WorldWideScience

Sample records for cmb cold spot

  1. CMB Cold Spot from Inflationary Feature Scattering

    CERN Document Server

    Wang, Yi

    2015-01-01

    We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from {\\it WMAP} and {\\it Planck} maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at $\\ell \\sim 20$.

  2. Evidence against a supervoid causing the CMB Cold Spot

    Science.gov (United States)

    Mackenzie, Ruari; Shanks, Tom; Bremer, Malcolm N.; Cai, Yan-Chuan; Gunawardhana, Madusha L. P.; Kovács, András; Norberg, Peder; Szapudi, Istvan

    2017-09-01

    We report the results of the 2dF-VST ATLAS Cold Spot galaxy redshift survey (2CSz) based on imaging from VST ATLAS and spectroscopy from 2dF AAOmega over the core of the CMB Cold Spot. We sparsely surveyed the inner 5° radius of the Cold Spot to a limit of iAB ≤ 19.2, sampling ∼7000 galaxies at z data out to z ∼ 1, we conclude that the CMB Cold Spot could not have been imprinted by a void confined to the inner core of the Cold Spot. Additionally, we find that our 'control' field GAMA G23 shows a similarity in its galaxy redshift distribution to the Cold Spot. Since the GAMA G23 line of sight shows no evidence of a CMB temperature decrement, we conclude that the Cold Spot may have a primordial origin rather than being due to line-of-sight effects.

  3. Finite Cosmology and a CMB Cold Spot

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.J.; /Stanford U., HEPL; Bjorken, J.D.; /SLAC; Overduin, J.M.; /Stanford U., HEPL

    2006-03-20

    The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10{sup 23}M{sub {circle_dot}} and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.

  4. CMB polarization as a probe of the anomalous nature of the Cold Spot

    CERN Document Server

    Vielva, P; Cruz, M; Barreiro, R B; Tucci, M

    2010-01-01

    One of the most interesting explanations for the non-Gaussian Cold Spot detected in WMAP data by Vielva et al. 2004 is that it arises from the interaction of the CMB radiation with a cosmic texture (Cruz et al. 2007b). In this case, a lack of polarization is expected in the area of the spot as compared to the typical values associated to large fluctuations of a Gaussian and isotropic random field. In this work we characterize the polarization properties of the Cold Spot, under both hypotheses: a large Gaussian fluctuation and an anomalous feature. We propose as well a methodology to distinguish between them, and we discuss the discrimination power as a function of the instrumental noise level. In particular, we address the cases of current experiments, like WMAP and Planck, and others in development as QUIJOTE. We find that for an ideal experiment with a very high sensitivity in polarization, the Gaussian hypothesis could be rejected at a significance level lower than 0.8%. Whereas WMAP is quite far form prov...

  5. Using CMB polarization to constrain the anomalous nature of the Cold Spot with an incomplete sky-coverage

    CERN Document Server

    Fernández-Cobos, R; Martínez-González, E; Tucci, M; Cruz, M

    2013-01-01

    Recent results of the ESA Planck satellite have confirmed the existence of some anomalies in the statistical distribution of the cosmic microwave background (CMB) anisotropies. One of the most intriguing anomalies is the Cold Spot, firstly detected in the WMAP data by Vielva et al. (2004). In a later paper, Vielva et al. (2011) developed a method to probe the anomalous nature of the Cold Spot by using the cross-correlation of temperature and polarization of the CMB fluctuations. Whereas this work was built under the assumption of analysing full-sky data, in the present paper we extend such approach to deal with realistic data sets with a partial sky-coverage. In particular, we exploit the radial and tangential polarization patterns around temperature spots. We explore the capacity of the method to distinguish between a standard Gaussian CMB scenario and an alternative one, in which the Cold Spot arises from a physical process that does not present correlated polarization features (e.g., topological defects), ...

  6. A comprehensive overview of the Cold Spot

    CERN Document Server

    Vielva, P

    2010-01-01

    The report of a significant deviation of the CMB temperature anisotropies distribution from Gaussianity (soon after the public release of the WMAP data in 2003) has become one of the most solid WMAP anomalies. This detection grounds on an excess of the kurtosis of the Spherical Mexican Hat Wavelet coefficients at scales of around 10 degrees. At these scales, a prominent feature --located in the southern Galactic hemisphere-- was highlighted from the rest of the SMHW coefficients: the Cold Spot. This article presents a comprehensive overview related to the study of the Cold Spot, paying attention to the non-Gaussianity detection methods, the morphological characteristics of the Cold Spot, and the possible sources studied in the literature to explain its nature. Special emphasis is made on the Cold Spot compatibility with a cosmic texture, commenting on future tests that would help to give support or discard this hypothesis.

  7. Count response model for the CMB spots

    CERN Document Server

    Giovannini, Massimo

    2010-01-01

    The statistics of the curvature quanta generated during a stage of inflationary expansion is used to derive a count response model for the large-scale phonons determining, in the concordance lore, the warmer and the cooler spots of the large-scale temperature inhomogeneities. The multiplicity distributions for the counting statistics are shown to be generically overdispersed in comparison with conventional Poissonian regressions. The generalized count response model deduced hereunder accommodates an excess of correlations in the regime of high multiplicities and prompts dedicated analyses with forthcoming data collected by instruments of high angular resolution and high sensitivity to temperature variations per pixel.

  8. The inflationary origin of the Cold Spot anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bueno Sánchez, Juan C., E-mail: juan.c.bueno@correounivalle.edu.co [Departamento de Física, Universidad del Valle, A.A. 25360, Santiago de Cali (Colombia); Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia); Escuela de Física, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga 680002 (Colombia); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040, Madrid (Spain)

    2014-12-12

    Single-field inflation, arguably the simplest and most compelling paradigm for the origin of our Universe, is strongly supported by the recent results of the Planck satellite and the BICEP2 experiment. The results from Planck, however, also confirm the presence of a number of anomalies in the Cosmic Microwave Background (CMB), whose origin becomes problematic in single-field inflation. Among the most prominent and well-tested of these anomalies is the Cold Spot, which constitutes the only significant deviation from Gaussianity in the CMB. Planck's non-detection of primordial non-Gaussianity on smaller scales thus suggests the existence of a physical mechanism whereby significant non-Gaussianity is generated on large angular scales only. In this Letter, we address this question by developing a localized version of the inhomogeneous reheating scenario, which postulates the existence of a scalar field able to modify the decay of the inflaton on localized spatial regions only. We demonstrate that if the Cold Spot is due to an overdensity in the last scattering surface, the localization mechanism offers a feasible explanation for it, thus providing a physical mechanism for the generation of localized non-Gaussianity in the CMB. If, on the contrary, the Cold Spot is caused by a newly discovered supervoid (as recently claimed), we argue that the localization mechanism, while managing to enhance underdensities, may well shed light on the rarity of the discovered supervoid.

  9. Cosmic troublemakers: the Cold Spot, the Eridanus supervoid, and the Great Walls

    Science.gov (United States)

    Kovács, András; García-Bellido, Juan

    2016-10-01

    The alignment of the CMB Cold Spot and the Eridanus supervoid suggests a physical connection between these two relatively rare objects. We use galaxy catalogues with photometric (2MPZ) and spectroscopic (6dF) redshift measurements, supplemented by low-redshift compilations of cosmic voids, in order to improve the 3D mapping of the matter density in the Eridanus constellation. We find evidence for a supervoid with a significant elongation in the line of sight, effectively spanning the total redshift range z system of voids. We improve the analysis by extending the line-of-sight measurements into the antipodal direction that interestingly crosses the Northern Local Supervoid at the lowest redshifts. Then it intersects very rich superclusters like Hercules and Corona Borealis, in the region of the Coma and Sloan Great Walls, as a possible compensation for the large-scale matter deficit of Eridanus. We find that large-scale structure measurements are consistent with a central matter underdensity δ0 ≈ -0.25, projected transverse radius r0^{perp }≈ 195 Mpc h-1 with an extra deepening in the centre, and line-of-sight radius r0^{allel }≈ 500 Mpc h-1, i.e. an ellipsoidal supervoid. The expected integrated Sachs-Wolfe imprint of such an elongated supervoid is at the ΔTISW ≈ -40 μK level, thus inappropriate to accounting for the Cold Spot pattern in the CMB.

  10. The Cold Spot in the Cosmic Microwave Background: the Shadow of a Supervoid

    CERN Document Server

    Szapudi, István; Granett, Benjamin R; Frei, Zsolt; Silk, Joseph; Garcia-Bellido, Juan; Burgett, Will; Cole, Shaun; Draper, Peter W; Farrow, Daniel J; Kaiser, Nicholas; Magnier, Eugene A; Metcalfe, Nigel; Morgan, Jeffrey S; Price, Paul; Tonry, John; Wainscoat, Richard

    2014-01-01

    Standard inflationary hot big bang cosmology predicts small fluctuations in the Cosmic Microwave Background (CMB) with isotropic Gaussian statistics. All measurements support the standard theory, except for a few anomalies discovered in the Wilkinson Microwave Anisotropy Probe maps and confirmed recently by the Planck satellite. The Cold Spot is one of the most significant of such anomalies, and the leading explanation of it posits a large void that imprints this extremely cold area via the linear Integrated Sachs-Wolfe (ISW) effect due to the decay of gravitational potentials over cosmic time, or via the Rees-Sciama (RS) effect due to late-time non-linear evolution. Despite several observational campaigns targeting the Cold Spot region, to date no suitably large void was found at higher redshifts $z > 0.3$. Here we report the detection of an $R =(192 \\pm 15) h^{-1}Mpc$ size supervoid of depth $\\delta = -0.13 \\pm 0.03$, and centred at redshift $z = 0.22$. This supervoid, possibly the largest ever found, is la...

  11. HOT AND COLD SPOT COUNTS AS PROBES OF NON-GAUSSIANITY IN THE COSMIC MICROWAVE BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Chingangbam, Pravabati [Indian Institute of Astrophysics, Koramangala II Block, Bangalore 560034 (India); Park, Changbom [Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Yogendran, K. P. [Indian Institute for Science Education and Research, Mohali (India); Van de Weygaert, Rien, E-mail: prava@iiap.res.in, E-mail: cbp@kias.re.kr, E-mail: pattag@gmail.com, E-mail: weygaert@astro.rug.nl [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9747 AV Groningen (Netherlands)

    2012-08-20

    We introduce the numbers of hot and cold spots, n{sub h} and n{sub c} , of excursion sets of the cosmic microwave background (CMB) temperature anisotropy maps as statistical observables that can discriminate different non-Gaussian models. We numerically compute them from simulations of non-Gaussian CMB temperature fluctuation maps. The first kind of non-Gaussian model we study is the local type primordial non-Gaussianity. The second kind of model has some specific form of the probability distribution function from which the temperature fluctuation value at each pixel is drawn, obtained using HEALPIX. We find the characteristic non-Gaussian deviation shapes of n{sub h} and n{sub c} , which is distinct for each of the models under consideration. We further demonstrate that n{sub h} and n{sub c} carry additional information compared to the genus, which is just their linear combination, making them valuable additions to the Minkowski Functionals in constraining non-Gaussianity.

  12. Lunar cold spots and crater production on the Moon

    Science.gov (United States)

    Williams, Jean-Pierre; Bandfield, Joshua

    2016-10-01

    A new class of small, fresh impact craters has been recently identified on the Moon through the systematic mapping of lunar surface temperatures by the Diviner Lunar Radiometer instrument aboard the Lunar Reconnaissance Orbiter [1]. These craters are distinguished by anomalously low nighttime temperatures at distances ~10–100 crater radii. This thermal behavior indicates that impacts modify the surrounding regolith surfaces making them highly insulating with little evidence for either significant deposition or erosion of surface material [2]. These thermophysically distinct surfaces, or "cold spots", appear to be common to all recent impacts and provide a means of uniquely identifying the most recent impact craters on the Moon. We have conducted a survey of the crater population associated with cold spots. Comparison with existing crater chronology models [e.g., 3] constrains the retention-age of the cold spots to ~200,000 yr with a size-frequency distribution (SFD) slope that is consistent with the modeled production function. This implies the rate at which cold spots fade to background levels is independent of initial cold spot size and that the SFD of crater production in the last 200 ka is similar to the long-term average used to establish modeled production functions, though the rate of cratering may have varied [4]. In addition, we observe a longitudinal heterogeneity in cold spot crater density that is consistent with that predicted to occur as a result of the Moon's synchronous rotation [5] and has been observed in the rayed crater population [6], with the cold spot density at the apex of motion (90°W) nearly twice that observed at the antapex (90°E).[1] Bandfield, J., et al. (2011) JGR 116, E00H02. [2] Bandfield, J., et al. (2014) Icarus, 231, 221-231. [3] Neukum, G., et al. (2001) SSR 96, 55–86. [4] Mazrouei, S. et al. (2015) LPSC 46, 2331. [5] Le Fleuvre, M., and Wieczorek, M. A. (2011) Icarus 214, 1-20. [6] Morota, T. and Furumoto, M. (2002) EPSL

  13. Tracing the Cosmological Evolution of Stars and Cold Gas with CMB Spectral Surveys

    Science.gov (United States)

    Switzer, Eric R.

    2017-04-01

    A full account of galaxy evolution in the context of ΛCDM cosmology requires measurements of the average star-formation rate (SFR) and cold gas abundance across cosmic time. Emission from the CO ladder traces cold gas, and [C ii] fine structure emission at 158 μ {{m}} traces the SFR. Intensity mapping surveys the cumulative surface brightness of emitting lines as a function of redshift, rather than individual galaxies. CMB spectral distortion instruments are sensitive to both the mean and anisotropy of the intensity of redshifted CO and [C ii] emission. Large-scale anisotropy is proportional to the product of the mean surface brightness and the line luminosity-weighted bias. The bias provides a connection between galaxy evolution and its cosmological context, and is a unique asset of intensity mapping. Cross-correlation with galaxy redshift surveys allows unambiguous measurements of redshifted line brightness despite residual continuum contamination and interlopers. Measurement of line brightness through cross-correlation also evades cosmic variance and suggests new observation strategies. Galactic foreground emission is ≈ {10}3 times larger than the expected signals, and this places stringent requirements on instrument calibration and stability. Under a range of assumptions, a linear combination of bands cleans continuum contamination sufficiently that residuals produce a modest penalty over the instrumental noise. For PIXIE, the 2σ sensitivity to CO and [C ii] emission scales from ≈ 5× {10}-2 {kJy} {{sr}}-1 at low redshift to ≈ 2 {kJy} {{sr}}-1 by reionization.

  14. Change of Martian surface height associated with polar cold spots

    Science.gov (United States)

    Ford, P. G.; Pettengill, G. H.

    2003-12-01

    For the past 30 years, orbiting microwave radiometers have observed anomalously low emission temperatures during Martian polar winters. While the physical surface temperature cannot drop significantly below 148K---the point at which CO2 starts to condense---radiometric temperatures of 110K or lower at 25μ wavelength are commonly found in isolated ``cold spots'' throughout both northern and southern polar winters. These form roughly circular patches, tens to hundreds of km in diameter, and persist for no more than a few days. Three models have been proposed to account for them: (a) an atmospheric effect that accompanies CO2 snowfall; (b) fresh surface deposits of CO2 snow; or (c) a change in the properties of CO2 slab ice. Following the success of Smith et al.1 in using the MOLA laser altimeter aboard Mars Global Surveyor to directly measure the growth of the winter polar caps, we have applied the same technique to ask whether cold spots are accompanied by a sudden change in surface height. To identify the cold spots, we first examined all polar observations made by the TES radiometer that was co-boresited with MOLA, and made gridded images of ∂ T / ∂ λ , the derivative of the brightness temperature wrt wavelength, 20μ 50cm) CO2 snow deposits, but it cannot help us decide between the alternatives of CO2 snowfall or a change in slab ice properties. 1 Smith, Zuber, and Neumann, Science, {294}, 2141-2146, 2001.

  15. Cold spots in neonatal incubators are hot spots for microbial contamination.

    Science.gov (United States)

    de Goffau, Marcus C; Bergman, Klasien A; de Vries, Hendrik J; Meessen, Nico E L; Degener, John E; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2011-12-01

    Thermal stability is essential for the survival and well-being of preterm neonates. This is achieved in neonatal incubators by raising the ambient temperature and humidity to sufficiently high levels. However, potentially pathogenic microorganisms also can thrive in such warm and humid environments. We therefore investigated whether the level of microbial contamination (i.e., the bacterial load) inside neonatal incubators can be predicted on the basis of their average temperature and relative humidity settings, paying special attention to local temperature differences. Swab samples were taken from the warmest and coldest spots found within Caleo incubators, and these were plated to determine the number of microbial CFU per location. In incubators with high average temperature (≥ 34°C) and relative humidity (≥ 60%) values, the level of microbial contamination was significantly higher at cold spots than at hot spots. This relates to the fact that the local equilibrium relative humidity at cold spots is sufficiently high to sustain microbial growth. The abundance of staphylococci, which are the main causative agents of late-onset sepsis in preterm neonates, was found to be elevated significantly in cold areas. These findings can be used to improve basic incubator hygiene.

  16. Cosmic troublemakers: the Cold Spot, the Eridanus Supervoid, and the Great Walls

    CERN Document Server

    Kovács, András

    2015-01-01

    The alignment of the CMB Cold Spot and the Eridanus Supervoid suggests a physical connection between these two relatively rare objects. We use galaxy catalogues with photometric (2MPZ) and spectroscopic (6dF) redshift measurements, supplemented by low-redshift compilations of cosmic voids, in order to improve the 3D mapping of the matter density in the Eridanus constellation. We find evidence for a supervoid with an important elongation in the line-of-sight, effectively spanning the total redshift range $z<0.3$. Our tomographic imaging reveals significant substructure in the Eridanus Supervoid, with a potential interpretation of a long, fully connected system of voids. We improve the analysis by extending the line-of-sight measurements into the antipodal direction, that interestingly crosses the Northern Local Supervoid at the lowest redshifts, and intersects very rich superclusters like Hercules and Corona Borealis, in the region of the Coma and Sloan Great Walls, as a possible compensation for the large-...

  17. On the void explanations of the Cold Spot

    CERN Document Server

    Marcos-Caballero, A; Martínez-González, E; Vielva, P

    2015-01-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter $\\omega$, the ISW contribution due to the presence of the void does not reproduce the properties of the CS. Finally, the probability of alignment between the void and the CS is also questioned as an argument in favor of a physical connection between these two phenomena.

  18. On the void explanation of the Cold Spot

    Science.gov (United States)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.; Vielva, P.

    2016-07-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω, the ISW contribution due to the presence of the void does not reproduce the properties of the CS.

  19. 21-cm lensing and the cold spot in the cosmic microwave background.

    Science.gov (United States)

    Kovetz, Ely D; Kamionkowski, Marc

    2013-04-26

    An extremely large void and a cosmic texture are two possible explanations for the cold spot seen in the cosmic microwave background. We investigate how well these two hypotheses can be tested with weak lensing of 21-cm fluctuations from the epoch of reionization measured with the Square Kilometer Array. While the void explanation for the cold spot can be tested with Square Kilometer Array, given enough observation time, the texture scenario requires significantly prolonged observations, at the highest frequencies that correspond to the epoch of reionization, over the field of view containing the cold spot.

  20. A special kind of local structure in the CMB intensity maps: duel peak structure

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Ti-Pei Li

    2009-01-01

    We study the local structure of Cosmic Microwave Background (CMB) tem-perature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less "similar spots", and the temperature peaks or valleys will be less significant. The presented "sim-ilar spots" have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.

  1. Identification and location of hot and cold spots of treated prevalence of depression in Catalonia (Spain

    Directory of Open Access Journals (Sweden)

    Salinas-Pérez José A

    2012-08-01

    Full Text Available Abstract Background Spatial analysis is a relevant set of tools for studying the geographical distribution of diseases, although its methods and techniques for analysis may yield very different results. A new hybrid approach has been applied to the spatial analysis of treated prevalence of depression in Catalonia (Spain according to the following descriptive hypotheses: 1 spatial clusters of treated prevalence of depression (hot and cold spots exist and, 2 these clusters are related to the administrative divisions of mental health care (catchment areas in this region. Methods In this ecological study, morbidity data per municipality have been extracted from the regional outpatient mental health database (CMBD-SMA for the year 2009. The second level of analysis mapped small mental health catchment areas or groups of municipalities covered by a single mental health community centre. Spatial analysis has been performed using a Multi-Objective Evolutionary Algorithm (MOEA which identified geographical clusters (hot spots and cold spots of depression through the optimization of its treated prevalence. Catchment areas, where hot and cold spots are located, have been described by four domains: urbanicity, availability, accessibility and adequacy of provision of mental health care. Results MOEA has identified 6 hot spots and 4 cold spots of depression in Catalonia. Our results show a clear spatial pattern where one cold spot contributed to define the exact location, shape and borders of three hot spots. Analysing the corresponding domain values for the identified hot and cold spots no common pattern has been detected. Conclusions MOEA has effectively identified hot/cold spots of depression in Catalonia. However these hot/cold spots comprised municipalities from different catchment areas and we could not relate them to the administrative distribution of mental care in the region. By combining the analysis of hot/cold spots, a better statistical and

  2. The Fermilab Large Cold Blackbody Test Stand for CMB R&D

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Donna [Fermilab; Butler, D. [Fermilab; DeJongh, F. [Fermilab; Korienek, J. [Fermilab; Lindenmeyer, C. [Fermilab; Montes, J. [Fermilab; Nguyen, H. [Fermilab; Wilson, J. [Fermilab

    2012-03-18

    The Fermilab Large Cold Blackbody Test Stand can be used to expose a microwave receiver and horn assembly to a large blackbody at cryogenic temperatures (as low as 20 K). The temperature of the blackbody can be varied while keeping the receiver temperature constant, facilitating Y-factor measurements of the receiver noise temperature and gain. The test stand has recently been used for studying a QUIET-I receiver module. The test stand will be used to measure both QUIET-I and prototype QUIET-II modules.

  3. Cold-spotting: linking primary care and public health to create communities of solution.

    Science.gov (United States)

    Westfall, John M

    2013-01-01

    By providing enhanced primary care and social services to patients with high utilization of expensive emergency and hospital care, there is evidence that their health can improve and their costs can be lowered. This type of "hot-spotting" improves the care of individual patients. It may be that these patients live in communities with disintegrated social determinants of health, little community support, and poor access to primary care. These "cold spots" in the community may be amenable to interventions targeted at linking primary care and public health at broader community and population levels. Building local communities of solution that address the individual and population may help decrease these cold spots, thereby eliminating the hot spots as well.

  4. CMB anomalies after Planck

    Science.gov (United States)

    Schwarz, Dominik J.; Copi, Craig J.; Huterer, Dragan; Starkman, Glenn D.

    2016-09-01

    Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP and by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole moments with one another and with the motion and geometry of the solar system, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary ΛCDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.

  5. CMB Anomalies after Planck

    CERN Document Server

    Schwarz, Dominik J; Huterer, Dragan; Starkman, Glenn D

    2015-01-01

    Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole moments with one another and with the motion and geometry of the Solar System, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary $\\Lambda$CDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, whi...

  6. Wood ant nests as hot spots of carbon dioxide production and cold spots of methane oxidation in temperate forests

    Science.gov (United States)

    Jilkova, Veronika; Picek, Tomas; Cajthaml, Tomas; Frouz, Jan

    2016-04-01

    Wood ant nests are known as hot spots of carbon dioxide (CO2) production and are also thought to affect methane (CH4) flux. Stable high temperatures are maintained in ant nests even in cold environments. Here we focused on quantification of CO2 and CH4 flux in wood ant nests, contribution of ants and microbes to CO2 production, properties of nest material that affect CO2 production and the role of ants and microbes in the maintenance of nest temperature. The research was conducted in temperate and boreal forests inhabited by wood ants (Formica s. str.). Gas fluxes were measured either by an infrared gas analyser or a static chamber technique. Ants and nest materials were also incubated in a laboratory. Material properties potentially influencing CO2 flux, such as moisture, nutrient content or temperature were determined. According to the results, CH4 oxidation was lower in wood ant nests than in the surrounding forest soil suggesting that some characteristics of ant nests hinder CH4 oxidation or promote CH4 production. These characteristics were mainly available carbon and nitrogen contents. Wood ant nests clearly are hot spots of CO2 production in temperate forests originating mainly from ant and also from microbial metabolism. Most important properties positively affecting CO2 production were found to be moisture, nutrient content and temperature. Nest temperature is maintained by ant and microbial metabolism; nests from colder environments produce more metabolic heat to maintain similar temperature as nests from warmer environments. In conclusion, as the abundance of wood ant nests in some forests can be very high, ant nests may largely increase heterogeneity in greenhouse gas fluxes in forest ecosystems.

  7. Multi objective Taguchi optimization approach for resistance spot welding of cold rolled TWIP steel sheets

    Science.gov (United States)

    Tutar, Mumin; Aydin, Hakan; Bayram, Ali

    2017-08-01

    Formability and energy absorption capability of a steel sheet are highly desirable properties in manufacturing components for automotive applications. TWinning Induced Plastisity (TWIP) steels are, new generation high Mn alloyed steels, attractive for the automotive industry due to its outstanding elongation (%40-45) and tensile strength (~1000MPa). So, TWIP steels provide excellent formability and energy absorption capability. Another required property from the steel sheets is suitability for manufacturing methods such as welding. The use of the steel sheets in the automotive applications inevitably involves welding. Considering that there are 3000-5000 welded spots on a vehicle, it can be interpreted that one of the most important manufacturing method is Resistance Spot Welding (RSW) for the automotive industry. In this study; firstly, TWIP steel sheet were cold rolled to 15% reduction in thickness. Then, the cold rolled TWIP steel sheets were welded with RSW method. The welding parameters (welding current, welding time and electrode force) were optimized for maximizing the peak tensile shear load and minimizing the indentation of the joints using a Taguchi L9 orthogonal array. The effect of welding parameters was also evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results.

  8. Multiscale analysis of the CMB temperature derivatives

    Science.gov (United States)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P.

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected, the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10o is also observed. However, the p-value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.

  9. Hidden in the background: a local approach to CMB anomalies

    Science.gov (United States)

    Bueno Sánchez, Juan C.

    2016-09-01

    We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass m~ H present during inflation. The inhomogeneity arises as the combined effect of (i) the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many e-foldings before cosmological scales exit the horizon), (ii) their inflationary fluctuations and (iii) their coupling to other degrees of freedom. Our case of interest is when these fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the Cold Spot. We then compute the probability that a single isocurvature field becomes inhomogeneous at the end of inflation and find that, if the appropriate conditions are given (which depend exclusively on the preexisting fast-roll stage), this probability is at the percent level. Finally, we discuss several mechanisms (including the curvaton and the inhomogeneous reheating) to investigate whether an initial statistically inhomogeneous isocurvature field fluctuation might give rise to some of the observed anomalies. In particular, we focus on the Cold Spot, the power deficit at low multipoles and the breaking of statistical isotropy.

  10. Could multiple voids explain the cosmic microwave background Cold Spot anomaly?

    Science.gov (United States)

    Naidoo, Krishna; Benoit-Lévy, Aurélien; Lahav, Ofer

    2016-06-01

    Understanding the observed Cold Spot (CS, temperature of ˜ - 150 μK at its centre) on the cosmic microwave background is an outstanding problem. Explanations vary from assuming it is just a ≳3σ primordial Gaussian fluctuation to the imprint of a supervoid via the Integrated Sachs-Wolfe and Rees-Sciama (ISW+RS) effects. Since single spherical supervoids cannot account for the full profile, the ISW+RS of multiple line-of-sight voids is studied here to mimic the structure of the cosmic web. Two structure configurations are considered. The first, through simulations of 20 voids, produces a central mean temperature of ˜ - 50 μK. In this model the central CS temperature lies at ˜2σ but fails to explain the CS hot ring. An alternative multivoid model (using more pronounced compensated voids) produces much smaller temperature profiles, but contains a prominent hot ring. Arrangements containing closely placed voids at low redshift are found to be particularly well suited to produce CS-like profiles. We then measure the significance of the CS if CS-like profiles (which are fitted to the ISW+RS of multivoid scenarios) are removed. The CS tension with the Λ cold dark matter model can be reduced dramatically for an array of temperature profiles smaller than the CS itself.

  11. CMB Analysis

    CERN Document Server

    Bond, J R; Crittenden, Robert G.

    2001-01-01

    We describe the subject of Cosmic Microwave Background (CMB) analysis - its past, present and future. The theory of Gaussian primary anisotropies, those arising from linear physics operating in the early Universe, is in reasonably good shape so the focus has shifted to the statistical pipeline which confronts the data with the theory: mapping, filtering, comparing, cleaning, compressing, forecasting, estimating. There have been many algorithmic advances in the analysis pipeline in recent years, but still more are needed for the forecasts of high precision cosmic parameter estimation to be realized. For secondary anisotropies, those arising once nonlinearity develops, the computational state of the art currently needs effort in all the areas: the Sunyaev-Zeldovich effect, inhomogeneous reionization, gravitational lensing, the Rees-Sciama effect, dusty galaxies. We use the Sunyaev-Zeldovich example to illustrate the issues. The direct interface with observations for these non-Gaussian signals is much more compl...

  12. Local properties of the large-scale peaks of the CMB temperature

    Science.gov (United States)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P.

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  13. Ring of nine Gamma Ray Burst overlap with the hot spot of my hypothesis

    Science.gov (United States)

    Cao, Dayong

    2016-03-01

    During 2004 to 2014, a symmetry axis and a cold spot (a structure of one billion light years across) of CMB were observed, and I supposed there is a hot spot, and there is a symmetry between the cold spot and the hot spot of CMB. http://www.dailymail.co.uk/sciencetech/article-2430415 http://meetings.aps.org/link/BAPS.2014.MAR.Y33.9 In 2015, a Ring of Nine Gamma Ray Burst (a structure of FIVE BILLION light years across) which is a part of structure of double helix and overlap with the hot spot was observed. http://www.dailymail.co.uk/sciencetech/article-3185193 The Ring of Nine Gamma Ray Burst could be explained by the hot spot. There is a balance systemic model with structure of double helix of the flat universe between cold spot and hot spot-a balance between stellar matter and dark massenergy (include dark matter and dark energy). The model can explain of the Hubble's redshift. There is a larger dark hole instead of the huge black hole of the center of the Milky Way galaxy, and a dark hole builds up a balance system with sun. This model should explain of the seasonal Extinctions. http://meetings.aps.org/link/BAPS.2015.APR.H14.8

  14. Cold metal transfer spot plug welding of AA6061-T6-to-galvanized steel for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, R., E-mail: caorui@lut.cn; Huang, Q.; Chen, J.H., E-mail: zchen@lut.cn; Wang, Pei-Chung

    2014-02-05

    Highlights: • Two Al-to-galvanized steel spot plug welding joints were studied by CMT method. • The optimum process variables for the two joints were gotten by orthogonal test. • Connection mechanism of the two joints were discussed. -- Abstract: In this study, cold metal transfer (CMT) spot plug joining of 1 mm thick Al AA6061-T6 to 1 mm thick galvanized steel (i.e., Q235) was studied. Welding variables were optimized for a plug weld in the center of a 25 mm overlap region with aluminum 4043 wire and 100% argon shielding gas. Microstructures and elemental distributions were characterized by scanning electron microscopy with energy dispersive X-ray spectrometer. Mechanical testing of CMT spot plug welded joints was conducted. It was found that it is feasible to join Al AA6061T6-to-galvanized steel by CMT spot plug welding method. The process variables for two joints with Al AA6061T6-to-galvanized mild steel and galvanized mild steel-to-Al AA6061T6 are optimized. The strength of CMT spot welded Al AA6061T6-to-galvanized mild steel is determined primarily by the strength and area of the brazed interface. While, the strength of the galvanized mild steel-to-Al AA6061T6 joint is mainly dependent upon the area of the weld metal.

  15. Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae.

    Directory of Open Access Journals (Sweden)

    Samira Khodayari

    Full Text Available Diapause is a common feature in several arthropod species that are subject to unfavorable growing seasons. The range of environmental cues that trigger the onset and termination of diapause, in addition to associated hormonal, biochemical, and molecular changes, have been studied extensively in recent years; however, such information is only available for a few insect species. Diapause and cold hardening usually occur together in overwintering arthropods, and can be characterized by recording changes to the wealth of molecules present in the tissue, hemolymph, or whole body of organisms. Recent technological advances, such as high throughput screening and quantification of metabolites via chromatographic analyses, are able to identify such molecules. In the present work, we examined the survival ability of diapausing and non-diapausing females of the two-spotted spider mite, Tetranychus urticae, in the presence (0 or 5°C or absence of cold acclimation. Furthermore, we examined the metabolic fingerprints of these specimens via gas chromatography-mass spectrophotometry (GC-MS. Partial Least Square Discriminant Analysis (PLS-DA of metabolites revealed that major metabolic variations were related to diapause, indicating in a clear cut-off between diapausing and non-diapausing females, regardless of acclimation state. Signs of metabolic depression were evident in diapausing females, with most amino acids and TCA cycle intermediates being significantly reduced. Out of the 40 accurately quantified metabolites, seven metabolites remained elevated or were accumulated in diapausing mites, i.e. cadaverine, gluconolactone, glucose, inositol, maltose, mannitol and sorbitol. The capacity to accumulate winter polyols during cold-acclimation was restricted to diapausing females. We conclude that the induction of increased cold hardiness in this species is associated with the diapause syndrome, rather than being a direct effect of low temperature. Our results

  16. The QUIJOTE CMB Experiment

    Science.gov (United States)

    Rubiño-Martín, J. A.; Rebolo, R.; Tucci, M.; Génova-Santos, R.; Hildebrandt, S. R.; Hoyland, R.; Herreros, J. M.; Gómez-Reñasco, F.; Caraballo, C. López; Martínez-González, E.; Vielva, P.; Herranz, D.; Casas, F. J.; Artal, E.; Aja, B.; Fuente, L. dela; Cano, J. L.; Villa, E.; Mediavilla, A.; Pascual, J. P.; Piccirillo, L.; Maffei, B.; Pisano, G.; Watson, R. A.; Davis, R.; Davies, R.; Battye, R.; Saunders, R.; Grainge, K.; Scott, P.; Hobson, M.; Lasenby, A.; Murga, G.; Gómez, C.; Gómez, A.; Ariño, J.; Sanquirce, R.; Pan, J.; Vizcargüenaga, A.; Etxeita, B.

    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) CMB Experiment, a new instrument which will start operations early in 2009 at Teide Observatory with the aim of characterizing the polarization of the CMB and other processes of galactic and extragalactic emission in the frequency range 10-30GHz and at large angular scales. QUIJOTE will be a valuable complement at low frequencies for the PLANCK mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.

  17. The Quijote CMB Experiment

    CERN Document Server

    Rubiño-Martín, J A; Tucci, M; Genova-Santos, R; Hildebrandt, S R; Hoyland, R; Herreros, J M; Gomez-Renasco, F; Caraballo, C Lopez; Martínez-González, E; Vielva, P; Herranz, D; Casas, F J; Artal, E; Aja, B; de la Fuente, L; Cano, J L; Villa, E; Mediavilla, A; Pascual, J P; Piccirillo, L; Maffei, B; Pisano, G; Watson, R A; Davis, R; Davies, R; Battye, R; Saunders, R; Grainge, K; Scott, P; Hobson, M; Lasenby, A; Murga, G; Gómez, C; Gómez, A; Arino, J; Sanquirce, R; Pan, J; Vizcarguenaga, A; Etxeita, B

    2008-01-01

    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) CMB Experiment, a new instrument which will start operations early 2009 at Teide Observatory, with the aim of characterizing the polarization of the CMB and other processes of galactic and extragalactic emission in the frequency range 10-30 GHz and at large angular scales. QUIJOTE will be a valuable complement at low frequencies for the PLANCK mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.

  18. Intellectual compensating and testing of the thermocouple's cold spot temperature%热电偶冷端温度智能补偿与检测

    Institute of Scientific and Technical Information of China (English)

    张永枫

    2001-01-01

    介绍了具有热电偶冷端温度智能补偿的温度检测系统的组成和功能,重点阐述了以单片机为核心构成热电偶冷端温度智能补偿的原理和特点,说明了软件功能。最后给出了实践结果及主要性能指标。%The form and function of temperature testing system with intellectual compensating of the thermocouple's cold spot temperature is introduces.It emphasis tells about the principle and characteristic with single chip processor at the core which form the intellectual compensating of thermocouple's cold spot temperature.It pointed the software function.At the end,the testing results and main property targets are given.

  19. CMB foregrounds - A brief review

    CERN Document Server

    Dickinson, Clive

    2016-01-01

    CMB foregrounds consist of all radiation between the surface of last scattering and the detectors, which can interfere with the cosmological interpretation of CMB data. Fortunately, in temperature (intensity), even though the foregrounds are complex they can relatively easily be mitigated. However, in polarization, diffuse Galactic radiation (synchrotron and thermal dust) can be polarized at a level of >10 % making it more of a challenge. In particular, CMB B-modes, which are a smoking-gun signature of inflation, will be dominated by foregrounds. Component separation will therefore be critical for future CMB polarization missions, requiring many channels covering a wide range of frequencies, to ensure that foreground modelling errors are minimised.

  20. Primordial magnetism in CMB polarization

    Science.gov (United States)

    Pogosian, Levon

    2014-03-01

    A large scale B-mode signal in the CMB polarization would constitute a smoking gun of Inflation and is the main target of several ongoing and upcoming experiments. In this contribution, I consider distinguishing features of another potential source of primordial B-modes - magnetic fields. In particular, the Faraday Rotation of CMB polarization provides a distinctive signature of cosmic magnetic fields through the characteristic frequency dependence and the mode-coupling correlations of the CMB variables. I discuss constraints on primordial magnetism that can be expected from future CMB experiments, taking into account the obstruction caused by the magnetic field of the Milky Way.

  1. CMB lens sample covariance and consistency relations

    Science.gov (United States)

    Motloch, Pavel; Hu, Wayne; Benoit-Lévy, Aurélien

    2017-02-01

    Gravitational lensing information from the two and higher point statistics of the cosmic microwave background (CMB) temperature and polarization fields are intrinsically correlated because they are lensed by the same realization of structure between last scattering and observation. Using an analytic model for lens sample covariance, we show that there is one mode, separately measurable in the lensed CMB power spectra and lensing reconstruction, that carries most of this correlation. Once these measurements become lens sample variance dominated, this mode should provide a useful consistency check between the observables that is largely free of sampling and cosmological parameter errors. Violations of consistency could indicate systematic errors in the data and lens reconstruction or new physics at last scattering, any of which could bias cosmological inferences and delensing for gravitational waves. A second mode provides a weaker consistency check for a spatially flat universe. Our analysis isolates the additional information supplied by lensing in a model-independent manner but is also useful for understanding and forecasting CMB cosmological parameter errors in the extended Λ cold dark matter parameter space of dark energy, curvature, and massive neutrinos. We introduce and test a simple but accurate forecasting technique for this purpose that neither double counts lensing information nor neglects lensing in the observables.

  2. A study of the galaxy redshift distribution toward the cosmic microwave background cold spot in the Corona Borealis supercluster

    CERN Document Server

    Génova-Santos, Ricardo; Rubiño-Martín, José Alberto; Gutiérrez, Carlos M; Rebolo, Rafael

    2009-01-01

    We present a study of the spatial and redshift distributions of Sloan Digital Sky Survey (SDSS) galaxies toward the position of CrB-H, a very deep and extended decrement in the Cosmic Microwave Background (CMB), located within the Corona Borealis supercluster (CrB-SC). It was found in a survey with the Very Small Array (VSA) interferometer at 33 GHz, with a peak negative brightness temperature of -230 muK, and deviates 4.4-sigma from the Gaussian CMB (G\\'enova-Santos et al.). Observations with the Millimeter and Infrared Testa Grigia Observatory (MITO) suggested that 25$^+21_-18% of this decrement may be caused by the thermal Sunyaev-Zel'dovich (tSZ) effect (Battistelli et al.). Here we investigate whether the galaxy distribution could be tracing either a previously unnoticed galaxy cluster or a Warm/Hot Intergalactic Medium (WHIM) filament that could build up this tSZ effect. We find that the projected density of galaxies outside Abell clusters and with redshifts 0.05

  3. Spotted inflation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tomohiro, E-mail: matsuda@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)

    2010-11-01

    We describe new scenarios for generating curvature perturbations when inflaton (curvaton) has significant interactions. We consider a ''spot'', which arises from interactions associated with an enhanced symmetric point (ESP) on the trajectory. Our first example uses the spot to induce a gap in the field equation. We observe that the gap in the field equation may cause generation of curvature perturbation if it does not appear simultaneous in space. The mechanism is similar to the scenario of inhomogeneous phase transition. Then we observe that the spot interactions may initiate warm inflation in the cold Universe. Creation of cosmological perturbation is discussed in relation to the inflaton dynamics and the modulation associated with the spot interactions.

  4. Introduction and Overview CMB Sessions

    CERN Document Server

    Smoot, G F

    1998-01-01

    This is a very exciting time for the CMB field. It is widely recognized that precision measurements of the CMB can provide a definitive test of cosmological models and determine their parameters accurately. At present observations give us the first rough results but ongoing experiments promise new and improved results soon and eventually satellite missions (MAP and COBRAS/SAMBA now named Planck) are expected to provide the requisite precision measurements. Other areas such as observations of the spectrum and Sunyaev-Zeldovich effect are also making significant progress. There has long been anticipation that cosmic microwave background (CMB) radiation would provide significant information about the early Universe due to its early central role and its general lack of interaction in the later epochs. Though there have been many observations of the CMB since its discovery by Penzias and Wilson in 1964, the Cosmic Background Explorer satellite, COBE, provided two watershed observations: (1) the CMB is extremely we...

  5. CMB anisotropy science: a review

    CERN Document Server

    Challinor, Anthony

    2012-01-01

    The cosmic microwave background (CMB) provides us with our most direct observational window to the early universe. Observations of the temperature and polarization anisotropies in the CMB have played a critical role in defining the now-standard cosmological model. In this contribution we review some of the basics of CMB science, highlighting the role of observations made with ground-based and balloon-borne Antarctic telescopes. Most of the ingredients of the standard cosmological model are poorly understood in terms of fundamental physics. We discuss how current and future CMB observations can address some of these issues, focusing on two directly relevant for Antarctic programmes: searching for gravitational waves from inflation via B-mode polarization, and mapping dark matter through CMB lensing.

  6. Wavelets Applied to CMB Maps a Multiresolution Analysis for Denoising

    CERN Document Server

    Sanz, J L; Cayon, L; Martínez-González, E; Barriero, R B; Toffolatti, L

    1999-01-01

    Analysis and denoising of Cosmic Microwave Background (CMB) maps are performed using wavelet multiresolution techniques. The method is tested on $12^{\\circ}.8\\times 12^{\\circ}.8$ maps with resolution resembling the experimental one expected for future high resolution space observations. Semianalytic formulae of the variance of wavelet coefficients are given for the Haar and Mexican Hat wavelet bases. Results are presented for the standard Cold Dark Matter (CDM) model. Denoising of simulated maps is carried out by removal of wavelet coefficients dominated by instrumental noise. CMB maps with a signal-to-noise, $S/N \\sim 1$, are denoised with an error improvement factor between 3 and 5. Moreover we have also tested how well the CMB temperature power spectrum is recovered after denoising. We are able to reconstruct the $C_{\\ell}$'s up to $l\\sim 1500$ with errors always below $20% $ in cases with $S/N \\ge 1$.

  7. All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold.

    Science.gov (United States)

    Plantamp, Christophe; Salort, Katleen; Gibert, Patricia; Dumet, Adeline; Mialdea, Gladys; Mondy, Nathalie; Voituron, Yann

    2016-06-01

    Winter severity and overwintering capacity are key ecological factors in successful invasions, especially in ectotherms. The integration of physiological approaches into the study of invasion processes is emerging and promising. Physiological information describes the mechanisms underlying observed survival and reproductive capacities, and it can be used to predict an organism's response to environmental perturbations such as cold temperatures. We investigated the effects of various cold treatments on life history and physiological traits of an invasive pest species, Drosophila suzukii, such as survival, fertility and oxidative balance. This species, a native of temperate Asian areas, is known to survive where cold temperatures are particularly harsh and has been recently introduced into Europe and North America. We found that cold treatments had a strong impact on adult survival but no effect on female's fertility. Although only minor changes were observed after cold treatment on studied physiological traits, a strong sex-based difference was observed in both survival and physiological markers (antioxidant defences and oxidative markers). Females exhibited higher survival, reduced oxidative defences, less damage to nucleic acids, and more damage to lipids. These results suggest that D. suzukii relies on a pathway other than oxidative balance to resist cold injury. Altogether, our results provide information concerning the mechanisms of successful invasion by D. suzukii. These findings may assist in the development of population models that predict the current and future geographic ranges of this species.

  8. True CMB Power Spectrum Estimation

    CERN Document Server

    Paykari, P; Fadili, M J

    2012-01-01

    The cosmic microwave background (CMB) power spectrum is a powerful cosmological probe as it entails almost all the statistical information of the CMB perturbations. Having access to only one sky, the CMB power spectrum measured by our experiments is only a realization of the true underlying angular power spectrum. In this paper we aim to recover the true underlying CMB power spectrum from the one realization that we have without a need to know the cosmological parameters. The sparsity of the CMB power spectrum is first investigated in two dictionaries; Discrete Cosine Transform (DCT) and Wavelet Transform (WT). The CMB power spectrum can be recovered with only a few percentage of the coefficients in both of these dictionaries and hence is very compressible in these dictionaries. We study the performance of these dictionaries in smoothing a set of simulated power spectra. Based on this, we develop a technique that estimates the true underlying CMB power spectrum from data, i.e. without a need to know the cosmo...

  9. External priors for the next generation of CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Manzotti, Alessandro [Chicago U., KICP; Dodelson, Scott [Chicago U., KICP; Park, Youngsoo [Arizona U.

    2015-12-08

    Planned cosmic microwave background (CMB) experiments can dramatically improve what we know about neutrino physics, inflation, and dark energy. The low level of noise, together with improved angular resolution, will increase the signal to noise of the CMB polarized signal as well as the reconstructed lensing potential of high redshift large scale structure. Projected constraints on cosmological parameters are extremely tight, but these can be improved even further with information from external experiments. Here, we examine quantitatively the extent to which external priors can lead to improvement in projected constraints from a CMB-Stage IV (S4) experiment on neutrino and dark energy properties. We find that CMB S4 constraints on neutrino mass could be strongly enhanced by external constraints on the cold dark matter density $\\Omega_{c}h^{2}$ and the Hubble constant $H_{0}$. If polarization on the largest scales ($\\ell<50$) will not be measured, an external prior on the primordial amplitude $A_{s}$ or the optical depth $\\tau$ will also be important. A CMB constraint on the number of relativistic degrees of freedom, $N_{\\rm eff}$, will benefit from an external prior on the spectral index $n_{s}$ and the baryon energy density $\\Omega_{b}h^{2}$. Finally, an external prior on $H_{0}$ will help constrain the dark energy equation of state ($w$).

  10. External priors for the next generation of CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Manzotti, Alessandro; Dodelson, Scott; Park, Youngsoo

    2016-03-01

    Planned cosmic microwave background (CMB) experiments can dramatically improve what we know about neutrino physics, inflation, and dark energy. The low level of noise, together with improved angular resolution, will increase the signal to noise of the CMB polarized signal as well as the reconstructed lensing potential of high redshift large scale structure. Projected constraints on cosmological parameters are extremely tight, but these can be improved even further with information from external experiments. Here, we examine quantitatively the extent to which external priors can lead to improvement in projected constraints from a CMB-Stage IV (S4) experiment on neutrino and dark energy properties. We find that CMB S4 constraints on neutrino mass could be strongly enhanced by external constraints on the cold dark matter density $\\Omega_{c}h^{2}$ and the Hubble constant $H_{0}$. If polarization on the largest scales ($\\ell<50$) will not be measured, an external prior on the primordial amplitude $A_{s}$ or the optical depth $\\tau$ will also be important. A CMB constraint on the number of relativistic degrees of freedom, $N_{\\rm eff}$, will benefit from an external prior on the spectral index $n_{s}$ and the baryon energy density $\\Omega_{b}h^{2}$. Finally, an external prior on $H_{0}$ will help constrain the dark energy equation of state ($w$).

