelitian ini bertujuan untuk mengetahui output daya listrik yang lebih maksimal. Metode dalam penelitian ini menggunakan sistem tracking yang pergerakannya berdasarkan waktu dan menggunakan solar reflector dengan cermin datar dan sudut reflector yang berbeda. Hasil dari perbandingan sistem tracking dengan solar reflector yaitu solar reflector menghasilkan output daya listrik lebih besar dibandingan dengan sistem tracking, dimana solar reflector menghasilkan output daya listrik sebesar 0.1224 Watt dan sistem tracking sebesar 0.1136 Watt.

  19. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    DEFF Research Database (Denmark)

    Muhrer, G.; Schonfeldt, T.; Iverson, E. B.

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired......, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability...... of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains...

  20. Impact of beryllium reflector ageing on Safari–1 reactor core parameters / L.E. Moloko

    OpenAIRE

    Moloko, Lesego Ernest

    2011-01-01

    The build–up of 6Li and 3He, that is, the strong thermal neutron absorbers or the so called "neutron poisons", in the beryllium reflector changes the physical characteristics of the reactor, such as reactivity, neutron spectra, neutron flux level, power distribution, etc.; furthermore,gaseous isotopes such as 3H and 4He induce swelling and embrittlement of the reflector. The SAFARI–1 research reactor, operated by Necsa at Pelindaba in South Africa, uses a beryllium reflector on...

  1. Neutronic optimization of premoderator and reflector for decoupled hydrogen moderator in 1 MW spallation neutron source

    CERN Document Server

    Harada, M; Kai, T; Sakata, H; Watanabe, N; Ikeda, Y

    2002-01-01

    For a decoupled liquid-hydrogen moderator, optimization studies have been performance on a premoderator and reflector materials (Pb, Be, Fe and Hg) together with several decoupling energies to realize a higher neutronic performance. The result indicated that, among four reflector materials mentioned above, the best neutronic performance could be obtained by adopting a Pb reflector with an optimized premoderator and an appropriate decoupling energy. (author)

  2. Prediction of scattering cross-section reductions due to plate orthogonality errors in trihedral radar reflectors

    Science.gov (United States)

    Keen, K. M.

    1983-02-01

    A method is developed for the determination of the reduction in scattering cross-section levels due to nonorthogonal alignment of the plates in trihedral radar corner reflectors. This method is based on the technique for finding the effective error at any direction of incidence. The method can be applied to any regular reflector shape and is accurate for any incident ray direction in the reflector main beam zone. It is determined that this method gives good agreement with experimental results for a wide range of reflector sizes, although the analysis is not exact.

  3. Analysis and Design of a New Shaped Spherical Reflector Antenna with a Horn Feed

    Institute of Scientific and Technical Information of China (English)

    LIN Yan; HUANG Bin; ZHU Quan-fu; YUAN Yuan

    2009-01-01

    A design method of a new shaped spherical reflector antenna with a horn feed for wide-angle scanning is presented, in which the horn's phase center need not be found out and its optimal position can be determined. It is found from numerical calculation that the shaped spherical reflector antenna has better electrical performance than that of the spherical reflector antenna, at the maximum gain value under the conditions of the same feed and reflector aperture, and can be used as a wide angle searching antenna.

  4. Characterization of a Bifacial Photovoltaic Panel Integrated with External Diffuse and Semimirror Type Reflectors

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Silicon wafer accounts for almost one-half the cost of a photovoltaic (PV panel. A bifacial silicon solar cell is attractive due to its potential of enhancing power generation from the same silicon wafer in comparison with a conventional monofacial solar cell. The bifacial PV cell is able to capture solar radiation by back surface. This ability requires a suitable reflector appropriately oriented and separated from the cell’s rear surface. In order to optimize the bifacial solar cell performance with respect to an external back surface reflector, diffuse and semimirror reflectors were investigated at various angles and separations from the back surface. A simple bifacial solar panel, consisting of four monocrystalline Si solar cells, was designed and built. Reflection from the rear surface was provided by an extended semimirror and a white-painted diffuse reflector. Maximum power generation was observed at 30° with respect to ground for the semimirror reflector and 10° for diffuse reflector at an optimized reflector-panel separation of 115 mm. Output power enhancement of 20% and 15% from semimirror and diffuse reflectors, respectively, were observed. This loss from diffuse reflector is attributed to scattering of light beyond the rear surface capture cross-section of the bifacial solar panel.

  5. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Science.gov (United States)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  6. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Muhrer, G. [European Spallation Source, Lund (Sweden); Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Schönfeldt, T. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden); Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mocko, M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN (United States); Hügle, Th.; Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Klinkby, E.B. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden)

    2016-09-11

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  7. Reflector and Shield Material Properties for Project Prometheus

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  8. A Van Atta reflector consisting of half-wave dipoles

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1966-01-01

    The reradiation pattern of a passive Van Atta reflector consisting of half-wave dipoles is investigated. The character of the reradiation pattern first is deduced by qualitative and physical considerations. Various types of array elements are considered and several geometrical configurations...... of these elements are outlined. Following this, an analysis is made of the reradiation pattern of a linear Van Atta array consisting of four equispaced half-wave dipoles. The general form of the reradiation pattern is studied analytically. The influence of scattering and coupling is determined and the dependence...

  9. Q-switched distributed-Bragg-reflector ytterbium laser

    Science.gov (United States)

    Ouslimani, H.; Bastard, L.; Broquin, J.-E.

    2013-03-01

    A passively Q-switched distributed-Bragg-reflector laser made in glass integrated optics technology, and operating around 1030 nm, is designed, realized and investigated. The laser is formed by an ion-exchanged single mode waveguide realized in an Ytterbium doped phosphate glass. The Q-switching behavior is obtained by hybridizing a saturable absorber film on the waveguides. This allows the realization of a short and simple laser cavity having both pulsed and a narrow linewidth emission. Its experimental characterization leads to the observation of a stable repetition rate of 12.5 kHz and a stable pulse duration of 9.2 ns FWHM.

  10. The dihedral corner reflector as a reference target

    Science.gov (United States)

    Corona, P.; Ferrara, G.; Gennarelli, C.

    The radiation properties of a dihedral corner reflector are analyzed in detail in order to assess the effectiveness of such a device as a standard reference in experimental determinations of radar cross section. A short review of reference targets is presented, and the physical optics approach and the images method are used to develop a mathematical model for the dihedral corner. Results from a computer program implemented to evaluate the field backscattered from the corner and to compute patterns for various dihedral sizes are reported. It is concluded that the dihedral corner can be conveniently used as a reference target by scanning in a plane containing the corner wedge.

  11. Photoluminescence and X-ray Diffraction of Distributed Bragg Reflector

    Institute of Scientific and Technical Information of China (English)

    LI Lin; LI Yong-da; LIU Wen-li; LU Bin; JU Guo-xian; ZHANG Yong-ming; HAO Yong-qin; SU Wei; ZHONG Jing-chang

    2004-01-01

    Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double- crystal X- ray diffraction measurement. The expected high quality epitaxial DBR structure was verified. In the X- ray double- crystal rocking curves of DBR the zeroth- order peak, the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed. The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.

  12. VSHOT: a tool for characterizing large, imprecise reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.A.; Neal, D.R.; Gruetzner, J.K.; Houser, R.M.; Edgar, R.M. [Sandia National Labs., Albuquerque, NM (United States); Wendelin, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-11-01

    A prototype Video Scanning Hartmann Optical Tester (VSHOT) has been developed to characterize the optics of dish-type solar concentrators. VSHOT is a flexible platform that may characterize any large reflector with a focal length over diameter ratio (f{number_sign}) greater than 0. 45, and RMS optical error in the 0. I - I 0 milliradian range. The VSHOT hardware, software, and operation are described. Measurement uncertainty and preliminary test results are discussed. Another potential application being explored for the VSHOT is the quality assurance of slumped-glass automobile windshields. Preliminary test results from a reference optic and a section of a windshield are presented.

  13. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  14. Solar Installation Labor Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  15. DAQ INSTALLATION IN USC COMPLETED

    CERN Multimedia

    A. Racz

    After one year of work at P5 in the underground control rooms (USC55-S1&S2), the DAQ installation in USC55 is completed. The first half of 2006 was dedicated to the DAQ infrastructures installation (private cable trays, rack equipment for a very dense cabling, connection to services i.e. water, power, network). The second half has been spent to install the custom made electronics (FRLs and FMMs) and place all the inter-rack cables/fibers connecting all sub-systems to central DAQ (more details are given in the internal pages). The installation has been carried out by DAQ group members, coming from the hardware and software side as well. The pictures show the very nice team spirit !

  16. Countering Terrorism on Military Installations

    Science.gov (United States)

    1977-07-29

    enforcement purposes. Installation Provost Marshal should review the installation Tables of Distribucion and Allowances to determine commercial items of law...terrorist acts occurring within the 50 U.S. states, territor- ies, and possessions (including the Panama Canal Zone) rests with the Federal Bureadu...nence of the threat is difficult to predict. Today I estimate the threat as relatively low. S- In the Panama Canal Zone there could be three threats. One

  17. Suitcase to Audit Solar Installations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Barcala, J.M.; Blas de, J.; Molinero, A.; Navarrete, J.J.; Yuste, C.

    2001-07-01

    The audit suitcase was proposed by BESEL to introduce in the solar energy market a new tool which can make an evaluation of solar installation efficiency. Non-invasive sensors and low power components permit both easy installation of the devices and data storage for a period as long as ten days. This project was funded by the contract JOR3-CT98-7030 of the European Union JOULE III program. (Author)

  18. The Status of LIGO Installation and Commissioning

    Science.gov (United States)

    Raab, Frederick J.

    2002-12-01

    LIGO is engaged in installation and commissioning in Hanford and Livingston. We are commissioning the first instance of any subsystem installed, applying lessons learned to later installations. We have installed all seismic stacks, installed lasers and input optics at both observatories and we have operated both of the 2-km Fabry-Perot cavities at Hanford, with lock times up to 10 hrs.

  19. Design constraints on Cherenkov telescopes with Davies-Cotton reflectors

    CERN Document Server

    Bretz, Thomas

    2013-01-01

    This paper discusses the construction of high-performance ground-based gamma-ray Cherenkov telescopes with a Davies-Cotton reflector. For the design of such telescopes, usually physics constrains the field-of-view, while the photo-sensor size is defined by limited options. Including the effect of light-concentrators in front of the photo sensor, it is demonstrated that these constraints are enough to mutually constrain all other design parameters. The dependability of the various design parameters naturally arises once a relationship between the value of the point-spread functions at the edge of the field-of-view and the pixel field-of-view is introduced. To be able to include this constraint into a system of equations, an analytical description for the point-spread function of a tessellated Davies-Cotton reflector is derived from Taylor developments and ray-tracing simulations. Including higher order terms renders the result precise on the percent level. Design curves are provided within the typical phase sp...

  20. Some Broadband Calculated RF Scatter from the Trihedral Corner Reflector

    Science.gov (United States)

    Mokole, E. L.; Gold, B. T.; Taylor, D. J.; Sarkar, T. K.; Hansen, J. P.

    To understand the target-like artifacts in radar returns called sea spikes 1 that are induced by ocean scatter,2 the WIPL-D3 and WIPL-DP4 electromagnetics codes are used to calculate monostatic and bistatic radar cross sections (RCSs) of a trihedral comer reflector at 1.5, 3.8, and 7 GHz for vertically and horizontally polarized fields. These computations are part of a larger effort to provide theoretical comparisons for recent scatter data from a 1-m trihedral reflector that was collected over 1.9 to 11.5 GHz in the open ocean with a short-pulse ultrawideband (UWB) system. Over the last eight years, this UWB experimental radar, called the microwave microscope (MWM), has been used in a series of measurements at the Atlantic Underwater Test and Experiment Center (AUTEC) in the Bahamas to investigate the low-elevation (grazing angles less than 4°)scatter of RF signals from the open ocean in an attempt to understand and mitigate the sea-spike phenomenon.

  1. Soiling and Cleaning of Polymer Film Solar Reflectors

    Directory of Open Access Journals (Sweden)

    Christopher Sansom

    2016-11-01

    Full Text Available This paper describes the accelerated ageing of commercially available silvered polymer film by contact cleaning using brushes and water in the presence of soiling created by dust and sand particles. These conditions represent cleaning regimes in real concentrating solar power (CSP solar fields in arid environments, where contact cleaning using brushes and water is often required to clean the reflecting surfaces. Whilst suitable for glass reflectors, this paper discusses the effects of these established cleaning processes on the optical and visual characteristics of polymer film surfaces, and then describes the development of a more benign but effective contact cleaning process for cleaning polymer reflectors. The effects of a range of cleaning brushes are discussed, with and without the presence of water, in the presence of sand and dust particles from selected representative locations. The experiments were repeated using different experimental equipment at Plataforma Solar de Almería (PSA in Spain and Cranfield University in the UK. The results highlight differences that are attributable to the experimental methods used. Reflectance measurements and visual inspection show that a soft cleaning brush with a small amount of water, used in a cleaning head with both linear and rotational motion, can clean polymer film reflecting surfaces without inflicting surface damage or reducing specular reflectance.

  2. Iterative alignment of reflector segments using a laser tracker

    Science.gov (United States)

    Cabrera Cuevas, Lizeth; Lucero Alvarez, Maribel; Leon-Huerta, Andrea; Hernandez Rios, Emilio; Hernandez Lázaro, Josefina; Tzile Torres, Carlos; Castro Santos, David; Gale, David M.; Wilson, Grant; Narayanan, Gopal; Smith, David R.

    2013-04-01

    The Large Millimeter Telescope (LMT) is a 50m diameter millimetre-wave radio telescope situated on the summit of Sierra Negra, Puebla, at an altitude of 4600 meters. The reflector surface of the LMT currently employs84 segments arranged in three annular rings. Each segment is comprised of 8 precision composite subpanels located on five threaded adjusters. During the current primary surface refurbishment, individual segments are aligned in the telescope basement using a laser tracker. This allows increased spatial resolution in shorter timescales, resulting in the opportunity for improved logistics and increased alignment precision. To perform segment alignment an iterative process is carried out whereby the surface is measured and subpanel deformations are corrected with the goal of 40 microns RMS. In practice we have been able to achieve RMS errors of almost 20 microns, with 35 microns typical. The number of iterations varies from around ten to over 20, depending mainly on the behaviour of the mechanical adjusters that support the individual subpanels. Cross marks scribed on the reflector surface are used as fiducials, because their positions on the paraboloid are well known. Measurement data is processed using a robust curve fitting algorithm which provides a map of the surface showing the subpanel deviations. From this map the required subpanel adjuster movements are calculated allowing surface improvement in a stepwise manner.

  3. Ultraviolet reflector materials for solar detoxification of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  4. Key technologies for high-accuracy large mesh antenna reflectors

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  5. The ATALANTE installation; L'installation atalante

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    In the Atalante installation of the CEA/Marcoule, researches on the reprocessing of irradiated fuel from nuclear reactors, are performed. In the framework of the law (30 december 1991) on the public policy concerning the radioactive wastes management, the ATALANTE project has to proposed solutions for the long-dated management of these wastes and to help the reprocessing industry. The specifications of the installation and the research programs are detailed with a special interest for the glass durability and the plutonium purifying cycle. The public policy stakes are also recalled. (A.L.B.)

  6. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    Science.gov (United States)

    Kang, Jung Kil; Hah, Chang Joo; Cho, Sung Ju; Seong, Ki Bong

    2016-01-01

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4˜5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO2 fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  7. Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Uepping, Johannes; Bielawny, Andreas; Wehrspohn, Ralf B. [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Fraunhofer-Institute for Mechanics of Materials, Halle (Germany); Beckers, Thomas; Carius, Reinhard; Rau, Uwe [Institute of Energy and Climate Research 5 - Photovoltaics, Forschungszentrum Juelich GmbH, Juelich (Germany); Fahr, Stefan; Rockstuhl, Carsten; Lederer, Falk [Institute of Condensed Matter Theory and Solid State Optics and Abbe Center of Photonics, Friedrich-Schiller-Universitaet Jena (Germany); Kroll, Matthias; Pertsch, Thomas [Institute of Applied Physics, Friedrich-Schiller-Universitaet Jena (Germany); Steidl, Lorenz; Zentel, Rudolf [Institute of Organic Chemistry, Johannes Gutenberg-Universitaet Mainz (Germany)

    2011-09-08

    A three-dimensional photonic crystal intermediate reflector for enhanced light trapping in tandem solar cells is presented. The intermediate reflector consists of a transparent and conductive ZnO:Al inverted opal sandwiched in between the top amorphous silicon and bottom microcrystalline silicon cell. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon oxid

  9. Self-Mixing Fringes of Vertical-Cavity Surface-Emitting Lasers under Dual Reflector Feedback

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiang; ZHANG Shu-Lian; ZHANG Lian-Qing; TAN Yi-Dong

    2006-01-01

    The self-mixing fringes which shift due to every one-twentieth wavelength displacement of the target are observed.Taking advantage of the dual reflectors in the external cavity of lasers, the resolution of the sensors has been improved by 10 times. The role of the each reflector has been discussed in detail.

  10. Leaky-Wave Slot Array Antenna Fed by a Dual Reflector System

    NARCIS (Netherlands)

    Maci, S.; Ettorre, M.; Neto, A.; Gerini, G.

    2008-01-01

    A leaky-wave slot array antenna fed by a dual offset Gregorian reflector system is realized by pins in a parallel plate waveguide. The radiating part of the antenna is composed by parallel slots etched on one side of the same parallel plate waveguide. The dual offset Gregorian reflector system is fe

  11. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Reflectorized Bicycle Wheel Rim Abrasion... HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part 1512—Reflectorized Bicycle Wheel Rim Abrasion Test Device EC03OC91.074...

  12. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Science.gov (United States)

    Bakry, A.; Abdulrhmann, S.; Ahmed, M.

    2016-06-01

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  13. Concepts for polarising sheets & "dual-gridded" reflectors for circular polarisation

    NARCIS (Netherlands)

    Albani, M.; Balling, P.; Datashvili, L.; Gerini, G.; Ingvarson, P.; Pontoppidan, K.; Sabbadini, M.; Sjöberg, D.; Skokic, S.; Vecchi, G.

    2010-01-01

    C-, Ku- and Ka-band communications and broadcast satellites use so-called dual-gridded reflector antennas for linear polarisation to provide independent reflector surfaces and/or independent feeds for the two orthogonal polarisations. This paper describes initial work to extend this concept to circu

  14. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    Science.gov (United States)

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties.

  15. Leaky wave enhanced feeds for multibeam reflectors to be used for telecom satellite based links

    NARCIS (Netherlands)

    Neto, A.; Ettorre, M.; Gerini, G.; Maagt, P. de

    2012-01-01

    The use of dielectric super-layers for shaping the radiation pattern of focal plane feeds of a multibeam reflector system is discussed. Using the super-layers, it is possible to reduce the spillover from the reflectors without increasing the dimension of each aperture. The effect has been demonstrat

  16. Shaped reflector antenna analysis using the Jacobi-Bessel series. [design for space and satellite communication

    Science.gov (United States)

    Rahmat-Samii, Y.; Galindo-Israel, V.