  11. After MAP Next Generation CMB

    CERN Document Server

    Cooray, A R

    2002-01-01

    We discuss several opportunities involving cosmic microwave background (CMB) observations during the post-MAP era. The curl-modes of CMB polarization allow a direct detection of inflationary gravitational waves and a measurement of the energy scale of inflation. While a significant source of confusion is expected from cosmic shear conversion of polarization related to density perturbations, higher resolution observations of CMB anisotropies can be used for a lensing reconstruction and to separate gravitational-wave polarization signature from that of lensing. With perfect all-sky maps, separations based on current lensing reconstruction techniques allow the possibility to probe inflationary energy scales down to 10^15 GeV, well below that of grand unified theories. Another aspect of future CMB studies will be related to large scale structure, such as wide-field imaging of Sunyaev-Zel'dovich (SZ) effect in galaxy clusters. Here, we comment on a potentially interesting and unique application of the SZ effect in...

  12. Bolometeric detector arrays for CMB polarimetry

    Science.gov (United States)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Rossinot, P.; Sterb, J.; Vayonakis, A.; Wang, G.; Yun, M.; Zmuidzinas, J.

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  13. The CMB - Contemporary Measurements and Cosmology

    Science.gov (United States)

    Miller, A. D.

    2002-09-01

    Since the discovery of the Cosmic Microwave Background (CMB) in 1965, characterization of the CMB anisotropy angular power spectrum has become somewhat of a holy grail for experimental cosmology. Because CMB anisotropy measurements are difficult, the full potential of the CMB is only now being realized. Improvements in experimental techniques and detector technology have yielded an explosion of progress in the past couple of years resulting in the ability to use measurements of the CMB to place meaningful constraints on cosmological parameters. In this review, I discuss the theory behind the CMB but focus primarily on the experiments, reviewing briefly the history of CMB anisotropy measurements and focusing on the recent experiments that have revolutionized this field. Results from these modern experiments are reviewed and the cosmological implications discussed. I conclude with brief comments about the future of CMB physics.

  14. Science with CMB spectral distortions

    CERN Document Server

    Chluba, Jens

    2014-01-01

    The measurements of COBE/FIRAS have shown that the CMB spectrum is extremely close to a perfect blackbody. There are, however, a number of processes in the early Universe that should create spectral distortions at a level which is within reach of present day technology. In this talk, I will give a brief overview of recent theoretical and experimental developments, explaining why future measurements of the CMB spectrum will open up an unexplored window to early-universe and particle physics with possible non-standard surprises but also several guaranteed signals awaiting us.

  15. A possible cold imprint of voids on the microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yan-Chuan; Cole, Shaun; Frenk, Carlos S. [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Neyrinck, Mark C. [Department of Physics and Astronomy, The Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Szapudi, István, E-mail: y.c.cai@durham.ac.uk [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-05-10

    We measure the average temperature decrement on the cosmic microwave background (CMB) produced by voids selected in the Sloan Digital Sky Survey Data Release 7 spectroscopic redshift galaxy catalog, spanning redshifts 0 < z < 0.44. We find an imprint amplitude between 2.6 and 2.9 μK as viewed through a compensated top-hat filter scaled to the radius of each void, we assess the statistical significance of the imprint at ∼2σ, and we make crucial use of N-body simulations to calibrate our analysis. As expected, we find that large voids produce cold spots on the CMB through the integrated Sachs-Wolfe (ISW) effect. However, we also find that small voids in the halo density field produce hot spots, because they reside in contracting, larger-scale overdense regions. This is an important effect to consider when stacking CMB imprints from voids of different radii. We have found that the same filter radius that gives the largest ISW signal in simulations also yields close to the largest detected signal in the observations. However, although it is low in significance, our measured signal has a much higher amplitude than expected from ISW in the concordance ΛCDM universe. The discrepancy is also at the ∼2σ level. We have demonstrated that our result is robust against the varying of thresholds over a wide range.

  16. CMB radiation in an inhomogeneous spherical space

    CERN Document Server

    Aurich, R; Lustig, S

    2011-01-01

    We analyse the CMB radiation in spherical 3-spaces with non-trivial topology. The focus is put on an inhomogeneous space which possesses observer dependent CMB properties. The suppression of the CMB anisotropies on large angular scales is analysed with respect to the position of the CMB observer. The equivalence of a lens space with a Platonic cubic space is shown and used for the harmonic analysis. We give the transformation of the CMB multipole radiation amplitude as a function of the position of the observer. General sum rules are obtained in terms of the squares of the expansion coefficients for invariant polynomials on the 3-sphere.

  17. Power filtration of CMB observational data

    DEFF Research Database (Denmark)

    Novikov, D.I.; Naselsky, P.; Jørgensen, H.E.

    2001-01-01

    We propose a power filter Cp for linear reconstruction of the CMB signal from one-dimensional scans of observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We...... demonstrate how peak statistics and a cluster analysis can be used to estimate the probability of the presence of a CMB signal in observational records. The efficiency of the G, filter is demonstrated on a toy model of an observational record consisting of a CMB signal and noise in the form of foreground...

  18. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Akrami, Y.; Aluri, P.K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Liu, H.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zibin, J.P.; Zonca, A.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold S...

  19. Faraday rotation in CMB maps

    Science.gov (United States)

    Ruiz-Granados, Beatriz; Battaner, Eduardo; Florido, Estrella

    2016-10-01

    WMAP CMB polarization maps have been used to detect a low signal of Faraday Rotation (FR). If this detection is not interpreted as simple noise, it could be produced: at the last scattering surface (LSS) (z=1100), being primordial, at Reionization (z=10), in the Milky Way. The second interpretation is favoured here. In this case magnetic fields at Reionization with peak values of the order of 10-8 G should produce this observational FR.

  20. The Quintessential CMB, Past & Future

    CERN Document Server

    Bond, J R; Prunet, S; Sigurdson, K; Ade, P; Balbi, A; Bock, J J; Borrill, J; Boscaleri, A; Coble, K; Crill, B P; De Bernardis, P; Farese, P; Ferreira, P; Ganga, K; Giacometti, M; Hanany, S; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A; Lange, A; Lee, A; Martinis, L; Masi, S; Mauskopf, P D; Melchiorri, A; Montroy, T; Netterfield, C B; Oh, S; Pascale, E; Piacentini, F; Rabii, B; Rao, S; Richards, P; Romeo, G; Ruhl, J E; Scaramuzzi, F; Sforza, D M; Smoot, G F; Stompor, R; Winant, C; Wu, P

    2000-01-01

    The past, present and future of cosmic microwave background (CMB) anisotropy research is discussed, with emphasis on the Boomerang and Maxima balloon experiments. These data are combined with large scale structure (LSS) information and high redshift supernova (SN1) observations to explore the inflation-based cosmic structure formation paradigm. Here we primarily focus on a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot}, Omega_Q,w_Q, n_s,tau_C, sigma_8}. After marginalizing over the other cosmic and experimental variables, we find the current CMB+LSS+SN1 data gives Omega_{tot}=1.04\\pm 0.05, consistent with (non-baroque) inflation theory. Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s =1.03 \\pm 0.07. The CDM density, omega_{cdm}=0.17\\pm 0.02, is in the expected range, but the baryon density, omega_b=0.030\\pm 0.004, is slightly larger than the current nucleosynthesis estimate. Substantial dark energy is inferred, Omega_Q\\approx 0.68\\pm 0.05, and CMB+LSS Omega_Q...

  1. Parameter Estimation from Improved Measurements of the CMB from QUaD

    CERN Document Server

    Ade, P; Bowden, M; Brown, M L; Cahill, G; Castro, P G; Church, S; Culverhouse, T; Friedman, R B; Ganga, K; Gear, W K; Hinderks, J; Kovac, J; Lange, A E; Leitch, E; Melhuish, S J; Memari, Y; Murphy, J A; Orlando, A; O'Sullivan, C; Piccirillo, L; Pryke, C; Rajguru, N; Rusholme, B; Schwarz, R; Taylor, A N; Thompson, K L; Turner, A H; Wu, E Y S; Zemcov, M

    2009-01-01

    We evaluate the ability of cosmic microwave background (CMB) polarization spectra to constrain cosmological models by analyzing a multi-experiment CMB dataset including the final analysis of the QUaD experiment. We provide the best limits on parameters from combined polarization data and find that QUaD spectra combined with additional CMB datasets using the optimal pivot scale of k_p=0.013 Mpc-1 prefer standard LCDM parameters of {omch2, ombh2, H_0, A_s, n_s, tau}={0.113, 0.0224, 70.6, 2.29 times 10^-9, 0.960, 0.086}, with the confidence regions of ombh2, omch2 and H_0 tightened due to the presence of QUaD data. QUaD alone constrains cold dark matter and baryon densities and the acoustic scale very well. The temperature and polarization sub-sets each provide good limits on cosmological parameters which are consistent with values obtained from a combination of existing CMB data. We incorporate small-scale CMB data to provide the tightest constraint on tensor modes from CMB data alone.

  2. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  3. CMBACT: CMB from ACTive sources

    Science.gov (United States)

    Pogosian, Levon; Vachaspati, Tanmay

    2011-06-01

    This code is based on the cosmic string model described in this paper by Pogosian and Vachaspati, as well as on the CMBFAST code created by Uros Seljak and Matias Zaldarriaga. It contains an integrator for the vector contribution to the CMB temperature and polarization. The code is reconfigured to make it easier to use with or without active sources. To produce inflationary CMB spectra one simply sets the string tension to zero (gmu=0.0d0). For a non-zero value of tension only the string contribution is calculated. An option is added to randomize the directions of velocities of consolidated segments as they evolve in time. In the original segment model, which is still the default version (irandomv=0), each segment is given a random velocity initially, but then continues to move in a straight line for the rest of its life. The new option (irandomv=1) allows to additionally randomize velocities of each segment at roughly each Hubble time. However, the merits of this new option are still under investigation. The default version (irandomv=0) is strongly recommended, since it actually gives reasonable unequal time correlators. For each Fourier mode, k, the string stress-energy components are now evaluated on a time grid sufficiently fine for that k.

  4. Dark Synergy Gravitational Lensing and the CMB

    CERN Document Server

    Hu, W

    2002-01-01

    Power spectra and cross-correlation measurements from the weak gravitational lensing of the cosmic microwave background (CMB) and the cosmic shearing of faint galaxies images will help shed light on quantities hidden from the CMB temperature anisotropies: the dark energy, the end of the dark ages, and the inflationary gravitational wave amplitude. Even with modest surveys, both types of lensing power spectra break CMB degeneracies and they can ultimately improve constraints on the dark energy equation of state w by over an order of magnitude. In its cross correlation with the integrated Sachs-Wolfe effect, CMB lensing offers a unique opportunity for a more direct detection of the dark energy and enables study of its clustering properties. By obtaining source redshifts and cross-correlations with CMB lensing, cosmic shear surveys provide tomographic handles on the evolution of clustering correspondingly better precision on the dark energy equation of state and density. Both can indirectly provide detections of...

  5. Re-evaluation of the Cosmic Microwave Background (CMB)

    Science.gov (United States)

    Haynes, R.

    2009-12-01

    The cosmic microwave background (CMB) has an almost perfect black-body spectrum, with polarization. These characteristics are inconsistent with the Standard Big Bang (SBB) model. An almost perfect spectrum can arise only from a surface of last scattering which is an almost perfect black-body. Thermodynamically, this is matter in thermal equilibrium, absorbing almost 100% of incident radiation and re-emitting it as black-body radiation. By definition, a perfect black-body is matter at zero kelvin, and cold matter better approaches this perfection. SBB theory describes the CMB as originating from a hydrogen-helium plasma, condensing at a temperature of about 3,000 K. Such a surface would exhibit a continuous radiation spectrum, not unlike that of the sun, which is shown to have a spectrum similar, but not identical to, a black-body spectrum. An imperfect spectrum, even stretched 1100 fold as in the SBB model, remains an imperfect spectrum. Also, a plasma would not support the orientation required to impart polarization to the CMB. A better explanation of the observational evidence is possible if one views the observable universe as part of, and originating from, a much larger structure. Here we propose a defined physical description for such a model. It is shown how a "cosmic fabric" of spin-oriented atomic hydrogen, at zero kelvin, surrounding a matter-depletion zone and the observable universe, would produce the CMB observations. The cosmic fabric would be a perfect black-body and subsequently re-emit an almost perfect black-body spectrum. The radiation would be almost perfectly isotropic, imposed by the spherical distribution of the surface of last scattering, and spin-oriented hydrogen would impart the observed polarization. This geometry also obviates the so-called "horizon problem" of the SBB, why the CMB radiation is essentially isotropic when coming from points of origin with no apparent causal contact. This problem was supposedly "solved" with the

  6. Disformal transformations on the CMB

    CERN Document Server

    Burrage, Clare; Davis, Anne-Christine

    2016-01-01

    In this work we study the role of disformal transformation on cosmological backgrounds and its relation to the speed of sound for tensor modes. A speed different from one for tensor modes can arise in several contexts, such as Galileons theories or massive gravity, nevertheless the speed is very constrained to be one by observations of gravitational wave emission. It has been shown that in inflation a disformal trans- formation allows to set the speed for tensor modes to one without making changes to the curvature power spectrum. Here we show that this invariance does not hold when considering the CMB anisotropy power spectrum. It turns out that the after doing the transformation there is an imprint on the acoustic peaks and the diffusion damping. This has interesting consequences; here we explore quartic galileon theories which allow a modified speed for tensor modes. For these theories the transformation can be used to constraint the parameter space in different regimes.

  7. Disformal transformations on the CMB

    Science.gov (United States)

    Burrage, Clare; Cespedes, Sebastian; Davis, Anne-Christine

    2016-08-01

    In this work we study the role of disformal transformation on cosmological backgrounds and its relation to the speed of sound for tensor modes. A speed different from one for tensor modes can arise in several contexts, such as Galileons theories or massive gravity, nevertheless the speed is very constrained to be one by observations of gravitational wave emission. It has been shown that in inflation a disformal transformation allows to set the speed for tensor modes to one without making changes to the curvature power spectrum. Here we show that this invariance does not hold when considering the CMB anisotropy power spectrum. It turns out that the after doing the transformation there is an imprint on the acoustic peaks and the diffusion damping. This has interesting consequences; here we explore quartic galileon theories which allow a modified speed for tensor modes. For these theories the transformation can be used to constraint the parameter space in different regimes.

  8. Principal Power of the CMB

    CERN Document Server

    Hu, W; Hu, Wayne; Okamoto, Takemi

    2004-01-01

    We study the physical limitations placed on CMB temperature and polarization measurements of the initial power spectrum by geometric projection, acoustic physics, gravitational lensing and the joint fitting of cosmological parameters. Detailed information on the spectrum is greatly assisted by polarization information and localized to the acoustic regime k = 0.02-0.2 Mpc^{-1} with a fundamental resolution of Delta k/k>0.05. From this study we construct principal component based statistics, which are orthogonal to cosmological parameters including the initial amplitude and tilt of the spectrum, that best probe deviations from scale-free initial conditions. These statistics resemble Fourier modes confined to the acoustic regime and ultimately can yield ~50 independent measurements of the power spectrum features to percent level precision. They are straightforwardly related to more traditional parameterizations such as the the running of the tilt and in the future can provide many statistically independent measu...

  9. A CMB/Dark Energy Cosmic Duality

    CERN Document Server

    Enqvist, K; Enqvist, Kari; Sloth, Martin S.

    2004-01-01

    We investigate a possible connection between the suppression of the power at low multipoles in the CMB spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5.

  10. Detecting patchy reionization in the CMB

    CERN Document Server

    Smith, Kendrick M

    2016-01-01

    Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons (the kSZ effect), and residual foregrounds. We propose a new statistic which separates the kSZ signal from the others, and also allows the kSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift, and does not require external datasets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.

  11. The QUIJOTE-CMB Experiment: Progress Report

    Science.gov (United States)

    Génova-Santos, Ricardo; Rebolo, R.; Rubiño-Martín, J. A.; Aguiar, M.; Gómez-Reñasco, F.; Herreros, J. M.; Hildebrandt, S.; Hoyland, R.; López-Caraballo, C.; Rodríguez, R.; Tucci, M.; Martínez-González, E.; Barreiro, R. B.; Casas, F. J.; Fernández-Cobos, R.; Herranz, D.; López-Caniego, M.; Vielva, P.; Artal, E.; Aja, B.; Cano, J. L.; de La Fuente, L.; Mediavilla, A.; Pascual, J. P.; Villa, E.; Piccirillo, L.; Battye, R.; Davies, R.; Davis, R.; Dickinson, C.; Maffei, B.; Pisano, G.; Watson, R. A.; Brown, M.; Challinor, A.; Grainge, K.; Hobson, M.; Lasenby, A.; Saunders, R.; Scott, P.; Ariño, J.; Etxeita, B.; Gómez, A.; Gómez, C.; Murga, G.; Pan, J.; Sanquirce, R.; Vizcargüenaga, A.

    We briefly discuss the scientific objectives of the QUIJOTE (Q-U-I JOint TEnerife) CMB experiment, and present the current status and future scheduling of this project. QUIJOTE is a new project to study the polarization of the Cosmic Microwave Background (CMB) and of the Galactic and extragalactic emission in the frequency range 10-30 GHz and with an angular resolution of 1°. It will start operations in summer 2010 from the Teide Observatory. The scientific goal of this experiment is twofold: i) to characterize at low frequencies the polarization of the synchrotron and anomalous emissions, making then possible the correction of these CMB contaminants in the data of similar experiments operating at higher frequencies; and ii) to detect (or to constrain) the imprint of the primordial gravitational-wave background in the polarization pattern of the CMB if the tensor-to-scalar ratio is larger (lower) than r = 0:05.

  12. A CMB/Dark Energy Cosmic Duality

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2004-01-01

    We investigate a possible connection between the suppression of the power at low multipoles in the CMB spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equat......We investigate a possible connection between the suppression of the power at low multipoles in the CMB spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon......, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5....

  13. Effects of a recombinant complement component C3b functional fragment α2MR (α2-macroglobulin receptor) additive on the immune response of juvenile orange-spotted grouper (Epinephelus coioides) after the exposure to cold shock challenge.

    Science.gov (United States)

    Luo, Sheng-Wei; Cai, Luo; Qi, Zeng-Hua; Wang, Cong; Liu, Yuan; Wang, Wei-Na

    2015-08-01

    The effects of Ec-α2MR (Epinephelus coiodes-α2-macroglobulin receptor) on growth performance, enzymatic activity, respiratory burst, MDA level, total antioxidant capacity, DPPH radical scavenging percentage and immune-related gene expressions of the juvenile orange-spotted grouper were evaluated. The commercial diet supplemented with α2MR additive was used to feed the orange-spotted grouper for six weeks. Although a slight increase was observed in the specific growth rate, survival rate and weight gain, no significance was observed among different group. After the feeding trial, the groupers were exposed to cold stress. Respiratory burst activity and MDA level decreased significantly in α2MR additive group by comparing with the control and additive control group, while a sharp increase of ACP activity, ALP activity, total antioxidant capacity and DPPH radial scavenging percentage was observed in α2MR additive group. qRT-PCR analyses confirmed that the up-regulated mRNA expressions of C3, TNF1, TNF2, IL-6, CTL, LysC, SOD1 and SOD2 were observed in α2MR additive group at 20 °C. These results showed that α2MR additive may moderate the immune response in grouper following cold shock challenge.

  14. Measuring velocites using the CMB & LSS

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, Albert; /Fermilab /Paris, Inst. Astrophys.

    2006-07-01

    Here is discussed various ways by which the cosmic microwave background (CMB) radiation can be use to measure the velocities of matter in the universe. We include some new statistical techniques for using the kinetic Sunyaev-Zel'dovich (kSZ) effect and integrated Sachs-Wolfe (ISW) effect to determine velocities by correlating wide area CMB maps with overlapping large-scale structure (LSS) surveys.

  15. Spectral distortions of the CMB dipole

    CERN Document Server

    Balashev, S A; Chluba, J; Ivanchik, A V; Varshalovich, D A

    2015-01-01

    We consider the distortions of the CMB dipole anisotropy related to the primordial recombination radiation (PRR) and primordial $y$- and $\\mu$-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of CMB dipole does not depend on the particular observation directions and reaches the level of $10^{-6}$ for the PRR- and $\\mu$-distortions and $10^{-5}$ for the $y$-distortion in the frequency range 1 $-$ 700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences because of the PRR- and $\\mu$-dipole anisotropy attain values $\\Delta T\\simeq 10\\,$nK in the considered range. The temperature difference arising from the $y$-dipole anisotropy may reach values up to $1\\,\\mu$K. The key features of the ...

  16. Inflation, Renormalization, and CMB Anisotropies

    CERN Document Server

    Agullo, I; Olmo, Gonzalo J; Parker, Leonard

    2010-01-01

    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.

  17. A neutrino model fit to the CMB power spectrum

    CERN Document Server

    Shanks, T; Schewtschenko, J A; Whitbourn, J R

    2014-01-01

    The current standard cosmological model, LCDM, provides an excellent fit to the WMAP and Planck CMB data. However, the model has well known problems. For example, the cosmological constant is fine tuned to 1 part in 10^100 and the cold dark matter (CDM) particle is not yet detected in the laboratory. Here we seek an alternative model to LCDM which makes minimal assumptions about new physics. This is based on previous work by Shanks who investigated a model which assumed neither exotic particles nor a cosmological constant but instead postulated a low Hubble constant (H_0) to help allow a baryon density which was compatible with an inflationary model with zero spatial curvature. However, the recent Planck results make it more difficult to reconcile such a model with the cosmic microwave background (CMB) temperature fluctuations. Here we relax the previous assumptions to assess the effects of assuming standard model neutrinos of moderate mass (~5eV) but with no CDM and no cosmological constant. If we assume a l...

  18. N-body lensed CMB maps: lensing extraction and characterization

    CERN Document Server

    Antolini, Claudia; Martinelli, Matteo; Carbone, Carmelita; Baccigalupi, Carlo

    2013-01-01

    We reconstruct shear maps and angular power spectra from simulated weakly lensed total intensity (TT) and polarised (EB) maps of the Cosmic Microwave Background (CMB) anisotropies, obtained using Born approximated ray-tracing through the N-body simulated Cold Dark Matter (CDM) structures in the Millennium Simulations (MS). We compare the recovered signal with the ${\\Lambda}$CDM prediction, on the whole interval of angular scales which is allowed by the finite box size, extending from the degree scale to the arcminute, by applying a quadratic estimator in the flat sky limit; we consider PRISM-like instrumental specification for future generation CMB satellites, corresponding to arcminute angular resolution of 3.2' and sensitivity of 2.43 ${\\mu}$K-arcmin. The noise bias in the simulations closely follows the estimator prediction, becoming dominated by limits in the angular resolution for the EB signal, at l ${\\simeq}$ 1500. The de-biased signal shows no visible departure from predictions of the weak lensing pow...

  19. Low-ℓ CMB from string-scale SUSY breaking?

    Science.gov (United States)

    Sagnotti, A.

    2017-01-01

    Models of inflation are instructive playgrounds for supersymmetry (SUSY) breaking in Supergravity and String Theory. In particular, combinations of branes and orientifolds that are not mutually BPS can lead to brane SUSY breaking, a phenomenon where nonlinear realizations are accompanied, in tachyon-free vacua, by the emergence of steep exponential potentials. When combined with milder terms, these exponentials can lead to slow-roll after a fast ascent and a turning point. This leaves behind distinctive patterns of scalar perturbations, where pre-inflationary peaks can lie well apart from an almost scale invariant profile. I review recent attempts to connect these power spectra to the low-ℓ cosmic microwave background (CMB), and a corresponding one-parameter extension of Lambda cold dark matter (ΛCDM) with a low-frequency cut Δ. A detailed likelihood analysis led to Δ = (0.351 ± 0.114) × 10-3Mpc-1, at 99.4% confidence level, in an extended Galactic mask with fsky = 39%, to be compared with a nearby value at 88.5% in the standard Planck 2015 mask with fsky = 94%. In these scenarios, one would be confronted, in the CMB, with relics of an epoch of deceleration that preceded the onset of slow-roll.

  20. Quantifying discordance in the 2015 Planck CMB spectrum

    CERN Document Server

    Addison, G E; Watts, D J; Bennett, C L; Halpern, M; Hinshaw, G; Weiland, J L

    2015-01-01

    We examine the internal consistency of the Planck 2015 cosmic microwave background (CMB) temperature anisotropy power spectrum. We show that tension exists between cosmological constant cold dark matter (LCDM) model parameters inferred from multipoles l=1000, particularly the CDM density, Omega_ch^2, which is discrepant at 2.5 sigma for a Planck-motivated prior on the optical depth, tau=0.07+/-0.02. We find some parameter tensions to be larger than previously reported because of inaccuracy in the code used by the Planck Collaboration to generate model spectra. The Planck l>=1000 constraints are also in tension with low-redshift data sets, including Planck's own measurement of the CMB lensing power spectrum (2.4 sigma), and the most precise baryon acoustic oscillation (BAO) scale determination (2.5 sigma). The Hubble constant predicted by Planck from l>=1000, H_0=64.1+/-1.7 km/s/Mpc, disagrees with the most precise local distance ladder measurement of 73.0+/-2.4 km/s/Mpc at the 3.0 sigma level, while the Planc...

  1. Cosmological parameter estimation: impact of CMB aberration

    CERN Document Server

    Catena, Riccardo

    2012-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a_lm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l=1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fidu...

  2. The Theoretical Agenda in CMB Research

    CERN Document Server

    Bond, J R

    1996-01-01

    The terrain that theorists cover in this CMB golden age is described. We ponder early universe physics in quest of the fluctuation generator. We extoll the virtues of inflation and defects. We transport fields, matter and radiation into the linear (primary anisotropies) and nonlinear (secondary anisotropies) regimes. We validate our linear codes to deliver accurate predictions for experimentalists to shoot at. We struggle at the computing edge to push our nonlinear simulations from only illustrative to fully predictive. We are now phenomenologists, optimizing statistical techniques for extracting truths and their errors from current and future experiments. We begin to clean foregrounds. We join CMB experimental teams. We combine the CMB with large scale structure, galaxy and other cosmological observations in search of current concordance. The brave use all topical data. Others carefully craft their prior probabilities to downweight data sets. We are always unbiased. We declare theories sick, dead, ugly. Some...

  3. Extreme data compression for the CMB

    CERN Document Server

    Zablocki, Alan

    2015-01-01

    We apply the Karhunen-Lo\\'eve (KL) methods to cosmic microwave background (CMB) datasets, and show that we can recover the input cosmology and obtain the marginalized likelihoods in $\\Lambda$CDM cosmologies in under a minute, much faster than Markov Chain Monte Carlo (MCMC) methods. This is achieved by forming a linear combination of the power spectra at each multipole $l$, and solving a system of simultaneous equations such that the Fisher matrix is locally unchanged. Instead of carrying out a full likelihood evaluation over the whole parameter space, we need evaluate the likelihood only for the parameter of interest, with the data compression effectively marginalizing over all other parameters. The weighting vectors contain insight about the physical effects of the parameters on the cosmic microwave background (CMB) anisotropy power spectrum $C_l$. The shape and amplitude of these vectors give an intuitive feel for the physics of the CMB, the sensitivity of the observed spectrum to cosmological parameters, ...

  4. Constraints on the Cosmological Parameters using CMB observations

    OpenAIRE

    Rocha, Graca

    1999-01-01

    This paper covers several techniques of intercomparison of Cosmic Microwave Background (CMB) anisotropy experiments and models of structure formation. It presents the constraints on several cosmological parameters using current CMB observations.

  5. CMB Distortions from Superconducting Cosmic Strings

    CERN Document Server

    Tashiro, Hiroyuki; Vachaspati, Tanmay

    2012-01-01

    We reconsider the effect of electromagnetic radiation from superconducting strings on cosmic microwave background (CMB) mu- and y-distortions and derive present (COBE-FIRAS) and future (PIXIE) constraints on the string tension, mu_s, and electric current, I. We show that absence of distortions of the CMB in PIXIE will impose strong constraints on mu_s and I, leaving the possibility of light strings (G mu_s < 10^{-18}) or relatively weak currents (I < 10 TeV).

  6. Steerable wavelet analysis of CMB structures alignment

    CERN Document Server

    Vielva, P; Martínez-González, E; Vandergheynst, P

    2006-01-01

    This paper reviews the application of a novel methodology for analysing the isotropy of the universe by probing the alignment of local structures in the CMB. The strength of the proposed methodology relies on the steerable wavelet filtering of the CMB signal. One the one hand, the filter steerability renders the computation of the local orientation of the CMB features affordable in terms of computation time. On the other hand, the scale-space nature of the wavelet filtering allows to explore the alignment of the local structures at different scales, probing possible different phenomena. We present the WMAP first-year data analysis recently performed by the same authors (Wiaux et al.), where an extremely significant anisotropy was found. In particular, a preferred plane was detected, having a normal direction with a northern end position close to the northern end of the CMB dipole axis. In addition, a most preferred direction was found in that plane, with a northern end direction very close to the north eclipt...

  7. Giant Rings in the CMB Sky

    CERN Document Server

    Kovetz, Ely D; Itzhaki, Nissan

    2010-01-01

    We find a unique direction in the CMB sky around which giant rings have an anomalous mean temperature profile. This direction is in very close alignment with the afore measured anomalously large bulk flow direction. We argue that a cosmic defect seeded by a pre-inflationary particle could explain the giant rings, the large bulk flow and their alignment.

  8. CMB (and other challenges to BBN

    Directory of Open Access Journals (Sweden)

    Gary Steigman

    2002-01-01

    Full Text Available La nucleos ntesis primordial proporciona una medida de la abundancia universal de bariones cuando el Universo ten a s olo unos minutos de edad. Las observaciones recientes de la anisotrop a en el fondo c osmico de radiaci on de microondas (CMB dan una medida de la abundancia de bariones cuando el Universo ten a varios cientos de miles de a~nos de edad. Las observaciones de supernovas tipo Ia y de c umulos de galaxias en el pasado muy reciente, cuando el Universo tiene una edad de varios miles de millones de a~nos y mayor, proporcionan una medida complementaria de la densidad de bariones en excelente concordancia con los valores del Universo temprano. La concordancia general entre las tres mediciones representa una notable con rmaci on del modelo est andar de la cosmolog a. Sin embargo, hay indicaciones de que las observaciones CMB pueden estar en desacuerdo con aquellas de nucleos ntesis de la Gran Explosi on (BBN. Si esta \\tensi on" persiste entre BBN y CMB, el modelo est andar de la cosmolog a pude requerir una modi caci on. Aq , en una contribuci on dedicada a Silvia Torres-Peimbert y Manuel Peimbert, describimos c omo una as metria entre neutrinos y antineutrinos (la \\degeneraci on de neutrinos" tiene el potencial para resolver este posible con icto entre BBN y CMB.

  9. CMB Observations with the South Pole Telescope

    Science.gov (United States)

    Keisler, Ryan

    2013-04-01

    I will describe a program of cosmological research centered on using measurements of the cosmic microwave background (CMB) to address questions relevant to physics: What is the absolute mass scale of neutrinos? How many species of neutrino-like particles were present in the early Universe? How does gravity behave on cosmological scales? Did inflation occur, and, if so, at what energy scale? A new generation of CMB experiments is targeting these questions, and I will focus on recent results from the South Pole Telescope (SPT). The SPT is a ground-based mm-wave observatory located at the geographic south pole in Antarctica, and in 2011 finished its initial, 2500 square-degree ``SPT-SZ'' survey. The data from this survey provided an unprecedented combination of resolution, area, and sensitivity, and has been used to make ground-breaking measurements of the CMB anisotropy and the gravitational lensing of the CMB. These measurements have, in conjunction with data from the WMAP satellite, led to strong constraints on the number of neutrino-like particle species present in the early universe and the shape of the power spectrum of primordial density fluctuations. The SPT-SZ data overlaps with the ongoing Dark Energy Survey (DES) footprint, and the joint dataset will provide new probes of large-scale structure, such as the relative velocities of massive galaxy clusters. In 2012, a new polarization-sensitive camera, SPTpol, was installed on the SPT, and I will summarize its performance and prospects for detecting the B-mode CMB polarization pattern. Finally, I will touch on what will be possible with a third-generation camera, SPT-3G. The leap in sensitivity provided by this camera will yield, for example, a constraint on the sum of the neutrino masses relevant for exploring the neutrino mass hierarchy.

  10. Liver spots

    Science.gov (United States)

    Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun or other sources of ultraviolet light, or causes that are not known. Liver spots are very common after age 40. They occur ...

  11. Sparse component separation for accurate CMB map estimation

    CERN Document Server

    Bobin, J; Sureau, F; Basak, S

    2012-01-01

    The Cosmological Microwave Background (CMB) is of premier importance for the cosmologists to study the birth of our universe. Unfortunately, most CMB experiments such as COBE, WMAP or Planck do not provide a direct measure of the cosmological signal; CMB is mixed up with galactic foregrounds and point sources. For the sake of scientific exploitation, measuring the CMB requires extracting several different astrophysical components (CMB, Sunyaev-Zel'dovich clusters, galactic dust) form multi-wavelength observations. Mathematically speaking, the problem of disentangling the CMB map from the galactic foregrounds amounts to a component or source separation problem. In the field of CMB studies, a very large range of source separation methods have been applied which all differ from each other in the way they model the data and the criteria they rely on to separate components. Two main difficulties are i) the instrument's beam varies across frequencies and ii) the emission laws of most astrophysical components vary a...

  12. Full covariance of CMB and lensing reconstruction power spectra

    CERN Document Server

    Peloton, Julien; Lewis, Antony; Carron, Julien; Zahn, Oliver

    2016-01-01

    CMB and lensing reconstruction power spectra are powerful probes of cosmology. However they are correlated, since the CMB power spectra are lensed and the lensing reconstruction is constructed using CMB multipoles. We perform a full analysis of the auto- and cross-covariances, including polarization power spectra and minimum variance lensing estimators, and compare with simulations of idealized future CMB-S4 observations. Covariances sourced by fluctuations in the unlensed CMB and instrumental noise can largely be removed by using a realization-dependent subtraction of lensing reconstruction noise, leaving a relatively simple covariance model that is dominated by lensing-induced terms and well described by a small number of principal components. The correlations between the CMB and lensing power spectra will be detectable at the level of $\\sim 5\\sigma$ for a CMB-S4 mission, and neglecting those could underestimate some parameter error bars by several tens of percent. However we found that the inclusion of ext...

  13. A neutrino model fit to the CMB power spectrum

    Science.gov (United States)

    Shanks, T.; Johnson, R. W. F.; Schewtschenko, J. A.; Whitbourn, J. R.

    2014-12-01

    The standard cosmological model, Λ cold dark matter (ΛCDM), provides an excellent fit to cosmic microwave background (CMB) data. However, the model has well-known problems. For example, the cosmological constant, Λ, is fine-tuned to 1 part in 10100 and the CDM particle is not yet detected in the laboratory. Shanks previously investigated a model which assumed neither exotic particles nor a cosmological constant but instead postulated a low Hubble constant (H0) to allow a baryon density compatible with inflation and zero spatial curvature. However, recent Planck results make it more difficult to reconcile such a model with CMB power spectra. Here, we relax the previous assumptions to assess the effects of assuming three active neutrinos of mass ≈5 eV. If we assume a low H0 ≈ 45 km s-1 Mpc-1 then, compared to the previous purely baryonic model, we find a significantly improved fit to the first three peaks of the Planck power spectrum. Nevertheless, the goodness of fit is still significantly worse than for ΛCDM and would require appeal to unknown systematic effects for the fit ever to be considered acceptable. A further serious problem is that the amplitude of fluctuations is low (σ8 ≈ 0.2), making it difficult to form galaxies by the present day. This might then require seeds, perhaps from a primordial magnetic field, to be invoked for galaxy formation. These and other problems demonstrate the difficulties faced by models other than ΛCDM in fitting ever more precise cosmological data.

  14. General parity-odd CMB bispectrum estimation

    CERN Document Server

    Shiraishi, Maresuke; Fergusson, James R

    2014-01-01

    We develop a methodology for estimating parity-odd bispectra in the cosmic microwave background (CMB). This is achieved through the extension of the original separable modal methodology to parity-odd bispectrum domains ($\\ell_1 + \\ell_2 + \\ell_3 = {\\rm odd}$). Through numerical tests of the parity-odd modal decomposition with some theoretical bispectrum templates, we verify that the parity-odd modal methodology can successfully reproduce the CMB bispectrum, without numerical instabilities. We also present simulated non-Gaussian maps produced by modal-decomposed parity-odd bispectra, and show the consistency with the exact results. Our new methodology is applicable to all types of parity-odd temperature and polarization bispectra.

  15. Polarized CMB recovery with sparse component separation

    CERN Document Server

    Bobin, Jerome; Starck, Jean-Luc

    2015-01-01

    The polarization modes of the cosmological microwave background are an invaluable source of information for cosmology, and a unique window to probe the energy scale of inflation. Extracting such information from microwave surveys requires disentangling between foreground emissions and the cosmological signal, which boils down to solving a component separation problem. Component separation techniques have been widely studied for the recovery of CMB temperature anisotropies but quite rarely for the polarization modes. In this case, most component separation techniques make use of second-order statistics to discriminate between the various components. More recent methods, which rather emphasize on the sparsity of the components in the wavelet domain, have been shown to provide low-foreground, full-sky estimate of the CMB temperature anisotropies. Building on sparsity, the present paper introduces a new component separation technique dubbed PolGMCA (Polarized Generalized Morphological Component Analysis), which r...

  16. CMB anisotropies from primordial inhomogeneous magnetic fields

    CERN Document Server

    Lewis, A

    2004-01-01

    Primordial inhomogeneous magnetic fields of the right strength can leave a signature on the CMB temperature anisotropy and polarization. Potentially observable contributions to polarization B-modes are generated by vorticity and gravitational waves sourced by the magnetic anisotropic stress. We compute the corresponding CMB transfer functions in detail including the effect of neutrinos. The shear rapidly causes the neutrino anisotropic stress to cancel the stress from the magnetic field, suppressing the production of gravitational waves and vorticity on super-horizon scales after neutrino decoupling. A significant large scale signal from tensor modes can only be produced before neutrino decoupling, and the actual amplitude is somewhat uncertain. Plausible values suggest primordial nearly scale invariant fields of ~ 10^(-10)G today may be observable from their large scale tensor anisotropy. They can be distinguished from primordial gravitational waves by their non-Gaussianity. Vector mode vorticity sources B-m...

  17. Geometry of weak lensing of CMB polarization

    CERN Document Server

    Challinor, A D; Challinor, Anthony; Chon, Gayoung

    2002-01-01

    Hu has presented a harmonic-space method for calculating the effects of weak gravitational lensing on the cosmic microwave background (CMB) over the full sky. Computing the lensed power spectra to first order in the deflection power requires one to formulate the lensing displacement beyond the tangent-space approximation. We point out that for CMB polarization this displacement must undergo geometric corrections on the spherical sky to maintain statistical isotropy of the lensed fields. Although not discussed by Hu, these geometric effects are implicit in his analysis. However, there they are hidden by an overly-compact notation that is both unconventional and rather confusing. Here we aim to ameliorate this deficiency by providing a rigorous derivation of the lensed spherical power spectra.

  18. Constraining fundamental physics with future CMB experiments

    Science.gov (United States)

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-01

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  19. CMB Anisotropies Total Angular Momentum Method

    CERN Document Server

    Hu, W; Hu, Wayne; White, Martin

    1997-01-01

    A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the CMB. Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g.~defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic type parity at small angles and ...

  20. Status of CMB Observations in 2015

    Science.gov (United States)

    Bucher, Martin

    2016-07-01

    The 2.725 K cosmic microwave background has played a key role in the development of modern cosmology by providing a solid observational foundation for constraining possible theories of what happened at very large redshifts and theoretical speculation reaching back almost to the would-be big bang initial singularity. After recounting some of the lesser known history of this area, I summarize the current observational situation and also discuss some exciting challenges that lie ahead: the search for B modes, the precision mapping of the CMB gravitational lensing potential, and the ultra-precise characterization of the CMB frequency spectrum, which would allow the exploitation of spectral distortions to probe new physics.

  1. CMB Delensing Beyond the B Modes

    CERN Document Server

    Green, Daniel; van Engelen, Alexander

    2016-01-01

    Gravitational lensing by large-scale structure significantly impacts observations of the cosmic microwave background (CMB): it smooths the acoustic peaks in temperature and $E$-mode polarization power spectra, correlating previously uncorrelated modes; and it converts $E$-mode polarization into $B$-mode polarization. The act of measuring and removing the effect of lensing from CMB maps, or delensing, has been well studied in the context of $B$ modes, but little attention has been given to the delensing of the temperature and $E$ modes. In this paper, we model the expected delensed $T$ and $E$ power spectra to all orders in the lensing potential, demonstrating the sharpening of the acoustic peaks and a significant reduction in lens-induced power spectrum covariances. We then perform cosmological forecasts, demonstrating that delensing will yield improved sensitivity to parameters with upcoming surveys. We highlight the breaking of the degeneracy between the effective number of neutrino species and primordial h...

  2. Status of CMB observations in 2015

    CERN Document Server

    Bucher, Martin

    2016-01-01

    The 2.725 K cosmic microwave background has played a key role in the development of modern cosmology by providing a solid observational foundation for constraining possible theories of what happened at very large redshifts and theoretical speculation reaching back almost to the would-be big bang initial singularity. After recounting some of the lesser known history of this area, I summarize the current observational situation and also discuss some exciting challenges that lie ahead: the search for B modes, the precision mapping of the CMB gravitational lensing potential, and the ultra-precise characterization of the CMB frequency spectrum, which would allow the exploitation of spectral distortions to probe new physics.

  3. Anomalous CMB polarization and gravitational chirality

    OpenAIRE

    Contaldi, Carlo R.; Magueijo, Joao; Smolin, Lee

    2008-01-01

    We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB ...

  4. CMB statistical anisotropy from noncommutative gravitational waves

    CERN Document Server

    Shiraishi, Maresuke; Ricciardone, Angelo; Arroja, Frederico

    2014-01-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by $P_h({\\bf k}) = P_h^{(0)}(k) [ 1 + \\sum_{LM} f_L(k) g_{LM} Y_{LM} (\\hat{\\bf k}) ]$, where $P_h^{(0)}(k)$ is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with $f_0(k) = f_2(k) \\propto k^{-2}$ are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely $\\ell_2 = \\ell_1 \\pm 2$ in $TT$, $TE$, $EE$ and $BB$, and $\\ell_2 = \\ell_1 \\pm 1$ in $TB$ and $EB$. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic varian...

  5. Calibrating Cluster Number Counts with CMB lensing

    CERN Document Server

    Louis, Thibaut

    2016-01-01

    CMB Stage-4 experiments will reduce the uncertainties on the gravitational lensing potential by an order of magnitude compared to current measurements, and will also produce a Sunyaev-Zel'dovich (SZ) cluster catalog containing $\\sim10^{5}$ objects, two orders of magnitudes higher than what is currently available. In this paper we propose to combine these two observables and show that it is possible to calibrate the masses of the full Stage-4 cluster catalog internally owing to the high signal to noise measurement of the CMB lensing convergence field. We find that a CMB Stage-4 experiment will constrain the hydrostatic bias parameter to sub-percent accuracy. We also show constraints on a non parametric $Y-M$ relationship which could be used to study its evolution with mass and redshift. Finally we present a joint likelihood for thermal SZ (tSZ) flux and mass measurements, and show that it could lead to a $\\sim5\\sigma$ detection of the lower limit on the sum of the neutrino masses in the normal hierarchy ($\\sum...

  6. Testing CMB polarization data using position angles

    CERN Document Server

    Preece, Michael

    2014-01-01

    We consider a novel null test for contamination which can be applied to CMB polarization data that involves analysis of the statistics of the polarization position angles. Specifically, we will concentrate on using histograms of the measured position angles to illustrate the idea. Such a test has been used to identify systematics in the NVSS point source catalogue with an amplitude well below the noise level. We explore the statistical properties of polarization angles in CMB maps. If the polarization angle is not correlated between pixels, then the errors follow a simple $\\sqrt{N_{pix}}$ law. However this is typically not the case for CMB maps since these have correlations which result in an increase in the variance since the effective number of independent pixels is reduced. Then we illustrate how certain classes of systematic errors can result in very obvious patterns in these histograms, and thus that these errors could possibly be identified using this method. We discuss how this idea might be applied in...

  7. The isotropic blackbody CMB as evidence for a homogeneous universe

    CERN Document Server

    Clifton, Timothy; Bull, Philip

    2011-01-01

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology, but has not yet been answered decisively. Surprisingly, neither an isotropic primary CMB nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the Cosmological Principle with observations of the CMB alone.

  8. Robust Signatures of the Relic Neutrinos in CMB

    CERN Document Server

    Bashinsky, S V

    2004-01-01

    When the perturbations forming the acoustic peaks of the cosmic microwave background (CMB) reentered the horizon and interacted gravitationally with all the matter, neutrinos presumably comprised 41% of the universe energy. CMB experiments have reached a capacity to probe this background of relic neutrinos. I review the neutrino imprints on CMB anisotropy and polarization at the onset of the acoustic oscillations. The discussion addresses the underlying physics, robustness or degeneracy of the imprints with changes of free cosmological parameters, and non-minimal models for the unseen radiation sector with detectable signatures in CMB.

  9. CMB and LSS Power Spectra From Local Cosmic String Seeded Struture Formation

    CERN Document Server

    Contaldi, C R; Magueijo, J; Contaldi, Carlo R.; Hindmarsh, Mark; Magueijo, Joao

    1998-01-01

    We evaluate the two point functions of the stress energy from the largest string simulations carried out so far. The two point functions are used to calculate the cosmic microwave background (CMB) and cold dark matter (CDM) power spectra from local cosmic string models for structure formation. We find that our spectra differ significantly from those previously calculated for both global and local defects. We find a higher Doppler peak at $l=400-600$ and a less severe bias problem than for global defects. Spectra were obtained for a variety of network energy-decay mechanisms.

  10. SPOT Program

    Science.gov (United States)

    Smith, Jason T.; Welsh, Sam J.; Farinetti, Antonio L.; Wegner, Tim; Blakeslee, James; Deboeck, Toni F.; Dyer, Daniel; Corley, Bryan M.; Ollivierre, Jarmaine; Kramer, Leonard; Zimmerman, Patrick L.; Khatri, Reshma

    2010-01-01

    A Spacecraft Position Optimal Tracking (SPOT) program was developed to process Global Positioning System (GPS) data, sent via telemetry from a spacecraft, to generate accurate navigation estimates of the vehicle position and velocity (state vector) using a Kalman filter. This program uses the GPS onboard receiver measurements to sequentially calculate the vehicle state vectors and provide this information to ground flight controllers. It is the first real-time ground-based shuttle navigation application using onboard sensors. The program is compact, portable, self-contained, and can run on a variety of UNIX or Linux computers. The program has a modular objec-toriented design that supports application-specific plugins such as data corruption remediation pre-processing and remote graphics display. The Kalman filter is extensible to additional sensor types or force models. The Kalman filter design is also strong against data dropouts because it uses physical models from state and covariance propagation in the absence of data. The design of this program separates the functionalities of SPOT into six different executable processes. This allows for the individual processes to be connected in an a la carte manner, making the feature set and executable complexity of SPOT adaptable to the needs of the user. Also, these processes need not be executed on the same workstation. This allows for communications between SPOT processes executing on the same Local Area Network (LAN). Thus, SPOT can be executed in a distributed sense with the capability for a team of flight controllers to efficiently share the same trajectory information currently being computed by the program. SPOT is used in the Mission Control Center (MCC) for Space Shuttle Program (SSP) and International Space Station Program (ISSP) operations, and can also be used as a post -flight analysis tool. It is primarily used for situational awareness, and for contingency situations.

  11. Cold energy

    Science.gov (United States)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  12. Cold energy

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, John P., E-mail: jpw@castinganalysis.com [Casting Analysis Corp., PO Box 52, Weyers Cave, VA 24486 (United States)

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  13. Working Group Report: Dark Energy and CMB

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S.; Honscheid, K.; Abazajian, K.; Carlstrom, J.; Huterer, D.; Jain, B.; Kim, A.; Kirkby, D.; Lee, A.; Padmanabhan, N.; Rhodes, J.; Weinberg, D.

    2013-09-20

    The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group "Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv.

  14. CMB statistical anisotropy from noncommutative gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Maresuke; Ricciardone, Angelo [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Arroja, Frederico, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: d.f.mota@astro.uio.no, E-mail: angelo.ricciardone@pd.infn.it, E-mail: arroja@pd.infn.it [INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova (Italy)

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  15. CMB component separation in the pixel domain

    OpenAIRE

    Doroshkevich, A.; Verkhodanov, O.

    2010-01-01

    We show that the popular ILC approach is unstable in respect to the division of the sample of map pixels to the set of ``homogeneous'' subsamples. For suitable choice of such subsamples we can obtain the restored CMB signal with amplitudes ranged from zero to the amplitudes of the observed signal. We propose approach which allows us to obtain reasonable estimates of $C_\\ell$ at $\\ell\\leq 30$ and similar to WMAP $C_\\ell$ for larger $\\ell$. With this approach we reduce some anomalies of the WMA...

  16. Anomalous CMB polarization and gravitational chirality

    CERN Document Server

    Contaldi, Carlo R; Smolin, Lee

    2008-01-01

    We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  17. CMB Power Spectrum Likelihood with ILC

    CERN Document Server

    Dick, Jason; Delabrouille, Jacques

    2012-01-01

    We extend the ILC method in harmonic space to include the error in its CMB estimate. This allows parameter estimation routines to take into account the effect of the foregrounds as well as the errors in their subtraction in conjunction with the ILC method. Our method requires the use of a model of the foregrounds which we do not develop here. The reduction of the foreground level makes this method less sensitive to unaccounted for errors in the foreground model. Simulations are used to validate the calculations and approximations used in generating this likelihood function.

  18. Imprints of Anisotropic Inflation on the CMB

    CERN Document Server

    Watanabe, Masa-aki; Soda, Jiro

    2010-01-01

    We study the imprints of anisotropic inflation on the CMB temperature fluctuations and polarizations. The statistical anisotropy stems not only from the direction dependence of curvature and tensor perturbations, but also from the cross correlation between curvature and tensor perturbations, and the linear polarization of tensor perturbations. We show that off-diagonal $TB$ and $EB$ spectrum as well as on- and off-diagonal $TT, EE, BB, TE$ spectrum are induced from anisotropic inflation. We emphasize that the off-diagonal spectrum induced by the cross correlation could be a characteristic signature of anisotropic inflation.

  19. Gravitational Lensing of the CMB: a Feynman Diagram Approach

    NARCIS (Netherlands)

    Jenkins, A.E.; Manohar, A.V.; Waalewijn, W.J.; Yadav, A.P.S.

    2014-01-01

    We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB) in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS). We study the Hu-Okamoto quadratic estimator for extr

  20. Planck 2015 results. IX. Diffuse component separation: CMB maps

    Science.gov (United States)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales ℓ ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with ℓ< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55' pixels, and between 4.5 and 6.1μK averaged over 3.4 parcm pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum

  1. CMB anisotropies: Total angular momentum method

    Science.gov (United States)

    Hu, Wayne; White, Martin

    1997-07-01

    A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the cosmic microwave background (CMB). Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector, and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g., defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic-type parity at small angles (a factor of 6 in power compared with 0 for the scalars and 8/13 for the tensors) and hence potentially distinguishable independent of the model for the seed. The tensor modes produce a different sign from the scalars and vectors for the temperature-polarization correlations at large angles. We explore conditions under which one perturbation type may dominate over the others including a detailed treatment of the photon-baryon fluid before recombination.

  2. Suppressing CMB low multipoles with ISW effect

    CERN Document Server

    Das, Santanu

    2013-01-01

    Recent results of Planck data reveal that the power in the low multipoles of the CMB angular power spectrum, approximately up to $l=30$, is significantly lower than the theoretically predicted in the best fit $\\Lambda$CDM model. In this paper we investigate the possibility of invoking the Integrated Sachs-Wolfe (ISW) effect to explain this power deficit at low multipoles. The ISW effect that originates from the late time expansion history of the universe is rich in possibilities given the limited understanding of the origin of dark energy (DE). It is a common understanding that the ISW effect adds to the power at the low multipoles of the CMB angular power spectrum. In this paper we carry out an analytic study to show that there are some expansion histories in which the ISW effect, instead of adding power, provides negative contribution to the power at low multipoles. Guided by the analytic study, we present examples of the features required in the late time expansion history of the universe that could explai...

  3. QUIJOTE-CMB experiment: a technical overview

    Science.gov (United States)

    Pérez-de-Taoro, M. R.; Aguiar-González, M.; Génova-Santos, R.; Gómez-Reñasco, F.; Hoyland, R.; López-Caraballo, C.; Peláez-Santos, A.; Poidevin, F.; Tramonte, D.; Rebolo-López, R.; Rubiño-Martín, J. A.; Sánchez-de la Rosa, V.; Vega-Moreno, A.; Viera-Curbelo, T.; Vignaga, R.; Martínez-Gonzalez, E.; Aja, B.; Artal, E.; Cagigas, J.; Cano-de-Diego, J. L.; Cuerno, E. M.; de-la-Fuente, L.; Pérez, A.; Terán, J. V.; Villa, E.; Piccirillo, L.; Lasenby, A.

    2014-07-01

    The QUIJOTE-CMB experiment (Q-U-I JOint TEnerife CMB experiment) is an ambitious project to obtain polarization measurements of the sky microwave emission in the 10 to 47 GHz range. With this aim, a pair of 2,5μm telescopes and three instruments are being sited at the Teide Observatory, in Tenerife (Canary Islands, Spain). The first telescope and the first instrument (the MFI: Multi Frequency Instrument) are both already operating in the band from 10 to 20 GHz, since November 2012. The second telescope and the second instrument (TGI: Thirty GHz instrument) is planned to be in commissioning by the end of summer 2014, covering the range of 26 to 36 GHz. After that, a third instrument named FGI (Forty GHz instrument) will be designed and manufactured to complete the sky survey in the frequency range from 37 to 47 GHz. In this paper we present an overview of the whole project current status, from the technical point of view.

  4. Pre-Inflationary Relics in the CMB?

    CERN Document Server

    Gruppuso, A; Mandolesi, N; Natoli, P; Sagnotti, A

    2015-01-01

    String Theory and Supergravity allow, in principle, to follow the transition of the inflaton from pre-inflationary fast roll to slow roll. This introduces an infrared depression in the primordial power spectrum that might have left an imprint in the CMB anisotropy, if it occurred at accessible wavelengths. We model the effect extending $\\Lambda$CDM with a scale $\\Delta$ related to the infrared depression and explore the constraints allowed by {\\sc Planck} data, employing also more conservative, wider Galactic masks in the low resolution CMB likelihood. In an extended mask with $f_{sky}=39\\%$, we thus find $\\Delta = (0.351 \\pm 0.114) \\times 10^{-3} \\, \\mbox{Mpc}^{-1}$, at $99.4\\%$ confidence level, to be compared with a nearby value at $88.5\\%$ with the standard $f_{sky}=94\\%$ mask. With about 64 $e$--folds of inflation, these values for $\\Delta$ would translate into primordial energy scales ${\\cal O}(10^{14})$ GeV.

  5. CMB component separation in the pixel domain

    Science.gov (United States)

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-01

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of “homogeneous” subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum Cℓ at ℓ≤30 and provides results similar to WMAP for larger ℓ. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the “axis of evil” is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high ℓ power spectrum.

  6. Gravitational lensing of the CMB: A Feynman diagram approach

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Elizabeth E.; Manohar, Aneesh V. [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States); Waalewijn, Wouter J. [Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam (Netherlands); ITFA, University of Amsterdam, Science Park 904, 1018 XE, Amsterdam (Netherlands); Yadav, Amit P.S., E-mail: ayadav@physics.ucsd.edu [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States)

    2014-09-07

    We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB) in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS). We study the Hu–Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ{sup 4}) in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ{sup 4}) term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields/.

  7. Gravitational lensing of the CMB: A Feynman diagram approach

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Jenkins

    2014-09-01

    Full Text Available We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS. We study the Hu–Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4 in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ4 term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.

  8. Rayleigh scattering: blue sky thinking for future CMB observations

    CERN Document Server

    Lewis, Antony

    2013-01-01

    Rayleigh scattering from neutral hydrogen during and shortly after recombination causes the CMB anisotropies to be significantly frequency dependent at high frequencies. This may be detectable with Planck, and would be a strong signal at in any future space-based CMB missions. The later peak of the Rayleigh visibility compared to Thomson scattering gives an increased large-scale CMB polarization signal that is a greater than 4% effect for observed frequencies greater than 500GHz. There is a similar magnitude suppression on small scales from additional damping. Due to strong correlation between the Rayleigh and primary signal, measurement of the Rayleigh component is limited by noise and foregrounds, not cosmic variance of the primary CMB, and should observable over a wide range of angular scales at frequencies between roughly 200GHz and 800GHz. I give new numerical calculations of the temperature and polarization power spectra, and show that future CMB missions could measure the temperature Rayleigh cross-spe...

  9. CMB spectral distortions and energy release in the early universe

    Science.gov (United States)

    Tashiro, Hiroyuki

    2014-06-01

    Measuring the spectral deviation of the cosmic microwave background (CMB) from the blackbody spectrum has become a focus of attention as a probe of the thermal history of the Universe. It has been more than 20 years since COBE/FIRAS's measurement, which showed excellent agreement between the CMB spectrum and a perfect blackbody spectrum. Significant developments in the technology since then have allowed us to improve the sensitivity of the absolute spectrum measurement by a factor of {˜ }10^4. Therefore, the physics related to the generation of CMB spectral distortions should now be investigated in greater detail. To probe the physics in the early universe and to open an observational window for new physics, various energy release mechanisms both in and beyond standard cosmology need to be studied. In this paper, we provide a review of the physics of CMB distortions and the energy release that creates CMB distortions in the early universe.

  10. Can CMB Experiments Find Planet Nine?

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Recent studies have identified signs of an unseen, distant ninth planet in our solar system. How might we find the elusive Planet Nine? A team of scientists suggests the key might be cosmology experiments.AHypothetical PlanetOrbits of six distant Kuiper-belt objects. Their clustered perihelia and orbital orientations suggest they may have been shepherded by a massive object, hypothesized to be Planet Nine. [Caltech/Robert Hurt]Early this year, a study was published that demonstrated that the clustered orbits of distant Kuiper belt objects (and several other features of our solar system) can be explained by the gravitational tug of a yet-undiscovered planet. This hypothetical Planet Nine is predicted to be a giant planet similar to Neptune or Uranus, with a mass of more than ~10 Earthmasses, currently orbiting ~700 AU away.In a recent study, a team of scientists led by Nicolas Cowan (McGill University in Canada) has estimated the blackbody emission expected from Planet Nine. The team proposes how we might be able to search for this distant body using its heat signature.Heat from an Icy WorldCowan and collaborators first estimate Planet Nines effective temperature, based on the solar flux received at ~700 AU and assuming its internal heating is similar to Uranus or Neptune. They find that Planet Nines effective temperature would likely be an icy ~3050 K, corresponding to a blackbody peak at 50100 micrometers.Search space for Planet Nine. Based on its millimeter flux and annual parallax motion, several current and future cosmology experiments may be able to detect it. Experiments resolution ranges are shown with blue boxes. [Cowan et al. 2016]How can we detect an object withemission that peaks in this range? Intriguingly, cosmology experiments monitoring the cosmic microwave background (CMB) radiation are optimized for millimeter flux. At a wavelength of 1mm, Cowan and collaborators estimate that Planet Nine would have a very detectable flux level of ~30 mJy. The

  11. Full covariance of CMB and lensing reconstruction power spectra

    Science.gov (United States)

    Peloton, Julien; Schmittfull, Marcel; Lewis, Antony; Carron, Julien; Zahn, Oliver

    2017-02-01

    CMB and lensing reconstruction power spectra are powerful probes of cosmology. However, they are correlated, since the CMB power spectra are lensed, and the lensing reconstruction is constructed using CMB multipoles. We perform a full analysis of the auto- and cross-covariances, including polarization power spectra and minimum-variance lensing estimators, and compare with simulations of idealized future CMB-S4 observations. Covariances sourced by fluctuations in the unlensed CMB and instrumental noise can largely be removed by using a realization-dependent subtraction of lensing reconstruction noise, leaving a relatively simple covariance model that is dominated by lensing-induced terms and well described by a small number of principal components. The correlations between the CMB and lensing power spectra will be detectable at the level of ˜5 σ for a CMB-S4 mission, and neglecting them could underestimate some parameter error bars by several tens of percent. However, we found that the inclusion of external priors or data sets to estimate parameter error bars can make the impact of the correlations almost negligible.

  12. Observed parity-odd CMB temperature bispectrum

    CERN Document Server

    Shiraishi, Maresuke; Fergusson, James R

    2015-01-01

    Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\\ell_1 + \\ell_2 + \\ell_3 = {\\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

  13. Searching for Long Strings in CMB Maps

    CERN Document Server

    Perivolaropoulos, L

    1998-01-01

    Using analytical methods and Monte Carlo simulations, we analyze new statistics designed to detect isolated step-like discontinuities which are coherent over large areas of Cosmic Microwave Background (CMB) pixel maps. Such coherent temperature discontinuities are predicted by the Kaiser-Stebbins effect to form due to long cosmic strings present in our present horizon. The background of the coherent step-like seed is assumed to be a scale invariant Gaussian random field which could have been produced by a superposition of seeds on smaller scales and/or by inflationary quantum fluctuations. We find that the proposed statistics can detect the presense of a coherent discontinuity at a sensitivity level almost an order of magnitude better compared to more conventional statistics like the skewness or the kurtosis.

  14. Distinguishing between inflationary models from CMB

    CERN Document Server

    Tsujikawa, Shinji

    2014-01-01

    The inflationary cosmology is reviewed paying particular attention to its observational signatures associated with large-scale density perturbations generated from quantum fluctuations. In the most general scalar-tensor theories with second-order equations of motion, we derive the scalar spectral index $n_s$, the tensor-to-scalar ratio $r$, and the nonlinear estimator $f_{NL}$ of primordial non-Gaussianities to confront models with the observations of Cosmic Microwave Background (CMB) temperature anisotropies. Our analysis includes the models such as potential-driven slow-roll inflation, k-inflation, Starobinsky inflation, and Higgs inflation with non-minimal/derivative/Galileon couplings. We discriminate between a host of inflationary models by using the Planck data combined with other measurements to find models most favored observationally in the current literature. We also study anisotropic inflation based on a scalar coupling with a vector (or, two-form) field and we discuss its observational signatures ...

  15. CMB component separation in the pixel domain

    CERN Document Server

    Doroshkevich, A

    2010-01-01

    We show that the popular ILC approach is unstable in respect to the division of the sample of map pixels to the set of ``homogeneous'' subsamples. For suitable choice of such subsamples we can obtain the restored CMB signal with amplitudes ranged from zero to the amplitudes of the observed signal. We propose approach which allows us to obtain reasonable estimates of $C_\\ell$ at $\\ell\\leq 30$ and similar to WMAP $C_\\ell$ for larger $\\ell$. With this approach we reduce some anomalies of the WMAP results. In particular, our estimate of the quadrupole is well consistent to theoretical one, the effect of the ``axis of evil'' is suppressed and the symmetry of the north and south galactic hemispheres increases. This results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We propose also new simple approach which can improve WMAP estimates of high $\\ell$ power spectrum.

  16. The Angular Trispectrum of the CMB

    CERN Document Server

    Hu, W

    2001-01-01

    We study the general properties of the CMB temperature four-point function, specifically its harmonic analogue the angular trispectrum, and illustrate its utility in finding optimal quadratic statistics through the weak gravitational lensing effect. We determine the general form of the trispectrum, under the assumptions of rotational, permutation, and parity invariance, its estimators on the sky, and their Gaussian noise properties. The signal-to-noise in the trispectrum can be highly configuration dependent and any quadratic statistic used to compress the information to a manageable two-point level must be carefully chosen. Through a systematic study, we determine that for the case of lensing a specific statistic, the divergence of a filtered temperature-weighted temperature-gradient map, contains the maximal signal-to-noise and reduces the variance of estimates of the large-scale convergence power spectrum by over an order of magnitude over previous gradient-gradient techniques. The total signal-to-noise fo...

  17. Real Space Approach to CMB deboosting

    CERN Document Server

    Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.

    2013-01-01

    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...

  18. Spherical Needlets for CMB Data Analysis

    CERN Document Server

    Marinucci, D; Balbi, A; Baldi, P; Cabella, P; Kerkyacharian, G; Natoli, P; Picard, D; Vittorio, N

    2007-01-01

    We discuss Spherical Needlets and their properties. Needlets are a form of spherical wavelets which do not rely on any kind of tangent plane approximation and enjoy good localization properties in both pixel and harmonic space; moreover needlets coefficients are asymptotically uncorrelated at any fixed angular distance, which makes their use in statistical procedures very promising. In view of these properties, we believe needlets may turn out to be especially useful in the analysis of Cosmic Microwave Background (CMB) data on the incomplete sky, as well as of other cosmological observations. As a final advantage, we stress that the implementation of needlets is computationally very convenient and may rely completely on standard data analysis packages such as HEALPix.

  19. CMB Anisotropies from a Gradient Mode

    CERN Document Server

    Mirbabayi, Mehrdad

    2014-01-01

    A pure gradient mode must have no observable dynamical effect at linear level. We confirm this by showing that its contribution to the dipolar power asymmetry of CMB anisotropies vanishes, if Maldacena's consistency condition is satisfied. To this end, the existing second order Sachs-Wolfe formula in the squeezed limit is extended to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. At second order, a gradient mode generated in Single-field inflation is shown to induce a quadrupole moment. For instance in a matter-dominated model it is equal to 5/18 times the square of the linear gradient part. This quadrupole can be cancelled by superposing a quadratic perturbation. The result is shown to be a non-linear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  20. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  1. The bolometric focal plane array of the Polarbear CMB experiment

    CERN Document Server

    Arnold, K; Anthony, A E; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M A; Errard, J; Fabbian, G; Flanigan, D; Fuller, G; Ghribi, A; Grainger, W; Halverson, N; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Howard, J; Hyland, P; Jaffe, A; Keating, B; Kermish, Z; Kisner, T; Jeune, M Le; Lee, A T; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Miller, N J; Meng, X; Morii, H; Moyerman, S; Myers, M J; Nishino, H; Paar, H; Quealy, E; Reichardt, C; Richards, P L; Ross, C; Shimizu, A; Shimmin, C; Shimon, M; Sholl, M; Siritanasak, P; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tomaru, T; Tucker, C; Zahn, O

    2012-01-01

    The Polarbear Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for the possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detector's planar antenna structure is coupled to the telescope's optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane.

  2. Mongolian spots

    Directory of Open Access Journals (Sweden)

    Divya Gupta

    2013-01-01

    Full Text Available Mongolian spots (MS are birthmarks that are present at birth and their most common location is sacrococcygeal or lumbar area. Lesions may be single or multiple and usually involve < 5% total body surface area. They are macular and round, oval or irregular in shape. The color varies from blue to greenish, gray, black or a combination of any of the above. The size varies from few to more than 20 centimetres. Pigmentation is most intense at the age of one year and gradually fades thereafter. It is rarely seen after the age of 6 years. Aberrant MS over occiput, temple, mandibular area, shoulders and limbs may be confused with other dermal melanocytoses and bruises secondary to child abuse, thus necessitating documentation at birth. Although regarded as benign, recent data suggest that MS may be associated with inborn errors of metabolism and neurocristopathies. Mongolian spots usually resolve by early childhood and hence no treatment is generally needed if they are located in the sacral area. However, sometimes it may be required for extrasacral lesions for cosmesis.

  3. Cross-correlating Planck CMB lensing with SDSS: lensing-lensing and galaxy-lensing cross-correlations

    Science.gov (United States)

    Singh, Sukhdeep; Mandelbaum, Rachel; Brownstein, Joel R.

    2017-01-01

    We present results from cross-correlating Planck cosmic microwave background (CMB) lensing maps with the Sloan Digital Sky Survey (SDSS) galaxy lensing shape catalogue and BOSS (Baryon Oscillation Spectroscopic Survey) galaxy catalogues. For galaxy position versus CMB lensing cross-correlations, we measure the convergence signal around the galaxies in configuration space, using the BOSS LOWZ (z ˜ 0.30) and CMASS (z ˜ 0.57) samples. With fixed Planck 2015 cosmology, doing a joint fit with the galaxy clustering measurement, for the LOWZ (CMASS) sample we find a galaxy bias bg = 1.75 ± 0.04 (1.95 ± 0.02) and galaxy-matter cross-correlation coefficient rcc = 1.0 ± 0.2 (0.8 ± 0.1) using 20 < rp < 70 h-1 Mpc, consistent with results from galaxy-galaxy lensing. Using the same scales and including the galaxy-galaxy lensing measurements, we constrain Ωm = 0.284 ± 0.024 and relative calibration bias between the CMB lensing and galaxy lensing to be b_γ =0.82^{+0.15}_{-0.14}. The combination of galaxy lensing and CMB lensing also allows us to measure the cosmological distance ratios (with zl ˜ 0.3, zs ˜ 0.5) R=D_s D_{l,*}/D_{* D_{l,s}}=2.68± 0.29, consistent with predictions from the Planck 2015 cosmology (R=2.35). We detect the galaxy position-CMB convergence cross-correlation at small scales, rp < 1 h-1 Mpc, and find consistency with lensing by NFW haloes of mass Mh ˜ 1013 h-1 M⊙. Finally, we measure the CMB lensing-galaxy shear cross-correlation, finding an amplitude of A = 0.76 ± 0.23 (zeff = 0.35, θ < 2°) with respect to Planck 2015 Λ cold dark matter predictions (1σ level consistency). We do not find evidence for relative systematics between the CMB and SDSS galaxy lensing.

  4. The Szekeres Swiss Cheese model and the CMB observations

    CERN Document Server

    Bolejko, Krzysztof

    2008-01-01

    This paper presents the application of the Szekeres Swiss Cheese model to observations of the cosmic microwave background (CMB) radiation. It aims to study the CMB temperature fluctuations by the means of the exact inhomogeneous Szekeres model. So far the impact of inhomogeneous matter distribution on the CMB observations has been almost exclusively studied within the linear perturbations of the Friedmann model. However, since the density contrast of cosmic structures is larger than 1 this issue is worth studying using another approach. The Szekeres model is an inhomogeneous, non-symmetrical and exact solution of the Einstein equations. In this model, light propagation and matter evolution can be exactly calculated, without approximations such as small amplitude of the density contrast. This will allow us to examine the impact of light propagation effects on the CMB temperature fluctuations. The results of such analysis show that small-scale, non-linear inhomogeneities introduce - via light propagation effect...

  5. CMB-S4 and the Hemispherical Variance Anomaly

    CERN Document Server

    O'Dwyer, Marcio; Knox, Lloyd; Starkman, Glenn D

    2016-01-01

    Cosmic Microwave Background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the northern and southern Ecliptic hemispheres. In this context, the northern hemisphere displays an anomalously low variance while the southern hemisphere appears unremarkable (consistent with expectations from the best-fitting theory, $\\Lambda$CDM). While this is a well established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground ba...

  6. CMB Constraint on Radion Evolution in the Brane World Scenario

    CERN Document Server

    Chan, K C

    2007-01-01

    In many versions of brane model, the modulus field of extra dimensions, the radion, could have cosmological evolution, which induces variation of the Higgs vacuum expectation value, $$, resulting in cosmological variation of the electron mass $m_e$. The formation of Cosmic Microwave Background (CMB) anisotropies is thus affected, causing changes both in the peaks positions and amplitudes in the CMB power spectra. Using the three-year WMAP CMB data, with the Hubble parameter $H_0$ fixed to be the HST result 72 km s$^{-1}$ Mpc$^{-1}$, we obtain a constraint on $\\rho$, the ratio of the value of $$ at CMB recombination to its present value, to be [0.97, 1.02].

  7. Antenna-Coupled TES Bolometer Arrays for CMB Polarimetry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and test transition edge sensor (TES) bolometer arrays for precision polarimetry of cosmic microwave background (CMB).  Verify that critical antenna...

  8. Planck 2013 results. XXIII. Isotropy and statistics of the CMB

    National Research Council Canada - National Science Library

    Ade, P.A.R; Rachen, J.P; Zonca, A

    2014-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the CMB anisotropy from the \\Planck\\ satellite...

  9. Parameterization of temperature and spectral distortions in future CMB experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pitrou, Cyril; Stebbins, Albert

    2014-10-15

    CMB spectral distortions are induced by Compton collisions with electrons. We review the various schemes to characterize the anisotropic CMB with a non-Planckian spectrum. We advocate using logarithmically averaged temperature moments as the preferred language to describe these spectral distortions, both for theoretical modeling and observations. Numerical modeling is simpler, the moments are frame-independent, and in terms of scattering the mode truncation is exact.

  10. POLARBEAR-2: an instrument for CMB polarization measurements

    CERN Document Server

    Inoue, Y; Akiba, Y; Aleman, C; Arnold, K; Baccigalupi, C; Barch, B; Barron, D; Bender, A; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; de Haan, T; Dobbs, M A; Ducout, A; Dunner, R; Elleflot, T; Errard, J; Fabbian, G; Feeney, S; Feng, C; Fuller, G; Gilbert, A J; Goeckner-Wald, N; Groh, J; Hall, G; Halverson, N; Hamada, T; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Howe, L; Irie, F; Jaehnig, G; Jaffe, A; Jeongh, O; Katayama, N; Kaufman, J P; Kazemzadeh, K; Keating, B G; Kermish, Z; Keskital, R; Kisner, T; Kusaka, A; Jeune, M Le; Lee, A T; Leon, D; Linder, E V; Lowry, L; Matsuda, F; Matsumura, T; Miller, N; Mizukami, K; Montgomery, J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Raum, C R; Rebeiz, G M; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Segaw, Y; Sherwin, B D; Shirley, I; Siritanasak, P; Stebor, N; Suzuki, R Stompor A; Tajima, O; Takada, S; Takatori, S; Teply, G P; Tikhomirol, A; Tomaru, T; Whitehorn, N; Zahn, A; Zahn, O

    2016-01-01

    POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision {\\sigma}(r) < 0.01, and the sum of neutrino masses, {\\Sigma}m{\

  11. CMB-S4 Science Book, First Edition

    OpenAIRE

    Abazajian, Kevork N.; Adshead, Peter; Ahmed, Zeeshan; Allen, Steven W.; Alonso, David; Arnold, Kam S.; Baccigalupi, Carlo; Bartlett, James G.; Battaglia, Nicholas; Benson, Bradford A.; Bischoff, Colin A.; Borrill, Julian; Buza, Victor; Calabrese, Erminia; Caldwell, Robert

    2016-01-01

    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves...

  12. The isotropic blackbody CMB as evidence for a homogeneous universe

    OpenAIRE

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2011-01-01

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology, but has not yet been answered decisively. Surprisingly, neither an isotropic primary CMB nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary obser...

  13. By Dawn's Early Light: CMB Polarization Impact on Cosmological Constraints

    OpenAIRE

    Das, Sudeep; Linder, Eric V.

    2012-01-01

    Cosmic microwave background polarization encodes information not only on the early universe but also dark energy, neutrino mass, and gravity in the late universe through CMB lensing. Ground based surveys such as ACTpol, PolarBear, SPTpol significantly complement cosmological constraints from the Planck satellite, strengthening the CMB dark energy figure of merit and neutrino mass constraints by factors of 3-4. This changes the dark energy probe landscape. We evaluate the state of knowledge in...

  14. Preferred axis of CMB parity asymmetry in the masked maps

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cheng [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Zhao, Wen, E-mail: wzhao7@ustc.edu.cn [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Huang, Qing-Guo [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Santos, Larissa [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2016-06-10

    Both WMAP and Planck data show a significant odd-multipole preference in the large scales of the cosmic microwave background (CMB) temperature anisotropies. If this pattern originates from cosmological effects, then it can be considered a crucial clue for a violation in the cosmological principle. By defining various direction dependent statistics in the full-sky Planck 2015 maps (see, for instance, Naselsky et al. (2012); W. Zhao (2014)), we found that the CMB parity asymmetry has a preferred direction, which is independent of the choices of the statistics. In particular, this preferred axis is strongly aligned with those in the CMB quadrupole and octopole, as well as that in the CMB kinematic dipole, which hints to their non-cosmological origin. In realistic observations, the foreground residuals are inevitable, and should be properly masked out in order to avoid possible misinterpretation of the results. In this paper, we extend our previous analyses to the masked Planck 2015 data. By defining a similar direction dependent statistic in the masked map, we find a preferred direction of the CMB parity asymmetry, in which the axis also coincides with that found in the full-sky analysis. Therefore, our conclusions on the CMB parity violation and its directional properties are confirmed.

  15. Cosmology from CMB polarization with POLARBEAR and the Simons Array

    Science.gov (United States)

    Barron, Darcy; POLARBEAR Collaboration

    2016-01-01

    POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012. The POLARBEAR team has published results from its first season of observations on a small fraction of the sky, including a measurement of a non-zero B-mode polarization angular power spectrum at sub-degree scales, where the dominant signal is gravitational lensing of the CMB. Improving these measurements requires precision characterization of the CMB polarization signal over large fractions of the sky, at multiple frequencies. To achieve these goals, POLARBEAR has begun expanding to include an additional two 3.5 meter telescopes with multi-chroic receivers, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. The Simons Array data will place strong constraints on the sum of the neutrino masses, when combined with data from the next generation of baryon acoustic oscillation measurements. We present the status of this funded instrument and its expected capabilities.

  16. SU(2)CMB at high redshifts and the value of H0

    Science.gov (United States)

    Hahn, Steffen; Hofmann, Ralf

    2017-07-01

    We investigate a high-z cosmological model to compute the comoving sound horizon rs at baryon-velocity freeze-out towards the end of hydrogen recombination. This model assumes a replacement of the conventional cosmic microwave background (CMB) photon gas by deconfining SU(2) Yang-Mills thermodynamics, three flavours of massless neutrinos (Nν = 3) and a purely baryonic matter sector [no cold dark-matter (CDM)]. The according SU(2) temperature-redshift relation of the CMB is contrasted with recent measurements appealing to the thermal Sunyaev-Zel'dovich effect and CMB-photon absorption by molecular rotation bands or atomic hyperfine levels. Relying on a realistic simulation of the ionization history throughout recombination, we obtain z* = 1693.55 ± 6.98 and zdrag = 1812.66 ± 7.01. Due to considerable widths of the visibility functions in the solutions to the associated Boltzmann hierarchy and Euler equation, we conclude that z* and zdrag overestimate the redshifts for the respective photon and baryon-velocity freeze-out. Realistic decoupling values turn out to be zlf,* = 1554.89 ± 5.18 and zlf, drag = 1659.30 ± 5.48. With rs(zlf, drag) = (137.19 ± 0.45) Mpc and the essentially model independent extraction of rsH0 = constant from low-z data in Bernal, Verde & Riess, we obtain a good match with the value H0 = (73.24 ± 1.74) km s-1 Mpc-1 extracted in Riess et al. by appealing to Cepheid-calibrated Type Ia supernovae, new parallax measurements, stronger constraints on the Hubble flow and a refined computation of distance to NGC 4258 from maser data. We briefly comment on a possible interpolation of our high-z model, invoking percolated and unpercolated U(1) topological solitons of a Planck-scale axion field, to the phenomenologically successful low-z ΛCDM cosmology.

  17. Cold Urticaria

    Science.gov (United States)

    Diseases and Conditions Cold urticaria By Mayo Clinic Staff Cold urticaria (ur-tih-KAR-e-uh) is a skin reaction to cold. Skin that has ... in contact with cold develops reddish, itchy welts (hives). The severity of cold urticaria symptoms varies widely. ...

  18. CMB-lensing beyond the Born approximation

    Science.gov (United States)

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2016-09-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles l lesssim 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussian nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.

  19. CMB Constraints on Cosmic Strings and Superstrings

    CERN Document Server

    Charnock, Tom; Copeland, Edmund J; Moss, Adam

    2016-01-01

    We present the first complete MCMC analysis of cosmological models with evolving cosmic (super)string networks, using the Unconnected Segment Model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on {\\Lambda}CDM and string network parameters, namely the string tension G{\\mu}, the loop-chopping efficiency c_r and the string wiggliness {\\alpha}. For cosmic superstrings, we obtain joint constraints on the fundamental string tension G{\\mu}_F, the string coupling g_s, the self-interaction coefficient c_s, and the volume of compact extra dimensions w. This constitutes the most comprehensive CMB analysis of {\\Lambda}CDM cosmology + strings to date. For ordinary cosmic string networks our updated constraint on the string tension is, in relativistic units, G{\\mu}<1.1x10^-7, while for cosmic superstrings our constraint on the fundamental string tension is G{\\mu}_F<2.8x10^-8, both obtained using Planck2015 temperature and polarisation data.

  20. CMB Signals of Neutrino Mass Generation

    CERN Document Server

    Chacko, Z; Okui, T; Oliver, S J; Hall, Lawrence J.; Okui, Takemichi; Oliver, Steven J.

    2003-01-01

    We propose signals in the cosmic microwave background to probe the type and spectrum of neutrino masses. In theories that have spontaneous breaking of approximate lepton flavor symmetries at or below the weak scale, light pseudo-Goldstone bosons recouple to the cosmic neutrinos after nucleosynthesis and affect the acoustic oscillations of the electron-photon fluid during the eV era. Deviations from the Standard Model are predicted for both the total energy density in radiation during this epoch, \\Delta N_nu, and for the multipole of the n'th CMB peak at large n, \\Delta l_n. The latter signal is difficult to reproduce other than by scattering of the known neutrinos, and is therefore an ideal test of our class of theories. In many models, the large shift, \\Delta l_n \\approx 8 n_S, depends on the number of neutrino species that scatter via the pseudo-Goldstone boson interaction. This interaction is proportional to the neutrino masses, so that the signal reflects the neutrino spectrum. The prediction for \\Delta N...

  1. Modeling CMB lensing cross correlations with CLEFT

    Science.gov (United States)

    Modi, Chirag; White, Martin; Vlah, Zvonimir

    2017-08-01

    A new generation of surveys will soon map large fractions of sky to ever greater depths and their science goals can be enhanced by exploiting cross correlations between them. In this paper we study cross correlations between the lensing of the CMB and biased tracers of large-scale structure at high z. We motivate the need for more sophisticated bias models for modeling increasingly biased tracers at these redshifts and propose the use of perturbation theories, specifically Convolution Lagrangian Effective Field Theory (CLEFT). Since such signals reside at large scales and redshifts, they can be well described by perturbative approaches. We compare our model with the current approach of using scale independent bias coupled with fitting functions for non-linear matter power spectra, showing that the latter will not be sufficient for upcoming surveys. We illustrate our ideas by estimating σ8 from the auto- and cross-spectra of mock surveys, finding that CLEFT returns accurate and unbiased results at high z. We discuss uncertainties due to the redshift distribution of the tracers, and several avenues for future development.

  2. CMB anisotropies from a gradient mode

    Science.gov (United States)

    Mirbabayi, Mehrdad; Zaldarriaga, Matias

    2015-03-01

    A linear gradient mode must have no observable dynamical effect on short distance physics. We confirm this by showing that if there was such a gradient mode extending across the whole observable Universe, it would not cause any hemispherical asymmetry in the power of CMB anisotropies, as long as Maldacena's consistency condition is satisfied. To study the effect of the long wavelength mode on short wavelength modes, we generalize the existing second order Sachs-Wolfe formula in the squeezed limit to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. Next, we consider effects that are of second order in the long mode. A gradient mode Φ = qṡx generated in Single-field inflation is shown to induce an observable quadrupole moment. For instance, in a matter-dominated model it is equal to Q = 5(qṡx)2/18. This quadrupole can be canceled by superposition of a quadratic perturbation. The result is shown to be a nonlinear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  3. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Rocky Mountain spotted fever is a ... New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases ...

  4. Are 'hot spots' hot spots?

    Science.gov (United States)

    Foulger, Gillian R.

    2012-07-01

    The term 'hot spot' emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a 'normal' mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ˜200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40-50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200-300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been

  5. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  6. Circular polarization of the CMB: Foregrounds and detection prospects

    CERN Document Server

    King, Soma

    2016-01-01

    The cosmic microwave background (CMB) is one of the finest probes of cosmology. Its all-sky temperature and linear polarization (LP) fluctuations have been measured precisely at a level of deltaT/TCMB ~10^{-6}. In comparison, circular polarization (CP) of the CMB, however, has not been precisely explored. Current upper limit on the CP of the CMB is at a level of deltaV/TCMB ~10^{-4} and is limited on large scales. Some of the cosmologically important sources which can induce a CP in the CMB include early universe symmetry breaking, primordial magnetic field, galaxy clusters and Pop III stars (also known as the First stars). Among these sources, Pop III stars are expected to induce the strongest signal with levels strongly dependent on the frequency of observation and on the number, Np, of the Pop III stars per halo. Optimistically, a CP signal in the CMB due to the Pop III stars could be at a level of deltaV/TCMB ~ 2x10^{-7} in scales of 1 degree at 10 GHz, which is much smaller than the currently existing up...

  7. CMB lensing from SPT+Planck and cross-correlations

    Science.gov (United States)

    Omori, Yuuki; SPT Collaboration; DES Collaboration

    2017-01-01

    The South Pole Telescope (SPT) SZ survey has observed 2500 square degrees of the Cosmic Microwave Background (CMB) to high accuracy down to 1 arcminute resolution at 150GHz. The Planck satellite has also observed the same patch of the CMB sky at 143GHz, but the two experiments were designed to measure temperature anisotropies optimally at different angular scales. By combining data from these two experiments, we are able to produce a temperature map that has an improved signal-to-noise ratio at all scales. This combined temperature map is used to produce a CMB weak lensing map, which we use for cosmological parameter and cross-correlation analyses. In particular, the SPT footprint has significant overlap with the Dark Energy Survey (DES) observing region, which allows us to cross-correlate the CMB lensing map with galaxy density and galaxy shear measurements obtained by DES. In this talk, I will present the SPT+Planck combining procedure, the CMB lensing reconstruction pipeline, tests performed to verify the lensing map, and finally the cross-correlation measurements.

  8. Parity violation in the CMB trispectrum from the scalar sector

    Science.gov (United States)

    Shiraishi, Maresuke

    2016-10-01

    Under the existence of chiral non-Gaussian sources during inflation, the trispectrum of primordial curvature perturbations can break parity. We examine signatures of the induced trispectrum of the cosmic microwave background (CMB) anisotropies. It is confirmed via a harmonic-space analysis that, as a consequence of parity violation, such a CMB trispectrum has nonvanishing signal in the ℓ1+ℓ2+ℓ3+ℓ4=odd domain, which is prohibited in the concordance cosmology. When the curvature trispectrum is parametrized with Legendre polynomials, the CMB signal due to the Legendre dipolar term is enhanced at the squeezed configurations in ℓ space, yielding a high signal-to-noise ratio. A Fisher matrix computation results in a minimum detectable size of the dipolar coefficient in a cosmic-variance-limited-level temperature survey as d1odd=640 . In an inflationary model where the inflaton field couples to the gauge field via an f (ϕ )(F2+F F ˜) interaction, the curvature trispectrum contains such a parity-odd dipolar term. We find that, in this model, the CMB trispectrum yields a high signal-to-noise ratio compared with the CMB power spectrum or bispectrum. Therefore, the ℓ1+ℓ2+ℓ3+ℓ4=odd signal could be a promising observable of cosmological parity violation.

  9. Non-Gaussianity and CMB aberration and Doppler

    CERN Document Server

    Catena, Riccardo; Notari, Alessio; Renzi, Alessandro

    2013-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces a deflection in the arrival direction of the observed photons (also known as CMB aberration) and a Doppler shift in the measured photon frequencies. As a consequence, aberration and Doppler effects induce non trivial correlations between the harmonic coefficients of the observed CMB temperature maps. In this paper we investigate whether these correlations generate a bias on Non-Gaussianity estimators $f_{NL}$. We perform this analysis simulating a large number of temperature maps with Planck-like resolution (lmax $= 2000$) as different realizations of the same cosmological fiducial model (WMAP7yr). We then add to these maps aberration and Doppler effects employing a modified version of the HEALPix code. We finally evaluate a generalization of the Komatsu, Spergel and Wandelt Non-Gaussianity estimator for all the simulated maps, both when peculiar velocity effects have been considered and when these phenomena have been neglected. Usi...

  10. Violation of the Rotational Invariance in the CMB Bispectrum

    CERN Document Server

    Shiraishi, Maresuke

    2011-01-01

    We investigate a statistical anisotropy on the Cosmic Microwave Background (CMB) bispectrum which can be generated from the primordial non-Gaussianity induced by quantum fluctuations of a vector field. We find a new configurations in the multipole space of the CMB bispectrum given by $\\ell_1 = \\ell_2 + \\ell_3 + 2, |\\ell_2 - \\ell_3| - 2$ and their permutations, which violate the rotational invariance, such as an off-diagonal configuration in the CMB power spectrum. We also find that in a model presented by Yokoyama and Soda (2008), the amplitude of the statistically anisotropic bispectrum in the above configurations becomes as large as that in other configuration such as $\\ell_1 = \\ell_2 + \\ell_3$. As a result, it might be possible to detect these contributions in the future experiments and then it would give us novel information about the physics of the early Universe.

  11. Constraints on Disformal Couplings from the CMB Temperature Evolution

    CERN Document Server

    van de Bruck, Carsten; Vu, Susan

    2013-01-01

    Certain modified gravity theories predict the existence of an additional, non-conformally coupled scalar field. A disformal coupling of the field to the Cosmic Microwave Background (CMB) is shown to affect the evolution of the energy density in the radiation fluid. Therefore, measurements of the CMB temperature at various redshifts can be used to constrain these disformal couplings. Such measurements strongly support the predictions of General Relativity, that the CMB temperature evolution with redshift is linear. For both exponential and power law potentials for the scalar field we find an excluded range for the strength of this coupling, characterised by an energy scale $M$, to be few$\\times 10^{-5}$ eV$

  12. Optimal scan strategies for future CMB satellite experiments

    CERN Document Server

    Wallis, Christopher G R; Battye, Richard A; Delabrouille, Jacques

    2016-01-01

    The B-mode polarisation power spectrum in the Cosmic Microwave Background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarisation must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarisation experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example we go on to identify a scan strategy suitable for the CMB satellite pro...

  13. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  14. A Bayesian framework for cosmic string searches in CMB maps

    Science.gov (United States)

    Ciuca, Razvan; Hernández, Oscar F.

    2017-08-01

    There exists various proposals to detect cosmic strings from Cosmic Microwave Background (CMB) or 21 cm temperature maps. Current proposals do not aim to find the location of strings on sky maps, all of these approaches can be thought of as a statistic on a sky map. We propose a Bayesian interpretation of cosmic string detection and within that framework, we derive a connection between estimates of cosmic string locations and cosmic string tension Gμ. We use this Bayesian framework to develop a machine learning framework for detecting strings from sky maps and outline how to implement this framework with neural networks. The neural network we trained was able to detect and locate cosmic strings on noiseless CMB temperature map down to a string tension of Gμ=5 ×10-9 and when analyzing a CMB temperature map that does not contain strings, the neural network gives a 0.95 probability that Gμ<=2.3×10-9.

  15. Using inpainting to construct accurate cut-sky CMB estimators

    CERN Document Server

    Gruetjen, H F; Liguori, M; Shellard, E P S

    2015-01-01

    The direct evaluation of manifestly optimal, cut-sky CMB power spectrum and bispectrum estimators is numerically very costly, due to the presence of inverse-covariance filtering operations. This justifies the investigation of alternative approaches. In this work, we mostly focus on an inpainting algorithm that was introduced in recent CMB analyses to cure cut-sky suboptimalities of bispectrum estimators. First, we show that inpainting can equally be applied to the problem of unbiased estimation of power spectra. We then compare the performance of a novel inpainted CMB temperature power spectrum estimator to the popular apodised pseudo-$C_l$ (PCL) method and demonstrate, both numerically and with analytic arguments, that inpainted power spectrum estimates significantly outperform PCL estimates. Finally, we study the case of cut-sky bispectrum estimators, comparing the performance of three different approaches: inpainting, apodisation and a novel low-l leaning scheme. Providing an analytic argument why the loca...

  16. Can CMB spectral distortions test the Einstein equivalence principle?

    CERN Document Server

    Arai, Shun; Tashiro, Hiroyuki

    2016-01-01

    The Einstein Equivalence Principle (EEP) can be verified by the measurement of the spectral distortions of the Cosmic Microwave Background (CMB). The existence of energy-dependency in the cosmological redshift effect means the EEP violation. Introducing the energy-dependent Friedmann-Robertson-Walker metric motivated by rainbow gravity, we show that the energy-dependent redshift effect causes the CMB spectral distortions. Assuming the simple energy-dependent form of the metric, we evaluate the distortions. From the COBE/FIRAS bound, we find that the deviation degree from the EEP, which is comparable to the difference of the parameterized-post-Newtonian parameter "gamma" in energy, is less than 10^{-9} at the CMB energy scale. Our bound is the first constraint on the EEP at cosmological time scale.

  17. CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    CERN Document Server

    Baumann, Daniel; Adshead, Peter; Amblard, Alexandre; Ashoorioon, Amjad; Bartolo, Nicola; Bean, Rachel; Beltran, Maria; de Bernardis, Francesco; Bird, Simeon; Chen, Xingang; Chung, Daniel Jun Hun; Colombo, Loris; Cooray, Asantha R.; Creminelli, Paolo; Dodelson, Scott; Dunkley, Joanna; Dvorkin, Cora; Easther, Richard; Finelli, Fabio; Flauger, Raphael; Hertzberg, Mark P.; Jones-Smith, Katherine; Kachru, Shamit; Kadota, Kenji; Khoury, Justin; Kinney, William H.; Komatsu, Eiichiro; Krauss, Lawrence M.; Lesgourgues, Julien; Liddle, Andrew R.; Liguori, Michele; Lim, Eugene A.; Linde, Andrei D.; Matarrese, Sabino; Mathur, Harsh; McAllister, Liam; Melchiorri, Alessandro; Nicolis, Alberto; Pagano, Luca; Peiris, Hiranya V.; Peloso, Marco; Pogosian, Levon; Pierpaoli, Elena; Riotto, Antonio; Seljak, Uros; Senatore, Leonardo; Shandera, Sarah E.; Silverstein, Eva; Smith, Tristan; Vaudrevange, Pascal M.; Verde, Licia; Wandelt, Ben; Wands, David; Watson, Scott; Wyman, Mark; Yadav, Amit; Valkenburg, Wessel; Zaldarriaga, Matias

    2009-01-01

    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

  18. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the CMB anisotropy from the \\Planck\\ satellite. The detailed results are based on studies of four independent estimates...... of the CMB that are compared to simulations using a fiducial $\\Lambda$CDM model and incorporating essential aspects of the \\Planck\\ measurement process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask and frequency dependence. Many......, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. The dipolar power asymmetry is now found to persist to much smaller angular scales, and can be described in the low-$\\ell$ regime by a phenomenological dipole modulation model. Finally...

  19. Planck 2015 results: XVI. Isotropy and statistics of the CMB

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Akrami, Y.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we...... consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales......, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB...

  20. Probing polarization states of primordial gravitational waves with CMB anisotropies

    CERN Document Server

    Saito, Shun; Taruya, Atsushi

    2007-01-01

    We discuss the polarization signature of primordial gravitational waves imprinted in cosmic microwave background (CMB) anisotropies. The high-energy physics motivated by superstring theory or M-theory generically yield parity violating terms, which may produce a circularly polarized gravitational wave background (GWB) during inflation. In contrast to the standard prediction of inflation with un-polarized GWB, circularly polarized GWB generates non-vanishing TB and EB-mode power spectra of CMB anisotropies. We evaluate the TB and EB-mode power spectra taking into account the secondary effects and investigate the dependence of cosmological parameters. We then discuss current constraints on the circularly polarized GWB from large angular scales (l < 16) of the three year WMAP data. Prospects for future CMB experiments are also investigated based on a Monte Carlo analysis of parameter estimation, showing that the circular polarization degree, varepsilon, which is the asymmetry of the tensor power spectra betwe...

  1. Power law cosmology model comparison with CMB scale information

    Science.gov (United States)

    Tutusaus, Isaac; Lamine, Brahim; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Le Fèvre, Olivier; Ilić, Stéphane; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc

    2016-11-01

    Despite the ability of the cosmological concordance model (Λ CDM ) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius, R (t )∝tn, has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO can be well reproduced by both Λ CDM and power law expansion models with n ˜1.5 , while the constant expansion rate model (n =1 ) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data are well known to provide the most stringent constraints on standard cosmological models, in particular, through the position of the first peak of the temperature angular power spectrum, corresponding to the sound horizon at recombination, a scale physically related to the BAO scale. Models with n ≥1 lead to a divergence of the sound horizon and do not naturally provide the relevant scales for the BAO and the CMB. We retain an empirical footing to overcome this issue: we let the data choose the preferred values for these scales, while we recompute the ionization history in power law models, to obtain the distance to the CMB. In doing so, we find that the scale coming from the BAO data is not consistent with the observed position of the first peak of the CMB temperature angular power spectrum for any power law cosmology. Therefore, we conclude that when the three standard probes (SNIa, BAO, and CMB) are combined, the Λ CDM model is very strongly favored over any of these alternative models, which are then essentially ruled out.