    1980-01-01

    A vector radiation integral is derived for an offset shaped reflector illuminated by an arbitrarily located and oriented source. A procedure for expressing the integral in terms of a series of the Fourier transforms of an effective aperture distribution is discussed. The Jacobi-Bessel series is used to evaluate the Fourier transforms. Numerical results are presented for different reflector configurations and source locations.

  17. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Bakry, A. [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia); Abdulrhmann, S. [Jazan University, 114, Department of Physics, Faculty of Sciences (Saudi Arabia); Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia)

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  18. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon oxid

  19. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Zheng WenJun

    2009-01-01

    Full Text Available Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  20. Effect of disc reflectors on radiation impedance of short-backfire antenna

    Science.gov (United States)

    Marougi, S. D.

    1982-02-01

    Using near-field analysis, the influence of large and small disc reflectors used in short-backfire antennas on the radiation impedance of a dipole feed element has been investigated. The effect of each reflector is evaluated separately, and the overall change in the radiation impedance of the dipole is predicted.

  1. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr [KINGS, 658-91, Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan, 689-882 (Korea, Republic of); Cho, Sung Ju, E-mail: sungju@knfc.co.kr; Seong, Ki Bong, E-mail: kbseong@knfc.co.kr [KNFC, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2016-01-22

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  2. Design and Fabrication of Integrated Fabry-Perot Type Color Reflector for Reflective Displays.

    Science.gov (United States)

    Cho, Seong M; Cheon, Sang Hoon; Kim, Tae-Youb; Ah, Chil Seong; Song, Juhee; Ryu, Hojun; Chu, Hye Yong

    2016-05-01

    A Fabry-Perot type integrated color reflector, with red/blue/green colors as subpixels, was designed and fabricated with Si substrate. Ag films were used as reflective mirror layers, SiO2 films were used as Fabry-Perot cavity layers and W films were used as partially reflective layers for the cavity. To minimize the effects of the thickness variation of the oxide cavity layers, the structure of the color reflector was optimized, and the differential deposition scheme was devised and applied in the fabrication process. The integrated color reflector was successfully fabricated with the proposed fabrication scheme. The measured white reflectance was > 45% in the visible spectrum range and -49% at 550 nm wavelength. The fabricated reflector had moderate color gamut of 17% of the National Television System Committee (NTSC) standard and it showed very high white reflectivity. The fabricated color reflector is expected to be applicable to reflective displays.

  3. Generation of XS library for the reflector of VVER reactor core using Monte Carlo code Serpent

    Science.gov (United States)

    Usheva, K. I.; Kuten, S. A.; Khruschinsky, A. A.; Babichev, L. F.

    2017-01-01

    A physical model of the radial and axial reflector of VVER-1200-like reactor core has been developed. Five types of radial reflector with different material composition exist for the VVER reactor core and 1D and 2D models were developed for all of them. Axial top and bottom reflectors are described by the 1D model. A two-group XS library for diffusion code DYN3D has been generated for all types of reflectors by using Serpent 2 Monte Carlo code. Power distribution in the reactor core calculated in DYN3D is flattened in the core central region to more extent in the 2D model of the radial reflector than in its 1D model.

  4. Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors

    Science.gov (United States)

    Puccio, Derek (Inventor); Malocha, Donald (Inventor)

    2011-01-01

    Weighted surface acoustic wave reflector gratings for coding identification tags and sensors to enable unique sensor operation and identification for a multi-sensor environment. In an embodiment, the weighted reflectors are variable while in another embodiment the reflector gratings are apodized. The weighting technique allows the designer to decrease reflectively and allows for more chips to be implemented in a device and, consequently, more coding diversity. As a result, more tags and sensors can be implemented using a given bandwidth when compared with uniform reflectors. Use of weighted reflector gratings with OFC makes various phase shifting schemes possible, such as in-phase and quadrature implementations of coded waveforms resulting in reduced device size and increased coding.

  5. Positive focal shift of gallium nitride high contrast grating focusing reflectors

    Science.gov (United States)

    He, Shumin; Wang, Zhenhai; Liu, Qifa

    2016-09-01

    We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.

  6. PCM Heat Storage Charged with a Double-Reflector Solar System

    Directory of Open Access Journals (Sweden)

    Amos Veremachi

    2016-01-01

    Full Text Available A “Solar Salt” (NaNO3–KNO3 60 : 40 molar mixture latent heat storage has been charged by direct solar illumination. Solar Salt as a Phase Change Material (PCM can be an attractive small scale heat storage solution, as the melting temperature of about 220°C can be suitable for cooking purposes. The tests were made with a double-reflector setup. In this setup a secondary reflector positioned above the focal point of the primary reflector directs the rays onto a heat storage positioned below a hole in the primary reflector. The reflectors are tracking the sun, but the storage is stationary. The direct illumination of the absorber top plate during the tracking of the sun melted the salt in the storage through conducting fins. This is a system where portable heat batteries can be charged, during sunshine hours, and then provide heat for cooking during evening times.

  7. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs

    DEFF Research Database (Denmark)

    Chung, Il-Sug

    2015-01-01

    A theoretical study of differences in broadband high-indexcontrast grating (HCG) reflectors for TM and TE polarizations is presented, covering various grating parameters and properties of HCGs. It is shown that the HCG reflectors for TM polarization (TM HCG reflectors) have much thicker grating...

  8. Study of the Dynamics of Large Reflector Antennas with Accelerometers

    CERN Document Server

    Snel, R C; Baars, J W M

    2007-01-01

    The Atacama Large Millimeter Array (ALMA) will consist of up to 64 state-of-the-art sub-mm telescopes, subject to stringent performance specifications which will push the boundaries of the technology, and makes testing of antenna performance a likewise challenging task. Two antenna prototypes were evaluated at the ALMA Test Facility at the Very Large Array site in New Mexico, USA. The dynamic behaviour of the antennas under operational conditions was investigated with the help of an accelerometer system capable of measuring rigid body motion of the elevation structure of the antenna, as well as a few low-order deformation modes, resulting in dynamic performance numbers for pointing stability, reflector surface stability, path length stability, and structure flexure. Special emphasis was given to wind effects, one of the major factors affecting performance on timescales of seconds to tens of minutes. This paper describes the accelerometer system, its capabilities and limitations, and presents the dynamic perfo...

  9. The selection of artificial corner reflectors based on RCS analysis

    Science.gov (United States)

    Li, Chengfan; Yin, Jingyuan; Zhao, Junjuan; Zhang, Guifang; Shan, Xinjian

    2012-02-01

    Artificial corner reflectors (ACRs) are widely applicable in monitoring terrain change via interferometric synthetic aperture radar (InSAR) remote sensing techniques. Many different types are available. The choice of the most appropriate ones has recently attracted scholarly attentions. Based on physical optics methods, via calculating the radar cross section (RCS) values (the higher the value, the better the detectability), the current study tested three ACRs, i.e., triangular pyramidal, rectangular pyramidal and square trihedral ACRs. Our calculation suggests that the square trihedral ACR produces the largest RCS but least tolerance towards incident radar ray's deviation from optimal angle. The triangular pyramidal trihedral ACR is the most geometrically stable ACR, and has the highest tolerance towards incident radar ray's deviation. Its RCS values, however, are the least of the three. Due to the high cost of deploying ACRs in the fields, the physical optics method seems to provide a viable way to choose appropriate ACRs.

  10. Photoacoustic imaging using acoustic reflectors to enhance planar arrays.

    Science.gov (United States)

    Ellwood, Robert; Zhang, Edward; Beard, Paul; Cox, Ben

    2014-12-01

    Planar sensor arrays have advantages when used for photoacoustic imaging: they do not require the imaging target to be enclosed, and they are easier to manufacture than curved arrays. However, planar arrays have a limited view of the acoustic field due to their finite size; therefore, not all of the acoustic waves emitted from a photoacoustic source can be recorded. This loss of data results in artifacts in the reconstructed photoacoustic image. A detection array configuration which combines a planar Fabry–Pérot sensor with perpendicular acoustic reflectors is described and experimentally implemented. This retains the detection advantages of the planar sensor while increasing the effective detection aperture in order to improve the reconstructed photoacoustic image.

  11. Multiphysics modeling and uncertainty quantification for an active composite reflector

    Science.gov (United States)

    Peterson, Lee D.; Bradford, S. C.; Schiermeier, John E.; Agnes, Gregory S.; Basinger, Scott A.

    2013-09-01

    A multiphysics, high resolution simulation of an actively controlled, composite reflector panel is developed to extrapolate from ground test results to flight performance. The subject test article has previously demonstrated sub-micron corrected shape in a controlled laboratory thermal load. This paper develops a model of the on-orbit performance of the panel under realistic thermal loads, with an active heater control system, and performs an uncertainty quantification of the predicted response. The primary contribution of this paper is the first reported application of the Sandia developed Sierra mechanics simulation tools to a spacecraft multiphysics simulation of a closed-loop system, including uncertainty quantification. The simulation was developed so as to have sufficient resolution to capture the residual panel shape error that remains after the thermal and mechanical control loops are closed. An uncertainty quantification analysis was performed to assess the predicted tolerance in the closed-loop wavefront error. Key tools used for the uncertainty quantification are also described.

  12. Dual-Band Feed for a Microwave Reflector Antenna

    Science.gov (United States)

    Hoppe, Daniel; Reilly, Harry

    2005-01-01

    A waveguide feed has been designed to provide specified illumination patterns for a dual-reflector antenna in two wavelength bands: 8 to 9 GHz and 30 to 40 GHz. The feed (see figure) has a coaxial configuration: A wider circular tube surrounds a narrower circular tube that serves as a waveguide for the signals in the 30-to-40-GHz band. The annular space between the narrower and the wider tube serves as a coaxial waveguide for the signals in the 8-to-9-GHz band. The nominal design frequencies of the outer and inner waveguides are 8.45 and 32 GHz, respectively. Each of the two waveguides is terminated in a component that is sized and shaped to help focus the radiation in its respective frequency band into the specified illumination pattern. For the outer waveguide, the beam-shaping termination is a corrugated horn; for the inner waveguide, the beam-shaping termination is a dielectric rod insert.

  13. Compact Single-Mode Distributed Bragg Reflector Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    XUE Yi-Yuan; AN Hong-Lin; FU Li-Bin; LIN Xiang-Zhi; LIU Hong-Du

    2000-01-01

    A compact single-mode distributed Bragg reflector (DBR) fiber laser with narrow spectral linewidth is investigated. Firstly, based on our theoretical analysis the single longitudinal mode operation domain is obtained. Then, a single-mode DBR fiber laser of 7.9cm long with master oscillator power amplifier (MOPA) configuration is designed and constructed to operate in the single-mode domain. The fiber laser is pumped by a semiconductor laser at 975.5nm. The master oscillator operates at 1556.91 nm with a cw output power of 1.43mW for a pump power of 55.35 mW. Its slope efficiency is 2.7% and the spectral linewidth is less than 1.2MHz (instrument resolution limited). With the MOPA configuration the laser output power and slope efficiency are increased to 7.8mW and 16.9%, respectively.

  14. Investigation of Flexible Textile Antennas and AMC Reflectors

    Directory of Open Access Journals (Sweden)

    M. Mantash

    2012-01-01

    Full Text Available In this paper, two different methods for fabric characterization are presented: a single frequency method and a broadband method. Felt and denim fabrics are characterized, and patch antennas are designed using these substrates to test both methods. Prototypes of the antennas on felt and denim are manufactured using conductive textile (called electrotextile aiming to obtain fully flexible antennas. The prototypes are characterized in anechoic chamber to be compared and obtain conclusions related to the characterization methods. A new dual-band hexagonal AMC reflector combinable with antennas is also proposed to improve their performance and reduce the backward radiation to the human body. A novel broadband CPW-fed monopole antenna is designed to be combined with the AMC. The resulted prototype is characterized and compared with the performance of the CPW-fed antenna alone.

  15. Large Deployable Reflector (LDR) Requirements for Space Station Accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-01-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  16. System overview on electromagnetic compensation for reflector antenna surface distortion

    Science.gov (United States)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This

  17. YB0 SERVICES INSTALLATION COMPLETED

    CERN Multimedia

    The beauty of the completed YB0 was briefly visible at P5 as preparations continue for Tracker installation. A tremendous effort, lasting 7 months and involving more than 100 workers on the busiest days, resulted in 5700 electrical cables, 780 optical cables with 65k fibre channels, and 550 pipes laid on YB0 for HB, EB and Tracker.

  18. Temperature rise of installed FCC

    Science.gov (United States)

    Hankins, J. D.

    1976-01-01

    Report discusses temperature profiles of installed FCC for wood and tile surfaces. Three-conductor FCC was tested at twice nominal current-carrying capacity over bare floor and under carpet, with result indicating that temperature rise is not a linear function of current with FCC at this level.

  19. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  20. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.

    Science.gov (United States)

    Bailey, M R; Blackstock, D T; Cleveland, R O; Crum, L A

    1999-08-01

    Dramatically different cavitation was produced by two separate acoustic pulses that had different shapes but similar duration, frequency content, and peak positive and negative pressure. Both pulses were produced by a Dornier HM-3 style lithotripter: one pulse when the ellipsoidal reflector was rigid, the other when the reflector was pressure release. The cavitation, or bubble action, generated by the conventional rigid-reflector pulse was nearly 50 times longer lived and 3-13 times stronger than that produced by the pressure-release-reflector pulse. Cavitation durations measured by passive acoustic detection and high-speed video agreed with calculations based on the Gilmore equation. Cavitation intensity, or destructive potential, was judged (1) experimentally by the size of pits in aluminum foil detectors and (2) numerically by the calculated amplitude of the shock wave emitted by a collapsing bubble. The results indicate that the trailing positive spike in the pressure-release-reflector waveform stifles bubble growth and mitigates the collapse, whereas the trough after the positive spike in the rigid-reflector waveform triggers inertially driven growth and collapse. The two reflectors therefore provide a tool to compare effects in weakly and strongly cavitating fields and thereby help assess cavitation's role in lithotripsy.

  1. The Effect of Reflector with Sound-Absorbing Material on Supersonic Jet Noise

    Institute of Scientific and Technical Information of China (English)

    Y.-H. KWEON; M. TSUCHIDA; Y. MIYAZATO; T. AOKI; H.-D. KIM; T. SETOGUCHI

    2005-01-01

    This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0. In the present study, a metal reflector and reflectors made of three different sound-absorbing materials (grass wool and polyurethane foam) were employed,and the reflector size was varied. Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency, amplitude of screech tone and overall sound pressure level (OASPL). A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet. The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size. It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB, compared with those of the metal reflector.

  2. Optimization design of an adaptive CFRC reflector for high order wave-front error control

    Science.gov (United States)

    Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang

    2017-04-01

    The trend in future space high precision reflectors is going towards large aperture, lightweight and actively controlled deformable antennas. An adaptive shape control system for a Carbon Fiber Reinforced Composite (CFRC) reflector is conducted by Piezoelectric Ceramic Transducer (PZT) actuators. This adaptive shape control system has been shown to effectively mitigate common low order wave-front error, but it is inevitably plagued by high order wave-front error control. In order to improve the controllability of the adaptive CFRC reflector control system for high order wave-front error, the design of adaptive CFRC reflector requires optimizing further. According to numerical and experimental results, the print-through error induced by manufacturing and PZT actuators actuation is a type of predominant high order wave-front error. This paper describes a design which some secondary rib elements are embedded within the triangular cells of the primary ribs. These small secondary ribs are designed to support the reflector surface's weak region. Controllability of this new adaptive CFRC reflector control system with small secondary ribs is evaluated by generalized Zernike functions. This new design scheme can reduce high order residual error and suppress the high order wave-front error such as print-through error. Finally, design parameters of the adaptive CFRC reflector control system with small secondary ribs, such as primary rib height, secondary rib height, cut-out height of primary rib, are optimized.

  3. Fifteen Years of Synthetic Aperture Radar Calibration Using Trihedral Reflectors at the Alaska Satellite Facility

    Science.gov (United States)

    Albright, W.; Atwood, D.; Lawlor, O. S.; Utley, P.; Slater, C.

    2006-12-01

    For the past 15 years, the Alaska Satellite Facility (ASF) has provided calibration support for singly polarized SAR datasets in C-band (ERS-1, ERS-2, and RADARSAT-1 and L-Band (JERS-1. Passive point targets like trihedral corner reflectors offer a reliable and well established means to perform radiometric, geometric, and impulse response measurements for SAR calibration. Routine support of an array of corner reflectors in interior Alaska has permitted ASF an opportunity to monitor satellite health, calibrate SAR processors, and experiment with new reflector designs. Corner reflectors offer the advantages of low maintenance and low cost compared to active devices such as transponders. In order to maintain radar cross section, as the microwave wavelength get longer, so too does the size of the reflector. Increased size means decreased portability, exacerbating the difficulty of providing calibration support in remote locations. In response, ASF is developing low cost, light weight corner reflectors that can be deployed with minimal effort and no maintenance. These efforts will help to extend our present calibration efforts to more remote locations. But more importantly, these designs are expected to play an important role in Permanent Scatterer InSAR (PS-InSAR) methodology. The use of corner reflector arrays in support PS-InSAR may provide new means for monitoring terrain displacements in regions of heavy vegetation. This paper presents some long term measurements from ASF's array of corner reflectors, outlines improvements performed on trihedral corner reflectors, and describes current efforts at ASF to support the next generation of SAR missions and techniques.

  4. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    Science.gov (United States)

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  5. Optimization of a dielectric radome for a dual-reflector omnidirectional antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2001-01-01

    In the millimetre-wave range, cylindrical dielectric insertions are employed to support a subreflector and, at the same time, as a radome of a dual-reflector omnidirectional antenna. Such a dielectric discontinuity can substantially degrade both matching and radiation characteristics of the antenna....... Until recently, the problem of optimization of a dielectric radome was solved experimentally due to a lack of methods that allow the VSWR of a dual-reflector omnidirectional antenna to be calculated taking into account the dielectric insertions. This paper presents a numerical approach to select...... the parameters of a dielectric radome for a dual-reflector omnidirectional antenna....

  6. PO Analysis for RCS of Nonorthogonal Dihedral Corner Reflectors Coated by RAM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The backscattering radar cross section (RCS) of nonorthogonal dihedral corner reflectors coated by RAM (radar absorbing materials) is formulated by the method of PO (physical optics), where singly, doubly, and triply reflected contributions are considered. The final expressions are analytical and allow for the incidence nonperpendicular to the fold axis of the reflector. The results are compared with ones of MoM (method of moment), which shows that the trend of backscatter patterr of the dihedral corner reflector can be well predicted by this method.