  2. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    Science.gov (United States)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  3. Measuring the cosmological lepton asymmetry through the CMB anisotropy

    CERN Document Server

    Kinney, W H; Kinney, William H.; Riotto, Antonio

    1999-01-01

    A large lepton asymmetry in the Universe is still a viable possibility and leads to many interesting phenomena such as gauge symmetry nonrestoration at high temperature. We show that a large lepton asymmetry changes the predicted cosmic microwave background (CMB) anisotropy and that any degeneracy in the relic neutrino sea will be measured to a precision of 1% or better when the CMB anisotropy is measured at the accuracy expected to result from the planned satellite missions MAP and Planck. In fact, the current measurements already put an upper limit on the lepton asymmetry of the Universe which is stronger than the one coming from considerations of primordial nucleosynthesis and structure formation.

  4. Low-frequency measurements of the CMB spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kogut, A.; Bensadoun, M.; Amici, G.D.; Levin, S.; Limon, M.; Smoot, G. (U. C. Berkeley, Berkeley, CA (USA) Lawrence Berkeley Laboratory, Berkeley, CA (USA) Space Sciences Laboratory, Berkeley, CA (USA)); Sironi, G. (Physics Department, University of Milano (Italy)); Bersanelli, M.; Bonelli, G. (IFCTR/CNR-Milano (Italy))

    1990-01-15

    As part of an extended program to characterize the spectrum of the cosmic microwave background (CMB) at low frequencies, we have performed multiple measurements from a high-altitude site in Calfornia. On average, these measurements suggests a CMB temperature slightly lower than measurements at higher frequencies. Atmospheric conditions and the encroachment of civilization are now significant limitations from our present observing site. In November 1989, we will make new measurements from the South Pole Amundsen-Scott Station at frequencies 0.82, 1.5, 2.5, 3.8, 7.5, and 90 GHz. We discuss recent measurements and indicate improvements possible from a polar observing site.

  5. Low-Frequency Measurements of the CMB Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kogut, A.; Bensadoun, M.; De Amici, Giovanni; Levin, S.; Limon,M.; Smoot, George F.; Sironi, G.; Bersanelli, M.; Bonelli, G.

    1989-10-01

    As part of an extended program to characterize the spectrum of the cosmic microwave background (CMB) at low frequencies, we have performed multiple measurements from a high-altitude site in California. On average, these measurements suggest a CMB temperature slightly lower than measurements at higher frequencies. Atmospheric conditions and the encroachment of civilization are now significant limitations from our present observing site. In November 1989, we will make new measurements from the South Pole Amundsen-Scott Station at frequencies 0.82, 1.5, 2.5, 3.8, 7.5, and 90 GHz. We discuss recent measurements and indicate improvements possible from a polar observing site.

  6. CMB polarimetry with BICEP: instrument characterization, calibration, and performance

    CERN Document Server

    Takahashi, Yuki D; Battle, John O; Bierman, Evan M; Bock, James J; Chiang, H Cynthia; Dowell, C Darren; Hivon, Eric F; Holzapfel, William L; Hristov, Viktor V; Jones, William C; Kaufman, J P; Keating, Brian G; Kovac, John M; Kuo, Chao-Lin; Lange, Andrew E; Leitch, Erik M; Mason, Peter V; Matsumura, Tomotake; Nguyen, Hien T; Ponthieu, Nicolas; Rocha, Graca M; Yoon, Ki Won; Ade, P; Duband, L

    2008-01-01

    BICEP is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature on the polarization of the cosmic microwave background (CMB) at degree angular scales. Currently in its third year of operation at the South Pole, BICEP is measuring the CMB polarization with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the first two years of the experiment is reviewed.

  7. Scale-dependent CMB asymmetry from primordial configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Cosmophysics group, Theory Center, IPNS, KEK, and The Graduate University for Advanced Study (Sokendai), Tsukuba 305-0801 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo 112 (Japan); Matsuda, Tomohiro, E-mail: kohri@post.kek.jp, E-mail: lin@chuo-u.ac.jp, E-mail: matsuda@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan)

    2014-08-01

    We demonstrate that a topological defect can explain the hemispherical power asymmetry of the CMB. The first point is that a defect configuration, which already exists prior to inflation, can source asymmetry of the CMB. The second point is that modulation mechanisms, such as the curvaton and other modulation mechanisms, can explain scale-dependence of the asymmetry. Using a simple analysis of the δ N formalism, we show models in which scale-dependent hemispherical power asymmetry is explained by primordial configuration of a defect.

  8. Antenna-Coupled TES Bolometers for CMB Polarimetry

    CERN Document Server

    Kuo, C L; Chattopadhyay, G; Goldin, A; Golwala, S; Holmes, W; Irwin, K; Kenyon, M; Lange, A E; Le Duc, H G; Rossinot, P; Vayonakis, A; Wang, G; Yun, M; Zmuidzinas, J

    2006-01-01

    We have developed a completely lithographic antenna-coupled bolometer for CMB polarimetry. The necessary components of a millimeter wave radiometer -- a beam forming element, a band defining filter, and the TES detectors -- are fabricated on a silicon chip with photolithography. The densely populated antennas allow a very efficient use of the focal plane area. We have fabricated and characterized a series of prototype devices. We find that their properties, including the frequency and angular responses, are in good agreement with the theoretical expectations. The devices are undergoing optimization for upcoming CMB experiments.

  9. Reconciling CMB and structure growth measurements with dark energy interactions

    Science.gov (United States)

    Pourtsidou, Alkistis; Tram, Thomas

    2016-08-01

    We study a coupled quintessence model with pure momentum exchange and present the effects of such an interaction on the cosmic microwave background (CMB) and matter power spectrum. For a wide range of negative values of the coupling parameter β structure growth is suppressed and the model can reconcile the tension between cosmic microwave background observations and structure growth inferred from cluster counts. We find that this model is as good as Λ CDM for CMB and baryon acoustic oscillation data, while the addition of cluster data makes the model strongly preferred, improving the best-fit χ2 value by more than 16.

  10. CMB Polarization with BICEP2 and Keck-Array

    Science.gov (United States)

    Pryke, Clement; BICEP2 and Keck-Array Collaborations

    2013-01-01

    BICEP2 is an evolution from the highly successful BICEP CMB polarization experiment. In turn Keck-Array is an array of BICEP2 like receivers to achieve an additional increase in sensitivity. All these experiments are located at the South Pole in Antarctica and target the CMB B-mode polarization signal which is predicted to exist in many simpler models of Inflation at angular scales of several degrees. The design and performance of BICEP2 and Keck-Array is described and some preliminary polarization maps are presented.

  11. Loop quantum cosmology, non-Gaussianity, and CMB power asymmetry

    CERN Document Server

    Agullo, Ivan

    2015-01-01

    We argue that the anomalous power asymmetry observed in the cosmic microwave background (CMB) may have originated in a cosmic bounce preceding inflation. In loop quantum cosmology (LQC) the big bang singularity is generically replaced by a bounce due to quantum gravitational effects. We compute the spectrum of inflationary non-Gaussianity and show that strong correlation between observable scales and modes with longer (super-horizon) wavelength arise as a consequence of the evolution of perturbations across the LQC bounce. These correlations are strongly scale dependent and induce a dipole-dominated modulation on large angular scales in the CMB, in agreement with observations.

  12. Planck 2015 results IX. Diffuse component separation: CMB maps

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz....... As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55′ pixels...

  13. CMB Anisotropies at Second-Order II: Analytical Approach

    CERN Document Server

    Bartolo, N; Riotto, Antonio; Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2007-01-01

    We provide an analytical approach to the second-order Cosmic Microwave Background (CMB) anisotropies generated by the non-linear dynamics taking place at last scattering. We study the acoustic oscillations of the photon-baryon fluid in the tight coupling limit and we extend at second-order the Meszaros effect.We allow for a generic set of initial conditions due to primordial non-Gaussianity and we compute all the additional contributions arising at recombination. Our results are useful to provide the full second-order radiation transfer function at all scales necessary for establishing the level of non-Gaussianity in the CMB.

  14. Magnetized initial conditions for CMB anisotropies

    Science.gov (United States)

    Giovannini, Massimo

    2004-12-01

    This paper introduces a systematic treatment of the linear theory of scalar gravitational perturbations in the presence of a fully inhomogeneous magnetic field. The analysis is conducted both in the synchronous and in the conformally Newtonian gauges. The cosmological plasma is assumed to be composed of cold dark matter, baryons, photons, neutrinos. The problem of superhorizon initial conditions for the fluid variables of the various species and for the coupled system of Boltzmann-Einstein equations is discussed in the presence of an inhomogeneous magnetic field. The tight-coupling approximation for the Boltzmann hierarchy is extended to the case where gravitating magnetic fields are included.

  15. CMB constraint on dark matter annihilation after Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Sekiguchi, Toyokazu [Institute for Basic Science, Center for Theoretical Physics of the Universe, Daejeon 34051 (Korea, Republic of)

    2016-05-10

    We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.

  16. Planck 2013 results. XV. CMB power spectra and likelihood

    DEFF Research Database (Denmark)

    Tauber, Jan; Bartlett, J.G.; Bucher, M.;

    2014-01-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best...

  17. The Szekeres Swiss Cheese model and the CMB observations

    Science.gov (United States)

    Bolejko, Krzysztof

    2009-08-01

    This paper presents the application of the Szekeres Swiss Cheese model to the analysis of observations of the cosmic microwave background (CMB) radiation. The impact of inhomogeneous matter distribution on the CMB observations is in most cases studied within the linear perturbations of the Friedmann model. However, since the density contrast and the Weyl curvature within the cosmic structures are large, this issue is worth studying using another approach. The Szekeres model is an inhomogeneous, non-symmetrical and exact solution of the Einstein equations. In this model, light propagation and matter evolution can be exactly calculated, without such approximations as small amplitude of the density contrast. This allows to examine in more realistic manner the contribution of the light propagation effect to the measured CMB temperature fluctuations. The results of such analysis show that small-scale, non-linear inhomogeneities induce, via Rees-Sciama effect, temperature fluctuations of amplitude 10-7-10-5 on angular scale ϑ 750). This is still much smaller than the measured temperature fluctuations on this angular scale. However, local and uncompensated inhomogeneities can induce temperature fluctuations of amplitude as large as 10-3, and thus can be responsible the low multipoles anomalies observed in the angular CMB power spectrum.

  18. Symmetry and Antisymmetry of the CMB Anisotropy Pattern

    Directory of Open Access Journals (Sweden)

    Jaiseung Kim

    2012-01-01

    Full Text Available Given an arbitrary function, we may construct symmetric and antisymmetric functions under a certain operation. Since statistical isotropy and homogeneity of our Universe has been a fundamental assumption of modern cosmology, we do not expect any particular symmetry or antisymmetry in our Universe. Besides fundamental properties of our Universe, we may also figure our contamination and improve the quality of the CMB data products, by matching the unusual symmetries and antisymmetries of the CMB data with known contaminantions. If we let the operation to be a coordinate inversion, the symmetric and antisymmetric functions have even and odd-parity respectively. The investigation on the parity of the recent CMB data shows a large-scale odd-parity preference, which is very unlikely in the statistical isotropic and homogeneous Universe. We investigated the association of the WMAP systematics with the anomaly, but did not find a definite non-cosmological cause. Besides the parity anomaly, there is anomalous lack of large-scale correlation in CMB data. We show that the odd-parity preference at low multipoles is, in fact, phenomenologically identical with the lack of large-angle correlation.

  19. Delensing the CMB with the Cosmic Infrared Background

    CERN Document Server

    Sherwin, Blake D

    2015-01-01

    As confusion with lensing B-modes begins to limit experiments that search for primordial B-mode polarization, robust methods for delensing the CMB polarization sky are becoming increasingly important. We investigate in detail the possibility of delensing the CMB with the cosmic infrared background (CIB), emission from dusty star-forming galaxies that is an excellent tracer of the CMB lensing signal, in order to improve constraints on the tensor-to-scalar ratio $r$. We find that the maps of the CIB, such as current Planck satellite maps at 545 GHz, can be used to remove more than half of the lensing B-mode power. Calculating optimal combinations of different large-scale-structure tracers for delensing, we find that co-adding CIB data and external arcminute-resolution CMB lensing reconstruction can lead to significant additional improvements in delensing performance. We investigate whether measurement uncertainty in the CIB spectra will degrade the delensing performance if no model of the CIB spectra is assumed...

  20. A New Limit on CMB Circular Polarization from SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J.M.; et al.

    2017-04-01

    We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDER's 2015 Antarctic flight provides a constraint on Stokes $V$ at 95 and 150 GHz from $33<\\ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $\\ell (\\ell+1)C_{\\ell}^{VV}/(2\\pi)$ ranging from 141 $\\mu K ^2$ to 203 $\\mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain stronger constraints on circular polarization.

  1. Study on the Adsorption Behavior of CMB-CMB-XDC Adsorption Resin for Toluene%CMB-CMB-XDC吸附树脂对甲苯的吸附行为研究

    Institute of Scientific and Technical Information of China (English)

    原思国; 周小会

    2010-01-01

    首次研究了非苯乙烯型CMB-CMB-XDC吸附树脂对甲苯的吸附性能,考察了树脂结构、体系浓度、时间等对吸附的影响.结果表明:在含甲苯的水溶液(C0=341.93 mg/L)、蒸气和水面液膜体系中,该树脂对甲苯的吸附量分别可达241,2580,2.536 mg/g,明显高于苯乙烯型H103吸附树脂的吸附量223,507,1453 mg/g;该树脂对水溶液中甲苯的吸附75 min达到完全平衡,平衡吸附量随体系质量浓度的增加而增大.CMB-CMB-XDC树脂吸附速度快、容量大,可经再生反复使用,预期在非极性芳烃废气(水)净化及突发污染事故中的快速处理领域具有很好的应用前景.

  2. CMB all-scale blackbody distortions induced by linearizing temperature

    Science.gov (United States)

    Notari, Alessio; Quartin, Miguel

    2016-08-01

    Cosmic microwave background (CMB) experiments, such as WMAP and Planck, measure intensity anisotropies and build maps using a linearized formula for relating them to the temperature blackbody fluctuations. However, this procedure also generates a signal in the maps in the form of y -type distortions which is degenerate with the thermal Sunyaev Zel'dovich (tSZ) effect. These are small effects that arise at second order in the temperature fluctuations not from primordial physics but from such a limitation of the map-making procedure. They constitute a contaminant for measurements of our peculiar velocity, the tSZ and primordial y -distortions. They can nevertheless be well modeled and accounted for. We show that the distortions arise from a leakage of the CMB dipole into the y -channel which couples to all multipoles, mostly affecting the range ℓ≲400 . This should be visible in Planck's y -maps with an estimated signal-to-noise ratio of about 12. We note however that such frequency-dependent terms carry no new information on the nature of the CMB dipole. This implies that the real significance of Planck's Doppler coupling measurements is actually lower than reported by the collaboration. Finally, we quantify the level of contamination in tSZ and primordial y -type distortions and show that it is above the sensitivity of proposed next-generation CMB experiments.

  3. Gauss-Legendre Sky Pixelization (glesp) for CMB Maps

    Science.gov (United States)

    Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

    A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.

  4. Gauss--Legendre Sky Pixelization (GLESP) for CMB maps

    CERN Document Server

    Doroshkevich, A G; Verkhodanov, O V; Novikov, D I; Turchaninov, V I; Novikov, I D; Christensen, P R

    2003-01-01

    A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss--Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.

  5. CMB constraint on dark matter annihilation after Planck 2015

    Directory of Open Access Journals (Sweden)

    Masahiro Kawasaki

    2016-05-01

    Full Text Available We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.

  6. CMB reconstruction from the WMAP and Planck PR2 data

    CERN Document Server

    Bobin, J; Starck, J-L

    2015-01-01

    In this article, we describe a new estimate of the Cosmic Microwave Background (CMB) intensity map reconstructed by a joint analysis of the full Planck 2015 data (PR2) and WMAP nine-years. It provides more than a mere update of the CMB map introduced in (Bobin et al. 2014b) since it benefits from an improvement of the component separation method L-GMCA (Local-Generalized Morphological Component Analysis) that allows the efficient separation of correlated components (Bobin et al. 2015). Based on the most recent CMB data, we further confirm previous results (Bobin et al. 2014b) showing that the proposed CMB map estimate exhibits appealing characteristics for astrophysical and cosmological applications: i) it is a full sky map that did not require any inpainting or interpolation post-processing, ii) foreground contamination is showed to be very low even on the galactic center, iii) it does not exhibit any detectable trace of thermal SZ contamination. We show that its power spectrum is in good agreement with the ...

  7. A New Limit on CMB Circular Polarization from SPIDER

    Science.gov (United States)

    Nagy, J. M.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bergman, A. S.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Doré, O.; Duivenvoorden, A. J.; Eriksen, H. K.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Freese, K.; Galloway, M.; Gambrel, A. E.; Gandilo, N. N.; Ganga, K.; Gudmundsson, J. E.; Halpern, M.; Hartley, J.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Huang, Z.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; Kermish, Z. D.; Li, S.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Netterfield, C. B.; Nolta, M.; Padilla, I. L.; Racine, B.; Rahlin, A. S.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Ruud, T. M.; Shariff, J. A.; Soler, J. D.; Song, X.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Van Der List, J. F.; Weber, A. C.; Wehus, I. K.; Wiebe, D. V.; Young, E. Y.

    2017-08-01

    We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of Spider, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from Spider's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33Spider improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on {\\ell }({\\ell }+1){C}{\\ell }{VV}/(2π ) ranging from 141 to 255 μK2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.

  8. Instability of reconstruction of the low CMB multipoles

    DEFF Research Database (Denmark)

    Naselsky, Pavel D.; Verkhodanov, Oleg V.; Nielsen, Mikkel T. B.

    2007-01-01

    We discuss the problem of the bias of the Internal Linear Combination (ILC) CMB map and show that it is closely related to the coefficient of cross-correlation K(l) of the true CMB and the foreground for each multipole l. We present analysis of the cross-correlation for the WMAP ILC quadrupole...... and octupole from the first (ILC(I)) and the third (ILC(III)) year data releases and show that these correlations are about -0.52-0.6. Analysing 10^4 Monte Carlo simulations of the random Gaussian CMB signals, we show that the distribution function for the corresponding coefficient of the cross-correlation has...... of debiasing of the ILC CMB and pointed out that reconstruction of the bias seems to be very problematic due to statistical uncertainties. In addition, instability of the debiasing illuminates itself for the quadrupole and octupole components through the flip-effect, when the even (l+m) modes can...

  9. Adiabatic CMB perturbations in pre-big bang string cosmology

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2001-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...

  10. CMB Lensing as a probe of beyond ΛCDM Cosmology

    Science.gov (United States)

    Hassani, F.; Baghram, S.; Firouzjahi, H.

    2016-09-01

    The observation of the Cosmic Microwave Background Radiation (CMB) and the Large Structures indicate that the standard model of Cosmology known as ΛCDM works well. In this essay we propose that the CMB lensing is a prominent probe to study any deviation from this model. Deviations from cosmological constant and nearly Gaussian, adiabatic, nearly scale invariant and isotropic initial conditions can be studied by CMB lensing. We show how the angular power spectrum of CMB lensing potential is an observable which encapsulates the effect of initial conditions and Dark Energy. The amplitude and the scale dependence of a dipole modulation in initial conditions is studied with CMB lensing potential and convergence.

  11. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  12. Rocky Mountain spotted fever

    Science.gov (United States)

    ... Mountain spotted fever is caused by the bacteria Rickettsia rickettsii (R. Rickettsii) , which is carried by ticks. ... Saunders; 2014:chap 212. Walker DH, Blaton LS. Rickettsia rickettsii and other spotted fever group rickettsiae (Rocky ...

  13. Common Cold

    Science.gov (United States)

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In the course of a year, people ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest ...

  14. Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    CERN Document Server

    Dietrich, Wieland; Hori, Kumiko

    2015-01-01

    Within the fluid iron cores of terrestrial planets, convection and the resulting generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, such as the thermal footprint of a giant impact or hot mantle plumes, will locally reduce the heat flux through the core mantle boundary (CMB), thereby weakening core convection and affecting the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary sizes, amplitudes, and positions affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric, axisymmetric (EAA) zonal flows. For purely hydrodynamic models, the EAA symmetry scales almost linearly with the CMB amplitude and size, whereas self-consistent dynamo simulations typ...

  15. The Gauss-Legendre Sky Pixelization for the CMB Polarization Glesp-Pol Errors due to Pixelization of the CMB Sky

    Science.gov (United States)

    Doroshkevich, Andrei G.; Verkhodanov, Oleg V.; Naselsky, Pavel D.; Kim, Jaiseung; Novikov, Dmitry I.; Turchaninov, Viktor I.; Novikov, Igor D.; Chiang, Lung-Yih; Hansen, Martin

    We present the development of the method for numerical analysis of polarization in the Gauss-Legendre sky pixelization (GLESP) scheme for CMB maps. This incorporation of the polarization transforms in the pixelization scheme GLESP completes the creation of our new method for numerical analysis of CMB maps. A comparison of GLESP and HEALPix calculations is done.

  16. The Gauss-Legendre Sky Pixelization for the CMB polarization (GLESP-pol). Errors due to pixelization of the CMB sky

    CERN Document Server

    Doroshkevich, Andrei G; Naselsky, Pavel D; Kim, Jaiseung; Novikov, Dmitry I; Turchaninov, Viktor I; Novikov, Igor D; Chiang, Lung-Yih; Hansen, Martin

    2009-01-01

    We present developing of method of the numerical analysis of polarization in the Gauss--Legendre Sky Pixelization (GLESP) scheme for the CMB maps. This incorporation of the polarization transforms in the pixelization scheme GLESP completes the creation of our new method for the numerical analysis of CMB maps. The comparison of GLESP and HEALPix calculations is done.

  17. Probing early-universe phase transitions with CMB spectral distortions

    Science.gov (United States)

    Amin, Mustafa A.; Grin, Daniel

    2014-10-01

    Global, symmetry-breaking phase transitions in the early universe can generate scaling seed networks which lead to metric perturbations. The acoustic waves in the photon-baryon plasma sourced by these metric perturbations, when Silk damped, generate spectral distortions of the cosmic microwave background (CMB). In this work, the chemical potential distortion (μ ) due to scaling seed networks is computed and the accompanying Compton y -type distortion is estimated. The specific model of choice is the O (N ) nonlinear σ -model for N ≫1 , but the results remain the same order of magnitude for other scaling seeds. If CMB anisotropy constraints to the O (N ) model are saturated, the resulting chemical potential distortion μ ≲2 ×1 0-9 .

  18. The large-scale angular correlations in CMB temperature maps

    CERN Document Server

    Bernui, A

    2005-01-01

    Observations show that the Cosmic Microwave Background (CMB) contains tiny variations at the 10^{-5} level around its black-body equilibrium temperature. The detection of these temperature fluctuations provides to modern Cosmology evidence for the existence of primordial density perturbations that seeded all the structures presently observed. The vast majority of the cosmological information is contained in the 2-point temperature function, which measures the angular correlation of these temperature fluctuations distributed on the celestial sphere. Here we study such angular correlations using a recently introduced statistic-geometrical method. Moreover, we use Monte Carlo simulated CMB temperature maps to show the equivalence of this method with the 2-point temperature function (best known as the 2-Point Angular Correlation Function). We also investigate here the robustness of this new method under possible divisions of the original catalog-data in sub-catalogs. Finally, we show some applications of this new...

  19. Probing early-universe phase transitions with CMB spectral distortions

    CERN Document Server

    Amin, Mustafa A

    2014-01-01

    Global, symmetry-breaking phase transitions in the early universe can generate scaling seed networks which lead to metric perturbations. The acoustic waves in the photon-baryon plasma sourced by these metric perturbations, when Silk damped, generate spectral distortions of the cosmic microwave background (CMB). In this work, the chemical potential distortion ($\\mu$) due to scaling seed networks is computed and the accompanying Compton $y$-type distortion is estimated. The specific model of choice is the $O(N)$ nonlinear $\\sigma$-model for $N\\gg 1$, but the results remain the same order of magnitude for other scaling seeds. If CMB anisotropy constraints to the $O(N)$ model are saturated, the resulting chemical potential distortion $\\mu \\lesssim 2\\times 10^{-9}$.

  20. Antenna-coupled TES bolometer arrays for CMB polarimetry

    CERN Document Server

    Kuo, C L; Bonetti, J A; Brevik, J; Chattopadhyay, G; Day, P K; Golwala, S; Kenyon, M; Lange, A E; LeDuc, H G; Nguyen, H; Ogburn, R W; Orlando, A; Trangsrud, A; Turner, A; Wang, G; Zmuidzinas, J; 10.1117/12.788588

    2009-01-01

    We describe the design and performance of polarization selective antenna-coupled TES arrays that will be used in several upcoming Cosmic Microwave Background (CMB) experiments: SPIDER, BICEP-2/SPUD. The fully lithographic polarimeter arrays utilize planar phased-antennas for collimation (F/4 beam) and microstrip filters for band definition (25% bandwidth). These devices demonstrate high optical efficiency, excellent beam shapes, and well-defined spectral bands. The dual-polarization antennas provide well-matched beams and low cross polarization response, both important for high-fidelity polarization measurements. These devices have so far been developed for the 100 GHz and 150 GHz bands, two premier millimeter-wave atmospheric windows for CMB observations. In the near future, the flexible microstrip-coupled architecture can provide photon noise-limited detection for the entire frequency range of the CMBPOL mission. This paper is a summary of the progress we have made since the 2006 SPIE meeting in Orlando, FL...

  1. Hidden in the background: A local approach to CMB anomalies

    CERN Document Server

    Sanchez, Juan C Bueno

    2016-01-01

    We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass $m\\sim H$ present during inflation. The inhomogeneity arises as the combined effect of $(i)$ the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many $e$-foldings before cosmological scales exit the horizon), $(ii)$ their inflationary fluctuations and $(iii)$ their coupling to other degrees of freedom. Our case of interest is when these fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the C...

  2. CMB-S4 Science Book, First Edition

    CERN Document Server

    Abazajian, Kevork N; Ahmed, Zeeshan; Allen, Steven W; Alonso, David; Arnold, Kam S; Baccigalupi, Carlo; Bartlett, James G; Battaglia, Nicholas; Benson, Bradford A; Bischoff, Colin A; Borrill, Julian; Buza, Victor; Calabrese, Erminia; Caldwell, Robert; Carlstrom, John E; Chang, Clarence L; Crawford, Thomas M; Cyr-Racine, Francis-Yan; De Bernardis, Francesco; de Haan, Tijmen; Alighieri, Sperello di Serego; Dunkley, Joanna; Dvorkin, Cora; Errard, Josquin; Fabbian, Giulio; Feeney, Stephen; Ferraro, Simone; Filippini, Jeffrey P; Flauger, Raphael; Fuller, George M; Gluscevic, Vera; Green, Daniel; Grin, Daniel; Grohs, Evan; Henning, Jason W; Hill, J Colin; Hlozek, Renee; Holder, Gilbert; Holzapfel, William; Hu, Wayne; Huffenberger, Kevin M; Keskitalo, Reijo; Knox, Lloyd; Kosowsky, Arthur; Kovac, John; Kovetz, Ely D; Kuo, Chao-Lin; Kusaka, Akito; Jeune, Maude Le; Lee, Adrian T; Lilley, Marc; Loverde, Marilena; Madhavacheril, Mathew S; Mantz, Adam; Marsh, David J E; McMahon, Jeffrey; Meerburg, Pieter Daniel; Meyers, Joel; Miller, Amber D; Munoz, Julian B; Nguyen, Ho Nam; Niemack, Michael D; Peloso, Marco; Peloton, Julien; Pogosian, Levon; Pryke, Clement; Raveri, Marco; Reichardt, Christian L; Rocha, Graca; Rotti, Aditya; Schaan, Emmanuel; Schmittfull, Marcel M; Scott, Douglas; Sehgal, Neelima; Shandera, Sarah; Sherwin, Blake D; Smith, Tristan L; Sorbo, Lorenzo; Starkman, Glenn D; Story, Kyle T; van Engelen, Alexander; Vieira, Joaquin D; Watson, Scott; Whitehorn, Nathan; Wu, W L Kimmy

    2016-01-01

    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales.

  3. Power law cosmology model comparison with CMB scale information

    CERN Document Server

    Tutusaus, Isaac; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Fèvre, Olivier Le; Ilić, Stéphane; Piazza, Federico; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc

    2016-01-01

    Despite the ability of the cosmological concordance model ($\\Lambda$CDM) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO, can be well reproduced by both $\\Lambda$CDM and power law expansion models with $n \\sim 1.5$, while the constant expansion rate model ($n = 1$) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data is well known to provide the most stringent constraints on standard cosmological models, in particular through the position of the first peak of the temperature ...

  4. The ISW imprints of voids and superclusters on the CMB

    Science.gov (United States)

    Hotchkiss, S.; Nadathur, S.; Gottlöber, S.; Iliev, I. T.; Knebe, A.; Watson, W. A.; Yepes, G.

    2016-10-01

    We examine the stacked integrated Sachs-Wolfe (ISW) imprints on the CMB along the lines of sight of voids and superclusters in galaxy surveys, using the Jubilee ISW simulation and mock luminous red galaxy (LRG) catalogues. We show that the expected signal in the concordance \\Lam CDM model is much smaller than the primary anisotropies arising at the last scattering surface and therefore any currently claimed detections of such an imprint cannot be caused by the ISW effect in \\Lam CDM. We look for the existence of such a signal in the Planck CMB using a catalogue of voids and superclusters from the Sloan Digital Sky Survey (SDSS), but find a result completely consistent with \\Lam CDM - i.e., a null detection.

  5. CMB Cluster Lensing: Cosmography with the Longest Lever Arm

    CERN Document Server

    Hu, Wayne; Vale, Chris

    2007-01-01

    We discuss combining gravitational lensing of galaxies and the cosmic microwave background (CMB) by clusters to measure cosmographic distance ratios, and hence dark energy parameters. Advantages to using the CMB as the second source plane, instead of galaxies, include: a well-determined source distance, a longer lever arm for distance ratios, typically up to an order of magnitude higher sensitivity to dark energy parameters, and a decreased sensitivity to photometric redshift accuracy of the lens and galaxy sources. Disadvantages include: higher statistical errors, potential systematic errors, and the need for disparate surveys that overlap on the sky. Ongoing and planned surveys, such as the South Pol Telescope in conjunction with the Dark Energy Survey, can potentially reach the statistical sensitivity to make interesting consistency tests of the standard cosmological constant model. Future measurements that reach 1% or better precision in the convergences can provide sharp tests for future supernovae dista...

  6. Large-Angle CMB Suppression and Polarisation Predictions

    CERN Document Server

    Copi, C.J.; Schwarz, D.J.; Starkman, G.D.

    2013-01-01

    The anomalous lack of large angle temperature correlations has been a surprising feature of the CMB since first observed by COBE-DMR and subsequently confirmed and strengthened by WMAP. This anomaly may point to the need for modifications of the standard model of cosmology or may show that our Universe is a rare statistical fluctuation within that model. Further observations of the temperature auto-correlation function will not elucidate the issue; sufficiently high precision statistical observations already exist. Instead, alternative probes are required. In this work we explore the expectations for forthcoming polarisation observations. We define a prescription to test the hypothesis that the large-angle CMB temperature perturbations in our Universe represent a rare statistical fluctuation within the standard cosmological model. These tests are based on the temperature-Q Stokes parameter correlation. Unfortunately these tests cannot be expected to be definitive. However, we do show that if this TQ-correlati...

  7. Reconstructing the primordial power spectrum from the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, Christopher; Bucher, Martin, E-mail: cgauthie@apc.univ-paris7.fr, E-mail: bucher@apc.univ-paris7.fr [Laboratoire APC, Université Paris Diderot, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2012-10-01

    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.

  8. Reconstructing the primordial power spectrum from the CMB

    CERN Document Server

    Gauthier, Christopher

    2012-01-01

    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism, applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.

  9. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, M.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Pogosyan, D.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3 sigma). However, we find little evidence for non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. A power asymmetry is now found to persist to scales corresponding to about l=600, and can be described in the low-l regime by a phenomenological dipole modulation model. However, any primordial powe...

  10. CMB Polarization B-mode Delensing with SPTpol and Herschel

    Science.gov (United States)

    Manzotti, A.; Story, K. T.; Wu, W. L. K.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Bock, J. J.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H.-M.; Citron, R.; Conley, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Dodelson, S.; Everett, W.; Gallicchio, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Henning, J. W.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Viero, M. P.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zemcov, M.

    2017-09-01

    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing-generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg2 patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the Herschel 500 μm map of the cosmic infrared background. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range 300importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.

  11. CMB and reheating constraints to \\alpha-attractor inflationary models

    CERN Document Server

    Eshaghi, Mehdi; Riazi, Nematollah; Kiasatpour, Ahmad

    2016-01-01

    After Planck 2013, a broad class of inflationary models called \\alpha-attractors was developed which has universal observational predictions. For small values of the parameter \\alpha, the models have good consistency with the recent CMB data. In this work, we first calculate analytically (and verify numerically) the predictions of these models for spectral index, n_s and tensor-to-scalar ratio, r and then using BICEP2/Keck 2015 data we impose constraints on \\alpha-attractors. Then, we study the reheating in \\alpha-attractors. The reheating temperature, T_{re} and the number of e-folds during reheating, N_{re} are calculated as functions of n_s. Using these results, we determine the range of free parameter \\alpha for two clasees of \\alpha-attractors which satisfy the constraints of recent CMB data.

  12. CMB-S4 Science Book, First Edition

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork N. [Univ. of California, Irvine, CA (United States); et al.

    2016-10-09

    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales.

  13. Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering

    CERN Document Server

    Bashinsky, S V; Bashinsky, Sergei; Seljak, Uros

    2004-01-01

    We present a detailed analytical study of ultra-relativistic neutrinos in cosmological perturbation theory and of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that a modification of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate, not proper, volume are generally constant on superhorizon scales. In real space an analytical analysis can be extended beyond fluids to neutrinos. The faster cosmological expansion due to the neutrino background changes the acoustic and damping angular scales of the cosmic microwave background (CMB). But we find that equivalent changes can be produced by varying other standard parameters, including the primordial helium abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of neutrino perturbations suppresses the CMB acou...

  14. By Dawn's Early Light: CMB Polarization Impact on Cosmological Constraints

    CERN Document Server

    Das, Sudeep

    2012-01-01

    Cosmic microwave background polarization encodes information not only on the early universe but also dark energy, neutrino mass, and gravity in the late universe through CMB lensing. Ground based surveys such as ACTpol, PolarBear, SPTpol significantly complement cosmological constraints from the Planck satellite, strengthening the CMB dark energy figure of merit and neutrino mass constraints by factors of 3-4. This changes the dark energy probe landscape. We evaluate the state of knowledge in 2017 from ongoing experiments including dark energy surveys (supernovae, weak lensing, galaxy clustering), fitting for dynamical dark energy, neutrino mass, and a modified gravitational growth index. Adding a modest strong lensing time delay survey improves those dark energy constraints by a further 32%, and an enhanced low redshift supernova program improves them by 26%.

  15. Reversed polarity patches at the CMB and geomagnetic field reversal

    Institute of Scientific and Technical Information of China (English)

    XU; Wenyao(徐文耀); WEI; Zigang(魏自刚)

    2002-01-01

    The International Geomagnetic Reference Field models (IGRF) for 1900-2000 are used to calculate the geomagnetic field distribution in the Earth' interior from the ground surface to the core-mantle boundary (CMB) under the assumption of insulated mantle. Four reversed polarity patches, as one of the most important features of the CMB field, are revealed. Two patches with +Z polarity (downward) at the southern African and the southern American regions stand out against the background of -Z polarity (upward) in the southern hemisphere, and two patches of -Z polarity at the North Polar and the northern Pacific regions stand out against the +Z background in the northern hemisphere. During the 1900-2000 period the southern African (SAF) patch has quickly drifted westward at a speed of 0.2-0.3°/a; meanwhile its area has expanded 5 times, and the magnetic flux crossing the area has intensified 30 times. On the other hand, other three patches show little if any change during this 100-year period. Extending upward, each of the reversed polarity patches at the CMB forms a chimney-shaped "reversed polarity column" in the mantle with the bottom at the CMB. The height of the SAF column has grown rapidly from 200km in 1900 to 900km in 2000. If the column grows steadily at the same rate in the future, its top will reach to the ground surface in 600-700 years. And then a reversed polarity patch will be observed at the Earth's surface, which will be an indicator of the beginning of a magnetic field reversal. On the basis of this study, one can describe the process of a geomagnetic polarity reversal, the polarity reversal may be observed firstly in one or several local regions; then the areas of these regions expand, and at the same time, other new reversed polarity regions may appear. Thus several poles may exist during a polarity reversal.

  16. New evidence for lack of CMB power on large scales

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A digitalized temperature map is recovered from the first light sky survey image published by the Planck team, from which an angular power spectrum of the cosmic microwave background (CMB) is derived. The amplitudes of the low multipoles (low-l) measured from the preliminary Planck power spectrum are significantly lower than those reported by the WMAP team. Possible systematical effects are far from enough to explain the observed low-l differences.

  17. Conformal invariance, dark energy, and CMB non-gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Department of Physics, CERN, Theory Division CH-1211 Geneva 23 (Switzerland); Mazur, Pawel O. [Department of Physics and Astronomy, University of South Carolina Columbia SC 29208 (United States); Mottola, Emil, E-mail: ignatios.antoniadis@cern.ch, E-mail: mazur@physics.sc.edu, E-mail: emil@lanl.gov [Theoretical Division, MS B285 Los Alamos National Laboratory Los Alamos, NM 87545 (United States)

    2012-09-01

    In addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R{sup 3} sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S{sup 2} horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the symmetries of de Sitter space, and in that sense, independent of specific model assumptions. Each is different from the predictions of single field slow roll inflation models, which rely on the breaking of de Sitter invariance. We propose a quantum origin for the CMB fluctuations in the scalar gravitational sector from the conformal anomaly that could give rise to these non-Gaussianities without a slow roll inflaton field, and argue that conformal invariance also leads to the expectation for the relation n{sub S}−1 = n{sub T} between the spectral indices of the scalar and tensor power spectrum. Confirmation of this prediction or detection of non-Gaussian correlations in the CMB of one of the bispectral shape functions predicted by conformal invariance can be used both to establish the physical origins of primordial density fluctuations, and distinguish between different dynamical models of cosmological vacuum dark energy.

  18. Adiabatic CMB perturbations in pre-big bang string cosmology

    CERN Document Server

    Enqvist, Kari; Enqvist, Kari; Sloth, Martin S.

    2002-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations in the axion field can give rise to a nearly flat spectrum of adiabatic perturbations with a spectral tilt $\\Delta n$ in the range $-0.1 \\lesssim \\Delta n \\lesssim 0.3$.

  19. Probing gravity at large scales through CMB lensing

    CERN Document Server

    Pullen, Anthony R; Ho, Shirley

    2014-01-01

    We describe a methodology to probe gravity with the CMB lensing convergence $\\kappa$, specifically by measuring $E_G$, the ratio of the Laplacian of the gravitational scalar potential difference with the peculiar velocity divergence. Using $\\kappa$ from CMB lensing as opposed to galaxy-galaxy lensing avoids intrinsic alignments while also lacking a hard limit on the lens redshift or significant uncertainties in the source plane. We model $E_G$ for general relativity and modified gravity, finding that $E_G$ for $f(R)$ gravity should be scale-dependent due to the scale-dependence of the growth rate $f$. Next, we construct an estimator for $E_G$ in terms of the lensing convergence-galaxy and galaxy angular power spectra, along with the RSD parameter $\\beta$. We also forecast statistical errors of $E_G$ from the current Planck CMB lensing map and the CMASS and LOWZ spectroscopic galaxy samples measured from the BOSS survey, as well as BOSS spectroscopic quasars, from the SDSS Data Release 11. We expect this exper...

  20. The Temperature of the CMB at 10 GHz

    CERN Document Server

    Fixsen, D J; Levin, S; Limon, M; Lubin, P; Mirel, P G A; Seiffert, M; Wollack, E

    2004-01-01

    We report the results of an effort to measure the low frequency portion of the spectrum of the Cosmic Microwave Background Radiation (CMB), using a balloon-borne instrument called ARCADE (Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission). These measurements are to search for deviations from a thermal spectrum that are expected to exist in the CMB due to various processes in the early universe. The radiometric temperature was measured at 10 and 30 GHz using a cryogenic open-aperture instrument with no emissive windows. An external blackbody calibrator provides an in situ reference. A linear model is used to compare the radiometer output to a set of thermometers on the instrument. The unmodeled residuals are less than 50 mK peak-to-peak with a weighted RMS of 6 mK. Small corrections are made for the residual emission from the flight train, atmosphere, and foreground Galactic emission. The measured radiometric temperature of the CMB is 2.721 +/- 0.010 K at 10 GHz and 2.694 +/- 0.032 K at 30 ...

  1. Parity violation in the CMB trispectrum from the scalar sector

    CERN Document Server

    Shiraishi, Maresuke

    2016-01-01

    Under the existence of chiral non-Gaussian sources during inflation, the trispectrum of primordial curvature perturbations can break parity. We examine signatures of the induced trispectrum of the cosmic microwave background (CMB) anisotropies. It is confirmed via harmonic-space analysis that such CMB trispectrum has nonvanishing signal in the $\\ell_1 + \\ell_2 + \\ell_3 + \\ell_4 = \\text{odd}$ domain, as a consequence of parity violation. When the curvature trispectrum is parametrized with Legendre polynomials, the CMB signal due to the Legendre dipolar term is enhanced at the squeezed configurations in $\\ell$ space, yielding a high signal-to-noise ratio. A Fisher matrix computation results in a minimum detectable size of the dipolar coefficient in a cosmic-variance-limited-level temperature survey as $d_1^{\\rm odd} = 640$. In an inflationary model where the inflaton field couples to the gauge field via a $f(\\phi)(F^2 + F\\tilde{F})$ interaction, the curvature trispectrum contains such parity-odd dipolar term. W...

  2. Echoes of Inflationary Particle Phase Transitions in the CMB

    CERN Document Server

    Jiang, Hongliang; Sun, Sichun; Wang, Yi

    2015-01-01

    Cosmological phase transitions (CPTs), such as the Grand Unified Theory (GUT) and the electroweak (EW) ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs) which are generated during the phase transitions through the cosmic microwave background (CMB). If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a mirror image of the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG). The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of...

  3. Lensing bias to CMB measurements of compensated isocurvature perturbations

    Science.gov (United States)

    Heinrich, Chen He; Grin, Daniel; Hu, Wayne

    2016-08-01

    Compensated isocurvature perturbations (CIPs) are modes in which the baryon and dark matter density fluctuations cancel. They arise in the curvaton scenario as well as some models of baryogenesis. While they leave no observable effects on the cosmic microwave background (CMB) at linear order, they do spatially modulate two-point CMB statistics and can be reconstructed in a manner similar to gravitational lensing. Due to the similarity between the effects of CMB lensing and CIPs, lensing contributes nearly Gaussian random noise to the CIP estimator that approximately doubles the reconstruction noise power. Additionally, the cross correlation between lensing and the integrated Sachs-Wolfe effect generates a correlation between the CIP estimator and the temperature field even in the absence of a correlated CIP signal. For cosmic-variance limited temperature measurements out to multipoles l ≤2500 , subtracting a fixed lensing bias degrades the detection threshold for CIPs by a factor of 1.3, whether or not they are correlated with the adiabatic mode.

  4. A CMB GIBBS SAMPLER FOR LOCALIZED SECONDARY ANISOTROPIES

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Philip; Eriksen, Hans Kristian; Fuskeland, Unni [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Wehus, Ingunn K.; Ferreira, Pedro G. [Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Górski, Krzysztof M.; Jewell, Jeffrey B., E-mail: p.j.bull@astro.uio.no [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-07-20

    In addition to primary fluctuations, cosmic microwave background (CMB) temperature maps contain a wealth of additional information in the form of secondary anisotropies. However, secondary effects that can be identified with individual objects, such as the thermal and kinetic Sunyaev–Zel’dovich (TSZ–KSZ) effects due to galaxy clusters, are difficult to unambiguously disentangle from foreground contamination and the primary CMB. We develop a Bayesian formalism to rigorously characterize anisotropies that are localized on the sky, taking the TSZ and KSZ effects as an example. Using a Gibbs sampling scheme, we are able to efficiently sample from the joint posterior distribution for a multi-component model of the sky with many thousands of correlated physical parameters. The posterior can then be exactly marginalized to estimate the properties of the secondary anisotropies, fully taking into account degeneracies with the other signals in the CMB map. We show that this method is computationally tractable using a simple implementation based on the existing Commander component separation code and discuss how other types of secondary anisotropy can be accommodated within our framework.

  5. Improved Measurements of the CMB Power Spectrum with ACBAR

    CERN Document Server

    Kuo, C L; Bock, J J; Bond, J R; Contaldi, C R; Daub, M D; Goldstein, J H; Holzapfel, W L; Lange, A E; Lueker, M; Newcomb, M; Peterson, J B; Reichardt, C; Ruhl, J; Runyan, M C; Staniszweski, Z

    2006-01-01

    We report improved measurements of temperature anisotropies in the cosmic microwave background (CMB) radiation made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). In this paper, we use a new analysis technique and include 30% more data from the 2001 and 2002 observing seasons than the first release to derive a new set of band-power measurements with significantly smaller uncertainties. The planet-based calibration used previously has been replaced by comparing the flux of RCW38 as measured by ACBAR and BOOMERANG to transfer the WMAP-based BOOMERANG calibration to ACBAR. The resulting power spectrum is consistent with the theoretical predictions for a spatially flat, dark energy dominated LCDM cosmology including the effects of gravitational lensing. Despite the exponential damping on small angular scales, the primary CMB fluctuations are detected with a signal-to-noise ratio of greater than 4 up to multipoles of l=2000. This increase in the precision of the fine-scale CMB power spectrum leads ...

  6. High Resolution Observations of the CMB Power Spectrum with ACBAR

    CERN Document Server

    Kuo, C L; Bock, J J; Cantalupo, C M; Daub, M D; Goldstein, J; Holzapfel, W L; Lange, A E; Lueker, M; Newcomb, M; Peterson, J B; Ruhl, J; Runyan, M C; Torbet, E

    2004-01-01

    We report the first measurements of anisotropy in the cosmic microwave background (CMB) radiation with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). The instrument was installed on the 2.1m Viper telescope at the South Pole in January 2001; the data presented here are the product of observations up to and including July 2002. The two deep fields presented here, have had offsets removed by subtracting lead and trail observations and cover approximately 24 deg^2 of sky selected for low dust contrast. These results represent the highest signal to noise observations of CMB anisotropy to date; in the deepest 150GHz band map, we reached an RMS of 8.0\\mu K per 5' beam. The 3 degree extent of the maps, and small beamsize of the experiment allow the measurement of the CMB anisotropy power spectrum over the range \\ell = 150-3000 with resolution of \\Delta \\ell=150. The contributions of galactic dust and radio sources to the observed anisotropy are negligible and are removed in the analysis. The resulting pow...

  7. Electron-Phonon Decoupling NbSi CMB Bolometers

    Science.gov (United States)

    Marnieros, S.; Nones, C.; Dumoulin, L.; Bergé, L.; Rigaut, O.; Monfardini, A.; Camus, P.; Benoit, A.

    2012-06-01

    Precise measurements of the cosmic microwave background (CMB) is crucial to cosmology, since any proposed model of the Universe must account for the features of this radiation. E_cient very large bolometer arrays (>10,000 pixels) constitute an important challenge for CMB observations and are actually developed by many groups worldwide. We present here an explorative new bolometer design based on a structure that simplifies the fabrication process and exhibits high sensitivity. This innovative device replaces delicate membrane-based structures and eliminates the mediation of phonons: the incoming energy is directly captured and measured in the electron bath of an appropriate sensor and the thermal decoupling is achieved via the intrinsic electron-phonon decoupling of the sensor at very low temperature. Reported results come from a 204-pixel matrix of Nb x Si1- x transition edge sensors with a meander structure fabricated on a 2-inch silicon wafer using electron-beam co-evaporation and standard lithography process. To validate the application to CMB measurements, we have realized an optical calibration of our sample in the focal plane of a dilution cryostat test bench.

  8. On CMB B-Mode Non-Gaussianity

    CERN Document Server

    Meerburg, P D; van Engelen, Alex; Ali-Haïmoud, Yacine

    2016-01-01

    We study the degree to which the cosmic microwave background (CMB) can be used to constrain primordial non-Gaussianity involving one tensor and two scalar fluctuations, focusing on the correlation of one $B$-mode polarization fluctuation with two temperature fluctuations. In the simplest models of inflation, the tensor-scalar-scalar primordial bispectrum is non-vanishing and is of the same order in slow-roll parameters as the scalar-scalar-scalar bispectrum. We calculate the $\\langle BTT\\rangle$ correlation arising from a primordial tensor-scalar-scalar bispectrum, and show that constraints from an experiment like CMB-Stage IV using this observable are more than an order of magnitude better than those on the same primordial coupling obtained from temperature measurements alone. We argue that $B$-mode non-Gaussianity opens up an as-yet-unexplored window into the early Universe, demonstrating that significant information on primordial physics remains to be harvested from CMB anisotropies.

  9. Spin-SILC: CMB polarisation component separation with spin wavelets

    Science.gov (United States)

    Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew

    2016-08-01

    We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation E and B modes from raw multifrequency Stokes Q and U measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal P = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal P = Q + iU and in the underlying E and B modes, therefore providing the ability to perform component separation and E-B decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly recover the underlying cosmological E and B modes. We also demonstrate a strong consistency of our CMB maps with those derived from existing component separation methods. Spin-SILC can be combined with the pseudo- and pure E-B spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient method to accurately extract the CMB E and B modes for future polarisation experiments.

  10. Planck 2013 results. XV. CMB power spectra and likelihood

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...

  11. CMB Anomalies from Imperfect Dark Energy: Confrontation with the Data

    CERN Document Server

    Axelsson, Magnus J; Koivisto, Tomi; Mota, David F

    2011-01-01

    We test anisotropic dark energy models with the 7-year WMAP temperature observations data. In the presence of imperfect sources, due to large-scale gradients or anisotropies in the dark energy field, the CMB sky will be distorted anisotropically on its way to us by the ISW effect. The signal covariance matrix then becomes nondiagonal for small multipoles, but at $\\ell \\gtrsim 20$ the anisotropy is negligible. We parametrize possible violations of rotational invariance in the late universe by the magnitude of a post-Friedmannian deviation from isotropy and its scale dependence. This allows to obtain hints on possible imperfect nature of dark energy and the large-angle anomalous features in the CMB. A robust statistical analysis, subjected to various tests and consistency checks, is performed to compare the predicted correlations with those obtained from the satellite-measured CMB full sky maps. The preferred axis point towards $(l,b) = (168^\\circ, -31^\\circ)$ and the amplitude of the anisotropy is $\\varpi_0 = ...

  12. Novel calibration system with sparse wires for CMB polarization receivers

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  13. Novel calibration system with sparse wires for CMB polarization receivers

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, O.; /KEK, Tsukuba /Chicago U., KICP; Nguyen, H.; /Fermilab; Bischoff, C.; /Chicago U., KICP /Harvard-Smithsonian Ctr. Astrophys.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  14. Optimal scan strategies for future CMB satellite experiments

    Science.gov (United States)

    Wallis, Christopher G. R.; Brown, Michael L.; Battye, Richard A.; Delabrouille, Jacques

    2017-04-01

    The B-mode polarization power spectrum in the cosmic microwave background (CMB) is about four orders of magnitude fainter than the CMB temperature power spectrum. Any instrumental imperfections that couple temperature fluctuations to B-mode polarization must therefore be carefully controlled and/or removed. We investigate the role that a scan strategy can have in mitigating certain common systematics by averaging systematic errors down with many crossing angles. We present approximate analytic forms for the error on the recovered B-mode power spectrum that would result from differential gain, differential pointing and differential ellipticity for the case where two detector pairs are used in a polarization experiment. We use these analytic predictions to search the parameter space of common satellite scan strategies in order to identify those features of a scan strategy that have most impact in mitigating systematic effects. As an example, we go on to identify a scan strategy suitable for the CMB satellite proposed for the European Space Agency M5 call, considering the practical considerations of fuel requirement, data rate and the relative orientation of the telescope to the earth. Having chosen a scan strategy we then go on to investigate the suitability of the scan strategy.

  15. Cosmological Avatars of the Landscape II: CMB and LSS Signatures

    CERN Document Server

    Holman, R; Takahashi, T; Mersini-Houghton, Laura; Takahashi, Tomo

    2006-01-01

    This is the second paper in the series that confronts predictions of a model of the landscape with cosmological observations. We show here how the modifications of the Friedmann equation due to the decohering effects of long wavelength modes on the wavefunction of the Universe defined on the landscape leave unique signatures on the CMB spectra and large scale structure (LSS). We show that the effect of the string corrections is to suppress $\\sigma_8$ and the CMB $TT$ spectrum at large angles, thereby bringing WMAP and SDSS data for $\\sigma_8$ into agreement. We find interesting features imprinted on the matter power spectrum $P(k)$: power is suppressed at large scales indicating the possibility of primordial voids competing with the ISW effect. Furthermore, power is enhanced at structure and substructure scales, $k\\simeq 10^{-2-0} h~{\\rm Mpc}^{-1}$. Our smoking gun for discriminating this proposal from others with similar CMB and LSS predictions come from correlations between cosmic shear and temperature anis...

  16. Tests of the CMB temperature-redshift relation, CMB spectral distortions and why adiabatic photon production is hard

    CERN Document Server

    Chluba, Jens

    2014-01-01

    In the expanding Universe, the average temperature of the cosmic microwave background (CMB) is expected to depend like TCMB (1+z) on redshift z. Adiabatic photon production (or destruction) or deviations from isotropy and homogeneity could modify this scaling and several observational tests have been carried out in response. Here, we explain why `adiabatic' conditions are extremely difficult to establish in the redshift range targeted by these tests. Thus, instead of leading to a simple rescaling of the CMB temperature, a spectral distortion should be produced, which can be constrained using COBE/FIRAS. For scenarios with late photon production, tests of the temperature-redshift relation (TRR) should therefore be reinterpreted as weak spectral distortion limits, directly probing the energy dependence of the photon production process. For inhomogeneous cosmologies, a y-type distortion is produced, but this type of distortion can be created in several ways. Here, we briefly discuss possible effects that may hel...

  17. Breaking CMB degeneracy in dark energy through LSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokcheon [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of)

    2016-03-15

    The cosmic microwave background (CMB) and large-scale structure (LSS) are complementary probes in the investigation of the early and late time Universe. After the current accomplishment of the high accuracies of CMB measurements, accompanying precision cosmology from LSS data is emphasized. We investigate the dynamical dark energy (DE) models which can produce the same CMB angular power spectra as that of the CDM model with less than a sub-percent level accuracy. If one adopts the dynamical DE models using the so-called Chevallier-Polarski-Linder (CPL) parametrization, ω ≡ ω{sub 0} + ω{sub a} (1-a), then one obtains models (ω{sub 0}, ω{sub a}) = (-0.8, -0.767), (-0.9, -0.375), (-1.1, 0.355), (-1.2, 0.688) named M8, M9, M11, and M12, respectively. The differences of the growth rate, f, which is related to the redshift-space distortions (RSD) between different DE models and the ΛCDM model are about 0.2 % only at z = 0. The difference of f between M8 (M9, M11, M12) and the ΛCDM model becomes maximum at z ≅ 0.25 with -2.4(-1.2, 1.2, 2.5) %. This is a scale-independent quantity. One can investigate the one-loop correction of the matter power spectrum of each model using the standard perturbation theory in order to probe the scale-dependent quantity in the quasi-linear regime (i.e. k ≤ 0.4 h{sup -1} Mpc). The differences in the matter power spectra including the one-loop correction between M8 (M9, M11, M12) and the ΛCDM model for the k = 0.4 h{sup -1} Mpc scale are 1.8 (0.9, 1.2, 3.0) % at z = 0, 3.0 (1.6, 1.9, 4.2) % at z = 0.5, and 3.2 (1.7, 2.0, 4.5) % at z = 1.0. The larger departure from -1 of ω{sub 0}, the larger the difference in the power spectrum. Thus, one should use both the RSD and the quasi-linear observable in order to discriminate a viable DE model among a slew of the models which are degenerate in CMB.Alsowe obtain the lower limit on ω{sub 0} > -1.5 from the CMB acoustic peaks and this will provide a useful limitation on phantom models

  18. Correlation between sphere distributions of gamma-ray bursts and CMB fluctuations

    Science.gov (United States)

    Verkhodanov, O. V.; Sokolov, V. V.; Khabibullina, M. L.

    2016-06-01

    Distribution of gamma-ray bursts (GRBs) from catalogs of the BATSE and BeppoSAX space observatories relative to the cosmic microwave background (CMB) data by Planck space mission is studied. Three methods were applied for data analysis: (1) a histogram of CMB signal values in GRB directions, (2) mosaic correlation maps calculated for GRB locations and CMB distribution, (3) calculation of an average response in the area of "average GRB population" on the CMB map. A correlation between GRB locations and CMB fluctuations was detected which can be interpreted as systematic effects in the process of observations. Besides, in the averaged areas of CMB maps, a difference between the distributions of average fluctuations for short and long GRBs was detected which can be caused by different natures of these events.

  19. Tests of the CMB temperature-redshift relation, CMB spectral distortions and why adiabatic photon production is hard

    Science.gov (United States)

    Chluba, J.

    2014-09-01

    In the expanding Universe, the average temperature of the cosmic microwave background (CMB) is expected to depend like TCMB ∝ (1 + z) on redshift z. Adiabatic photon production (or destruction) or deviations from isotropy and homogeneity could modify this scaling and several observational tests have been carried out in response. Here, we explain why `adiabatic' conditions are extremely difficult to establish in the redshift range targeted by these tests. Thus, instead of leading to a simple rescaling of the CMB temperature, a spectral distortion should be produced, which can be constrained using COBE/FIRAS. For scenarios with late photon production, tests of the temperature-redshift relation (TRR) should therefore be reinterpreted as weak spectral distortion limits, directly probing the energy dependence of the photon production process. For inhomogeneous cosmologies, an average y-type distortion is produced, but this type of distortion can be created in several other ways. Here, we briefly discuss possible effects that may help disentangling different contributions to the distortion signal, finding this to be very challenging. We furthermore argue that tests of the TRR using the Sunyaev-Zeldovich effect have limited applicability and that for non-gravitational changes to the TRR, the CMB anisotropy spectrum should exhibit an additional y-type dependence.

  20. Cold Sores

    Science.gov (United States)

    ... Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores Canker Sore or Cold Sore? Mouth Sores: Caused By Student Stress? games Home | InfoBites | Find a Dentist | Your Family's Oral Health | Newsroom | RSS About AGD | Contact AGD | Site Map | ...

  1. CMB Anisotropy due to Cosmic Strings in an Accelerated Expanding Universe

    CERN Document Server

    Rokni, S Y; Bordbar, M R

    2013-01-01

    We want to find the cosmological constant influence on cosmic microwave background (CMB) anisotropy due to cosmic strings. Considering the space-time metric of a cosmic string under the effect of a positive cosmological constant, the CMB anisotropy is studied. The result shows that a positive cosmological constant (i.e. the presence of cosmic strings in an accelerated expanding universe) weakens the anisotropy so that more strong resolution is needed to detect the corresponding influences on the CMB power spectrum.

  2. CMB Anisotropy Correlation Function and Topology from Simulated Maps for MAP

    CERN Document Server

    Park, C; Gott, J R; Ratra, B; Spergel, D N; Sugiyama, N; Park, Changbom; Colley, Wesley N.; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1998-01-01

    We have simulated cosmic microwave background (CMB) anisotropy maps for several COBE-DMR-normalized cold dark matter (CDM) cosmogonies, to make predictions for the upcoming MAP experiment. We have studied the sensitivity of the simulated MAP data to cosmology, sky coverage, and instrumental noise. With accurate knowledge of instrumental noise, MAP data will discriminate among the cosmogonies considered, and determine the topology of the initial fluctuations. A correlation function analysis of the simulated MAP data results in a very accurate measurement of the acoustic Hubble radius at decoupling. A low-density open CDM model with Omega_0=0.4 can be distinguished from the Omega_0=1 fiducial CDM model or a Lambda CDM model with > 99% confidence from the location of the acoustic "valley" in the correlation function. A genus analysis of the simulated MAP data indicates that in cosmogonies with Gaussian random-phase initial conditions, a shift of the zero-crossing point of the genus curve near the mean temperatur...

  3. Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    Science.gov (United States)

    Grandis, S.; Rapetti, D.; Saro, A.; Mohr, J. J.; Dietrich, J. P.

    2016-08-01

    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat ΛCDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat ΛCDM. We find a clear preference for models with free curvature, ΩK, or free amplitude of the CMB lensing potential, AL. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15 CMB data and six other CMB and distance datasets. In flat ΛCDM we find a 4.8σ tension between the base P15 CMB data and a distance ladder measurement, whereas the former are consistent with the other datasets. In the curved ΛCDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-ℓ multipoles of the CMB data. In the flat ΛCDM+AL model, however, all datasets are consistent with the base P15 CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15 CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat ΛCDM model.

  4. A Complete Treatment of CMB Anisotropies in a FRW Universe

    CERN Document Server

    Hu, W; White, M; Zaldarriaga, M; Hu, Wayne; Seljak, Uros; White, Martin; Zaldarriaga, Matias

    1998-01-01

    We generalize the total angular momentum method for computing Cosmic Microwave Background anisotropies to Friedman-Robertson-Walker (FRW) spaces with arbitrary geometries. This unifies the treatment of temperature and polarization anisotropies generated by scalar, vector and tensor perturbations of the fluid, seed, or a scalar field, in a universe with constant comoving curvature. The resulting formalism generalizes and simplifies the calculation of anisotropies and, in its integral form, allows for a fast calculation of model predictions in linear theory for any FRW metric. With this work, the perturbation theory of CMB temperature and polarization anisotropy formation through gravitational instability in an FRW universe may be considered complete.

  5. BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs

    CERN Document Server

    Nollett, Kenneth M

    2013-01-01

    (Abridged) In the presence of a light WIMP ( 99% confidence. Allowing a light WIMP and Delta N_nu equivalent neutrinos together, the combined BBN and CMB data provide lower limits to the WIMP masses (> 0.5 - 5 MeV) that depend on the nature of the WIMP, favor m_chi ~8 MeV slightly over no WIMP, and loosen constraints on equivalent neutrinos, Delta N_nu = 0.65+0.46-0.35. While Delta N_nu = 0 is still disfavored at ~95% confidence with a light WIMP, Delta N_nu = 1 is now allowed.

  6. Pure pseudo- Cℓ estimators for CMB B-modes

    Science.gov (United States)

    Smith, Kendrick M.

    2006-12-01

    Fast heuristically weighted, or pseudo-Cℓ, estimators are a frequently used method for estimating power spectra in CMB surveys with large numbers of pixels. Recently, Challinor and Chon showed that the E-B mixing in these estimators can become a dominant contaminant at low noise levels, ultimately limiting the gravity wave signal which can be detected on a finite patch of sky. We define a modified version of the estimators which eliminates E-B mixing and is near-optimal at all noise levels.

  7. Dipole modulation in tensor modes: signatures in CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, Moslem [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Astronomy, P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this work we consider a dipole asymmetry in tensor modes and study the effects of this asymmetry on the angular power spectra of CMB. We derive analytical expressions for the C{sub l}{sup TT} and C{sub l}{sup BB} in the presence of such dipole modulation in tensor modes for l < 100. We also discuss on the amplitude of modulation term and show that the C{sub l}{sup BB} is considerably modified due to this term. (orig.) 3.

  8. Inflation in de Sitter spacetime and CMB large scales anomaly

    CERN Document Server

    Zhao, Dong; Wang, Ping; Chang, Zhe

    2014-01-01

    The influence of cosmological constant type dark energy in the early universe is investigated. This is accommodated by a new dispersion relation in de Sitter spacetime. We perform a global fitting to explore the cosmological parameters space by using the CosmoMC package with the recently released Planck TT and WMAP Polarization datasets. Using the results from global fitting, we compute a new CMB temperature-temperature spectrum. The obtained TT spectrum has lower power compared with the one based on $\\Lambda$CDM model at large scales.

  9. MADAM- a map-making method for CMB experiments

    Science.gov (United States)

    Keihänen, E.; Kurki-Suonio, H.; Poutanen, T.

    2005-06-01

    We present a new map-making method for cosmic microwave background (CMB) measurements. The method is based on the destriping technique, but it also utilizes information about the noise spectrum. The low-frequency component of the instrument noise stream is modelled as a superposition of a set of simple base functions, whose amplitudes are determined by means of maximum-likelihood analysis, involving the covariance matrix of the amplitudes. We present simulation results with 1/f noise and show a reduction in the residual noise with respect to ordinary destriping. This study is related to Planck Low Frequency Instrument (LFI) activities.

  10. Madam - a map-making method for CMB experiments

    CERN Document Server

    Keihanen, E; Poutanen, T

    2004-01-01

    We present a new map-making method for CMB measurements. The method is based on the destriping technique, but it also utilizes information about the noise spectrum. The low-frequency component of the instrument noise stream is modelled as a superposition of a set of simple base functions, whose amplitudes are determined by means of maximum-likelihood analysis, involving the covariance matrix of the amplitudes. We present simulation results with $1/f$ noise and show a reduction in the residual noise with respect to ordinary destriping. This study is related to \\Planck LFI activities.

  11. Detectability of the 21-cm CMB cross-correlation from the epoch of reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem; Jelic, Vibor

    2010-01-01

    The 21-cm line fluctuations and the cosmic microwave background (CMB) are powerful probes of the epoch of reionization of the Universe. We study the potential of the cross-correlation between 21-cm line fluctuations and CMB anisotropy to obtain further constraints on the reionization history. We ana

  12. COBE and the Absolute Assignment of the CMB to the Earth.

    Science.gov (United States)

    Robitaille, Pierre-Marie; Rabounski, Dmitri

    2007-03-01

    The FIRAS instrument on COBE initially reported a CMB temperature of 2.730+/-0.001 K (1σ). At the same time, using the 1st derivative, FIRAS reported a CMB temperature of 2.717+/-0.003 K (1σ). These two values are significantly different at the 99% confidence interval. In order to remove this significance, NASA lowered the absolute value of the CMB by changing the calibration on the external calibrator long after launch. It also raised the error bars on the second value. However, the observed difference in the CMB temperature measured by these two methods may well constitute evidence that the CMB monopole arises from the Earth. It should be assumed that a second, much weaker, microwave field exists both at L2 (the WMAP position) and at the COBE position. Motion through this much weaker field is responsible for the dipole observed. The value of the CMB temperature obtained by the 1st derivative is sensitive to motion. It is also sensitive to the complicating effect of the weak field also present at L2 when sampling the CMB temperature using FIRAS. The presence of a second weak field at L2 and the Earth is required in order for COBE to be able to resolve this situation. The PLANCK satellite should soon reveal that that CMB monopole does not exist at L2.

  13. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis.

    Science.gov (United States)

    Filipic, Brankica; Golic, Natasa; Jovcic, Branko; Tolinacki, Maja; Bay, Denice C; Turner, Raymond J; Antic-Stankovic, Jelena; Kojic, Milan; Topisirovic, Ljubisa

    2013-01-01

    Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.

  14. Galaxy clustering, CMB and supernova data constraints on ϕCDM model with massive neutrinos

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-01-01

    Full Text Available We investigate a scalar field dark energy model (i.e., ϕCDM model with massive neutrinos, where the scalar field possesses an inverse power-law potential, i.e., V(ϕ∝ϕ−α (α>0. We find that the sum of neutrino masses Σmν has significant impacts on the CMB temperature power spectrum and on the matter power spectrum. In addition, the parameter α also has slight impacts on the spectra. A joint sample, including CMB data from Planck 2013 and WMAP9, galaxy clustering data from WiggleZ and BOSS DR11, and JLA compilation of Type Ia supernova observations, is adopted to confine the parameters. Within the context of the ϕCDM model under consideration, the joint sample determines the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the Thomson scattering optical depth due to reionization, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ⁎=(1.0415−0.0011+0.0012×10−2, τ=0.0914−0.0242+0.0266, Ωbh2=0.0222±0.0005, Ωch2=0.1177±0.0036, and ns=0.9644−0.0119+0.0118, respectively, at 95% confidence level (CL. It turns out that α<4.995 at 95% CL for the ϕCDM model. And yet, the ΛCDM scenario corresponding to α=0 is not ruled out at 95% CL. Moreover, we get Σmν<0.262 eV at 95% CL for the ϕCDM model, while the corresponding one for the ΛCDM model is Σmν<0.293 eV. The allowed scale of Σmν in the ϕCDM model is a bit smaller than that in the ΛCDM model. It is consistent with the qualitative analysis, which reveals that the increases of α and Σmν both can result in the suppression of the matter power spectrum. As a consequence, when α is larger, in order to avoid suppressing the matter power spectrum too much, the value of Σmν should be smaller.

  15. CMB Imprints of a Pre-Inflationary Climbing Phase

    CERN Document Server

    Dudas, E; Patil, S P; Sagnotti, A

    2012-01-01

    We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of "brane SUSY breaking" scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a...

  16. Establishing the origin of CMB B-mode polarization

    CERN Document Server

    Sheere, Connor; Meerburg, P Daniel; Meyers, Joel

    2016-01-01

    Primordial gravitational waves leave a characteristic imprint on the cosmic microwave background (CMB) in the form of $B$-mode polarization. Photons are also deflected by large scale gravitational waves which intervene between the source screen and our telescopes, resulting in curl-type gravitational lensing. Gravitational waves present at the epoch of reionization contribute to both effects, thereby leading to a non-vanishing cross-correlation between $B$-mode polarization and curl lensing of the CMB. Observing such a cross correlation would be very strong evidence that an observation of $B$-mode polarization was due to the presence of large scale gravitational waves, as opposed to astrophysical foregrounds or experimental systematic effects. We study the cross-correlation across a wide range of source redshifts and show that a post-SKA experiment aimed to map out the 21-cm sky between $15 \\leq z \\leq 30$ could rule out non-zero cross-correlation at high significance for $r \\geq 0.01$.

  17. Joint Planck and WMAP Assessment of Low CMB Multipoles

    CERN Document Server

    Iqbal, Asif; Souradeep, Tarun; Malik, Manzoor A

    2015-01-01

    The remarkable progress in cosmic microwave background (CMB) studies over past decade has led to the era of precision cosmology in striking agreement with the $\\Lambda$CDM model. However, the lack of power in the CMB temperature anisotropies at large angular scales (low-$\\ell$), as has been confirmed by the recent Planck data also (up to $\\ell=40$), is still an open problem. One can avoid to seek an explanation for this problem by attributing the lack of power to cosmic variance or can look for explanations i.e., different inflationary potentials or initial conditions for inflation to begin with, non-trivial topology, ISW effect etc. Features in the primordial power spectrum (PPS) motivated by the early universe physics has been the most common solution to address this problem. In the present work we also follow this approach and consider a set of PPS which have features and constrain the parameters of those using WMAP 9 year and Planck data employing Markov-Chain Monte Carlo (MCMC) analysis. The prominent fe...

  18. CMB likelihood approximation by a Gaussianized Blackwell-Rao estimator

    CERN Document Server

    Rudjord, Ø; Eriksen, H K; Huey, Greg; Górski, K M; Jewell, J B

    2008-01-01

    We introduce a new CMB temperature likelihood approximation called the Gaussianized Blackwell-Rao (GBR) estimator. This estimator is derived by transforming the observed marginal power spectrum distributions obtained by the CMB Gibbs sampler into standard univariate Gaussians, and then approximate their joint transformed distribution by a multivariate Gaussian. The method is exact for full-sky coverage and uniform noise, and an excellent approximation for sky cuts and scanning patterns relevant for modern satellite experiments such as WMAP and Planck. A single evaluation of this estimator between l=2 and 200 takes ~0.2 CPU milliseconds, while for comparison, a single pixel space likelihood evaluation between l=2 and 30 for a map with ~2500 pixels requires ~20 seconds. We apply this tool to the 5-year WMAP temperature data, and re-estimate the angular temperature power spectrum, $C_{\\ell}$, and likelihood, L(C_l), for l<=200, and derive new cosmological parameters for the standard six-parameter LambdaCDM mo...

  19. Effect of noncircularity of experimental beam on CMB parameter estimation

    CERN Document Server

    Das, Santanu; Paulson, Sonu Tabitha

    2015-01-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the Planck likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window fun...

  20. Effect of noncircularity of experimental beam on CMB parameter estimation

    Science.gov (United States)

    Das, Santanu; Mitra, Sanjit; Tabitha Paulson, Sonu

    2015-03-01

    Measurement of Cosmic Microwave Background (CMB) anisotropies has been playing a lead role in precision cosmology by providing some of the tightest constrains on cosmological models and parameters. However, precision can only be meaningful when all major systematic effects are taken into account. Non-circular beams in CMB experiments can cause large systematic deviation in the angular power spectrum, not only by modifying the measurement at a given multipole, but also introducing coupling between different multipoles through a deterministic bias matrix. Here we add a mechanism for emulating the effect of a full bias matrix to the PLANCK likelihood code through the parameter estimation code SCoPE. We show that if the angular power spectrum was measured with a non-circular beam, the assumption of circular Gaussian beam or considering only the diagonal part of the bias matrix can lead to huge error in parameter estimation. We demonstrate that, at least for elliptical Gaussian beams, use of scalar beam window functions obtained via Monte Carlo simulations starting from a fiducial spectrum, as implemented in PLANCK analyses for example, leads to only few percent of sigma deviation of the best-fit parameters. However, we notice more significant differences in the posterior distributions for some of the parameters, which would in turn lead to incorrect errorbars. These differences can be reduced, so that the errorbars match within few percent, by adding an iterative reanalysis step, where the beam window function would be recomputed using the best-fit spectrum estimated in the first step.

  1. Planck 2015 results. IX. Diffuse component separation: CMB maps

    CERN Document Server

    Adam, R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-01-01

    We present foreground-reduced CMB maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales $\\ell\\gtrsim40$. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with $\\ell < 20$ are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with re...

  2. The mildly nonlinear imprint of structure on the CMB

    CERN Document Server

    Gebbie, T

    1999-01-01

    I outline some nonperturbative relativistic effects that arise from gravitational corrections to the Boltzmann equations. These may be important for the study of CMB temperature anisotropies, particularly their interpretation. These terms are not included in the canonical treatment as they arise from the exact equations. Here a weakly nonlinear investigation of these effects is defined and investigated with an emphasis on a Rees-Sciama sourced effect -- the imprint of structure evolution on the CMB. It is shown that gravitational nonlinearity in the weakly nonlinear extension of almost-FLRW temperature anisotropies leads to cancellation on small-scales when threading in the Newtonian frame. In the general frame this cancellation does not occur. In the context of a flat almost-FLRW CDM model I provide a heuristic argument for a nonperturbative small scale correction, due to the Rees-Sciama effect, of not more than $\\Delta T/T \\sim 10^{-6}-10^{-5}$ near $\\ell \\sim 100 - 300$. The effect of mild gravitational no...

  3. Cosmological Parameters from CMB Maps without Likelihood Approximation

    CERN Document Server

    Racine, Benjamin; Eriksen, Hans Kristian K; Wehus, Ingunn K

    2015-01-01

    We propose an efficient Bayesian MCMC algorithm for estimating cosmological parameters from CMB data without use of likelihood approximations. It builds on a previously developed Gibbs sampling framework that allows for exploration of the joint CMB sky signal and power spectrum posterior, P(s,Cl|d), and addresses a long-standing problem of efficient parameter estimation simultaneously in high and low signal-to-noise regimes. To achieve this, our new algorithm introduces a joint Markov Chain move in which both the signal map and power spectrum are synchronously modified, by rescaling the map according to the proposed power spectrum before evaluating the Metropolis-Hastings accept probability. Such a move was already introduced by Jewell et al. (2009), who used it to explore low signal-to-noise posteriors. However, they also found that the same algorithm is inefficient in the high signal-to-noise regime, since a brute-force rescaling operation does not account for phase information. This problem is mitigated in...

  4. Statistical simulations of the dust foreground to CMB polarization

    CERN Document Server

    Vansyngel, Flavien; Ghosh, Tuhin; Wandelt, Benjamin D; Aumont, Jonathan; Bracco, Andrea; Levrier, François; Martin, Peter G; Montier, Ludovic

    2016-01-01

    The characterization of the dust polarization foreground to the Cosmic Microwave Background (CMB) is a necessary step towards the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of polarized dust emission on the sphere, similarly to what is done for the CMB anisotropies. This method builds on the understanding of Galactic polarization stemming from the analysis of Planck data. It relates the dust polarization sky to the structure of the Galactic magnetic field and its coupling with interstellar matter and turbulence. The Galactic magnetic field is modelled as a superposition of a mean uniform field and a random component with a power-law power spectrum of exponent $\\alpha_{\\rm M}$. The model parameters are constrained to fit the power spectra of dust polarization EE, BB and TE measured using Planck data. We find that the slopes of the E and B power spectra of dust polarization are matched for $\\alpha_{\\rm M} = -2.5$. The model allows us to co...

  5. CMB Polarization B-mode Delensing with SPTpol and Herschel

    Energy Technology Data Exchange (ETDEWEB)

    Manzotti, A.; et al.

    2017-01-16

    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $\\textit{Herschel}$ $500\\,\\mu m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < \\ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 \\sigma$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.

  6. Tensor Minkowski Functionals: first application to the CMB

    CERN Document Server

    Ganesan, Vidhya

    2016-01-01

    Tensor Minkowski Functionals (TMFs) are tensorial generalizations of the usual Minkowski Functionals which are scalar quantities. We introduce them here for use in cosmological analysis, in particular to analyze CMB maps. They encapsulate information about the shapes and the orientation of structures. We focus on one of the TMFs, namely $W_2^{1,1}$, which is the generalization of the genus. The ratio of the eigenvalues of the average of $W_2^{1,1}$ over all structures, $\\alpha$, encodes the net orientation; and the average of the ratios of the eigenvalues of $W_2^{1,1}$ for each structure, $\\beta$, encodes the net anisotropy. We have developed a code that computes $W_2^{1,1}$, and from it $\\alpha$ and $\\beta$, for a set of structures on the plane. We compute $\\alpha$ and $\\beta$ as functions of threshold levels for simulated Gaussian and isotropic CMB fields. We obtain $\\alpha$ to be one for both temperature and $E$ mode, which means that we recover the input statistical isotropy of density fluctuations in th...

  7. Non Gaussian Minkowski functionals and extrema counts for CMB maps

    Science.gov (United States)

    Pogosyan, Dmitri; Codis, Sandrine; Pichon, Christophe

    2016-10-01

    In the conference presentation we have reviewed the theory of non-Gaussian geometrical measures for 3D Cosmic Web of the matter distribution in the Universe and 2D sky data, such as Cosmic Microwave Background (CMB) maps that was developed in a series of our papers. The theory leverages symmetry of isotropic statistics such as Minkowski functionals and extrema counts to develop post Gaussian expansion of the statistics in orthogonal polynomials of invariant descriptors of the field, its first and second derivatives. The application of the approach to 2D fields defined on a spherical sky was suggested, but never rigorously developed. In this paper we present such development treating the effects of the curvature and finiteness of the spherical space $S_2$ exactly, without relying on flat-sky approximation. We present Minkowski functionals, including Euler characteristic and extrema counts to the first non-Gaussian correction, suitable for weakly non-Gaussian fields on a sphere, of which CMB is the prime example.

  8. Angular dependence of primordial trispectra and CMB spectral distortions

    Science.gov (United States)

    Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele

    2016-10-01

    Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TTμ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TTμ bispectrum strongly differs in shape from TTμ sourced by the usual gNL or τNL local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TTμ, a minimum detectable value of the quadrupolar Legendre coefficient is d2 ~ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f(phi)F2 interaction (coupling the inflaton field phi with a vector kinetic term F2), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g*. In this case, a CVL measurement of TTμ makes it possible to measure g* down to 10‑3.

  9. Testing large-angle deviation from Gaussianity in CMB maps

    CERN Document Server

    Bernui, A; Teixeira, A F F

    2010-01-01

    A detection of the level of non-Gaussianity in the CMB data is essential to discriminate among inflationary models and also to test alternative primordial scenarios. However, the extraction of primordial non-Gaussianity is a difficult endeavor since several effects of non-primordial nature can produce non-Gaussianity. On the other hand, different statistical tools can in principle provide information about distinct forms of non-Gaussianity. Thus, any single statistical estimator cannot be sensitive to all possible forms of non-Gaussianity. In this context, to shed some light in the potential sources of deviation from Gaussianity in CMB data it is important to use different statistical indicators. In a recent paper we proposed two new large-angle non-Gaussianity indicators which provide measures of the departure from Gaussianity on large angular scales. We used these indicators to carry out analyses of non-Gaussianity of the bands and of the foreground-reduced WMAP maps with and without the KQ75 mask. Here we ...

  10. Angular dependence of primordial trispectra and CMB spectral distortions

    CERN Document Server

    Shiraishi, Maresuke; Liguori, Michele

    2016-01-01

    Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation is sensitive to the angles between each wave vector. We examine the imprints left by curvature trispectra, in which the angular dependence is described by Legendre polynomials, on the $TT\\mu$ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions ($\\mu$) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding $TT\\mu$ bispectrum strongly differs in shape from $TT\\mu$ sourced by the usual $g_{\\rm NL}$ or $\\tau_{\\rm NL}$ local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of $TT\\mu$, a minimum detectable value of the quadrupolar Legendre coefficient is $d_2 \\sim 0.01$, which is 4 orders of magnitude better than the best value attainable from the $TTTT$ CMB trispectrum....

  11. CMB Constraints On The Thermal WIMP Annihilation Cross Section

    CERN Document Server

    Steigman, Gary

    2015-01-01

    A thermal relic, often referred to as a weakly interacting massive particle (WIMP),is a particle produced during the early evolution of the Universe whose relic abundance (e.g., at present) depends only on its mass and its thermally averaged annihilation cross section (annihilation rate factor) sigma*v_ann. Late time WIMP annihilation has the potential to affect the cosmic microwave background (CMB) power spectrum. Current observational constraints on the absence of such effects provide bounds on the mass and the annihilation cross section of relic particles that may, but need not be dark matter candidates. For a WIMP that is a dark matter candidate, the CMB constraint sets an upper bound to the annihilation cross section, leading to a lower bound to their mass that depends on whether or not the WIMP is its own antiparticle. For a self-conjugate WIMP, m_min = 50f GeV, where f is an electromagnetic energy efficiency factor. For a non self-conjugate WIMP, the minimum mass is a factor of two larger. For a WIMP t...

  12. Development of 1000 arrays MKID camera for the CMB observation

    Science.gov (United States)

    Karatsu, Kenichi; Naruse, Masato; Nitta, Tom; Sekine, Masakazu; Sekimoto, Yutaro; Noguchi, Takashi; Uzawa, Yoshinori; Matsuo, Hiroshi; Kiuchi, Hitoshi

    2012-09-01

    A precise measurement of the Cosmic Microwave Background (CMB) provides us a wealth of information about early universe. LiteBIRD is a future satellite mission lead by High Energy Accelerator Research Organization (KEK) and its scientific target is detection of the B-mode polarization of the CMB, which is a footprint of primordial gravitational waves generated during inflation era, but has not been successfully observed so far due to lack of sensitivity. Microwave Kinetic Inductance Detector (MKID) is one candidate of sensitive millimeterwave camera which will be able to detect the B-mode polarization. We have been developing MKID at National Astronomical Observatory of Japan (NAOJ) in cooperation with KEK and RIKEN for the focal plane detector of the LiteBIRD. The developed technologies are: fabrication process of MKIDs with epitaxially-formed aluminum (Al) on silicon (Si) wafer; optical system of the camera consisting of double-slot antenna with Si lens array; and readout circuit utilizing Fast Fourier Transform Spectrometer (FFTS). With these technologies, we designed a prototype MKIDs camera for the LiteBIRD.

  13. New CMB constraints for Abelian Higgs cosmic strings

    CERN Document Server

    Lizarraga, Joanes; Daverio, David; Hindmarsh, Mark; Kunz, Martin

    2016-01-01

    We present cosmic microwave background (CMB) power spectra from recent numerical simulations of cosmic strings in the Abelian Higgs model and compare them to CMB power spectra measured by Planck. We obtain revised constraints on the cosmic string tension parameter $G\\mu$. For example, in the $\\Lambda$CDM model with the addition of strings and no primordial tensor perturbations, we find $G\\mu < 2.0 \\times 10^{-7}$ at 95% confidence, about 20% lower than the value obtained from previous simulations, which had 1/64 of the spatial volume. We investigate the source of the difference, showing that the main cause is an improved treatment of the string evolution across the radiation-matter transition. The increased computational volume also makes possible to simulate fully the physical equations of motion, in which the string cores shrink in comoving coordinates. This, and the larger dynamic range, changes the amplitude of the power spectra by only about 10%, demonstrating that field theory simulations of cosmic s...

  14. CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer

    Science.gov (United States)

    Tartari, A.; Battistelli, E. S.; Piat, M.; Prêle, D.

    2016-08-01

    Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE-FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE-FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across ˜ 2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz-6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh-Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from ˜ tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit.

  15. CMB all-scale blackbody distortions induced by linearizing temperature

    CERN Document Server

    Notari, Alessio

    2016-01-01

    Cosmic Microwave Background (CMB) experiments, such as WMAP and Planck, measure intensity anisotropies and build maps using a \\emph{linearized} formula for relating them to the temperature blackbody fluctuations. However such a procedure also generates a signal in the maps in the form of y-type distortions, and thus degenerate with the thermal SZ (tSZ) effect. These are small effects that arise at second-order in the temperature fluctuations not from primordial physics but from such a limitation of the map-making procedure. They constitute a contaminant for measurements of: our peculiar velocity, the tSZ and of primordial y-distortions, but they can nevertheless be well-modelled and accounted for. We show that the largest distortions arises at high ell from a leakage of the CMB dipole into the y-channel which couples to all multipoles, but mostly affects the range ell <~ 400. This should be visible in Planck's y-maps with an estimated signal-to-noise ratio of about 9. We note however that such frequency-de...

  16. Searching for primordial non-Gaussianity in Planck CMB maps using a combined estimator

    CERN Document Server

    Novaes, C P; Ferreira, I S; Wuensche, C A

    2013-01-01

    The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of ...

  17. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  18. Spotted Seal Distribution Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) and reported breeding areas of spotted seals (Phoca largha). It was...

  19. Mononucleosis spot test

    Science.gov (United States)

    Monospot test; Heterophile antibody test; Heterophile agglutination test; Paul-Bunnell test; Forssman antibody test ... The mononucleosis spot test is done when symptoms of mononucleosis are ... Fatigue Fever Large spleen (possibly) Sore throat Tender ...

  20. Investigations of Spot Weld Material Characterization for Hat Beam Component Impact Analysis

    OpenAIRE

    Sachin Patil; Hamid Lankarani

    2016-01-01

    With a greater emphasis placed on weight reduction the ground vehicle industry has increased the use of higher strength, thinner gage steels, particularly cold rolled high strength steels (HSS). Choice of a particular HSS will depend upon such factors as cost, formability, fatigue resistance and weldability, in particular spot weldability. Vehicle collision characteristics significantly influenced by spot welded joints in vehicle steel body components.In engineering practice, spot welds are n...

  1. Joint Planck and WMAP assessment of low CMB multipoles

    Science.gov (United States)

    Iqbal, Asif; Prasad, Jayanti; Souradeep, Tarun; Malik, Manzoor A.

    2015-06-01

    The remarkable progress in cosmic microwave background (CMB) studies over past decade has led to the era of precision cosmology in striking agreement with the ΛCDM model. However, the lack of power in the CMB temperature anisotropies at large angular scales (low-l), as has been confirmed by the recent Planck data also (up to 0l=4), although statistically not very strong (less than 3σ), is still an open problem. One can avoid to seek an explanation for this problem by attributing the lack of power to cosmic variance or can look for explanations i.e., different inflationary potentials or initial conditions for inflation to begin with, non-trivial topology, ISW effect etc. Features in the primordial power spectrum (PPS) motivated by the early universe physics has been the most common solution to address this problem. In the present work we also follow this approach and consider a set of PPS which have features and constrain the parameters of those using WMAP 9 year and Planck data employing Markov-Chain Monte Carlo (MCMC) analysis. The prominent feature of all the models of PPS that we consider is an infra-red cut off which leads to suppression of power at large angular scales. We consider models of PPS with maximum three extra parameters and use Akaike information criterion (AIC) and Bayesian information criterion (BIC) of model selection to compare the models. For most models, we find good constraints for the cut off scale kc, however, for other parameters our constraints are not that good. We find that sharp cut off model gives best likelihood value for the WMAP 9 year data, but is as good as power law model according to AIC. For the joint WMAP 9 + Planck data set, Starobinsky model is slightly preferred by AIC which is also able to produce CMB power suppression up to 0l<=3 to some extent. However, using BIC criteria, one finds model(s) with least number of parameters (power law model) are always preferred.

  2. Common cold

    Science.gov (United States)

    ... have a low fever or no fever. Young children often run a fever around 100 to 102°F (37.7 to 38.8°C). Depending on which virus caused your cold, you may also have: Cough Decreased appetite Headache Muscle aches Postnasal drip Sore throat

  3. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  4. Future CMB tests of dark matter: ultra-light axions and massive neutrinos

    CERN Document Server

    Hložek, Renée; Grin, Daniel; Allison, Rupert; Dunkley, Jo; Calabrese, Erminia

    2016-01-01

    Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dark-energy components. CMB data have already shown that ultra-light axions (ULAs) with mass in the range $10^{-32}~{\\rm eV} \\to 10^{-26}~{\\rm eV}$ compose a fraction $< 0.01$ of the cosmological critical density. Here, the sensitivity of a proposed CMB-Stage IV (CMB-S4) experiment (assuming a 1 arcmin beam and $< 1~\\mu K{\\rm-arcmin}$ noise levels over a sky fraction of 0.4) to the density of ULAs and other dark-sector components is assessed. CMB-S4 data should be $\\sim 10$ times more sensitive to the ULA energy-density than Planck data alone, across a wide range of ULA masses $10^{-32}< m_{a}< 10^{-23}~{\\rm eV}$, and will probe axion decay constants of $f_{a}\\approx 10^{16}~{\\rm GeV}$, at the grand unified scale. CMB-S4 could improve the CMB lower bound ...

  5. Constraining CMB-consistent primordial voids with cluster evolution

    CERN Document Server

    Mathis, H; Griffiths, L M; Kunz, M

    2004-01-01

    Using cosmological simulations, we make predictions for the distribution of clusters in a plausible non-gaussian model where primordial voids nucleated during inflation act together with scale-invariant adiabatic gaussian fluctuations as seeds for the formation of large-scale structure. This model agrees with most recent observations of the anisotropies of the cosmic microwave background (CMB) and can account for the excess of power measured on cluster scales by the Cosmic Background Imager (CBI), the large empty regions apparent in nearby galaxy redshift surveys and the number of giant arcs measured in deep cluster lensing surveys. We show that the z=0 cluster mass function differs from predictions for a standard LCDM cosmology with the same sigma_8. Moreover, as massive clusters also form much earlier in the "void" scenario, we show that integrated number counts of SZ sources and simple statistics of strong lensing can easily falsify this model.

  6. Optimal analysis of azimuthal features in the CMB

    CERN Document Server

    Osborne, Stephen; Smith, Kendrick

    2013-01-01

    We present algorithms for searching for azimuthally symmetric features in CMB data. Our algorithms are fully optimal for masked all-sky data with inhomogeneous noise, computationally fast, simple to implement, and make no approximations. We show how to implement the optimal analysis in both Bayesian and frequentist cases. In the Bayesian case, our algorithm for evaluating the posterior likelihood is so fast that we can do a brute-force search over parameter space, rather than using a Monte Carlo Markov chain. Our motivating example is searching for bubble collisions, a pre-inflationary signal which can be generated if multiple tunneling events occur in an eternally inflating spacetime, but our algorithms are general and should be useful in other contexts.

  7. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  8. Minkowski Functionals and Cluster Analysis for CMB Maps

    CERN Document Server

    Novikov, D; Shandarin, S F; Feldman, Hume A.; Shandarin, Sergei F.

    1999-01-01

    We suggest novel statistics for the CMB maps that are sensitive to non-Gaussian features. These statistics are natural generalizations of the geometrical and topological methods that have been already used in cosmology such as the cumulative distribution function and genus. We compute the distribution functions of the Partial Minkowski Functionals for the excursion set above or bellow a constant temperature threshold. Minkowski Functionals are additive and are translationally and rotationally invariant. Thus, they can be used for patchy and/or incomplete coverage. The technique is highly efficient computationally (it requires only $O(N)$ operations, where $N$ is the number of pixels per one threshold level). Further, it allows to split large data sets into smaller subsets. The full advantage of these statistics can be obtained only on very large data sets. We apply it to the 4-year DMR COBE data corrected for the Galaxy contamination as an illustration of the technique.

  9. Low-l CMB power loss in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, Francisco G.; Westphal, Alexander

    2013-09-15

    The lack of power on large scales (l CMB 2-point function power at low l, finding that the potential derived from string loops is not steep enough for this purpose. We introduce a steeper contribution to the potential, that dominates away from the inflationary region, and show that if properly tuned it can indeed lead to a spectrum with lack of power at large scales.

  10. Contribution of domain wall networks to the CMB power spectrum

    CERN Document Server

    Lazanu, A; Shellard, E P S

    2015-01-01

    We use three domain wall simulations from the radiation era to the late time dark energy domination era based on the PRS algorithm to calculate the energy-momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  11. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  12. SPIDER: A Balloon-borne Large-scale CMB Polarimeter

    CERN Document Server

    Crill, B P; Battistelli, E S; Benton, S; Bihary, R; Bock, J J; Bond, J R; Brevik, J; Bryan, S; Contaldi, C R; Dore, O; Farhang, M; Fissel, L; Golwala, S R; Halpern, M; Hilton, G; Holmes, W; Hristov, V V; Irwin, K; Jones, W C; Kuo, C L; Lange, A E; Lawrie, C; MacTavish, C J; Martin, T G; Mason, P; Montroy, T E; Netterfield, C B; Pascale, E; Riley, D; Ruhl, J E; Runyan, M C; Trangsrud, A; Tucker, C; Turner, A; Viero, M; Wiebe, D

    2008-01-01

    Spider is a balloon-borne experiment that will measure the polarization of the Cosmic Microwave Background over a large fraction of a sky at 1 degree resolution. Six monochromatic refracting millimeter-wave telescopes with large arrays of antenna-coupled transition-edge superconducting bolometers will provide system sensitivities of 4.2 and 3.1 micro K_cmb rt s at 100 and 150 GHz, respectively. A rotating half-wave plate will modulate the polarization sensitivity of each telescope, controlling systematics. Bolometer arrays operating at 225 GHz and 275 GHz will allow removal of polarized galactic foregrounds. In a 2-6 day first flight from Alice Springs, Australia in 2010, Spider will map 50% of the sky to a depth necessary to improve our knowledge of the reionization optical depth by a large factor.

  13. Contribution of domain wall networks to the CMB power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-07-30

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  14. Cosmology with the CMB temperature-polarization correlation

    CERN Document Server

    Couchot, F; Perdereau, O; Plaszczynski, S; d'Orfeuil, B Rouillé; Spinelli, M; Tristram, M

    2016-01-01

    We demonstrate that the CMB temperature-polarization cross-correlation provides accurate and robust constraints on cosmological parameters. We compare them with the results from temperature or polarization and investigate the impact of foregrounds, cosmic variance and instrumental noise. This analysis makes use of the Planck high-l HiLLiPOP likelihood based on angular power spectra that takes into account systematics from the instrument and foreground residuals directly modeled using Planck measurements. The temperature-polarization correlation (TE) spectrum is less contaminated by astrophysical emissions than the temperature power-spectrum (TT) allowing to derive constraints that are less sensitive to foreground uncertainties. For LCDM parameters, TE gives very competitive results compared to TT. For LCDM model extensions, it is limited by the instrumental noise level in the polarization maps.

  15. Template fitting and the large-angle CMB anomalies

    CERN Document Server

    Land, K; Land, Kate; Magueijo, Joao

    2006-01-01

    We investigate two possible explanations for the large-angle anomalies in the Cosmic Microwave Background (CMB): an intrinsically anisotropic model and an inhomogeneous model. We take as an example of the former a Bianchi model (which leaves a spiral pattern in the sky) and of the latter a background model that already contains a non-linear long-wavelength plane wave (leaving a stripy pattern in the sky). We make use of an adaptation of the ``template'' formalism, previously designed to detect galactic foregrounds, to recognize these patterns and produce confidence levels for their detection. The ``corrected'' maps, from which these patterns have been removed, are free of anomalies, in particular their quadrupole and octupole are not planar and their intensities not low. We stress that although the ``template'' detections are not found to be statistically significant they do correct statistically significant anomalies.