  7. A Study of the Fitting Accuracy of the Active Reflector for a Large Spherical Radio Telescope

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qiang Tang; Jin-Song Wang; Qi-Ming Wang

    2003-01-01

    We propose a spatial three-degree-of-freedom (DOF) parallel mechanism combining two degrees of rotations and one degree of translation to support the active reflector units of a large spherical radio telescope. The kinematics, workspace and accuracy of the mechanism are analyzed. One-dimensional and two-dimensional fitting errors to the working region of active reflector are investigated. Dimensional parameters of the mechanism and active reflector unit are examined with respect to the requirement of fitting accuracy. The result of accuracy analysis shows the effectiveness and feasibility of the proposed mechanism, and gives a design rule to guarantee the highest working frequency required by large radio telescope.

  8. Diffraction-resistant scalar beams generated by a parabolic reflector and a source of spherical waves.

    Science.gov (United States)

    Zamboni-Rached, Michel; de Assis, Mariana Carolina; Ambrosio, Leonardo A

    2015-07-01

    In this work, we propose the generation of diffraction-resistant beams by using a parabolic reflector and a source of spherical waves positioned at a point slightly displaced from its focus (away from the reflector). In our analysis, considering the reflector dimensions much greater than the wavelength, we describe the main characteristics of the resulting beams, showing their properties of resistance to the diffraction effects. Due to its simplicity, this method may be an interesting alternative for the generation of long-range diffraction-resistant waves.

  9. Diffraction Resistant Scalar Beams Generated by a Parabolic Reflector and a Source of Spherical Waves

    CERN Document Server

    Zamboni-Rached, Michel; Ambrosio, Leonardo A

    2015-01-01

    In this work, we propose the generation of diffraction resistant beams by using a parabolic reflector and a source of spherical waves positioned at a point slightly displaced from its focus (away from the reflector). In our analysis, considering the reflector dimensions much greater than the wavelength, we describe the main characteristics of the resulting beams, showing their properties of resistance to the diffraction effects. Due to its simplicity, this method may be an interesting alternative for the generation of long range diffraction resistant waves.

  10. Observations on the linear programming formulation of the single reflector design problem.

    Science.gov (United States)

    Canavesi, Cristina; Cassarly, William J; Rolland, Jannick P

    2012-02-13

    We implemented the linear programming approach proposed by Oliker and by Wang to solve the single reflector problem for a point source and a far-field target. The algorithm was shown to produce solutions that aim the input rays at the intersections between neighboring reflectors. This feature makes it possible to obtain the same reflector with a low number of rays - of the order of the number of targets - as with a high number of rays, greatly reducing the computation complexity of the problem.

  11. Reliability of Arctic offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Bercha, F.G. [Bercha Group, Calgary, AB (Canada); Gudmestad, O.T. [Stavanger Univ., Stavanger (Norway)]|[Statoil, Stavanger (Norway)]|[Norwegian Univ. of Technology, Stavanger (Norway); Foschi, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Civil Engineering; Sliggers, F. [Shell International Exploration and Production, Rijswijk (Netherlands); Nikitina, N. [VNIIG, St. Petersburg (Russian Federation); Nevel, D.

    2006-11-15

    Life threatening and fatal failures of offshore structures can be attributed to a broad range of causes such as fires and explosions, buoyancy losses, and structural overloads. This paper addressed the different severities of failure types, categorized as catastrophic failure, local failure or serviceability failure. Offshore tragedies were also highlighted, namely the failures of P-36, the Ocean Ranger, the Piper Alpha, and the Alexander Kieland which all resulted in losses of human life. P-36 and the Ocean Ranger both failed ultimately due to a loss of buoyancy. The Piper Alpha was destroyed by a natural gas fire, while the Alexander Kieland failed due to fatigue induced structural failure. The mode of failure was described as being the specific way in which a failure occurs from a given cause. Current reliability measures in the context of offshore installations only consider the limited number of causes such as environmental loads. However, it was emphasized that a realistic value of the catastrophic failure probability should consider all credible causes of failure. This paper presented a general method for evaluating all credible causes of failure of an installation. The approach to calculating integrated reliability involves the use of network methods such as fault trees to combine the probabilities of all factors that can cause a catastrophic failure, as well as those which can cause a local failure with the potential to escalate to a catastrophic failure. This paper also proposed a protocol for setting credible reliability targets such as the consideration of life safety targets and escape, evacuation, and rescue (EER) success probabilities. A set of realistic reliability targets for both catastrophic and local failures for representative safety and consequence categories associated with offshore installations was also presented. The reliability targets were expressed as maximum average annual failure probabilities. The method for converting these annual

  12. Mapping sub-crustal reflectors in southwestern Spain

    Science.gov (United States)

    Palomeras, I.; Ayarza, P.; Carbonell, R.; Ehsan, S. A.; Afonso, J. C.; Diaz Cusi, J.

    2015-12-01

    During the last 15 years, the IBERSEIS and ALCUDIA controlled source experiments have acquired vertical incidence and wide angle seismic reflection data in southwest Spain, in the Variscan Sub-Portuguese, Ossa-Morena and Central-Iberian Zones. Apart from providing detailed information of the crust, these datasets have also imaged a conspicuous sub-crustal reflector. First identified on the IBERSEIS wide-angle reflection dataset, this interface seemed to feature a positive seismic impedance contrast. A boundary located between 61-72 km depth, with a Vp increase from 8.2 km/s to 8.3 km/s allowed us to model clear wide-angle reflections found above 180 km offsets. The fact that this reflector was not identified in the coincident vertical incidence dataset led us to interpret it as a gradient zone. A correlation with the 'Hales gradient zone', i.e. the boundary between spinel and garnet peridotites was our preferred interpretation. The ALCUDIA experiment, later acquired northwards of the IBERSEIS profiles, also shows prominent sub-crustal arrivals with the same characteristics as those observed in the IBERSEIS wide-angle data. However, these reflections also appear, locally and at 19 s TWT, in the vertical incidence dataset, further constraining the depth at which this feature is located. In addition, the ALCUDIA wide-angle dataset shows deeper sub-horizontal reflectivity (at Vred=8 km/s) that maybe preliminarily associated with mantle anisotropy or even, with the lithosphere-astenosphere boundary. Integration of the information provided by the IBERSEIS and ALCUDIA datasets with older and lower resolution data from the ILIHA project, where three sub-crustal phases were identified in SW Iberia, allows us to conclude that, in this area, mantle reflectivity is outstanding. Also, modeling of all the datasets contributes to map, at a regional scale, the Hales discontinuity or gradient zone in southwest Iberia. Further research, involving receiver function analysis is

  13. A New Method of Designing Circularly Symmetric Shaped Dual Reflector Antennas Using Distorted Conics

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Zaman

    2014-01-01

    Full Text Available A new method of designing circularly symmetric shaped dual reflector antennas using distorted conics is presented. The surface of the shaped subreflector is expressed using a new set of equations employing differential geometry. The proposed equations require only a small number of parameters to accurately describe practical shaped subreflector surfaces. A geometrical optics (GO based method is used to synthesize the shaped main reflector surface corresponding to the shaped subreflector. Using the proposed method, a shaped Cassegrain dual reflector system is designed. The field scattered from the subreflector is calculated using uniform geometrical theory of diffraction (UTD. Finally, a numerical example is provided showing how a shaped subreflector produces more uniform illumination over the main reflector aperture compared to an unshaped subreflector.

  14. Mercapto-based coupling agent for improved thermophotovoltaic device back surface reflector adhesion and reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Wernsman, Bernard; Fiedor, Joseph N.; Irr, Lawrence G.; Palmisiano, Marc N.

    2016-10-04

    A back surface reflector (BSR) is described. The BSR includes a reflecting layer, a substrate and an adhesion layer between the reflecting layer and the substrate. The adhesion layer includes 3-mercaptopropyl (trimethoxy) silane (a.k.a. Merc).

  15. The radar cross section of non-orthogonal corner reflectors, symmetrically illuminated

    Science.gov (United States)

    Williams, J. M.

    The monostatic radar cross section of a nonorthogonal corner reflector, for symmetrical illumination, is shown to be a function of a single dimensionless group at high frequency. The function is calculated for the triangular and square trihedrals and the dihedral.

  16. Ultra wideband reflector antenna log-periodic feed with operating frequency range 1–20 GHz.

    Directory of Open Access Journals (Sweden)

    F. F. Dubrovka

    2010-05-01

    Full Text Available Results of modeling and optimization of electric characteristics of ultra wideband reflector antenna log-periodic feed, based on two log-periodic antennas array for operating over frequency range 1 -20 GHz, are presented.

  17. Affordable Unfurlable Fan-Fold Wrapable Reflector for Small and Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) will focus the proposed SBIR program on the development and concept feasibility of an innovative deployable mesh/membrane reflector...

  18. Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding one million

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    Monolithic distributed Bragg reflector (DBR) cavities with quality factors exceeding one million have been realized in aluminum oxide channel waveguides. This technology enabled the successful demonstration of the first DBR laser in this waveguide platform.

  19. High-quality distributed Bragg reflectors for resonant-cavity light-emitting diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S.; Naranjo, F.B.; Calle, F.; Sanchez-Garcia, M.A.; Calleja, E. [ISOM, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Vennegues, P. [CHREA-CNRS, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne (France)

    2002-08-16

    Efficient distributed Bragg reflectors based on Al{sub x}Ga{sub 1} {sub -} {sub x}N/GaN multilayer stacks have been grown by plasma-assisted molecular-beam epitaxy on GaN/Al{sub 2}O{sub 3} templates. The final goal is to incorporate these reflectors as bottom mirrors in a backside (sapphire) resonant-cavity light-emitting diode at 510 nm. The reflectors have been characterised by atomic force microscopy, high-resolution X-ray diffraction and high-resolution transmission electron microscopy. Reflectivity measurements have also been performed, obtaining values between 30% and 50%, depending on the Al content used. The incorporation of the Al{sub x}Ga{sub 1} {sub -} {sub x}N/GaN Bragg reflector as bottom mirror in a RCLED structure improves the output power by a factor of 12 compared with conventional light-emitting diodes. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  20. Multi-beaming propertieis of reflector antennas used in radio telescopes with wide field of view

    CERN Document Server

    Iupikov, O

    2016-01-01

    The given work is devoted to the modern developments in the field of radio astronomy instrumentation. In particular, the sensitivity of the multi-beam reflector radio telescope which is fed by phased array (PAF) is considered. Using PAF as reflector feed allows obtaining wide and continuous field of view (FOV) of the telescope. This has several advantages with compare to horn-cluster feeds which are described in this work. The sensitivity inside whole FOV was computed using three different beamforming schemes.

  1. Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic

    Science.gov (United States)

    Wu, Shing-Trong; Fuh, Andy Ying-Guey; Ho, Shau-Jung; Li, Ming-Shian

    2015-03-01

    This study investigates the bichromatic tuning of cholesteric liquid crystal (CLC) reflection bands from reflectors containing chiral azo dopants. Because the chiral azo molecules change their helical twist power in reversible photoisomerization, the reflection bands of the CLCs are modulated using purple and green laser beams. The CLC reflectors are integrated into an optical gate that can be used to modulate output spectra. We also apply the integrated system in optical switching and logic.

  2. Analysis, Design and Fabrication of centimeter-wave Dielectric Fresnel Zone Plate Lens and reflector

    CERN Document Server

    Mahmoudi, A; Mahmoudi, Ali; Azalzadeh, Reza

    2005-01-01

    Fresnel lens has a long history in optics. This concept at non-optical wavelengths is also applicable. In this paper we report design and fabrication of a half and quarter wave dielectric Fresnel lens made of Plexiglas, and a Fresnel reflector at 11.1 GHz frequency. We made two lenses and one reflector at same frequency and compare their gain and radiation pattern to simulated results. Some methods for better focusing action will be introduced.

  3. The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope

    CERN Document Server

    Kawachi, A; Jimbo, J; Kamei, S; Kifune, T; Kubo, H; Kushida, J; Le Bohec, S; Miyawaki, K; Mori, M; Nishijima, K; Patterson, J R; Suzuki, R; Tanimori, T; Yanagita, S; Yoshikoshi, T; Yuki, A

    2001-01-01

    A new imaging atmospheric Cherenkov telescope (CANGAROO-II) with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing CFRP (Carbon Fiber Reinforced Plastic) laminates were developed for the telescope. The attitude of each facet can be adjusted by stepping motors. In this paper, we describe the design, manufacturing, alignment procedure, and the performance of the CANGAROO-II optical reflector system.

  4. Analysis of a generalized dual reflector antenna system using physical optics

    Science.gov (United States)

    Acosta, Roberto J.; Lagin, Alan R.

    1992-01-01

    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.

  5. Tilting A Small Reflector For Vernier Pointing Of A Large Antenna

    Science.gov (United States)

    Veruttipong, Watt; Bathker, Dan A.

    1995-01-01

    Simple vernier pointing technique devised to facilitate scanning beam pointing of large paraboloidal reflector so line of sight of antenna sweeps out narrow cone about fixed axis (conical scan, also known as "conscan" in art). Scan effected by one of relatively small beam-waveguide reflectors or mirrors that couple signals between antenna and distant transmitting and/or receiving electronic circuits. Easier to tilt small mirror than to tilt massive antenna structure.

  6. Experimental Validation of Plasma Metasurfaces as Tunable THz Reflectors

    Science.gov (United States)

    Colon Quinones, Roberto; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    Measurements are presented which validate the use of plasma metasurfaces (PMs) as potential tunable THz reflectors. The PM considered here is an n x n array of laser produced plasma kernels generated by focusing the fundamental output from a 2 J/p Q-switched Nd:YAG laser through a multi-lens array (MLA) and into a gas of varying pressure. An M Squared Firefly-THz laser is used to generate a collimated pulse of THz light, which is then directed to the PM at varying angles of incidence. The reflected energy is measured using a Gentec-EO SDX-1187 joulemeter probe to characterize the surface impedance or reflectivity. In this presentation, we will compare the measured reflectance to values obtained from theoretical predictions and 3D finite-difference time-domain (FDTD) simulations. Work supported by the Air Force Office of Scientific Research (AFOSR). R. Colon Quinones and T. Underwood acknowledge the support of the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  7. HI Survey Science with the Canadian Large Adaptive Reflector

    CERN Document Server

    Côté, S; Dewdney, P E

    2002-01-01

    The Canadian Large Adaptive Reflector (CLAR) is a proposed prototype of a new concept for large, filled-aperture radio telescopes. The prototype would have a 300-metre aperture, working up to frequencies of at least 1.4 GHz, and would be equipped with a multi-beam phased array providing a field-of-view of 0.8deg at that frequency. The largest fully-steerable radio telescope in the world, and endowed with a large field-of-view, the CLAR will be uniquely suited for deep spectral imaging over large areas of the sky. Conducted over a period of three to four years, a CLAR Northern-Sky Survey would allow us to simultaneously: survey at arcminute scales the distribution and kinematics of the faint HI in the halo of the Milky Way and High Velocity Clouds; chart the large scale distribution of galaxies in HI out to redshift close to 1; reveal the structure and dynamics of the cosmic web responsible for wide-spread Lyman $\\alpha$ absorption systems; image the signal of the reionization of the Universe over a large area...

  8. Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides.

    Science.gov (United States)

    Fu, Anthony; Gao, Hanwei; Petrov, Petar; Yang, Peidong

    2015-10-14

    Periodic structures with dimensions on the order of the wavelength of light can tailor and improve the performance of optical components, and they can enable the creation of devices with new functionalities. For example, distributed Bragg reflectors (DBRs), which are created by periodic modulations in a structure's dielectric medium, are essential in dielectric mirrors, vertical cavity surface emitting lasers, fiber Bragg gratings, and single-frequency laser diodes. This work introduces nanoscale DBRs integrated directly into gallium nitride (GaN) nanowire waveguides. Photonic band gaps that are tunable across the visible spectrum are demonstrated by precisely controlling the grating's parameters. Numerical simulations indicate that in-wire DBRs have significantly larger reflection coefficients in comparison with the nanowire's end facet. By comparing the measured spectra with the simulated spectra, the index of refraction of the GaN nanowire waveguides was extracted to facilitate the design of photonic coupling structures that are sensitive to phase-matching conditions. This work indicates the potential to design nanowire-based devices with improved performance for optical resonators and optical routing.

  9. Microtrap on a concave grating reflector for atom trapping

    Science.gov (United States)

    Zhang, Hui; Li, Tao; Yin, Ya-Ling; Li, Xing-Jia; Xia, Yong; Yin, Jian-Ping

    2016-08-01

    We propose a novel scheme of optical confinement for atoms by using a concave grating reflector. The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination. Especially, the light intensity at the focal point is about 100 times higher than that of the incident light. Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms. We discuss the feasibility of the structure serving as an optical dipole trap. Our results are as follows. (i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms. (ii) The maximum trapping potential is ˜ 1.14 mK in the optical trap, which is high enough to trap cold 87Rb atoms from a standard magneto-optical trap with a temperature of 120 μK, and the maximum photon scattering rate is lower than 1/s. (iii) Such a microtrap array can also manipulate and control cold molecules, or microscopic particles. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374100, 91536218, and 11274114) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 13ZR1412800).

  10. Simulation of environment effects on retro-reflectors in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.S.; Berezhnyj, V.L.; Konovalov, V.G.; Naidenkova, D.I.; Ryzhkov, V.I.; Solodovchenko, S.I. [NSC KIPT, Kharkov (Ukraine); Bardamid, A.F.; Vinnichenko, M.V. [Shevchenko National Univ., 03127 Kiev (Ukraine); Belyaeva, A.I. [National Technical Univ., Kharkov (Ukraine); Donne, A.J.H. [FOM-Institute for Plasma Physics Rijnhuizen (Netherlands); Gil, Ch.; Lipa, M.; Schunke, B. [Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Malaquais, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Topkov, A.N. [National University, Kharkov (Ukraine)

    2004-07-01

    The use of retro-reflectors (RR) is considered for 2 plasma diagnostics in ITER: -) poloidal multichannel polarimetry that is supposed to operate on a single wavelength (118 {mu}m) and -) toroidal multichannel polarimetry that will use a dual frequency CO{sub 2} laser operating at 10.6 and 9.27 {mu}m. In order to shorten the time of simulation experiments, the long term sputtering effects on optical properties of RR were studied with Cu mirrors instead of Mo mirrors, results are reported in this series of slides. It was shown that the sputtering of the top 5 {mu}m layer from a poly-crystal Mo mirror would not result in a noticeable decrease of reflectance at 118 {mu}m. For the toroidal polarimetry system with much shorter wavelengths, a similar sputtering rate is absolutely inadmissible due to much longer path length of the probing beam. It was also shown that the micro-relief that will develop on the surface of RR due to long-term sputtering, can significantly change both the reflectance and the polarization angle of the reflecting beam. Polarization angle will also be changed if the surface of RR is coated with a carbon film.

  11. Dynamic single-mode semiconductor lasers with a distributed reflector

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Y.; Arai, S.; Kishino, K.