  16. Inflation in the closed FLRW model and the CMB

    Science.gov (United States)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson

    2016-10-01

    Recent cosmic microwave background (CMB) observations put strong constraints on the spatial curvature via estimation of the parameter Ωk assuming an almost scale invariant primordial power spectrum. We study the evolution of the background geometry and gauge-invariant scalar perturbations in an inflationary closed FLRW model and calculate the primordial power spectrum. We find that the inflationary dynamics is modified due to the presence of spatial curvature, leading to corrections to the nearly scale invariant power spectrum at the end of inflation. When evolved to the surface of last scattering, the resulting temperature anisotropy spectrum (CTTl) shows deficit of power at low multipoles (l cosmological parameters remains robust under inclusion of positive spatial curvature.

  17. Development of dual-polarization LEKIDs for CMB observations

    CERN Document Server

    McCarrick, Heather; Ade, Peter A R; Barry, Peter; Bryan, Sean; Che, George; Day, Peter; Doyle, Simon; Flanigan, Daniel; Johnson, Bradley R; Jones, Glenn; LeDuc, Henry G; Limon, Michele; Mauskopf, Philip; Miller, Amber; Tucker, Carole; Zmuidzinas, Jonas

    2016-01-01

    We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented.

  18. Making CMB temperature and polarization maps with Madam

    CERN Document Server

    Keihanen, E; Kurki-Suonio, H; Poutanen, T; Sirvio, A -S

    2009-01-01

    Madam is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the form of a noise prior. The method in its early form was presented in an earlier work by Keihanen et al. (2005). In this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We show results obtained with simulated data. This study is related to Planck LFI activities.

  19. Offset balancing in pseudo-correlation radiometers for CMB measurements

    Science.gov (United States)

    Mennella, A.; Bersanelli, M.; Seiffert, M.; Kettle, D.; Roddis, N.; Wilkinson, A.; Meinhold, P.

    2003-11-01

    Radiometeric CMB measurements need to be highly stable and this stability is best obtained with differential receivers. The residual 1/f noise in the differential output is strongly dependent on the radiometer input offset which can be cancelled using various balancing strategies. In this paper we discuss a software method implemented in the PLANCK-LFI pseudo-correlation receivers which uses a tunable gain modulation factor, r, in the sky-load difference. Numerical simulations and experimental data show how proper tuning of the parameter r ensures a very stable differential output with knee frequencies of the order of few mHz. Various approaches to calculate r using the radiometer total power data are discussed with some examples relevant to PLANCK-LFI. Although the paper focuses on pseudo-correlation receivers and the examples are relative to PLANCK-LFI, the proposed method and its analysis is general and can be applied to a large class of differential radiometric receivers.

  20. Offset balancing in pseudo-correlation radiometers for CMB measurements

    CERN Document Server

    Mennella, A; Seiffert, M; Kettle, D; Roddis, N; Wilkinson, A; Meinhold, P; Mennella, Aniello; Bersanelli, Marco; Seiffert, Michael; Kettle, Danielle; Roddis, Neil; Wilkinson, Althea; Meinhold, Peter

    2003-01-01

    Radiometeric CMB measurements need to be highly stable and this stability is best obtained with differential receivers. The residual 1/f noise in the differential output is strongly dependent on the radiometer input offset which can be cancelled using various balancing strategies. In this paper we discuss a software method implemented in the Planck-LFI pseudo-correlation receivers which uses a tunable "gain modulation factor, r, in the sky-load difference. Numerical simulations and experimental data show how proper tuning of the parameter r ensures a very stable differential output with knee frequencies of the order of few mHz. Various approaches to calculate r using the radiometer total power data are discussed with some examples relevant to Planck-LFI. Although the paper focuses on pseudo-correlation receivers and the examples are relative to Planck-LFI, the proposed method and its analysis is general and can be applied to a large class of differential radiometric receivers.

  1. Blind component separation in wavelet space. Application to CMB analysis

    CERN Document Server

    Moudden, Y; Starck, J L; Delabrouille, J

    2004-01-01

    It is a recurrent issue in astronomical data analysis that observations are unevenly sampled or incomplete maps with missing patches or intentionaly masked parts. In addition, many astrophysical emissions are non stationary processes over the sky. Hence spectral estimation using standard Fourier transforms is no longer reliable. Spectral matching ICA (SMICA) is a source separation method based on covariance matching in Fourier space which is successfully used for the separation of diffuse astrophysical emissions in Cosmic Microwave Background observations. We show here that wavelets, which are standard tools in processing non stationary data, can profitably be used to extend SMICA. Among possible applications, it is shown that gaps in data are dealt with more conveniently and with better results using this extension, wSMICA, in place of the original SMICA. The performances of these two methods are compared on simulated CMB data sets, demonstrating the advantageous use of wavelets.

  2. Future CMB tests of dark matter: Ultralight axions and massive neutrinos

    Science.gov (United States)

    Hložek, Renée; Marsh, David J. E.; Grin, Daniel; Allison, Rupert; Dunkley, Jo; Calabrese, Erminia

    2017-06-01

    Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dark-energy components. CMB data have already shown that ultralight axions (ULAs) with mass in the range 10-32 eV →10-26 eV compose a fraction ≲0.01 of the cosmological critical density. The next Stage-IV CMB experiment (CMB-S4) (assuming a 1 arcmin beam and ˜1 μ K -arcmin noise levels over a sky fraction of 0.4) to the density of ULAs and other dark-sector components is assessed. CMB-S4 data should be ˜10 times more sensitive to the ULA energy density than Planck data alone, across a wide range of ULA masses 10-32≲ma≲10-23 eV , and will probe axion decay constants of fa≈1 016 GeV , at the grand unified scale. CMB-S4 could improve the CMB lower bound on the ULA mass from ˜10-25 eV to 10-23 eV , nearing the mass range probed by dwarf galaxy abundances and dark-matter halo density profiles. These improvements will allow for a multi-σ detection of percent-level departures from CDM over a wide range of masses. Much of this improvement is driven by the effects of weak gravitational lensing on the CMB, which breaks degeneracies between ULAs and neutrinos. We also find that the addition of ULA parameters does not significantly degrade the sensitivity of the CMB to neutrino masses. These results were obtained using the axionCAMB code (a modification to the CAMB Boltzmann code), presented here for public use.

  3. Constraining star formation through redshifted CO and CII emission in archival CMB data

    Science.gov (United States)

    Switzer, Eric

    LCDM is a strikingly successful paradigm to explain the CMB anisotropy and its evolution into observed galaxy clustering statistics. The formation and evolution of galaxies within this context is more complex and only partly characterized. Measurements of the average star formation and its precursors over cosmic time are required to connect theories of galaxy evolution to LCDM evolution. The fine structure transition in CII at 158 um traces star formation rates and the ISM radiation environment. Cold, molecular gas fuels star formation and is traced well by a ladder of CO emission lines. Catalogs of emission lines in individual galaxies have provided the most information about CII and CO to-date but are subject to selection effects. Intensity mapping is an alternative approach to measuring line emission. It surveys the sum of all line radiation as a function of redshift, and requires angular resolution to reach cosmologically interesting scales, but not to resolve individual sources. It directly measures moments of the luminosity function from all emitting objects. Intensity mapping of CII and CO can perform an unbiased census of stars and cold gas across cosmic time. We will use archival COBE-FIRAS and Planck data to bound or measure cosmologically redshifted CII and CO line emission through 1) the monopole spectrum, 2) cross-power between FIRAS/Planck and public galaxy survey catalogs from BOSS and the 2MASS redshift surveys, 3) auto-power of the FIRAS/Planck data itself. FIRAS is unique in its spectral range and all-sky coverage, provided by the space-borne FTS architecture. In addition to sensitivity to a particular emission line, intensity mapping is sensitive to all other contributions to surface brightness. We will remove CMB and foreground spatial and spectral templates using models from WMAP and Planck data. Interlopers and residual foregrounds additively bias the auto-power and monopole, but both can still be used to provide rigorous upper bounds. The

  4. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  5. SpotADAPT

    DEFF Research Database (Denmark)

    Kaulakiene, Dalia; Thomsen, Christian; Pedersen, Torben Bach

    2015-01-01

    Having constantly increasing amounts of data, the analysis of it is often entrusted for a MapReduce framework. The execution of an analytical workload can be cheapened by adopting cloud computing resources, and in particular by using spot instances (cheap, fluctuating price instances) offered by ...

  6. Arc spot grouping: An entanglement of arc spot cells

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Shin, E-mail: kajita.shin@nagoya-u.jp [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Hwangbo, Dogyun; Ohno, Noriyasu [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Tsventoukh, Mikhail M. [Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Barengolts, Sergey A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation)

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  7. TV spots' impact.

    Science.gov (United States)

    El-bakly, S

    1994-09-01

    The Information, Education and Communication (IEC) Center of the State Information Service was established in 1979 for the purpose of providing information to the people on the population issue. The Ministry of Information has accorded the State Information Service free TV and radio air time for family planning dramas and spots. In the early years information campaigns were organized to make people aware of the population problem by slogans, songs, and cartoons. Around 1984 misconceptions about family planning and contraceptives were attacked through a number of TV and radio spots. A few years later 21 spots on specific contraceptive methods were broadcast which were aired for three years over 3000 times. They were extremely successful. The impact of these TV spots was one of the major reasons why the contraceptive prevalence rate increased from 30% in 1984 to 38% in 1988 and 47% in 1992. Spots were also broadcast about the social implications of large families. The TV soap opera "And The Nile Flows On", with the family planning message interwoven into it, was very well received by the target audience. A program entitled "Wedding of the Month" features couples who know family planning well. The most successful radio program is a 15-20 minute long quiz show for residents of the villages where the Select Villages Project is being implemented. The State Information Service has 60 local information centers in the 26 governorates of Egypt that make plans for the family planning campaign. In 1992 the Minya Initiative, a family planning project was implemented in the Minya Governorate. As a result, the contraceptive prevalence rate rose from 22% to 30% over 18 months. A new project, the Select Village Project, was developed in 1993 that replicates the Minya Initiative on the village level in other governorates. This new project that was implemented in sixteen governorates.

  8. Large-scale CMB temperature and polarization cross-spectra likelihoods

    CERN Document Server

    Mangilli, A; Tristram, M

    2015-01-01

    One of the main challenges left for the present and future Cosmic Microwave Background (CMB) experiments is the high precision measurement of the CMB polarization anisotropies at large angular scales. The reionization bump in the CMB polarization power spectra encodes unique informations about the reionization history of the Universe and the inflationary epoch. Such valuable information can be accessed only with an unprecedented accuracy and care on each step of the data analysis and its interpretation. In this paper we present a cross-spectra based approach for the analysis of the CMB data at large angular scales to constrain the reionization optical depth, the tensor to scalar ratio and the amplitude of the primordial scalar perturbations. Using cross-spectra has the advantage to eliminate spurious noise bias and to give a better handle of residual systematics with respect to the pixel-based approach used so far, allowing to efficiently combine the cosmological information encoded in cross-frequency or cros...

  9. Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum

    CERN Document Server

    Shiraishi, Maresuke

    2012-01-01

    Although cosmological observations suggest that the fluctuations of seed fields are almost Gaussian, the possibility of a small deviation of their fields from Gaussianity is widely discussed. Theoretically, there exist numerous inflationary scenarios which predict large and characteristic non-Gaussianities in the primordial perturbations. These model-dependent non-Gaussianities act as sources of the Cosmic Microwave Background (CMB) bispectrum; therefore, the analysis of the CMB bispectrum is very important and attractive in order to clarify the nature of the early Universe. Currently, the impacts of the primordial non-Gaussianities in the scalar perturbations, where the rotational and parity invariances are kept, on the CMB bispectrum have been well-studied. However, for a complex treatment, the CMB bispectra generated from the non-Gaussianities, which originate from the vector- and tensor-mode perturbations and include the violation of the rotational or parity invariance, have never been considered in spite...

  10. B-mode in CMB polarization. What's that and why it is interesting

    CERN Document Server

    Dolgov, A D

    2014-01-01

    Generation of the B-mode of CMB polarization by background of relic gravitational wave is discussed in connection with the BICEP2 measurements. Description of the polarization maps in terms of the eigenvectors of the polarization matrix is considered.

  11. Challenges and prospects for better measurements of the CMB intensity spectrum

    CERN Document Server

    Sironi, Giorgio

    2016-01-01

    Spectral distortions of the Cosmic Microwave Background (CMB) offer the possibility of probing processes which occurred during the evolution of our Universe going back up to Z$\\simeq 10^7$. Unfortunately all the attempts so far carried out for detecting distortions failed. All of them were based on comparisons among absolute measurements of the CMB temperature at different frequencies. We suggest a different approach: measurements of the frequency derivative of the CMB temperature over large frequency intervals instead of observations of the absolute temperature at few, well separated, frequencies as frequently done in the past. The best observing conditions can be found in space. We discuss therefore the perspectives of new observations in the next years from the ground, at very special sites, and in space as independent missions or as part of other CMB projects

  12. Needlet estimation of cross-correlation between CMB lensing maps and LSS

    CERN Document Server

    Bianchini, Federico; Marinucci, Domenico

    2016-01-01

    In this paper we develop a novel needlet-based estimator to investigate the cross-correlation between cosmic microwave background (CMB) lensing maps and large-scale structure (LSS) data. We compare this estimator with its harmonic counterpart and, in particular, we analyze the bias effects of different forms of masking. In order to address this bias, we also implement a MASTER-like technique in the needlet case. The resulting estimator turns out to have an extremely good signal-to-noise performance. Our analysis aims at expanding and optimizing the operating domains in CMB-LSS cross-correlation studies, similarly to CMB needlet data analysis. It is motivated especially by next generation experiments (such as Euclid) which will allow us to derive much tighter constraints on cosmological and astrophysical parameters through cross-correlation measurements between CMB and LSS.

  13. GLESP 2.0: Gauss-Legendre Sky Pixelization for CMB Analysis

    Science.gov (United States)

    Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

    2011-03-01

    GLESP is a pixelization scheme for the cosmic microwave background (CMB) radiation maps. This scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map.

  14. Photon-neutrino scattering and the B-mode spectrum of CMB photons

    CERN Document Server

    Khodagholizadeh, Jafar; Xue, She-Sheng

    2014-01-01

    On the basis of the quantum Boltzmann equation governing the time-evolution of the density matrix of polarized CMB photons in the primordial scalar perturbations of metric, we calculate the B-mode spectrum of polarized CMB photons contributed from the scattering of CMB photons and CNB neutrinos (Cosmic Neutrino Background). We show that such contribution to the B-mode spectrum is negligible for small $\\ell$, however is significantly large for $50 < \\ell< 200$ by plotting our results together with the BICEP2 data. Our study and results imply that in order to theoretically better understand the origin of the observed B-mode spectrum of polarized CMB photons ($r$-parameter), it should be necessary to study the relevant and dominate processes in both tensor and scalar perturbations.

  15. Recovering hidden signals of statistical anisotropy from a masked or partial CMB sky

    CERN Document Server

    Aluri, Pavan K; Rotti, Aditya; Souradeep, Tarun

    2015-01-01

    Any isotropy violating phenomena on cosmic microwave background (CMB) induces off-diagonal correlations in the two-point function. These correlations themselves can be used to estimate the underlying anisotropic signals. Masking due to residual foregrounds, or availability of partial sky due to survey limitation, are unavoidable circumstances in CMB studies. But, masking induces additional correlations, and thus complicates the recovery of such signals. In this work, we discuss a procedure based on bipolar spherical harmonic (BipoSH) formalism to comprehensively addresses any spurious correlations induced by masking and successfully recover hidden signals of anisotropy in observed CMB maps. This method is generic, and can be applied to recover a variety of isotropy violating phenomena. Here, we illustrate the procedure by recovering the subtle Doppler boost signal from simulated boosted CMB skies, which has become possible with the unprecedented full-sky sensitivity of PLANCK probe.

  16. CMB polarization anisotropies from cosmological reionization: extension to B-modes

    CERN Document Server

    Trombetti, Tiziana

    2012-01-01

    The accurate understanding of the ionization history of the Universe plays a fundamental role in modern cosmology. It includes a phase of cosmological reionization after the standard recombination epoch, possibly associated to the early stages of structure and star formation. While the simple "{\\tau}-parametrization" of the reionization process and, in particular, of its imprints on the CMB anisotropy likely represents a sufficiently accurate modelling for the interpretation of current CMB data, a great attention has been recently posed on the accurate computation of the reionization signatures in the CMB for a large variety of astrophysical scenarios and physical processes. This work is aimed at a careful characterization of the imprints introduced in the polarization anisotropy, with particular attention to the B-modes. We have implemented a modified version of CAMB, the Cosmological Boltzmann code for computing the angular power spectrum (APS) of the anisotropies of the CMB, to introduce the hydrogen and h...

  17. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    Our velocity relative to the rest frame of the cosmic microwave background (CMB) generates a dipole temperature anisotropy on the sky whichhas been well measured for more than 30 years, and has an accepted amplitude of v/c = 1.23 x 10-3, or v = 369 km-1. In addition to thissignal generated...... by Doppler boosting of the CMB monopole, our motion also modulates and aberrates the CMB temperature fluctuations (as wellas every other source of radiation at cosmological distances). This is an order 10-3 effect applied to fluctuations which are already one part inroughly 105, so it is quite small....... Nevertheless, it becomes detectable with the all-sky coverage, high angular resolution, and low noise levels of thePlanck satellite. Here we report a first measurement of this velocity signature using the aberration and modulation eects on the CMB temperatureanisotropies, finding a component in the known...

  18. A naturally-occurring 'cold earth' spot in Northern China.

    Science.gov (United States)

    Niu, Fujun; Cheng, Guodong; Niu, Yonghong; Zhang, Mingyi; Luo, Jing; Lin, Zhanju

    2016-09-29

    Permafrost is determined to a large extent by the Earth's surface temperature, therefore it distributes mainly in high altitude and latitude regions. However, stable, warm (about -1 °C) permafrost occurs within a scree slope in northern China that is more than 600 km south of the southernmost limit of latitudinal permafrost on the Eurasian Continent. It is at an elevation of only 900 m above sea level (ASL). The area has a mean annual air temperature (MAAT) of 6 to 8 °C. Thermal processes of the scree slope, investigated through field monitoring and numerical simulation, showed that the permafrost is caused by winter air convection within the porous rock deposits and is stable as air convection does not occur in summer time. The deposit is covered by a 30-cm-thick peaty soil layer dated (carbon C-14) to between 1,000 to 1,600 years ago. The layer also contributes to the permafrost's existence due to the peat's thermal conductivity offset when frozen and thawed. The existence of permafrost under such warm climatic conditions confirms the effectiveness of using crushed rock layer as basement or slope cover to protect the warm permafrost subgrade of the recently-constructed Qinghai-Tibet Railway (QTR), even under the predicted climate warming conditions.

  19. Cosmological parameter estimation with QUaD CMB polarization and temperature experiment

    OpenAIRE

    Memari, Yasin

    2009-01-01

    In this thesis we examine the theoretical origin and statistical features of the Cosmic Microwave Background radiation. We particularly focus on the CMB power spectra and cosmological parameter estimation from QUaD CMB experiment data in order to derive implications for the concordance cosmological model. In chapter 4 we present a detailed parameter estimation analysis of the combined polarization and temperature power spectra from the second and third season observations of...

  20. Implications of primordial power spectra with statistical anisotropy on CMB temperature fluctuation and polarizations

    CERN Document Server

    Chang, Zhe

    2013-01-01

    Both the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck observations reported the hemispherical asymmetry of the cosmic microwave background (CMB) temperature fluctuation. The hemispherical asymmetry might be stemmed from the primordial statistical anisotropy during the inflationary era of the universe. In this paper, we study possible implications of the primordial power spectra with dipolar anisotropy on the CMB temperature fluctuation and polarizations. We explicitly show that the statistical dipolar anisotropy may induce the off-diagonal (\\(\\ell'\

  1. MAPCUMBA : a fast iterative multi-grid map-making algorithm for CMB experiments

    OpenAIRE

    Doré, O; Teyssier, R.; Bouchet, F. R.; Vibert, D.; Prunet, S.

    2001-01-01

    The data analysis of current Cosmic Microwave Background (CMB) experiments like BOOMERanG or MAXIMA poses severe challenges which already stretch the limits of current (super-) computer capabilities, if brute force methods are used. In this paper we present a practical solution to the optimal map making problem which can be used directly for next generation CMB experiments like ARCHEOPS and TopHat, and can probably be extended relatively easily to the full PLANCK case. This solution is based ...

  2. Sensitivity and foreground modelling for large-scale CMB B-mode polarization satellite missions

    CERN Document Server

    Remazeilles, M; Eriksen, H K K; Wehus, I K

    2015-01-01

    Measurements of large-scale B-mode polarization in the cosmic microwave background (CMB) are a fundamental goal of current and future CMB experiments. However, because of the much higher instrumental sensitivity, CMB experiments will be more sensitive to any imperfect modelling of the Galactic foreground polarization in the estimation of the primordial B-mode signal. We compare the sensitivity to B-modes for different concepts of CMB satellite missions (LiteBIRD, COrE, COrE+, PRISM, EPIC, PIXIE) in the presence of Galactic foregrounds that are either correctly or incorrectly modelled. We quantify the impact on the tensor-to-scalar parameter of imperfect foreground modelling in the component separation process. Using Bayesian parametric fitting and Gibbs sampling, we perform the separation of the CMB and the Galactic foreground B-mode polarization. The resulting CMB B-mode power spectrum is used to compute the likelihood distribution of the tensor-to-scalar ratio. We focus the analysis to the very large angula...

  3. Testing the ultra-light axion hypothesis with CMB-SIV

    Science.gov (United States)

    Grin, Daniel; Hlozek, Renee; Marsh, David

    2017-01-01

    Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dark-energy components. CMB data have already shown that ultra-light axions (ULAs) with mass in the range 10-32 eV→10-26 eV compose a fraction constants of fa≈1016 GeV, at the grand unified scale. CMB-S4 could improve the CMB lower bound on the ULA mass from ˜10-25 eV to 10-23 eV, nearing the mass range probed by dwarf galaxy abundances and dark-matter halo density profiles. These improvements will allow for a multi-σ detection of percent-level departures from CDM over a wide range of masses. Much of this improvement is driven by the effects of weak gravitational lensing on the CMB, which breaks degeneracies between ULAs and neutrinos. We also find that the addition of ULA parameters does not significantly degrade the sensitivity of the CMB to neutrino masses. These results were obtained using the axionCAMB code (a modification to the CAMB Boltzmann code), presented here for public use.

  4. Looking through the same lens: shear calibration for LSST, Euclid & WFIRST with stage 4 CMB lensing

    CERN Document Server

    Schaan, Emmanuel; Eifler, Tim; Doré, Olivier; Miyatake, Hironao; Rhodes, Jason; Spergel, David N

    2016-01-01

    The next generation weak lensing surveys (i.e., LSST, Euclid and WFIRST) will require exquisite control over systematic effects. In this paper, we address shear calibration and present the most realistic forecast to date for LSST/Euclid/WFIRST and CMB lensing from a stage 4 CMB experiment (CMB S4). We use the CosmoLike code to simulate a joint analysis of all the two-point functions of galaxy density, galaxy shear and CMB lensing convergence. We include the full Gaussian and non-Gaussian covariances and explore the resulting joint likelihood with Monte Carlo Markov Chains. We constrain shear calibration biases while simultaneously varying cosmological parameters, galaxy biases and photometric redshift uncertainties. We find that CMB lensing from CMB S4 enables the calibration of the shear biases down to 0.2% - 3% in 10 tomographic bins for LSST (below the ~0.5% requirements in most tomographic bins), down to 0.4% - 2.4% in 10 bins for Euclid and 0.6% - 3.2% in 10 bins for WFIRST. For a given lensing survey, t...

  5. Bias to CMB lensing measurements from the bispectrum of large-scale structure

    Science.gov (United States)

    Böhm, Vanessa; Schmittfull, Marcel; Sherwin, Blake D.

    2016-08-01

    The rapidly improving precision of measurements of gravitational lensing of the cosmic microwave background (CMB) also requires a corresponding increase in the precision of theoretical modeling. A commonly made approximation is to model the CMB deflection angle or lensing potential as a Gaussian random field. In this paper, however, we analytically quantify the influence of the non-Gaussianity of large-scale structure (LSS) lenses, arising from nonlinear structure formation, on CMB lensing measurements. In particular, evaluating the impact of the nonzero bispectrum of large-scale structure on the relevant CMB four-point correlation functions, we find that there is a bias to estimates of the CMB lensing power spectrum. For temperature-based lensing reconstruction with CMB stage III and stage IV experiments, we find that this lensing power spectrum bias is negative and is of order 1% of the signal. This corresponds to a shift of multiple standard deviations for these upcoming experiments. We caution, however, that our numerical calculation only evaluates two of the largest bias terms and, thus, only provides an approximate estimate of the full bias. We conclude that further investigation into lensing biases from nonlinear structure formation is required and that these biases should be accounted for in future lensing analyses.

  6. A bias to CMB lensing measurements from the bispectrum of large-scale structure

    CERN Document Server

    Böhm, Vanessa; Sherwin, Blake D

    2016-01-01

    The rapidly improving precision of measurements of gravitational lensing of the Cosmic Microwave Background (CMB) also requires a corresponding increase in the precision of theoretical modeling. A commonly made approximation is to model the CMB deflection angle or lensing potential as a Gaussian random field. In this paper, however, we analytically quantify the influence of the non-Gaussianity of large-scale structure lenses, arising from nonlinear structure formation, on CMB lensing measurements. In particular, evaluating the impact of the non-zero bispectrum of large-scale structure on the relevant CMB four-point correlation functions, we find that there is a bias to estimates of the CMB lensing power spectrum. For temperature-based lensing reconstruction with CMB Stage-III and Stage-IV experiments, we find that this lensing power spectrum bias is negative and is of order one percent of the signal. This corresponds to a shift of multiple standard deviations for these upcoming experiments. We caution, howeve...

  7. Poisson Spot with Magnetic Levitation

    Science.gov (United States)

    Hoover, Matthew; Everhart, Michael; D'Arruda, Jose

    2010-01-01

    In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.

  8. Great Red Spot (GRS)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    A huge permanent anticyclone in Jupiter's southern hemisphere, visible as a reddish oval at just over 20 °S. The earliest unequivocal observation was by Heinrich Schwabe in 1831 (the often-quoted sighting by Robert Hooke in 1664 now seems to have been of a similar but different spot). The GRS became a striking feature around 1880, when it developed a deep red coloration. It was also prominent in ...

  9. Oscillations in the CMB from Axion Monodromy Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael; /Texas U.; McAllister, Liam; Pajer, Enrico; /Cornell U., Phys. Dept.; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.; Xu, Gang; /Cornell U., Phys. Dept.

    2011-12-01

    We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.

  10. Bulk flows and CMB dipole anisotropy in cosmological void models

    CERN Document Server

    Tomita, K

    1999-01-01

    The observational behavior of spherically symmetric inhomogeneous cosmological models is studied, which consist of inner and outer homogeneous regions connected by a shell or an intermediate self-similar region. It is assumed that the present matter density parameter in the inner region is smaller than that in the outer region, and the present Hubble parameter in the inner region is larger than that in the outer region. Then galaxies in the inner void-like region can be seen to have a bulk motion relative to matter in the outer region, when we observe them at a point O deviated from the center C of the inner region. Their velocity $v_p$ in the CD direction is equal to the difference of two Hubble parameters multiplied by the distance between C and O. It is found also that the velocity $v_d$ corresponding to CMB dipole anisotropy observed at O is by a factor $\\approx 10$ small compared with $v_p$. This behavior of $v_d$ and $v_p$ may explain the puzzling situation of the cosmic flow of cluster galaxies, when t...

  11. The Atacama Cosmology Telescope: CMB Polarization at $200<\\ell<9000$

    CERN Document Server

    Naess, Sigurd; McMahon, Jeff; Niemack, Michael D; Addison, Graeme E; Ade, Peter A R; Allison, Rupert; Amiri, Mandana; Baker, Andrew; Battaglia, Nick; Beall, James A; de Bernardis, Francesco; Bond, J Richard; Britton, Joe; Calabrese, Erminia; Cho, Hsiao-mei; Coughlin, Kevin; Crichton, Devin; Das, Sudeep; Datta, Rahul; Devlin, Mark J; Dicker, Simon R; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W; Fox, Anna E; Gallardo, Patricio; Grace, Emily; Gralla, Megan; Hajian, Amir; Halpern, Mark; Henderson, Shawn; Hill, J Colin; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Ho, Patty; Hubmayr, Johannes; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Irwin, Kent; Jackson, Rebecca; Klein, Jeff; Koopman, Brian; Kosowsky, Arthur; Li, Dale; Louis, Thibaut; Lungu, Marius; Madhavacheril, Mathew; Marriage, Tobias A; Maurin, Loïc; Menanteau, Felipe; Moodley, Kavilan; Munson, Charles; Newburgh, Laura; Nibarger, John; Nolta, Michael R; Page, Lyman A; Pappas, Christine; Partridge, Bruce; Rojas, Felipe; Schmitt, Benjamin; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Simon, Sara; Spergel, David N; Staggs, Suzanne T; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Van Engelen, Alexander; Ward, Jon; Wollack, Edward J

    2014-01-01

    We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3'$. The map noise levels in the four regions are between 11 and 17 $\\mu$K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range $200<\\ell<3000$, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sou...

  12. Constraining quantum collapse inflationary models with CMB data

    Science.gov (United States)

    Benetti, Micol; Landau, Susana J.; Alcaniz, Jailson S.

    2016-12-01

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.

  13. A Guide to Designing Future Ground-based CMB Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. L.K. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Errard, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Dvorkin, C. [Inst. for Advanced Study, Princeton, NJ (United States); Kuo, C. L. [Stanford Univ., CA (United States); Kavli Inst. for Particle Astrophysics and Cosmology, Menlo, Park, CA (United States); Lee, A. T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDonald, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zahn, O. [Univ. of California, Berkeley and Lawrence Berkeley National Lab. (LBNL), CA (United States)

    2014-02-18

    In this follow-up work to the High Energy Physics Community Summer Study 2013 (HEP CSS 2013, a.k.a. Snowmass), we explore the scientific capabilities of a future Stage-IV Cosmic Microwave Background polarization experiment (CMB-S4) under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties in cosmological parameters in vΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark-energy equation of state, dark-matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the Baryon Acoustic Oscillation (BAO) signal as measured by DESI to constrain parameters that would benefit from low redshift information. We find the following best 1-σ constraints: σ(Mv ) = 15 meV, σ(Neff ) = 0.0156, Dark energy Figure of Merit = 303, σ(pann) = 0.00588 x 3 x 10-26 cm3/s/GeV, σ( ΩK) = 0.00074, σ(ns) = 0.00110, σ( αs) = 0.00145, and σ(r) = 0.00009. We also detail the dependences of the parameter constraints on detector count, resolution, and sky coverage.

  14. CMB quenching of high-redshift radio-loud AGNs

    CERN Document Server

    Ghisellini, G; Ciardi, B; Sbarrato, T; Gallo, E; Tavecchio, F; Celotti, A

    2015-01-01

    The very existence of a dozen of high-redshift (z>4) blazars indicates that a much larger population of misaligned powerful jetted AGN was already in place when the Universe was <1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High redshift blazars themselves seem to be failing in producing extended radio-lobes, raising questions about the connection between such class and the vaster population of radio-galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high redshift blazars and in their parent population, possibly accounting for the apparently missing misaligned counterparts of high redshift blazars. We then model the spectral energy distribution of blazar lobes following simple prescriptions, finding that most of them should be detectable by low frequency deep radio observations, e.g., by LOw-Frequency ARray for radio as...

  15. On the excess of power in high resolution CMB experiments

    CERN Document Server

    Diego-Rodriguez, J M; Martinez-Gonalez, E; Silk, J

    2004-01-01

    We revisit the possibility that an excess in the CMB power spectrum at small angular scales (CBI, ACBAR) can be due to galaxy clusters (or compact sources in general). We perform a Gaussian analysis of ACBAR-like simulated data based on wavelets. We show how models with a significant excess should show a clear non-Gaussian signal in the wavelet space. In particular, a value of the normalization sigma_8 = 1 would imply a highly significant skewness and kurtosis in the wavelet coefficients at scales around 3 arcmin. Models with a more moderate excess also show a non-Gaussian signal in the simulated data. We conclude that current data (ACBAR) should show this signature if the excess is to be due to the SZ effect. Otherwise, the reason for that excess should be explained by some systematic effect. The significance of the non-Gaussian signal depends on the cluster model but it grows with the surveyed area. Non-Gaussianity test performed on incoming data sets should reveal the presence of a cluster population even ...

  16. Probing Modified Gravity Theories with ISW and CMB Lensing

    CERN Document Server

    Munshi, D; Renzi, A; Heavens, A; Coles, P

    2014-01-01

    The imprint of the cross-correlation of the Integrated Sachs-Wolfe effect (ISW) and lensing of the cosmic microwave background (CMB) radiation has recently been detected in the bispectrum of temperature maps. In this paper, we use the optimised skew-spectrum as well as skew-spectra associated with Minkowski Functionals (MFs) to test the possibility of using this signal to detect deviations in the theory of gravity away from General Relativity (GR). We find that the although both statistics can put constraints on modified gravity, the optimised skew-spectra are especially sensitive to the parameter $\\rB_0$ that denotes the the {\\em Compton wavelength} of the scalaron at the present epoch, and both can be used to put stringent constraints on any departure from GR, or pinpoint any systematics in the data. We investigate three modified gravity theories, namely: the Post-Parametrised Friedmanian (PPF) formalism; the Hu-Sawicki (HS) model; and the Bertschinger-Zukin (BZ) formalism. Employing a likelihood analysis f...

  17. A 200-GHz telescope unit for the QUIJOTE CMB Experiment

    Science.gov (United States)

    Sanquirce, Rubén.; Etxeita, Borja; Murga, Gaizka; Fernandez, Esther; Sainz, Iñaki; Sánchez, Vicente; Viera-Curbelo, Teodora A.; Gómez, María. F.; Aguiar-Gonzalez, Marta; Hoyland, Roger J.; Pérez de Taoro, Ángeles R.; Vega, Afrodisio; Rebolo-López, Rafael; Rubiño, Jose Alberto

    2014-07-01

    Experiment QUIJOTE (Q-U-I JOint TEnerife) is a scientific collaboration, leaded by the Instituto de Astrofísica de Canarias (IAC), which can measure the polarization of the Cosmic Microwave Background (CMB) in the range of frequency up to 200 GHz, at angular scales of 1°. The project is composed of 2 telescopes and 3 instruments, located in Teide Observatory (Tenerife, Spain). After the successful delivery of the first telescope (operative since 2012), Idom is currently involved on the turn key supply of the second telescope (phase II). The work started in June 2013 and it will be completed in a challenging period of 12 months (operative at the beginning of July 2014), including design, factory assembly and testing, transport and final commissioning on site. This second unit will improve the opto-mechanical performance and maintainability. The telescope will have an unlimited rotation capacity in azimuth axis and a range of movement between 25°-95° in elevation axis. An integrated rotary joint will transmit fluid, power and signal to the rotary elements. The pointing and tracking accuracy will be significantly below to specification: 1.76 arcmin and 44 arcsec, respectively. This project completes Idoḿs contribution during phase I, which also comprises the integration and functional tests for the 5 polarimeters of the first instrument in Bilbao headquarters, and the design and supervision of the building which protects both telescopes, including the installation and commissioning of the mechanism for shutters aperture.

  18. String Theory clues for the low-$\\ell$ CMB ?

    CERN Document Server

    Kitazawa, N.

    2015-01-01

    "Brane Supersymmetry Breaking" is a peculiar string-scale mechanism that can unpair Bose and Fermi excitations in orientifold models. It results from the simultaneous presence, in the vacuum, of collections of D-branes and orientifolds that are not mutually BPS, and is closely tied to the scale of string excitations. It also leaves behind, for a mixing of dilaton and internal breathing mode, an exponential potential that is just too steep for a scalar to emerge from the initial singularity while descending it. As a result, in this class of models the scalar can generically bounce off the exponential wall, and this dynamics brings along, in the power spectrum, an infrared depression typically followed by a pre-inflationary peak. We elaborate on a possible link between this type of bounce and the low-$\\ell$ end of the CMB angular power spectrum. For the first 32 multipoles, one can reach a 50 % reduction in $\\chi^{\\,2}$ with respect to the standard $\\Lambda$CDM setting.

  19. An optimal estimator for resonance bispectra in the CMB

    CERN Document Server

    Münchmeyer, Moritz; Wandelt, Benjamin D

    2014-01-01

    We propose an (optimal) estimator for a CMB bispectrum containing logarithmically spaced oscillations. There is tremendous theoretical interest in such bispectra, and they are predicted by a plethora of models, including axion monodromy models of inflation and initial state modifications. The number of resolved logarithmical oscillations in the bispectrum is limited due to the discrete resolution of the multipole bispectrum. We derive a simple relation between the maximum number of resolved oscillations and the frequency. We investigate several ways to factorize the primordial bispectrum, and conclude that a one dimensional expansion in the sum of the momenta $\\sum k_i = k_t$ is the most efficient and flexible approach. We compare the expansion to the exact result in multipole space and show for $\\omega_{\\rm eff}=100$ that $\\mathcal{O}(10^3)$ modes are sufficient for an accurate reconstruction. We compute the expected $\\sigma_{f_{\\rm NL}}$ and find that within an effective field theory (EFT) the overall signa...

  20. Spin-SILC: CMB polarisation component separation with spin wavelets

    CERN Document Server

    Rogers, Keir K; Leistedt, Boris; McEwen, Jason D; Pontzen, Andrew

    2016-01-01

    We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation $E$ and $B$ modes from raw multifrequency Stokes $Q$ and $U$ measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal $P = Q + iU$. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal $P = Q + iU$ and in the underlying $E$ and $B$ modes, therefore providing the ability to perform component separation and $E$-$B$ decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly reco...

  1. Cosmological constant, violation of cosmological isotropy and CMB

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Federico R.; Zhitnitsky, Ariel R., E-mail: urban@phas.ubc.ca, E-mail: arz@physics.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2009-09-01

    We suggest that the solution to the cosmological vacuum energy puzzle does not require any new field beyond the standard model, but rather can be explained as a result of the interaction of the infrared sector of the effective theory of gravity with standard model fields. The cosmological constant in this framework can be presented in terms of QCD parameters and the Hubble constant H as follows, ε{sub vac} ≅ H⋅m{sub q}( q-bar q)/m{sub η'} ≅ (4.3⋅10{sup −3}eV){sup 4}, which is amazingly close to the observed value today. In this work we explain how this proposal can be tested by analyzing CMB data. In particular, knowing the value of the observed cosmological constant fixes univocally the smallest size of the spatially flat, constant time 3d hypersurface which, for instance in the case of an effective 1-torus, is predicted to be around 74 Gpc. We also comment on another important prediction of this framework which is a violation of cosmological isotropy. Such anisotropy is indeed apparently observed by WMAP, and will be confirmed (or ruled out) by future PLANCK data.

  2. Cosmological constant, violation of cosmological isotropy and CMB

    CERN Document Server

    Urban, Federico R

    2009-01-01

    We suggest that the solution to the cosmological vacuum energy puzzle does not require any new field beyond the standard model, but rather can be explained as a result of the interaction of the infrared sector of the effective theory of gravity with standard model fields. The cosmological constant in this framework can be presented in terms of QCD parameters and the Hubble constant $H$ as follows, $\\epsilon_{vac} \\sim H \\cdot m_q\\la\\bar{q}q\\ra /m_{\\eta'} \\sim (4.3\\cdot 10^{-3} \\text{eV})^4$, which is amazingly close to the observed value today. In this work we explain how this proposal can be tested by analyzing CMB data. In particular, knowing the value of the observed cosmological constant fixes univocally the smallest size of the spatially flat, constant time 3d hypersurface which, for instance in the case of an effective 1-torus, is predicted to be around 74 Gpc. We also comment on another important prediction of this framework which is a violation of cosmological isotropy. Such anisotropy is indeed appar...

  3. CMB lensing tomography with the DES Science Verification galaxies

    CERN Document Server

    Giannantonio, T; Cawthon, R; Omori, Y; Crocce, M; Elsner, F; Leistedt, B; Dodelson, S; Benoit-Levy, A; Kirk, D; Bauer, A H; Benson, B A; Bernstein, G M; Carretero, J; Crawford, T M; Crittenden, R; Gaztanaga, E; Holder, G; Huterer, D; Jain, B; Krause, E; Peiris, H V; Percival, W J; Reichardt, C L; Ross, A J; Soergel, B; Stark, A; Story, K T; Vieira, J D; Weller, J; Abbott, T; Abdalla, F B; Allam, S; Armstrong, R; Banerji, M; Bernstein, R A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Carlstrom, J E; Rosell, A Carnero; Kind, M Carrasco; Castander, F J; Chang, C L; Cunha, C E; da Costa, L N; D'Andrea, C B; DePoy, D L; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Evrard, A E; Neto, A Fausti; Fernandez, E; Finley, D A; Flaugher, B; Frieman, J; Gerdes, D; Gruen, D; Gruendl, R A; Gutierrez, G; Holzapfel, W L; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lima, M; March, M; Marshall, J L; Martini, P; Melchior, P; Miquel, R; Mohr, J J; Nichol, R C; Nord, B; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Rykoff, E S; Sako, M; Saliwanchik, B R; Sanchez, E; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Vikram, V; Walker, A R; Wechsler, R H; Zuntz, J

    2016-01-01

    We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range $0.2 $$2 \\sigma$) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the $z<1.2$ universe is $0.73 \\pm 0.16$ times as large as predicted in the LCDM Planck cosmology, a $1.7\\sigma$ deviation.

  4. How to measure CMB power spectra without losing information

    CERN Document Server

    Tegmark, M

    1997-01-01

    A new method for estimating the angular power spectrum C_l from cosmic microwave background (CMB) maps is presented, which has the following desirable properties: (1) It is unbeatable in the sense that no other method can measure C_\\l with smaller error bars. (2) It is quadratic, which makes the statistical properties of the measurements easy to compute and use for estimation of cosmological parameters. (3) It is computationally faster than rival high-precision methods such as the nonlinear maximum-likelihood technique, with the crucial steps scaling as n^2 rather than n^3, where n is the number of map pixels. (4) It is applicable to any survey geometry whatsoever, with arbitraty regions masked out and arbitrary noise behaviour. (5) It is not a "black-box" method, but quite simple to understand intuitively: it corresponds to a high-pass filtering and edge softening of the original map followed by a straight expansion in truncated spherical-harmonics. It is argued that this method is computationally feasible e...

  5. Modified Gravity: the CMB, Weak Lensing and General Parameterisations

    CERN Document Server

    Thomas, Shaun A; Weller, Jochen

    2011-01-01

    We examine general physical parameterisations for viable gravitational models in the $f(R)$ framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass $M(a)$ we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation $\\mu(a,k)$ and the ratio of the Newtonian potentials $\\eta(a,k)$. However, by comparing the aforementioned model against other viable scalaron theories we highlight that the common form of $\\mu(a,k)$ and $\\eta(a,k)$ in the literature does not accurately represent $f(R)$ behaviour. We subsequently construct an improved description for the scalaron mass (and therefore $\\mu(a,k)$ and $\\eta(a,k)$) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spect...

  6. Constraining quantum collapse inflationary models with CMB data

    CERN Document Server

    Benetti, Micol; Alcaniz, Jailson S

    2016-01-01

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmolog...

  7. Galactic foreground contribution to the BEAST CMB Anisotropy Maps

    CERN Document Server

    Mejia, J; Burigana, C; Childers, J; Figueiredo, N; Kangas, M; Lubin, P; Maino, D; Mandolesi, N; Marvil, J; Meinhold, P; O'Dwyer, I; O'Neill, H; Platania, P; Seiffert, M; Stebor, N; Tello, C A S; Villela, T; Wandelt, B; Wünsche, C A; Mej\\'{\\i}a, Jorge; Bersanelli, Marco; Burigana, Carlo; Childers, Jeff; Figueiredo, Newton; Kangas, Miikka; Lubin, Philip; Maino, Davide; Mandolesi, Nazzareno; Marvil, Josh; Meinhold, Peter; Dwyer, Ian O'; Neill, Hugh O'; Platania, Paola; Seiffert, Michael; Stebor, Nathan; Tello, Camilo; Villela, Thyrso; Wandelt, Benjamin; Wuensche, Carlos Alexandre

    2004-01-01

    We report limits on the Galactic foreground emission contribution to the Background Emission Anisotropy Scanning Telescope (BEAST) Ka- and Q-band CMB anisotropy maps. We estimate the contribution from the cross-correlations between these maps and the foreground emission templates of an H${\\alpha}$ map, a de-striped version of the Haslam et al. 408 MHz map, and a combined 100 $\\mu$m IRAS/DIRBE map. Our analysis samples the BEAST $\\sim10^\\circ$ declination band into 24 one-hour (RA) wide sectors with $\\sim7900$ pixels each, where we calculate: (a) the linear correlation coefficient between the anisotropy maps and the templates; (b) the coupling constants between the specific intensity units of the templates and the antenna temperature at the BEAST frequencies and (c) the individual foreground contributions to the BEAST anisotropy maps. The peak sector contributions of the contaminants in the Ka-band are of 56.5% free-free with a coupling constant of $8.3\\pm0.4$ $\\mu$K/R, and 67.4% dust with $45.0\\pm2.0$ $\\mu$K/...

  8. EBEX: A balloon-borne CMB polarization experiment

    CERN Document Server

    Reichborn-Kjennerud, Britt; Ade, Peter; Aubin, Françcois; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, William; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Jaffe, Andrew; Johnson, Bradley; Jones, Terry; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Meng, Xiaofan; Miller, Amber; Milligan, Michael; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Sagiv, Ilan; Smecher, Graeme; Stivoli, Federico; Stompor, Radek; Tran, Huan; Tristram, Matthieu; Tucker, Gregory S; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle

    2010-01-01

    EBEX is a NASA-funded balloon-borne experiment designed to measure the polarization of the cosmic microwave background (CMB). Observations will be made using 1432 transition edge sensor (TES) bolometric detectors read out with frequency multiplexed SQuIDs. EBEX will observe in three frequency bands centered at 150, 250, and 410 GHz, with 768, 384, and 280 detectors in each band, respectively. This broad frequency coverage is designed to provide valuable information about polarized foreground signals from dust. The polarized sky signals will be modulated with an achromatic half wave plate (AHWP) rotating on a superconducting magnetic bearing (SMB) and analyzed with a fixed wire grid polarizer. EBEX will observe a patch covering ~1% of the sky with 8' resolution, allowing for observation of the angular power spectrum from \\ell = 20 to 1000. This will allow EBEX to search for both the primordial B-mode signal predicted by inflation and the anticipated lensing B-mode signal. Calculations to predict EBEX constrain...

  9. CMB Maximum Temperature Asymmetry Axis: Alignment with Other Cosmic Asymmetries

    CERN Document Server

    Mariano, Antonio

    2012-01-01

    We use a global pixel based estimator to identify the axis of the residual Maximum Temperature Asymmetry (MTA) (after the dipole subtraction) of the WMAP 7 year Internal Linear Combination (ILC) CMB temperature sky map. The estimator is based on considering the temperature differences between opposite pixels in the sky at various angular resolutions (4 degrees-15 degrees and selecting the axis that maximizes this difference. We consider three large scale Healpix resolutions (N_{side}=16 (3.7 degrees), N_{side}=8 (7.3 degrees) and N_{side}=4 (14.7 degrees)). We compare the direction and magnitude of this asymmetry with three other cosmic asymmetry axes (\\alpha dipole, Dark Energy Dipole and Dark Flow) and find that the four asymmetry axes are abnormally close to each other. We compare the observed MTA axis with the corresponding MTA axes of 10^4 Gaussian isotropic simulated ILC maps (based on LCDM). The fraction of simulated ILC maps that reproduces the observed magnitude of the MTA asymmetry and alignment wit...

  10. El spot electoral negativo

    Directory of Open Access Journals (Sweden)

    Palma Peña-Jiménez

    2011-01-01

    Full Text Available l spot político tiene durante la campaña un objetivo final inequívoco: la consecución del voto favorable. Se dirige al cuerpo electoral a través de la televisión y de Internet, y presenta, en muchos casos, un planteamiento negativo, albergando mensajes destinados a la crítica frontal contra el adversario, más que a la exposición de propuestas propias. Este artículo se centra en el análisis del spot electoral negativo, en aquellas producciones audiovisuales construidas sin más causa que la reprobación del contrincante. Se trata de vídeos que, lejos de emplearse en difundir las potencialidades de la organización y las virtudes de su candidato –además de su programa electoral–, consumen su tiempo en descalificar al oponente mediante la transmisión de mensajes, muchas veces, ad hominem. Repasamos el planteamiento negativo del spot electoral desde su primera manifestación, que en España data de 1996, año de emisión del conocido como vídeo del dóberman, sin olvidar otros ejemplos que completan el objeto de estudio.

  11. Spot- Zombie Filtering System

    Directory of Open Access Journals (Sweden)

    Arathy Rajagopal

    2014-01-01

    Full Text Available A major security challenge on the Internet is the existence of the large number of compromised machines. Such machines have been increasingly used to launch various security attacks including spamming and spreading malware, DDoS, and identity theft. These compromised machines are called “Zombies”. In general E-mail applications and providers uses spam filters to filter the spam messages. Spam filtering is a technique for discriminating the genuine message from the spam messages. The attackers send the spam messages to the targeted machine by exalting the filters, which causes the increase in false positives and false negatives. We develop an effective spam zombie detection system named SPOT by monitoring outgoing messages of a network. SPOT focuses on the number of outgoing messages that are originated or forwarded by each computer on a network to identify the presence of Zombies. SPOT is designed based on a powerful statistical tool called Sequential Probability Ratio Test, which has bounded false positive and false negative error rates.

  12. Spot- Zombie Filtering System

    Directory of Open Access Journals (Sweden)

    Arathy Rajagopal

    2015-10-01

    Full Text Available A major security challenge on the Internet is the existence of the large number of compromised machines. Such machines have been increasingly used to launch various security attacks including spamming and spreading malware, DDoS, and identity theft. These compromised machines are called "Zombies". In general E-mail applications and providers uses spam filters to filter the spam messages. Spam filtering is a technique for discriminating the genuine message from the spam messages. The attackers send the spam messages to the targeted machine by exalting the filters, which causes the increase in false positives and false negatives. We develop an effective spam zombie detection system named SPOT by monitoring outgoing messages of a network. SPOT focuses on the number of outgoing messages that are originated or forwarded by each computer on a network to identify the presence of Zombies. SPOT is designed based on a powerful statistical tool called Sequential Probability Ratio Test, which has bounded false positive and false negative error rates.

  13. Una revisi\\'on a la teor\\'ia b\\'asica del CMB (A review of the basic theory of CMB)

    CERN Document Server

    Mastache, Jorge

    2014-01-01

    Spanish: La Cosmolog\\'ia esta progresando a pasos agigantados gracias a la cantidad espectacular de datos observacionales que se obtienen tanto de los experimentos en tierra como sat\\'elites. Un papel fundamental es desempe\\~ndo por las observaciones del Fondo C\\'osmico de Microondas (CMB por sus siglas en ingl\\'e, Cosmic Microwave Background), la cual nos proporciona la prueba observacional m\\'as directa de los inicios del Universo. Las observaciones de la temperatura y las anisotrop\\'ias en el CMB han jugado un papel fundamental en la definici\\'on del modelo cosmol\\'ogico. Esta contribuci\\'on tiene como objetivo resumir algunos de los conceptos b\\'asicos que hay detr\\'as de la f\\'isica del CMB. La mayor parte de los ingredientes del modelo cosmol\\'ogico est\\'andar son poco conocidos en t\\'erminos de la f\\'isica fundamental, por efemplo, la materia oscura y la energ\\'ia oscura. Se discute c\\'omo las observaciones actuales abordan algunas de estas cuestiones. English: The cosmic microwave background (CMB) pro...

  14. Cold Spots in Neonatal Incubators Are Hot Spots for Microbial Contamination

    NARCIS (Netherlands)

    de Goffau, Marcus C.; Bergman, Klasien A.; de Vries, Hendrik J.; Meessen, Nico E. L.; Degener, John E.; van Dijl, Jan Maarten; Harmsen, Hermie J. M.

    2011-01-01

    Thermal stability is essential for the survival and well-being of preterm neonates. This is achieved in neonatal incubators by raising the ambient temperature and humidity to sufficiently high levels. However, potentially pathogenic microorganisms also can thrive in such warm and humid environments.

  15. Over-expressed CmbT multidrug resistance transporter improves the fitness of Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2013-01-01

    Full Text Available The influence of the over-expression of CmbT multidrug resistance transporter on the growth rate of Lactococcus lactis NZ9000 was studied. L. lactis is a lactic acid bacteria (LAB widely used as a starter culture in dairy industry. Recently characterized CmbT MDR transporter in L. lactis confers resistance to a wide variety of toxic compounds as well as to some clinically relevant antibiotics. In this study, the cmbT gene was over-expressed in the strain L. lactis NZ9000 in the presence of nisin inducer. Over-expression of the cmbT gene in L. lactis NZ9000 was followed by RT-PCR. The obtained results showed that the cmbT gene was successfully over-expressed by addition of sub-inhibitory amounts of nisin. Growth curves of L. lactis NZ9000/pCT50 over-expressing the cmbT gene and L. lactis NZ9000 control strain were followed in the rich medium as well as in the chemically defined medium in the presence solely of methionine (0.084 mM or mix of methionine and cysteine (8.4 mM and 8.2 mM, respectively. Resulting doubling times revealed that L. lactis NZ9000/pCT50 had higher growth rate comparing to the control strain. This could be a consequence of the CmbT efflux activity, which improves the fitness of the host bacterium through the elimination of toxic compounds from the cell.

  16. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... A Week of Healthy Breakfasts Shyness Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  17. Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    CERN Document Server

    Luzzi, G; Martins, C J A P; De Petris, M; Lamagna, L

    2015-01-01

    The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zel'dovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard...

  18. Nonparametric Forecasts of the CMB Angular Power Spectra for the Planck Mission

    CERN Document Server

    Aghamousa, Amir; Souradeep, Tarun

    2013-01-01

    The Planck mission, designed for making measurements of the cosmic microwave background (CMB) radiation with unprecedented accuracy and angular resolution, is expected to release its first data set in the near future. For the first time in the CMB history, extensive measurements of the CMB polarization will be made available for the entire sky. Such precise and rich data are expected to contain a great wealth of information about the Universe. The information in the CMB data is conveniently represented in terms of angular power spectra for temperature and polarization. A proper estimation of these CMB power spectra from data is the first step in making inferences about the Universe and, in particular, cosmological parameters that govern the Universe. In this paper, we provide forecasts for the $TT$, $EE$, and $TE$ angular power spectra for the Planck mission. Our forecasts are made using synthetic data based on the best-fit $\\Lambda$CDM model while conforming to the characteristics and parameters of the Planc...

  19. CMB Aberration and Doppler Effects as a Source of Hemispherical Asymmetries

    CERN Document Server

    Notari, Alessio; Catena, Riccardo

    2013-01-01

    Our peculiar motion with respect to the CMB rest frame represents a preferred direction in the observed CMB sky since it induces an apparent deflection of the observed CMB photons (aberration) and a shift in their frequency (Doppler). Both effects distort the multipoles a_{ell m}'s at all ell's. Such effects are real as it has been recently measured for the first time by Planck according to what was proposed in recent papers. However, the common lore when estimating a power spectrum from CMB is to consider that Doppler affects only the ell=1 multipole, neglecting any other corrections. In this letter we use simulations of the CMB sky in a boosted frame with a peculiar velocity \\beta = v/c = 0.00123 in order to assess the impact of such effect on power spectrum estimations in different regions of the sky. We show that the boost induces a north-south asymmetry in the power spectrum which is highly significant and non-negligible, of about (0.75 \\pm 0.15)% for half-sky cuts when going up to ell = 2500. We suggest...

  20. A Bayesian estimate of the CMB-large scale structure cross-correlation

    CERN Document Server

    Santos, E Moura; Penna-Lima, M; Novaes, C P; Wuensche, C A

    2015-01-01

    Evidences for late-time acceleration of the Universe are provided by multiple complementary probes, such as observations of distant Type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillations (BAO), large scale structure (LSS), and the integrated Sachs-Wolfe (ISW) effect. In this work we shall focus on the ISW effect, which consists of small secondary fluctuations in the CMB produced whenever the gravitational potentials evolve due to transitions between dominating fluids, e.g., matter to dark energy dominated phase. Therefore, if we assume a flat universe, as supported by primary CMB data, then a detection of the ISW effect can be correlated to a measurement of dark energy and its properties. In this work, we present a Bayesian estimate of the CMB-LSS cross-correlation signal. As local tracers of the matter distribution at large scales we have used the Two Micron All Sky Survey (2MASS) galaxy catalog and, for the CMB temperature fluctuations, the nine-year data release of the W...

  1. Turbulent spots in hypervelocity flow

    Science.gov (United States)

    Jewell, Joseph S.; Leyva, Ivett A.; Shepherd, Joseph E.

    2017-04-01

    The turbulent spot propagation process in boundary layer flows of air, nitrogen, carbon dioxide, and air/carbon dioxide mixtures in thermochemical nonequilibrium at high enthalpy is investigated. Experiments are performed in a hypervelocity reflected shock tunnel with a 5-degree half-angle axisymmetric cone instrumented with flush-mounted fast-response coaxial thermocouples. Time-resolved and spatially demarcated heat transfer traces are used to track the propagation of turbulent bursts within the mean flow, and convection rates at approximately 91, 74, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, peak, and trailing edge of the spots. A simple model constructed with these spot propagation parameters is used to infer spot generation rates from observed transition onset to completion distance. Spot generation rates in air and nitrogen are estimated to be approximately twice the spot generation rates in air/carbon dioxide mixtures.

  2. Cold confusion

    Energy Technology Data Exchange (ETDEWEB)

    Chapline, G.

    1989-07-01

    On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.

  3. CMB Spectral Distortions from the Scattering of Temperature Anisotropies

    OpenAIRE

    Stebbins, Albert

    2007-01-01

    Thomson scattering of CMBR temperature anisotropies will cause the spectrum of the CMBR to differ from blackbody even when one resolves all anisotropies. A formalism for computing the anisotropic and inhomogeneous spectral distortions of intensity and polarization is derived in terms of Lorentz invariant central moments of the temperature distribution. The formalism is non-perturbative, requiring neither small anisotropies nor small metric or matter inhomogeneities; but it does assume cold el...

  4. Spotting effect in microarray experiments

    Directory of Open Access Journals (Sweden)

    Mary-Huard Tristan

    2004-05-01

    Full Text Available Abstract Background Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio and intensity across the array. Results Using the variogram, a geostatistical tool, we characterized the observed variability, called here the spotting effect because it most probably arises during steps in the array printing procedure. Conclusions The spotting effect is not appropriately corrected by current normalization methods, even by those addressing spatial variability. Importantly, the spotting effect may alter differential and clustering analysis.

  5. Non-Gaussianity of Large-Scale CMB Anisotropies beyond Perturbation Theory

    CERN Document Server

    Bartolo, N; Riotto, Antonio

    2005-01-01

    We compute the fully non-linear Cosmic Microwave Background (CMB) anisotropies on scales larger than the horizon at last-scattering in terms of only the curvature perturbation, providing a generalization of the linear Sachs-Wolfe effect at any order in perturbation theory. We show how to compute the $n$-point connected correlation functions of the large-scale CMB anisotropies for generic primordial seeds provided by standard slow-roll inflation as well as the curvaton and other scenarios for the generation of cosmological perturbations. As an application of our formalism, we compute the three- and four-point connected correlation functions whose detection in future CMB experiments might be used to assess the level of primordial non-Gaussianity, giving the theoretical predictions for the parameters of quadratic and cubic non-linearities f_NL and g_NL.

  6. Constraining stochastic gravitational wave background from weak lensing of CMB B-modes

    CERN Document Server

    Shaikh, Shabbir; Rotti, Aditya; Souradeep, Tarun

    2016-01-01

    A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection \\& rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density ($\\Omega_{GW}$) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on $\\Omega_{GW}$ for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.

  7. CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity

    Science.gov (United States)

    Ballardini, Mario; Finelli, Fabio; Paoletti, Daniela

    2015-10-01

    We consider the impact of a stochastic background of primordial magnetic fields with non-vanishing helicity on CMB anisotropies in temperature and polarization. We compute the exact expressions for the scalar, vector and tensor part of the energy-momentum tensor including the helical contribution, by assuming a power-law dependence for the spectra and a comoving cutoff which mimics the damping due to viscosity. We also compute the parity-odd correlator between the helical and non-helical contribution which generate the TB and EB cross-correlation in the CMB pattern. We finally show the impact of including the helical term on the power spectra of CMB anisotropies up to multipoles with l ~ Script O(103).

  8. CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity

    CERN Document Server

    Ballardini, Mario; Paoletti, Daniela

    2014-01-01

    We consider the impact of a stochastic background of primordial magnetic fields with non-vanishing helicity on CMB anisotropies in temperature and polarization. We compute the exact expressions for the scalar, vector and tensor part of the energy-momentum tensor including the helical contribution, by assuming a power-law dependence for the spectra and a comoving cutoff which mimics the damping due to viscosity. We also compute the parity-odd correlator between the helical and non-helical contribution which generate the TB and EB cross-correlation in the CMB pattern. We finally show the impact of including the helical term on the power spectra of CMB anisotropies up to multipoles with ell ~ O(10^3)$.

  9. Preparation to the CMB Planck analysis : contamination due to the polarized galactic emission

    CERN Document Server

    Fauvet, L

    2010-01-01

    The Planck satellite experiment, which was launched the 14th of may 2009, will give an accurate measurement of the anisotropies of the Cosmic Microwave Background (CMB) in temperature and polarization. This measurement is polluted by the presence of diffuse galactic polarized foreground emissions. In order to obtain the level of accuracy required for the Planck mission it is necessary to deal with these foregrounds. In order to do this, have develloped and implemented coherent 3D models of the two main galactic polarized emissions : the synchrotron and thermal dust emissions. We have optimized these models by comparing them to preexisting data : the K-band of the WMAP data, the ARCHEOPS data at 353 GHz and the 408 MHz all-sky continuum survey. By extrapolation of these models at the frequencies where the CMB is dominant, we are able to estimate the contamination to the CMB Planck signal due to these polarized galactic emissions.

  10. Forecasting performance of CMB experiments in the presence of complex foreground contaminations

    CERN Document Server

    Stompor, Radek; Poletti, Davide

    2016-01-01

    We present a new, semi-analytic framework for estimating the level of residuals present in CMB maps derived from multi-frequency Cosmic Microwave Background (CMB) data and forecasting their impact on cosmological parameters. The data are assumed to contain non-negligible signals of astrophysical and/or Galactic origin, which we clean using parametric component separation technique. We account for discrepancies between the foreground model assumed during the separation procedure and the true one, allowing for differences in scaling laws and/or their spatial variations. Our estimates and their uncertainties include both systematic and statistical effects and are averaged over the instrumental noise and CMB signal realizations. The framework can be further extended to account self-consistently for existing uncertainties in the foreground models. We demonstrate and validate the framework on simple study cases which aim at estimating the tensor-to-scalar ratio, r. The proposed approach is computationally efficient...

  11. Termination shock thermal processes as a possible source for the CMB low-order multipole anomalies

    CERN Document Server

    Sharpe, H N

    2009-01-01

    We discuss the possibility that the observed low-order multipole features of the cosmic microwave background radiation (CMB) all originate in the termination shock (TS) region of the heliosheath that surrounds the solar system. If the intrinsic CMB spectrum is assumed to be a pure monopole (2.73K) then thermodynamic processes occurring within the plasma region of the TS could imprint the observed power spectrum of the low-order multipoles and their alignment (the so-called "axis of evil") onto this background isotropic CMB. Conditions are outlined for the geometric shape of the TS region. A key requirement of this model is that the TS plasma be characterized as an optically thin graybody with non-LTE perturbations. Data from the ongoing Voyager missions is critical to this study.

  12. The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions

    Science.gov (United States)

    Rubiño-Martín, J. A.; Rebolo, R.; Aguiar, M.; Génova-Santos, R.; Gómez-Reñasco, F.; Herreros, J. M.; Hoyland, R. J.; López-Caraballo, C.; Pelaez Santos, A. E.; Sanchez de la Rosa, V.; Vega-Moreno, A.; Viera-Curbelo, T.; Martínez-Gonzalez, E.; Barreiro, R. B.; Casas, F. J.; Diego, J. M.; Fernández-Cobos, R.; Herranz, D.; López-Caniego, M.; Ortiz, D.; Vielva, P.; Artal, E.; Aja, B.; Cagigas, J.; Cano, J. L.; de la Fuente, L.; Mediavilla, A.; Terán, J. V.; Villa, E.; Piccirillo, L.; Battye, R.; Blackhurst, E.; Brown, M.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Harper, S.; Maffei, B.; McCulloch, M.; Melhuish, S.; Pisano, G.; Watson, R. A.; Hobson, M.; Grainge, K.; Lasenby, A.; Saunders, R.; Scott, P.

    2012-09-01

    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.

  13. Constraining stochastic gravitational wave background from weak lensing of CMB B-modes

    Science.gov (United States)

    Shaikh, Shabbir; Mukherjee, Suvodip; Rotti, Aditya; Souradeep, Tarun

    2016-09-01

    A stochastic gravitational wave background (SGWB) will affect the CMB anisotropies via weak lensing. Unlike weak lensing due to large scale structure which only deflects photon trajectories, a SGWB has an additional effect of rotating the polarization vector along the trajectory. We study the relative importance of these two effects, deflection & rotation, specifically in the context of E-mode to B-mode power transfer caused by weak lensing due to SGWB. Using weak lensing distortion of the CMB as a probe, we derive constraints on the spectral energy density (ΩGW) of the SGWB, sourced at different redshifts, without assuming any particular model for its origin. We present these bounds on ΩGW for different power-law models characterizing the SGWB, indicating the threshold above which observable imprints of SGWB must be present in CMB.

  14. Primordial Gravitational Waves and Inflation: CMB and Direct Detection With Space-Based Laser Interferometers

    CERN Document Server

    Cooray, A R

    2005-01-01

    The curl-modes of Cosmic Microwave Background (CMB) polarization probe horizon-scale primordial gravitational waves related to inflation. A significant source of confusion is expected from a lensing conversion of polarization related to density perturbations to the curl mode, during the propagation of photons through the large scale structure. Either high resolution CMB anisotropy observations or 21 cm fluctuations at redshifts 30 and higher can be used to delens polarization data and to separate gravitational-wave polarization signature from that of cosmic-shear related signal. Separations based on proposed lensing reconstruction techniques for reasonable future experiments allow the possibility to probe inflationary energy scales down to 10^15 GeV. Beyond CMB polarization, at frequencies between 0.01 Hz to 1 Hz, space-based laser interferometers can also be used to probe the inflationary gravitational wave background. The confusion here is related to the removal of merging neutron star binaries at cosmologi...

  15. Prediction of the Virgo axis anisotropy: CMB radiation illuminates the nature of things

    CERN Document Server

    Berkovich, S

    2005-01-01

    Recent findings of the anisotropy in the Cosmic Microwave Background (CMB) radiation are confusing for standard cosmology. Remarkably, this fact has been predicted several years ago in the framework of our model of the physical world. Moreover, in exact agreement with our prediction the CMB has a preferred direction towards the Virgo Cluster. The transpired structure of the CMB shows workings of the suggested model of the physical world. Comprising the information processes of Nature, this model presents a high-tech version of the previous low-tech developments for mechanical ether and quantum vacuum. In the current model, the phenomenon of Life turns up as a collective effect on the "Internet of the Physical Universe" using DNA structures for access codes. Most convincingly, this construction points to a harmful analogy with so-called "identity theft" - improper manipulations with DNA of individual organisms can destroy these organisms from a remote location without any physical contact. Appearing incredible...

  16. Probing the statistical properties of CMB B-mode polarization through Minkowski functionals

    Science.gov (United States)

    Santos, Larissa; Wang, Kai; Zhao, Wen

    2016-07-01

    The detection of the magnetic type B-mode polarization is the main goal of future cosmic microwave background (CMB) experiments. In the standard model, the B-mode map is a strong non-gaussian field due to the CMB lensing component. Besides the two-point correlation function, the other statistics are also very important to dig the information of the polarization map. In this paper, we employ the Minkowski functionals to study the morphological properties of the lensed B-mode maps. We find that the deviations from Gaussianity are very significant for both full and partial-sky surveys. As an application of the analysis, we investigate the morphological imprints of the foreground residuals in the B-mode map. We find that even for very tiny foreground residuals, the effects on the map can be detected by the Minkowski functional analysis. Therefore, it provides a complementary way to investigate the foreground contaminations in the CMB studies.

  17. Detecting relic gravitational waves in the CMB: The contamination caused by the cosmological birefringence

    Directory of Open Access Journals (Sweden)

    Wen Zhao

    2014-10-01

    Full Text Available The B-mode polarization of the cosmic microwave background (CMB radiation is an excellent information channel for the detection of relic gravitational waves. However, the detection is contaminated by the B-mode polarization generated by some other effects. In this paper, we discuss the contaminations caused by the cosmological birefringence, which converts the CMB E-mode to the B-mode, and forms the effective noise for the detection of gravitational waves. We find that this contamination is significant, if the rotation angle is large. However, this kind of B-mode can be properly de-rotated, and the effective noises can be greatly reduced. We find that, comparing with the contaminations caused by cosmic weak lensing, the residual polarization generated by the cosmological birefringence is negligible for the detection of relic gravitational waves in the CMB.

  18. Platonic topology and CMB fluctuations: Homotopy, anisotropy, and multipole selection rules

    CERN Document Server

    Kramer, Peter

    2009-01-01

    The Cosmic Microwave Background CMB originates from an early stage in the history of the universe. Observed low multipole contributions of CMB fluctuations have motivated the search for selection rules from the underlying topology of 3-space. Everitt (2004) has generated all homotopies for Platonic spherical 3-manifolds by face gluings. We transform the glue generators into isomorphic deck transformations. The deck transformations act on a spherical Platonic 3-manifold as prototile and tile the 3-sphere by its images. A complete set of orthonormal functions on the 3-sphere is spanned by the Wigner harmonic polynomials. For a tetrahedral, two cubic and three octahedral manifolds we construct algebraically linear combinations of Wigner polynomials, invariant under deck transformations and with domain the manifold. We prove boundary conditions on polyhedral faces from homotopy. By algebraic means we pass to a multipole expansion. Assuming random models of the CMB radiation, we derive multipole selection rules, d...

  19. The CMB power spectrum out to l=1400 measured by the VSA

    CERN Document Server

    Grainge, K; Cleary, K; Davies, R D; Davis, R J; Dickinson, C; Genova-Santos, R; Gutíerrez, C M; Hafez, Y A; Hobson, M P; Jones, M E; Kneissl, R; Lancaster, K; Lasenby, A; Leahy, J P; Maisinger, K; Pooley, G G; Rebolo, R; Rubiño-Martín, J A; Molina, P S; Odman, C; Rusholme, B A; Saunders, R D E; Savage, R; Scott, P F; Slosar, A; Taylor, A C; Titterington, D; Waldram, E M; Watson, R A; Wilkinson, A; Grainge, Keith; Carreira, Pedro; Cleary, Kieran; Davies, Rod D.; Davis, Richard J.; Dickinson, Clive; Genova-Santos, Ricardo; Gutierrez, Carlos M.; Hafez, Yaser A.; Hobson, Michael P.; Jones, Michael E.; Kneissl, Rudiger; Lancaster, Katy; Lasenby, Anthony; Maisinger, Klaus; Pooley, Guy G.; Rebolo, Rafael; Rubino-Martin, Jose Alberto; Molina, Pedro Sosa; Odman, Carolina; Rusholme, Ben; Saunders, Richard D.E.; Savage, Richard; Scott, Paul F.; Slosar, Anze; Taylor, Angela C.; Titterington, David; Waldram, Elizabeth; Watson, Robert A.; Wilkinson, Althea

    2003-01-01

    We have observed the cosmic microwave background (CMB) in three regions of sky using the Very Small Array (VSA) in an extended configuration with antennas of beamwidth 2 degrees at 34 GHz. Combined with data from previous VSA observations using a more compact array with larger beamwidth, we measure the power spectrum of the primordial CMB anisotropies between angular multipoles l = 160 - 1400. Such measurements at high l are vital for breaking degeneracies in parameter estimation from the CMB power spectrum and other cosmological data. The power spectrum clearly resolves the first three acoustic peaks, shows the expected fall off in power at high l and starts to constrain the position and height of a fourth peak.

  20. SILC: a new Planck Internal Linear Combination CMB temperature map using directional wavelets

    CERN Document Server

    Rogers, Keir K; Leistedt, Boris; McEwen, Jason D; Pontzen, Andrew

    2016-01-01

    We present new clean maps of the CMB temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretised wavelets --- Scale-discretised, directional wavelet ILC or SILC. Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localise the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimise the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining t...

  1. Searching for a holographic connection between dark energy and the low-l CMB multipoles

    DEFF Research Database (Denmark)

    Enqvist, Kari; Hannestad, Steen; Sloth, Martin Snoager

    2004-01-01

    We consider the angular power spectrum in a finite universe with different boundary conditions and perform a fit to the CMB, LSS and supernova data. A finite universe could be the consequence of a holographic constraint, giving rise to an effective IR cutoff at the future event horizon. In such a......We consider the angular power spectrum in a finite universe with different boundary conditions and perform a fit to the CMB, LSS and supernova data. A finite universe could be the consequence of a holographic constraint, giving rise to an effective IR cutoff at the future event horizon...... bubble that describes our universe. The best fit to the CMB and LSS data turns out to be better than in the standard Lambda-CDM model, but when combined with the supernova data, the holographic model becomes disfavored. We speculate on the possible implications....

  2. Planck 2015 results: XI. CMB power spectra, likelihoods, and robustness of parameters

    DEFF Research Database (Denmark)

    Aghanim, N.; Arnaud, M.; Ashdown, M.

    2016-01-01

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based......, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing...... temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth...

  3. CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps

    CERN Document Server

    van Engelen, A; Sehgal, N; Holder, G P; Zahn, O; Nagai, D

    2013-01-01

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 15...

  4. The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization

    NARCIS (Netherlands)

    Tashiro, Hiroyuki; Aghanim, Nabila; Langer, Mathieu; Douspis, Marian; Zaroubi, Saleem

    2008-01-01

    The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization (E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization

  5. The SPOT satellite

    Science.gov (United States)

    Fouquet, J.-P.

    1981-03-01

    The background, objectives and data products of the French SPOT remote sensing satellite system are presented. The system, which was developed starting in 1978 with the subsequent participation of Sweden and Belgium, is based on a standard multimission platform with associated ground control station and a mission-specific payload, which includes two High-Resolution Visible range instruments allowing the acquisition of stereoscopic views from different orbits. Mission objectives include the definition of future remote sensing systems, the compilation of a cartographic and resources data base, the study of species discrimination and production forecasting based on frequent access and off-nadir viewing, the compilation of a stereoscopic data base, and platform and instrument qualification, for possible applications in cartography, geology and agriculture. Standard data products will be available at three levels of preprocessing: radiometric correction only, precision processing for vertical viewing, and cartographic quality processing.

  6. A measurement at the first acoustic peak of the CMB with the 33 GHz interferometer

    CERN Document Server

    Harrison, D L; Melhuish, S J; Watson, R A; Davies, R D; Rebolo, R; Davis, R J; Gutíerrez, C M; Macias-Perez, J F

    2000-01-01

    This paper presents the results from the Jodrell Bank-IAC two-element 33 GHz interferometer operated with an element separation of 32.9 wavelengths and hence sensitive to 1 deg scale structure on the sky. The level of CMB fluctuations, assuming a flat CMB spatial power spectrum over the range of multipoles l = 208 +- 18, was found using a likelihood analysis to be \\Delta T_l = 63^{+7}_{-6} mu K at the 68% confidence limit, after the subtraction of the contribution of monitored point sources. Other possible foreground contributions have been assessed and are expected to have negligible impact on this result.

  7. Multifrequency Beam Characterization and Systematics for the Keck Array, BICEP3, and Future CMB Polarization Experiments

    Science.gov (United States)

    Karkare, Kirit S.; BICEP/Keck Array Collaboration

    2017-01-01

    The BICEP/Keck Array cosmic microwave background (CMB) polarization experiments located at the South Pole are a series of small-aperture refracting telescopes focused on the degree-scale B-mode signature of inflationary gravitational waves. These highly-targeted experiments have produced the world's deepest maps of CMB polarization, leading to the most stringent constraints on the tensor-to-scalar ratio to date: sigma(r) = 0.024 and r current instrument and analysis technology will scale with detector count.

  8. ABS: an Analytical method of Blind Separation of CMB B-mode from foregrounds

    CERN Document Server

    Zhang, Pengjie; Zhang, Le

    2016-01-01

    Extracting CMB B-mode polarization from complicated foregrounds is a challenging task in searching for inflationary gravitational waves. We propose an analytical solution to the B-mode power spectrum measurement directly from post-processing the cross bandpower between different frequency bands, without free parameters or fitting procedures, or any assumptions on foregrounds. Testing against a variety of foregrounds, survey frequency configurations and instrument noise, we verify its applicability and numerical stability. It also provides a clean diagnostic for future surveys to achieve unbiased B-mode measurement. Furthermore, it has applications beyond CMB and can even have profound impacts in totally different areas such as cosmic magnification.

  9. Termination shock thermal processes as a possible source for the CMB low-order multipole anomalies

    OpenAIRE

    2009-01-01

    We discuss the possibility that the observed low-order multipole features of the cosmic microwave background radiation (CMB) all originate in the termination shock (TS) region of the heliosheath that surrounds the solar system. If the intrinsic CMB spectrum is assumed to be a pure monopole (2.73K) then thermodynamic processes occurring within the plasma region of the TS could imprint the observed power spectrum of the low-order multipoles and their alignment (the so-called "axis of evil") ont...

  10. Probing the origin of our universe through primordial gravitational waves by Ali CMB project

    CERN Document Server

    Cai, Yi-Fu

    2016-01-01

    This is a research highlight invited by SCIENCE CHINA Physics, Mechanics & Astronomy. In this article we report the Ali project of the cosmic microwave background (CMB) observation, which is under design in Tibet of China. The scientific goal of this project will help us to probe the origin of our universe by detecting the primordial B-mode of CMB polarization to falsify various theoretical models of the very early universe in the future. We also estimate the forecast for the observational ability of the Ali project.

  11. CMB Lensing Beyond the Power Spectrum: Cosmological Constraints from the One-Point PDF and Peak Counts

    CERN Document Server

    Liu, Jia; Sherwin, Blake D; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán

    2016-01-01

    Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB Stage-III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use $N$-body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function, and provide specific forecasts for the ongoing Stage-III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 30$\\sigma$ (PDF) and 10$\\sigma$ (peaks) detec...

  12. Justifications Shape Ethical Blind Spots

    NARCIS (Netherlands)

    Pittarello, Andrea; Leib, Margarita; Gordon-Hecker, Tom; Shalvi, Shaul

    2015-01-01

    To some extent, unethical behavior results from people's limited attention to ethical considerations, which results in an ethical blind spot. Here, we focus on the role of ambiguity in shaping people's ethical blind spots, which in turn lead to their ethical failures. We suggest that in ambiguous se

  13. Divide and conquer spot noise

    NARCIS (Netherlands)

    Leeuw, W.C. de; Liere, R. van

    1997-01-01

    The design and implementation of an interactive spot noise algorithm is presented. Spot noise is a technique which utilizes texture for the visualization of flow fields. Various design tradeoffs are discussed that allow an optimal implementation on a range of high end graphical workstations. Two app

  14. Black-spot poison ivy.

    Science.gov (United States)

    Schram, Sarah E; Willey, Andrea; Lee, Peter K; Bohjanen, Kimberly A; Warshaw, Erin M

    2008-01-01

    In black-spot poison ivy dermatitis, a black lacquerlike substance forms on the skin when poison ivy resin is exposed to air. Although the Toxicodendron group of plants is estimated to be the most common cause of allergic contact dermatitis in the United States, black-spot poison ivy dermatitis is relatively rare.

  15. Cysteine-mediated gene expression and characterization of the CmbR regulon in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Muhammad Afzal

    2016-12-01

    Full Text Available In this study, we investigated the transcriptomic response of Streptococcus pneumoniae D39 to cysteine. Transcriptome comparison of the D39 wild-type strain grown at a restricted concentration of cysteine (0.03 mM to one grown at a high concentration of cysteine (50 mM in chemically-define medium (CDM revealed elevated expression of various genes/operons, i.e. spd-0150, metQ, spd-0431, metEF, gshT, spd-0618, fhs, tcyB, metB-csd, metA, spd-1898, yvdE, and cysK, likely to be involved in the transport and utilization of cysteine and/or methionine. Microarray-based data were further confirmed by quantitative RT-PCR. Promoter lacZ-fusion studies and quantitative RT-PCR data showed that the transcriptional regulator CmbR acts as a transcriptional repressor of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE, putatively involved in cysteine uptake and utilization. The operator site of CmbR in the promoter regions of CmbR-regulated genes is predicted and confirmed by mutating or deleting CmbR operator sites from the promoter regions of these genes.

  16. SU(2)$_{\\tiny\\mbox{CMB}}$ at high redshifts and the value of $H_0$

    CERN Document Server

    Hahn, Steffen

    2016-01-01

    We investigate a high-$z$ cosmological model to compute the co-moving sound horizon $r_s$ at baryon freeze-out following hydrogen recombination. This model assumes a replacement of the conventional CMB photon gas by SU(2) Yang-Mills thermodynamics, three flavors of massless neutrinos ($N_\

  17. Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    CERN Document Server

    Grandis, S; Saro, A; Mohr, J J; Dietrich, J P

    2016-01-01

    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat $\\Lambda$CDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat $\\Lambda$CDM. We find a clear preference for models with free curvature, $\\Omega_\\mathrm{K}$, or free amplitude of the CMB lensing potential, $A_\\mathrm{L}$. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15 CMB data and six oth...

  18. Influence of Planck foreground masks in the large angular scale quadrant CMB asymmetry

    CERN Document Server

    Santos, L; Villela, T; Zhao, W

    2015-01-01

    The measured CMB angular distribution shows a great consistency with the LCDM model. However, isotropy violations were reported in CMB temperature maps of both WMAP and Planck data. We investigate the influence of different masks employed in the analysis of CMB angular distribution, in particular in the excess of power in the Southeastern quadrant (SEQ) and the lack of power in the Northeastern quadrant (NEQ). We compare the two-point correlation function (TPCF) computed for each quadrant of the CMB foreground-cleaned temperature maps to 1000 simulations generated assuming the LCDM best-fit power spectrum using four different masks. In addition to the quadrants, we computed the TPCF for circular regions in the map where the excess and lack of power are present. We also compare the effect of Galactic cuts in the TPCF calculations as compared to the simulations. We found consistent results for three masks, namely mask-rulerminimal, U73 and U66. The results indicate that the excess of power in the SEQ tends to v...

  19. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  20. Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove

    CERN Document Server

    Aghanim, N; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Benabed, K.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Couchot, F.; Crill, B.P.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J.M.; Donzelli, S.; Dore, O.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hovest, W.; Huffenberger, K.M.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lawrence, C.R.; Leonardi, R.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G.W.; Prezeau, G.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Reinecke, M.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubino-Martin, J.A.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Sunyaev, R.; Sureau, F.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, M.; Yvon, D.; Zacchei, A.; Zibin, J.P.; Zonca, A.

    2014-01-01

    Our velocity relative to the rest frame of the cosmic microwave background (CMB) generates a dipole temperature anisotropy on the sky which has been well measured for more than 30 years, and has an accepted amplitude of v/c = 0.00123, or v = 369km/s. In addition to this signal generated by Doppler boosting of the CMB monopole, our motion also modulates and aberrates the CMB temperature fluctuations (as well as every other source of radiation at cosmological distances). This is an order 0.1% effect applied to fluctuations which are already one part in roughly one hundred thousand, so it is quite small. Nevertheless, it becomes detectable with the all-sky coverage, high angular resolution, and low noise levels of the Planck satellite. Here we report a first measurement of this velocity signature using the aberration and modulation effects on the CMB temperature anisotropies, finding a component in the known dipole direction, (l,b)=(264, 48) [deg], of 384km/s +- 78km/s (stat.) +- 115km/s (syst.). This is a signi...

  1. SILC: a new Planck internal linear combination CMB temperature map using directional wavelets

    Science.gov (United States)

    Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew

    2016-08-01

    We present new clean maps of the cosmic microwave background (CMB) temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretized wavelets - scale-discretized, directional wavelet ILC or Scale-discretised, directional wavelet Internal Linear Combination (SILC). Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localize the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimize the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining the use of directional and axisymmetric wavelets depending on scale could yield higher quality CMB temperature maps. Our results set the stage for the application of SILC to polarization anisotropies through an extension to spin wavelets.

  2. Designs for a large-aperture telescope to map the CMB 10× faster.

    Science.gov (United States)

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope.

  3. CMB B-modes, spinorial space-time and Pre-Big Bang (II)

    CERN Document Server

    Gonzalez-Mestres, Luis

    2014-01-01

    The BICEP2 collaboration reported recently a B-mode polarization of the cosmic microwave background (CMB) radiation inconsistent with the null hypothesis at a significance of > 5 {\\sigma}. This result has been often interpreted as a signature of primordial gravitational waves from cosmic inflation, even if actually polarized dust emission may be at the origin of such a signal. Even assuming that part of this CMB B-mode polarization really corresponds to the early Universe dynamics, its interpretation in terms of inflation and primordial gravitational waves is not the only possible one. Alternative cosmologies such as pre-Big Bang patterns and the spinorial space-time (SST) we introduced in 1996-97 can naturally account for such CMB B-modes. In particular, the SST automatically generates a privileged space direction (PSD) whose existence may have been confirmed by Planck data. If such a PSD exists, it seems normal to infer that vector perturbations have been present in the early Universe leading to CMB B-modes...

  4. Classification of singular points in polarization field of CMB and eigenvectors of Stokes matrix

    CERN Document Server

    Dolgov, A D; Novikov, D I; Novikov, I D

    1998-01-01

    Analysis of the singularities of the polarization field of CMB, where polarization is equal to zero, is presented. It is found that the classification of the singular points differs from the usual three types known in the ordinary differential equations. The new statistical properties of polarization field are discussed, and new methods to detect the presence of primordial tensor perturbations are indicated.

  5. Mapping the thermal history of the Universe with the new generation of CMB spectrum space experiments

    CERN Document Server

    Burigana, C

    2003-01-01

    We have studied the implications of the new generation of CMB spectrum space experiments for our knowledge of the thermal history of the Universe. The combination of two experiments with the sensitivity and the frequency coverage jointly forseen for DIMES and FIRAS II will be able to greatly change our vision of the capability of the CMB spectrum information to constrain physical processes at different cosmic ages. The limits on the energy dissipations at the all cosmic times accessible to CMB spectrum investigations (z < z_therm) could be improved by about two order of magnitudes and even dissipation processes with DE/E ~ 10^-6 could be detected and possibly accurately studied. These results are possible because such levels of accuracy on a so wide frequency range allow to remove the approximate degeneracy both between free-free and Bose-Einstein (BE) like distortions and between Comptonization and BE-like distortions. Finally, we discussed the different signatures imprinted on the CMB spectrum by some la...

  6. Weak Lensing and CMB: Parameter forecasts including a running spectral index

    CERN Document Server

    Ishak, M; McDonald, P; Seljak, U; Ishak, Mustapha; Hirata, Christopher M.; Donald, Patrick Mc; Seljak, Uros

    2004-01-01

    We use statistical inference theory to explore the constraints from future galaxy weak lensing (cosmic shear) surveys combined with the current CMB constraints on cosmological parameters, focusing particularly on the running of the spectral index of the primordial scalar power spectrum, $\\alpha_s$. Recent papers have drawn attention to the possibility of measuring $\\alpha_s$ by combining the CMB with galaxy clustering and/or the Lyman-$\\alpha$ forest. Weak lensing combined with the CMB provides an alternative probe of the primordial power spectrum. We run a series of simulations with variable runnings and compare them to semi-analytic non-linear mappings to test their validity for our calculations. We find that a ``Reference'' cosmic shear survey with $f_{sky}=0.01$ and $6.6\\times 10^8$ galaxies per steradian can reduce the uncertainty on $n_s$ and $\\alpha_s$ by roughly a factor of 2 relative to the CMB alone. We investigate the effect of shear calibration biases on lensing by including the calibration factor...

  7. All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

    CERN Document Server

    Ringeval, Christophe

    2012-01-01

    By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this ...

  8. Sommerfeld enhancement of DM annihilation: resonance structure, freeze-out and CMB spectral bound

    DEFF Research Database (Denmark)

    Hannestad, Steen; Bülow, Thomas Tram

    2011-01-01

    . In the second part of the article we perform a detailed computation of the Dark Matter relic density for models having Sommerfeld enhancement by solving the Boltzmann equation numerically. We calculate the expected distortions of the CMB blackbody spectrum from WIMP annihilations and compare these to the bounds...

  9. Foreground removal from CMB temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.

    2008-01-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic...

  10. p-CMB-dextran T 10. A useful tool in evaluating the functional importance of superficial SH-groups in rat adipocytes.

    Science.gov (United States)

    Simon, B; Kather, H

    1975-05-01

    A large SH-blocking reagent p-CMB-dextran T 10 (MW about 10,000) was applied to isolated rat adipocytes. This compound possesses the same reactivity towards SH-groups as uncoupled p-CMB. P-CMB-Dextran T 10 did not influence the basal glucose uptake in contrast to uncoupled p-CMB. The results are discussed with respect to the usefulness of p-CMB-dextran T 10 in evaluating the role of superficial SH-groups in various membrane functions.

  11. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  12. On the impact of large angle CMB polarization data on cosmological parameters

    Science.gov (United States)

    Lattanzi, Massimiliano; Burigana, Carlo; Gerbino, Martina; Gruppuso, Alessandro; Mandolesi, Nazzareno; Natoli, Paolo; Polenta, Gianluca; Salvati, Laura; Trombetti, Tiziana

    2017-02-01

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or "high-l") CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 +0.012‑0.013, again very stable against the particular choice for high-l data. We find that the amplitude of primordial fluctuations As, notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H0, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low l anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-l dataset employed.

  13. A Bayesian Estimate of the CMB-Large-scale Structure Cross-correlation

    Science.gov (United States)

    Moura-Santos, E.; Carvalho, F. C.; Penna-Lima, M.; Novaes, C. P.; Wuensche, C. A.

    2016-08-01

    Evidences for late-time acceleration of the universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure (LSS). In this work, we focus on the integrated Sachs-Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB-LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.

  14. [Role of a purified Sertoli cell protein (CMB-21) in the biosynthesis of Leydig cell testosterone in the immature rat].

    Science.gov (United States)

    Boujrad, N; Papadopoulos, V; Drosdowsky, M A; Carreau, S

    1989-09-01

    The existence of Sertoli cell factors which modulate the rat Leydig cell function prompted us to study the biological activity of selected proteins called CMB proteins and produced by immature rat Sertoli cells. Percoll purified Leydig cells (10(5)) from 20 days-old rats have been incubated 5 h at 32 degrees C in 1 ml Ham F12/DME medium with increasing concentrations of partially purified CMB proteins (0-1,000 ng/ml) either in presence or absence of oLH (25 ng/ml). Among the CMB proteins tested, only CMB-21 produces a dose related increase of testosterone production: from 2 to 500 pg/ml of CMB-21, testosterone output is unchanged (51 pg/10(5) cells) but 1 to 1,000 ng/ml of this protein produces a linear increase of testosterone productions (86 to 870 pg). In the presence of oLH which induces a 10-fold increase of testosterone production (499 pg), increasing doses of CMB-21 further stimulate testosterone output (775 to 2.272 pg/10(5) cells). Whatever the concentration of oLH used (0 to 50 ng/ml), CMB-21 (500 ng/ml) leads to a further 2 fold augmentation of testosterone synthesis; similarly, in the presence of dbcAMP (1 mM), CMB 21 increases the testosterone production but no effect is observed when Leydig cells are incubated in the presence of 22R-hydroxycholesterol (30 microM). The cAMP levels which are increased more than 4 fold by oLH, remain unchanged in the presence of CMB-21 either alone or with oLH, as observed when Sertoli cell culture medium is used.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Cold Stress and the Cold Pressor Test

    Science.gov (United States)

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  16. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  17. Cold and Cough Medicines

    Science.gov (United States)

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  18. Cold-induced metabolism

    NARCIS (Netherlands)

    van Marken Lichtenbelt, W.D.; Daanen, A.M.

    2003-01-01

    Cold-induced metabolism. van Marken Lichtenbelt WD, Daanen HA. Department of Human Biology, Maastricht University, Maastricht, The Netherlands. PURPOSE OF REVIEW: Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesi

  19. Cold nuclear fusion

    National Research Council Canada - National Science Library

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    ...... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion...

  20. Impulsive Spot Heating and Thermal Explosion of Interstellar Grains Revisited

    CERN Document Server

    Ivlev, A V; Vasyunin, A; Caselli, P

    2015-01-01

    The problem of impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically, with the aim to better understand leading mechanisms of the explosive desorption of icy mantles. It is rigorously shown that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., heating of mantles by cosmic rays), then the subsequent thermal evolution is characterized by a single dimensionless number $\\lambda$. This number identifies a bifurcation between two distinct regimes: When $\\lambda$ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosion is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain -- this regime is commonly known as the whole-grain heating. The theory allows us to find a critical combination of the physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, the calculations suggest tha...

  1. Cold Thermal Anomalous Structure within Lower Mantle and Its Geodynamic Implications

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The lateral temperature anomalous structure of the lower mantle is reconstructed from the seismic tomographical model and high temperature and high pressure laboratory results. A significant correlation between the distribution of the cold anomaly and the location of past subduction belts shows that the shallower anomaly corresponds to the younger subduction sites, while the deeper anomaly to the older ones. This correlation also suggests that the cold anomaly may have come from the subduction slabs and the scale of mantle convection may have been completed. The coldest and largest anomaly is concentrated near the core-mantle boundary (CMB). Few cold anomalies float in the shallower and middle parts of the lower mantle, suggesting that the downward migration of the subduction slabs, discontinuous and step-like, may be divided into the following three stages: subduction, stagnation at the 670 km discontinuity due to the phase transition, and disintegration when the size exceeds the critical point.

  2. Fermi Observations of Resolved Large-Scale Jets: Testing the IC/CMB Model

    Science.gov (United States)

    Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos

    2017-01-01

    It has been observed with the Chandra X-ray Observatory since the early 2000s that many powerful quasar jets show X-ray emission on the kpc scale (Harris & Krawczynski, 2006). In many cases these X-rays cannot be explained by the extension of the radio-optical spectrum produced by synchrotron emitting electrons in the jet, since the observed X-ray flux is too high and the X-ray spectral index too hard. A widely accepted model for the X-ray emission first proposed by Celotti et al. 2001 and Tavecchio et al. 2000 posits that the X-rays are produced when relativistic electrons in the jet up-scatter ambient cosmic microwave background (CMB) photons via inverse Compton scattering from microwave to X-ray energies (the IC/CMB model). However, explaining the X-ray emission for these jets with the IC/CMB model requires high levels of IC/CMB γ-ray emission (Georganopoulos et al., 2006), which we are looking for using the FERMI/LAT γ-ray space telescope. Another viable model for the large scale jet X-ray emission favored by the results of Meyer et al. 2015 and Meyer & Georganopoulos 2014 is an alternate population of synchrotron emitting electrons. In contrast with the second synchrotron interpretation; the IC/CMB model requires jets with high kinetic powers which can exceed the Eddington luminsoity (Dermer & Atoyan 2004 and Atoyan & Dermer 2004) and be very fast on the kpc scale with a Γ~10 (Celotti et al. 2001 and Tavecchio et al. 2000). New results from data obtained with the Fermi/LAT will be shown for several quasars not in the Fermi/LAT 3FGL catalog whose large scale X-ray jets are attributed to IC/CMB. Additionally, recent work on the γ-ray bright blazar AP Librae will be shown which helps to constrain some models attempting to explain the high energy component of its SED, which extends from X-ray to TeV energies (e.g., Zacharias & Wagner 2016 & Petropoulou et al. 2016).