    1983-03-01

    Recent progress in dynamic single-mode (DSM) semiconductor lasers in the wavelength of 1.5-1.6 microns are reviewed, and the basic principle of DSM operation is given. Study of the DSM laser is originated for application to wide-band optical-fiber communication in the lowest loss wavelength region of 1.5 to 1.65 microns. A DSM laser consists of a mode-selective resonator and a transverse-mode-controller waveguide, as in the narrow-striped distributed-Bragg-reflector (DBR) laser, so as to maintain a fixed axial mode under rapid direct modulation. The technology of monolithic integration for optical circuits is applied to realize some DSM lasers. Structures, static and dynamic characteristics of lasing wavelength, output power, and reliability of state-of-the-art DSM lasers are reviewed. Dynamic spectral width of 0.3 nm, output power of a few milliwatts, and reliability over a few thousand hours are reported for experimental DSM lasers. 120 references.

  12. Dynamic single-mode semiconductor lasers with a distributed reflector

    Science.gov (United States)

    Suematsu, Y.; Arai, S.; Kishino, K.

    1983-03-01

    Recent progress in dynamic single-mode (DSM) semiconductor lasers in the wavelength of 1.5-1.6 microns are reviewed, and the basic principle of DSM operation is given. Study of the DSM laser is originated for application to wide-band optical-fiber communication in the lowest loss wavelength region of 1.5 to 1.65 microns. A DSM laser consists of a mode-selective resonator and a transverse-mode-controller waveguide, as in the narrow-striped distributed-Bragg-reflector (DBR) laser, so as to maintain a fixed axial mode under rapid direct modulation. The technology of monolithic integration for optical circuits is applied to realize some DSM lasers. Structures, static and dynamic characteristics of lasing wavelength, output power, and reliability of state-of-the-art DSM lasers are reviewed. Dynamic spectral width of 0.3 nm, output power of a few milliwatts, and reliability over a few thousand hours are reported for experimental DSM lasers.

  13. Colloidal plasmonic back reflectors for light trapping in solar cells

    Science.gov (United States)

    Mendes, Manuel J.; Morawiec, Seweryn; Simone, Francesca; Priolo, Francesco; Crupi, Isodiana

    2014-04-01

    A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (<120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.

  14. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  15. Direct evidence for radar reflector originating from changes in crystal-orientation fabric

    Directory of Open Access Journals (Sweden)

    O. Eisen

    2007-06-01

    Full Text Available The origin of a strong continuous radar reflector observed with airborne radio-echo sounding (RES at the EPICA deep-drilling site in Dronning Maud Land, Antarctica, is identified as a transition in crystal fabric orientation from a vertical girdle- to increased single-pole orientation seen along the ice core. The reflector is observed with a 60 ns and 600 ns long pulse at a frequency of 150 MHz, spans one pulse length, is continuous over 5 km, and occurs at a depth of about 2020–2030 m at the drill site. Changes in conductivity as reflector origin are excluded by investigating the ice-core profile and synthetic RES data. Our observations allow to extrapolate the crystal orientation feature along the reflector in space, with implications for ice-sheet dynamics. As the conductivity profile of the EPICA shows no distinctive peak at this depths, we exclude changes in conductivity as the reflector origin. This is supported by application of numerical forward modelling of electromagnetic wave propagation, based on the conductivity profile, which is able to reproduce nearby reflections, but fails to reproduce this one. Because of background noise, the permittivity profile based on dielectric does not show prominent signals at these depths. We therefore interpret the observed reflector to originate from this change in crystal fabric.

  16. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guangdong

    2017-03-01

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form, but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. The proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.

  17. Parametric Study of Cylindrical Dielectric Resonator Antenna (CDRA Feeder with Symmetric Parabolic Reflector

    Directory of Open Access Journals (Sweden)

    S.M. Ali

    2015-06-01

    Full Text Available In this study a parabolic reflector antenna is designed and fabricated for IEEE 802.11a WLAN application. Initially, a single element circular tuning slot coupled Cylindrical Dielectric Resonator Antenna (CDRA feeder is designed and fabricated for a symmetric parabolic reflector. Subsequently, the designed feeder is integrated at the focal point of the parabolic reflector to provide unidirectional radiation pattern with improved gain and sidelobe levels. The measured fractional impedance bandwidth achieved for the proposed antenna is 1.8% for S11<-10 dB from 5.32 to 5.52 GHz. A radiation pattern with broadside radiation and low back radiation has been obtained. A good measurement gain of approximately 13 dB is achieved over the bandwidth by placing CDRA feeder at the focal point of the parabolic reflector. In addition, a comprehensive parametric study has been conducted to realize the effect of slot size and position on the resonance frequency of the designed feeder. Furthermore, a parametric study of various reflector parameters has also been performed to study the effect of size, depth and focal point of the parabolic reflector on gain of the antenna. Important design factors have been identified from the parametric study of the antenna. The experimental and measured results show that the designed antenna is suitable for IEEE WLAN 802.11a wireless application.

  18. Scanning properties of large dual-shaped offset and symmetric reflector antennas

    Science.gov (United States)

    Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.

    1992-01-01

    Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.

  19. Scanning spherical tri-reflector antenna with a moving flat mirror

    Science.gov (United States)

    Shen, Bing; Stutzman, Warren L.

    1995-03-01

    Spherical reflector systems can achieve pattern scanning without rotation of the main reflector through the use of multiple subreflectors that can move. Also, two subreflectors can be shaped to correct for spherical aberration and to control the aperture distribution on the spherical main reflector. In a previous paper we introduced a method that offers both aperture phase and intensity control and scans the main beam without an accompanying movement of the illuminated area over main reflector. The method can overcome the poor aperture utilization problem common in spherical reflector antenna systems; however, it requires motion of the entire subreflector system, including the feed, during scan. In this paper we discuss a method that does not require motion of the subreflector system during scan. This method employs a flat mirror that creates a virtual image of the subreflector system. The motion of the subreflector system in the previous design is replaced by the motion of the virtual image that is controlled by the motion of the flat mirror. The new design offers simplified mechanical motion, while maintaining beam efficiency performance comparable to that of traditional spherical tri-reflector scanning antennas, but with some sacrifice in aperture efficiency and cross-polarization performance.

  20. Porous silicon as an internal reflector in thin epitaxial solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuzma-Filipek, I.; Duerinckx, F.; Nieuwenhuysen, K. van; Beaucarne, G.; Poortmans, J.; Mertens, R. [IMEC vzw, Leuven (Belgium)

    2007-05-15

    Thin film epitaxial silicon solar cells are considered a near future alternative to bulk silicon solar cells. However due to the limited thickness of the active layer they require efficient light trapping. Therefore we propose the development and implementation of such light confinement by means of a porous silicon (PS) intermediate reflector at the epi/substrate interface. The formation of the reflector is done by electrochemical etching of a highly doped Si substrate into a multilayer stack (Bragg-optical reflector), and is followed by epitaxial deposition of the active layer. The implementation of the PS reflector however requires detailed analysis of many problematic issues, foremost the optical optimisation of the stack for internal reflection at the Si/PS/Si interface. Other topics include the pore rearrangement during high-temperature CVD as well as the quality of the epitaxial layer grown on porous silicon. Another challenge is the resistance within the PS layers. For that purpose, SRP (Spreading Resistance Probe) and resistance measurements were performed to determine the conductive properties of rearranged PS. First cells with a 9-layer porous silicon reflector gave a very promising efficiency of 13.5% which is 1.5% higher compared to cells without internal reflector. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  2. The Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance

    Science.gov (United States)

    Coleman, Michael J.; Baginski, Frank; Romanofsky, Robert R.

    2011-01-01

    For parabolic antennas with sufficient surface accuracy, more power can be radiated with a larger aperture size. This paper explores the performance of antennas of various size and reflector depth. The particular focus is on a large inflatable elastic antenna reflector that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. The surface accuracy of the antenna is measured by an RMS calculation, while the reflector phase error component of the efficiency is determined by computing the power density at boresight. In the analysis, the calculation of antenna efficiency is not based on the Ruze Equation. Hence, no assumption regarding the distribution of the reflector surface distortions is presumed. The reflector surface is modeled as an isotropic elastic membrane using a linear stress-strain constitutive relation. Three types of antenna reflector construction are considered: one molded to an ideal parabolic form and two different flat panel design patterns. The flat panel surfaces are constructed by seaming together panels in a manner that the desired parabolic shape is approximately attained after pressurization. Numerical solutions of the model problem are calculated under a variety of conditions in order to estimate the accuracy and efficiency of these antenna systems. In the case of the flat panel constructions, several different cutting patterns are analyzed in order to determine an optimal cutting strategy.

  3. Performance Study of Thermoelectric Solar-Assisted Heat Pump with Reflectors

    Science.gov (United States)

    Lertsatitthanakorn, C.; Soponronnarit, S.; Jamradloedluk, J.; Rungsiyopas, M.; Sarachitti, R.

    2014-06-01

    The simultaneous conversion of solar radiation into thermal and electrical energy in a thermoelectric (TE) solar-assisted heat pump is, for the purposes of this study, referred to as hybrid conversion. To capture more thermal and electrical energy, flat-plate reflectors have been mounted on a TE solar collector. To obtain higher solar radiation intensity on the TE solar collector, the position of the reflectors has been changed and the optimal position of the reflectors determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with measured ones. Improvements to the thermal energy and electrical power outputs of the system can be achieved by the use of the TE solar-assisted heat pump with reflectors. For the optimum position of the reflectors, the coefficient of performance (COP) of the system formed from a TE solar collector integrated with a heat pump (TESC-HP) was 5.60. The power output and conversion efficiency of the TE modules can reach 10.09 W and 2.40%, respectively, being improved by 34.5% and 18.2%, respectively, compared with the TESC-HP without reflectors.

  4. Installation package for a solar heating system

    Science.gov (United States)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  5. Multifunctional Heat Pump Installation for Dairy Plants

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2015-08-01

    Full Text Available The article presents the installation based on the approach using the integration of the carbon dioxide heat pump in pasteurization and cooling installation for milk and in installations for preparing of hot and "icy" water. The scheme differs from the prototype by the use of additional heat exchangers and of their connection to the main elements of the installation. A proposed technique of elements connection in the heat pump installation permits to compensate the effect of temperature of cold water supply source, which is low-grade heat source for the heat pump, on the quality the work of the installation. The design of the installation enables to compensate the impact of seasonal variation of water temperature. The installation ensures the COP = 5.3.

  6. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic

    2007-01-01

    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  7. Automated solar collector installation design

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  8. Displacement pile installation effects in sand

    NARCIS (Netherlands)

    Beijer-Lundberg, A.

    2015-01-01

    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a small-scal

  9. Dynamics of flatter wind pump installation

    Directory of Open Access Journals (Sweden)

    А. С. Крижановський

    1999-05-01

    Full Text Available Wind pump installation is considered, in which as quality wind engine is used flatter wind engine with vertically located wing blade. For research of dynamics of installation its mathematical model is constructed. Determined is the law of movement of wing blade at a connected load and main characteristics of wind pump installation

  10. VIRUS early installation and commissioning

    Science.gov (United States)

    Tuttle, Sarah E.; Hill, Gary J.; Vattiat, Brian L.; Lee, Hanshin; Drory, Niv; Kelz, Andreas; Ramsey, Jason; Peterson, Trent; Noyola, Eva; DePoy, Darren L.; Marshall, Jennifer L.; Chonis, Taylor S.; Dalton, Gavin; Fabricius, Maximilian; Farrow, Daniel; Good, John M.; Haynes, Dionne M.; Indahl, Briana; Jahn, Thomas; Kriel, Hermanus; Nicklas, Harald; Montesano, Francesco; Prochaska, Travis; Allen, Richard D.; Landriau, Martin; MacQueen, Phillip J.; Roth, Martin M.; Savage, Richard; Snigula, Jan M.

    2016-08-01

    VIRUS is a massively replicated spectrograph built for HETDEX, the Hobby Eberly Telescope Dark Energy Experiment. It consists of 156 channels within 78 units fed by 34944 fibers over the 22 arcminute field of the upgraded HET. VIRUS covers a relatively narrow bandpass (350-550nm) at low resolution (R 700) to target the emission of Lyman-alpha emitters (LAEs) for HETDEX. VIRUS is a first demonstration of industrial style assembly line replication in optical astronomy. Installation and testing of VIRUS units began in November of 2015. This winter we celebrated the first on sky instrument activity of the upgraded HET, using a VIRUS unit and LRS2-R (the upgraded facility Low Resolution Spectrograph for the HET). Here we describe progress in VIRUS installation and commissioning through June 2016. We include early sky data obtained to characterize spectrograph performance and on sky performance of the newly upgraded HET. As part of the instrumentation for first science light at the HET, the IFU fed spectrographs were used to test a full range of telescope system functionality including the field calibration unit (FCU).We also use placement of strategic IFUs to map the new HET field to the fiber placement, and demonstrate actuation of the dithering mechanism key to HETDEX observations.

  11. Transformable reflector structure with V-folding rods

    Science.gov (United States)

    Tserodze, Sh.; Prowald, J. Santiago; Gogilashvili, V.; Chkhikvadze, K.

    2016-12-01

    A new design of space deployable reflector is presented. In particular, we consider closed-chain system (with central network), which as a result of transformation reaches the conical shape. In conformity with the technical specifications, individual parts of the system perform the simultaneous motion in the radial and axial directions. The main motion of the system produced by geometric constraints is studied, i.e., we consider the degree of structural motion. Parametric degrees of freedom caused by technological errors, modes of motion, types of load or deployment velocity are not taken into consideration at this stage. A peculiar feature of the deployable structure presented in the paper is that, as compared with analogous structures, for connecting the sections with one another there is no need of using synchronization devices in both—upper and lower kinematic chains simultaneously. This structural mechanism is a differential lever mechanism, the driving elements of which enable us to obtain the desired law of motion of every characteristic link. The kinematic model represents the whole system. Therefore, we can construct the function of position of the lever mechanism and also the kinematic functions of transmission. For the preliminary investigation of the structure and making possible changes in it, two mathematical models have been constructed by means of the ANSYS software using the Ansys Parametric Design Language. The degrees of freedom of the hinges are simulated in local coordinate systems and are as much as possible approximated to the real model. Calculations are performed for various kinds of loads and appropriate results are obtained.

  12. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    OpenAIRE

    Garthwaite, Matthew C.

    2017-01-01

    Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR) techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS) means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR) satellites. Therefore, either a corner reflector design tailored to ...

  13. A method for producing a shaped contour radiation pattern using a single shaped reflector and a single feed

    Science.gov (United States)

    Cherrette, Alan R.; Lee, Shung-Wu; Acosta, Roberto J.

    1989-01-01

    Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.

  14. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  15. Direct evidence for continuous radar reflector originating from changes in crystal-orientation fabric

    Directory of Open Access Journals (Sweden)

    O. Eisen

    2007-10-01

    Full Text Available The origin of a strong continuous radar reflector observed with airborne radio-echo sounding (RES at the EPICA deep-drilling site in Dronning Maud Land, Antarctica, is identified as a transition in crystal fabric orientation from a vertical girdle to an increased single-pole orientation seen along the ice core. The reflector is observed with a 60 ns and 600 ns long pulse at a frequency of 150 MHz, spans one pulse length, is continuous over 5 km, and occurs at a depth of about 2025–2045 m at the drill site. Changes in conductivity as reflector origin are excluded by investigating the ice-core profile, synthetic RES data, and a RES profile with different electromagnetic polarisation azimuths. The reflector's magnitude shows maximum values for polarisation parallel to the nearby ice divide and disappears for polarisation perpendicular to it, identifying the orientation of the girdle to lie in the vertical plane parallel to the ice divide. Observations allow us to extrapolate the crystal orientation feature along the reflector in space, with implications for ice-sheet dynamics and modeling.

  16. Neutron fluence effects on SLOWPOKE-2 beryllium reflector composition and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Francesc, E-mail: fpuig@anl.gov [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Dennis, Haile, E-mail: haile.dennis02@uwimona.edu.jm [International Centre for Environmental and Nuclear Sciences, 2 Anguilla Close, University of the West Indies, Mona, Kingston 7 (Jamaica)

    2016-08-15

    Highlights: • SLOWPOKE-2 reflector composition evolution estimated using two different methods. • Reactivity effects of reflector composition changes calculated using MCNP5. • Impurities depletion dominates over poisons buildup, increasing reactivity. • Results contradict previously published behavior estimates for MNSR reactors. • Identified main factors explaining the observed prediction discrepancies. - Abstract: Within the scope of the conversion process from HEU to LEU of the Jamaican SLOWPOKE-2 reactor (JM-1), the effects of the neutron fluence on the beryllium reflector composition, and the corresponding effect on reactivity throughout the life of the reactor core, have been studied. Two different methods have been used and compared involving MCNP5, ORIGEN2.2, ORIGEN-S and COUPLE codes, reaching excellent agreement between them. The neutron flux profile and energy spectrum specific to the beryllium reflectors of this reactor design have been taken into account to analyze several scenarios, comprising both real and hypothetical conditions and involving different initial reflector compositions and reactor burnups. The analysis has been extended to provide estimates for the similar MNSR reactor design and compared with previously published predictions for the Syrian MNSR. The results show small overall reactivity effects in most cases, being dominated by impurity depletion as opposed to poison buildup, contrarily to what generally occurs in beryllium reflected reactors of far higher power and to MNSR predictions. The resulting reactivity increases are typically of less than 0.4 mk for usual impurity levels and maximum HEU core burnup achievable.

  17. A study of three techniques used in the diffraction analysis of shaped dual-reflector antennas

    Science.gov (United States)

    Cwik, Tom A.; Kildal, Per-Simon

    1989-01-01

    An examination is presented of three techniques used for the efficient computation of fields diffracted by a subreflector that has been shaped by geometrical optics synthesis. It is found that these techniques, which are based on the geometrical theory of diffraction (GTD), produce errors in the computed fields that are specific to shaped reflectors. These errors are examined for a reflector system shaped to produce maximum gain from a tapered feed illumination. The discrepancies are directly related to the caustic being located near an observation point of the GTD calculations. The errors found are localized, and they increase in magnitude as the caustic approaches the main reflector. In a general offset geometry, the location of the caustic may be located arbitrarily close to the main reflector given a prescribed output aperture distribution. For the specific case considered here-the common situation of shaping to produce maximum gain-the caustic is located near the edge of the main reflector and on the reflection shadow boundary. A local correction is derived which creates a uniform solution through the caustic and across the reflection shadow boundary. Away from this point the calculation receeds to the standard GTD solution.

  18. An investigation into shape and vibration control of space antenna reflectors

    Science.gov (United States)

    Susheel, C. K.; Kumar, Rajeev; Chauhan, Vishal S.

    2016-12-01

    A study into the shape and active vibration control of antenna reflectors, an important member of the space structures, is carried out in this paper. Geometric nonlinear analysis is considered for performance evaluation of antenna reflectors, as very high precision is an important aspect of space structures. An effort has been made to demonstrate the importance of functionally graded materials in space structures. Piezolaminated structures have been used for shape and vibration control applications for many years. However, due to the problems like debonding and delamination, the reliability of these materials in space structures is still uncertain. To overcome these problems, patches made of functionally graded piezoelectric material (FGPM) are used for shape and vibration control of antenna reflectors in this investigation. FGPM patches are also used to demonstrate the beam-shaping and beam-steering application of antenna reflectors. For the active vibration control application, a fuzzy-logic controller (FLC) is designed and validated with the experimental results. An experimental study has been conducted for comparing the performance of different controllers in the context of vibration reduction. The FLC is then used for active vibration control of an antenna reflector under the application of thermal impact and sinusoidal loading.

  19. The Abacus/Reflector and Integrated Symmetrical Concentrator: Concepts for Space Solar Power Collection and Transmission

    Science.gov (United States)

    Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don

    2000-01-01

    New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.

  20. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  1. Stacking illumination of a confocal reflector light emitting diode automobile headlamp with an asymmetric triangular prism.

    Science.gov (United States)

    Chen, Hsi-Chao; Zhou, Jia-Hao; Zhou, Yang

    2017-02-01

    A confocal reflector lamp with an asymmetric triangular prism was designed for a stacking illumination of a light emitting diode (LED) automobile headlamp fitting ECE R112 asymmetrical regulation. The optical system includes three 1st elliptic reflectors, three 2nd parabolic reflectors, and one asymmetric triangular prism. Three elliptic and parabolic reflectors were assembled with three confocal reflector modules; two modules projected the cut-off line of a 0° angle, and the other module projected the cut-off line of a 15° angle using of an asymmetric triangular prism. The ray tracing, optical simulation, and mockup experiment results exhibited that the illumination distribution met the regulation of ECE R112 class B, and the ideal efficiency could reach 96.8% in theory. The tolerance analysis showed the efficiency remained above 98% under the error values of ±0.2  mm of the position of the LED light source, and the y direction of the up-down movement was more sensitive than the x and z directions. The measurement results of the mockup sample safety factor were all larger than 1.15 and supported the regulation of the ECE R112 Class B.

  2. Comparative environmental assessment of unconventional power installations

    Science.gov (United States)

    Sosnina, E. N.; Masleeva, O. V.; Kryukov, E. V.

    2015-08-01

    Procedure of the strategic environmental assessment of the power installations operating on the basis of renewable energy sources (RES) was developed and described. This procedure takes into account not only the operational process of the power installation but also the whole life cycles: from the production and distribution of power resources for manufacturing of the power installations to the process of their recovery. Such an approach gives an opportunity to make a more comprehensive assessment of the influence of the power installations on environments and may be used during adaptation of the current regulations and development of new regulations for application of different types of unconventional power installations with due account of the ecological factor. Application of the procedure of the integrated environmental assessment in the context of mini-HPP (Hydro Power Plant); wind, solar, and biogas power installations; and traditional power installation operating natural gas was considered. Comparison of environmental influence revealed advantages of new energy technologies compared to traditional ones. It is shown that solar energy installations hardly pollute the environment during operation, but the negative influence of the mining operations and manufacturing and utilization of the materials used for solar modules is maximum. Biogas power installations are on the second place as concerns the impact on the environment due to the considerable mass of the biogas installation and gas reciprocating engine. The minimum impact on the environment is exerted by the mini-HPP. Consumption of material and energy resources for the production of the traditional power installation is less compared to power installations on RES; however, this factor incomparably increases when taking into account the fuel extraction and transfer. The greatest impact on the environment is exerted by the operational process of the traditional power installations.

  3. The electromagnetic problem of interpanel gaps in reflector antennas

    Science.gov (United States)

    Hüschelrath, Jens

    2005-07-01

    In recent years, the performance and quality of computer simulations grew constantly, together with the availability of high-performance computers. This also affected the area of antenna simulations where the possibility to analyze complex structures using a computer model became a fundamental tool for the design process. Having the means to assess precisely the performance of an antenna available before its final construction is inevitable for a cost-effective design and operation of an antenna today. The more detailed a computer model describes the real application, the better the predictions for the real performance will be. In order to obtain the highest level of complexity and accuracy that today's computers can achieve, more and more details are added to the simulation models. Concerning this matter, the European Space Agency (ESA) became interested in assessing the degradation added to the output patterns of reflector antennas when their surfaces are constructed by single panels, exhibiting gaps between them. Up to now the surfaces of such antennas were assumed to consist of single shaped surfaces to simplify the computations. It is the scope of this study to present the applications of interest for the analysis of interpanel gaps and to propose methods for solving the problem, that can be integrated into existing simulation codes. During the study, a canonical model is derived that is capable of computing highly accurate results in short time. Simulations based on this model are performed for different gap configurations, selected using the experience from real applications. It is shown that the simple canonical model for the gaps covers a wide range of real-world applications with high accuracy, but that it also has its limits. For applications with gap-configurations that are out-of-range to apply the simple model, solutions are indicated being valid for arbitrary gap-configurations, but being also more resources-consuming. The work presented is the

  4. Buckling of Bucket Foundations During Installation

    DEFF Research Database (Denmark)

    Madsen, Søren

    in order to reduce the cost of energy. This limits the on land application due to transportation limitations and unwillingness from prospect neighbours. Thus, offshore wind energy started developing over the last couple of years. Although installing the wind turbines offshore resolves the before men tioned...... issues, it brings up the cost of energy mainly due to increased installation and maintenance costs. A very large part—up to 30–50% using current technology—of the installation cost origins from the expenses related to the installation of foundations. A new foundation concept—the bucket foundation...... the suction assisted installation process. In this thesis, the phenomenon of buckling of the bucket foundation during installation is investigated by means of Finite Element Analysis. The influence of boundary conditions on the bucket foundation is adressed as well as the effect of including the surrounding...

  5. Installation of Shimming Bars for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    LV; Yin-long; WANG; Zhen-hui; ZHONG; Jun-qing; LIU; Geng-shou

    2012-01-01

    <正>The 100 MeV high intensity proton cyclotron, CYCIAE-100, is the most critical equipment of the BRIF project at CIAE. The shimming bars are used to get the isochronous magnetic field. In the process of magnetic mapping and shimming, the bars should be repeated the installed and disassembly for about 10 times. Each time the installation precision must be ensured. The bars installation schedule and quality are directly related to the BRIF project progress.

  6. Modern electrical installation for craft students

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    Modern Electrical Installation for Craft Students, Volume 2, Third Edition discusses several topics concerning electrical installations. The book is comprised of eight chapters that deal with craft theory, associated subjects, and electrical industries. Chapter 1 covers inductors and inductance, while Chapter 2 tackles capacitors and capacitance. Chapter 3 deals with inductance and capacitance in installation work. The book also discusses cells, batteries, and transformers. The electrical industries, control and earthing, and testing are also dealt with. The last chapter discusses the basic el

  7. Broadband Metamaterial Reflectors for Polarization Manipulation Based on Cross/Ring Resonators

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2016-09-01

    Full Text Available We presented the investigation of broadband metamaterial reflector for polarization manipulation based on cross/ring resonators. It is demonstrated that the meta¬material reflector can convert the linearly polarized inci¬dent wave to its cross polarized wave or circularly polar¬ized wave. Due to the multiple resonances at neighboring frequencies, the proposed reflector presents broadband property and high efficiency. The measured fraction band¬width of cross polarization conversion is 55.5% with effi¬ciency higher than 80%. Furthermore, a broadband circu¬lar polarizer is designed by adjusting the dimension para¬meters and the measured fraction bandwidth exceeds 30%.

  8. A nonlinear equivalent circuit method for analysis of passive intermodulation of mesh reflectors

    Directory of Open Access Journals (Sweden)

    Jiang Jie

    2014-08-01

    Full Text Available Passive intermodulation (PIM has gradually become a serious electromagnetic interference due to the development of high-power and high-sensitivity RF/microwave communication systems, especially large deployable mesh reflector antennas. This paper proposes a field-circuit coupling method to analyze the PIM level of mesh reflectors. With the existence of many metal–metal (MM contacts in mesh reflectors, the contact nonlinearity becomes the main reason for PIM generation. To analyze these potential PIM sources, an equivalent circuit model including nonlinear components is constructed to model a single MM contact so that the transient current through the MM contact point induced by incident electromagnetic waves can be calculated. Taking the electric current as a new electromagnetic wave source, the far-field scattering can be obtained by the use of electromagnetic numerical methods or the communication link method. Finally, a comparison between simulation and experimental results is illustrated to verify the validity of the proposed method.

  9. Electromagnetic performance analysis of reflector antennas with non-uniform errors along radius

    Institute of Scientific and Technical Information of China (English)

    Peiyuan Lian; Congsi Wang; Wei Wang; Binbin Xiang

    2016-01-01

    Based on the works of Greve and Rahmat-Sami , the electromagnetic (EM) performance of the reflector antenna with non-uniform surface errors along radius is further addressed. A mathematical model is developed to describe the weighting func-tion for the non-uniform surface errors along radius. Then, some discussions on the peak gain loss (PGL) and the first sidelobe level increase (SLLI) caused by the non-uniform surface errors are presented and several significant radiation characteristics of the reflector with non-uniform errors are pointed out. Last, based on the proposed model, the weighted root mean square (RMS) value of the surface errors is produced to evaluate the EM performance and several representative cases with different non-uniform errors are presented with good results. Results show that the weighted RMS value should be taken into account for a better quality evalu-ation of the reflector surface.

  10. GPCA vs. PCA in Recognition and 3-D Localization of Ultrasound Reflectors

    Directory of Open Access Journals (Sweden)

    Carlos A. Luna

    2010-05-01

    Full Text Available In this paper, a new method of classification and localization of reflectors, using the time-of-flight (TOF data obtained from ultrasonic transducers, is presented. The method of classification and localization is based on Generalized Principal Component Analysis (GPCA applied to the TOF values obtained from a sensor that contains four ultrasound emitters and 16 receivers. Since PCA works with vectorized representations of TOF, it does not take into account the spatial locality of receivers. The GPCA works with two-dimensional representations of TOF, taking into account information on the spatial position of the receivers. This report includes a detailed description of the method of classification and localization and the results of achieved tests with three types of reflectors in 3-D environments: planes, edges, and corners. The results in terms of processing time, classification and localization were very satisfactory for the reflectors located in the range of 50–350 cm.

  11. Discourse on the Characterization of Waveguide Distributed Bragg Reflectors for Application to Nonlinear Optics

    Science.gov (United States)

    Grieco, Andrew Lewis

    Precise characterization of waveguide parameters is necessary for the successful design of nonlinear photonic devices. This dissertation contains a description of methods for the experimental characterization of distributed Bragg reflectors for use in nonlinear optics and other applications. The general coupled-mode theory of Bragg reflection arising from a periodic dielectric perturbation is developed from Maxwell's equations. This theory is then applied to develop a method of characterizing the fundamental parameters that describe Bragg reflection by comparing the spectral response of Bragg reflector resonators. This method is also extended to characterize linear loss in waveguides. A model of nonlinear effects in Bragg reflector resonators manifesting in bistability is also developed, as this phenomenon can be detrimental to the characterization method. Specific recommendations are made regarding waveguide fabrication and experimental design to reduce sources of experimental error.

  12. Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports

    Science.gov (United States)

    Liu, Wang; Li, Dong-Xu; Yu, Xin-Zhan; Jiang, Jian-Ping

    2014-04-01

    An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method, a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice. [Figure not available: see fulltext.

  13. ID Barrel installed in cryostat

    CERN Multimedia

    Apsimon, R.; Romaniouk, A.

    Wednesday 23rd August was a memorable day for the Inner Detector community as they witnessed the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the outer two detectors (TRT and SCT) of the ID barrel were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Accelerometers were fitted to the barrel to provide real-time monitoring and no values greater than 0.1 g were recorded, fully satisfying the transport specification for this extremely precise and fragile detector. Muriel, despite her fear of heights, bravely volunteered to keep a close eye on the detector. Swapping cranes to cross the entire parking lot, while Mur...

  14. Monitoring of the reflectors of ESA's Planck telescope by close-range photogrammetry

    Science.gov (United States)

    Parian, Jafar Amiri; Gruen, Armin; Cozzani, Alessandro

    2007-11-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. Planck's objective is to analyze, with the highest accuracy ever achieved, the remnants of the radiation that filled the universe immediately after the Big Bang, which we observe today as the cosmic microwave background. To achieve this aim well-manufactured reflectors are used as parts of the Planck telescope receiving system. The system consists of the Secondary and Primary Reflectors which are sections of two different ellipsoids of revolution with diameters of 1.1 and 1.9 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at temperatures down to 95K, using close-range photogrammetric techniques. We have designed an optimal close-range photogrammetric network by heuristic simulation for the Primary and Secondary Reflectors with a mean relative precision better than 1:1,000,000 and 1:400,000, respectively, to achieve the requested accuracies. Special considerations have been taken into account in different steps of design, such as the determinability of additional parameters under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources of errors. A least squares best-fit ellipsoid was developed to determine the optical parameters of the reflector. We present our procedure and the results of processing the photogrammetric measurements of the Flight Models of the Primary and Secondary Reflectors which were executed by Thales Alenia Space France under ESA-ESTEC contract in vacuum and at very low temperatures.

  15. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  16. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  17. A Management Strategy for the Heavy Water Reflector Cooling System of HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Park, Y. C.; Lim, S. P. (and others)

    2007-11-15

    Heavy water is used as the reflector and the moderator of the HANARO research reactor. After over 10 years operation since first criticality in 1995 there arose some operational issues related with the tritium. A task force team(TFT) has been operated for 1 year since September 2006 to study and deduce resolutions of the issues concerning the tritium and the degradation of heavy water in the HANARO reflector system. The TFT drew many recommendations on the hardware upgrade, tritium containing air control, heavy water quality management, waste management, and tritium measurement system upgrade.

  18. The electric drive control system of corner reflectors of the spacecraft interferometer

    Directory of Open Access Journals (Sweden)

    Langraf Sergey

    2017-01-01

    Full Text Available This paper presents the electric drive control system of corner reflectors of the infrared Fourier transform spectrometer for meteorological satellite. Limited-swing brushless DC motor with a torsional bearing is used as a drive motor. Stringent requirements are imposed to the drive control system for stabilization of moving speed of the reflectors while obtaining the interferogram and for limitation of the reverse time. Research of influence of torsion on steady-state error of speed and ways of its compensation is conducted. The obtained results are consistent with the simulation results of the drive. It is shown that the developed drive is operable in a spacecraft system.

  19. Fast algorithm for the exact determination of the mapped effective areas of trihedral radar reflectors

    Science.gov (United States)

    Keen, K. M.

    1983-11-01

    There is currently interest in the use of trihedral radar corner reflectors as ground targets for the calibration of synthetic aperture radars and scatterometers carried by remote sensing satellites. Keen (1983) has described a new technique for the evaluation of the scattering cross-sections of radar corner reflectors. This method, which uses computer evaluation, is briefly discussed. On the basis of new experience related to the employment of the scattering cross-section prediction method, a more efficient and exact way for carrying out the evaluation of mapped effective areas has been developed. The present investigation is concerned with this alternative technique.

  20. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  1. Enhanced absorption of monolayer MoS2 with resonant back reflector

    CERN Document Server

    Liu, Jiang-Tao; Li, Xiao-Jing; Liu, Nian-Hua

    2014-01-01

    By extracting the permittivity of monolayer MoS2 from experiments, the optical absorption of monolayer MoS2 prepared on top of one-dimensional photonic crystal (1DPC) or metal films is investigated theoretically. The 1DPC and metal films act as resonant back reflectors that can enhance absorption of monolayer MoS2 substantially over a broad spectral range due to the Fabry-Perot cavity effect. The absorption of monolayer MoS2 can also be tuned by varying either the distance between the monolayer MoS2 and the back reflector or the thickness of the cover layers.

  2. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    Science.gov (United States)

    Huang, Robin K.; Wang, Christine A.; Connors, Michael K.; Turner, George W.; Dashiell, Michael

    2004-11-01

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The "hybrid" back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant short-circuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  3. Development of optical ground verification method for μm to sub-mm reflectors

    Science.gov (United States)

    Stockman, Y.; Thizy, C.; Lemaire, P.; Georges, M.; Mazy, E.; Mazzoli, A.; Houbrechts, Y.; Rochus, P.; Roose, S.; Doyle, D.; Ulbrich, G.

    2004-06-01

    Large reflectors and antennas for the IR to mm wavelength range are being planned for many Earth observation and astronomical space missions and for commercial communication satellites as well. Scientific observatories require large telescopes with precisely shaped reflectors for collecting the electro-magnetic radiation from faint sources. The challenging tasks of on-ground testing are to achieve the required accuracy in the measurement of the reflector shapes and antenna structures and to verify their performance under simulated space conditions (vacuum, low temperatures). Due to the specific surface characteristics of reflectors operating in these spectral regions, standard optical metrology methods employed in the visible spectrum do not provide useful measurement results. The current state-of-the-art commercial metrology systems are not able to measure these types of reflectors because they have to face the measurement of shape and waviness over relatively large areas with a large deformation dynamic range and encompassing a wide range of spatial frequencies. 3-D metrology (tactile coordinate measurement) machines are generally used during the manufacturing process. Unfortunately, these instruments cannot be used in the operational environmental conditions of the reflector. The application of standard visible wavelength interferometric methods is very limited or impossible due to the large relative surface roughnesses involved. A small number of infrared interferometers have been commercially developed over the last 10 years but their applications have also been limited due to poor dynamic range and the restricted spatial resolution of their detectors. These restrictions affect also the surface error slopes that can be captured and makes their application to surfaces manufactured using CRFP honeycomb technologies rather difficult or impossible. It has therefore been considered essential, from the viewpoint of supporting future ESA exploration missions, to

  4. Design of a monolithic tunable laser based on equivalent-chirp grating reflectors.

    Science.gov (United States)

    Dai, Yitang; Xu, Kun; Wu, Jian; Li, Yan; Hong, Xiaobin; Guo, Hongxiang; Lin, Jintong

    2010-12-01

    A Vernier-tuned distributed Bragg reflector (DBR) semiconductor laser is an effective monolithic approach for wide wavelength tunability, at the expense, however, of costly electron-beam lithography during fabrication. In this Letter, a tunable laser design with equivalent-chirp based, flat-top envelope grating reflectors is proposed that can be implemented easily by conventional two-beam interference lithography. The principle is described, and a detailed design shows uniform output power (0.08 dB variation) and excellent side-mode suppression ratio (47 dB minimum) within a wide tuning range (>32 nm) through numerical simulation.

  5. Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR with PBO Reflector

    Directory of Open Access Journals (Sweden)

    Chihyung Kim

    2016-04-01

    Full Text Available The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  6. Uranium enrichment reduction in the Prototype Gen-IV sodium-cooled fast reactor (PGSFR) with PBO reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  7. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs

    CERN Document Server

    Chung, Il-Sug

    2015-01-01

    A theoretical study of differences in broadband high-index-contrast grating (HCG) reflectors for TM and TE polarizations is presented, covering various grating parameters and properties of HCGs. It is shown that the HCG reflectors for TM polarization (TM HCG reflectors) have much thicker grating thicknesses and smaller grating periods than the TE HCG reflectors. This difference is found to originate from the different boundary conditions met for the electric field of each polarization. Due to this difference, the TM HCG reflectors have much shorter evanescent extension of HCG modes into low-refractive-index media surrounding the HCG. This enables to achieve a very short effective cavity length for VCSELs, which is essential for ultrahigh speed VCSELs and MEMS-tunable VCSELs. The obtained understandings on polarization dependences will be able to serve as important design guidelines for various HCG-based devices.

  8. Installation Service - Changes in opening hours

    CERN Multimedia

    GS Department

    2010-01-01

    For organizational matters, please note that, as from 15 March 2010, the Installation Service will have wen opening hours. The new schedule will be from 14:00 to 17:00 (Monday to Friday). Contact persons are: Martine Briant, Karine Robert and Claudia Bruggmann. The office address remains 73-3-014. Installation Service

  9. 46 CFR 111.33-5 - Installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier...

  10. ATLAS semiconductor tracker installed into its barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ATLAS silicon tracker is installed in the silicon tracker barrel. Absolute precision was required in this operation to ensure that the tracker was inserted without damage through minimal clearance. The installation was performed in a clean room on the CERN site so that no impurities in the air would contaminate the tracker's systems.

  11. 49 CFR 393.30 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.30 Battery installation... 49 Transportation 5 2010-10-01 2010-10-01 false Battery installation. 393.30 Section 393.30 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER...

  12. A Hadron Radiation Installation and Verification Method

    NARCIS (Netherlands)

    Beekman, F.J.; Bom, V.R.

    2013-01-01

    A hadron radiation installation adapted to subject a target to irradiation by a hadron radiation beam, said installation comprising: - a target support configured to support, preferably immobilize, a target: - a hadron radiation apparatus adapted to emit a hadron radiation beam along a beam axis to

  13. Designing Software-Based Interactive Installations

    DEFF Research Database (Denmark)

    Andreasen, Troels; Juul, Niels Christian; Rosendahl, Mads

    2014-01-01

    What. This chapter focuses on software engineering principles with specific emphasis on interactive installations providing embodied, tangible, and immersive experiences for the user. Such installations may deliver light, image, sound, and movement through actuators and may provide interaction...... installations and support the description of the approach with a single case- a bumper car competition. Why. To some extent, standard techniques for software development can be adapted for interactive installations. However, there is a need to emphasize the unique aspects of installations, bringing tangible...... architecture as well as esthetic experience, artistic expression, and leisure aspects into focus. The approach presented here has this intended purpose. Where. Building on experience from conventional software development and with inspiration from interaction design and creative programming, this chapter...

  14. Arduino Tool: For Interactive Artwork Installations

    CERN Document Server

    Shaikh, Murtaza Hussain

    2012-01-01

    The emergence of the digital media and computational tools has widened the doors for creativity. The cutting edge in the digital arts and role of new technologies can be explored for the possible creativity. This gives an opportunity to involve arts with technologies to make creative works. The interactive artworks are often installed in the places where multiple people can interact with the installation, which allows the art to achieve its purpose by allowing the people to observe and involve with the installation. The level of engagement of the audience depends on the various factors such as aesthetic satisfaction, how the audience constructs meaning, pleasure and enjoyment. The method to evaluate these experiences is challenging as it depends on integration between the artificial life and real life by means of human computer interaction. This research investigates "How Adriano fits for creative and interactive artwork installations?" using an artwork installation in the campus of NTNU (Norwegian University...

  15. Pucci: a key for the CNGS project

    CERN Multimedia

    2001-01-01

    Left to right: Mayor of Prévessin Mr Laurenson, Gex Sub-Prefect Mrs Philippe, Mrs Maiani, Director-General Professor Maiani, and the advisor to the Permanent Mission of France to the Office of the United Nations in Geneva Mr Giacobbi. Underground works contractors are as superstitious as anyone else - by tradition, their tunnel-boring machines (TBMs), like ships, are given names to ward off bad luck. The enormous machine that will be boring a tunnel in the direction of the Gran Sasso Laboratory is no exception to this rule, and on 26 June it was formally named 'Pucci', the nickname of Mrs Maiani, the wife of CERN's Director-General, who has kindly agreed to be its patron. The naming ceremony was attended by the Mayor of Prévessin Mr Laurenson, Gex Sub-Prefect Mrs Philippe, CERN Director-General Professor Maiani and the advisor to the Permanent Mission of France to the Office of the United Nations in Geneva Mr Giacobbi. Mrs Maiani, who inaugurated the machine with the traditional bottle ...

  16. Diagram of the CNGS neutrino beam

    CERN Multimedia

    Jean-Luc Caron

    2001-01-01

    Protons accelerated in the Super Proton Synchrotron (SPS) at CERN collide with a graphite target producing mainly pions and kaons, particles with short lifetimes, which will decay in the decay tube, producing muon neutrinos. Some of these neutrinos are expected to change into another type called the tau neutrino that will be looked for by a huge detector 732 km away in Gran Sasso, Italy.

  17. Photovoltaic installation connected to the electric network; Installation photovoltaique raccordee au reseau

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-07-15

    This technical sheet on the connection of a photovoltaic installation to the electric network, provides information on the operating of such an installation, the possibilities of installation on a building, the possible subsidies, types of connection, environmental impacts, the electric power production, the cost estimation, the maintenance and life time and the administrative procedures. (A.L.B.)

  18. A transparency model and its applications for simulation of reflector arrays and sound transmission (A)

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2006-01-01

    The paper describes a new method for simulating the frequency-dependent reflection and transmission of reflector arrays, and the frequency-dependent airborne sound insulation between rooms by means of a room acoustic computer model. The method makes use of a transparency method in the ray...

  19. Vehicle perceptibilty : reflectorized registration plates and alternative means : function, design and application.

    NARCIS (Netherlands)

    Griep, D.J. Thoenes, E. Schreuder, D.A. & Kranenburg, A.

    1970-01-01

    In November 1967 the Minister of Transport and Waterways in the Netherlands asked the Institute for Road Safety Research SWOV to examine the advisable design of reflectorized registration plates from the aspect of perceptibility. Allowance had to be made for the identification of motor vehicles.

  20. Periodic orbits for space-based reflectors in the circular restricted three-body problem

    Science.gov (United States)

    Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.

    2017-05-01

    The use of space-based orbital reflectors to increase the total insolation of the Earth has been considered with potential applications in night-side illumination, electric power generation and climate engineering. Previous studies have demonstrated that families of displaced Earth-centered and artificial halo orbits may be generated using continuous propulsion, e.g. solar sails. In this work, a three-body analysis is performed by using the circular restricted three body problem, such that, the space mirror attitude reflects sunlight in the direction of Earth's center, increasing the total insolation. Using the Lindstedt-Poincaré and differential corrector methods, a family of halo orbits at artificial Sun-Earth L_2 points are found. It is shown that the third order approximation does not yield real solutions after the reflector acceleration exceeds 0.245 mm s^{-2}, i.e. the analytical expressions for the in- and out-of-plane amplitudes yield imaginary values. Thus, a larger solar reflector acceleration is required to obtain periodic orbits closer to the Earth. Derived using a two-body approach and applying the differential corrector method, a family of displaced periodic orbits close to the Earth are therefore found, with a solar reflector acceleration of 2.686 mm s^{-2}.

  1. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    Science.gov (United States)

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.

  2. Analytical modelling of waveguide mode launchers for matched feed reflector systems

    DEFF Research Database (Denmark)

    Palvig, Michael Forum; Breinbjerg, Olav; Meincke, Peter

    2016-01-01

    Matched feed horns aim to cancel cross polarization generated in offset reflector systems. An analytical method for predicting the mode spectrum generated by inclusions in such horns, e.g. stubs and pins, is presented. The theory is based on the reciprocity theorem with the inclusions represented...

  3. Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors

    NARCIS (Netherlands)

    Neumann, V.A.; Laurita, N.J.; Pan, LiDong; Armitage, N.P.

    2016-01-01

    An ongoing limitation of terahertz spectroscopy is that the technique is generally limited to the study of relatively large samples of order 4 mm across due to the generally large size of the focal beam spot. We present a nested concentric parabolic reflector design which can reduce the terahertz fo

  4. On-ground electrical performance verification strategies for large deployable reflector antennas

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Breinbjerg, Olav;

    2012-01-01

    In this paper, possible verification strategies for large deployable reflector antennas are reviewed and analysed. One of the approaches considered to be the most feasible and promising is based on measurements of the feed characteristics, such as pattern and gain, and then calculation of the ove...

  5. Autocollimation system for measuring angular deformations with reflector designed by quaternionic method

    Science.gov (United States)

    Hoang, Phong V.; Konyakhin, Igor A.

    2017-06-01

    Autocollimators are widely used for angular measurements in instrument-making and the manufacture of elements of optical systems (wedges, prisms, plane-parallel plates) to check their shape parameters (rectilinearity, parallelism and planarity) and retrieve their optical parameters (curvature radii, measure and test their flange focusing). Autocollimator efficiency is due to the high sensitivity of the autocollimation method to minor rotations of the reflecting control element or the controlled surface itself. We consider using quaternions to optimize reflector parameters during autocollimation measurements as compared to the matrix technique. Mathematical model studies have demonstrated that the orthogonal positioning of the two basic unchanged directions of the tetrahedral reflector of the autocollimator is optimal by the criterion of reducing measurement errors where the axis of actual rotation is in a bisecting position towards them. Computer results are presented of running quaternion models that yielded conditions for diminishing measurement errors provided apriori information is available on the position of rotation axis. A practical technique is considered for synthesizing the parameters of the tetrahedral reflector that employs the newly-retrieved relationships. Following the relationships found between the angles of the tetrahedral reflector and the angles of the parameters of its initial orientation, an applied technique was developed to synthesize the control element for autocollimation measurements in case apriori information is available on the axis of actual rotation during monitoring measurements of shaft or pipeline deformation.

  6. Studies of beam expansion and distributed Bragg reflector lasers for fiber optics and optical signal processing

    Science.gov (United States)

    Garmire, E. M.

    1981-03-01

    Separate studies were performed on beam expansion and on distributed Bragg Reflector (DBR) lasers preliminary to monolithic integration on GaAs substrates. These components are proposed for use in optical signal processing, for fiber optic sources and for high brightness lasers.

  7. Wavelength Tuning in the Two-Section Distributed Bragg Reflector Laser Fabricatedby Quantum-Well Intermixing

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained In xGa1-xAsyP1-y The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side mode suppression ratio (SMSR) is more than 38dB.

  8. Wavelength Tuning in the Two-Section Distributed Bragg Reflector Laser Fabricatedby Quantum-Well Intermixing

    Institute of Scientific and Technical Information of China (English)

    Lu Yu; Zhang Jing; Wang Wei; Zhu Hong-liang; Zhou Fan; Wang Bao-Jun; Zhang Jing-yuan; Zhao Ling-juan

    2003-01-01

    The two-section tunable ridge waveguide distributed Bragg reflector (DBR) lasers fabricated by strained InxGa1-xAsyP1-y. The threshold current of the laser is 51mA. The tunable range of the laser is 3.2nm and the side mode suppression ratio (SMSR) is more 38dB.

  9. Measurement of Aluminum Content In Reflector Materials For The PICO Dark Matter Detector

    Science.gov (United States)

    Borsodi, Haley; PICO Collaboration

    2015-04-01

    The PICO collaboration uses a bubble chamber technique to search for dark matter particles. Bubbles are registered with cameras, pressure sensors and acoustic transducers. To increase the visual contrast between bubbles and liquid, retro-reflectors are used to diffuse light from LEDs evenly throughout the inner chamber. One must, however, be careful that reflector materials not contribute radioactive background. Light nuclei, such as aluminum, can absorb alpha particles from radioactive contaminants and produce high energy neutron background in the inner volume of the chamber. Since aluminum oxides are a common reflector material and since commercial compositions are trade secrets, we had to demonstrate that the amounts of aluminum in the reflectors was small enough to allow them to be used in the chambers. After acid digesting candidate material strips, they were analyzed using Microwave Plasma Atomic Emission Spectroscopy. All of the proposed materials were found to have less than 1% Aluminum content (by mass), making them safe for use by the experiment. Indiana University South Bend.

  10. Modulated photonic-crystal structures as broadband back reflectors in thin-film solar cells

    NARCIS (Netherlands)

    Krc, J.; Zeman, M.; Luxembourg, S.L.; Topic, M.

    2009-01-01

    A concept of a modulated one-dimensional photonic-crystal (PC) structure is introduced as a back reflector for thin-film solar cells. The structure comprises two PC parts, each consisting of layers of different thicknesses. Using layers of amorphous silicon and amorphous silicon nitride a reflectanc

  11. A New Space Robot End-Effector for On-Orbit Reflector Assembly

    Science.gov (United States)

    2005-07-13

    Space antennas with hexagonal reflectors are planed for ETS-VIII and for VSOP -2. These antennas will be deployed in orbit, but could be a good prototype...Hirabayashi, P.G. Edwards and D.W.Murphy, Proceedings of the VSOP Symposium(2000) [3] S.Nishida, R.Okamura: "Onboard Assembling of Large Space Telescope by

  12. Periodic orbits for space-based reflectors in the circular restricted three-body problem

    Science.gov (United States)

    Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.

    2016-11-01

    The use of space-based orbital reflectors to increase the total insolation of the Earth has been considered with potential applications in night-side illumination, electric power generation and climate engineering. Previous studies have demonstrated that families of displaced Earth-centered and artificial halo orbits may be generated using continuous propulsion, e.g. solar sails. In this work, a three-body analysis is performed by using the circular restricted three body problem, such that, the space mirror attitude reflects sunlight in the direction of Earth's center, increasing the total insolation. Using the Lindstedt-Poincaré and differential corrector methods, a family of halo orbits at artificial Sun-Earth L_2 points are found. It is shown that the third order approximation does not yield real solutions after the reflector acceleration exceeds 0.245 mm s^{-2} , i.e. the analytical expressions for the in- and out-of-plane amplitudes yield imaginary values. Thus, a larger solar reflector acceleration is required to obtain periodic orbits closer to the Earth. Derived using a two-body approach and applying the differential corrector method, a family of displaced periodic orbits close to the Earth are therefore found, with a solar reflector acceleration of 2.686 mm s^{-2}.

  13. Modeling and optimization of white paint back reflectors for thin-film silicon solar cells

    NARCIS (Netherlands)

    Lipovšek, B.; Krč, J.; Isabella, O.; Zeman, M.; Topič, M.

    2010-01-01

    Diffusive dielectric materials such as white paint have been demonstrated as effective back reflectors in the photovoltaic technology. In this work, a one-dimensional (1D) optical modeling approach for simulation of white paint films is developed and implemented in a 1D optical simulator for thin-fi

  14. Inflection point caustic problems and solutions for high-gain dual-shaped reflectors

    Science.gov (United States)

    Galindo-Israel, Victor; Veruttipong, Thavath; Imbriale, William; Rengarajan, Sembiam

    1990-01-01

    The singular nature of the uniform geometrical theory of diffraction (UTD) subreflector scattered field at the vicinity of the main reflector edge (for a high-gain antenna design) is investigated. It is shown that the singularity in the UTD edge-diffracted and slope-diffracted fields is due to the reflection distance parameter approaching infinity in the transition functions. While the geometrical optics (GO) and UTD edge-diffracted fields exhibit singularities of the same order, the edge slope-diffracted field singularity is more significant and is substantial for greater subreflector edge tapers. The diffraction analysis of such a subreflector in the vicinity of the main reflector edge has been carried out efficiently and accurately by a stationary phase evaluation of the phi-integral, whereas the theta-integral is carried out numerically. Computational results from UTD and physical optics (PO) analysis of a 34-m ground station dual-shaped reflector confirm the analytical formulations for both circularly symmetric and offset asymmetric subreflectors. It is concluded that the proposed PO(theta)GO(phi) technique can be used to study the spillover or noise temperature characteristics of a high-gain reflector antenna efficiently and accurately.

  15. High-Quality Monolithic Distributed Bragg Reflector Cavities and Lasers in Alumina Channel Waveguides

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    2011-01-01

    The design, fabrication, and characterization of surface relief Bragg gratings integrated with aluminum oxide ridge waveguides are reported. The grating lengths varied between 1.25 mm and 4.75 mm and were used to create various distributed Bragg reflector (DBR) cavities. The measured grating induced

  16. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector

    Institute of Scientific and Technical Information of China (English)

    Xueliang Zhang; Zhou Meng; Zhengliang Hu

    2011-01-01

    A sensing system, with Michelson-type fiber optical interferometer based on single fiber Bragg grating (FBG) as the reflector, is demonstrated. The system used a frequency-matched ring fiber optical laser as the source. The closed Michelson-type fiber optical interferometer system will be helpful in simplifying the developed interferometric sensor by replacing the double reflectors with only one FBG reflecting the double-side light. The basic sensing properties of the system are demonstrated, with a fiber optic piezoelectric ceramic transducer embedded in the arm of the interferometer simulating the sensing signal.%As a simple fiber optic component,fiber Bragg grating (FBG) has been used frequently as a sensor,filter or reflector[1-4],etc.Meanwhile,the Michelson-type fiber optical interferometric sensor has achieved a high level of development in the acoustic,electric,and magnetic field sensors because of its simple and low-cost structure as well as multiplexing advantages.The Michelsontype interferometer has been widely applied with Faraday rotating mirrors (FRMs) or polarization maintaining fiber reflectors particularly in the fiber optic hydrophone system[5,6].At present,further research is aimed at simplifying fiber optical interferometric sensors.

  17. The use of paraffin wax in a new solar cooker with inner and outer reflectors

    Directory of Open Access Journals (Sweden)

    Arabacigil Bihter

    2015-01-01

    Full Text Available In this paper, the potential use and effectiveness of paraffin wax in a new solar cooker was experimentally investigated during daylight and late evening hours. For these experiments, a cooker having an inner reflecting surface was designed, constructed by filling paraffin wax and metal shavings. The side- and sub-surface temperatures of the paraffin wax in the cooker are measured in the summer months of June and July. The thermal efficiency of the cooker was tested on different conditions. The results show that the optimum angle of the outer reflector is 30°. Here, the peak temperature of the paraffin wax in the solar cooker was 83.4 °C. The average solar radiation reflected makes a contribution of 9.26% to the temperature of paraffin wax with the outer reflector. The solar cooker with the outer reflector angle of 30° receives also reflected radiation from the inner reflectors. Besides, the heating time is decreased to approximately 1 hour. The designed solar cooker can be effectively used with 30.3% daily thermal efficiency and paraffin wax due to the amount of energy stored.

  18. Modeling and optimization of white paint back reflectors for thin-film silicon solar cells

    NARCIS (Netherlands)

    Lipovšek, B.; Krč, J.; Isabella, O.; Zeman, M.; Topič, M.

    2010-01-01

    Diffusive dielectric materials such as white paint have been demonstrated as effective back reflectors in the photovoltaic technology. In this work, a one-dimensional (1D) optical modeling approach for simulation of white paint films is developed and implemented in a 1D optical simulator for thin-fi

  19. Array feed synthesis for correction of reflector distortion and Vernier beamsteering

    Science.gov (United States)

    Blank, Stephen J.; Imbriale, William A.

    1988-01-01

    An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.

  20. Simulation modeling of functional adaptive interference nulling for multibeam hybrid reflector antenna systems

    Science.gov (United States)

    Kartsan, I. N.; Tyapkin, V. N.; Dmitriev, D. D.; Goncharov, A. E.; Zelenkov, P. V.; Kovalev, I. V.

    2016-11-01

    This paper considers the simulation of adaptive nulling mechanism patterns in hybrid reflector antenna systems with a 19-element feed element, in which the radiation pattern is formed as a cluster. Incidents of broadband and narrowband interference are studied in the article.

  1. The Use of Decentralized Control in the Design of a Large Segmented Space Reflector

    Science.gov (United States)

    Ryaciotaki-Boussalis, Helen; Mirmirani, Maj; Rad, Khosrow; Morales, Mauricio; Velazquez, Efrain; Chassiakos, Anastasios; Luzardo, Jose-Alberto

    1997-01-01

    The 3-dimensional model for a segmented reflector telescope is developed using finite element techniques. The structure is decomposed into six subsystems. System control design using neural networks is performed. Performance evaluation is demonstrated via simulation using PRO-MATLAB and SIMULINK.

  2. Modeling for control of an inflatable space reflector, the linear 1-D case

    NARCIS (Netherlands)

    Voß, T.; Scherpen, J.M.A.; van der Schaft, A.J.

    2008-01-01

    In this paper we develop a mathematical model of the dynamics for an inflatable space reflector, which can be used to design a controller for the shape of the inflatable structure. Inflatable structures have very nice properties, suitable for aerospace applications. We can construct e.g. a huge

  3. Fast implementation of Oliker's ellipses technology to build free form reflector

    Science.gov (United States)

    Magarill, S.

    2013-09-01

    The field of illumination optics has a number of applications where using free-form reflective surfaces to create a required light distribution can be beneficial. Oliker's concept of combining elliptical surfaces is the foundation of forming a reflector for an arbitrary illuminance distribution. The algorithm for fast implementation of this concept is discussed in detail. It is based on an analytical computation of a 3D cloud of points in order to map the reflector shape with the required flux distribution. Flux delivered to chosen zones across the target can be calculated based on the number of associated cloud points and its locations. This allows optimized ellipse parameters to achieve the required flux distribution without raytracing through the reflector geometry. Such a strictly analytical optimization is much faster than building reflector geometry and raytracing each step of the optimization. A generated 3D cloud of points can be used with a standard SolidWorks feature to build the loft surface. This surface consists of adjacent elliptical facets and should be smooth to maintain continuous irradiance across the target. A secondary operation to smooth the surface profile between elliptical facets is discussed. Examples of proposed algorithm implementations are presented.

  4. Study the effect of beryllium reflector poisoning on the Syrian MNSR.

    Science.gov (United States)

    Omar, H; Ghazi, N; Haddad, Kh; Ezzuddin, H

    2012-06-01

    Neutron interactions with beryllium lead to formation of (3)H and strong neutron absorbers (3)He and (6)Li in the reflector (so called beryllium poisoning). After the reactor shutdown, the concentration of (3)He increases in time due to tritium decay. This paper illustrates the impact of poisoning accumulation in the beryllium reflectors on reactivity for the Syrian MNSR research reactor. The prediction of (6)Li and (3)He poison concentrations, initiated by the 9Be(n,α) reaction, in the beryllium reflectors of the MNSR was also presented. The results were based on MCNP Monte Carlo calculations and solutions to the differential equations which describe the time dependent poison concentrations as a function of reactor operation time and shutdown periods. The whole reactor history was taken into account to predict reliable values of parasitic isotope concentrations. It was found that the (3)He and (6)Li accumulations in the beryllium reflectors during the actual working history decreased the excess reactivity by about 28%. While, the effect became more significant at the reactor life's end and the reactor became subcritical after 25,000 h operation. The results contained in this paper could be used in assess the safety analysis of the MNSR reactor.

  5. SEMICONDUCTOR DEVICES Thin film AlGaInP light emitting diodes with different reflectors

    Science.gov (United States)

    Wei, Gao; Weiling, Guo; Deshu, Zou; Yuan, Qin; Wenjing, Jiang; Guangdi, Shen

    2010-12-01

    The reflectivity versus incident angle of a GaP/Au reflector, a GaP/SiO2/Au triple ODR (omni-directional reflector) and a GaP/ITO/Au triple ODR was calculated. Compared to AlGaInP LEDs with a GaAs absorbing substrate, thin film LEDs with a Au reflector, a SiO2 ODR and an ITO ODR were fabricated. At a current of 20 mA, the optical output power of four samples was respectively 1.04, 1.14, 2.53 and 2.15 mW. The Au diffusion in the annealing process reduces the reflectivity of the Au/GaP reflector to 9%. The different transmittance of quarter-wave thickness ITO and SiO2 induces different optical output power between the SiO2 and ITO thin film LEDs. The insertion of Zn in the ITO ODR LED does not affect the light output but evidently reduces the voltage.

  6. Design and rigorous analysis of generalized axially- symmetric dual-reflector antennas

    Science.gov (United States)

    Moreira, Fernando J. S.

    1997-10-01

    The development of reflector antennas is continuously driven by ever increasing performance requirements, creating a demand for improved design and analysis tools. Ideally, the antenna synthesis should rely on general closed-form design equations (to establish the initial geometry and performance), as well as on accurate analysis techniques (to tune up the antenna performance by accounting for all pertinent electrical effects). Driven by these motivations, this dissertation provides the required formulation for the rigorous (in a numerical sense) analysis of axially-symmetric dual-reflector antennas and for their effective design. The rigorous analysis is performed using integral-equation techniques, which permit the inclusion of all relevant antenna components (i.e., reflector surfaces and feed structure), with the exception of the supporting struts and radomes. These techniques allow the electrical performance of a designed antenna to be accurately determined, hence minimizing the use of hardware models. The design portion starts with a unified investigation of generalized classical axially-symmetric dual-reflector antennas- conic-section generated configurations that minimize the main-reflector scattering towards the subreflector while providing a uniform-phase aperture illumination. It is shown that all possible configurations can be grouped in four basic categories. Using Geometrical Optics principles, useful closed-form design expressions are obtained, allowing a straightforward determination of the initial geometry and its upper-bound high-frequency performance. The improvement of the antenna radiation characteristics through the reflector shaping is also explored. An amplitude distribution is proposed for the shaped-antenna aperture field (with constant phase), providing high efficiency while controlling the sidelobe envelope. The diffraction and spillover effects are also investigated using Geometrical Theory of Diffraction, yielding useful formulas and

  7. Offshore Cable Installation - Lillgrund. Lillgrund Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Unosson, Oscar (Vattenfall Vindkraft AB, Stockholm (Sweden))

    2009-01-15

    This report describes the installation method and the experiences gained during the installation of the submarine cables for the offshore wind farm at Lillgrund. The wind farm consists of 48 wind turbines and is expected to produce 0.33 TWh annually. Different aspects of the installation, such as techniques, co-operation between the installation teams, weather conditions and regulatory and environmental issues are described in this report. In addition, recommendations and guidelines are provided, which hopefully can be utilised in future offshore wind projects. The trenches, in which the submarine cables were laid, were excavated weeks before the cable laying. This installation technique proved to be successful for the laying of the inter array cables. The export cable, however, was laid into position with difficulty. The main reason why the laying of the export cable proved more challenging was due to practical difficulties connected with the barge entrusted with the cable laying, Nautilus Maxi. The barge ran aground a number of times and it had difficulties with the thrusters, which made it impossible to manoeuvre. When laying the inter array cables, the method specification was closely followed, and the laying of the cables was executed successfully. The knowledge and experience gained from the offshore cable installation in Lillgrund is essential when writing technical specifications for new wind plant projects. It is recommended to avoid offshore cable installation work in winter seasons. That will lower the chances of dealing with bad weather and, in turn, will reduce the risks

  8. A novel method for coiled tubing installation

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Peter J. [2H Offshore, Houston, TX (United States); Tibbetts, David [Aquactic Engineering and Construction Ltd., Aberdeen (United Kingdom)

    2009-12-19

    Installation of flexible pipe for offshore developments is costly due to the physical cost of the flexible pipe, expensive day rates and the availability of suitable installation vessels. Considering the scarcity of flexible pipe in today's increasingly demanding and busy market, operators are seeking a cost effective solution for installing piping in a range of water depths using vessels which are readily on hand. This paper describes a novel approach to installing reeled coiled tubing, from 1 inch to 5 inch diameter, from the back of a small vessel in water depths from 40 m up to around 1000 m. The uniqueness of the system is the fact that the equipment design is modular and compact. This means that when disassembled, it fits into standard 40 ft shipping containers, and the size allows it to be installed on even relatively small vessels of opportunity, such as anchor handling or installation vessels, from smaller, and cheaper quay side locations. Such an approach is the ideal solution to the problem faced by operators, in that it allows the installation of cheaper, readily available coiled tubing, from cost-effective vessels, which do not need to transit to a pick up the system. (author)

  9. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    Science.gov (United States)

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  10. Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector

    Science.gov (United States)

    Angel, Roger P

    2013-01-08

    The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.

  11. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Elizabeth H.; Schindel, Kay (City of Madison, WI); Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William (Lindau Companies, Inc., Hudson, WI); Harper, Alan (City of Madison, WI)

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

  12. A novel Beam-Down System for Solar Power Generation with Multi-Ring Central Reflectors and Molten Salt Thermal Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tamaura, Y.; Utamura, M.; Kaneko, H.; Hasuike, H.; Domingo, M.; Relloso, S.

    2006-07-01

    A new concept of beam-down solar power with thermal storage is proposed. The system is featured in an optical system with multi-ring central reflectors and a liquid film molten salt thermal receiver installed near ground level. Its feasibility study has been carried out and power generation cost as well as EPC cost has been estimated. To compensate the drawback to a beam-down solar concentrating system in optical losses, a new receiver concept of liquid film molten salt thermal receiver is designed to aim at higher thermal efficiency than that of tubular receiver. Molten salt liquid film is formed along the inner surface of the receiver wall. The liquid film flows down by gravity. It is shown that the liquid film receiver has a high heat exchange potential up to 2MW/m2 of solar beam flux on the inner wall surface and proved to be feasible. Assuming 24 hour continuous power generation located at Almeria Spain, conceptual designs for two capacities of 120MWt (commercial plant) and 20MWt (pilot plant) have been made. The height and the radius of the central receiver have been optimized as a result of trade off of optical loss and the cost of the central reflector and its support structure. The total cost of the Beam-Down will become 8.37 US cents/kWh, which will be competitive with coal and natural gas, when crude oil cost increases. TITECH (Tokyo Institute of Technology) plans to launch an international program to develop the innovative/cheaper solar tower beam--down concentrating system. (Author)

  13. Instability of Bucket Foundations during Installation

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    The bucket foundation is an upcoming technology for offshore wind turbines. The bucket foundation is a large cylindrical monopod foundation constructed as a thin steel shell structure. A bucket foundation does not require heavy installation equipment since it is installed by suction forces....... The combination of a thin shell structure and suction forces leads to the fact that instability, in form of buckling, becomes a crucial issue during installation. The hydrostatic buckling pressure of the bucket foundation is addressed using three-dimensional, non-linear finite element analysis. The results...

  14. Towards a Framework for Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Falck, Hans William

    2013-01-01

    Projection installations are part of Spatially Augmented Reality, where the projection medium is used to enrich a fixed, bounded physical space with digital content. Projection technology enables us to turn many kinds of physical objects into displays. In this paper we develop and present...... a conceptual framework that addresses three aspects of a projection installation: the contentassociated with the object, the digital content, and the relation between the two. We conclude the paper with a set of strategies commonly used in projection installations: Enhancing or emphasizing physical aspects...

  15. Design Considerations for the Installation of an Iodine (I2) Cell onto TRES

    Science.gov (United States)

    Garcia-Mejia, Juliana

    2017-01-01

    The radial velocity (RV) method utilizes the reflex motion of a target star to predict the presence of one or multiple exoplanets. However, the disparity in mass between planet and host star often results in RV oscillations below the precision of most modern spectrographs. Such is the case of TRES, the Tillinghast Reflector Echelle Spectrograph located in the Fred Lawrence Whipple Observatory in Mt. Hopkins, Arizona, with a radial velocity (RV) precision of ~ 20 m s-1, dominated by instrumental effects. Since 1992, the iodine cell technique, presented in Butler et al.(1992) has become widely used for the reduction of RV measurement errors. Here, we describe the beginning stages in the installation of one such cell onto TRES. After traveling to the telescope site to perform the first fitting of the iodine stage, I designed, built and fitted the first prototype of an improved thermal insulation system for the front end of the spectrograph, where the cell will be mounted. Here I present such a design, as well as a detailed description of the current state of the project. We expect the iodine cell to be fully functional in approximately 1 year. Once the cell is installed, we expect errors in radial velocity measurements to decrease by an order of magnitude from the aforementioned 20 m s-1. This increase in precision will come with an increase in stability of radial velocity measurements, allowing TRES to perform in-house spectroscopy of more nearby bright targets and high-cadence exoplanet follow-up.

  16. Three Heavy Reflector Experiments in the IPEN/MB-01 Reactor: Stainless Steel, Carbon Steel, and Nickel

    Science.gov (United States)

    dos Santos, A.; de Andrade e Silva, G. S.; Mura, L. F.; Fuga, R.; Jerez, R.; Mendonça, A. G.

    2014-04-01

    The heavy reflector experiments performed in the IPEN/MB-01 research reactor facility comprise a set of critical configurations employing the standard 28×26-fuel-rod configuration. The heavy reflector, either Stainless Steel, Carbon Steel or Nickel plates, was placed at the west face of this reactor. 32 plates around 3.0 mm thick were used in all the experiments. The aim was to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check to the SS-304 reflector measurements. The experimental data comprise a set of critical control bank positions, temperatures and reactivities as a function of the number of the plates. The competition between the effect of thermal neutron capture in the heavy reflector and the effect of fast neutrons back scattering to the core is highlighted by varying the reflector thickness. For the Carbon Steel case the reactivity gain when all the 32 plates are inserted is the smallest one, thus demonstrating that Carbon Steel or essentially iron does not have the same reflector properties as the Stainless Steel or Nickel plates do. Nickel has the highest reactivity gain, thus demonstrating that this material is better reflector than Iron and Stainless Steel. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  17. Structural Code Considerations for Solar Rooftop Installations.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

  18. Prototype solar-heating system - installation manual

    Science.gov (United States)

    1978-01-01

    Manual for prototype solar-heating system gives detailed installation procedures for each of seven subsystems. Procedures for operation and maintenance are also included. It discusses architectural considerations, building construction considerations, and checkout-test procedures.

  19. Notes on LED Installations in Street Illumination

    Directory of Open Access Journals (Sweden)

    Elisabeta Spunei

    2014-09-01

    Full Text Available The paper presents a study made on choosing LED street lighting installations, such that the quality requirements for exterior artificial lighting are fulfilled. We analyze two types of LED street lighting installations from a technical point of view, together with lighting level and brightness values obtained during the measurements. Following on the field measurements, the lighting quality parameters are calculated, and, for the lighting installation with the best performance, optimal mounting suggestions are made. The optimal quality parameters are calculated by simulations using the Dialux software. The same software and the same light sources we also compute an optimal street lighting by determining the size of the installation that provides the best lighting parameter values.

  20. Subsea flexible flowline installation issues and solutions

    Institute of Scientific and Technical Information of China (English)

    Kevin Huang

    2013-01-01

    Flexible flowlines and risers have been increasingly used for deepwater and ultra-deepwater field applications,partially because of its low submerged weight and better dynamic characteristics comparing to rigid pipelines.The offshore installation of flowline may have advantages as well.However,it has special needs for the installation aids,and it is challenging to install tie-in structures due to its low bending stiffness.This paper is to present some of the challenges during a recent flexible installation project with a total of more than 100 km flexible flowlines,and 24 in-line sleds/pipeline end termination(PLET) in water depth up to 1 300 m.

  1. Installation of the LHC transfer lines begins

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. In this way the magnet is delivered directly to its installation point, but beneath the beamline. It is then raised into its final position in the beamline using air cushions, which form an integrated part of the transport system. Here we see the transport vehicle alongside the magnet supports. Visible in the background is the first magnet in place.

  2. Towards a Framework for Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Falck, Hans William

    2013-01-01

    Projection installations are part of Spatially Augmented Reality, where the projection medium is used to enrich a fixed, bounded physical space with digital content. Projection technology enables us to turn many kinds of physical objects into displays. In this paper we develop and present a conce...... concerning urban computing, including media architecture.......Projection installations are part of Spatially Augmented Reality, where the projection medium is used to enrich a fixed, bounded physical space with digital content. Projection technology enables us to turn many kinds of physical objects into displays. In this paper we develop and present...... a conceptual framework that addresses three aspects of a projection installation: the contentassociated with the object, the digital content, and the relation between the two. We conclude the paper with a set of strategies commonly used in projection installations: Enhancing or emphasizing physical aspects...

  3. RF accelerating unit installed in the PSB

    CERN Multimedia

    1972-01-01

    RF accelerating unit installed in the PSB ring between two bending magnets. Cool air from a heat exchanger is injected into the four cavities from the central feeder and the hot air recirculated via the lateral ducts.

  4. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C. [and others

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs.

  5. Improving Energy Security for Air Force Installations

    Science.gov (United States)

    Schill, David

    Like civilian infrastructure, Air Force installations are dependent on electrical energy for daily operations. Energy shortages translate to decreased productivity, higher costs, and increased health risks. But for the United States military, energy shortages have the potential to become national security risks. Over ninety-five percent of the electrical energy used by the Air Force is supplied by the domestic grid, which is susceptible to shortages and disruptions. Many Air Force operations require a continuous source of energy, and while the Air Force has historically established redundant supplies of electrical energy, these back-ups are designed for short-term outages and may not provide sufficient supply for a longer, sustained power outage. Furthermore, it is the goal of the Department of Defense to produce or procure 25 percent of its facility energy from renewable sources by fiscal year 2025. In a government budget environment where decision makers are required to provide more capability with less money, it is becoming increasingly important for informed decisions regarding which energy supply options bear the most benefit for an installation. The analysis begins by exploring the field of energy supply options available to an Air Force installation. The supply options are assessed according to their ability to provide continuous and reliable energy, their applicability to unique requirements of Air Force installations, and their costs. Various methods of calculating energy usage by an installation are also addressed. The next step of this research develops a methodology and tool which assesses how an installation responds to various power outage scenarios. Lastly, various energy supply options are applied to the tool, and the results are reported in terms of cost and loss of installation capability. This approach will allow installation commanders and energy managers the ability to evaluate the cost and effectiveness of various energy investment options.

  6. Software Management Environment (SME) installation guide

    Science.gov (United States)

    Kistler, David; Jeletic, Kellyann

    1992-01-01

    This document contains installation information for the Software Management Environment (SME), developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides a list of hardware and software requirements as well as detailed installation instructions and trouble-shooting information.

  7. Design method for an offset dual-shaped reflector antenna with high efficiency and an elliptical beam

    Science.gov (United States)

    Aoki, K.; Makino, S.; Katagi, T.; Kagoshima, K.

    1993-04-01

    A newly developed method of design for a shaped reflector antenna is described. A conventional quadratic reflector configuration is assumed; the reflectors are then modified to yield the desired aperture shape and field distribution by introducing shaping functions. This method is useful for designing antennas with an arbitrary shaped beam, such as an elliptical-beam antenna, and has been verified through a 4.7 m x 2.3 m dual-band earth-station antenna for the Japanese domestic satellite system CS. The measured aperture efficiency is more than 76 percent, and the ratio of the major and minor axes of the elliptical beam is 2:1.

  8. Installation of the LHC transfer lines begins

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. The first installation phase will continue until mid-April. In addition to the magnets, a beam dump facility also has to be installed. The second installation phase will take place later this year and should be completed in 2004, when the TI 8 transfer line is due to be tested. The second transfer line, in tunnel TI 2, should be ready in April 2007, once the LHC magnets have been transported through the downstream section of this tunnel. Th...

  9. Installation of the LHC transfer lines begins

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. The first installation phase will continue until mid-April. In addition to the magnets, a beam dump facility also has to be installed. The second installation phase will take place later this year and should be completed in 2004, when the TI 8 transfer line is due to be tested. The second transfer line, in tunnel TI 2, should be ready in April 2007, once the LHC magnets have been transported through the downstream section of this tunnel.Pho...

  10. Installation of the LHC transfer lines begins

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. The first installation phase will continue until mid-April. In addition to the magnets, a beam dump facility also has to be installed. The second installation phase will take place later this year and should be completed in 2004, when the TI 8 transfer line is due to be tested. The second transfer line, in tunnel TI 2, should be ready in April 2007, once the LHC magnets have been transported through the downstream section of this tunnel. We...

  11. Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    Science.gov (United States)

    Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2013-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also

  12. Nonlinear Structural Analysis Methodology and Dynamics Scaling of Inflatable Parabolic Reflector Antenna Concepts

    Science.gov (United States)

    Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen

    2007-01-01

    Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are

  13. Planning and installing micro-hydro systems a guide for designers, installers and engineers

    CERN Document Server

    Elliott, Chris

    2014-01-01

    An essential addition to the Earthscan Planning & Installing series, Planning and Installing Micro-Hydro Systems provides vital diagrams, pictures and tables detailing the planning and installing of a micro-hydro system, including information on the maintenance and economics once an installation is running. The book covers subjects such as measuring head and flow, ecological impacts, scheme layouts, practical advice, calculations and turbine choice. Archimedes screws are also covered in detail, as well as the main conventional choices relevant to small sites.Micro-hydro refers to hydropower sy

  14. From the generalized reflection law to the realization of perfect anomalous reflectors

    CERN Document Server

    Díaz-Rubio, Ana; and, Amr Elsakka; Tretyakov, Sergei

    2016-01-01

    The use of the generalized Snell's law opens wide possibilities for the manipulation of transmitted and reflected wavefronts. However, known structures designed to shape reflection wave fronts suffer from significant parasitic reflections in undesired directions: In fact, the desired field distributions do not satisfy Maxwell's equations if the boundary conditions are specified in accordance with the generalized Snell's law. In this work, we explore the limitations of the existing solutions for the design of passive planar reflectors and demonstrate that strongly non-local response is required for perfect performance. Ideal reflective surfaces capable of steering the energy into any desired direction have to localize and carry energy along the inhomogeneous reflective surface. A new paradigm for the design of perfect reflectors based on energy surface channeling is introduced. We realize and experimentally verify a theoretically perfect design of an anomalously reflective surface using an array of rectangular...

  15. Diffuse reflectors for improving light management in solar cells: a review and outlook

    Science.gov (United States)

    Barugkin, Chog; Beck, Fiona J.; Catchpole, Kylie R.

    2017-01-01

    Pigment based diffuse reflectors (DRs) have several advantages over metal reflectors such as good stability, high reflectivity, and low parasitic absorption. As such, DRs have the potential to be applied on high efficiency silicon solar cells and further increase the power conversion efficiency. In this paper, we perform a thorough review on the notable achievements to date of DRs’ application for photovoltaics. We outline unique attributes of these technologies and discuss the theoretical and laboratory development working towards overcoming the challenges of transferring to high efficiency silicon solar cells. In order to understand the potential of DRs for high efficiency silicon solar cells, we provide a qualitative analysis of the impact of front reflection, rear absorption and the angular distribution on the useful light absorption in silicon wafers. By including this discussion, we provide an outlook for the application of DR in reaching maximum photo-current for high efficiency silicon solar cells.

  16. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-15

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.

  17. Coaxial heat pipe for cooling of a laser’s reflector

    Directory of Open Access Journals (Sweden)

    Gershuni A. N.

    2014-06-01

    Full Text Available The paper presents the development and research results for a coaxial heat pipe designed for cooling of a reflector of a solid-state laser. A coaxial cylindrical heat pipe, designed to cool the laser reflector, provides that the temperature of the heat-removing surface does not exceed 120°C at any orientation in the gravitational field, if the heat is removed by forced convection of air with the temperature of 60°C in a pulsed mode of heat flow supply of 300 W. Thermal resistance of the developed heat pipe is 0,03 K/W, the specific thermal resistance — 1,1•10–3 m2•K/W. The developed cooling system based on the evaporation-condensation principle, allows ensuring temperature uniformity of the cooling surface at low thermal resistance.

  18. Millimeter-wave double-dipole antennas for high-gain integrated reflector illumination

    Science.gov (United States)

    Filipovic, Daniel F.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-05-01

    A double-dipole antenna backed by a ground plane has been fabricated for submillimeter wavelengths. The double-dipole antenna is integrated on a thin dielectric membrane with a planar detector at its center. Measured feed patterns at 246 GHz agree well with theory and demonstrate a rotationally symmetric pattern with high coupling efficiency to Gaussian beams. The input impedance is around 50 ohms, and will match well to a Schottky diode or SIS detector. The double-dipole antenna served as the feed for a small machined parabolic reflector. The integrated reflector had a measured gain of 37 dB at 119 microns. This makes the double-dipole antenna ideally suited as a feed for high resolution tracking or for long focal length Cassegrain antenna systems.

  19. A physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    Science.gov (United States)

    Balanis, Constantine A.; Polycarpou, Anastasis C.

    1993-07-01

    The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.

  20. Reflectors and resonators for high-k bulk Bloch plasmonic waves in multilayer hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Lavrinenko, Andrei

    2012-01-01

    We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....

  1. Distributed Reflector Laser Integrated with Active and Passive Grating Sections Using Lateral Quantum Confinement Effect

    Science.gov (United States)

    Ohira, Kazuya; Murayama, Tomonori; Yagi, Hideki; Tamura, Shigeo; Arai, Shigehisa

    2003-08-01

    A new type of distributed reflector (DR) laser, monolithically integrated with wirelike active section and passive distributed Bragg reflector (DBR) section, was realized for the first time by using the lateral quantum confinement effect in quantum-wire structure. As a result, a threshold current density as low as 320 A/cm2 and a strong asymmetric output ratio of the front to the rear facet of 28 were obtained for a 20 μm wide stripe structure. For lower threshold and single-mode operation, a narrow stripe DR laser was fabricated. Threshold current of 7.4 mA and submode suppression ratio (SMSR) of 40 dB at a bias current of 1.2 times the threshold were obtained for a stripe width of 3 μm under room-temperature continuous-wave (RT-CW) condition.

  2. Seismic imaging of shallow reflectors in the eastern Kapuskasing structural zone, with correction of crossdip attitudes

    Science.gov (United States)

    Kim, Jisoo; Moon, Wooil M.; Percival, John A.; West, F. G.

    1992-10-01

    Cascaded processes of crossdip correction and residual statics are tested and applied in the reprocessing of regional data from LITHOPROBE Kapuskasing Transect line 2. The objective was to improve seismic imaging of shallow, gently dipping reflectors in the eastern Kapuskasing structural zone, a thrusted slice of Archean middle to lower crust. This focusing strategy proved to be very effective in improving the image of the reflected energy and in identifying a set of conformally dipping reflectors whose true crossdip is estimated to be approximately 17 deg NW. The estimated crossdip for a reflective, compositionally layered zone and for the basal thrust, the Ivanhoe Lake Fault zone, support the previously estimated average dip of 15-20 deg.

  3. The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope

    Science.gov (United States)

    Kawachi, A.; Hayami, Y.; Jimbo, J.; Kamei, S.; Kifune, T.; Kubo, H.; Kushida, J.; LeBohec, S.; Miyawaki, K.; Mori, M.; Nishijima, K.; Patterson, J. R.; Suzuki, R.; Tanimori, T.; Yanagita, S.; Yoshikoshi, T.; Yuki, A.

    2001-01-01

    A new imaging atmospheric Cherenkov telescope with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing carbon fiber reinforced plastic laminates were developed for the telescope. The reflector has a parabolic shape ( f/1.1) with a 30 m 2 surface area, which consists of 60 spherical mirror facets. The image size of each mirror facet is 0°.08 (FWHM) on average. The attitude of each facet can be adjusted by stepping motors. After the first in situ adjustment, a point image of about 0°.14 (FWHM) over 3° field of view was obtained. The effect of gravitational load on the optical system was confirmed to be negligible at the focal plane. The telescope has been in operation with an energy threshold for γ-rays of ≲300 GeV since May 1999.

  4. Floating volumetric image formation using a dihedral corner reflector array device.

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system.

  5. Double-loop frequency selective surfaces for multi frequency division multiplexing in a dual reflector antenna

    Science.gov (United States)

    Wu, Te-Kao (Inventor)

    1994-01-01

    A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.

  6. Final Technical Report: Development of an Abrasion-Resistant Antisoiling Coating for Front-Surface Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Gee, Randy C. [Sundog Solar Technology, Arvada, CO (United States)

    2017-07-18

    A high-performance reflective film has been successfully developed for Concentrating Solar Power (CSP) solar concentrators. Anti-soiling properties and abrasion resistance have been incorporated into the reflector to reduce reflector cleaning costs and to enhance durability. This approach has also resulted in higher reflectance and improved specularity. From the outset of this project we focused on the use of established high-volume roll-to-roll manufacturing techniques to achieve low manufacturing costs on a per ubit area basis. Roll-to-roll manufacturng equipment has a high capital cost so there is an entire industry devoted to roll-to-roll “toll” manufacturing, where the equipment is operated “around the clock” to produce a multitude of products for a large variety of uses. Using this approach, the reflective film can be manufactured by toll coaters/converters on an as-needed basis.

  7. Fabrication of SiC membrane HCG blue reflector using nanoimprint lithography

    Science.gov (United States)

    Lai, Ying-Yu; Matsutani, Akihiro; Lu, Tien-Chang; Wang, Shing-Chung; Koyama, Fumio

    2015-02-01

    We designed and fabricated a suspended SiC-based membrane high contrast grating (HCG) reflectors. The rigorous coupled-wave analysis (RCWA) was employed to verify the structural parameters including grating periods, grating height, filling factors and air-gap height. From the optimized simulation results, the designed SiC-based membrane HCG has a wide reflection stopband (reflectivity (R) HCG reflectors were fabricated by nanoimprint lithography and two-step etching technique. The corresponding reflectivity was measured by using a micro-reflectivity spectrometer. The experimental results show a high reflectivity (R<90%), which is in good agreement with simulation results. This achievement should have an impact on numerous III-N based photonic devices operating in the blue wavelength or even ultraviolet region.

  8. Solar receiver heliostat reflector having a linear drive and position information system

    Science.gov (United States)

    Horton, Richard H.

    1980-01-01

    A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

  9. Wind-induced loads and integrity assessment of hyperboloid reflector of solar pow

    Directory of Open Access Journals (Sweden)

    M. Eswaran

    2016-06-01

    Full Text Available Flow-induced loads and Strouhal frequencies of secondary hyperboloid reflector which is located at top of the central tower of a proposed solar power plant are investigated. Initially for validation, flow-induced vibration characteristics of 3-D rectangular cylinder are studied and found in good agreement with previously published results. After the validation of the present numerical procedure, the force coefficients and the Strouhal frequencies of solar secondary hyperboloid reflector are determined for operational and survival wind speeds. Influences of various numerical parameters are investigated through the statistical values of the drag and the lift coefficients, Strouhal number, and pressure distribution. Finite element analysis has also been done to find out the deflections and stresses due to dead weight, imposed loads and wind loads and to optimize the design of hyperboloid and towers.

  10. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-05-11

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  11. Utilization of HTR reflector graphite as embedding matrix for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fachinger, J., E-mail: fachinger@fnag.eu [Furnaces Nuclear Applications Grenoble, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany); Grosse, K.H. [Furnaces Nuclear Applications Grenoble, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany); Hrovat, M.; Seemann, R. [ALD, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany)

    2012-10-15

    The reflector graphite of an HTR reactor has to be handled as radioactive waste after the operational period of the reactor. However the waste management of irradiated graphite from Magnox reactors shows, that waste management of even low contaminated graphite could be expensive and requires special retrieval, treatment and disposal technologies for safe long term storage as low or medium radioactive waste. However the reflector graphite could be transferred into long term stable embedding matrix for high level radioactive waste especially for HTR fuel elements. This can be achieved by closing the pore system of the graphite with a stable inorganic binder, e.g. glass. First investigations proved the sealing of the pore system and the potential for embedding HTR fuel pebbles.

  12. Active member vibration control for a 4 meter primary reflector support structure

    Science.gov (United States)

    Umland, J. W.; Chen, G.-S.

    1992-01-01

    The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.

  13. Mechanical behaviour of tape springs used in the deployment of reflectors around a solar panel

    Science.gov (United States)

    Dewalque, Florence; Collette, Jean-Paul; Brüls, Olivier

    2016-06-01

    In order to increase the production of power on small satellites, solar panels are commonly deployed and, in some cases, reflectors are added to improve the concentration factor on solar cells. In this work, reflectors are deployed by the means of compliant mechanisms known as tape springs. Their attractive characteristics are, among others, their passive behaviour, their self-locking capacity, their elastic deformations and their robustness. However, their mechanical behaviour is highly nonlinear and requires thorough analyses in order to develop predictive numerical models. It is shown here through parametric studies that the nonlinear behaviour of a tape spring is mainly governed by its geometry. Thus, for each specific application, its dimensions can be determined in order to minimise two critical features: the maximum stress affecting the structure and the maximum motion amplitude during deployment. In this paper, an optimisation procedure is proposed to meet these requirements.

  14. The paraboloidal reflector antenna in radio astronomy and communication theory and practice

    CERN Document Server

    Baars, Jacob W M

    2007-01-01

    Reflector antennas are widely used in the microwave and millimeter wavelength domain. Radio astronomers have developed techniques of calibration of large antennas with radio astronomical methods. These have not been comprehensively described. This text aims to fill this gap. The Paraboloidal Reflector Antenna in Radio Astronomy and Communication: Theory and Practice takes a practical approach to the characterization of antennas. All calculations and results in the form of tables and figures have been made with Mathematica by Wolfram Research. The reader can use the procedures for the implementation of his/her own input data. The book should be of use to all who are involved in the design and calibration of large antennas, like ground station managers and engineers, practicing radio astronomers, and finally, graduate students in radio astronomy and communication technology.

  15. Integrated Thermal-structural-electromagnetic Design Optimization of Large Space Antenna Reflectors

    Science.gov (United States)

    Adelman, H. M.; Padula, S. L.

    1986-01-01

    The requirements for low mass and high electromagnetic (EM) performance in large, flexible space antenna structures is motivating the development of a systematic procedure for antenna design. In contrast to previous work which concentrated on reducing rms distortions of the reflector surface, thereby indirectly increasing antenna performance, the current work involves a direct approach to increasing electromagnetic performance using mathematical optimization. The thermal, structural, and EM analyses are fully integrated in the context of an optimization procedure, and consequently, the interaction of the various responses is accounted for directly and automatically. Preliminary results are presented for sizing cross-sectional areas of a tetrahedral truss reflector. The results indicate potential for this integrated procedure from the standpoint of mass reduction, performance increase, and efficiency of the design process.

  16. Intervening in Earth's climate system through space-based solar reflectors

    Science.gov (United States)

    Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.

    2016-07-01

    Several space-based climate engineering methods, including shading the Earth with a particle ring for active cooling, or the use of orbital reflectors to increase the total insolation of Mars for climate warming have been considered to modify planetary climates in a controller manner. In this study, solar reflectors on polar orbits are proposed to intervene in the Earth's climate system, involving near circular polar orbits normal to the ecliptic plane of the Earth. Similarly, a family of displaced polar orbits (non-Keplerian orbits) are also characterized to mitigate future natural climate variability, producing a modest global temperature increase, again to compensate for possible future cooling. These include deposition of aerosols in the stratosphere from large volcanic events. The two-body problem is considered, taking into account the effects of solar radiation pressure and the Earth's J2 oblateness perturbation.

  17. Synthesis of offset dual reflector antennas transforming a given feed illumination pattern into a specified aperture distribution

    Science.gov (United States)

    Mittra, R.; Galindo-Israel, V.; Hyjazie, F.

    1982-01-01

    The problem of transforming a given primary feed pattern into a desired aperture field distribution through two reflections by an offset dual reflector system is investigated using the concepts of geometrical optics. A numerically rigorous solution for the reflector surfaces is developed which realizes an exact aperture phase distribution and an aperture amplitude distribution that is accurate to within an arbitrarily small numerical tolerance. However, this procedure does not always yield a smooth solution, i.e., the reflector surfaces thus realized may not be continuous or their slopes may vary too rapidly. In the event of nonexistence of a numerically rigorous smooth solution, an approximate solution that enforces the smoothness of the reflector surfaces can be obtained. In the approximate solution, only the requirement for the aperture amplitude distribution is relaxed, and the condition on the aperture phase distribution is continued to be satisfied exactly.

  18. On a Monopulse Ring-Focus Shaped ReflectorAntenna with Arbitrary Polarization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The near-field distribution and far-field pattern of a monopulse ring-focus shaped reflector antenna are studied. The four-fold integral appearing in the formulation by using PO method is converted into a triple integral for the near-field case and a double integral for the far-field case by applying the Fourier series expansion. Good agreements have been achieved between theoretical and experimental results.

  19. Radar cross section of triangular trihedral reflector with extended bottom plate.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.; Doerry, Armin Walter

    2009-05-01

    Trihedral corner reflectors are the preferred canonical target for SAR performance evaluation for many radar development programs. The conventional trihedrals have problems with substantially reduced Radar Cross Section (RCS) at low grazing angles, unless they are tilted forward, but in which case other problems arise. Consequently there is a need for better low grazing angle performance for trihedrals. This is facilitated by extending the bottom plate. A relevant analysis of RCS for an infinite ground plate is presented. Practical aspects are also discussed.

  20. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; Hermle, Martin; Lee, Benjamin G.; Goldschmidt, Jan Christoph

    2016-08-01

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rear side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. The short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm2, compared to a non-reflecting black rear side and up to 0.8 mA/cm2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.