  3. Thermodynamics of SU(2 quantum Yang-Mills theory and CMB anomalies

    Directory of Open Access Journals (Sweden)

    Hofmann Ralf

    2014-04-01

    Full Text Available A brief review of effective SU(2 Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field φ, based on non-propagating (antiselfdual field configurations of topological charge unity. We also discuss kinematic constraints on interacting propagating gauge fields implied by the according spatial coarse-graining, and we explain why the screening physics of an SU(2 photon is subject to an electric-magnetically dual interpretation. This argument relies on the fact that only (anticalorons of scale parameter ρ ∼ |φ|−1 contribute to the coarse-graining required for thermal-ground-state emergence at temperature T. Thus, use of the effective gauge coupling e in the (anticaloron action is justified, yielding the value ħ for the latter at almost all temperatures. As a consequence, the indeterministic transition of initial to final plane waves caused by an effective, pointlike vertex is fundamentally mediated in Euclidean time by a single (anticaloron being part of the thermal ground state. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2 Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2 photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planck collaboration. Finally, six relativistic polarisations residing in the SU(2 vector modes roughly match the number of degrees of freedom in cosmic neutrinos (Planck which would disqualify the latter as radiation. Indeed, if interpreted as single center

  4. Bayesian CMB foreground separation with a correlated log-normal model

    CERN Document Server

    Oppermann, Niels

    2014-01-01

    The extraction of foreground and CMB maps from multi-frequency observations relies mostly on the different frequency behavior of the different components. Existing Bayesian methods additionally make use of a Gaussian prior for the CMB whose correlation structure is described by an unknown angular power spectrum. We argue for the natural extension of this by using non-trivial priors also for the foreground components. Focusing on diffuse Galactic foregrounds, we propose a log-normal model including unknown spatial correlations within each component and cross-correlations between the different foreground components. We present case studies at low resolution that demonstrate the superior performance of this model when compared to an analysis with flat priors for all components.

  5. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    CERN Document Server

    Koopman, Brian; Cho, Hsiao-Mei; Coughlin, Kevin P; Duff, Shannon M; Gallardo, Patricio A; Hasselfield, Matthew; Henderson, Shawn W; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D; Newburgh, Laura; Page, Lyman A; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L; Simon, Sara M; Vavagiakis, Eve M; Ward, Jonathan T; Wollack, Edward J

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature and polarization with arcminute-scale angular resolution. Calibration of the detector angles is a critical step in producing maps of the CMB polarization. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We present our optical modeling and measurements associated with calibrating the detector angles in ACTPol.

  6. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    CERN Document Server

    Miller, A D; Devlin, M J; Dorwart, W B; Herbig, T; Nolta, M R; Page, L A; Puchalla, J; Torbet, E; Tran, H T

    1999-01-01

    We report on a measurement of the angular spectrum of the CMB between $l\\approx 100$ and $l\\approx 400$ made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with $\\delta T_l \\approx 85~\\mu$K at $l\\approx 200$ and a fall at $l>300$, thereby localizing the peak near $l\\approx 200$; and 2) that the anisotropy at $l\\approx 200$ has the spectrum of the CMB.

  7. Low-frequency measurements of the CMB (cosmic microwave background) spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kogut, A.; Bensadoun, M.; De Amici, G.; Levin, S.; Limon, M.; Smoot, G. (Lawrence Berkeley Lab., CA (USA)); Sironi, G. (Milan Univ. (Italy). Dipt. di Fisica); Bersanelli, M.; Bonelli, G. (Consiglio Nazionale delle Ricerche, Milan (Italy))

    1989-10-01

    As part of an extended program to characterize the spectrum of the cosmic microwave background (CMB) at low frequencies, we have performed multiple measurements from a high-altitude site in California. On average, these measurements suggest a CMB temperature slightly lower than measurements at higher frequencies. Atmospheric conditions and the encroachment of civilization are now significant limitations from our present observing site. In November 1989, we will make new measurements from the South Pole Amnudsen-Scott Station at frequencies 0.82 1.5, 2.5, 3.8, 7.5, and 90 GHz. We discuss recent measurements and indicate improvements from a polar observing site. 11 refs., 2 figs.

  8. CMB power spectra from cosmic strings: predictions for the Planck satellite and beyond

    CERN Document Server

    Bevis, Neil; Kunz, Martin; Urrestilla, Jon

    2010-01-01

    We present a significant improvement over our previous calculations of the cosmic string contribution to cosmic microwave background (CMB) power spectra, with particular focus on sub-WMAP angular scales. These smaller scales are relevant for the now-operational Planck satellite and additional sub-orbital CMB projects that have even finer resolutions. We employ larger Abelian Higgs string simulations than before and we additionally model and extrapolate the statistical measures from our simulations to smaller length scales. We then use an efficient means of including the extrapolations into our Einstein-Boltzmann calculations in order to yield accurate results over the multipole range 2 3000 in the case of the temperature power spectrum, which then allows cautious extrapolation to even smaller scales. We find that a string contribution to the temperature power spectrum making up 10% of power at l=10 would be larger than the Silk-damped primary adiabatic contribution for l > 3500. Astrophysical contributions s...

  9. Lorentz-violating contributions of the Carroll-Field-Jackiw model to the CMB anisotropy

    CERN Document Server

    Casana, Rodolfo; Rodrigues, Josberg S

    2008-01-01

    We study the finite temperature properties of the Maxwell-Carroll-Field-Jackiw (MCFJ) electrodynamics for a purely space-like background. Starting from the associated finite temperature partition function, a modified black body spectral distribution is obtained. We thus show that, if the CMB radiation is described by this model, the spectrum presents an anisotropic angular energy density distribution. We show, at leading order, that the Lorentz breaking contributions for the Plank's radiation law and for the Stefan-Boltzmann's law are nonlinear in frequency and quadratic in temperature, respectively. Using our results, we set up bounds for the Lorentz breaking parameter, and show that Lorentz violation in the context of the MCFJ model is unable to yield the known CMB anisotropy (of 1 part in $10^{5})$.

  10. Lorentz-violating contributions of the Carroll-Field-Jackiw model to the CMB anisotropy

    Science.gov (United States)

    Casana, Rodolfo; Ferreira, Manoel M., Jr.; Rodrigues, Josberg S.

    2008-12-01

    We study the finite temperature properties of the Maxwell-Carroll-Field-Jackiw (MCFJ) electrodynamics for a purely spacelike background. Starting from the associated finite temperature partition function, a modified black body spectral distribution is obtained. We thus show that, if the CMB radiation is described by this model, the spectrum presents an anisotropic angular energy density distribution. We show, at leading order, that the Lorentz-breaking contributions for the Plank’s radiation law and for the Stefan-Boltzmann’s law are nonlinear in frequency and quadratic in temperature, respectively. Using our results, we set up bounds for the Lorentz-breaking parameter, and show that Lorentz violation in the context of the MCFJ model is unable to yield the known CMB anisotropy (of 1 part in 105).

  11. Constraining decaying dark energy density models with the CMB temperature-redshift relation

    CERN Document Server

    Jetzer, Philippe

    2012-01-01

    We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as $\\rho_x \\propto (1+z)^{m}$, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to $z \\sim 3$. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter $w_{eff}$ for such types of dark energy models.

  12. Modelling the CMB angular correlation function in the framework of NCG

    CERN Document Server

    Kaviani, Kamran

    2016-01-01

    Following many theories which predict existence of the multiverse and by the conjecture that our space-time may have a generalized geometrical structure at the fundamental level, we are interested in non-commutative geometry (NCG) formalism to study a suggested two layer space contains our 4D universe and re-derive photon propagator. It can be shown that the photon propagator and CMB angular correlation function are comparable and if there be such a multiverse system, distance of two layers can be estimated to be in the order of the observable universe radius. Furthermore it will be shown that this result does not limited to CMB but to all kind of radiations such as X-ray as well.

  13. The shape of CMB temperature and polarization peaks on the sphere

    CERN Document Server

    Marcos-Caballero, A; Martínez-González, E; Vielva, P

    2015-01-01

    We present a theoretical study of CMB peaks including polarization and allowing nonzero eccentricity. The formalism is developed in harmonic space and using the covariant derivative on the sphere, which guarantees that the expressions obtained are completely valid at large scales (i.e., no flat approximation). The expected patterns induced by the peak, either in temperature or polarization, are calculated, as well as their covariances. It is found that the eccentricity introduces a quadrupolar dependence in the peak shape, which is proportional to a complex bias parameter $b_\\epsilon$, characterizing the peak asymmetry and orientation. In addition, the one-point statistics of the variables defining the peak on the sphere is reviewed, finding some differences with respect to the flat case for large peaks. Finally, we present a mechanism to simulate constrained CMB maps with a particular peak on the field, which is an interesting tool for analysing the statistical properties of the peaks present in the data.

  14. Semi-blind Eigen-analyses of Recombination Histories Using CMB Data

    CERN Document Server

    Farhang, Marzieh; Chluba, Jens

    2011-01-01

    Cosmological parameter measurements from CMB experiments such as Planck, ACTpol, SPTpol and other high resolution follow-ons fundamentally rely on the accuracy of the assumed recombination model, or one with well prescribed uncertainties. Deviations from the standard recombination history might suggest new particle physics or modified atomic physics. Here we treat possible perturbative fluctuations in the free electron fraction, $\\Xe(z)$, by a semi-blind expansion in densely-packed modes in redshift. From these we construct parameter eigenmodes, which we rank order so that the lowest modes provide the most power to probe the $\\Xe(z)$ with CMB measurements. Since the eigenmodes are effectively weighed by the fiducial $\\Xe$ history, they are localized around the differential visibility peak, allowing for an excellent probe of hydrogen recombination, but a weaker probe of the higher redshift helium recombination and the lower redshift highly neutral freeze-out tail. We use an information-based criterion to trunc...

  15. Cosmological Results from Five Years of 30 GHz CMB Intensity Measurements with the Cosmic Background Imager

    CERN Document Server

    Sievers, J L; Weintraub, L; Achermann, C; Altamirano, P; Bond, J R; Bronfman, L; Bustos, R; Contaldi, C; Dickinson, C; Jones, M E; May, J; Myers, S T; Oyarce, N; Padin, S; Pearson, T J; Pospieszalski, M; Readhead, A C S; Reeves, R; Shepherd, M C; Taylor, A C; Torres, S

    2009-01-01

    We present final results on the angular power spectrum of total intensity anisotropies in the CMB from the CBI. Our analysis includes all primordial anisotropy data collected between January 2000 and April 2005, and benefits significantly from an improved maximum likelihood analysis pipeline. It also includes results from a 30 GHz foreground survey conducted with the Green Bank Telescope (GBT) which places significant constraints on the possible contamination due to foreground point sources. We improve on previous CBI results by about a factor of two in the damping tail. These data confirm, at ~3-sigma, the existence of an excess of power over intrinsic CMB anisotropy on small angular scales (l > 1800). Using the GBT survey, we find currently known radio source populations are not capable of generating the power; a new population of faint sources with steeply rising spectral indices would be required to explain the excess with sources... We also present a full cosmological parameter analysis of the new CBI po...

  16. Correlating CMB spectral distortions with temperature: what do we learn on inflation?

    Science.gov (United States)

    Dimastrogiovanni, Emanuela; Emami, Razieh

    2016-12-01

    Probing correlations among short and long-wavelength cosmological fluctuations is known to be decisive for deepening the current understanding of inflation at the microphysical level. Spectral distortions of the CMB can be caused by dissipation of cosmological perturbations when they re-enter Hubble after inflation. Correlating spectral distortions with temperature anisotropies will thus provide the opportunity to greatly enlarge the range of scales over which squeezed limits can be tested, opening up a new window on inflation complementing the ones currently probed with CMB and LSS. In this paper we discuss a variety of inflationary mechanisms that can be efficiently constrained with distortion-temperature correlations. For some of these realizations (representative of large classes of models) we derive quantitative predictions for the squeezed limit bispectra, finding that their amplitudes are above the sensitivity limits of an experiment such as the proposed PIXIE.

  17. Searching for Cosmic Strings in CMB Anisotropy Maps using Wavelets and Curvelets

    CERN Document Server

    Hergt, Lukas; Brandenberger, Robert; Kacprzak, Tomasz; Refregier, Alexandre

    2016-01-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension $G \\mu$, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that the curvelets are more powerful than wavelets. For maps with Planck specification, we obtain bounds on the string tension comparable to what was obtained by the Planck collaboration. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G...

  18. Measuring CMB non-Gaussianity as a probe of Inflation and Cosmic Strings

    CERN Document Server

    Regan, D M

    2011-01-01

    The leading candidate for the very early universe is described by a period of rapid expansion known as inflation. While the standard paradigm invokes a single slow-rolling field, many different models may be constructed which fit the current observational evidence. In this work we outline theoretical and observational studies of non-Gaussian fluctuations produced by models of inflation and by cosmic strings - topological defects that may be generated in the very early universe during a phase transition. In particular, we consider the imprint of cosmic strings on the cosmic microwave background (CMB) and describe a formalism for the measurement of general four-point correlation functions, or trispectra, using the CMB. In addition we describe the application of our methodology to non-Gaussian signals imprinted in the large scale structure of the universe. Such deviations from Gaussianity are generally expressed in terms of the so-called bispectrum and trispectrum.

  19. The CMB temperature power spectrum from an improved analysis of the Archeops data

    CERN Document Server

    Tristram, M; Macias-Perez, J F; Ade, P; Amblard, A; Ansari, R; Aubourg, E; Benoît, A; Bernard, J P; Blanchard, A; Bock, J J; Bouchet, F R; Bourrachot, A; Camus, P; Cardoso, J F; Couchot, F; De Bernardis, P; Delabrouille, J; Désert, F X; Douspis, M; Dumoulin, L; Filliatre, P; Fosalba, P; Giard, M; Giraud-Héraud, Yannick; Gispert, R; Guglielmi, L; Hamilton, J C; Hanany, S; Henrot-Versillé, S; Kaplan, J; Lagache, G; Lange, A E; Madet, K; Maffei, B; Masi, S; Mayet, F; Nati, F; Perdereau, O; Plaszczynski, S; Piat, M; Ponthieu, N; Prunet, S; Renault, C; Rosset, C; Santos, D; Vibert, D; Yvon, D; Filliatre, Ph.

    2004-01-01

    We present improved results on the measurement of the angular power spectrum of the Cosmic Microwave Background (CMB) temperature anisotropies using the data from the last Archeops flight. This refined analysis is obtained by using the 6 most sensitive photometric pixels in the CMB bands centered at 143 and 217 GHz and 20% of the sky, mostly clear of foregrounds. Using two different cross-correlation methods, we obtain very similar results for the angular power spectrum. Consistency checks are performed to test the robustness of these results paying particular attention to the foreground contamination level which remains well below the statistical uncertainties. The multipole range from l=10 to l=700 is covered with 25 bins, confirming strong evidence for a plateau at large angular scales (the Sachs-Wolfe plateau) followed by two acoustic peaks centered around l=220 and l=550 respectively. These data provide an independent confirmation, obtained at different frequencies, of the WMAP first year results.

  20. Limits on decaying dark energy density models from the CMB temperature-redshift relation

    Science.gov (United States)

    Jetzer, Philippe; Tortora, Crescenzo

    2012-03-01

    We discuss the thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx propto (1 + z)m, z being the redshift. These models lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have studied the temperature-redshift relation of radiation, which has been constrained using a recent collection of cosmic microwave background (CMB) temperature measurements up to z ~ 3. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Future observations, in particular measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weff for such types of dark energy models.

  1. A large-aperture telescope to map the CMB 10X faster

    CERN Document Server

    Niemack, Michael D

    2015-01-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly $10^4$ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. This paper introduces new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by over an order of magnitude to enable high efficiency illumination of $>10^5$ detectors in a next generation CMB telescope.

  2. Probing the statistical properties of CMB $B$-mode polarization through Minkowski Functionals

    CERN Document Server

    Zhao, W

    2015-01-01

    The detection of the magnetic type $B$-mode polarization is the main goal of future cosmic microwave background (CMB) experiments. In the standard model, the $B$-mode map is a strongly non-gaussian field due to the lensed component. Besides the two-point correlation function, the other statistics are also very important to dig the information of the polarization map. In this paper, we employ the Minkowski functionals to study the morphological properties of the lensed $B$-mode maps. We find that the deviations from Gaussianity are very significant for both full and partial-sky surveys. As an application of the analysis, we investigate the morphological imprints of the foreground residuals in the $B$-mode map. We find that even for very tiny foreground residuals, the effects on the map can be detected by the Minkowski functional analysis. Therefore, it provides a complementary way to investigate the foreground contaminations in the CMB studies.

  3. Searching for a holographic connection between dark energy and the low-l CMB multipoles

    CERN Document Server

    Enqvist, K; Sloth, M S; Enqvist, Kari; Hannestad, Steen; Sloth, Martin S.

    2005-01-01

    We consider the angular power spectrum in a finite universe with different boundary conditions and perform a fit to the CMB, LSS and supernova data. A finite universe could be the consequence of a holographic constraint, giving rise to an effective IR cutoff at the future event horizon. In such a model there is a cosmic duality relating the dark energy equation of state and the power spectrum, which shows a suppression and oscillatory behaviour that is found to describe the low l features extremely well. However, much of the discussion here will also apply if we actually live inside an expanding bubble that describes our universe. The best fit to the CMB and LSS data turns out to be better than in the standard Lambda-CDM model, but when combined with the supernova data, the holographic model becomes disfavored. We speculate on the possible implications.

  4. Quantifying the Effect of Component Covariances in CMB Extraction from Multi-frequency Data

    Science.gov (United States)

    Phillips, Nicholas G.

    2008-01-01

    Linear combination methods provide a global method for component separation of multi-frequency data. We present such a method that allows for consideration of possible covariances between the desired cosmic microwave background signal and various foreground signals that are also present. We also recover information on the foregrounds including the number of foregrounds, their spectra and templates. In all this, the covariances, which we would only expect to vanish 'in the mean' are included as parameters expressing the fundamental uncertainty due to this type of cosmic variance. When we make the reasonable assumption that the CMB is Gaussian, we can compute both a mean recovered CMB map and also an RMS error map, The mean map coincides with WMAP's Internal Linear Combination map.

  5. S Z constraints on the dependence of the CMB temperature on redshift

    Science.gov (United States)

    Lamagna, L.; Battistelli, E. S.; De Gregori, S.; De Petris, M.; Luzzi, G.; Savini, G.

    2007-03-01

    Precise measurements of the Sunyaev-Zel'dovich (S-Z) effect on clusters of galaxies can be used to constrain anomalous scalings of the CMB temperature as a function of redshift, providing an unbiased test of the current cosmological paradigms. This is possible through a precise characterization of the S-Z spectrum as a function of frequency and all the higher order effects which determine small corrections to the amplitude of the effect. Combined with excellent systematic modeling and high quality, routine observations of the S-Z effect on a moderate-to-high redshift sample of galaxy clusters at millimeter and submillimeter wavelengths, this method can constrain deviations from standard scalings of the CMB temperature based on zero-redshift precisions comparable with that of COBE/FIRAS. We describe here the analysis procedure and a pioneering approach to the problem using existing multifrequency S-Z observations.

  6. Reconciling the observed all-sky CMB flux with its expected value from an inhomogeneous Universe

    CERN Document Server

    Lieu, R

    2004-01-01

    In the expanding near Universe where $\\approx$ 50 % of the matter is clumped into galaxies and their halos, it was known from an earlier work that the angular magnification of a large CMB emission feature depends on the statistical balance between light beam convergence by clumps and divergence within the voids for the majority of the sightlines to the feature. The total flux, however, reflects this balance for {\\it all} sightlines to the feature, including those minority ones which are associated with galaxy strong lensing. Thus the brightness of the entire CMB sky is inevitably enhanced by at least a factor corresponding to the average strong lensing amplification for a random direction. The only way of reconciling this with the COBE/FIRAS measurement is to envisage a galaxy number density (or central mass) two orders of magnitude below the observed value. The evidence brought forth here represents another formidable inconsistency between the standard cosmological model and reality.

  7. Searching for non Gaussian signals in the BOOMERanG 2003 CMB maps

    CERN Document Server

    De Troia, G; Bock, J J; Bond, J R; Borrill, J; Boscaleri, A; Cabella, P; Contaldi, C R; Crill, B P; De Bernardis, P; De Gasperis, G; De Oliveira-Costa, A; Di Stefano, G; Ferreira, P G; Hivon, E; Jaffe, A H; Kisner, T S; Kunz, M; Jones, W C; Lange, A E; Liguori, M; Masi, S; Matarrese, S; Mauskopf, P D; MacTavish, C J; Melchiorri, A; Montroy, T E; Natoli, P; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Prunet, S; Ricciardi, S; Romeo, G; Ruhl, J E; Santini, P; Tegmark, M; Veneziani, M; Vittorio, N

    2007-01-01

    We analyze the BOOMERanG 2003 (B03) 145 GHz temperature map to constrain the amplitude of a non Gaussian, primordial contribution to CMB fluctuations. We perform a pixel space analysis restricted to a portion of the map chosen in view of high sensitivity, very low foreground contamination and tight control of systematic effects. We set up an estimator based on the three Minkowski functionals which relies on high quality simulated data, including non Gaussian CMB maps. We find good agreement with the Gaussian hypothesis and derive the first limits based on BOOMERanG data for the non linear coupling parameter f_NL as -350

  8. Cross-correlation of CMB with large-scale structure: weak gravitational lensing

    CERN Document Server

    Hirata, C M; Seljak, U; Schlegel, D J; Brinkmann, J; Hirata, Christopher M.; Padmanabhan, Nikhil; Seljak, Uros; Schlegel, David; Brinkmann, Jonathan

    2004-01-01

    We present the results of a search for gravitational lensing of the cosmic microwave background (CMB) in cross-correlation with the projected density of luminous red galaxies (LRGs). The CMB lensing reconstruction is performed using the first year of Wilkinson Microwave Anisotropy Probe (WMAP) data, and the galaxy maps are obtained using the Sloan Digital Sky Survey (SDSS) imaging data. We find no detection of lensing; our constraint on the galaxy bias derived from the galaxy-convergence cross-spectrum is $b_g=1.81\\pm 1.92$ ($1\\sigma$, statistical), as compared to the expected result of $b_g\\sim 1.7$ for this sample. We discuss possible instrument-related systematic errors and show that the Galactic foregrounds are not important. We do not find any evidence for point source or thermal Sunyaev-Zel'dovich effect contamination.

  9. A template of atmospheric O2 circularly polarized emission for CMB experiments

    CERN Document Server

    Spinelli, Sebastiano; Tartari, Andrea; Zannoni, Mario; Gervasi, Massimo

    2011-01-01

    We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB measurements: South Pole and Dome C (Antarctica), Atacama (Chile) and Testa Grigia (Italy). An analysis of the polarized signal is presented and discussed in the framework of future CMB polarization experiments. We find a typical circularly polarized signal (V Stokes parameter) of ~ 50 - 300 {\\mu}K at 90 GHz looking at the zenith. Among the other sites Atacama shows the lower polarized signal at the zenith. We present maps of this signal for the various sites and show typical elevation and azimuth scans. We find that Dome C presents the lowest gradient in polarized temperature: ~ 0.3 {\\mu}K/\\circ at 90 GHz. We also study the frequency bands of observation: around {\

  10. Constraints from SNIa and CMB temperature observations on a Decaying Cosmological term

    CERN Document Server

    Thushari, E P Berni Ann; Ikeda, Mikio; Hashimoto, Masa-aki

    2011-01-01

    We re-investigate the cosmic thermal evolution with a cosmological term which decay into photon. We assume that the cosmological term is a function of the scale factor that increases toward the early universe. We put on the constraints from recent type Ia supernovae (SNIa) by Union-2 compilation and the cosmic microwave background (CMB) temperature at $0.02 < z < 3$. From SNIa, we find that the effects of a decaying cosmological term on the cosmic expansion rate should be very small at $z < 1.5$. On the other hand, we obtain the severe constraints for parameters from the CMB temperature observations. This results mean the temperature can be still lower than the case of the standard cosmological model. Its should only affect the thermal evolution at the earlier epoch. Therefore we need to do analysis precisely such as the newest WMAP observational data.

  11. Model independent approaches to reionization in the analysis of upcoming CMB data

    OpenAIRE

    Colombo, Loris P. L.; Pierpaoli, Elena

    2008-01-01

    On large angular scales, CMB polarization depends mostly on the evolution of the ionization level of the IGM during reionization. In order to avoid biasing parameter estimates, an accurate and model independent approach to reionization is needed when analyzing high precision data, like those expected from the Planck experiment. In this paper we consider two recently proposed methods of fitting for reionization and we discuss their respective advantages. We test both methods by performing a Mo...

  12. The Atacama Cosmology Telescope: likelihood for small-scale CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Dunkley, J.; Calabrese, E. [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Sievers, J. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Addison, G.E.; Halpern, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 (Canada); Battaglia, N. [McWilliams Center for Cosmology, Wean Hall, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213 (United States); Battistelli, E.S. [Department of Physics, University of Rome ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Bond, J.R.; Hajian, A.; Hincks, A.D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, Canada M5S 3H8 (Canada); Das, S. [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont IL 60439 (United States); Devlin, M.J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dünner, R. [Departamento de Astronomía y Astrofísica, Pontificía Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Fowler, J.W.; Irwin, K.D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Gralla, M. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Hasselfield, M.; Hlozek, R. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hughes, J.P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Kosowsky, A., E-mail: j.dunkley@physics.ox.ac.uk [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); and others

    2013-07-01

    The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 < l < 10000. We extend the likelihood to include spectra from the South Pole Telescope at frequencies of 95, 150, and 220 GHz. Accounting for different radio source levels and Galactic cirrus emission, the same model provides an excellent fit to both datasets simultaneously, with χ{sup 2}/dof= 675/697 for ACT, and 96/107 for SPT. We then use the multi-frequency likelihood to estimate the CMB power spectrum from ACT in bandpowers, marginalizing over the secondary parameters. This provides a simplified 'CMB-only' likelihood in the range 500 < l < 3500 for use in cosmological parameter estimation.

  13. Model-independent analyses of non-Gaussianity in Planck CMB maps using Minkowski functionals

    Science.gov (United States)

    Buchert, Thomas; France, Martin J.; Steiner, Frank

    2017-05-01

    Despite the wealth of Planck results, there are difficulties in disentangling the primordial non-Gaussianity of the Cosmic Microwave Background (CMB) from the secondary and the foreground non-Gaussianity (NG). For each of these forms of NG the lack of complete data introduces model-dependences. Aiming at detecting the NGs of the CMB temperature anisotropy δ T , while paying particular attention to a model-independent quantification of NGs, our analysis is based upon statistical and morphological univariate descriptors, respectively: the probability density function P(δ T) , related to v0, the first Minkowski Functional (MF), and the two other MFs, v1 and v2. From their analytical Gaussian predictions we build the discrepancy functions {{ Δ }k} (k  =  P, 0, 1, 2) which are applied to an ensemble of 105 CMB realization maps of the Λ CDM model and to the Planck CMB maps. In our analysis we use general Hermite expansions of the {{ Δ }k} up to the 12th order, where the coefficients are explicitly given in terms of cumulants. Assuming hierarchical ordering of the cumulants, we obtain the perturbative expansions generalizing the second order expansions of Matsubara to arbitrary order in the standard deviation {σ0} for P(δ T) and v0, where the perturbative expansion coefficients are explicitly given in terms of complete Bell polynomials. The comparison of the Hermite expansions and the perturbative expansions is performed for the Λ CDM map sample and the Planck data. We confirm the weak level of non-Gaussianity (1-2)σ of the foreground corrected masked Planck 2015 maps.

  14. Intrinsic alignment contamination to CMB lensing-galaxy weak lensing correlations from tidal torquing

    Science.gov (United States)

    Larsen, Patricia; Challinor, Anthony

    2016-10-01

    Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently measured cross-correlation between galaxy ellipticities and the cosmic microwave background (CMB) lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model, believed to be appropriate for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements. We note that cosmic variance can be significantly reduced in measurements of the difference in the intrinsic alignments for elliptical and spiral galaxies if these types can be separated (e.g. using colour).

  15. First Release of Gauss-Legendre Sky Pixelization (GLESP) software package for CMB analysis

    CERN Document Server

    Doroshkevich, A G; Verkhodanov, O V; Novikov, D I; Turchaninov, V I; Novikov, I D; Christensen, P R; Chiang, L Y

    2005-01-01

    We report the release of the Gauss--Legendre Sky Pixelization (GLESP) software package version 1.0. In this report we present the main features and functions for processing and manipulation of sky signals. Features for CMB polarization is underway and to be incorporated in a future release. Interested readers can visit http://www.glesp.nbi.dk (www.glesp.nbi.dk) and register for receiving the package.

  16. The probability distribution for non-Gaussianity estimators constructed from the CMB trispectrum

    CERN Document Server

    Smith, Tristan L

    2012-01-01

    Considerable recent attention has focussed on the prospects to use the cosmic microwave background (CMB) trispectrum to probe the physics of the early universe. Here we evaluate the probability distribution function (PDF) for the standard estimator tau_nle for the amplitude tau_nl of the CMB trispectrum both for the null-hypothesis (i.e., for Gaussian maps with tau_nl = 0) and for maps with a non-vanishing trispectrum (|tau_nl|>0). We find these PDFs to be highly non-Gaussian in both cases. We also evaluate the variance with which the trispectrum amplitude can be measured, , as a function of its underlying value, tau_nl. We find a strong dependence of this variance on tau_nl. We also find that the variance does not, given the highly non-Gaussian nature of the PDF, effectively characterize the distribution. Detailed knowledge of these PDFs will therefore be imperative in order to properly interpret the implications of any given trispectrum measurement. For example, if a CMB experiment with a maximum multipole ...

  17. CMB lensing power spectrum biases from galaxies and clusters using high-angular resolution temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Van Engelen, A.; Sehgal, N. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Bhattacharya, S. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Holder, G. P. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Zahn, O. [Berkeley Center for Cosmological Physics, Department of Physics, University of California, and Lawrence Berkeley National Labs, Berkeley, CA 94720 (United States); Nagai, D. [Department of Physics, Department of Astronomy and Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States)

    2014-05-01

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to the Atacama Cosmology Telescope and the South Pole Telescope. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on σ{sub 8} and an uncertainty on the total neutrino mass of ∼50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M {sub vir} = 10{sup 14} M {sub ☉}. To achieve such percent level bias, we find that only modes up to a maximum multipole of l {sub max} ∼ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.

  18. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Stiehl, gregory M.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  19. Application of beam deconvolution technique to power spectrum estimation for CMB measurements

    CERN Document Server

    Keihänen, Elina; Kurki-Suonio, Hannu; Reinecke, Martin

    2016-01-01

    We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from earlier ones in that the power spectrum is estimated directly from time-ordered data, without first compressing the data into a sky map, and they take into account the effect of asymmetric beams. In particular, they correct the beam-induced leakage from temperature to polarization. The methods are applicable to a case where part of the sky has been masked out to remove foreground contamination, leaving a pure CMB signal, but incomplete sky coverage. The first method (DQML) is derived as the optimal quadratic estimator, which simultaneously yields an unbiased spectrum estimate, and minimizes its variance. We successfully apply it to multipoles up to $\\ell$=200. The second method is derived as an weak-signal approximation from the first one. It yields an unbiased es...

  20. Angular Correlation of the CMB in the R_h=ct Universe

    CERN Document Server

    Melia, Fulvio

    2012-01-01

    The emergence of several large-scale anomalies in the cosmic microwave background (CMB) has pointed to possible deficiencies in the standard model, or perhaps new physics driving the origin of density fluctuations in the early Universe and their evolution into the large-scale structure we see today. In this paper, we focus our attention on the observed absence of angular correlation of the CMB anisotropies at angles larger than ~60 degrees, and consider whether this feature may be understood in the context of the R_h=ct Universe. We find that the significant disparity between the predictions of LCDM and the WMAP sky (at a confidence level of greater than 99.9 percent) may be directly traced to inflation. The classic horizon problem does not exist in the R_h=ct Universe, so a period of exponential growth was not necessary in this cosmology in order to account for the general uniformity of the CMB (save for the aforementioned tiny fluctuations of 1 part in 100,000 in the WMAP relic signal). We show that the R_h...

  1. Axion production and CMB spectral distortion in cosmological tangled magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ejlli, Damian [INFN Laboratori Nazionali del Gran Sasso, Theory group, Assergi, L' Aquila (Italy); Novosibirsk State University, Department of Physics, Novosibirsk (Russian Federation)

    2015-08-15

    Axion production due to photon-axion mixing in tangled magnetic fields prior to the recombination epoch and magnetic field damping can generate cosmic microwave background (CMB) spectral distortions. In particular, the contribution of both processes to the CMB μ distortion in the case of resonant photon-axion mixing is studied. Assuming that the magnetic field power spectrum is approximated by a power law, P{sub B}(k)∝k{sup n} with spectral index n, it is shown that for magnetic field cut-off scales 172.5 pc ≤ λ{sub B} ≤ 4 x 10{sup 3} pc, the axion contribution to the CMB μ distortion is subdominant in comparison with magnetic field damping in the cosmological plasma. Using the COBE upper limit on μ and for the magnetic field scale λ{sub B} ≅ 415 pc, a weaker limit in comparison with other studies on the magnetic field strength (B{sub 0} ≤ 8.5 @ x 10{sup -8} G) up to a factor 10 for the DFSZ axion model and axion mass m{sub a} ≥ 2.6 @ x 10{sup -6} eV is found. A forecast for the expected sensitivity of PIXIE/PRISM on μ is also presented. (orig.)

  2. Revisiting the EC/CMB model for extragalactic large scale jets

    CERN Document Server

    Lucchini, Matteo; Ghisellini, Gabriele

    2016-01-01

    One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of Flat Spectrum Radio Quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the Cosmic Microwave Background (EC/CMB) as the mechanism responsible for the high energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of gamma-rays by suppressing the high energ...

  3. Non-Gaussianity in the HILC foreground-reduced three-year WMAP CMB map

    CERN Document Server

    Bernui, A

    2010-01-01

    A detection or nondetection of primordial non-Gaussianity in the CMB data is essential not only to test alternative models of the physics of the early universe but also to discriminate among classes of inflationary models. Given this far reaching consequences of such a non-Gaussianity detection for our understanding of the physics of the early universe, it is important to employ alternative indicators in order to have further information about the Gaussianity features of CMB that may be helpful for identifying their origins. In this way, a considerable effort has recently gone into the design of non-Gaussianity indicators, and in their application in the search for deviation from Gaussianity in the CMB data. Recently we have proposed two new large-angle non-Gaussianity indicators which provide measures of the departure from Gaussianity on large angular scales. We have used these indicators to carry out analyses of Gaussianity of the single frequency bands and of the available foreground-reduced {\\it five-year...

  4. Echoes of inflationary first-order phase transitions in the CMB

    Directory of Open Access Journals (Sweden)

    Hongliang Jiang

    2017-02-01

    Full Text Available Cosmological phase transitions (CPTs, such as the Grand Unified Theory (GUT and the electroweak (EW ones, play a significant role in both particle physics and cosmology. In this letter, we propose to probe the first-order CPTs, by detecting gravitational waves (GWs which are generated during the phase transitions through the cosmic microwave background (CMB. If happened around the inflation era, the first-order CPTs may yield low-frequency GWs due to bubble dynamics, leaving imprints on the CMB. In contrast to the nearly scale-invariant primordial GWs caused by vacuum fluctuation, these bubble-generated GWs are scale dependent and have non-trivial B-mode spectra. If decoupled from inflaton, the EWPT during inflation may serve as a probe for the one after reheating where the baryon asymmetry could be generated via EW baryogenesis (EWBG. The CMB thus provides a potential way to test the feasibility of the EWBG, complementary to the collider measurements of Higgs potential and the direct detection of GWs generated during EWPT.

  5. CMB Observations with a Compact Heterogeneous 150 GHz Interferometer in Chile

    CERN Document Server

    Fowler, J W; Marriage, T A; Tran, H T; Aboobaker, A M; Dumont, C; Halpern, M; Kermish, Z D; Loh, Y S; Page, L A; Staggs, S T; Wesley, D H

    2005-01-01

    We report on the design, first observing season, and analysis of data from a new prototype millimeter-wave interferometer, MINT. MINT consists of four 145 GHz SIS mixers operating in double-sideband mode in a compact heterogeneous configuration. The signal band is subdivided by a monolithic channelizer, after which the correlations between antennas are performed digitally. The typical receiver sensitivity in a 2 GHz band is 1.4 mK sqrt(s). MINT observed the cosmic microwave background (CMB) from the Chilean Altiplano. The site has a median nighttime atmospheric temperature of 9 K at zenith (exclusive of the CMB). Observations of Mars, Jupiter, and a telescope-mounted calibration source establish the system's phase and magnitude stability. MINT is the first CMB-dedicated interferometer to operate above 50 GHz. The same type of system can be used to probe the Sunyaev-Zel'dovich effect in galaxy clusters near the SZ null at 217 GHz. We present an analysis of sideband-separated, digitally sampled data recorded by...

  6. Constraining gravity at the largest scales through CMB lensing and galaxy velocities

    Science.gov (United States)

    Pullen, Anthony R.; Alam, Shadab; He, Siyu; Ho, Shirley

    2016-08-01

    We demonstrate a new method to constrain gravity on the largest cosmological scales by combining measurements of cosmic microwave background (CMB) lensing and the galaxy velocity field. EG is a statistic, constructed from a gravitational lensing tracer and a measure of velocities such as redshift-space distortions (RSD), that can discriminate between gravity models while being independent of clustering bias and σ8. While traditionally, the lensing field for EG has been probed through galaxy lensing, CMB lensing has been proposed as a more robust tracer of the lensing field for EG at higher redshifts while avoiding intrinsic alignments. We perform the largest-scale measurement of EG ever, up to 150 Mpc h-1, by cross-correlating the Planck CMB lensing map with the Sloan Digital Sky Survey III (SDSS-III) CMASS galaxy sample and combining this with our measurement of the CMASS auto-power spectrum and the RSD parameter β. We report EG(z = 0.57) = 0.243 ± 0.060 (stat) ± 0.013 (sys), a measurement in tension with the general relativity (GR) prediction at a level of 2.6σ. Note that our EG measurement deviates from GR only at scales greater than 80 Mpc h-1, scales which have not been probed by previous EG tests. Upcoming surveys, which will provide an order-of-magnitude reduction in statistical errors, can significantly constrain alternative gravity models when combined with better control of systematics.

  7. Measuring Distance Ratios with CMB-Galaxy Lensing Cross-correlations

    CERN Document Server

    Das, Sudeep; 10.1103/PhysRevD.79.043509

    2009-01-01

    We propose a method for cosmographic measurements by combining gravitational lensing of the cosmic microwave background (CMB) with cosmic shear surveys. We cross-correlate the galaxy counts in the lens plane with two different source planes: the CMB at $z \\sim 1100$ and galaxies at an intermediate redshift. The ratio of the galaxy count/CMB lensing cross-correlation to the galaxy count/galaxy lensing cross correlation is shown to be a purely geometric quantity, depending only on the distribution function of the source galaxies. By combining Planck, ADEPT and LSST the ratio can be measured to $\\sim 4%$ accuracy, whereas a future polarization based experiment like CMBPOL can make a more precise ($\\sim 1%$) measurement. For cosmological models where the curvature and the equation of state parameter are allowed to vary, the direction of degeneracy defined by the measurement of this ratio is different from that traced out by Baryon Acoustic Oscillation (BAO) measurements. Combining this method with the stacked clu...

  8. On the impact of large angle CMB polarization data on cosmological parameters

    CERN Document Server

    Lattanzi, Massimiliano; Gerbino, Martina; Gruppuso, Alessandro; Mandolesi, Nazzareno; Natoli, Paolo; Polenta, Gianluca; Salvati, Laura; Trombetti, Tiziana

    2016-01-01

    (abridged) We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the $\\Lambda$CDM model. To complement large-angle polarization, we consider the high-resolution CMB datasets from either WMAP or Planck, as well as CMB lensing as traced by Planck. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low-resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth $\\tau$, of order ~$2\\sigma$, robust to the choice of the complementary high-l dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find $\\tau = 0.066 ^{+0.012...

  9. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  10. Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data

    CERN Document Server

    Madhavacheril, Mathew S; Slatyer, Tracy R

    2013-01-01

    Updated constraints on dark matter cross section and mass are presented combining CMB power spectrum measurements from Planck, WMAP9, ACT, and SPT as well as several low-redshift datasets (BAO, HST, supernovae). For the CMB datasets, we combine WMAP9 temperature and polarization data for l 2500, and Planck CMB four-point lensing measurements. We allow for redshift-dependent energy deposition from dark matter annihilation by using a `universal' energy absorption curve. We also include an updated treatment of the excitation, heating, and ionization energy fractions, and provide updated deposition efficiency factors (f_eff) for 41 different dark matter models. Assuming perfect energy deposition (f_eff = 1) and a thermal cross section, dark matter masses below 26 GeV are excluded at the 2-sigma level. Assuming a more generic efficiency of f_eff = 0.2, thermal dark matter masses below 5 GeV are disfavored at the 2-sigma level. These limits are a factor of ~2 improvement over those from WMAP9 data alone. These cur...

  11. Distinguishing interacting dark energy from wCDM with CMB, lensing, and baryon acoustic oscillation data

    CERN Document Server

    Valiviita, Jussi

    2015-01-01

    We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological $w$CDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, $\\omega_c$, allowing a large interaction rate $|\\Gamma| \\sim H_0$. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift $z \\sim 2$ and is very sensitive to the growth of structure, and hence one of the tools for discerning between the $\\Lambda$CDM model and its alternatives. However, we find that in the non-phantom models ($w_{\\mathrm{de}}>-1$), the constraints remain unchange...

  12. Thermodynamics of SU(2) quantum Yang-Mills theory and CMB anomalies

    CERN Document Server

    Hofmann, Ralf

    2013-01-01

    A brief review of effective SU(2) Yang-Mills thermodynamics in the deconfining phase is given, including the construction of the thermal ground-state estimate in terms of an inert, adjoint scalar field $\\phi$, based on non-propagating (anti)selfdual field configurations of topological charge unity. We explain why the screening physics of an SU(2) photon is subject to an electric-magnetically dual interpretation. Next, we elucidate how a low-frequency excess of line temperature in the Cosmic Microwave Background (CMB) determines the value of the critical temperature of the deconfining-preconfining phase transition of an SU(2) Yang-Mills theory postulated to describe photon propagation, and we describe how, starting at a redshift of about unity, SU(2) photons collectively work 3D temperature depressions into the CMB. Upon projection along a line of sight, a given depression influences the present CMB sky in a cosmologically local way, possibly explaining the large-angle anomalies confirmed recently by the Planc...

  13. Constraining Gravity at the Largest Scales through CMB Lensing and Galaxy Velocities

    CERN Document Server

    Pullen, Anthony R; He, Siyu; Ho, Shirley

    2015-01-01

    We demonstrate a new method to constrain gravity on the largest cosmological scales by combining measurements of cosmic microwave background (CMB) lensing and the galaxy velocity field. $E_G$ is a statistic, constructed from a gravitational lensing tracer and a measure of velocities such as redshift-space distortions (RSD), that can discriminate between gravity models while being independent of clustering bias and $\\sigma_8$. While traditionally, the lensing field for $E_G$ has been probed through galaxy lensing, CMB lensing has been proposed as a more robust tracer of the lensing field for $E_G$ at higher redshifts while avoiding intrinsic alignments. We perform the largest-scale measurement of $E_G$ ever, up to 150 Mpc/$h$, by cross-correlating the Planck CMB lensing map with the Sloan Digital Sky Survey III (SDSS-III) CMASS galaxy sample and combining this with our measurement of the CMASS auto-power spectrum and the RSD parameter $\\beta$. We report $E_G(z=0.57)=0.243\\pm0.060$ (stat) $\\pm0.013$ (sys), a me...

  14. Two Organic Phase Suspension Polymerization for Novel Hypercrosslinked Resin Bead by Polycondensation of CMB

    Institute of Scientific and Technical Information of China (English)

    ZHAO Linxiu; ZHANG Xin; L(U) Xingxin; YUAN Siguo; WU Xianli

    2013-01-01

    The suspension polymerization with two organic phases was adopted to prepare spherical hypercrosslinked resin by self-polycondensation of 4,4'-bis-(chloromethyl)-1,1'-biphenyl (CMB).The chemical structure,morphology and pore characteristics of the novel spherical resin were characterized with Fourier transform infrared spectroscopy (FTIR),micrograph and Brunauer-Emmett-Teller (BET).It is found that the suspension system and stirring speed impose a great influence upon the regularity and size distribution of hypercrosslinked beads.To prepare CMB resin beads with diameter of about 300.u',the optimal condition is as follows:stirring speed 300 r·min-1,and the volume ratio of the two organic phases (nitrobenzene/dimethyl silicon oil) 1 ∶ 5.After the self-polycondensation and succedent post-crosslinking of CMB monomer,the spherical adsorbent presents high special surface area (1190 m2·g-1) and abundant pore volume (0.714 cm3· g-1),and could be potentially applied in the adsorption of various organic molecules and synthesis of porous ion exchanger.

  15. Neutrino constraints: what large-scale structure and CMB data are telling us?

    CERN Document Server

    Costanzi, M; Viel, M; Borgani, S

    2014-01-01

    (Abridged) We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of WMAP 9-year or Planck CMB data with BAO measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly-$\\alpha$ forest constraints and galaxy cluster mass function from Chandra observations. To avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrinos in combination with CMB measurements, while a larger than $2\\sigma$ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measu...

  16. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  17. Is this Red Spot the Blue Spot (locus ceruleum)?

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Won Sick; Lee, Yu Kyung; Lee, Min Kyung; Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2010-06-15

    The authors report brain images of 18F-FDG-PET in a case of schizophrenia. The images showed strikingly increased bilateral uptake in the locus ceruleum. The locus ceruleum is called the blue spot and known to be a center of the norepinephrinergic system.

  18. Controllable Magnetic Focusing of Cold Atoms on a Chip

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; YUN Min; YIN Jian-Ping

    2006-01-01

    @@ We propose a new lens scheme to focus cold atoms by using a controllable inhomogeneous magnetic field from a square current-carrying wire fabricated on a chip. The spatial distributions of the magnetic field are calculated, and the results show that the generated magnetic field is a two-dimensional (2D) quadrupole one and can be used to focus cold atoms or a cold atomic beam. The dynamic processes of cold atoms passing through our square wire layout and its focusing properties are studied by using Monte Carlo simulations. Our study shows that the atomic clouds can be focused effectively by our magnetic lens scheme, and the focal lengthof the atomic lens and its radius of focused spot can be continuously changed by adjusting the current in the wires.

  19. Origin of the X-rays and Possible GeV-TeV Emission from the Western Hot Spot Of Pictor A

    CERN Document Server

    Zhang, Jin; Chen, Liang; Yang, Xian

    2009-01-01

    Pictor A is a nearby Fanaroff-Riley class II (FR II) radio galaxy with a bright hot spot, the western hot spot. Observation of high polarization in the optical emission of the hot spot indicates that the optical emission could be synchrotron radiation of relativistic electrons in the hot spot. These electrons may be able to produce high energy gamma-ray photons through inverse Compton (IC) scattering. We use single-zone and multi-zone synchrotron + synchrotron-self-Compton (SSC) models to fit the observed spectral energy distribution (SED) from the radio to the X-ray band of the hot spot. Our esults show that in the case of a much weaker magnetic field strength than the equipartition magnetic field, both the single-zone and multi-zone models can fit the SED, but the multi-zone model significantly improves the fit. The two models predict the hot spot as a GeV-TeV source, which might be marginally detectable with Fermi/LAT and HESS. The inverse Compton scattering of cosmic microwave background (IC/CMB) is also ...

  20. Neutrino constraints: what large-scale structure and CMB data are telling us?

    Energy Technology Data Exchange (ETDEWEB)

    Costanzi, Matteo; Sartoris, Barbara; Borgani, Stefano [Astronomy Unit, Department of Physics, University of Trieste, via Tiepolo 11, Trieste, I-34143 Italy (Italy); Viel, Matteo, E-mail: costanzi@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: viel@oats.inaf.it, E-mail: borgani@oats.inaf.it [INAF-Osservatorio Astronomico di Trieste, via Tiepolo 11, Trieste, I-34143 Italy (Italy)

    2014-10-01

    We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ m{sub ν} =0.29{sup +0.18}{sub -0.21} eV and ∑ m{sub ν} =0.22{sup +0.17}{sub -0.18} eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get m{sub s}{sup eff}=0.44{sup +0.28}{sub -0.26} eV and Δ N{sub eff}=0.78{sup +0.60}{sub -0.59} 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass