WorldWideScience

Sample records for cluster model

  1. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  2. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  3. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  4. Cluster model of the nucleus

    International Nuclear Information System (INIS)

    Horiuchi, H.; Ikeda, K.

    1986-01-01

    This article reviews the development of the cluster model study. The stress is put on two points; one is how the cluster structure has come to be regarded as a fundamental structure in light nuclei together with the shell-model structure, and the other is how at present the cluster model is extended to and connected with the studies of the various subjects many of which are in the neighbouring fields. The authors the present the main theme with detailed explanations of the fundamentals of the microscopic cluster model which have promoted the development of the cluster mode. Examples of the microscopic cluster model study of light nuclear structure are given

  5. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases...... the accuracy at the same time. The test example is classified using simpler and smaller model. The training examples in a particular cluster share the common vocabulary. At the time of clustering, we do not take into account the labels of the training examples. After the clusters have been created......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...

  6. Cluster Correlation in Mixed Models

    Science.gov (United States)

    Gardini, A.; Bonometto, S. A.; Murante, G.; Yepes, G.

    2000-10-01

    We evaluate the dependence of the cluster correlation length, rc, on the mean intercluster separation, Dc, for three models with critical matter density, vanishing vacuum energy (Λ=0), and COBE normalization: a tilted cold dark matter (tCDM) model (n=0.8) and two blue mixed models with two light massive neutrinos, yielding Ωh=0.26 and 0.14 (MDM1 and MDM2, respectively). All models approach the observational value of σ8 (and hence the observed cluster abundance) and are consistent with the observed abundance of damped Lyα systems. Mixed models have a motivation in recent results of neutrino physics; they also agree with the observed value of the ratio σ8/σ25, yielding the spectral slope parameter Γ, and nicely fit Las Campanas Redshift Survey (LCRS) reconstructed spectra. We use parallel AP3M simulations, performed in a wide box (of side 360 h-1 Mpc) and with high mass and distance resolution, enabling us to build artificial samples of clusters, whose total number and mass range allow us to cover the same Dc interval inspected through Automatic Plate Measuring Facility (APM) and Abell cluster clustering data. We find that the tCDM model performs substantially better than n=1 critical density CDM models. Our main finding, however, is that mixed models provide a surprisingly good fit to cluster clustering data.

  7. Determining characteristic principal clusters in the “cluster-plus-glue-atom” model

    International Nuclear Information System (INIS)

    Du, Jinglian; Wen, Bin; 2NeT Lab, Wilfrid Laurier University, Waterloo, 75 University Ave West, Ontario N2L 3C5 (Canada))" data-affiliation=" (M2NeT Lab, Wilfrid Laurier University, Waterloo, 75 University Ave West, Ontario N2L 3C5 (Canada))" >Melnik, Roderick; Kawazoe, Yoshiyuki

    2014-01-01

    The “cluster-plus-glue-atom” model can easily describe the structure of complex metallic alloy phases. However, the biggest obstacle limiting the application of this model is that it is difficult to determine the characteristic principal cluster. In the case when interatomic force constants (IFCs) inside the cluster lead to stronger interaction than the interaction between the clusters, a new rule for determining the characteristic principal cluster in the “cluster-plus-glue-atom” model has been proposed on the basis of IFCs. To verify this new rule, the alloy phases in Cu–Zr and Al–Ni–Zr systems have been tested, and our results indicate that the present new rule for determining characteristic principal clusters is effective and reliable

  8. Modeling of correlated data with informative cluster sizes: An evaluation of joint modeling and within-cluster resampling approaches.

    Science.gov (United States)

    Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S

    2017-08-01

    Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.

  9. Co-clustering models, algorithms and applications

    CERN Document Server

    Govaert, Gérard

    2013-01-01

    Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixture

  10. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  11. On the shell model connection of the cluster model

    International Nuclear Information System (INIS)

    Cseh, J.; Levai, G.; Kato, K.

    2000-01-01

    Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known, but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model, in which not only the cluster model space is obtained from the full shell model space by an SU(3) symmetry-dictated truncation, but SU(3) dynamically symmetric interactions are also applied. Actually, Hamiltonians of this kind proved to be successful in describing the gross features of cluster states in a wide energy range. The novel feature of the present work is that we apply exclusively shell model interactions. The energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental

  12. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    Science.gov (United States)

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  13. Cluster-cluster correlations in the two-dimensional stationary Ising-model

    International Nuclear Information System (INIS)

    Klassmann, A.

    1997-01-01

    In numerical integration of the Cahn-Hillard equation, which describes Oswald rising in a two-phase matrix, N. Masbaum showed that spatial correlations between clusters scale with respect to the mean cluster size (itself a function of time). T. B. Liverpool showed by Monte Carlo simulations for the Ising model that the analogous correlations have a similar form. Both demonstrated that immediately around each cluster there is some depletion area followed by something like a ring of clusters of the same size as the original one. More precisely, it has been shown that the distribution of clusters around a given cluster looks like a sinus-curve decaying exponentially with respect to the distance to a constant value

  14. FORMATION OF A INNOVATION REGIONAL CLUSTER MODEL

    Directory of Open Access Journals (Sweden)

    G. S. Merzlikina

    2015-01-01

    Full Text Available Summary. As a result of investigation of science and methodical approaches related problems of building and development of innovation clusters there were some issues in functional assignments of innovation and production clusters. Because of those issues, article’s authors differ conceptions of innovation cluster and production cluster, as they explain notion of innovation-production cluster. The main goal of this article is to reveal existing organizational issues in cluster building and its successful development. Based on regional clusters building analysis carried out there was typical practical structure of cluster members interaction revealed. This structure also have its cons, as following: absence cluster orientation to marketing environment, lack of members’ prolonged relations’ building and development system, along with ineffective management of information, financial and material streams within cluster, narrow competence difference and responsibility zones between cluster members, lack of transparence of cluster’s action, low environment changes adaptivity, hard to use cluster members’ intellectual property, and commercialization of hi-tech products. When all those issues listed above come together, it reduces life activity of existing models of innovative cluster-building along with practical opportunity of cluster realization. Because of that, authors offer an upgraded innovative-productive cluster building model with more efficient business processes management system, which includes advanced innovative cluster structure, competence matrix and subcluster responsibility zone. Suggested model differs from other ones by using unified innovative product development control center, which also controls production and marketing realization.

  15. Modelling baryonic effects on galaxy cluster mass profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-06-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  16. Modelling Baryonic Effects on Galaxy Cluster Mass Profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-03-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  17. On the shell-model-connection of the cluster model

    International Nuclear Information System (INIS)

    Cseh, J.

    2000-01-01

    Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago [1] as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known [2] but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model [3,4] in order to find an answer to this question, which seems to be affirmative. In particular, the energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental values. The present results show that the simple and transparent SU(3) connection between the spherical shell model and the cluster model is valid not only for the harmonic oscillator interactions, but for much more general (SU(3) dynamically symmetric) Hamiltonians as well, which result in realistic energy spectra. Via

  18. Cluster-based analysis of multi-model climate ensembles

    Science.gov (United States)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and

  19. Topics in modelling of clustered data

    CERN Document Server

    Aerts, Marc; Ryan, Louise M; Geys, Helena

    2002-01-01

    Many methods for analyzing clustered data exist, all with advantages and limitations in particular applications. Compiled from the contributions of leading specialists in the field, Topics in Modelling of Clustered Data describes the tools and techniques for modelling the clustered data often encountered in medical, biological, environmental, and social science studies. It focuses on providing a comprehensive treatment of marginal, conditional, and random effects models using, among others, likelihood, pseudo-likelihood, and generalized estimating equations methods. The authors motivate and illustrate all aspects of these models in a variety of real applications. They discuss several variations and extensions, including individual-level covariates and combined continuous and discrete outcomes. Flexible modelling with fractional and local polynomials, omnibus lack-of-fit tests, robustification against misspecification, exact, and bootstrap inferential procedures all receive extensive treatment. The application...

  20. Fitting Latent Cluster Models for Networks with latentnet

    Directory of Open Access Journals (Sweden)

    Pavel N. Krivitsky

    2007-12-01

    Full Text Available latentnet is a package to fit and evaluate statistical latent position and cluster models for networks. Hoff, Raftery, and Handcock (2002 suggested an approach to modeling networks based on positing the existence of an latent space of characteristics of the actors. Relationships form as a function of distances between these characteristics as well as functions of observed dyadic level covariates. In latentnet social distances are represented in a Euclidean space. It also includes a variant of the extension of the latent position model to allow for clustering of the positions developed in Handcock, Raftery, and Tantrum (2007.The package implements Bayesian inference for the models based on an Markov chain Monte Carlo algorithm. It can also compute maximum likelihood estimates for the latent position model and a two-stage maximum likelihood method for the latent position cluster model. For latent position cluster models, the package provides a Bayesian way of assessing how many groups there are, and thus whether or not there is any clustering (since if the preferred number of groups is 1, there is little evidence for clustering. It also estimates which cluster each actor belongs to. These estimates are probabilistic, and provide the probability of each actor belonging to each cluster. It computes four types of point estimates for the coefficients and positions: maximum likelihood estimate, posterior mean, posterior mode and the estimator which minimizes Kullback-Leibler divergence from the posterior. You can assess the goodness-of-fit of the model via posterior predictive checks. It has a function to simulate networks from a latent position or latent position cluster model.

  1. Quark cluster model in the three-nucleon system

    International Nuclear Information System (INIS)

    Osman, A.

    1986-11-01

    The quark cluster model is used to investigate the structure of the three-nucleon systems. The nucleon-nucleon interaction is proposed considering the colour-nucleon clusters and incorporating the quark degrees of freedom. The quark-quark potential in the quark compound bag model agrees with the central force potentials. The confinement potential reduces the short-range repulsion. The colour van der Waals force is determined. Then, the probability of quark clusters in the three-nucleon bound state systems are numerically calculated using realistic nuclear wave functions. The results of the present calculations show that quarks cluster themselves in three-quark systems building the quark cluster model for the trinucleon system. (author)

  2. Modeling the formation of globular cluster systems in the Virgo cluster

    International Nuclear Information System (INIS)

    Li, Hui; Gnedin, Oleg Y.

    2014-01-01

    The mass distribution and chemical composition of globular cluster (GC) systems preserve fossil record of the early stages of galaxy formation. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. We present a simple model for the formation and disruption of GCs that aims to match the ACSVCS data. This model tests the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range of 2 × 10 12 to 7 × 10 13 M ☉ and match them to 19 Virgo galaxies with K-band luminosity between 3 × 10 10 and 3 × 10 11 L ☉ . To set the [Fe/H] abundances, we use an empirical galaxy mass-metallicity relation. We find that a minimal merger ratio of 1:3 best matches the observed cluster metallicity distribution. A characteristic bimodal shape appears because metal-rich GCs are produced by late mergers between massive halos, while metal-poor GCs are produced by collective merger activities of less massive hosts at early times. The model outcome is robust to alternative prescriptions for cluster formation rate throughout cosmic time, but a gradual evolution of the mass-metallicity relation with redshift appears to be necessary to match the observed cluster metallicities. We also affirm the age-metallicity relation, predicted by an earlier model, in which metal-rich clusters are systematically several billion younger than their metal-poor counterparts.

  3. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  4. blockcluster: An R Package for Model-Based Co-Clustering

    Directory of Open Access Journals (Sweden)

    Parmeet Singh Bhatia

    2017-02-01

    Full Text Available Simultaneous clustering of rows and columns, usually designated by bi-clustering, coclustering or block clustering, is an important technique in two way data analysis. A new standard and efficient approach has been recently proposed based on the latent block model (Govaert and Nadif 2003 which takes into account the block clustering problem on both the individual and variable sets. This article presents our R package blockcluster for co-clustering of binary, contingency and continuous data based on these very models. In this document, we will give a brief review of the model-based block clustering methods, and we will show how the R package blockcluster can be used for co-clustering.

  5. Clustering of European winter storms: A multi-model perspective

    Science.gov (United States)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak

  6. Validating clustering of molecular dynamics simulations using polymer models

    Directory of Open Access Journals (Sweden)

    Phillips Joshua L

    2011-11-01

    Full Text Available Abstract Background Molecular dynamics (MD simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our

  7. K­MEANS CLUSTERING FOR HIDDEN MARKOV MODEL

    NARCIS (Netherlands)

    Perrone, M.P.; Connell, S.D.

    2004-01-01

    An unsupervised k­means clustering algorithm for hidden Markov models is described and applied to the task of generating subclass models for individual handwritten character classes. The algorithm is compared to a related clustering method and shown to give a relative change in the error rate of as

  8. Alpha cluster model and spectrum of 16O

    International Nuclear Information System (INIS)

    Bauhoff, W.; Schultheis, H.; Schultheis, R.

    1983-01-01

    The structure of 16 O is studied in the alpha cluster model with parity and angular-momentum projection for several nucleon-nucleon interactions. The method differs from previous studies in that the states of positive and negative parity are determined without the customary restriction of the variational space to cluster positions with certain assumed symmetries. It is demonstrated that the alpha cluster model of 16 O is capable of explaining most of the experimental T = O levels up to about 15 MeV excitation. A shell-model analysis of the excited cluster-model states shows the necessity of including a very large number of shells. The evidence for the recently proposed tetrahedral symmetry of some excited states is also discussed

  9. Quark cluster model and confinement

    International Nuclear Information System (INIS)

    Koike, Yuji; Yazaki, Koichi

    2000-01-01

    How confinement of quarks is implemented for multi-hadron systems in the quark cluster model is reviewed. In order to learn the nature of the confining interaction for fermions we first study 1+1 dimensional QED and QCD, in which the gauge field can be eliminated exactly and generates linear interaction of fermions. Then, we compare the two-body potential model, the flip-flop model and the Born-Oppenheimer approach in the strong coupling lattice QCD for the meson-meson system. Having shown how the long-range attraction between hadrons, van der Waals interaction, shows up in the two-body potential model, we discuss two distinct attempts beyond the two-body potential model: one is a many-body potential model, the flip-flop model, and the other is the Born-Oppenheimer approach in the strong coupling lattice QCD. We explain how the emergence of the long-range attraction is avoided in these attempts. Finally, we present the results of the application of the flip-flop model to the baryon-baryon scattering in the quark cluster model. (author)

  10. Parameters of oscillation generation regions in open star cluster models

    Science.gov (United States)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  11. MOCK OBSERVATIONS OF BLUE STRAGGLERS IN GLOBULAR CLUSTER MODELS

    International Nuclear Information System (INIS)

    Sills, Alison; Glebbeek, Evert; Chatterjee, Sourav; Rasio, Frederic A.

    2013-01-01

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will select approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers are well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates their lifetimes. We show that our model blue stragglers follow similar trends with cluster properties (core mass, binary fraction, total mass, collision rate) as the true Milky Way blue stragglers as long as we restrict ourselves to model clusters with an initial binary fraction higher than 5%. We also show that, in contrast to earlier work, the number of blue stragglers in the cluster core does have a weak dependence on the collisional parameter Γ in both our models and in Milky Way globular clusters

  12. Representing Degree Distributions, Clustering, and Homophily in Social Networks With Latent Cluster Random Effects Models.

    Science.gov (United States)

    Krivitsky, Pavel N; Handcock, Mark S; Raftery, Adrian E; Hoff, Peter D

    2009-07-01

    Social network data often involve transitivity, homophily on observed attributes, clustering, and heterogeneity of actor degrees. We propose a latent cluster random effects model to represent all of these features, and we describe a Bayesian estimation method for it. The model is applicable to both binary and non-binary network data. We illustrate the model using two real datasets. We also apply it to two simulated network datasets with the same, highly skewed, degree distribution, but very different network behavior: one unstructured and the other with transitivity and clustering. Models based on degree distributions, such as scale-free, preferential attachment and power-law models, cannot distinguish between these very different situations, but our model does.

  13. Comparing clustering models in bank customers: Based on Fuzzy relational clustering approach

    Directory of Open Access Journals (Sweden)

    Ayad Hendalianpour

    2016-11-01

    Full Text Available Clustering is absolutely useful information to explore data structures and has been employed in many places. It organizes a set of objects into similar groups called clusters, and the objects within one cluster are both highly similar and dissimilar with the objects in other clusters. The K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms are the most popular clustering algorithms for their easy implementation and fast work, but in some cases we cannot use these algorithms. Regarding this, in this paper, a hybrid model for customer clustering is presented that is applicable in five banks of Fars Province, Shiraz, Iran. In this way, the fuzzy relation among customers is defined by using their features described in linguistic and quantitative variables. As follows, the customers of banks are grouped according to K-mean, C-mean, Fuzzy C-mean and Kernel K-mean algorithms and the proposed Fuzzy Relation Clustering (FRC algorithm. The aim of this paper is to show how to choose the best clustering algorithms based on density-based clustering and present a new clustering algorithm for both crisp and fuzzy variables. Finally, we apply the proposed approach to five datasets of customer's segmentation in banks. The result of the FCR shows the accuracy and high performance of FRC compared other clustering methods.

  14. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    Science.gov (United States)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  15. Clustering disaggregated load profiles using a Dirichlet process mixture model

    International Nuclear Information System (INIS)

    Granell, Ramon; Axon, Colin J.; Wallom, David C.H.

    2015-01-01

    Highlights: • We show that the Dirichlet process mixture model is scaleable. • Our model does not require the number of clusters as an input. • Our model creates clusters only by the features of the demand profiles. • We have used both residential and commercial data sets. - Abstract: The increasing availability of substantial quantities of power-use data in both the residential and commercial sectors raises the possibility of mining the data to the advantage of both consumers and network operations. We present a Bayesian non-parametric model to cluster load profiles from households and business premises. Evaluators show that our model performs as well as other popular clustering methods, but unlike most other methods it does not require the number of clusters to be predetermined by the user. We used the so-called ‘Chinese restaurant process’ method to solve the model, making use of the Dirichlet-multinomial distribution. The number of clusters grew logarithmically with the quantity of data, making the technique suitable for scaling to large data sets. We were able to show that the model could distinguish features such as the nationality, household size, and type of dwelling between the cluster memberships

  16. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    Science.gov (United States)

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  17. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    International Nuclear Information System (INIS)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico; Portegies Zwart, Simon

    2013-01-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noise introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.

  18. An algebraic model for three-cluster giant molecules

    International Nuclear Information System (INIS)

    Hess, P.O.; Bijker, R.; Misicu, S.

    2001-01-01

    After an introduction to the algebraic U(7) model for three bodies, we present a relation of a geometrical description of three-cluster molecule to the algebraic U(7) model. Stiffness parameters of oscillations between each of two clusters are calculated and translated to the model parameter values of the algebraic model. The model is applied to the trinuclear system l32 Sn+ α + ll6 Pd which occurs in the ternary cold fission of 252 Cf. (Author)

  19. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  20. A Variational Level Set Model Combined with FCMS for Image Clustering Segmentation

    Directory of Open Access Journals (Sweden)

    Liming Tang

    2014-01-01

    Full Text Available The fuzzy C means clustering algorithm with spatial constraint (FCMS is effective for image segmentation. However, it lacks essential smoothing constraints to the cluster boundaries and enough robustness to the noise. Samson et al. proposed a variational level set model for image clustering segmentation, which can get the smooth cluster boundaries and closed cluster regions due to the use of level set scheme. However it is very sensitive to the noise since it is actually a hard C means clustering model. In this paper, based on Samson’s work, we propose a new variational level set model combined with FCMS for image clustering segmentation. Compared with FCMS clustering, the proposed model can get smooth cluster boundaries and closed cluster regions due to the use of level set scheme. In addition, a block-based energy is incorporated into the energy functional, which enables the proposed model to be more robust to the noise than FCMS clustering and Samson’s model. Some experiments on the synthetic and real images are performed to assess the performance of the proposed model. Compared with some classical image segmentation models, the proposed model has a better performance for the images contaminated by different noise levels.

  1. Fine‐Grained Mobile Application Clustering Model Using Retrofitted Document Embedding

    Directory of Open Access Journals (Sweden)

    Yeo‐Chan Yoon

    2017-08-01

    Full Text Available In this paper, we propose a fine‐grained mobile application clustering model using retrofitted document embedding. To automatically determine the clusters and their numbers with no predefined categories, the proposed model initializes the clusters based on title keywords and then merges similar clusters. For improved clustering performance, the proposed model distinguishes between an accurate clustering step with titles and an expansive clustering step with descriptions. During the accurate clustering step, an automatically tagged set is constructed as a result. This set is utilized to learn a high‐performance document vector. During the expansive clustering step, more applications are then classified using this document vector. Experimental results showed that the purity of the proposed model increased by 0.19, and the entropy decreased by 1.18, compared with the K‐means algorithm. In addition, the mean average precision improved by more than 0.09 in a comparison with a support vector machine classifier.

  2. Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities

    International Nuclear Information System (INIS)

    Singh, BirBikram; Patra, S. K.; Gupta, Raj K.

    2010-01-01

    We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988), p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we have deduced empirically the preformation probability P 0 emp from the experimental data on both the α- and exotic cluster-decays, specifically of parents in the trans-lead region having doubly magic 208 Pb or its neighboring nuclei as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for both the α and heavier clusters in radioactive nuclei. P 0 α(emp) for α decays is almost constant (∼10 -2 -10 -3 ) for all the parent nuclei considered here, and P 0 c(emp) for cluster decays of the same parents decrease with the size of clusters emitted from different parents. The results obtained for P 0 c(emp) are reasonable and are within two to three orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.

  3. A cluster expansion model for predicting activation barrier of atomic processes

    International Nuclear Information System (INIS)

    Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit

    2013-01-01

    We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEB results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog

  4. The Parental Environment Cluster Model of Child Neglect: An Integrative Conceptual Model.

    Science.gov (United States)

    Burke, Judith; Chandy, Joseph; Dannerbeck, Anne; Watt, J. Wilson

    1998-01-01

    Presents Parental Environment Cluster model of child neglect which identifies three clusters of factors involved in parents' neglectful behavior: (1) parenting skills and functions; (2) development and use of positive social support; and (3) resource availability and management skills. Model offers a focal theory for research, structure for…

  5. Modeling blue stragglers in young clusters

    International Nuclear Information System (INIS)

    Lu Pin; Deng Licai; Zhang Xiaobin

    2011-01-01

    A grid of binary evolution models are calculated for the study of a blue straggler (BS) population in intermediate age (log Age = 7.85–8.95) star clusters. The BS formation via mass transfer and merging is studied systematically using our models. Both Case A and B close binary evolutionary tracks are calculated for a large range of parameters. The results show that BSs formed via Case B are generally bluer and even more luminous than those produced by Case A. Furthermore, the larger range in orbital separations of Case B models provides a probability of producing more BSs than in Case A. Based on the grid of models, several Monte-Carlo simulations of BS populations in the clusters in the age range are carried out. The results show that BSs formed via different channels populate different areas in the color magnitude diagram (CMD). The locations of BSs in CMD for a number of clusters are compared to our simulations as well. In order to investigate the influence of mass transfer efficiency in the models and simulations, a set of models is also calculated by implementing a constant mass transfer efficiency, β = 0.5, during Roche lobe overflow (Case A binary evolution excluded). The result shows BSs can be formed via mass transfer at any given age in both cases. However, the distributions of the BS populations on CMD are different.

  6. NUCORE - A system for nuclear structure calculations with cluster-core models

    International Nuclear Information System (INIS)

    Heras, C.A.; Abecasis, S.M.

    1982-01-01

    Calculation of nuclear energy levels and their electromagnetic properties, modelling the nucleus as a cluster of a few particles and/or holes interacting with a core which in turn is modelled as a quadrupole vibrator (cluster-phonon model). The members of the cluster interact via quadrupole-quadrupole and pairing forces. (orig.)

  7. Model selection for semiparametric marginal mean regression accounting for within-cluster subsampling variability and informative cluster size.

    Science.gov (United States)

    Shen, Chung-Wei; Chen, Yi-Hau

    2018-03-13

    We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. © 2018, The International Biometric Society.

  8. Binary model for the coma cluster of galaxies

    International Nuclear Information System (INIS)

    Valtonen, M.J.; Byrd, G.G.

    1979-01-01

    We study the dynamics of galaxies in the Coma cluster and find that the cluster is probably dominated by a central binary of galaxies NGC 4874--NGC4889. We estimate their total mass to be about 3 x 10 14 M/sub sun/ by two independent methods (assuming in Hubble constant of 100 km s -1 Mpc -1 ). This binary is efficient in dynamically ejecting smaller galaxies, some of of which are seen in projection against the inner 3 0 radius of the cluster and which, if erroneously considered as bound members, cause a serious overestimate of the mass of the entire cluster. Taking account of the ejected galaxies, we estimate the total cluster mass to be 4--9 x 10 14 M/sub sun/, with a corresponding mass-to-light ratio for a typical galaxy in the range of 20--120 solar units. The origin of the secondary maximum observed in the radial surface density profile is studied. We consider it to be a remnant of a shell of galaxies which formed around the central binary. This shell expanded, then collapsed into the binary, and is now reexpanding. This is supported by the coincidence of the minimum in the cluster eccentricity and radical velocity dispersion at the same radial distance as the secondary maximum. Numerical simulations of a cluster model with a massive central binary and a spherical shell of test particles are performed, and they reproduce the observed shape, galaxy density, and radial velocity distributions in the Coma cluster fairly well. Consequences of extending the model to other clusters are discussed

  9. Old star clusters: Bench tests of low mass stellar models

    Directory of Open Access Journals (Sweden)

    Salaris M.

    2013-03-01

    Full Text Available Old star clusters in the Milky Way and external galaxies have been (and still are traditionally used to constrain the age of the universe and the timescales of galaxy formation. A parallel avenue of old star cluster research considers these objects as bench tests of low-mass stellar models. This short review will highlight some recent tests of stellar evolution models that make use of photometric and spectroscopic observations of resolved old star clusters. In some cases these tests have pointed to additional physical processes efficient in low-mass stars, that are not routinely included in model computations. Moreover, recent results from the Kepler mission about the old open cluster NGC6791 are adding new tight constraints to the models.

  10. Mathematical modelling of complex contagion on clustered networks

    Science.gov (United States)

    O'sullivan, David J.; O'Keeffe, Gary; Fennell, Peter; Gleeson, James

    2015-09-01

    The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010), adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010), to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  11. Mathematical modelling of complex contagion on clustered networks

    Directory of Open Access Journals (Sweden)

    David J. P. O'Sullivan

    2015-09-01

    Full Text Available The spreading of behavior, such as the adoption of a new innovation, is influenced bythe structure of social networks that interconnect the population. In the experiments of Centola (Science, 2010, adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the complex contagion effects of social reinforcement are important in such diffusion, in contrast to simple contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g. of mean-field theory regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hebert-Dufresne et al. (Phys. Rev. E, 2010, to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola’s experiments—faster diffusion on clustered topologies than on random networks.

  12. A grand unified model for liganded gold clusters

    Science.gov (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  13. Aerosol cluster impact and break-up: model and implementation

    International Nuclear Information System (INIS)

    Lechman, Jeremy B.

    2010-01-01

    In this report a model for simulating aerosol cluster impact with rigid walls is presented. The model is based on JKR adhesion theory and is implemented as an enhancement to the granular (DEM) package within the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Modeling the interactions of small particles is relevant to a number of applications (e.g., soils, powders, colloidal suspensions, etc.). Modeling the behavior of aerosol particles during agglomeration and cluster dynamics upon impact with a wall is of particular interest. In this report we describe preliminary efforts to develop and implement physical models for aerosol particle interactions. Future work will consist of deploying these models to simulate aerosol cluster behavior upon impact with a rigid wall for the purpose of developing relationships for impact speed and probability of stick/bounce/break-up as well as to assess the distribution of cluster sizes if break-up occurs. These relationships will be developed consistent with the need for inputs into system-level codes. Section 2 gives background and details on the physical model as well as implementations issues. Section 3 presents some preliminary results which lead to discussion in Section 4 of future plans.

  14. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  15. Globular cluster metallicity scale: evidence from stellar models

    International Nuclear Information System (INIS)

    Demarque, P.; King, C.R.; Diaz, A.

    1982-01-01

    Theoretical giant branches have been constructed to determine their relative positions for metallicities in the range -2.3 0 )/sub 0,g/ based on these models is presented which yields good agreement over the observed range of metallicities for galactic globular clusters and old disk clusters. The metallicity of 47 Tuc and M71 given by this calibration is about -0.8 dex. Subject headings: clusters, globular: stars: abundances: stars: interiors

  16. A Clustered Extragalactic Foreground Model for the EoR

    Science.gov (United States)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2018-05-01

    We review an improved statistical model of extra-galactic point-source foregrounds first introduced in Murray et al. (2017), in the context of the Epoch of Reionization. This model extends the instrumentally-convolved foreground covariance used in inverse-covariance foreground mitigation schemes, by considering the cosmological clustering of the sources. In this short work, we show that over scales of k ~ (0.6, 40.)hMpc-1, ignoring source clustering is a valid approximation. This is in contrast to Murray et al. (2017), who found a possibility of false detection if the clustering was ignored. The dominant cause for this change is the introduction of a Galactic synchrotron component which shadows the clustering of sources.

  17. Topic modeling for cluster analysis of large biological and medical datasets.

    Science.gov (United States)

    Zhao, Weizhong; Zou, Wen; Chen, James J

    2014-01-01

    The big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets. In this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths. Topic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting

  18. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)

    2015-12-31

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  19. COCOA code for creating mock observations of star cluster models

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2018-04-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.

  20. Cluster models, factors and characteristics for the competitive advantage of Lithuanian Maritime sector

    OpenAIRE

    Viederytė, Rasa; Didžiokas, Rimantas

    2014-01-01

    Paper analyses several cluster models on the basis of competitiveness: Nine-factor model, Double diamond model, Funnel model of cluster determinants, Destination Competitiveness and sustainability models, which are related to Porter’s Diamond model and concentrate to the classical one - adopt M. Porter’s Diamond model methodology to the evaluation of Lithuanian Maritime sector’s clustering on the basis of competitiveness. Despite the advances in cluster research, this model remains a complex ...

  1. A Distributed Agent Implementation of Multiple Species Flocking Model for Document Partitioning Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    The Flocking model, first proposed by Craig Reynolds, is one of the first bio-inspired computational collective behavior models that has many popular applications, such as animation. Our early research has resulted in a flock clustering algorithm that can achieve better performance than the Kmeans or the Ant clustering algorithms for data clustering. This algorithm generates a clustering of a given set of data through the embedding of the highdimensional data items on a two-dimensional grid for efficient clustering result retrieval and visualization. In this paper, we propose a bio-inspired clustering model, the Multiple Species Flocking clustering model (MSF), and present a distributed multi-agent MSF approach for document clustering.

  2. Alloy design as an inverse problem of cluster expansion models

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Kalidindi, Arvind R.; Schmidt, Søren

    2017-01-01

    Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configurat......Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding...... the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D...

  3. Electromagnetic properties of 6Li in a cluster model with breathing clusters

    International Nuclear Information System (INIS)

    Kruppa, A.T.; Beck, R.; Dickmann, F.

    1987-01-01

    Electromagnetic properties of 6 Li are studied using a microscopic (α+δ) cluster model. In addition to the ground state of the clusters, their breathing excited states are included in the wave function in order to take into account the distortion of the clusters. The elastic charge form factor is in good agreement with experiment up to a momentum transfer of 8 fm -2 . The ground state magnetic form factor and the inelastic charge form factor are also well described. The effect of the breathing states of α on the form factors proves to be negligible except at high momentum transfer. The ground-state charge density, rms charge radius, the magnetic dipole moment and a reduced transition strength are also obtained in fair agreement with experiment. (author)

  4. Emergence of clustering in an acquaintance model without homophily

    International Nuclear Information System (INIS)

    Bhat, Uttam; Krapivsky, P L; Redner, S

    2014-01-01

    We introduce an agent-based acquaintance model in which social links are created by processes in which there is no explicit homophily. In spite of the homogeneous nature of the social interactions, highly-clustered social networks can arise. The crucial feature of our model is that of variable transitive interactions. Namely, when an agent introduces two unconnected friends, the rate at which a connection actually occurs between them depends on the number of their mutual acquaintances. As this transitive interaction rate is varied, the social network undergoes a dramatic clustering transition. Close to the transition, the network consists of a collection of well-defined communities. As a function of time, the network can also undergo an incomplete gelation transition, in which the gel, or giant cluster, does not constitute the entire network, even at infinite time. Some of the clustering properties of our model also arise, but in a more gradual manner, in Facebook networks. Finally, we discuss a more realistic variant of our original model in which network realizations can be constructed that quantitatively match Facebook networks. (paper)

  5. Emergence of clustering in an acquaintance model without homophily

    Science.gov (United States)

    Bhat, Uttam; Krapivsky, P. L.; Redner, S.

    2014-11-01

    We introduce an agent-based acquaintance model in which social links are created by processes in which there is no explicit homophily. In spite of the homogeneous nature of the social interactions, highly-clustered social networks can arise. The crucial feature of our model is that of variable transitive interactions. Namely, when an agent introduces two unconnected friends, the rate at which a connection actually occurs between them depends on the number of their mutual acquaintances. As this transitive interaction rate is varied, the social network undergoes a dramatic clustering transition. Close to the transition, the network consists of a collection of well-defined communities. As a function of time, the network can also undergo an incomplete gelation transition, in which the gel, or giant cluster, does not constitute the entire network, even at infinite time. Some of the clustering properties of our model also arise, but in a more gradual manner, in Facebook networks. Finally, we discuss a more realistic variant of our original model in which network realizations can be constructed that quantitatively match Facebook networks.

  6. Quantitative properties of clustering within modern microscopic nuclear models

    International Nuclear Information System (INIS)

    Volya, A.; Tchuvil’sky, Yu. M.

    2016-01-01

    A method for studying cluster spectroscopic properties of nuclear fragmentation, such as spectroscopic amplitudes, cluster form factors, and spectroscopic factors, is developed on the basis of modern precision nuclear models that take into account the mixing of large-scale shell-model configurations. Alpha-cluster channels are considered as an example. A mathematical proof of the need for taking into account the channel-wave-function renormalization generated by exchange terms of the antisymmetrization operator (Fliessbach effect) is given. Examples where this effect is confirmed by a high quality of the description of experimental data are presented. By and large, the method in question extends substantially the possibilities for studying clustering phenomena in nuclei and for improving the quality of their description.

  7. Synthetic properties of models of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Angeletti, L; Dolcetta, R; Giannone, P. (Rome Univ. (Italy). Osservatorio Astronomico)

    1980-05-01

    Synthetic and projected properties of models of globular clusters have been computed on the basis of stellar evolution and time changes of the dynamical cluster structure. Clusters with five and eight stellar groups (each group consisting of stars with the same mass) were studied. Mass loss from evolved stars was taken into account. Observational features were obtained at ages of 10-19 x 10/sup 9/ yr. The basic importance of the horizontal- and asymptotic-branch stars was pointed out. A comparison of the results with observed data of M3 is discussed with the purpose of obtaining general indications rather than a specific fit.

  8. Synthetic properties of models of globular clusters

    International Nuclear Information System (INIS)

    Angeletti, L.; Dolcetta, R.; Giannone, P.

    1980-01-01

    Synthetic and projected properties of models of globular clusters have been computed on the basis of stellar evolution and time changes of the dynamical cluster structure. Clusters with five and eight stellar groups (each group consisting of stars with the same mass) were studied. Mass loss from evolved stars was taken into account. Observational features were obtained at ages of 10-19 x 10 9 yr. The basic importance of the horizontal- and asymptotic-branch stars was pointed out. A comparison of the results with observed data of M3 is discussed with the purpose of obtaining general indications rather than a specific fit. (orig.)

  9. Towards Accurate Modelling of Galaxy Clustering on Small Scales: Testing the Standard ΛCDM + Halo Model

    Science.gov (United States)

    Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.

    2018-04-01

    Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

  10. Markov Chain Model-Based Optimal Cluster Heads Selection for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gulnaz Ahmed

    2017-02-01

    Full Text Available The longer network lifetime of Wireless Sensor Networks (WSNs is a goal which is directly related to energy consumption. This energy consumption issue becomes more challenging when the energy load is not properly distributed in the sensing area. The hierarchal clustering architecture is the best choice for these kind of issues. In this paper, we introduce a novel clustering protocol called Markov chain model-based optimal cluster heads (MOCHs selection for WSNs. In our proposed model, we introduce a simple strategy for the optimal number of cluster heads selection to overcome the problem of uneven energy distribution in the network. The attractiveness of our model is that the BS controls the number of cluster heads while the cluster heads control the cluster members in each cluster in such a restricted manner that a uniform and even load is ensured in each cluster. We perform an extensive range of simulation using five quality measures, namely: the lifetime of the network, stable and unstable region in the lifetime of the network, throughput of the network, the number of cluster heads in the network, and the transmission time of the network to analyze the proposed model. We compare MOCHs against Sleep-awake Energy Efficient Distributed (SEED clustering, Artificial Bee Colony (ABC, Zone Based Routing (ZBR, and Centralized Energy Efficient Clustering (CEEC using the above-discussed quality metrics and found that the lifetime of the proposed model is almost 1095, 2630, 3599, and 2045 rounds (time steps greater than SEED, ABC, ZBR, and CEEC, respectively. The obtained results demonstrate that the MOCHs is better than SEED, ABC, ZBR, and CEEC in terms of energy efficiency and the network throughput.

  11. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    Science.gov (United States)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  12. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    International Nuclear Information System (INIS)

    Ellefsen, Karl J.; Smith, David B.

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples. - Highlights: • We evaluate a clustering procedure by applying it to geochemical data. • The procedure generates a hierarchy of clusters. • Different levels of the hierarchy show geochemical processes at different spatial scales. • The clustering method is Bayesian finite mixture modeling. • Model parameters are estimated with Hamiltonian Monte Carlo sampling.

  13. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang

    2017-02-16

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  14. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke

    2017-01-01

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  15. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    Science.gov (United States)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our

  16. Complex scaling in the cluster model

    International Nuclear Information System (INIS)

    Kruppa, A.T.; Lovas, R.G.; Gyarmati, B.

    1987-01-01

    To find the positions and widths of resonances, a complex scaling of the intercluster relative coordinate is introduced into the resonating-group model. In the generator-coordinate technique used to solve the resonating-group equation the complex scaling requires minor changes in the formulae and code. The finding of the resonances does not need any preliminary guess or explicit reference to any asymptotic prescription. The procedure is applied to the resonances in the relative motion of two ground-state α clusters in 8 Be, but is appropriate for any systems consisting of two clusters. (author) 23 refs.; 5 figs

  17. Solvable single-species aggregation-annihilation model for chain-shaped cluster growth

    International Nuclear Information System (INIS)

    Ke Jianhong; Lin Zhenquan; Zheng Yizhuang; Chen Xiaoshuang; Lu Wei

    2007-01-01

    We propose a single-species aggregation-annihilation model, in which an aggregation reaction between two clusters produces an active cluster and an annihilation reaction produces an inert one. By means of the mean-field rate equation, we respectively investigate the kinetic scaling behaviours of three distinct systems. The results exhibit that: (i) for the general aggregation-annihilation system, the size distribution of active clusters consistently approaches the conventional scaling form; (ii) for the system with the self-degeneration of the cluster's activities, it takes the modified scaling form; and (iii) for the system with the self-closing of active clusters, it does not scale. Moreover, the size distribution of inert clusters with small size takes a power-law form, while that of large inert clusters obeys the scaling law. The results also show that all active clusters will eventually transform into inert ones and the inert clusters of any size can be produced by such an aggregation-annihilation process. This model can be used to mimic the chain-shaped cluster growth and can provide some useful predictions for the kinetic behaviour of the system

  18. Latent Clustering Models for Outlier Identification in Telecom Data

    Directory of Open Access Journals (Sweden)

    Ye Ouyang

    2016-01-01

    Full Text Available Collected telecom data traffic has boomed in recent years, due to the development of 4G mobile devices and other similar high-speed machines. The ability to quickly identify unexpected traffic data in this stream is critical for mobile carriers, as it can be caused by either fraudulent intrusion or technical problems. Clustering models can help to identify issues by showing patterns in network data, which can quickly catch anomalies and highlight previously unseen outliers. In this article, we develop and compare clustering models for telecom data, focusing on those that include time-stamp information management. Two main models are introduced, solved in detail, and analyzed: Gaussian Probabilistic Latent Semantic Analysis (GPLSA and time-dependent Gaussian Mixture Models (time-GMM. These models are then compared with other different clustering models, such as Gaussian model and GMM (which do not contain time-stamp information. We perform computation on both sample and telecom traffic data to show that the efficiency and robustness of GPLSA make it the superior method to detect outliers and provide results automatically with low tuning parameters or expertise requirement.

  19. Mathematical model for research and analyze relations and functions between enterprises, members of cluster

    Science.gov (United States)

    Angelov, Kiril; Kaynakchieva, Vesela

    2017-12-01

    The aim of the current study is to research and analyze Mathematical model for research and analyze of relations and functions between enterprises, members of cluster, and its approbation in given cluster. Subject of the study are theoretical mechanisms for the definition of mathematical models for research and analyze of relations and functions between enterprises, members of cluster. Object of the study are production enterprises, members of cluster. Results of this study show that described theoretical mathematical model is applicable for research and analyze of functions and relations between enterprises, members of cluster from different industrial sectors. This circumstance creates alternatives for election of cluster, where is experimented this model for interaction improvement between enterprises, members of cluster.

  20. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  1. GENERALISED MODEL BASED CONFIDENCE INTERVALS IN TWO STAGE CLUSTER SAMPLING

    Directory of Open Access Journals (Sweden)

    Christopher Ouma Onyango

    2010-09-01

    Full Text Available Chambers and Dorfman (2002 constructed bootstrap confidence intervals in model based estimation for finite population totals assuming that auxiliary values are available throughout a target population and that the auxiliary values are independent. They also assumed that the cluster sizes are known throughout the target population. We now extend to two stage sampling in which the cluster sizes are known only for the sampled clusters, and we therefore predict the unobserved part of the population total. Jan and Elinor (2008 have done similar work, but unlike them, we use a general model, in which the auxiliary values are not necessarily independent. We demonstrate that the asymptotic properties of our proposed estimator and its coverage rates are better than those constructed under the model assisted local polynomial regression model.

  2. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis.

    Science.gov (United States)

    Zhang, Chao; Zhang, Pengcheng; Zhang, Weizhan

    2017-09-27

    A wireless-powered sensor network (WPSN) consisting of one hybrid access point (HAP), a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF) manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  3. Maximum-likelihood model averaging to profile clustering of site types across discrete linear sequences.

    Directory of Open Access Journals (Sweden)

    Zhang Zhang

    2009-06-01

    Full Text Available A major analytical challenge in computational biology is the detection and description of clusters of specified site types, such as polymorphic or substituted sites within DNA or protein sequences. Progress has been stymied by a lack of suitable methods to detect clusters and to estimate the extent of clustering in discrete linear sequences, particularly when there is no a priori specification of cluster size or cluster count. Here we derive and demonstrate a maximum likelihood method of hierarchical clustering. Our method incorporates a tripartite divide-and-conquer strategy that models sequence heterogeneity, delineates clusters, and yields a profile of the level of clustering associated with each site. The clustering model may be evaluated via model selection using the Akaike Information Criterion, the corrected Akaike Information Criterion, and the Bayesian Information Criterion. Furthermore, model averaging using weighted model likelihoods may be applied to incorporate model uncertainty into the profile of heterogeneity across sites. We evaluated our method by examining its performance on a number of simulated datasets as well as on empirical polymorphism data from diverse natural alleles of the Drosophila alcohol dehydrogenase gene. Our method yielded greater power for the detection of clustered sites across a breadth of parameter ranges, and achieved better accuracy and precision of estimation of clusters, than did the existing empirical cumulative distribution function statistics.

  4. A Cluster-based Approach Towards Detecting and Modeling Network Dictionary Attacks

    Directory of Open Access Journals (Sweden)

    A. Tajari Siahmarzkooh

    2016-12-01

    Full Text Available In this paper, we provide an approach to detect network dictionary attacks using a data set collected as flows based on which a clustered graph is resulted. These flows provide an aggregated view of the network traffic in which the exchanged packets in the network are considered so that more internally connected nodes would be clustered. We show that dictionary attacks could be detected through some parameters namely the number and the weight of clusters in time series and their evolution over the time. Additionally, the Markov model based on the average weight of clusters,will be also created. Finally, by means of our suggested model, we demonstrate that artificial clusters of the flows are created for normal and malicious traffic. The results of the proposed approach on CAIDA 2007 data set suggest a high accuracy for the model and, therefore, it provides a proper method for detecting the dictionary attack.

  5. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)

    2017-08-11

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our

  6. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.

    Science.gov (United States)

    Siegbahn, Per E M; Himo, Fahmi

    2009-06-01

    The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.

  7. Relative efficiency of unequal versus equal cluster sizes in cluster randomized trials using generalized estimating equation models.

    Science.gov (United States)

    Liu, Jingxia; Colditz, Graham A

    2018-05-01

    There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the "working correlation structure" is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs-exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio

    Directory of Open Access Journals (Sweden)

    Tatjana Miljkovic

    2018-05-01

    Full Text Available We review two complementary mixture-based clustering approaches for modeling unobserved heterogeneity in an insurance portfolio: the generalized linear mixed cluster-weighted model (CWM and mixture-based clustering for an ordered stereotype model (OSM. The latter is for modeling of ordinal variables, and the former is for modeling losses as a function of mixed-type of covariates. The article extends the idea of mixture modeling to a multivariate classification for the purpose of testing unobserved heterogeneity in an insurance portfolio. The application of both methods is illustrated on a well-known French automobile portfolio, in which the model fitting is performed using the expectation-maximization (EM algorithm. Our findings show that these mixture-based clustering methods can be used to further test unobserved heterogeneity in an insurance portfolio and as such may be considered in insurance pricing, underwriting, and risk management.

  9. Cluster infall in the concordance LCDM model

    OpenAIRE

    Pivato, Maximiliano C.; Padilla, Nelson D.; Lambas, Diego G.

    2005-01-01

    We perform statistical analyses of the infall of dark-matter onto clusters in numerical simulations within the concordance LCDM model. By studying the infall profile around clusters of different mass, we find a linear relation between the maximum infall velocity and mass which reach 900km/s for the most massive groups. The maximum infall velocity and the group mass follow a suitable power law fit of the form, V_{inf}^{max} = (M/m_0)^{gamma}. By comparing the measured infall velocity to the li...

  10. Cluster Cooperation in Wireless-Powered Sensor Networks: Modeling and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-09-01

    Full Text Available A wireless-powered sensor network (WPSN consisting of one hybrid access point (HAP, a near cluster and the corresponding far cluster is investigated in this paper. These sensors are wireless-powered and they transmit information by consuming the harvested energy from signal ejected by the HAP. Sensors are able to harvest energy as well as store the harvested energy. We propose that if sensors in near cluster do not have their own information to transmit, acting as relays, they can help the sensors in a far cluster to forward information to the HAP in an amplify-and-forward (AF manner. We use a finite Markov chain to model the dynamic variation process of the relay battery, and give a general analyzing model for WPSN with cluster cooperation. Though the model, we deduce the closed-form expression for the outage probability as the metric of this network. Finally, simulation results validate the start point of designing this paper and correctness of theoretical analysis and show how parameters have an effect on system performance. Moreover, it is also known that the outage probability of sensors in far cluster can be drastically reduced without sacrificing the performance of sensors in near cluster if the transmit power of HAP is fairly high. Furthermore, in the aspect of outage performance of far cluster, the proposed scheme significantly outperforms the direct transmission scheme without cooperation.

  11. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    Science.gov (United States)

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Unmatter Entities inside Nuclei, Predicted by the Brightsen Nucleon Cluster Model

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2006-01-01

    Full Text Available Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss how unmatter entities (the conjugations of matter and antimatter may be formed as clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon clusters are present as a parton (sensu Feynman superposition within the spatial confinement of the proton (1H1, the neutron, and the deuteron (1H2. If model predictions can be confirmed both mathematically and experimentally, a new physics is suggested. A proposed experiment is connected to othopositronium annihilation anomalies, which, being related to one of known unmatter entity, orthopositronium (built on electron and positron, opens a way to expand the Standard Model.

  13. Fuzzy Modeled K-Cluster Quality Mining of Hidden Knowledge for Decision Support

    OpenAIRE

    S. Parkash  Kumar; K. S. Ramaswami

    2011-01-01

    Problem statement: The work presented Fuzzy Modeled K-means Cluster Quality Mining of hidden knowledge for Decision Support. Based on the number of clusters, number of objects in each cluster and its cohesiveness, precision and recall values, the cluster quality metrics is measured. The fuzzy k-means is adapted approach by using heuristic method which iterates the cluster to form an efficient valid cluster. With the obtained data clusters, quality assessment is made by predictive mining using...

  14. Variational cluster perturbation theory for Bose-Hubbard models

    International Nuclear Information System (INIS)

    Koller, W; Dupuis, N

    2006-01-01

    We discuss the application of the variational cluster perturbation theory (VCPT) to the Mott-insulator-to-superfluid transition in the Bose-Hubbard model. We show how the VCPT can be formulated in such a way that it gives a translation invariant excitation spectrum-free of spurious gaps-despite the fact that it formally breaks translation invariance. The phase diagram and the single-particle Green function in the insulating phase are obtained for one-dimensional systems. When the chemical potential of the cluster is taken as a variational parameter, the VCPT reproduces the dimensional dependence of the phase diagram even for one-site clusters. We find a good quantitative agreement with the results of the density-matrix renormalization group when the number of sites in the cluster becomes of order 10. The extension of the method to the superfluid phase is discussed

  15. Non-Higgsable clusters for 4D F-theory models

    International Nuclear Information System (INIS)

    Morrison, David R.; Taylor, Washington

    2015-01-01

    We analyze non-Higgsable clusters of gauge groups and matter that can arise at the level of geometry in 4D F-theory models. Non-Higgsable clusters seem to be generic features of F-theory compactifications, and give rise naturally to structures that include the nonabelian part of the standard model gauge group and certain specific types of potential dark matter candidates. In particular, there are nine distinct single nonabelian gauge group factors, and only five distinct products of two nonabelian gauge group factors with matter, including SU(3)×SU(2), that can be realized through 4D non-Higgsable clusters. There are also more complicated configurations involving more than two gauge factors; in particular, the collection of gauge group factors with jointly charged matter can exhibit branchings, loops, and long linear chains.

  16. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions.

    Science.gov (United States)

    Tokuda, Tomoki; Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data.

  17. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions.

    Directory of Open Access Journals (Sweden)

    Tomoki Tokuda

    Full Text Available We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data.

  18. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions

    Science.gov (United States)

    Yoshimoto, Junichiro; Shimizu, Yu; Okada, Go; Takamura, Masahiro; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2017-01-01

    We propose a novel method for multiple clustering, which is useful for analysis of high-dimensional data containing heterogeneous types of features. Our method is based on nonparametric Bayesian mixture models in which features are automatically partitioned (into views) for each clustering solution. This feature partition works as feature selection for a particular clustering solution, which screens out irrelevant features. To make our method applicable to high-dimensional data, a co-clustering structure is newly introduced for each view. Further, the outstanding novelty of our method is that we simultaneously model different distribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster block, which widens areas of application to real data. We apply the proposed method to synthetic and real data, and show that our method outperforms other multiple clustering methods both in recovering true cluster structures and in computation time. Finally, we apply our method to a depression dataset with no true cluster structure available, from which useful inferences are drawn about possible clustering structures of the data. PMID:29049392

  19. Modeling familial clustered breast cancer using published data

    NARCIS (Netherlands)

    Jonker, MA; Jacobi, CE; Hoogendoorn, WE; Nagelkerke, NJD; de Bock, GH; van Houwelingen, JC

    2003-01-01

    The purpose of this research was to model the familial clustering of breast cancer and to provide an accurate risk estimate for individuals from the general population, based on their family history of breast and ovarian cancer. We constructed a genetic model as an extension of a model by Claus et

  20. Semiparametric Bayesian analysis of accelerated failure time models with cluster structures.

    Science.gov (United States)

    Li, Zhaonan; Xu, Xinyi; Shen, Junshan

    2017-11-10

    In this paper, we develop a Bayesian semiparametric accelerated failure time model for survival data with cluster structures. Our model allows distributional heterogeneity across clusters and accommodates their relationships through a density ratio approach. Moreover, a nonparametric mixture of Dirichlet processes prior is placed on the baseline distribution to yield full distributional flexibility. We illustrate through simulations that our model can greatly improve estimation accuracy by effectively pooling information from multiple clusters, while taking into account the heterogeneity in their random error distributions. We also demonstrate the implementation of our method using analysis of Mayo Clinic Trial in Primary Biliary Cirrhosis. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    Science.gov (United States)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  2. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    Science.gov (United States)

    McDowell, Ian C; Manandhar, Dinesh; Vockley, Christopher M; Schmid, Amy K; Reddy, Timothy E; Engelhardt, Barbara E

    2018-01-01

    Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  3. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    Directory of Open Access Journals (Sweden)

    Ian C McDowell

    2018-01-01

    Full Text Available Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP, which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  4. ANALISIS SEGMENTASI PELANGGAN MENGGUNAKAN KOMBINASI RFM MODEL DAN TEKNIK CLUSTERING

    Directory of Open Access Journals (Sweden)

    Beta Estri Adiana

    2018-04-01

    Full Text Available Intense competition in the business field motivates a small and medium enterprises (SMEs to manage customer services to the maximal. Improve of customer royalty by grouping cunstomers into some of groups and determining appropriate and effective marketing strategies for each group. Customer segmentation can be performed by data mining approach with clustering method. The main purpose of this paper is customer segmentation and measure their loyalty to a SME’s product. Using CRISP-DM method which consist of six phases, namely business understanding, data understanding, data preparatuin, modeling, evaluation and deployment. The K-Means algorithm is used for cluster formation and RapidMiner as a tool used to evaluate the result of clusters. Cluster formation is based on RFM (recency, frequency, monetary analysis. Davies Bouldin Index (DBI is used to find the optimal number of clusters (k. The customers are divided into 3 clusters, total of customer in first cluster is 30 customers who entered in typical customer category, the second cluster there are 8 customer whho entered in superstar customer and 89 customers in third cluster is dormant cluster category.

  5. 3D Building Models Segmentation Based on K-Means++ Cluster Analysis

    Science.gov (United States)

    Zhang, C.; Mao, B.

    2016-10-01

    3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model) 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid) and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  6. 3D BUILDING MODELS SEGMENTATION BASED ON K-MEANS++ CLUSTER ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2016-10-01

    Full Text Available 3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.

  7. Running and rotating: modelling the dynamics of migrating cell clusters

    Science.gov (United States)

    Copenhagen, Katherine; Gov, Nir; Gopinathan, Ajay

    Collective motion of cells is a common occurrence in many biological systems, including tissue development and repair, and tumor formation. Recent experiments have shown cells form clusters in a chemical gradient, which display three different phases of motion: translational, rotational, and random. We present a model for cell clusters based loosely on other models seen in the literature that involves a Vicsek-like alignment as well as physical collisions and adhesions between cells. With this model we show that a mechanism for driving rotational motion in this kind of system is an increased motility of rim cells. Further, we examine the details of the relationship between rim and core cells, and find that the phases of the cluster as a whole are correlated with the creation and annihilation of topological defects in the tangential component of the velocity field.

  8. Channel Parameter Estimation for Scatter Cluster Model Using Modified MUSIC Algorithm

    Directory of Open Access Journals (Sweden)

    Jinsheng Yang

    2012-01-01

    Full Text Available Recently, the scatter cluster models which precisely evaluate the performance of the wireless communication system have been proposed in the literature. However, the conventional SAGE algorithm does not work for these scatter cluster-based models because it performs poorly when the transmit signals are highly correlated. In this paper, we estimate the time of arrival (TOA, the direction of arrival (DOA, and Doppler frequency for scatter cluster model by the modified multiple signal classification (MUSIC algorithm. Using the space-time characteristics of the multiray channel, the proposed algorithm combines the temporal filtering techniques and the spatial smoothing techniques to isolate and estimate the incoming rays. The simulation results indicated that the proposed algorithm has lower complexity and is less time-consuming in the dense multipath environment than SAGE algorithm. Furthermore, the estimations’ performance increases with elements of receive array and samples length. Thus, the problem of the channel parameter estimation of the scatter cluster model can be effectively addressed with the proposed modified MUSIC algorithm.

  9. Analysis of the dynamical cluster approximation for the Hubbard model

    OpenAIRE

    Aryanpour, K.; Hettler, M. H.; Jarrell, M.

    2002-01-01

    We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact ...

  10. On the applicability of the jellium model to the description of alkali clusters

    International Nuclear Information System (INIS)

    Matveentsev, A.; Lyalin, A.; Solovyov, I.A.; Solovyov, A.V.; Greiner, W.

    2003-01-01

    This work is devoted to the elucidation of the applicability of the jellium model to the description of alkali cluster properties. We compare the jellium model results with those derived within ab initio theoretical approaches and with experiments. On the basis of Hartree–Fock and local-density approximations we have calculated the binding energies per atom, ionization potentials, deformation parameters and optimized values of the Wigner–Seitz radii for neutral and singly charged sodium clusters with the number of atoms N ≤ 20. The characteristics calculated within the framework of the deformed jellium model are compared with the results derived from ab initio simulations of cluster electronic and ionic structure based on density functional theory and systematic post Hartree–Fock many-body perturbation theory accounting for all electrons in the system. The comparison performed demonstrates the great role of the cluster shape deformations in the formation cluster properties and quite reasonable level of applicability of the deformed jellium model. This elucidates the similarities of atomic cluster physics with the physics of atomic nuclei. (author)

  11. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  12. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Energy Technology Data Exchange (ETDEWEB)

    Nedialkova, Lilia V.; Amat, Miguel A. [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Hummer, Gerhard, E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de [Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main (Germany)

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  13. Cluster dynamics models of irradiation damage accumulation in ferritic iron. I. Trap mediated interstitial cluster diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Kohnert, Aaron A.; Wirth, Brian D. [University of Tennessee, Knoxville, Tennessee 37996-2300 (United States)

    2015-04-21

    The microstructure that develops under low temperature irradiation in ferritic alloys is dominated by a high density of small (2–5 nm) defects. These defects have been widely observed to move via occasional discrete hops during in situ thin film irradiation experiments. Cluster dynamics models are used to describe the formation of these defects as an aggregation process of smaller clusters created as primary damage. Multiple assumptions regarding the mobility of these damage features are tested in the models, both with and without explicit consideration of such irradiation induced hops. Comparison with experimental data regarding the density of these defects demonstrates the importance of including such motions in a valid model. In particular, discrete hops inform the limited dependence of defect density on irradiation temperature observed in experiments, which the model was otherwise incapable of producing.

  14. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng; Masseglia, Florent; Zhang, Xiangliang

    2012-01-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  15. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  16. CLUSTERS AS A MODEL OF ECONOMIC DEVELOPMENT OF SERBIA

    Directory of Open Access Journals (Sweden)

    Marko Laketa

    2013-12-01

    Full Text Available Insufficient competitiveness of small and medium enterprises in Serbia can be significantly improved by a system of business associations through clusters, business incubators and technology parks. This connection contributes to the growth and development of not only the cluster members, but has a regional and national dimension as well because without it there is no significant breakthrough on the international market. The process of association of small and medium enterprises in clusters and other forms of interconnection in Serbia is far from the required and potential level.The awareness on the importance of clusters in a local economic development through contributions to the advancement of small and medium sized enterprises is not yet sufficiently mature. Support to associating into clusters and usage of their benefits after the model of highly developed countries is the basis for leading a successful economic policy and in Serbia there are all necessary prerequisites for it.

  17. A Collaboration Service Model for a Global Port Cluster

    Directory of Open Access Journals (Sweden)

    Keith K.T. Toh

    2010-03-01

    Full Text Available The importance of port clusters to a global city may be viewed from a number of perspectives. The development of port clusters and economies of agglomeration and their contribution to a regional economy is underpinned by information and physical infrastructure that facilitates collaboration between business entities within the cluster. The maturity of technologies providing portals, web and middleware services provides an opportunity to push the boundaries of contemporary service reference models and service catalogues to what the authors propose to be "collaboration services". Servicing port clusters, portal engineers of the future must consider collaboration services to benefit a region. Particularly, service orchestration through a "public user portal" must gain better utilisation of publically owned infrastructure, to share knowledge and collaborate among organisations through information systems.

  18. Cluster management.

    Science.gov (United States)

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  19. A Kondo cluster-glass model for spin glass Cerium alloys

    International Nuclear Information System (INIS)

    Zimmer, F M; Magalhaes, S G; Coqblin, B

    2011-01-01

    There are clear indications that the presence of disorder in Ce alloys, such as Ce(Ni,Cu) or Ce(Pd,Rh), is responsible for the existence of a cluster spin glass state which changes continuously into inhomogeneous ferromagnetism at low temperatures. We present a study of the competition between magnetism and Kondo effect in a cluster-glass model composed by a random inter-cluster interaction term and an intra-cluster one, which contains an intra-site Kondo interaction J k and an inter-site ferromagnetic one J 0 . The random interaction is given by the van Hemmen type of randomness which allows to solve the problem without the use of the replica method. The inter-cluster term is solved within the cluster mean-field theory and the remaining intra-cluster interactions can be treated by exact diagonalization. Results show the behavior of the cluster glass order parameter and the Kondo correlation function for several sizes of the clusters, J k , J 0 and values of the ferromagnetic inter-cluster average interaction I 0 . Particularly, for small J k , the magnetic solution is strongly dependent on I 0 and J 0 and a Kondo cluster-glass or a mixed phase can be obtained, while, for large J k , the Kondo effect is still dominant, both in good agreement with experiment in Ce(Ni,Cu) or Ce(Pd,Rh) alloys.

  20. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  1. Model study in chemisorption: atomic hydrogen on beryllium clusters

    International Nuclear Information System (INIS)

    Bauschlicher, C.W. Jr.

    1976-08-01

    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be 22 cluster are discussed

  2. Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model

    Directory of Open Access Journals (Sweden)

    Mi-Yuan Shan

    2013-01-01

    Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.

  3. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

    Science.gov (United States)

    Saleh Ahmed, Saad M.

    2017-06-01

    The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

  4. Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data

    Science.gov (United States)

    Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn

    2018-06-01

    The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.

  5. Assessing clustering strategies for Gaussian mixture filtering a subsurface contaminant model

    KAUST Repository

    Liu, Bo

    2016-02-03

    An ensemble-based Gaussian mixture (GM) filtering framework is studied in this paper in term of its dependence on the choice of the clustering method to construct the GM. In this approach, a number of particles sampled from the posterior distribution are first integrated forward with the dynamical model for forecasting. A GM representation of the forecast distribution is then constructed from the forecast particles. Once an observation becomes available, the forecast GM is updated according to Bayes’ rule. This leads to (i) a Kalman filter-like update of the particles, and (ii) a Particle filter-like update of their weights, generalizing the ensemble Kalman filter update to non-Gaussian distributions. We focus on investigating the impact of the clustering strategy on the behavior of the filter. Three different clustering methods for constructing the prior GM are considered: (i) a standard kernel density estimation, (ii) clustering with a specified mixture component size, and (iii) adaptive clustering (with a variable GM size). Numerical experiments are performed using a two-dimensional reactive contaminant transport model in which the contaminant concentration and the heterogenous hydraulic conductivity fields are estimated within a confined aquifer using solute concentration data. The experimental results suggest that the performance of the GM filter is sensitive to the choice of the GM model. In particular, increasing the size of the GM does not necessarily result in improved performances. In this respect, the best results are obtained with the proposed adaptive clustering scheme.

  6. Riemannian multi-manifold modeling and clustering in brain networks

    Science.gov (United States)

    Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.

    2017-08-01

    This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.

  7. Testing lowered isothermal models with direct N-body simulations of globular clusters - II. Multimass models

    Science.gov (United States)

    Peuten, M.; Zocchi, A.; Gieles, M.; Hénault-Brunet, V.

    2017-09-01

    Lowered isothermal models, such as the multimass Michie-King models, have been successful in describing observational data of globular clusters. In this study, we assess whether such models are able to describe the phase space properties of evolutionary N-body models. We compare the multimass models as implemented in limepy (Gieles & Zocchi) to N-body models of star clusters with different retention fractions for the black holes and neutron stars evolving in a tidal field. We find that multimass models successfully reproduce the density and velocity dispersion profiles of the different mass components in all evolutionary phases and for different remnants retention. We further use these results to study the evolution of global model parameters. We find that over the lifetime of clusters, radial anisotropy gradually evolves from the low- to the high-mass components and we identify features in the properties of observable stars that are indicative of the presence of stellar-mass black holes. We find that the model velocity scale depends on mass as m-δ, with δ ≃ 0.5 for almost all models, but the dependence of central velocity dispersion on m can be shallower, depending on the dark remnant content, and agrees well with that of the N-body models. The reported model parameters, and correlations amongst them, can be used as theoretical priors when fitting these types of mass models to observational data.

  8. Models of epidemics: when contact repetition and clustering should be included

    Directory of Open Access Journals (Sweden)

    Scholz Roland W

    2009-06-01

    Full Text Available Abstract Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave

  9. Development of an interdisciplinary model cluster for tidal water environments

    Science.gov (United States)

    Dietrich, Stephan; Winterscheid, Axel; Jens, Wyrwa; Hartmut, Hein; Birte, Hein; Stefan, Vollmer; Andreas, Schöl

    2013-04-01

    Global climate change has a high potential to influence both the persistence and the transport pathways of water masses and its constituents in tidal waters and estuaries. These processes are linked through dispersion processes, thus directly influencing the sediment and solid suspend matter budgets, and thus the river morphology. Furthermore, the hydrologic regime has an impact on the transport of nutrients, phytoplankton, suspended matter, and temperature that determine the oxygen content within water masses, which is a major parameter describing the water quality. This project aims at the implementation of a so-called (numerical) model cluster in tidal waters, which includes the model compartments hydrodynamics, morphology and ecology. For the implementation of this cluster it is required to continue with the integration of different models that work in a wide range of spatial and temporal scales. The model cluster is thus suggested to lead to a more precise knowledge of the feedback processes between the single interdisciplinary model compartments. In addition to field measurements this model cluster will provide a complementary scientific basis required to address a spectrum of research questions concerning the integral management of estuaries within the Federal Institute of Hydrology (BfG, Germany). This will in particular include aspects like sediment and water quality management as well as adaptation strategies to climate change. The core of the model cluster will consist of the 3D-hydrodynamic model Delft3D (Roelvink and van Banning, 1994), long-term hydrodynamics in the estuaries are simulated with the Hamburg Shelf Ocean Model HAMSOM (Backhaus, 1983; Hein et al., 2012). The simulation results will be compared with the unstructured grid based SELFE model (Zhang and Bapista, 2008). The additional coupling of the BfG-developed 1D-water quality model QSim (Kirchesch and Schöl, 1999; Hein et al., 2011) with the morphological/hydrodynamic models is an

  10. Model-independent X-ray Mass Determinations for Clusters of Galaxies

    Science.gov (United States)

    Nulsen, Paul

    2005-09-01

    We propose to use high quality X-ray data from the Chandra archive to determine the mass distributions of about 60 clusters of galaxies over the largest possible range of radii. By avoiding unwarranted assumptions, model-independent methods make best use of high quality data. We will employ two model-independent methods. That used by Nulsen & Boehringer (1995) to determine the mass of the Virgo Cluster and a new method, that will be developed as part of the project. The new method will fit a general mass model directly to the X-ray spectra, making best possible use of the fitting errors to constrain mass profiles.

  11. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.; Palatnikov, M. N. [Russian Academy of Sciences, Tananaev Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Science Centre (Russian Federation)

    2017-03-15

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  12. Adaptive Noise Model for Transform Domain Wyner-Ziv Video using Clustering of DCT Blocks

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    The noise model is one of the most important aspects influencing the coding performance of Distributed Video Coding. This paper proposes a novel noise model for Transform Domain Wyner-Ziv (TDWZ) video coding by using clustering of DCT blocks. The clustering algorithm takes advantage of the residual...... modelling. Furthermore, the proposed cluster level noise model is adaptively combined with a coefficient level noise model in this paper to robustly improve coding performance of TDWZ video codec up to 1.24 dB (by Bjøntegaard metric) compared to the DISCOVER TDWZ video codec....... information of all frequency bands, iteratively classifies blocks into different categories and estimates the noise parameter in each category. The experimental results show that the coding performance of the proposed cluster level noise model is competitive with state-ofthe- art coefficient level noise...

  13. Electronic properties of large metal clusters in Jellium and pseudo-jellium models

    International Nuclear Information System (INIS)

    Catara, F.; Van Giai, N.; Chomaz, P.

    1994-08-01

    The energy-density functional approach and jellium-like models are used to examine two important electronic properties of metal (Li, Na, K) clusters: their shell and supershell structures, and the behaviour of plasmon energies with increasing cluster sizes. A comparative study is made between predictions of the usual jellium model and those of the pseudo-jellium model where pseudo-Hamiltonians are used. (authors) 10 figs., 5 tabs., 16 refs

  14. On the applicability of deformed jellium model to the description of metal clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Matveentsev, Anton; Solov'yov, Ilia

    2003-01-01

    -density approximation deformed jellium model we have calculated the binding energies per atom, ionization potentials, deformation parameters and the optimized values of the Wigner-Seitz radii for neutral and singly charged sodium clusters with the number of atoms $N0$. These characteristics are compared...... shape deformations in the formation cluster properties and the quite reasonable level of applicability of the deformed jellium model.......This work is devoted to the elucidation the applicability of jellium model to the description of alkali cluster properties on the basis of comparison the jellium model results with those derived from experiment and within ab initio theoretical framework. On the basis of the Hartree-Fock and local...

  15. Possible world based consistency learning model for clustering and classifying uncertain data.

    Science.gov (United States)

    Liu, Han; Zhang, Xianchao; Zhang, Xiaotong

    2018-06-01

    Possible world has shown to be effective for handling various types of data uncertainty in uncertain data management. However, few uncertain data clustering and classification algorithms are proposed based on possible world. Moreover, existing possible world based algorithms suffer from the following issues: (1) they deal with each possible world independently and ignore the consistency principle across different possible worlds; (2) they require the extra post-processing procedure to obtain the final result, which causes that the effectiveness highly relies on the post-processing method and the efficiency is also not very good. In this paper, we propose a novel possible world based consistency learning model for uncertain data, which can be extended both for clustering and classifying uncertain data. This model utilizes the consistency principle to learn a consensus affinity matrix for uncertain data, which can make full use of the information across different possible worlds and then improve the clustering and classification performance. Meanwhile, this model imposes a new rank constraint on the Laplacian matrix of the consensus affinity matrix, thereby ensuring that the number of connected components in the consensus affinity matrix is exactly equal to the number of classes. This also means that the clustering and classification results can be directly obtained without any post-processing procedure. Furthermore, for the clustering and classification tasks, we respectively derive the efficient optimization methods to solve the proposed model. Experimental results on real benchmark datasets and real world uncertain datasets show that the proposed model outperforms the state-of-the-art uncertain data clustering and classification algorithms in effectiveness and performs competitively in efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  17. Internal validation of risk models in clustered data: a comparison of bootstrap schemes

    NARCIS (Netherlands)

    Bouwmeester, W.; Moons, K.G.M.; Kappen, T.H.; van Klei, W.A.; Twisk, J.W.R.; Eijkemans, M.J.C.; Vergouwe, Y.

    2013-01-01

    Internal validity of a risk model can be studied efficiently with bootstrapping to assess possible optimism in model performance. Assumptions of the regular bootstrap are violated when the development data are clustered. We compared alternative resampling schemes in clustered data for the estimation

  18. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blondel, Sophie [Univ. of Tennessee, Knoxville, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-06-01

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics calls for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.

  19. Energy spectra of vibron and cluster models in molecular and nuclear systems

    Science.gov (United States)

    Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.

    2018-03-01

    The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.

  20. Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza.

    Science.gov (United States)

    Cybis, Gabriela B; Sinsheimer, Janet S; Bedford, Trevor; Rambaut, Andrew; Lemey, Philippe; Suchard, Marc A

    2018-01-30

    Influenza is responsible for up to 500,000 deaths every year, and antigenic variability represents much of its epidemiological burden. To visualize antigenic differences across many viral strains, antigenic cartography methods use multidimensional scaling on binding assay data to map influenza antigenicity onto a low-dimensional space. Analysis of such assay data ideally leads to natural clustering of influenza strains of similar antigenicity that correlate with sequence evolution. To understand the dynamics of these antigenic groups, we present a framework that jointly models genetic and antigenic evolution by combining multidimensional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric clustering methods. We propose a phylogenetic Chinese restaurant process that extends the current process to incorporate the phylogenetic dependency structure between strains in the modeling of antigenic clusters. With this method, we are able to use the genetic information to better understand the evolution of antigenicity throughout epidemics, as shown in applications of this model to H1N1 influenza. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast.

    Science.gov (United States)

    Boczko, Erik M; Gedeon, Tomas; Stowers, Chris C; Young, Todd R

    2010-07-01

    Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.

  2. Modelling clustering of vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  3. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    Science.gov (United States)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume

  4. A Hybrid Double-Layer Master-Slave Model For Multicore-Node Clusters

    International Nuclear Information System (INIS)

    Liu Gang; Schmider, Hartmut; Edgecombe, Kenneth E

    2012-01-01

    The Double-Layer Master-Slave Model (DMSM) is a suitable hybrid model for executing a workload that consists of multiple independent tasks of varying length on a cluster consisting of multicore nodes. In this model, groups of individual tasks are first deployed to the cluster nodes through an MPI based Master-Slave model. Then, each group is processed by multiple threads on the node through an OpenMP based All-Slave approach. The lack of thread safety of most MPI libraries has to be addressed by a judicious use of OpenMP critical regions and locks. The HPCVL DMSM Library implements this model in Fortran and C. It requires a minimum of user input to set up the framework for the model and to define the individual tasks. Optionally, it supports the dynamic distribution of task-related data and the collection of results at runtime. This library is freely available as source code. Here, we outline the working principles of the library and on a few examples demonstrate its capability to efficiently distribute a workload on a distributed-memory cluster with shared-memory nodes.

  5. Clustering Multivariate Time Series Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Shima Ghassempour

    2014-03-01

    Full Text Available In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs, where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers.

  6. A user credit assessment model based on clustering ensemble for broadband network new media service supervision

    Science.gov (United States)

    Liu, Fang; Cao, San-xing; Lu, Rui

    2012-04-01

    This paper proposes a user credit assessment model based on clustering ensemble aiming to solve the problem that users illegally spread pirated and pornographic media contents within the user self-service oriented broadband network new media platforms. Its idea is to do the new media user credit assessment by establishing indices system based on user credit behaviors, and the illegal users could be found according to the credit assessment results, thus to curb the bad videos and audios transmitted on the network. The user credit assessment model based on clustering ensemble proposed by this paper which integrates the advantages that swarm intelligence clustering is suitable for user credit behavior analysis and K-means clustering could eliminate the scattered users existed in the result of swarm intelligence clustering, thus to realize all the users' credit classification automatically. The model's effective verification experiments are accomplished which are based on standard credit application dataset in UCI machine learning repository, and the statistical results of a comparative experiment with a single model of swarm intelligence clustering indicates this clustering ensemble model has a stronger creditworthiness distinguishing ability, especially in the aspect of predicting to find user clusters with the best credit and worst credit, which will facilitate the operators to take incentive measures or punitive measures accurately. Besides, compared with the experimental results of Logistic regression based model under the same conditions, this clustering ensemble model is robustness and has better prediction accuracy.

  7. The "p"-Median Model as a Tool for Clustering Psychological Data

    Science.gov (United States)

    Kohn, Hans-Friedrich; Steinley, Douglas; Brusco, Michael J.

    2010-01-01

    The "p"-median clustering model represents a combinatorial approach to partition data sets into disjoint, nonhierarchical groups. Object classes are constructed around "exemplars", that is, manifest objects in the data set, with the remaining instances assigned to their closest cluster centers. Effective, state-of-the-art implementations of…

  8. Observations and Modeling of Merging Galaxy Clusters

    Science.gov (United States)

    Golovich, Nathan Ryan

    Context: Galaxy clusters grow hierarchically with continuous accretion bookended by major merging events that release immense gravitational potential energy (as much as ˜1065 erg). This energy creates an environment for rich astrophysics. Precise measurements of the dark matter halo, intracluster medium, and galaxy population have resulted in a number of important results including dark matter constraints and explanations of the generation of cosmic rays. However, since the timescale of major mergers (˜several Gyr) relegates observations of individual systems to mere snapshots, these results are difficult to understand under a consistent dynamical framework. While computationally expensive simulations are vital in this regard, the vastness of parameter space has necessitated simulations of idealized mergers that are unlikely to capture the full richness. Merger speeds, geometries, and timescales each have a profound consequential effect, but even these simple dynamical properties of the mergers are often poorly understood. A method to identify and constrain the best systems for probing the rich astrophysics of merging clusters is needed. Such a method could then be utilized to prioritize observational follow up and best inform proper exploration of dynamical phase space. Task: In order to identify and model a large number of systems, in this dissertation, we compile an ensemble of major mergers each containing radio relics. We then complete a pan-chromatic study of these 29 systems including wide field optical photometry, targeted optical spectroscopy of member galaxies, radio, and X-ray observations. We use the optical observations to model the galaxy substructure and estimate line of sight motion. In conjunction with the radio and X-ray data, these substructure models helped elucidate the most likely merger scenario for each system and further constrain the dynamical properties of each system. We demonstrate the power of this technique through detailed analyses

  9. rEMM: Extensible Markov Model for Data Stream Clustering in R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2010-10-01

    Full Text Available Clustering streams of continuously arriving data has become an important application of data mining in recent years and efficient algorithms have been proposed by several researchers. However, clustering alone neglects the fact that data in a data stream is not only characterized by the proximity of data points which is used by clustering, but also by a temporal component. The extensible Markov model (EMM adds the temporal component to data stream clustering by superimposing a dynamically adapting Markov chain. In this paper we introduce the implementation of the R extension package rEMM which implements EMM and we discuss some examples and applications.

  10. Number of Clusters and the Quality of Hybrid Predictive Models in Analytical CRM

    Directory of Open Access Journals (Sweden)

    Łapczyński Mariusz

    2014-08-01

    Full Text Available Making more accurate marketing decisions by managers requires building effective predictive models. Typically, these models specify the probability of customer belonging to a particular category, group or segment. The analytical CRM categories refer to customers interested in starting cooperation with the company (acquisition models, customers who purchase additional products (cross- and up-sell models or customers intending to resign from the cooperation (churn models. During building predictive models researchers use analytical tools from various disciplines with an emphasis on their best performance. This article attempts to build a hybrid predictive model combining decision trees (C&RT algorithm and cluster analysis (k-means. During experiments five different cluster validity indices and eight datasets were used. The performance of models was evaluated by using popular measures such as: accuracy, precision, recall, G-mean, F-measure and lift in the first and in the second decile. The authors tried to find a connection between the number of clusters and models' quality.

  11. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.

    Science.gov (United States)

    Sun, Zhe; Wang, Ting; Deng, Ke; Wang, Xiao-Feng; Lafyatis, Robert; Ding, Ying; Hu, Ming; Chen, Wei

    2018-01-01

    Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to study cellular and molecular processes at single cell resolution. Among existing technologies, the recently developed droplet-based platform enables efficient parallel processing of thousands of single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI). Despite the technology advances, statistical methods and computational tools are still lacking for analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering large-scale single cell transcriptomic data are still under-explored. We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experiments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We performed comprehensive simulations to evaluate DIMM-SC and compared it with existing clustering methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation studies and real data applications demonstrated that overall, DIMM-SC achieves substantially improved clustering accuracy and much lower clustering variability compared to other existing clustering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological interpretations, which are typically unavailable from existing clustering methods. DIMM-SC has been implemented in a user-friendly R package with a detailed tutorial available on www.pitt.edu/∼wec47/singlecell.html. wei.chen@chp.edu or hum@ccf.org. Supplementary data are available at Bioinformatics online. © The Author

  12. Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination.

    Science.gov (United States)

    Yau, Christopher; Holmes, Chris

    2011-07-01

    We propose a hierarchical Bayesian nonparametric mixture model for clustering when some of the covariates are assumed to be of varying relevance to the clustering problem. This can be thought of as an issue in variable selection for unsupervised learning. We demonstrate that by defining a hierarchical population based nonparametric prior on the cluster locations scaled by the inverse covariance matrices of the likelihood we arrive at a 'sparsity prior' representation which admits a conditionally conjugate prior. This allows us to perform full Gibbs sampling to obtain posterior distributions over parameters of interest including an explicit measure of each covariate's relevance and a distribution over the number of potential clusters present in the data. This also allows for individual cluster specific variable selection. We demonstrate improved inference on a number of canonical problems.

  13. Testing dark energy and dark matter cosmological models with clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Hans [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)

    2008-07-01

    Galaxy clusters are, as the largest building blocks of our Universe, ideal probes to study the large-scale structure and to test cosmological models. The principle approach und the status of this research is reviewed. Clusters lend themselves for tests in serveral ways: the cluster mass function, the spatial clustering, the evolution of both functions with reshift, and the internal composition can be used to constrain cosmological parameters. X-ray observations are currently the best means of obtaining the relevant data on the galaxy cluster population. We illustrate in particular all the above mentioned methods with our ROSAT based cluster surveys. The mass calibration of clusters is an important issue, that is currently solved with XMM-Newton and Chandra studies. Based on the current experience we provide an outlook for future research, especially with eROSITA.

  14. From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model

    Directory of Open Access Journals (Sweden)

    F. Yu

    2006-01-01

    Full Text Available Ions, which are generated in the atmosphere by galactic cosmic rays and other ionization sources, may play an important role in the formation of atmospheric aerosols. In the paper, a new second-generation ion-mediated nucleation (IMN model is presented. The new model explicitly treats the evaporation of neutral and charged clusters and it describes the evolution of the size spectra and composition of both charged and neutral clusters/particles ranging from small clusters of few molecules to large particles of several micrometers in diameter. Schemes used to calculate the evaporation coefficients for small neutral and charged clusters are consistent with the experimental data within the uncertainty range. The present IMN model, which is size-, composition-, and type-resolved, is a powerful tool for investigating the dominant mechanisms and key parameters controlling the formation and subsequent growth of nanoparticles in the atmosphere. This model can be used to analyze simultaneous measurements of the ion-mobility spectra and particle size distributions, which became available only recently. General features of the spectra for ions smaller than the critical size, size-dependent fractions of charged nanoparticles, and asymmetrical charging of freshly nucleated particles predicted by the new IMN model are consistent with recent measurements. Results obtained using the second generation IMN model, in which the most recent thermodynamic data for neutral and charged H2SO4-H2O clusters were used, suggest that ion-mediated nucleation of H2SO4-H2O can lead to a significant production of new particles in the lower atmosphere (including the boundary layer under favorable conditions. It has been shown that freshly nucleated particles of few nanometers in size can grow by the condensation of low volatile organic compounds to the size of cloud condensation nuclei. In such cases, the chemical composition of nucleated particles larger than ~10 nm is dominated

  15. Testing a generalized cubic Galileon gravity model with the Coma Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Terukina, Ayumu; Yamamoto, Kazuhiro; Okabe, Nobuhiro [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Matsushita, Kyoko; Sasaki, Toru, E-mail: telkina@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: okabe@hiroshima-u.ac.jp, E-mail: matusita@rs.kagu.tus.ac.jp, E-mail: j1213703@ed.tus.ac.jp [Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2015-10-01

    We obtain a constraint on the parameters of a generalized cubic Galileon gravity model exhibiting the Vainshtein mechanism by using multi-wavelength observations of the Coma Cluster. The generalized cubic Galileon model is characterized by three parameters of the turning scale associated with the Vainshtein mechanism, and the amplitude of modifying a gravitational potential and a lensing potential. X-ray and Sunyaev-Zel'dovich (SZ) observations of the intra-cluster medium are sensitive to the gravitational potential, while the weak-lensing (WL) measurement is specified by the lensing potential. A joint fit of a complementary multi-wavelength dataset of X-ray, SZ and WL measurements enables us to simultaneously constrain these three parameters of the generalized cubic Galileon model for the first time. We also find a degeneracy between the cluster mass parameters and the gravitational modification parameters, which is influential in the limit of the weak screening of the fifth force.

  16. Statistical mechanics of the cluster Ising model

    International Nuclear Information System (INIS)

    Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko

    2011-01-01

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  17. Statistical mechanics of the cluster Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Smacchia, Pietro [SISSA - via Bonomea 265, I-34136, Trieste (Italy); Amico, Luigi [CNR-MATIS-IMM and Dipartimento di Fisica e Astronomia Universita di Catania, C/O ed. 10, viale Andrea Doria 6, I-95125 Catania (Italy); Facchi, Paolo [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Fazio, Rosario [NEST, Scuola Normale Superiore and Istituto Nanoscienze - CNR, 56126 Pisa (Italy); Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Florio, Giuseppe; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Vedral, Vlatko [Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)

    2011-08-15

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  18. Implementation of K-Means Clustering Method for Electronic Learning Model

    Science.gov (United States)

    Latipa Sari, Herlina; Suranti Mrs., Dewi; Natalia Zulita, Leni

    2017-12-01

    Teaching and Learning process at SMK Negeri 2 Bengkulu Tengah has applied e-learning system for teachers and students. The e-learning was based on the classification of normative, productive, and adaptive subjects. SMK Negeri 2 Bengkulu Tengah consisted of 394 students and 60 teachers with 16 subjects. The record of e-learning database was used in this research to observe students’ activity pattern in attending class. K-Means algorithm in this research was used to classify students’ learning activities using e-learning, so that it was obtained cluster of students’ activity and improvement of student’s ability. Implementation of K-Means Clustering method for electronic learning model at SMK Negeri 2 Bengkulu Tengah was conducted by observing 10 students’ activities, namely participation of students in the classroom, submit assignment, view assignment, add discussion, view discussion, add comment, download course materials, view article, view test, and submit test. In the e-learning model, the testing was conducted toward 10 students that yielded 2 clusters of membership data (C1 and C2). Cluster 1: with membership percentage of 70% and it consisted of 6 members, namely 1112438 Anggi Julian, 1112439 Anis Maulita, 1112441 Ardi Febriansyah, 1112452 Berlian Sinurat, 1112460 Dewi Anugrah Anwar and 1112467 Eka Tri Oktavia Sari. Cluster 2:with membership percentage of 30% and it consisted of 4 members, namely 1112463 Dosita Afriyani, 1112471 Erda Novita, 1112474 Eskardi and 1112477 Fachrur Rozi.

  19. A self-consistent model of rich clusters of galaxies. I. The galactic component of a cluster

    International Nuclear Information System (INIS)

    Konyukov, M.V.

    1985-01-01

    It is shown that to obtain the distribution function for the galactic component of a cluster reduces in the last analysis to solving the boundary-value problem for the gravitational potential of a self-consistent field. The distribution function is determined by two main parameters. An algorithm is constructed for the solution of the problem, and a program is set up to solve it. It is used to establish the region of values of the parameters in the problem for which solutions exist. The scheme proposed is extended to the case where there exists in the cluster a separate central body with a known density distribution (for example, a cD galaxy). A method is indicated for the estimation of the parameters of the model from the results of observations of clusters of galaxies in the optical range

  20. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  1. Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.

    Science.gov (United States)

    Barré, Julien; Yamaguchi, Yoshiyuki Y

    2009-03-01

    Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.

  2. The impact of mobile point defect clusters in a kinetic model of pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1998-05-01

    The results of recent molecular dynamics simulations of displacement cascades in iron indicate that small interstitial clusters may have a very low activation energy for migration, and that their migration is 1-dimensional, rather than 3-dimensional. The mobility of these clusters can have a significant impact on the predictions of radiation damage models, particularly at the relatively low temperatures typical of commercial, light water reactor pressure vessels (RPV) and other out-of-core components. A previously-developed kinetic model used to investigate RPV embrittlement has been modified to permit an evaluation of the mobile interstitial clusters. Sink strengths appropriate to both 1- and 3-dimensional motion of the clusters were evaluated. High cluster mobility leads to a reduction in the amount of predicted embrittlement due to interstitial clusters since they are lost to sinks rather than building up in the microstructure. The sensitivity of the predictions to displacement rate also increases. The magnitude of this effect is somewhat reduced if the migration is 1-dimensional since the corresponding sink strengths are lower than those for 3-dimensional diffusion. The cluster mobility can also affect the evolution of copper-rich precipitates in the model since the radiation-enhanced diffusion coefficient increases due to the lower interstitial cluster sink strength. The overall impact of the modifications to the model is discussed in terms of the major irradiation variables and material parameter uncertainties

  3. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models

    KAUST Repository

    Chermak, Edrisse; De Donato, Renato; Lensink, Marc F.; Petta, Andrea; Serra, Luigi; Scarano, Vittorio; Cavallo, Luigi; Oliva, Romina

    2016-01-01

    Correctly scoring protein-protein docking models to single out native-like ones is an open challenge. It is also an object of assessment in CAPRI (Critical Assessment of PRedicted Interactions), the community-wide blind docking experiment. We introduced in the field the first pure consensus method, CONSRANK, which ranks models based on their ability to match the most conserved contacts in the ensemble they belong to. In CAPRI, scorers are asked to evaluate a set of available models and select the top ten ones, based on their own scoring approach. Scorers' performance is ranked based on the number of targets/interfaces for which they could provide at least one correct solution. In such terms, blind testing in CAPRI Round 30 (a joint prediction round with CASP11) has shown that critical cases for CONSRANK are represented by targets showing multiple interfaces or for which only a very small number of correct solutions are available. To address these challenging cases, CONSRANK has now been modified to include a contact-based clustering of the models as a preliminary step of the scoring process. We used an agglomerative hierarchical clustering based on the number of common inter-residue contacts within the models. Two criteria, with different thresholds, were explored in the cluster generation, setting either the number of common contacts or of total clusters. For each clustering approach, after selecting the top (most populated) ten clusters, CONSRANK was run on these clusters and the top-ranked model for each cluster was selected, in the limit of 10 models per target. We have applied our modified scoring approach, Clust-CONSRANK, to SCORE_SET, a set of CAPRI scoring models made recently available by CAPRI assessors, and to the subset of homodimeric targets in CAPRI Round 30 for which CONSRANK failed to include a correct solution within the ten selected models. Results show that, for the challenging cases, the clustering step typically enriches the ten top ranked

  4. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models

    KAUST Repository

    Chermak, Edrisse

    2016-11-15

    Correctly scoring protein-protein docking models to single out native-like ones is an open challenge. It is also an object of assessment in CAPRI (Critical Assessment of PRedicted Interactions), the community-wide blind docking experiment. We introduced in the field the first pure consensus method, CONSRANK, which ranks models based on their ability to match the most conserved contacts in the ensemble they belong to. In CAPRI, scorers are asked to evaluate a set of available models and select the top ten ones, based on their own scoring approach. Scorers\\' performance is ranked based on the number of targets/interfaces for which they could provide at least one correct solution. In such terms, blind testing in CAPRI Round 30 (a joint prediction round with CASP11) has shown that critical cases for CONSRANK are represented by targets showing multiple interfaces or for which only a very small number of correct solutions are available. To address these challenging cases, CONSRANK has now been modified to include a contact-based clustering of the models as a preliminary step of the scoring process. We used an agglomerative hierarchical clustering based on the number of common inter-residue contacts within the models. Two criteria, with different thresholds, were explored in the cluster generation, setting either the number of common contacts or of total clusters. For each clustering approach, after selecting the top (most populated) ten clusters, CONSRANK was run on these clusters and the top-ranked model for each cluster was selected, in the limit of 10 models per target. We have applied our modified scoring approach, Clust-CONSRANK, to SCORE_SET, a set of CAPRI scoring models made recently available by CAPRI assessors, and to the subset of homodimeric targets in CAPRI Round 30 for which CONSRANK failed to include a correct solution within the ten selected models. Results show that, for the challenging cases, the clustering step typically enriches the ten top ranked

  5. Cluster-cluster correlations and constraints on the correlation hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  6. Cluster evolution and critical cluster sizes for the square and triangular lattice Ising models using lattice animals and Monte Carlo simulations

    NARCIS (Netherlands)

    Eising, G.; Kooi, B. J.

    2012-01-01

    Growth and decay of clusters at temperatures below T-c have been studied for a two-dimensional Ising model for both square and triangular lattices using Monte Carlo (MC) simulations and the enumeration of lattice animals. For the lattice animals, all unique cluster configurations with their internal

  7. Smoothed Particle Inference: A Kilo-Parametric Method for X-ray Galaxy Cluster Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, John R.; Marshall, P.J.; /KIPAC, Menlo Park; Andersson, K.; /Stockholm U. /SLAC

    2005-08-05

    We propose an ambitious new method that models the intracluster medium in clusters of galaxies as a set of X-ray emitting smoothed particles of plasma. Each smoothed particle is described by a handful of parameters including temperature, location, size, and elemental abundances. Hundreds to thousands of these particles are used to construct a model cluster of galaxies, with the appropriate complexity estimated from the data quality. This model is then compared iteratively with X-ray data in the form of adaptively binned photon lists via a two-sample likelihood statistic and iterated via Markov Chain Monte Carlo. The complex cluster model is propagated through the X-ray instrument response using direct sampling Monte Carlo methods. Using this approach the method can reproduce many of the features observed in the X-ray emission in a less assumption-dependent way that traditional analyses, and it allows for a more detailed characterization of the density, temperature, and metal abundance structure of clusters. Multi-instrument X-ray analyses and simultaneous X-ray, Sunyaev-Zeldovich (SZ), and lensing analyses are a straight-forward extension of this methodology. Significant challenges still exist in understanding the degeneracy in these models and the statistical noise induced by the complexity of the models.

  8. Phase models and clustering in networks of oscillators with delayed coupling

    Science.gov (United States)

    Campbell, Sue Ann; Wang, Zhen

    2018-01-01

    We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.

  9. Clustering of 1p-shell nuclei in the framework of the shell model

    International Nuclear Information System (INIS)

    Kwasniewicz, E.

    1991-01-01

    The two- and three-fragment clustering of the 1p-shell nuclei has been studied in the framework of the shell model. The absolute probabilities of the required types of clustering in a given nucleus have been obtained by projecting its realistic shell-model wavefunction onto the suitable subspace of the orthonormal, completely antisymmetric two- or three-cluster states. With the aid of these data the selectivity in population of final states produced in multinucleon transfer reactions has been discussed. This problem has also been considered in the approach where the exchange of nucleons between clusters has been neglected. This has enabled to demonstrate the role of the complete antisymmetrization in predicting the intensities of states populated in multinucleon transfer reactions. The compact theory of the multinucleon one- and two-cluster spectroscopic amplitudes has been formulated. The examples of studying the nuclear structure and reactions with the aid of these spectroscopic amplitudes have been presented. (author)

  10. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  11. Modelling of heterogeneous clustering in aluminium

    International Nuclear Information System (INIS)

    Smith, A.E.; Bourgeois, L.; Nie, J.-F.; Muddle, B.C.

    2003-01-01

    Full text: Ab initio modelling of heterogeneous clustering in aluminium has been carried out in order to study the precipitation hardening of alloys. This process is based on the addition of small amounts of solute element to the pure metal. With increasing computational power, atomic scale effects can now be better simulated to determine the nature of the hardening mechanism. Comparisons are made between results obtained from two computational packages. These are the Linear Augmented Plane Wave WEEN2K and the plane wave pseudopotential density functional theory package fhi98md. The study of the optimal geometry of very small size clusters inside aluminium has begun with the testing of initial convergence conditions by determination of binding energies for a variety of super cell sizes of the aluminium host crystal. These are compared with total energy calculations for small size precipitates of copper and transition metals of fixed geometry. Such local optimal determinations are seen as precursors to full Monte Carlo calculations of the notional best local geometry for larger precipitates

  12. Soft and diffractive scattering with the cluster model in Herwig

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, Stefan; Loshaj, Frasher; Kirchgaesser, Patrick [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany)

    2017-03-15

    We present a new model for soft interactions in the event-generator Herwig. The model consists of two components. One to model diffractive final states on the basis of the cluster hadronization model and a second component that addresses soft multiple interactions as multiple particle production in multiperipheral kinematics. We present much improved results for minimum-bias measurements at various LHC energies. (orig.)

  13. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  14. Modeling sports highlights using a time-series clustering framework and model interpretation

    Science.gov (United States)

    Radhakrishnan, Regunathan; Otsuka, Isao; Xiong, Ziyou; Divakaran, Ajay

    2005-01-01

    In our past work on sports highlights extraction, we have shown the utility of detecting audience reaction using an audio classification framework. The audio classes in the framework were chosen based on intuition. In this paper, we present a systematic way of identifying the key audio classes for sports highlights extraction using a time series clustering framework. We treat the low-level audio features as a time series and model the highlight segments as "unusual" events in a background of an "usual" process. The set of audio classes to characterize the sports domain is then identified by analyzing the consistent patterns in each of the clusters output from the time series clustering framework. The distribution of features from the training data so obtained for each of the key audio classes, is parameterized by a Minimum Description Length Gaussian Mixture Model (MDL-GMM). We also interpret the meaning of each of the mixture components of the MDL-GMM for the key audio class (the "highlight" class) that is correlated with highlight moments. Our results show that the "highlight" class is a mixture of audience cheering and commentator's excited speech. Furthermore, we show that the precision-recall performance for highlights extraction based on this "highlight" class is better than that of our previous approach which uses only audience cheering as the key highlight class.

  15. The selected models of the mesostructure of composites percolation, clusters, and force fields

    CERN Document Server

    Herega, Alexander

    2018-01-01

    This book presents the role of mesostructure on the properties of composite materials. A complex percolation model is developed for the material structure containing percolation clusters of phases and interior boundaries. Modeling of technological cracks and the percolation in the Sierpinski carpet are described. The interaction of mesoscopic interior boundaries of the material, including the fractal nature of interior boundaries, the oscillatory nature of it interaction and also the stochastic model of the interior boundaries’ interaction, the genesis, structure, and properties are discussed. One of part of the book introduces the percolation model of the long-range effect which is based on the notion on the multifractal clusters with transforming elements, and the theorem on the field interaction of multifractals is described. In addition small clusters, their characteristic properties and the criterion of stability are presented.

  16. Microscopic cluster model analysis of 14O+p elastic scattering

    International Nuclear Information System (INIS)

    Baye, D.; Descouvemont, P.; Leo, F.

    2005-01-01

    The 14 O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14 O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the 15 C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the 14 O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in 15 F are discussed

  17. Fuzzy Clustering Methods and their Application to Fuzzy Modeling

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Zhou, Jianjun

    1999-01-01

    Fuzzy modeling techniques based upon the analysis of measured input/output data sets result in a set of rules that allow to predict system outputs from given inputs. Fuzzy clustering methods for system modeling and identification result in relatively small rule-bases, allowing fast, yet accurate....... An illustrative synthetic example is analyzed, and prediction accuracy measures are compared between the different variants...

  18. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  19. Towards the Availability of the Distributed Cluster Rendering System: Automatic Modeling and Verification

    DEFF Research Database (Denmark)

    Wang, Kemin; Jiang, Zhengtao; Wang, Yongbin

    2012-01-01

    , whenever the number of node-n and related parameters vary, we can create the PRISM model file rapidly and then we can use PRISM model checker to verify ralated system properties. At the end of this study, we analyzed and verified the availability distributions of the Distributed Cluster Rendering System......In this study, we proposed a Continuous Time Markov Chain Model towards the availability of n-node clusters of Distributed Rendering System. It's an infinite one, we formalized it, based on the model, we implemented a software, which can automatically model with PRISM language. With the tool...

  20. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    Science.gov (United States)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  1. MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS

    Science.gov (United States)

    Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...

  2. Iwamoto-Harada coalescence/pickup model for cluster emission: state density approach including angular momentum variables

    Directory of Open Access Journals (Sweden)

    Běták Emil

    2014-04-01

    Full Text Available For low-energy nuclear reactions well above the resonance region, but still below the pion threshold, statistical pre-equilibrium models (e.g., the exciton and the hybrid ones are a frequent tool for analysis of energy spectra and the cross sections of cluster emission. For α’s, two essentially distinct approaches are popular, namely the preformed one and the different versions of coalescence approaches, whereas only the latter group of models can be used for other types of cluster ejectiles. The original Iwamoto-Harada model of pre-equilibrium cluster emission was formulated using the overlap of the cluster and its constituent nucleons in momentum space. Transforming it into level or state densities is not a straigthforward task; however, physically the same model was presented at a conference on reaction models five years earlier. At that time, only the densities without spin were used. The introduction of spin variables into the exciton model enabled detailed calculation of the γ emission and its competition with nucleon channels, and – at the same time – it stimulated further developments of the model. However – to the best of our knowledge – no spin formulation has been presented for cluster emission till recently, when the first attempts have been reported, but restricted to the first emission only. We have updated this effort now and we are able to handle (using the same simplifications as in our previous work pre-equilibrium cluster emission with spin including all nuclei in the reaction chain.

  3. Business models and business model innovation in a “Secure and Distributed Cloud Clustering (DISC) Society”

    DEFF Research Database (Denmark)

    Lindgren, Peter; Taran, Yariv

    2011-01-01

    of secure business models and how business models can be operated and innovated in a secure context have intensified tremendously. The development of new mobile and wireless security technologies gives hopes to really realize a secure cloud clustering society where business models can act and be innovated......The development and innovation of business models to a secure distributed cloud clustering society (DISC)—is indeed still a complex venture and has not been widely researched yet. Numerous types of security technologies are in these years proposed and in the “slip stream” of these the study...... secure—but we still have some steps to go before we reach the final destination. The paper gives a conceptual futuristic outlook on behalf of the input from SW2010 and state of the art business model research to what we can expect of business Model and business model innovation in a future secure cloud...

  4. A Study on Logistics Cluster Competitiveness among Asia Main Countries using the Porter's Diamond Model

    Directory of Open Access Journals (Sweden)

    Tae Won Chung

    2016-12-01

    Full Text Available Measurement and discussions of logistics cluster competitiveness with a national approach are required to boost agglomeration effects and potentially create logistics efficiency and productivity. This study developed assessment criteria of logistics cluster competitiveness based on Porter's diamond model, calculated the weight of each criterion by the AHP method, and finally evaluated and discussed logistics cluster competitiveness among Asia main countries. The results indicate that there was a large difference in logistics cluster competitiveness among six countries. The logistics cluster competitiveness scores of Singapore (7.93, Japan (7.38, and Hong Kong (7.04 are observably different from those of China (5.40, Korea (5.08, and Malaysia (3.46. Singapore, with the highest competitiveness score, revealed its absolute advantage in logistics cluster indices. These research results intend to provide logistics policy makers with some strategic recommendations, and may serve as a baseline for further logistics cluster studies using Porter's diamond model.

  5. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    Science.gov (United States)

    Turi, László

    2016-04-01

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  6. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary)

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  7. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    Science.gov (United States)

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an

  8. GraphCrunch 2: Software tool for network modeling, alignment and clustering

    Directory of Open Access Journals (Sweden)

    Hayes Wayne

    2011-01-01

    Full Text Available Abstract Background Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. Results We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL" for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other

  9. Some Unsolved Problems, Questions, and Applications of the Brightsen Nucleon Cluster Model

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2010-04-01

    Full Text Available Brightsen Model is opposite to the Standard Model, and it was build on John Weeler's Resonating Group Structure Model and on Linus Pauling's Close-Packed Spheron Model. Among Brightsen Model's predictions and applications we cite the fact that it derives the average number of prompt neutrons per fission event, it provides a theoretical way for understanding the low temperature / low energy reactions and for approaching the artificially induced fission, it predicts that forces within nucleon clusters are stronger than forces between such clusters within isotopes; it predicts the unmatter entities inside nuclei that result from stable and neutral union of matter and antimatter, and so on. But these predictions have to be tested in the future at the new CERN laboratory.

  10. Large psub(T) pion production and clustered parton model

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1977-05-01

    Recent experimental results on the large p sub(T) inclusive ..pi../sup 0/ productions by pp and ..pi..p collisions are interpreted by the parton model in which the constituent quarks are defined to be the clusters of the quark-partons and gluons.

  11. Supercomputer and cluster performance modeling and analysis efforts:2004-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Ganti, Anand; Meyer, Harold (Hal) Edward; Stevenson, Joel O.; Benner, Robert E., Jr. (.,; .); Goudy, Susan Phelps; Doerfler, Douglas W.; Domino, Stefan Paul; Taylor, Mark A.; Malins, Robert Joseph; Scott, Ryan T.; Barnette, Daniel Wayne; Rajan, Mahesh; Ang, James Alfred; Black, Amalia Rebecca; Laub, Thomas William; Vaughan, Courtenay Thomas; Franke, Brian Claude

    2007-02-01

    This report describes efforts by the Performance Modeling and Analysis Team to investigate performance characteristics of Sandia's engineering and scientific applications on the ASC capability and advanced architecture supercomputers, and Sandia's capacity Linux clusters. Efforts to model various aspects of these computers are also discussed. The goals of these efforts are to quantify and compare Sandia's supercomputer and cluster performance characteristics; to reveal strengths and weaknesses in such systems; and to predict performance characteristics of, and provide guidelines for, future acquisitions and follow-on systems. Described herein are the results obtained from running benchmarks and applications to extract performance characteristics and comparisons, as well as modeling efforts, obtained during the time period 2004-2006. The format of the report, with hypertext links to numerous additional documents, purposefully minimizes the document size needed to disseminate the extensive results from our research.

  12. Modified genetic algorithms to model cluster structures in medium-size silicon clusters

    International Nuclear Information System (INIS)

    Bazterra, Victor E.; Ona, Ofelia; Caputo, Maria C.; Ferraro, Marta B.; Fuentealba, Patricio; Facelli, Julio C.

    2004-01-01

    This paper presents the results obtained using a genetic algorithm (GA) to search for stable structures of medium size silicon clusters. In this work the GA uses a semiempirical energy function to find the best cluster structures, which are further optimized using density-functional theory. For small clusters our results agree well with previously reported structures, but for larger ones different structures appear. This is the case of Si 36 where we report a different structure, with significant lower energy than those previously found using limited search approaches on common structural motifs. This demonstrates the need for global optimization schemes when searching for stable structures of medium-size silicon clusters

  13. The covariance matrix of the Potts model: A random cluster analysis

    International Nuclear Information System (INIS)

    Borgs, C.; Chayes, J.T.

    1996-01-01

    We consider the covariance matrix, G mn = q 2 x ,m); δ(σ y ,n)>, of the d-dimensional q-states Potts model, rewriting it in the random cluster representation of Fortuin and Kasteleyn. In many of the q ordered phases, we identify the eigenvalues of this matrix both in terms of representations of the unbroken symmetry group of the model and in terms of random cluster connectivities and covariances, thereby attributing algebraic significance to these stochastic geometric quantities. We also show that the correlation length and the correlation length corresponding to the decay rate of one on the eigenvalues in the same as the inverse decay rate of the diameter of finite clusters. For dimension of d=2, we show that this correlation length and the correlation length of two-point function with free boundary conditions at the corresponding dual temperature are equal up to a factor of two. For systems with first-order transitions, this relation helps to resolve certain inconsistencies between recent exact and numerical work on correlation lengths at the self-dual point β o . For systems with second order transitions, this relation implies the equality of the correlation length exponents from above below threshold, as well as an amplitude ratio of two. In the course of proving the above results, we establish several properties of independent interest, including left continuity of the inverse correlation length with free boundary conditions and upper semicontinuity of the decay rate for finite clusters in all dimensions, and left continuity of the two-dimensional free boundary condition percolation probability at β o . We also introduce DLR equations for the random cluster model and use them to establish ergodicity of the free measure. In order to prove these results, we introduce a new class of events which we call decoupling events and two inequalities for these events

  14. A mixture model-based approach to the clustering of microarray expression data.

    Science.gov (United States)

    McLachlan, G J; Bean, R W; Peel, D

    2002-03-01

    This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/

  15. MORPHOLOGY OF GALAXY CLUSTERS: A COSMOLOGICAL MODEL-INDEPENDENT TEST OF THE COSMIC DISTANCE-DUALITY RELATION

    International Nuclear Information System (INIS)

    Meng Xiaolei; Zhang Tongjie; Zhan Hu; Wang Xin

    2012-01-01

    Aiming at comparing different morphological models of galaxy clusters, we use two new methods to make a cosmological model-independent test of the distance-duality (DD) relation. The luminosity distances come from the Union2 compilation of Supernovae Type Ia. The angular diameter distances are given by two cluster models (De Filippis et al. and Bonamente et al.). The advantage of our methods is that they can reduce statistical errors. Concerning the morphological hypotheses for cluster models, it is mainly focused on the comparison between the elliptical β-model and spherical β-model. The spherical β-model is divided into two groups in terms of different reduction methods of angular diameter distances, i.e., the conservative spherical β-model and corrected spherical β-model. Our results show that the DD relation is consistent with the elliptical β-model at 1σ confidence level (CL) for both methods, whereas for almost all spherical β-model parameterizations, the DD relation can only be accommodated at 3σ CL, particularly for the conservative spherical β-model. In order to minimize systematic uncertainties, we also apply the test to the overlap sample, i.e., the same set of clusters modeled by both De Filippis et al. and Bonamente et al. It is found that the DD relation is compatible with the elliptically modeled overlap sample at 1σ CL; however, for most of the parameterizations the DD relation cannot be accommodated even at 3σ CL for any of the two spherical β-models. Therefore, it is reasonable that the marked triaxial ellipsoidal model is a better geometrical hypothesis describing the structure of the galaxy cluster compared with the spherical β-model if the DD relation is valid in cosmological observations.

  16. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  17. Rapidity correlations at fixed multiplicity in cluster emission models

    CERN Document Server

    Berger, M C

    1975-01-01

    Rapidity correlations in the central region among hadrons produced in proton-proton collisions of fixed final state multiplicity n at NAL and ISR energies are investigated in a two-step framework in which clusters of hadrons are emitted essentially independently, via a multiperipheral-like model, and decay isotropically. For n>or approximately=/sup 1///sub 2/(n), these semi-inclusive distributions are controlled by the reaction mechanism which dominates production in the central region. Thus, data offer cleaner insight into the properties of this mechanism than can be obtained from fully inclusive spectra. A method of experimental analysis is suggested to facilitate the extraction of new dynamical information. It is shown that the n independence of the magnitude of semi-inclusive correlation functions reflects directly the structure of the internal cluster multiplicity distribution. This conclusion is independent of certain assumptions concerning the form of the single cluster density in rapidity space. (23 r...

  18. Mathematical model on malicious attacks in a mobile wireless network with clustering

    International Nuclear Information System (INIS)

    Haldar, Kaushik; Mishra, Bimal Kumar

    2015-01-01

    A mathematical model has been formulated for the analysis of a wireless epidemic on a clustered heterogeneous network. The model introduces mobility into the epidemic framework assuming that the component nodes have a tendency to be attached with a frequently visited home cluster. This underlines the inherent regularity in the mobility pattern of mobile nodes in a wireless network. The analysis focuses primarily on features that arise because of the mobility considerations compared in the larger scenario formed by the epidemic aspects. A result on the invariance of the home cluster populations with respect to time provides an important view-point of the long-term behavior of the system. The analysis also focuses on obtaining a basic threshold condition that guides the epidemic behavior of the system. Analytical as well as numerical results have also been obtained to establish the asymptotic behavior of the connected components of the network, and that of the whole network when the underlying graph turns out to be irreducible. Applications to proximity based attacks and to scenarios with high cluster density have also been outlined

  19. Spherical collapse and cluster counts in modified gravity models

    International Nuclear Information System (INIS)

    Martino, Matthew C.; Stabenau, Hans F.; Sheth, Ravi K.

    2009-01-01

    Modifications to the gravitational potential affect the nonlinear gravitational evolution of large scale structures in the Universe. To illustrate some generic features of such changes, we study the evolution of spherically symmetric perturbations when the modification is of Yukawa type; this is nontrivial, because we should not and do not assume that Birkhoff's theorem applies. We then show how to estimate the abundance of virialized objects in such models. Comparison with numerical simulations shows reasonable agreement: When normalized to have the same fluctuations at early times, weaker large scale gravity produces fewer massive halos. However, the opposite can be true for models that are normalized to have the same linear theory power spectrum today, so the abundance of rich clusters potentially places interesting constraints on such models. Our analysis also indicates that the formation histories and abundances of sufficiently low mass objects are unchanged from standard gravity. This explains why simulations have found that the nonlinear power spectrum at large k is unaffected by such modifications to the gravitational potential. In addition, the most massive objects in models with normalized cosmic microwave background and weaker gravity are expected to be similar to the high-redshift progenitors of the most massive objects in models with stronger gravity. Thus, the difference between the cluster and field galaxy populations is expected to be larger in models with stronger large scale gravity.

  20. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model.

    Science.gov (United States)

    Jääskinen, Väinö; Parkkinen, Ville; Cheng, Lu; Corander, Jukka

    2014-02-01

    In many biological applications it is necessary to cluster DNA sequences into groups that represent underlying organismal units, such as named species or genera. In metagenomics this grouping needs typically to be achieved on the basis of relatively short sequences which contain different types of errors, making the use of a statistical modeling approach desirable. Here we introduce a novel method for this purpose by developing a stochastic partition model that clusters Markov chains of a given order. The model is based on a Dirichlet process prior and we use conjugate priors for the Markov chain parameters which enables an analytical expression for comparing the marginal likelihoods of any two partitions. To find a good candidate for the posterior mode in the partition space, we use a hybrid computational approach which combines the EM-algorithm with a greedy search. This is demonstrated to be faster and yield highly accurate results compared to earlier suggested clustering methods for the metagenomics application. Our model is fairly generic and could also be used for clustering of other types of sequence data for which Markov chains provide a reasonable way to compress information, as illustrated by experiments on shotgun sequence type data from an Escherichia coli strain.

  1. Performance prediction model for distributed applications on multicore clusters

    CSIR Research Space (South Africa)

    Khanyile, NP

    2012-07-01

    Full Text Available discusses some of the short comings of this law in the current age. We propose a theoretical model for predicting the behavior of a distributed algorithm given the network restrictions of the cluster used. The paper focuses on the impact of latency...

  2. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  3. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  4. Cluster folding-model for quasi-elastic scattering of 23Na from 208Pb

    International Nuclear Information System (INIS)

    Kabir, A.; Johnson, R.C.; Tostevin, M.H.

    1991-01-01

    A cluster model of 23 Na is used to calculate the 23 Na-target interaction potentials by folding the cluster wavefunction with the cluster-target interaction potentials. Coupled channels calculations are carried out for the quasi-elastic scattering of polarized 23 Na from 208 Pb at 170 MeV and compared with recent experiments. Qualitative agreement with experiment is obtained when the interaction is adjusted by a single overall normalization constant. (author)

  5. Clustering properties of dynamical dark energy models

    International Nuclear Information System (INIS)

    Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.

    2008-01-01

    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter

  6. Phase Transitions in Algebraic Cluster Models

    International Nuclear Information System (INIS)

    Yepez-Martinez, H.; Cseh, J.; Hess, P.O.

    2006-01-01

    same, and the states are said to form a (soft) band. The phase-transitions, as well as the persistence of the quasidynamical symmetries in the algebraic models of quadrupole collectivity have extensively been studied. In a recent work [1] we have addressed these questions in relation with another important collectivity of nuclei, i.e. clusterization. Two models were considered, a phenomenological one, containing no Pauli-principle, and a semimicroscopic one, which is based on a microscopically determined model space, being free from the Pauli-forbidden states. The interactions were treated in a phenomenologic and algebraic way in both cases. In this respect the two models have a similar group-structure. We have studied the SU(3) - SO(4) phase transition, related to the description of the relative motion in terms of the vibron model (in its simplest form in the phenomenological model and in a properly truncated form in the semimicroscopic description). The analytical study of the large-N limit of both models shows a first order phase transition. We have carried out numerical calculations as well. Three binary cluster systems were chosen, in which the number of open-shell clusters were zero, one and two, respectively. The numerical studies show that the phase transition is smoothed out for finite N systems, but some fingerprints of it still can be seen. The appearance of the quasidynamical SU(3) symmetry has also been studied, when moving away from the limit of the real SU(3) dynamical symmetry. It turned out that in each case, when there is a real dynamical symmetry in the limiting case (in the sense that a well-defined SU(3) quantum number can be associated to a band), this symmetry survives as quasidynamical symmetry at least up to the critical value of the control parameter. (author)

  7. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  8. Cluster model calculations of alpha decays across the periodic table

    International Nuclear Information System (INIS)

    Merchant, A.C.; Buck, B.

    1988-10-01

    The cluster model of Buck, Dover and Vary has been used to calculate partial widths for alpha decay from the ground states of all nuclei for which experimental measurements exist. The cluster-core potential is represented by a simple three-parameter form having fixed diffuseness, a radius which scales as A 1/3 and a depth which is adjusted to fit the Q-value of the particular decay. The calculations yield excellent agreement with the vast majority of the available data, and some typical examples are presented. (author) [pt

  9. Modeling Transfer of Knowledge in an Online Platform of a Cluster

    OpenAIRE

    Schmidt, Danilo Marcello; Böttcher, Lena; Wilberg, Julian; Kammerl, Daniel; Lindemann, Udo

    2016-01-01

    Dealing with knowledge as a relevant resource and factor for production has become increasingly important in the course of globalization. This work focuses on questions about transferring knowledge when many companies work together in a cluster of enterprises. We developed a model of this transfer based on the theory of clusters from the New Institutional Economics’ point of view and based on existing theories about knowledge and knowledge transfer. This theoretical construct is evaluated and...

  10. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    Science.gov (United States)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  11. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  12. A two-stage method for microcalcification cluster segmentation in mammography by deformable models

    International Nuclear Information System (INIS)

    Arikidis, N.; Kazantzi, A.; Skiadopoulos, S.; Karahaliou, A.; Costaridou, L.; Vassiou, K.

    2015-01-01

    Purpose: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. Methods: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods are applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists’ segmentations quantitatively by two distance metrics (Hausdorff distance—HDIST cluster , average of minimum distance—AMINDIST cluster ) and the area overlap measure (AOM cluster ). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing tenfold cross

  13. TESTING STELLAR POPULATION SYNTHESIS MODELS WITH SLOAN DIGITAL SKY SURVEY COLORS OF M31's GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav

    2011-01-01

    Accurate stellar population synthesis models are vital in understanding the properties and formation histories of galaxies. In order to calibrate and test the reliability of these models, they are often compared with observations of star clusters. However, relatively little work has compared these models in the ugriz filters, despite the recent widespread use of this filter set. In this paper, we compare the integrated colors of globular clusters in the Sloan Digital Sky Survey (SDSS) with those predicted from commonly used simple stellar population (SSP) models. The colors are based on SDSS observations of M31's clusters and provide the largest population of star clusters with accurate photometry available from the survey. As such, it is a unique sample with which to compare SSP models with SDSS observations. From this work, we identify a significant offset between the SSP models and the clusters' g - r colors, with the models predicting colors which are too red by g - r ∼ 0.1. This finding is consistent with previous observations of luminous red galaxies in the SDSS, which show a similar discrepancy. The identification of this offset in globular clusters suggests that it is very unlikely to be due to a minority population of young stars. The recently updated SSP model of Maraston and Stroembaeck better represents the observed g - r colors. This model is based on the empirical MILES stellar library, rather than theoretical libraries, suggesting an explanation for the g - r discrepancy.

  14. Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks.

    Science.gov (United States)

    Taamneh, Madhar; Taamneh, Salah; Alkheder, Sharaf

    2017-09-01

    Artificial neural networks (ANNs) have been widely used in predicting the severity of road traffic crashes. All available information about previously occurred accidents is typically used for building a single prediction model (i.e., classifier). Too little attention has been paid to the differences between these accidents, leading, in most cases, to build less accurate predictors. Hierarchical clustering is a well-known clustering method that seeks to group data by creating a hierarchy of clusters. Using hierarchical clustering and ANNs, a clustering-based classification approach for predicting the injury severity of road traffic accidents was proposed. About 6000 road accidents occurred over a six-year period from 2008 to 2013 in Abu Dhabi were used throughout this study. In order to reduce the amount of variation in data, hierarchical clustering was applied on the data set to organize it into six different forms, each with different number of clusters (i.e., clusters from 1 to 6). Two ANN models were subsequently built for each cluster of accidents in each generated form. The first model was built and validated using all accidents (training set), whereas only 66% of the accidents were used to build the second model, and the remaining 34% were used to test it (percentage split). Finally, the weighted average accuracy was computed for each type of models in each from of data. The results show that when testing the models using the training set, clustering prior to classification achieves (11%-16%) more accuracy than without using clustering, while the percentage split achieves (2%-5%) more accuracy. The results also suggest that partitioning the accidents into six clusters achieves the best accuracy if both types of models are taken into account.

  15. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...

  16. Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things.

    Science.gov (United States)

    Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao

    2015-12-23

    Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices' service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes' life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN.

  17. Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things

    Directory of Open Access Journals (Sweden)

    Antoine Bagula

    2015-12-01

    Full Text Available Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices’ service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes’ life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH and LEACH-centralized (LEACH-C algorithms, as well as the most recent algorithms, such as DECSA and MOCRN.

  18. Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    ), and more especially during interconnection with other MGs, creating dc MG clusters. This paper develops a small signal model for dc MGs from the control point of view, in order to study stability analysis and investigate effects of CPLs and line impedances between the MGs on stability of these systems....... This model can be also used to synthesis and study dynamics of control loops in dc MGs and also dc MG clusters. An active stabilization method is proposed to be implemented as a dc active power filter (APF) inside the MGs in order to not only increase damping of dc MGs at the presence of CPLs but also...... to improve their stability while connecting to the other MGs. Simulation results are provided to evaluate the developed models and demonstrate the effectiveness of proposed active stabilization technique....

  19. The performance of a new Geant4 Bertini intra-nuclear cascade model in high throughput computing (HTC) cluster architecture

    Energy Technology Data Exchange (ETDEWEB)

    Aatos, Heikkinen; Andi, Hektor; Veikko, Karimaki; Tomas, Linden [Helsinki Univ., Institute of Physics (Finland)

    2003-07-01

    We study the performance of a new Bertini intra-nuclear cascade model implemented in the general detector simulation tool-kit Geant4 with a High Throughput Computing (HTC) cluster architecture. A 60 node Pentium III open-Mosix cluster is used with the Mosix kernel performing automatic process load-balancing across several CPUs. The Mosix cluster consists of several computer classes equipped with Windows NT workstations that automatically boot, daily and become nodes of the Mosix cluster. The models included in our study are a Bertini intra-nuclear cascade model with excitons, consisting of a pre-equilibrium model, a nucleus explosion model, a fission model and an evaporation model. The speed and accuracy obtained for these models is presented. (authors)

  20. A validation of a simple model for the calculation of the ionization energies in X-ray laser-cluster interactions

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeff; Ackad, Edward [Department of Physics, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026 (United States)

    2015-02-15

    The outer-ionization of an electron from a cluster is an unambiguous quantity, while the inner-ionization threshold is not, resulting in different microscopic quantum-classical hybrid models used in laser-cluster interactions. A simple local ionization threshold model for the change in the ionization energy is proposed and examined, for atoms and ions, at distances in between the initial configuration of the cluster to well into the cluster's disintegration. This model is compared with a full Hartree-Fock energy calculation which accounts for the electron correlation effects using the coupled cluster method with single and double excitations with perturbative triples (CCSD(T)). Good agreement is found between the two lending a strong theoretical support to works which rely on such models for the final and transient properties of the laser-cluster interaction.

  1. Semi-Supervised Generation with Cluster-aware Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Fraccaro, Marco; Winther, Ole

    2017-01-01

    Deep generative models trained with large amounts of unlabelled data have proven to be powerful within the domain of unsupervised learning. Many real life data sets contain a small amount of labelled data points, that are typically disregarded when training generative models. We propose the Clust...... a log-likelihood of −79.38 nats on permutation invariant MNIST, while also achieving competitive semi-supervised classification accuracies. The model can also be trained fully unsupervised, and still improve the log-likelihood performance with respect to related methods.......Deep generative models trained with large amounts of unlabelled data have proven to be powerful within the domain of unsupervised learning. Many real life data sets contain a small amount of labelled data points, that are typically disregarded when training generative models. We propose the Cluster...

  2. Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    Science.gov (United States)

    Tait, Luke; Wedgwood, Kyle; Tsaneva-Atanasova, Krasimira; Brown, Jon T; Goodfellow, Marc

    2018-07-14

    The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Wen, Z. L.; Han, J. L.

    2011-01-01

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 ∼ + - m 3.6 μ m colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z f ≥ 2 and evolved passively. The g' - z' and B - m 3.6μm colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z f ∼ 2, indicating star formation in high-redshift BCGs.

  4. Performance Modeling of Hybrid MPI/OpenMP Scientific Applications on Large-scale Multicore Cluster Systems

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2011-01-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore clusters: IBM POWER4, POWER5+ and Blue Gene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore clusters because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyro kinetic Toroidal Code in magnetic fusion to validate our performance model of the hybrid application on these multicore clusters. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore clusters. © 2011 IEEE.

  5. Performance Modeling of Hybrid MPI/OpenMP Scientific Applications on Large-scale Multicore Cluster Systems

    KAUST Repository

    Wu, Xingfu

    2011-08-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore clusters: IBM POWER4, POWER5+ and Blue Gene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore clusters because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyro kinetic Toroidal Code in magnetic fusion to validate our performance model of the hybrid application on these multicore clusters. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore clusters. © 2011 IEEE.

  6. Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong; Mocanu, Gabriela

    2015-01-01

    The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is described by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10 −7 fm

  7. MODEL EVALUATION OF THE SPATIAL DEVELOPMENT OF THE REGION THROUGH THE DEVELOPMENT OF REGIONAL ECONOMIC CLUSTERS

    Directory of Open Access Journals (Sweden)

    Чингис Дашидалаевич Дашицыренов

    2013-12-01

    Full Text Available The article describes a model of evaluation of effectiveness of spatial development of a region. Main approaches and criteria to assess effectiveness of socio-economic development of a region based on use of regional economic cluster are identified.The author believes that clusterization allows to eliminate or localize mentioned above restrictions which are characteristic of specific activity of entities. Effect in this case can be measured by increase in productivity obtained from cluster’s resources use  in regard to specific form of enterprises’ existence.The article also focused on definition of idea of synergic effect and the model of effectiveness of clusters. Cluster integration’s essence is considered – it is pointed out that a new structure is formed, which has emergent characteristics.Thus, main approach to spatial socio-economic development of a region proposed by the author is diversification of organizational and economic forms into regional economic clusters.Proposed by the author model allows to assess effectiveness of clusterization for spatial socio-economic development of any region. DOI: http://dx.doi.org/10.12731/2218-7405-2013-10-14

  8. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-01-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations

  9. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  10. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianbao [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Zhongjun, E-mail: mzj1234402@163.com [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2014-06-15

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  11. A Model-Based Cluster Analysis of Maternal Emotion Regulation and Relations to Parenting Behavior.

    Science.gov (United States)

    Shaffer, Anne; Whitehead, Monica; Davis, Molly; Morelen, Diana; Suveg, Cynthia

    2017-10-15

    In a diverse community sample of mothers (N = 108) and their preschool-aged children (M age  = 3.50 years), this study conducted person-oriented analyses of maternal emotion regulation (ER) based on a multimethod assessment incorporating physiological, observational, and self-report indicators. A model-based cluster analysis was applied to five indicators of maternal ER: maternal self-report, observed negative affect in a parent-child interaction, baseline respiratory sinus arrhythmia (RSA), and RSA suppression across two laboratory tasks. Model-based cluster analyses revealed four maternal ER profiles, including a group of mothers with average ER functioning, characterized by socioeconomic advantage and more positive parenting behavior. A dysregulated cluster demonstrated the greatest challenges with parenting and dyadic interactions. Two clusters of intermediate dysregulation were also identified. Implications for assessment and applications to parenting interventions are discussed. © 2017 Family Process Institute.

  12. Hyperon-nucleon interaction in the quark cluster model

    International Nuclear Information System (INIS)

    Straub, U.; Zhang Zongye; Braeuer, K.; Faessler, A.; Khadkikar, S.B.; Luebeck, G.

    1988-01-01

    The lambda-nucleon and sigma-nucleon interaction is described in the nonrelativistic quark cluster model. The SU(3) flavor symmetry breaking due to the different quark masses is taken into account, i.e. different wavefunctions for the light (up, down) and heavy (strange) quarks are used in flavor and orbital space. The six-quark wavefunction is fully antisymmetrized. The model hamiltonian contains gluon exchange, pseudoscalar meson exchange and a phenomenological σ-meson exchange. The six-quark scattering problem is solved within the resonating group method. The experimental lambda-nucleon and sigma-nucleon cross sections are well reproduced. (orig.)

  13. A comparison of heuristic and model-based clustering methods for dietary pattern analysis.

    Science.gov (United States)

    Greve, Benjamin; Pigeot, Iris; Huybrechts, Inge; Pala, Valeria; Börnhorst, Claudia

    2016-02-01

    Cluster analysis is widely applied to identify dietary patterns. A new method based on Gaussian mixture models (GMM) seems to be more flexible compared with the commonly applied k-means and Ward's method. In the present paper, these clustering approaches are compared to find the most appropriate one for clustering dietary data. The clustering methods were applied to simulated data sets with different cluster structures to compare their performance knowing the true cluster membership of observations. Furthermore, the three methods were applied to FFQ data assessed in 1791 children participating in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants) Study to explore their performance in practice. The GMM outperformed the other methods in the simulation study in 72 % up to 100 % of cases, depending on the simulated cluster structure. Comparing the computationally less complex k-means and Ward's methods, the performance of k-means was better in 64-100 % of cases. Applied to real data, all methods identified three similar dietary patterns which may be roughly characterized as a 'non-processed' cluster with a high consumption of fruits, vegetables and wholemeal bread, a 'balanced' cluster with only slight preferences of single foods and a 'junk food' cluster. The simulation study suggests that clustering via GMM should be preferred due to its higher flexibility regarding cluster volume, shape and orientation. The k-means seems to be a good alternative, being easier to use while giving similar results when applied to real data.

  14. Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media

    Science.gov (United States)

    Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  15. Estimation of radiation hardening in ferritic steels using the cluster dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun Hyun; Kim, Whung Whoe; Hong, Jun Hwa [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Evolution of microstructure under irradiation brings about the mechanical property changes of materials, of which the major concern is radiation hardening in this work. Radiation hardening is generally expressed in terms of an increase in yield strength as a function of radiation dose and temperature. Cluster dynamics model for radiation hardening has been developed to describe the evolution of point defects clusters (PDCs) and copperrich precipitates (CRPs). While the mathematical models developed by Stoller focus on the evolution of PDCs in ferritic steels under neutron irradiation, we slightly modify the model by including the CRP growth and estimate the magnitude of hardening induced by PDC and CRP. The model is then used to calculate the changes in yield strength of RPV steels. The calculation results are compared to measured yield strength values, obtained from surveillance testing of PWR vessel steels in France.

  16. Fuzzy C-Means Clustering Model Data Mining For Recognizing Stock Data Sampling Pattern

    Directory of Open Access Journals (Sweden)

    Sylvia Jane Annatje Sumarauw

    2007-06-01

    Full Text Available Abstract Capital market has been beneficial to companies and investor. For investors, the capital market provides two economical advantages, namely deviden and capital gain, and a non-economical one that is a voting .} hare in Shareholders General Meeting. But, it can also penalize the share owners. In order to prevent them from the risk, the investors should predict the prospect of their companies. As a consequence of having an abstract commodity, the share quality will be determined by the validity of their company profile information. Any information of stock value fluctuation from Jakarta Stock Exchange can be a useful consideration and a good measurement for data analysis. In the context of preventing the shareholders from the risk, this research focuses on stock data sample category or stock data sample pattern by using Fuzzy c-Me, MS Clustering Model which providing any useful information jar the investors. lite research analyses stock data such as Individual Index, Volume and Amount on Property and Real Estate Emitter Group at Jakarta Stock Exchange from January 1 till December 31 of 204. 'he mining process follows Cross Industry Standard Process model for Data Mining (CRISP,. DM in the form of circle with these steps: Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and Deployment. At this modelling process, the Fuzzy c-Means Clustering Model will be applied. Data Mining Fuzzy c-Means Clustering Model can analyze stock data in a big database with many complex variables especially for finding the data sample pattern, and then building Fuzzy Inference System for stimulating inputs to be outputs that based on Fuzzy Logic by recognising the pattern. Keywords: Data Mining, AUz..:y c-Means Clustering Model, Pattern Recognition

  17. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    Science.gov (United States)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  18. The effect of alkylating agents on model supported metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. (Pittsburgh Univ., PA (USA). Dept. of Chemical and Petroleum Engineering); Oukaci, R. (CERHYD, Algiers (Algeria))

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  19. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  20. A cluster expansion approach to exponential random graph models

    International Nuclear Information System (INIS)

    Yin, Mei

    2012-01-01

    The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region

  1. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Science.gov (United States)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  2. MULTIAGENT IMITATION MODEL OF A REGIONAL CONSTRUCTION CLUSTER AS A HETERARCHICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Anufriev Dmitriy Petrovich

    2018-01-01

    Full Text Available Subject: a regional construction cluster, which is viewed as a complex system territorially localized within the region, consisting of interconnected and complementary enterprises of construction and related industries that are united with local institutions, authorities and cooperating enterprises by heterarchic relations. Research objectives: development of multi-agent simulation model that allows us to examine the business-processes in the regional construction cluster as a complex heterarchical system. Materials and methods: we formulate the mathematical problem for description of processes in a heterarchic system as in a special multi-agent queueing network. Conclusions: the article substantiates application of the decentralized approach which is based on the use of agent methodology. Several types of agents that model elementary organizational structures have been developed. We describe the functional core of the multi-agent simulation model characterizing the heterarchic organizational model. Using the Fishman-Kivia criterion, the adequacy of the logical functioning of the developed model was established.

  3. Cluster model of s- and p-shell ΛΛ hypernuclei

    Indian Academy of Sciences (India)

    simplifications the use of cluster model to S = −2 systems has given ..... constructed from Nijmegen soft-core NSC97e potential and are denoted as V e1. ΛΛ ..... This convergence of results reinforces the confidence in the methodology of all the.

  4. The dilute random field Ising model by finite cluster approximation

    International Nuclear Information System (INIS)

    Benyoussef, A.; Saber, M.

    1987-09-01

    Using the finite cluster approximation, phase diagrams of bond and site diluted three-dimensional simple cubic Ising models with a random field have been determined. The resulting phase diagrams have the same general features for both bond and site dilution. (author). 7 refs, 4 figs

  5. Universality and clustering in 1 + 1 dimensional superstring-bit models

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1996-01-01

    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problem encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting Polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an S-matrix for closed polymers of superstring-bits

  6. A spatial hazard model for cluster detection on continuous indicators of disease: application to somatic cell score.

    Science.gov (United States)

    Gay, Emilie; Senoussi, Rachid; Barnouin, Jacques

    2007-01-01

    Methods for spatial cluster detection dealing with diseases quantified by continuous variables are few, whereas several diseases are better approached by continuous indicators. For example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder inflammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized risk and cluster components of herd SCS through a new method based on a spatial hazard model. The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model allowed the simultaneous estimation of the effects of known risk factors and of potential spatial clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter and spring calvings were significantly associated with subclinical mastitis risk. The model with the presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to cluster center increased the occurrence of high SCS. The three localizations were the following: close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west; and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial hazard modeling applies to continuous variables, and takes account of both risk factors and potential heterogeneity of the background population. This tool allows a quantitative detection but assumes a spatially specified form for clusters.

  7. A density-based clustering model for community detection in complex networks

    Science.gov (United States)

    Zhao, Xiang; Li, Yantao; Qu, Zehui

    2018-04-01

    Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.

  8. ADPROCLUS: a graphical user interface for fitting additive profile clustering models to object by variable data matrices.

    Science.gov (United States)

    Wilderjans, Tom F; Ceulemans, Eva; Van Mechelen, Iven; Depril, Dirk

    2011-03-01

    In many areas of psychology, one is interested in disclosing the underlying structural mechanisms that generated an object by variable data set. Often, based on theoretical or empirical arguments, it may be expected that these underlying mechanisms imply that the objects are grouped into clusters that are allowed to overlap (i.e., an object may belong to more than one cluster). In such cases, analyzing the data with Mirkin's additive profile clustering model may be appropriate. In this model: (1) each object may belong to no, one or several clusters, (2) there is a specific variable profile associated with each cluster, and (3) the scores of the objects on the variables can be reconstructed by adding the cluster-specific variable profiles of the clusters the object in question belongs to. Until now, however, no software program has been publicly available to perform an additive profile clustering analysis. For this purpose, in this article, the ADPROCLUS program, steered by a graphical user interface, is presented. We further illustrate its use by means of the analysis of a patient by symptom data matrix.

  9. A Gloss Composition and Context Clustering Based Distributed Word Sense Representation Model

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-08-01

    Full Text Available In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.

  10. 14O+p elastic scattering in a microscopic cluster model

    International Nuclear Information System (INIS)

    Descouvemont, P.; Baye, D.; Leo, F.

    2006-01-01

    The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed

  11. Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development

    Directory of Open Access Journals (Sweden)

    Yuliya Vladimirovna Dubrovskaya

    2016-10-01

    Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.

  12. Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study

    Directory of Open Access Journals (Sweden)

    Ma Jinhui

    2013-01-01

    Full Text Available Abstracts Background The objective of this simulation study is to compare the accuracy and efficiency of population-averaged (i.e. generalized estimating equations (GEE and cluster-specific (i.e. random-effects logistic regression (RELR models for analyzing data from cluster randomized trials (CRTs with missing binary responses. Methods In this simulation study, clustered responses were generated from a beta-binomial distribution. The number of clusters per trial arm, the number of subjects per cluster, intra-cluster correlation coefficient, and the percentage of missing data were allowed to vary. Under the assumption of covariate dependent missingness, missing outcomes were handled by complete case analysis, standard multiple imputation (MI and within-cluster MI strategies. Data were analyzed using GEE and RELR. Performance of the methods was assessed using standardized bias, empirical standard error, root mean squared error (RMSE, and coverage probability. Results GEE performs well on all four measures — provided the downward bias of the standard error (when the number of clusters per arm is small is adjusted appropriately — under the following scenarios: complete case analysis for CRTs with a small amount of missing data; standard MI for CRTs with variance inflation factor (VIF 50. RELR performs well only when a small amount of data was missing, and complete case analysis was applied. Conclusion GEE performs well as long as appropriate missing data strategies are adopted based on the design of CRTs and the percentage of missing data. In contrast, RELR does not perform well when either standard or within-cluster MI strategy is applied prior to the analysis.

  13. A Study on Logistics Cluster Competitiveness among Asia Main Countries using the Porter's Diamond Model

    OpenAIRE

    Tae Won Chung

    2016-01-01

    Measurement and discussions of logistics cluster competitiveness with a national approach are required to boost agglomeration effects and potentially create logistics efficiency and productivity. This study developed assessment criteria of logistics cluster competitiveness based on Porter's diamond model, calculated the weight of each criterion by the AHP method, and finally evaluated and discussed logistics cluster competitiveness among Asia main countries. The results indicate that there wa...

  14. Cluster model of s-and p-shell ΛΛ hypernuclei

    Indian Academy of Sciences (India)

    The binding energy ( ) of the s- and p-shell hypernuclei are calculated variationally in the cluster model and multidimensional integrations are performed using Monte Carlo. A variety of phenomenological -core potentials consistent with the -core energies and a wide range of simulated s-state potentials are ...

  15. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

    KAUST Repository

    Cheng, Guang; Zhou, Lan; Huang, Jianhua Z.

    2014-01-01

    We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based

  16. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  17. Stochastic cluster algorithms for discrete Gaussian (SOS) models

    International Nuclear Information System (INIS)

    Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.

    1990-10-01

    We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)

  18. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan

    2016-10-25

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face clustering and face tracking from real world videos. The motivation for the proposed research is that face clustering and face tracking can provide useful information and constraints to each other, thus can bootstrap and improve the performances of each other. To this end, we introduce a Coupled Hidden Markov Random Field (CHMRF) to simultaneously model face clustering, face tracking, and their interactions. We provide an effective algorithm based on constrained clustering and optimal tracking for the joint optimization of cluster labels and face tracking. We demonstrate significant improvements over state-of-the-art results in face clustering and tracking on several videos.

  19. The effect of mining data k-means clustering toward students profile model drop out potential

    Science.gov (United States)

    Purba, Windania; Tamba, Saut; Saragih, Jepronel

    2018-04-01

    The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.

  20. Application of Fuzzy Clustering in Modeling of a Water Hydraulics System

    DEFF Research Database (Denmark)

    Zhou, Jianjun; Kroszynski, Uri

    2000-01-01

    This article presents a case study of applying fuzzy modeling techniques for a water hydraulics system. The obtained model is intended to provide a basis for model-based control of the system. Fuzzy clustering is used for classifying measured input-output data points into partitions. The fuzzy...... model is extracted from the obtained partitions. The identified model has been evaluated by comparing measurements with simulation results. The evaluation shows that the identified model is capable of describing the system dynamics over a reasonably wide frequency range....

  1. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    Science.gov (United States)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  2. Clustered iterative stochastic ensemble method for multi-modal calibration of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-05-01

    A novel multi-modal parameter estimation algorithm is introduced. Parameter estimation is an ill-posed inverse problem that might admit many different solutions. This is attributed to the limited amount of measured data used to constrain the inverse problem. The proposed multi-modal model calibration algorithm uses an iterative stochastic ensemble method (ISEM) for parameter estimation. ISEM employs an ensemble of directional derivatives within a Gauss-Newton iteration for nonlinear parameter estimation. ISEM is augmented with a clustering step based on k-means algorithm to form sub-ensembles. These sub-ensembles are used to explore different parts of the search space. Clusters are updated at regular intervals of the algorithm to allow merging of close clusters approaching the same local minima. Numerical testing demonstrates the potential of the proposed algorithm in dealing with multi-modal nonlinear parameter estimation for subsurface flow models. © 2013 Elsevier B.V.

  3. A Coupled Hidden Conditional Random Field Model for Simultaneous Face Clustering and Naming in Videos

    KAUST Repository

    Zhang, Yifan; Tang, Zhiqiang; Wu, Baoyuan; Ji, Qiang; Lu, Hanqing

    2016-01-01

    , we divide the problem into two tasks: face clustering which groups the faces depicting a certain person into a cluster, and name assignment which associates a name to each face. Each task is formulated as a structured prediction problem and modeled

  4. Cluster emission at pre-equilibrium stage in Heavy Nuclear Reactions. A Model considering the Thermodynamics of Small Systems

    International Nuclear Information System (INIS)

    Bermudez Martinez, A.; Damiani, D.; Guzman Martinez, F.; Rodriguez Hoyos, O.; Rodriguez Manso, A.

    2015-01-01

    Cluster emission at pre-equilibrium stage, in heavy ion fusion reactions of 12 C and 16 O nuclei with 116 Sn, 208 Pb, 238 U are studied. the energy of the projectile nuclei was chosen at 0.25GeV, 0.5GeV and 1GeV. A cluster formation model is developed in order to calculate the cluster size. Thermodynamics of small systems was used in order to examine the cluster behavior inside the nuclear media. This model is based on considering two phases inside the compound nucleus, on one hand the nuclear media phase, and on the other hand the cluster itself. The cluster acts like an instability inside the compound nucleus, provoking an exchange of nucleons with the nuclear media through its surface. The processes were simulated using Monte Carlo methods. We obtained that the cluster emission probability shows great dependence on the cluster size. This project is aimed to implement cluster emission processes, during the pre-equilibrium stage, in the frame of CRISP code (Collaboration Rio-Sao Paulo). (Author)

  5. Cauchy cluster process

    DEFF Research Database (Denmark)

    Ghorbani, Mohammad

    2013-01-01

    In this paper we introduce an instance of the well-know Neyman–Scott cluster process model with clusters having a long tail behaviour. In our model the offspring points are distributed around the parent points according to a circular Cauchy distribution. Using a modified Cramér-von Misses test...

  6. Subspace K-means clustering

    NARCIS (Netherlands)

    Timmerman, Marieke E.; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla

    2013-01-01

    To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the

  7. Effect of Policy Analysis on Indonesia’s Maritime Cluster Development Using System Dynamics Modeling

    Science.gov (United States)

    Nursyamsi, A.; Moeis, A. O.; Komarudin

    2018-03-01

    As an archipelago with two third of its territory consist of water, Indonesia should address more attention to its maritime industry development. One of the catalyst to fasten the maritime industry growth is by developing a maritime cluster. The purpose of this research is to gain understanding of the effect if Indonesia implement maritime cluster policy to the growth of maritime economic and its role to enhance the maritime cluster performance, hence enhancing Indonesia’s maritime industry as well. The result of the constructed system dynamic model simulation shows that with the effect of maritime cluster, the growth of employment rate and maritime economic is much bigger that the business as usual case exponentially. The result implies that the government should act fast to form a legitimate cluster maritime organizer institution so that there will be a synergize, sustainable, and positive maritime cluster environment that will benefit the performance of Indonesia’s maritime industry.

  8. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Wahlen-Strothman, J. M. [Rice Univ., Houston, TX (United States); Henderson, T. H. [Rice Univ., Houston, TX (United States); Hermes, M. R. [Rice Univ., Houston, TX (United States); Degroote, M. [Rice Univ., Houston, TX (United States); Qiu, Y. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)

    2018-01-03

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories. We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.

  9. Potts Model with Invisible Colors : Random-Cluster Representation and Pirogov–Sinai Analysis

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Iacobelli, Giulio; Taati, Siamak

    We study a recently introduced variant of the ferromagnetic Potts model consisting of a ferromagnetic interaction among q “visible” colors along with the presence of r non-interacting “invisible” colors. We introduce a random-cluster representation for the model, for which we prove the existence of

  10. Clustering of spontaneous recurrent seizures separated by long seizure-free periods: An extended video-EEG monitoring study of a pilocarpine mouse model.

    Science.gov (United States)

    Lim, Jung-Ah; Moon, Jangsup; Kim, Tae-Joon; Jun, Jin-Sun; Park, Byeongsu; Byun, Jung-Ick; Sunwoo, Jun-Sang; Park, Kyung-Il; Lee, Soon-Tae; Jung, Keun-Hwa; Jung, Ki-Young; Kim, Manho; Jeon, Daejong; Chu, Kon; Lee, Sang Kun

    2018-01-01

    Seizure clustering is a common and significant phenomenon in patients with epilepsy. The clustering of spontaneous recurrent seizures (SRSs) in animal models of epilepsy, including mouse pilocarpine models, has been reported. However, most studies have analyzed seizures for a short duration after the induction of status epilepticus (SE). In this study, we investigated the detailed characteristics of seizure clustering in the chronic stage of a mouse pilocarpine-induced epilepsy model for an extended duration by continuous 24/7 video-EEG monitoring. A seizure cluster was defined as the occurrence of one or more seizures per day for at least three consecutive days and at least five seizures during the cluster period. We analyzed the cluster duration, seizure-free period, cluster interval, and numbers of seizures within and outside the seizure clusters. The video-EEG monitoring began 84.5±33.7 days after the induction of SE and continued for 53.7±20.4 days. Every mouse displayed seizure clusters, and 97.0% of the seizures occurred within a cluster period. The seizure clusters were followed by long seizure-free periods of 16.3±6.8 days, showing a cyclic pattern. The SRSs also occurred in a grouped pattern within a day. We demonstrate that almost all seizures occur in clusters with a cyclic pattern in the chronic stage of a mouse pilocarpine-induced epilepsy model. The seizure-free periods between clusters were long. These findings should be considered when performing in vivo studies using this animal model. Furthermore, this model might be appropriate for studying the unrevealed mechanism of ictogenesis.

  11. Modeling and clustering water demand patterns from real-world smart meter data

    Directory of Open Access Journals (Sweden)

    N. Cheifetz

    2017-08-01

    Full Text Available Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR, a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.

  12. Modeling and clustering water demand patterns from real-world smart meter data

    Science.gov (United States)

    Cheifetz, Nicolas; Noumir, Zineb; Samé, Allou; Sandraz, Anne-Claire; Féliers, Cédric; Heim, Véronique

    2017-08-01

    Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix) model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN) in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.

  13. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters.

    Science.gov (United States)

    Hensman, James; Lawrence, Neil D; Rattray, Magnus

    2013-08-20

    Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.

  14. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    Science.gov (United States)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  15. Cluster-Expansion Model for Complex Quinary Alloys: Application to Alnico Permanent Magnets

    Science.gov (United States)

    Nguyen, Manh Cuong; Zhou, Lin; Tang, Wei; Kramer, Matthew J.; Anderson, Iver E.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    An accurate and transferable cluster-expansion model for complex quinary alloys is developed. Lattice Monte Carlo simulation enabled by this cluster-expansion model is used to investigate temperature-dependent atomic structure of alnico alloys, which are considered as promising high-performance non-rare-earth permanent-magnet materials for high-temperature applications. The results of the Monte Carlo simulations are consistent with available experimental data and provide useful insights into phase decomposition, selection, and chemical ordering in alnico. The simulations also reveal a previously unrecognized D 03 alloy phase. This phase is very rich in Ni and exhibits very weak magnetization. Manipulating the size and location of this phase provides a possible route to improve the magnetic properties of alnico, especially coercivity.

  16. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yihang Yin

    2015-08-01

    Full Text Available Wireless sensor networks (WSNs have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA. First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.

  17. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks.

    Science.gov (United States)

    Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong

    2015-08-07

    Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.

  18. Cluster regression model and level fluctuation features of Van Lake, Turkey

    Directory of Open Access Journals (Sweden)

    Z. Şen

    1999-02-01

    Full Text Available Lake water levels change under the influences of natural and/or anthropogenic environmental conditions. Among these influences are the climate change, greenhouse effects and ozone layer depletions which are reflected in the hydrological cycle features over the lake drainage basins. Lake levels are among the most significant hydrological variables that are influenced by different atmospheric and environmental conditions. Consequently, lake level time series in many parts of the world include nonstationarity components such as shifts in the mean value, apparent or hidden periodicities. On the other hand, many lake level modeling techniques have a stationarity assumption. The main purpose of this work is to develop a cluster regression model for dealing with nonstationarity especially in the form of shifting means. The basis of this model is the combination of transition probability and classical regression technique. Both parts of the model are applied to monthly level fluctuations of Lake Van in eastern Turkey. It is observed that the cluster regression procedure does preserve the statistical properties and the transitional probabilities that are indistinguishable from the original data.Key words. Hydrology (hydrologic budget; stochastic processes · Meteorology and atmospheric dynamics (ocean-atmosphere interactions

  19. Cluster regression model and level fluctuation features of Van Lake, Turkey

    Directory of Open Access Journals (Sweden)

    Z. Şen

    Full Text Available Lake water levels change under the influences of natural and/or anthropogenic environmental conditions. Among these influences are the climate change, greenhouse effects and ozone layer depletions which are reflected in the hydrological cycle features over the lake drainage basins. Lake levels are among the most significant hydrological variables that are influenced by different atmospheric and environmental conditions. Consequently, lake level time series in many parts of the world include nonstationarity components such as shifts in the mean value, apparent or hidden periodicities. On the other hand, many lake level modeling techniques have a stationarity assumption. The main purpose of this work is to develop a cluster regression model for dealing with nonstationarity especially in the form of shifting means. The basis of this model is the combination of transition probability and classical regression technique. Both parts of the model are applied to monthly level fluctuations of Lake Van in eastern Turkey. It is observed that the cluster regression procedure does preserve the statistical properties and the transitional probabilities that are indistinguishable from the original data.

    Key words. Hydrology (hydrologic budget; stochastic processes · Meteorology and atmospheric dynamics (ocean-atmosphere interactions

  20. Cluster growth kinetics

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Gal'perin, A.G.; Rikhvitskij, V.S.; Lushnikov, A.A.

    2000-01-01

    Processes of some traffic blocking coming into existence are considered as probabilistic ones. We study analytic solutions for models for the dynamics of both cluster growth and cluster growth with fragmentation in the systems of finite number of objects. Assuming rates constancy of both coalescence and fragmentation, the models under consideration are linear on the probability functions

  1. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq.

    Science.gov (United States)

    Ye, Meixia; Wang, Zhong; Wang, Yaqun; Wu, Rongling

    2015-03-01

    Dynamic changes of gene expression reflect an intrinsic mechanism of how an organism responds to developmental and environmental signals. With the increasing availability of expression data across a time-space scale by RNA-seq, the classification of genes as per their biological function using RNA-seq data has become one of the most significant challenges in contemporary biology. Here we develop a clustering mixture model to discover distinct groups of genes expressed during a period of organ development. By integrating the density function of multivariate Poisson distribution, the model accommodates the discrete property of read counts characteristic of RNA-seq data. The temporal dependence of gene expression is modeled by the first-order autoregressive process. The model is implemented with the Expectation-Maximization algorithm and model selection to determine the optimal number of gene clusters and obtain the estimates of Poisson parameters that describe the pattern of time-dependent expression of genes from each cluster. The model has been demonstrated by analyzing a real data from an experiment aimed to link the pattern of gene expression to catkin development in white poplar. The usefulness of the model has been validated through computer simulation. The model provides a valuable tool for clustering RNA-seq data, facilitating our global view of expression dynamics and understanding of gene regulation mechanisms. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. On the Probability of Occurrence of Clusters in Abelian Sandpile Model

    OpenAIRE

    Moradi, M.; Rouhani, S.

    2004-01-01

    We have performed extensive simulations on the Abelian Sandpile Model (ASM) on square lattice. We have estimated the probability of observation of many clusters. Some are in good agreement with previous analytical results, while some show discrepancies between simulation and analytical results.

  3. Model reduction of detailed-balanced reaction networks by clustering linkage classes

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; van der Schaft, Abraham; Findeisen, Rolf; Bullinger, Eric; Balsa-Canto, Eva; Bernaerts, Kristel

    2016-01-01

    We propose a model reduction method that involves sequential application of clustering of linkage classes and Kron reduction. This approach is specifically useful for chemical reaction networks with each linkage class having less number of reactions. In case of detailed balanced chemical reaction

  4. *K-means and cluster models for cancer signatures.

    Science.gov (United States)

    Kakushadze, Zura; Yu, Willie

    2017-09-01

    We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means' computational cost is a fraction of NMF's. Using 1389 published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma) stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential applications in quantitative finance.

  5. A Data-Driven Bidding Model for a Cluster of Price-Responsive Consumers of Electricity

    DEFF Research Database (Denmark)

    Saez Gallego, Javier; Morales González, Juan Miguel; Zugno, Marco

    2016-01-01

    This paper deals with the market-bidding problem of a cluster of price-responsive consumers of electricity. We develop an inverse optimization scheme that, recast as a bilevel programming problem, uses price-consumption data to estimate the complex market bid that best captures the price......-response of the cluster. The complex market bid is defined as a series of marginal utility functions plus some constraints on demand, such as maximum pick-up and drop-off rates. The proposed modeling approach also leverages information on exogenous factors that may influence the consumption behavior of the cluster, e...... can be largely captured in the form of a complex market bid, so that this could be ultimately used for the cluster to participate in the wholesale electricity market....

  6. A MODEL OF THE INNOVATIVE AMBER CLUSTER AS A CENTRE OF COOPERATION OF AUTHORITIES - BUSINESS - SCIENCE

    Directory of Open Access Journals (Sweden)

    Gleb B. Trifonov

    2015-01-01

    Full Text Available A mechanism of forming an innovative amber cluster was developed, including structural interconnections of cluster partners,a package of basic innovative technologies, which will createa new value chain, new vacancies, provide contributions to theregional budget.A method of analytical estimation was suggested to assess cluster synergism of partners: authorities, business, science/education, culture, which reflects potential possibilities of thecluster model of region development.

  7. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  8. Hyperon-nucleon and hyperon-hyperon interaction in the quark cluster model

    International Nuclear Information System (INIS)

    Straub, U.

    1988-01-01

    The nonrelativistic quark cluster model is used for the description of the hyperon-nucleon and hyperon-hyperon interaction. The different mass of the quarks is consistently regarded in the Hamiltonian and in the shape of the spatial wave functions of the quarks. The six-quark wave function is completely antisymmetrisized. By means of the resonating-group method the dynamic equations for the determination of the binding and scattering states of the six-quark problem are formulated. The corresponding resonating-group kernels are explicitely given. We calculate the lambda-nucleon and sigma-nucleon interaction. The sigma-nucleon scattering in the isospin (T=3/2) channel can be treated in a one-channel calculation. The sigma-nucleon (T=1/2) interaction and the lambda-nucleon interaction are studied in a coupled two-channel calculation. From a fit of the experimental lambda-nucleon interaction cross section the strength of the sigma-meson exchange is determined. The calculation of the sigma-nucleon scattering follows then completely parameterless. The agreement of the theory with the experiment is good. Subsequently the cluster model with this parameter is applied to the dihyperon which is a possibly bound state of two up quarks, two down quarks, and two strange quarks. We solve for this a coupled three-channel calculation. The cluster model presented here gives a binding energy of the dihyperon of (20±5) MeV below the lambda-lambda threshold. The mass of the dihyperon is predicted by this as (2211±5) MeV. (orig.) [de

  9. Shaping Globular Clusters with Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  10. Pre-equilibrium (exciton) model and the heavy-ion reactions with cluster emission

    CERN Document Server

    Betak, E

    2015-01-01

    We bring the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model enlarged for considering also the heavy ion collisions. At this moment, the calculations have been done without treatment of angular momentum variables, but all the approach can be straightforwardly applied to heavy-ion reactions with cluster emission including the angular momentum variables. The direct motivation of this paper is a possibility of producing the superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, $\\alpha$-particles).

  11. Multiparticle production through isoscalar clusters

    International Nuclear Information System (INIS)

    Armburst, W.T.; Scott, D.M.

    1975-01-01

    The isoscalar cluster model for multiparticle production was extended to include clusters of A 2 meson pairs in addition to previously studied rho-rho and sigma clusters. The production of each type of cluster is given by an energy dependent Poisson distribution. The Poisson parameters determined from the charged particle multiplicity distributions indicate that the inclusion of A 2 -A 2 clusters does not improve the fit to the data. The predictions of the model for n 0 n/sub -/, f/sup 2//sub -,-/, and f/sup 2//sub 0,0/ compare favorably to the experimental values. (U.S.)

  12. Efficient image duplicated region detection model using sequential block clustering

    Czech Academy of Sciences Publication Activity Database

    Sekeh, M. A.; Maarof, M. A.; Rohani, M. F.; Mahdian, Babak

    2013-01-01

    Roč. 10, č. 1 (2013), s. 73-84 ISSN 1742-2876 Institutional support: RVO:67985556 Keywords : Image forensic * Copy–paste forgery * Local block matching Subject RIV: IN - Informatics, Computer Science Impact factor: 0.986, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/mahdian-efficient image duplicated region detection model using sequential block clustering.pdf

  13. A model-based clustering method to detect infectious disease transmission outbreaks from sequence variation.

    Directory of Open Access Journals (Sweden)

    Rosemary M McCloskey

    2017-11-01

    Full Text Available Clustering infections by genetic similarity is a popular technique for identifying potential outbreaks of infectious disease, in part because sequences are now routinely collected for clinical management of many infections. A diverse number of nonparametric clustering methods have been developed for this purpose. These methods are generally intuitive, rapid to compute, and readily scale with large data sets. However, we have found that nonparametric clustering methods can be biased towards identifying clusters of diagnosis-where individuals are sampled sooner post-infection-rather than the clusters of rapid transmission that are meant to be potential foci for public health efforts. We develop a fundamentally new approach to genetic clustering based on fitting a Markov-modulated Poisson process (MMPP, which represents the evolution of transmission rates along the tree relating different infections. We evaluated this model-based method alongside five nonparametric clustering methods using both simulated and actual HIV sequence data sets. For simulated clusters of rapid transmission, the MMPP clustering method obtained higher mean sensitivity (85% and specificity (91% than the nonparametric methods. When we applied these clustering methods to published sequences from a study of HIV-1 genetic clusters in Seattle, USA, we found that the MMPP method categorized about half (46% as many individuals to clusters compared to the other methods. Furthermore, the mean internal branch lengths that approximate transmission rates were significantly shorter in clusters extracted using MMPP, but not by other methods. We determined that the computing time for the MMPP method scaled linearly with the size of trees, requiring about 30 seconds for a tree of 1,000 tips and about 20 minutes for 50,000 tips on a single computer. This new approach to genetic clustering has significant implications for the application of pathogen sequence analysis to public health, where

  14. Extended Traffic Crash Modelling through Precision and Response Time Using Fuzzy Clustering Algorithms Compared with Multi-layer Perceptron

    Directory of Open Access Journals (Sweden)

    Iman Aghayan

    2012-11-01

    Full Text Available This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error and response time (t. The highest R-value was obtained for the multi-layer perceptron (0.89, demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second, 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.

  15. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods.

    Science.gov (United States)

    Wu, Xiao; Shen, Jiong; Li, Yiguo; Lee, Kwang Y

    2014-05-01

    This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler-turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear behavior of boiler-turbine unit, fuzzy clustering is used to provide an appropriate division of the operation region and develop the structure of the fuzzy model. Then by combining the input data with the corresponding fuzzy membership functions, the SID method is extended to extract the local state-space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can represent the boiler-turbine unit very closely, and a fuzzy model predictive controller is designed based on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed following the same clustering and subspace methods, where intermediate subspace matrices developed during the identification procedure are utilized directly as the predictor. Simulation results show the advantages and effectiveness of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Neuro-fuzzy system modeling based on automatic fuzzy clustering

    Institute of Scientific and Technical Information of China (English)

    Yuangang TANG; Fuchun SUN; Zengqi SUN

    2005-01-01

    A neuro-fuzzy system model based on automatic fuzzy clustering is proposed.A hybrid model identification algorithm is also developed to decide the model structure and model parameters.The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM),which is applied to generate fuzzy rules automatically,and then fix on the size of the neuro-fuzzy network,by which the complexity of system design is reducesd greatly at the price of the fitting capability;2) Recursive least square estimation (RLSE).It is used to update the parameters of Takagi-Sugeno model,which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network.Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.

  17. Sparsity enabled cluster reduced-order models for control

    Science.gov (United States)

    Kaiser, Eurika; Morzyński, Marek; Daviller, Guillaume; Kutz, J. Nathan; Brunton, Bingni W.; Brunton, Steven L.

    2018-01-01

    Characterizing and controlling nonlinear, multi-scale phenomena are central goals in science and engineering. Cluster-based reduced-order modeling (CROM) was introduced to exploit the underlying low-dimensional dynamics of complex systems. CROM builds a data-driven discretization of the Perron-Frobenius operator, resulting in a probabilistic model for ensembles of trajectories. A key advantage of CROM is that it embeds nonlinear dynamics in a linear framework, which enables the application of standard linear techniques to the nonlinear system. CROM is typically computed on high-dimensional data; however, access to and computations on this full-state data limit the online implementation of CROM for prediction and control. Here, we address this key challenge by identifying a small subset of critical measurements to learn an efficient CROM, referred to as sparsity-enabled CROM. In particular, we leverage compressive measurements to faithfully embed the cluster geometry and preserve the probabilistic dynamics. Further, we show how to identify fewer optimized sensor locations tailored to a specific problem that outperform random measurements. Both of these sparsity-enabled sensing strategies significantly reduce the burden of data acquisition and processing for low-latency in-time estimation and control. We illustrate this unsupervised learning approach on three different high-dimensional nonlinear dynamical systems from fluids with increasing complexity, with one application in flow control. Sparsity-enabled CROM is a critical facilitator for real-time implementation on high-dimensional systems where full-state information may be inaccessible.

  18. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    Science.gov (United States)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  19. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity.

    Science.gov (United States)

    Ellegood, J; Anagnostou, E; Babineau, B A; Crawley, J N; Lin, L; Genestine, M; DiCicco-Bloom, E; Lai, J K Y; Foster, J A; Peñagarikano, O; Geschwind, D H; Pacey, L K; Hampson, D R; Laliberté, C L; Mills, A A; Tam, E; Osborne, L R; Kouser, M; Espinosa-Becerra, F; Xuan, Z; Powell, C M; Raznahan, A; Robins, D M; Nakai, N; Nakatani, J; Takumi, T; van Eede, M C; Kerr, T M; Muller, C; Blakely, R D; Veenstra-VanderWeele, J; Henkelman, R M; Lerch, J P

    2015-02-01

    Autism is a heritable disorder, with over 250 associated genes identified to date, yet no single gene accounts for >1-2% of cases. The clinical presentation, behavioural symptoms, imaging and histopathology findings are strikingly heterogeneous. A more complete understanding of autism can be obtained by examining multiple genetic or behavioural mouse models of autism using magnetic resonance imaging (MRI)-based neuroanatomical phenotyping. Twenty-six different mouse models were examined and the consistently found abnormal brain regions across models were parieto-temporal lobe, cerebellar cortex, frontal lobe, hypothalamus and striatum. These models separated into three distinct clusters, two of which can be linked to the under and over-connectivity found in autism. These clusters also identified previously unknown connections between Nrxn1α, En2 and Fmr1; Nlgn3, BTBR and Slc6A4; and also between X monosomy and Mecp2. With no single treatment for autism found, clustering autism using neuroanatomy and identifying these strong connections may prove to be a crucial step in predicting treatment response.

  20. Warming rays in cluster cool cores

    Science.gov (United States)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters

  1. Thermodynamic modeling of the formation and stability of small tin clusters and their ions

    International Nuclear Information System (INIS)

    Kodlaa, A.; Suliman, A.

    2005-01-01

    Based on the results of previous quantum-chemical study of electronic structure properties for neutral and single positively and negatively charged thin clusters in the size range of N 2-17 atoms, and on the thermodynamic laws, we have studied the thermodynamic properties of tin clusters and their ions. The characteristic amounts (cohesive enthalpy, formation enthalpy, fragmentation enthalpy, entropy and free enthalpy) for the formation and stability of these clusters at different temperatures were calculated. From the results, which are presented and discussed in this work, one can observe the following: The tin clusters Sn N (N=2-17) and their cations Sn + N and anions Sn - N are formed in the gas phase, and this agrees with experimental results. The clusters Sn 3 and Sn 1 0 are the most stable clusters of all. Here we also, find a correspondence with the results of the experimental studies. Our results go beyond that since we have found Sn 1 5 is also specially stable. By this thermodynamic study we could evaluate approximately the formation and stability of small neutral, single positively and negatively charged tin clusters. It has also allowed us to study the effects of the temperature on the formation and stability of these clusters. The importance of such study is not only what mentioned above, but it is also the first thermodynamic study for modeling the formation and stability of small tin clusters. (author)

  2. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects. © 2012 EDP Sciences and Springer.

  3. Substructure in clusters of galaxies

    International Nuclear Information System (INIS)

    Fitchett, M.J.

    1988-01-01

    Optical observations suggesting the existence of substructure in clusters of galaxies are examined. Models of cluster formation and methods used to detect substructure in clusters are reviewed. Consideration is given to classification schemes based on a departure of bright cluster galaxies from a spherically symmetric distribution, evidence for statistically significant substructure, and various types of substructure, including velocity, spatial, and spatial-velocity substructure. The substructure observed in the galaxy distribution in clusters is discussed, focusing on observations from general cluster samples, the Virgo cluster, the Hydra cluster, Centaurus, the Coma cluster, and the Cancer cluster. 88 refs

  4. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM).

    NARCIS (Netherlands)

    Bruin, de S.; Stein, A.

    1998-01-01

    This study explores the use of fuzzy c-means clustering of attribute data derived from a digital elevation model to represent transition zones in the soil-landscape. The conventional geographic model used for soil-landscape description is not able to properly deal with these. Fuzzy c-means

  5. Spectra of nuclei 9Be and 9B in a three-cluster microscopic model

    International Nuclear Information System (INIS)

    Nesterov, A.V.; Vasilevsky, V.S.; Kovalenko, T.P.

    2012-01-01

    Within a microscopic three-cluster α + α + n(p) model, which is a three-cluster version of the algebraic approach to the Resonating Group Method (RGM), we consider the spectra of the low-lying states of mirror nuclei 9 Be and 9 B in the energy range from zero to 5 MeV excitation. The obtained theoretical results are compared with the available experimental data

  6. How to detect trap cluster systems?

    International Nuclear Information System (INIS)

    Mandowski, Arkadiusz

    2008-01-01

    Spatially correlated traps and recombination centres (trap-recombination centre pairs and larger clusters) are responsible for many anomalous phenomena that are difficult to explain in the framework of both classical models, i.e. model of localized transitions (LT) and the simple trap model (STM), even with a number of discrete energy levels. However, these 'anomalous' effects may provide a good platform for identifying trap cluster systems. This paper considers selected cluster-type effects, mainly relating to an anomalous dependence of TL on absorbed dose in the system of isolated clusters (ICs). Some consequences for interacting cluster (IAC) systems, involving both localized and delocalized transitions occurring simultaneously, are also discussed

  7. Deuterium cluster model for low energy nuclear reactions (LENR)

    Science.gov (United States)

    Miley, George; Hora, Heinrich

    2007-11-01

    For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116

  8. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing

    Science.gov (United States)

    Finney, Emily Quinn; Bradač, Maruša; Huang, Kuang-Han; Hoag, Austin; Morishita, Takahiro; Schrabback, Tim; Treu, Tommaso; Borello Schmidt, Kasper; Lemaux, Brian C.; Wang, Xin; Mason, Charlotte

    2018-05-01

    We present a gravitational-lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and Very Large Telescope (VLT)/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak-lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass (f ⋆) and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of ={0.012}-0.003+0.004, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to δf ⋆ = 0.005) primarily due to the choice of IMF. We compare values of f ⋆ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters but a star formation efficiency typical of massive clusters.

  9. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    International Nuclear Information System (INIS)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-01-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem

  10. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees.

    Science.gov (United States)

    Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H

    2017-10-25

    Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.

  11. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  12. The clustered nucleus-cluster structures in stable and unstable nuclei

    International Nuclear Information System (INIS)

    Freer, Martin

    2007-01-01

    The subject of clustering has a lineage which runs throughout the history of nuclear physics. Its attraction is the simplification of the often uncorrelated behaviour of independent particles to organized and coherent quasi-crystalline structures. In this review the ideas behind the development of clustering in light nuclei are investigated, mostly from the stand-point of the harmonic oscillator framework. This allows a unifying description of alpha-conjugate and neutron-rich nuclei, alike. More sophisticated models of clusters are explored, such as antisymmetrized molecular dynamics. A number of contemporary topics in clustering are touched upon; the 3α-cluster state in 12 C, nuclear molecules and clustering at the drip-line. Finally, an understanding of the 12 C+ 12 C resonances in 24 Mg, within the framework of the theoretical ideas developed in the review, is presented

  13. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2012-02-01

    Full Text Available On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi

  14. The correlation functions for the clustering of galaxies and Abell clusters

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Jones, J.E.; Copenhagen Univ.

    1985-01-01

    The difference in amplitudes between the galaxy-galaxy correlation function and the correlation function between Abell clusters is a consequence of two facts. Firstly, most Abell clusters with z<0.08 lie in a relatively small volume of the sampled space, and secondly, the fraction of galaxies lying in Abell clusters differs considerably inside and outside of this volume. (The Abell clusters are confined to a smaller volume of space than are the galaxies.) We discuss the implications of this interpretation of the clustering correlation functions and present a simple model showing how such a situation may arise quite naturally in standard theories for galaxy formation. (orig.)

  15. Estimation of Tree Lists from Airborne Laser Scanning Using Tree Model Clustering and k-MSN Imputation

    Directory of Open Access Journals (Sweden)

    Jörgen Wallerman

    2013-04-01

    Full Text Available Individual tree crowns may be delineated from airborne laser scanning (ALS data by segmentation of surface models or by 3D analysis. Segmentation of surface models benefits from using a priori knowledge about the proportions of tree crowns, which has not yet been utilized for 3D analysis to any great extent. In this study, an existing surface segmentation method was used as a basis for a new tree model 3D clustering method applied to ALS returns in 104 circular field plots with 12 m radius in pine-dominated boreal forest (64°14'N, 19°50'E. For each cluster below the tallest canopy layer, a parabolic surface was fitted to model a tree crown. The tree model clustering identified more trees than segmentation of the surface model, especially smaller trees below the tallest canopy layer. Stem attributes were estimated with k-Most Similar Neighbours (k-MSN imputation of the clusters based on field-measured trees. The accuracy at plot level from the k-MSN imputation (stem density root mean square error or RMSE 32.7%; stem volume RMSE 28.3% was similar to the corresponding results from the surface model (stem density RMSE 33.6%; stem volume RMSE 26.1% with leave-one-out cross-validation for one field plot at a time. Three-dimensional analysis of ALS data should also be evaluated in multi-layered forests since it identified a larger number of small trees below the tallest canopy layer.

  16. Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    T. Parsons; G.A. Thompson; A.H. Cogbill

    2006-01-01

    The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip

  17. Derivation of inner magnetospheric electric field (UNH-IMEF model using Cluster data set

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2008-09-01

    Full Text Available We derive an inner magnetospheric electric field (UNH-IMEF model at L=2–10 using primarily Cluster electric field data for more than 5 years between February 2001 and October 2006. This electric field data set is divided into several ranges of the interplanetary electric field (IEF values measured by ACE. As ring current simulations which require electric field as an input parameter are often performed at L=2–6.6, we have included statistical results from ground radars and low altitude satellites inside the perigee of Cluster in our data set (L~4. Electric potential patterns are derived from the average electric fields by solving an inverse problem. The electric potential pattern for small IEF values is probably affected by the ionospheric dynamo. The magnitudes of the electric field increase around the evening local time as IEF increases, presumably due to the sub-auroral polarization stream (SAPS. Another region with enhanced electric fields during large IEF periods is located around 9 MLT at L>8, which is possibly related to solar wind-magnetosphere coupling. Our potential patterns are consistent with those derived from self-consistent simulations. As the potential patterns can be interpolated/extrapolated to any discrete IEF value within measured ranges, we thus derive an empirical electric potential model. The performance of the model is evaluated by comparing the electric field derived from the model with original one measured by Cluster and mapped to the equator. The model is open to the public through our website.

  18. Derivation of inner magnetospheric electric field (UNH-IMEF model using Cluster data set

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2008-09-01

    Full Text Available We derive an inner magnetospheric electric field (UNH-IMEF model at L=2–10 using primarily Cluster electric field data for more than 5 years between February 2001 and October 2006. This electric field data set is divided into several ranges of the interplanetary electric field (IEF values measured by ACE. As ring current simulations which require electric field as an input parameter are often performed at L=2–6.6, we have included statistical results from ground radars and low altitude satellites inside the perigee of Cluster in our data set (L~4. Electric potential patterns are derived from the average electric fields by solving an inverse problem. The electric potential pattern for small IEF values is probably affected by the ionospheric dynamo. The magnitudes of the electric field increase around the evening local time as IEF increases, presumably due to the sub-auroral polarization stream (SAPS. Another region with enhanced electric fields during large IEF periods is located around 9 MLT at L>8, which is possibly related to solar wind-magnetosphere coupling. Our potential patterns are consistent with those derived from self-consistent simulations. As the potential patterns can be interpolated/extrapolated to any discrete IEF value within measured ranges, we thus derive an empirical electric potential model. The performance of the model is evaluated by comparing the electric field derived from the model with original one measured by Cluster and mapped to the equator. The model is open to the public through our website.

  19. Clustering of financial time series

    Science.gov (United States)

    D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo

    2013-05-01

    This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.

  20. Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si

    International Nuclear Information System (INIS)

    Myers, S. M.; Cooper, P. J.; Wampler, W. R.

    2008-01-01

    Transient reactions among irradiation defects, dopants, impurities, and carriers in pulse-neutron-irradiated Si were modeled taking into account the clustering of the primal defects in recoil cascades. Continuum equations describing the diffusion, field drift, and reactions of relevant species were numerically solved for a submicrometer spherical volume, within which the starting radial distributions of defects could be varied in accord with the degree of clustering. The radial profiles corresponding to neutron irradiation were chosen through pair-correlation-function analysis of vacancy and interstitial distributions obtained from the binary-collision code MARLOWE, using a spectrum of primary recoil energies computed for a fast-burst fission reactor. Model predictions of transient behavior were compared with a variety of experimental results from irradiated bulk Si, solar cells, and bipolar-junction transistors. The influence of defect clustering during neutron bombardment was further distinguished through contrast with electron irradiation, where the primal point defects are more uniformly dispersed

  1. Model catalysis by size-selected cluster deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  2. Experimental Tests of the Algebraic Cluster Model

    Science.gov (United States)

    Gai, Moshe

    2018-02-01

    The Algebraic Cluster Model (ACM) of Bijker and Iachello that was proposed already in 2000 has been recently applied to 12C and 16O with much success. We review the current status in 12C with the outstanding observation of the ground state rotational band composed of the spin-parity states of: 0+, 2+, 3-, 4± and 5-. The observation of the 4± parity doublet is a characteristic of (tri-atomic) molecular configuration where the three alpha- particles are arranged in an equilateral triangular configuration of a symmetric spinning top. We discuss future measurement with electron scattering, 12C(e,e’) to test the predicted B(Eλ) of the ACM.

  3. The dynamics of cyclone clustering in re-analysis and a high-resolution climate model

    Science.gov (United States)

    Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len

    2017-04-01

    Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.

  4. Information Clustering Based on Fuzzy Multisets.

    Science.gov (United States)

    Miyamoto, Sadaaki

    2003-01-01

    Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…

  5. Quantification of the clustering properties of nuclear states

    International Nuclear Information System (INIS)

    Beck, R.; Dickmann, F.

    1985-05-01

    The amount of particular type of clustering in a nuclear state is defined in this paper as the norm square of the projection of the wave function onto the particular cluster model subspace. It is pointed out that, although the clusters can not be localized in space by measurement, the amount of clustering characterizes the cluster formation in close analogy with a quantum mechanical probability. The cluster model component of the wave function is proved to have a variational property. This facilitates the computation of the amount of clustering. The model dependence of the amounts of various clusterings and their relationship to the corresponding spectroscopic factors are studied via numerical examples for two models of sup(6)Li. It is concluded that, in a relative sense, the spectroscopic factor, which is more directly related to experiment, is also characteristic of the clustering contents of different states of the same nucleus, but it can not be used for comparisons between different nuclei or clusterings. (author)

  6. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  7. Farm Models and Eco-Health of Poultry Production Clusters (PPCs following Avian Influenza Epidemics in Thailand

    Directory of Open Access Journals (Sweden)

    Worapol Aengwanich

    2014-04-01

    Full Text Available Thailand is located in Southeast Asia and is a country that was affected by highly pathogenic avian influenza (HPAI epidemics during 2003–2004. Nevertheless, the Thai government’s issuance policy of strict control and prevention of the disease has resulted in efficient disease control of avian influenza (AI. Poultry farmers have been both positively and negatively affected by this policy. There are three poultry cluster models worthy of attention in Thailand: (1 egg chicken poultry clusters over ponds; (2 egg chicken poultry clusters in coops raised from the ground and managed by a cooperative; and (3 poultry clusters in closed coops under contract with the private sector. Following the AI epidemics, additional poultry husbandry and biosecurity systems were developed, thereby generating income and improving the quality of life for poultry farmers. Nevertheless, raising large clusters of poultry in the same area results in disadvantages, particularly problems with both air and water pollution, depending upon the environments of each poultry model. Furthermore, the government’s policy for controlling AI during epidemics has had a negative effect on the relationship between officials and farmers, due to poultry destruction measures.

  8. Clusters in Nuclei. Vol. 2

    International Nuclear Information System (INIS)

    Beck, Christian

    2012-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This second volume follows the successful Lect. Notes Phys. 818 (Vol.1), and comprises six extensive lectures covering the following topics: - Microscopic cluster models - Neutron halo and break-up reactions - Break-up reaction models for two- and three-cluster projectiles - Clustering effects within the di-nuclear model - Nuclear alpha-particle condensates - Clusters in nuclei: experimental perspectives By promoting new ideas and developments while retaining a pedagogical style of presentation throughout, these lectures will serve as both a reference and an advanced teaching manual for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  9. Clusters in Nuclei. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Christian (ed.) [Strasbourg Univ. (France). Inst. Pluridiciplinaire Hubert Curien

    2012-07-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This second volume follows the successful Lect. Notes Phys. 818 (Vol.1), and comprises six extensive lectures covering the following topics: - Microscopic cluster models - Neutron halo and break-up reactions - Break-up reaction models for two- and three-cluster projectiles - Clustering effects within the di-nuclear model - Nuclear alpha-particle condensates - Clusters in nuclei: experimental perspectives By promoting new ideas and developments while retaining a pedagogical style of presentation throughout, these lectures will serve as both a reference and an advanced teaching manual for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  10. Cluster shell model: I. Structure of 9Be, 9B

    Science.gov (United States)

    Della Rocca, V.; Iachello, F.

    2018-05-01

    We calculate energy spectra, electromagnetic transition rates, longitudinal and transverse electron scattering form factors and log ft values for beta decay in 9Be, 9B, within the framework of a cluster shell model. By comparing with experimental data, we find strong evidence for the structure of these nuclei to be two α-particles in a dumbbell configuration with Z2 symmetry, plus an additional nucleon.

  11. Model-based Clustering of High-Dimensional Data in Astrophysics

    Science.gov (United States)

    Bouveyron, C.

    2016-05-01

    The nature of data in Astrophysics has changed, as in other scientific fields, in the past decades due to the increase of the measurement capabilities. As a consequence, data are nowadays frequently of high dimensionality and available in mass or stream. Model-based techniques for clustering are popular tools which are renowned for their probabilistic foundations and their flexibility. However, classical model-based techniques show a disappointing behavior in high-dimensional spaces which is mainly due to their dramatical over-parametrization. The recent developments in model-based classification overcome these drawbacks and allow to efficiently classify high-dimensional data, even in the "small n / large p" situation. This work presents a comprehensive review of these recent approaches, including regularization-based techniques, parsimonious modeling, subspace classification methods and classification methods based on variable selection. The use of these model-based methods is also illustrated on real-world classification problems in Astrophysics using R packages.

  12. A Global Model for Circumgalactic and Cluster-core Precipitation

    Science.gov (United States)

    Voit, G. Mark; Meece, Greg; Li, Yuan; O'Shea, Brian W.; Bryan, Greg L.; Donahue, Megan

    2017-08-01

    We provide an analytic framework for interpreting observations of multiphase circumgalactic gas that is heavily informed by recent numerical simulations of thermal instability and precipitation in cool-core galaxy clusters. We start by considering the local conditions required for the formation of multiphase gas via two different modes: (1) uplift of ambient gas by galactic outflows, and (2) condensation in a stratified stationary medium in which thermal balance is explicitly maintained. Analytic exploration of these two modes provides insights into the relationships between the local ratio of the cooling and freefall timescales (I.e., {t}{cool}/{t}{ff}), the large-scale gradient of specific entropy, and the development of precipitation and multiphase media in circumgalactic gas. We then use these analytic findings to interpret recent simulations of circumgalactic gas in which global thermal balance is maintained. We show that long-lasting configurations of gas with 5≲ \\min ({t}{cool}/{t}{ff})≲ 20 and radial entropy profiles similar to observations of cool cores in galaxy clusters are a natural outcome of precipitation-regulated feedback. We conclude with some observational predictions that follow from these models. This work focuses primarily on precipitation and AGN feedback in galaxy-cluster cores, because that is where the observations of multiphase gas around galaxies are most complete. However, many of the physical principles that govern condensation in those environments apply to circumgalactic gas around galaxies of all masses.

  13. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

    KAUST Repository

    Cheng, Guang

    2014-02-01

    We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration is natural and useful in many practical applications, the literature on this model is very limited because of challenges in dealing with dependent data for nonparametric additive models. We show that the proposed estimators are consistent and asymptotically normal even if the covariance structure is misspecified. An explicit consistent estimate of the asymptotic variance is also provided. Moreover, we derive the semiparametric efficiency score and information bound under general moment conditions. By showing that our estimators achieve the semiparametric information bound, we effectively establish their efficiency in a stronger sense than what is typically considered for GEE. The derivation of our asymptotic results relies heavily on the empirical processes tools that we develop for the longitudinal/clustered data. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2014 ISI/BS.

  14. Self-dual cluster renormalization group approach for the square lattice Ising model specific heat and magnetization

    International Nuclear Information System (INIS)

    Martin, H.O.; Tsallis, C.

    1981-01-01

    A simple renormalization group approach based on self-dual clusters is proposed for two-dimensional nearest-neighbour 1/2 - spin Ising model on the square lattice; it reproduces the exact critical point. The internal energy and the specific heat for vanishing external magnetic field, spontaneous magnetization and the thermal (Y sub(T)) and magnetic (Y sub(H)) critical exponents are calculated. The results obtained from the first four smallest cluster sizes strongly suggest the convergence towards the exact values when the cluster sizes increases. Even for the smallest cluster, where the calculation is very simple, the results are quite accurate, particularly in the neighbourhood of the critical point. (Author) [pt

  15. A Coupled Hidden Conditional Random Field Model for Simultaneous Face Clustering and Naming in Videos

    KAUST Repository

    Zhang, Yifan

    2016-08-18

    For face naming in TV series or movies, a typical way is using subtitles/script alignment to get the time stamps of the names, and tagging them to the faces. We study the problem of face naming in videos when subtitles are not available. To this end, we divide the problem into two tasks: face clustering which groups the faces depicting a certain person into a cluster, and name assignment which associates a name to each face. Each task is formulated as a structured prediction problem and modeled by a hidden conditional random field (HCRF) model. We argue that the two tasks are correlated problems whose outputs can provide prior knowledge of the target prediction for each other. The two HCRFs are coupled in a unified graphical model called coupled HCRF where the joint dependence of the cluster labels and face name association is naturally embedded in the correlation between the two HCRFs. We provide an effective algorithm to optimize the two HCRFs iteratively and the performance of the two tasks on real-world data set can be both improved.

  16. Probing dark energy models with extreme pairwise velocities of galaxy clusters from the DEUS-FUR simulations

    Science.gov (United States)

    Bouillot, Vincent R.; Alimi, Jean-Michel; Corasaniti, Pier-Stefano; Rasera, Yann

    2015-06-01

    Observations of colliding galaxy clusters with high relative velocity probe the tail of the halo pairwise velocity distribution with the potential of providing a powerful test of cosmology. As an example it has been argued that the discovery of the Bullet Cluster challenges standard Λ cold dark matter (ΛCDM) model predictions. Halo catalogues from N-body simulations have been used to estimate the probability of Bullet-like clusters. However, due to simulation volume effects previous studies had to rely on a Gaussian extrapolation of the pairwise velocity distribution to high velocities. Here, we perform a detail analysis using the halo catalogues from the Dark Energy Universe Simulation Full Universe Runs (DEUS-FUR), which enables us to resolve the high-velocity tail of the distribution and study its dependence on the halo mass definition, redshift and cosmology. Building upon these results, we estimate the probability of Bullet-like systems in the framework of Extreme Value Statistics. We show that the tail of extreme pairwise velocities significantly deviates from that of a Gaussian, moreover it carries an imprint of the underlying cosmology. We find the Bullet Cluster probability to be two orders of magnitude larger than previous estimates, thus easing the tension with the ΛCDM model. Finally, the comparison of the inferred probabilities for the different DEUS-FUR cosmologies suggests that observations of extreme interacting clusters can provide constraints on dark energy models complementary to standard cosmological tests.

  17. Characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-12-01

    In order to characterize the microstructural evolution of the iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions and, for comparison, low copper model alloys irradiated with neutrons and electrons have been studied. The characterization has been carried out mainly thanks to small angle neutron scattering and atom probe experiments. Both techniques lead to the conclusion that clusters develop with irradiations. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex. Solute atoms like Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  18. A Test for Cluster Bias: Detecting Violations of Measurement Invariance across Clusters in Multilevel Data

    Science.gov (United States)

    Jak, Suzanne; Oort, Frans J.; Dolan, Conor V.

    2013-01-01

    We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…

  19. Semantic based cluster content discovery in description first clustering algorithm

    International Nuclear Information System (INIS)

    Khan, M.W.; Asif, H.M.S.

    2017-01-01

    In the field of data analytics grouping of like documents in textual data is a serious problem. A lot of work has been done in this field and many algorithms have purposed. One of them is a category of algorithms which firstly group the documents on the basis of similarity and then assign the meaningful labels to those groups. Description first clustering algorithm belong to the category in which the meaningful description is deduced first and then relevant documents are assigned to that description. LINGO (Label Induction Grouping Algorithm) is the algorithm of description first clustering category which is used for the automatic grouping of documents obtained from search results. It uses LSI (Latent Semantic Indexing); an IR (Information Retrieval) technique for induction of meaningful labels for clusters and VSM (Vector Space Model) for cluster content discovery. In this paper we present the LINGO while it is using LSI during cluster label induction and cluster content discovery phase. Finally, we compare results obtained from the said algorithm while it uses VSM and Latent semantic analysis during cluster content discovery phase. (author)

  20. Macroeconomic Dimensions in the Clusterization Processes: Lithuanian Biomass Cluster Case

    Directory of Open Access Journals (Sweden)

    Navickas Valentinas

    2017-03-01

    Full Text Available The Future production systems’ increasing significance will impose work, which maintains not a competitive, but a collaboration basis, with concentrated resources and expertise, which can help to reach the general purpose. One form of collaboration among medium-size business organizations is work in clusters. Clusterization as a phenomenon has been known from quite a long time, but it offers simple benefits to researches at micro and medium levels. The clusterization process evaluation in macroeconomic dimensions has been comparatively little investigated. Thereby, in this article, the clusterization processes is analysed by concentrating our attention on macroeconomic factor researches. The authors analyse clusterization’s influence on country’s macroeconomic growth; they apply a structure research methodology for clusterization’s macroeconomic influence evaluation and propose that clusterization processes benefit macroeconomic analysis. The theoretical model of clusterization processes was validated by referring to a biomass cluster case. Because biomass cluster case is a new phenomenon, currently there are no other scientific approaches to them. The authors’ accomplished researches show that clusterization allows the achievement of a large positive slip in macroeconomics, which proves to lead to a high value added to creation, a faster country economic growth, and social situation amelioration.

  1. A novel model for Time-Series Data Clustering Based on piecewise SVD and BIRCH for Stock Data Analysis on Hadoop Platform

    Directory of Open Access Journals (Sweden)

    Ibgtc Bowala

    2017-06-01

    Full Text Available With the rapid growth of financial markets, analyzers are paying more attention on predictions. Stock data are time series data, with huge amounts. Feasible solution for handling the increasing amount of data is to use a cluster for parallel processing, and Hadoop parallel computing platform is a typical representative. There are various statistical models for forecasting time series data, but accurate clusters are a pre-requirement. Clustering analysis for time series data is one of the main methods for mining time series data for many other analysis processes. However, general clustering algorithms cannot perform clustering for time series data because series data has a special structure and a high dimensionality has highly co-related values due to high noise level. A novel model for time series clustering is presented using BIRCH, based on piecewise SVD, leading to a novel dimension reduction approach. Highly co-related features are handled using SVD with a novel approach for dimensionality reduction in order to keep co-related behavior optimal and then use BIRCH for clustering. The algorithm is a novel model that can handle massive time series data. Finally, this new model is successfully applied to real stock time series data of Yahoo finance with satisfactory results.

  2. Modelling of Krn+ Clusters (n = 2 - 20) I. Structures and Energetics

    Czech Academy of Sciences Publication Activity Database

    Kalus, R.; Paidarová, Ivana; Hrivňák, D.; Paška, P.; Gadea, F. X.

    2003-01-01

    Roč. 294, č. 2 (2003), s. 141-153 ISSN 0301-0104 R&D Projects: GA ČR GA203/00/1025; GA ČR GA203/01/1274 Institutional research plan: CEZ:AV0Z4040901 Keywords : cluster modelling * rare-gas ions * an initio potential Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.070, year: 2003

  3. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  4. Cluster form factor calculation in the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Navratil, Petr

    2004-01-01

    We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions

  5. Structures of $p$-shell double-$\\Lambda$ hypernuclei studied with microscopic cluster models

    OpenAIRE

    Kanada-En'yo, Yoshiko

    2018-01-01

    $0s$-orbit $\\Lambda$ states in $p$-shell double-$\\Lambda$ hypernuclei ($^{\\ \\,A}_{\\Lambda\\Lambda}Z$), $^{\\ \\,8}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{\\ \\,9}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{10,11,12}_{\\ \\ \\ \\ \\ \\Lambda\\Lambda}\\textrm{Be}$, $^{12,13}_{\\ \\ \\Lambda\\Lambda}\\textrm{B}$, and $^{\\,14}_{\\Lambda\\Lambda}\\textrm{C}$ are investigated. Microscopic cluster models are applied to core nuclear part and a potential model is adopted for $\\Lambda$ particles. The $\\Lambda$-core potential is a folding ...

  6. I Cluster geografici

    Directory of Open Access Journals (Sweden)

    Maurizio Rosina

    2010-03-01

    Full Text Available Geographic ClustersOver the past decade, public alphanumeric database have been growing at exceptional rate. Most of data can be georeferenced, so that is possible gaining new knowledge from such databases. The contribution of this paper is two-fold. We first present a model of geographic clusters, which uses only geographic and functionally data properties. The model is useful to process huge amount of public/government data, even daily upgrading. After that, we merge the model into the framework GEOPOI (GEOcoding Points Of Interest, and show some graphic map results.

  7. I Cluster geografici

    Directory of Open Access Journals (Sweden)

    Maurizio Rosina

    2010-03-01

    Full Text Available Geographic Clusters Over the past decade, public alphanumeric database have been growing at exceptional rate. Most of data can be georeferenced, so that is possible gaining new knowledge from such databases. The contribution of this paper is two-fold. We first present a model of geographic clusters, which uses only geographic and functionally data properties. The model is useful to process huge amount of public/government data, even daily upgrading. After that, we merge the model into the framework GEOPOI (GEOcoding Points Of Interest, and show some graphic map results.

  8. Cluster Management Institutionalization

    DEFF Research Database (Denmark)

    Normann, Leo; Agger Nielsen, Jeppe

    2015-01-01

    of how it was legitimized as a “ready-to-use” management model. Further, our account reveals how cluster management translated into considerably different local variants as it travelled into specific organizations. However, these processes have not occurred sequentially with cluster management first...... legitimized at the field level, then spread, and finally translated into action in the adopting organizations. Instead, we observed entangled field and organizational-level processes. Accordingly, we argue that cluster management institutionalization is most readily understood by simultaneously investigating...

  9. Organizational Model of the Southern Asia Cluster Family Businesses

    Directory of Open Access Journals (Sweden)

    Vipin Gupta

    2013-07-01

    Full Text Available Recently, there has been an increased interest in the family business organization. Traditionally, the ideal typical organizational model was one where the management, governance, and ownership entities are kept separate. This principal agent model has been a subject of public debate in the wake of several corporate scandals. In the family business organization, significant management, governance and ownership is often with the members of a family & its trusted partners. It is common in the US to regulate the management, governance, and ownership roles of the family members by using competitive criteria for the involvement of different members. In Southern Asia cluster (Gupta & Hanges, 2004, on the other hand, it is quite common for the family involvement to be holistic and undivided, where the family collectively owns the shares in the family business. In this work, this organizational model of the Southern Asian family businesses is investigated. Keywords: Southern Asia, family business, organizational model

  10. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    Science.gov (United States)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  11. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  12. On finding galaxy clusters with PLANCK and the spherical collapse model in different dark energy cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Waizmann, Jean-Claude

    2010-11-24

    One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)

  13. On finding galaxy clusters with PLANCK and the spherical collapse model in different dark energy cosmologies

    International Nuclear Information System (INIS)

    Waizmann, Jean-Claude

    2010-01-01

    One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)

  14. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  15. Synthetic modeling chemistry of iron-sulfur clusters in nitric oxide signaling.

    Science.gov (United States)

    Fitzpatrick, Jessica; Kim, Eunsuk

    2015-08-18

    Nitric oxide (NO) is an important signaling molecule that is involved in many physiological and pathological functions. Iron-sulfur proteins are one of the main reaction targets for NO, and the [Fe-S] clusters within these proteins are converted to various iron nitrosyl species upon reaction with NO, of which dinitrosyl iron complexes (DNICs) are the most prevalent. Much progress has been made in identifying the origin of cellular DNIC generation. However, it is not well-understood which other products besides DNICs may form during [Fe-S] cluster degradation nor what effects DNICs and other degradation products can have once they are generated in cells. Even more elusive is an understanding of the manner by which cells cope with unwanted [Fe-S] modifications by NO. This Account describes our synthetic modeling efforts to identify cluster degradation products derived from the [2Fe-2S]/NO reaction in order to establish their chemical reactivity and repair chemistry. Our intent is to use the chemical knowledge that we generate to provide insight into the unknown biological consequences of cluster modification. Our recent advances in three different areas are described. First, new reaction conditions that lead to the formation of previously unrecognized products during the reaction of [Fe-S] clusters with NO are identified. Hydrogen sulfide (H2S), a gaseous signaling molecule, can be generated from the reaction between [2Fe-2S] clusters and NO in the presence of acid or formal H• (e(-)/H(+)) donors. In the presence of acid, a mononitrosyl iron complex (MNIC) can be produced as the major iron-containing product. Second, cysteine analogues can efficiently convert MNICs back to [2Fe-2S] clusters without the need for any other reagents. This reaction is possible for cysteine analogues because of their ability to labilize NO from MNICs and their capacity to undergo C-S bond cleavage, providing the necessary sulfide for [2Fe-2S] cluster formation. Lastly, unique dioxygen

  16. Dynamic connectivity algorithms for Monte Carlo simulations of the random-cluster model

    International Nuclear Information System (INIS)

    Elçi, Eren Metin; Weigel, Martin

    2014-01-01

    We review Sweeny's algorithm for Monte Carlo simulations of the random cluster model. Straightforward implementations suffer from the problem of computational critical slowing down, where the computational effort per edge operation scales with a power of the system size. By using a tailored dynamic connectivity algorithm we are able to perform all operations with a poly-logarithmic computational effort. This approach is shown to be efficient in keeping online connectivity information and is of use for a number of applications also beyond cluster-update simulations, for instance in monitoring droplet shape transitions. As the handling of the relevant data structures is non-trivial, we provide a Python module with a full implementation for future reference.

  17. Gene cluster statistics with gene families.

    Science.gov (United States)

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  18. Combining cluster number counts and galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, Fabien; Rosenfeld, Rogerio, E-mail: fabien@ift.unesp.br, E-mail: rosenfel@ift.unesp.br [ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil)

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  19. The cluster model and the generalized Brody-Moshinsky coefficients

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1985-01-01

    Cluster theories, which rigorously eliminate the centre of mass motion, need intrinsic cluster coordinates. It is shown that the Jacobi coordinates of the various clusters are related by an orthogonal transformation and that the use of generalized Brody-Moshinsky coefficients allows an exact calculation of the exchange kernels. This procedure is illustrated by the description of nucleon-nucleon interaction in terms of constituent quarks

  20. Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals

    International Nuclear Information System (INIS)

    Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.

    2012-01-01

    We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.

  1. Pengembangan Model CYBER CLUSTER E-COMMERCE Berbasis CMS dan SEO Produk UMKM

    Directory of Open Access Journals (Sweden)

    Dwi Agus Diartono

    2015-07-01

    Abstract Problems that are often faced by UMKM (SME is the limited number and range of marketing and sales of its products. So is the competition of similar products can occur by inter-local products or products that come from outside. This is because marketing and sales are still done conventionally and done individually. This study intends to make the implementation of a model system of E-Commerce SME product in an area or district with the participation of empowerment models cyber group (cluster cyber participatory in performing web linking system that was developed using Optimisazion Search Engine (SEO and Content Management System (CMS. The goal is for the web that can be developed easily ranked the Web search page (search engines and always updated content and rank. The benefit of this research is to improve the marketing and sale of products of SMEs to global market and making it easy to find the web address and and are found as often appear in top positions in the search engines like google. Outcomes of this research is based CMS website MSME products and optimized the model of internal and external links that always appears at the top position of the search range. Methods This study uses an action research, the model of structured systems development waterfall model (waterfall. Its own web application developed with prototype models, according to consumer needs.   Keywords—Cyber-Cluster, SEO, CMS, SME

  2. Cluster decay of 218U isotope

    International Nuclear Information System (INIS)

    Shivakumaraswamy, G.; Umesh, T.K.

    2012-01-01

    The phenomenon of spontaneous emission of charged particles heavier than alpha particle and lighter than a fission fragment from radioactive nuclei without accompanied by the emission of neutrons is known as cluster radioactivity or exotic radioactivity. The process of emission of charged particles heavier than alpha particle and lighter than a fission fragment is called exotic decay or cluster decay. The phenomenon of cluster radioactivity was first predicted theoretically by Sandulescu et al in 1980. Rose and Jones made first experimental observations of 14 C emission from 223 Ra in 1984. Several cluster decay modes in trans-lead region have been experimentally observed. The half-life values for different modes of cluster decay from different isotopes of uranium have been calculated using different theoretical models such as the analytical super asymmetric model (ASAFM), Preformed cluster model (PCM) and Coulomb and Proximity potential model (CPPM) etc. Recently some semi-empirical formulae, i.e, single line of universal curve (UNIV), Universal decay law (UDL) for both alpha and cluster radioactivity have also been proposed to explain cluster decay data. The alpha decay half-life of 218-219 U isotopes has been experimentally measured in 2007. The half-life values for different cluster decay modes of 218 U isotopes have been calculated PCM model. Recently in 2011, the half-life values have also been calculated for some cluster decay modes of 222-236 U isotopes using the effective liquid drop description with the varying mass asymmetry (VMAS) shape and effective inertial coefficient. In the light of this, in the present work we have studied the cluster radioactivity of 218 U isotope. The logarithmic half-lives for few cluster decay modes from 218 U isotope have been calculated by using three different approaches, i.e, UNIV proposed by Poenaru et al in 2011, UDL proposed by Qi et al in 2009 and the CPPM model proposed by Santhosh et al in 2002. The CPPM based

  3. Mixed-Initiative Clustering

    Science.gov (United States)

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  4. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  5. A GMBCG GALAXY CLUSTER CATALOG OF 55,424 RICH CLUSTERS FROM SDSS DR7

    International Nuclear Information System (INIS)

    Hao Jiangang; Annis, James; Johnston, David E.; McKay, Timothy A.; Evrard, August; Siegel, Seth R.; Gerdes, David; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Wechsler, Risa H.; Busha, Michael; Becker, Matthew; Sheldon, Erin

    2010-01-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red-sequence plus brightest cluster galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red-sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 deg 2 of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  6. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  7. What semi-inclusive data say about clusters

    International Nuclear Information System (INIS)

    Arneodo, A.; Plaut, G.

    1976-01-01

    A global analysis of inclusive high-energy multi-particle production data in the cluster model framework is extended to semi-inclusive data. The cluster model embodies leading particle effects and kinematical constraints, which are shown to be of great importance. It appears that models with light clusters decaying on average into approximately equal to 2 charged particles, with a rapidity width delta approximately equal to 0.6 - 0.7 and a distribution much narrower than a Poisson-type, allow one to fit in a nice way both inclusive and semi-inclusive data. It is pointed out that the most constraining semi-inclusive data are those regarding longitudinal correlations, which definitely exclude heavy cluster models, whereas the data on zone characteristics only bear out that a non-negligible percentage of clusters have to carry an electric charge. (Auth.)

  8. Impact of Personality Disorder Cluster on Depression Outcomes Within Collaborative Care Management Model of Care.

    Science.gov (United States)

    George, Merit P; Garrison, Gregory M; Merten, Zachary; Heredia, Dagoberto; Gonzales, Cesar; Angstman, Kurt B

    2018-01-01

    follow-up (AOR = 0.95; 95% CI 0.45-2.00). Out of the 3 clusters, the presence of a cluster B PD diagnosis was most significantly associated with poorer depression outcomes at 6-month follow-up, including reduced remission rates and increased risk for PDS. The cluster A/nonspecified PD group also showed poor outcomes; however, the heterogeneity of this subgroup with regard to PD features must be noted. The development of novel targeted interventions for at-risk clusters may be warranted in order to improve outcomes of these patients within the CCM model of care.

  9. Comprehensive sulfation model verified for T-T sorbent clusters during flue gas desulfurization at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yuran Li; Haiying Qi; Changfu You; Lizhai Yang [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

    2010-08-15

    An empirical sulfation model for T-T sorbent clusters was developed based on amassed experimental results under moderate temperatures (300-800{sup o}C). In the model, the reaction rate is a function of clusters mass, SO{sub 2} concentration, CO{sub 2} concentration, calcium conversion and temperature. The smaller pore volume partly results in a lower reaction rate at lower temperatures. The exponent on SO{sub 2} concentration is 0.88 in the rapid reaction stage and then decreases gradually as reaction progresses. The exponent on the fraction of the unreacted calcium is 1/3 in the first stage and then increases significantly in the second stage. The CO{sub 2} concentration has a negative influence on SO{sub 2} removal, especially for the temperature range of 400-650{sup o}C, which should be avoided to achieve a high effective calcium conversion. The sulfation model has been verified for the T-T sorbent clusters and has also been applied to CaO particles. Over extensive reaction conditions, the predictions agree well with experimental data. 17 refs., 10 figs., 2 tabs.

  10. Chaos theory perspective for industry clusters development

    Science.gov (United States)

    Yu, Haiying; Jiang, Minghui; Li, Chengzhang

    2016-03-01

    Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.

  11. Long-Term Fault Memory: A New Time-Dependent Recurrence Model for Large Earthquake Clusters on Plate Boundaries

    Science.gov (United States)

    Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.; Campbell, M. R.

    2017-12-01

    A challenge for earthquake hazard assessment is that geologic records often show large earthquakes occurring in temporal clusters separated by periods of quiescence. For example, in Cascadia, a paleoseismic record going back 10,000 years shows four to five clusters separated by approximately 1,000 year gaps. If we are still in the cluster that began 1700 years ago, a large earthquake is likely to happen soon. If the cluster has ended, a great earthquake is less likely. For a Gaussian distribution of recurrence times, the probability of an earthquake in the next 50 years is six times larger if we are still in the most recent cluster. Earthquake hazard assessments typically employ one of two recurrence models, neither of which directly incorporate clustering. In one, earthquake probability is time-independent and modeled as Poissonian, so an earthquake is equally likely at any time. The fault has no "memory" because when a prior earthquake occurred has no bearing on when the next will occur. The other common model is a time-dependent earthquake cycle in which the probability of an earthquake increases with time until one happens, after which the probability resets to zero. Because the probability is reset after each earthquake, the fault "remembers" only the last earthquake. This approach can be used with any assumed probability density function for recurrence times. We propose an alternative, Long-Term Fault Memory (LTFM), a modified earthquake cycle model where the probability of an earthquake increases with time until one happens, after which it decreases, but not necessarily to zero. Hence the probability of the next earthquake depends on the fault's history over multiple cycles, giving "long-term memory". Physically, this reflects an earthquake releasing only part of the elastic strain stored on the fault. We use the LTFM to simulate earthquake clustering along the San Andreas Fault and Cascadia. In some portions of the simulated earthquake history, events would

  12. Quantum-Size Dependence of the Energy for Vacancy Formation in Charged Small Metal Clusters. Drop Model

    Science.gov (United States)

    Pogosov, V. V.; Reva, V. I.

    2018-04-01

    Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.

  13. Identification of spatiotemporal nutrient patterns in a coastal bay via an integrated k-means clustering and gravity model.

    Science.gov (United States)

    Chang, Ni-Bin; Wimberly, Brent; Xuan, Zhemin

    2012-03-01

    This study presents an integrated k-means clustering and gravity model (IKCGM) for investigating the spatiotemporal patterns of nutrient and associated dissolved oxygen levels in Tampa Bay, Florida. By using a k-means clustering analysis to first partition the nutrient data into a user-specified number of subsets, it is possible to discover the spatiotemporal patterns of nutrient distribution in the bay and capture the inherent linkages of hydrodynamic and biogeochemical features. Such patterns may then be combined with a gravity model to link the nutrient source contribution from each coastal watershed to the generated clusters in the bay to aid in the source proportion analysis for environmental management. The clustering analysis was carried out based on 1 year (2008) water quality data composed of 55 sample stations throughout Tampa Bay collected by the Environmental Protection Commission of Hillsborough County. In addition, hydrological and river water quality data of the same year were acquired from the United States Geological Survey's National Water Information System to support the gravity modeling analysis. The results show that the k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. The datasets indicate that Lower Tampa Bay is an area with limited nutrient input throughout the year. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high values of colored dissolved organic matter are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons

  14. A general framework to test gravity using galaxy clusters - I. Modelling the dynamical mass of haloes in f(R) gravity

    Science.gov (United States)

    Mitchell, Myles A.; He, Jian-hua; Arnold, Christian; Li, Baojiu

    2018-06-01

    We propose a new framework for testing gravity using cluster observations, which aims to provide an unbiased constraint on modified gravity models from Sunyaev-Zel'dovich (SZ) and X-ray cluster counts and the cluster gas fraction, among other possible observables. Focusing on a popular f(R) model of gravity, we propose a novel procedure to recalibrate mass scaling relations from Λ cold dark matter (ΛCDM) to f(R) gravity for SZ and X-ray cluster observables. We find that the complicated modified gravity effects can be simply modelled as a dependence on a combination of the background scalar field and redshift, fR(z)/(1 + z), regardless of the f(R) model parameter. By employing a large suite of N-body simulations, we demonstrate that a theoretically derived tanh fitting formula is in excellent agreement with the dynamical mass enhancement of dark matter haloes for a large range of background field parameters and redshifts. Our framework is sufficiently flexible to allow for tests of other models and inclusion of further observables, and the one-parameter description of the dynamical mass enhancement can have important implications on the theoretical modelling of observables and on practical tests of gravity.

  15. An Improved Information Value Model Based on Gray Clustering for Landslide Susceptibility Mapping

    Directory of Open Access Journals (Sweden)

    Qianqian Ba

    2017-01-01

    Full Text Available Landslides, as geological hazards, cause significant casualties and economic losses. Therefore, it is necessary to identify areas prone to landslides for prevention work. This paper proposes an improved information value model based on gray clustering (IVM-GC for landslide susceptibility mapping. This method uses the information value derived from an information value model to achieve susceptibility classification and weight determination of landslide predisposing factors and, hence, obtain the landslide susceptibility of each study unit based on the clustering analysis. Using a landslide inventory of Chongqing, China, which contains 8435 landslides, three landslide susceptibility maps were generated based on the common information value model (IVM, an information value model improved by an analytic hierarchy process (IVM-AHP and our new improved model. Approximately 70% (5905 of the inventory landslides were used to generate the susceptibility maps, while the remaining 30% (2530 were used to validate the results. The training accuracies of the IVM, IVM-AHP and IVM-GC were 81.8%, 78.7% and 85.2%, respectively, and the prediction accuracies were 82.0%, 78.7% and 85.4%, respectively. The results demonstrate that all three methods perform well in evaluating landslide susceptibility. Among them, IVM-GC has the best performance.

  16. Domino effects within a chemical cluster: a game-theoretical modeling approach by using Nash-equilibrium.

    Science.gov (United States)

    Reniers, Genserik; Dullaert, Wout; Karel, Soudan

    2009-08-15

    Every company situated within a chemical cluster faces domino effect risks, whose magnitude depends on every company's own risk management strategies and on those of all others. Preventing domino effects is therefore very important to avoid catastrophes in the chemical process industry. Given that chemical companies are interlinked by domino effect accident links, there is some likelihood that even if certain companies fully invest in domino effects prevention measures, they can nonetheless experience an external domino effect caused by an accident which occurred in another chemical enterprise of the cluster. In this article a game-theoretic approach to interpret and model behaviour of chemical plants within chemical clusters while negotiating and deciding on domino effects prevention investments is employed.

  17. Analyzing patients' values by applying cluster analysis and LRFM model in a pediatric dental clinic in Taiwan.

    Science.gov (United States)

    Wu, Hsin-Hung; Lin, Shih-Yen; Liu, Chih-Wei

    2014-01-01

    This study combines cluster analysis and LRFM (length, recency, frequency, and monetary) model in a pediatric dental clinic in Taiwan to analyze patients' values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients' needs.

  18. Analyzing Patients' Values by Applying Cluster Analysis and LRFM Model in a Pediatric Dental Clinic in Taiwan

    Science.gov (United States)

    Lin, Shih-Yen; Liu, Chih-Wei

    2014-01-01

    This study combines cluster analysis and LRFM (length, recency, frequency, and monetary) model in a pediatric dental clinic in Taiwan to analyze patients' values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients' needs. PMID:25045741

  19. Analyzing Patients’ Values by Applying Cluster Analysis and LRFM Model in a Pediatric Dental Clinic in Taiwan

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Wu

    2014-01-01

    Full Text Available This study combines cluster analysis and LRFM (length, recency, frequency, and monetary model in a pediatric dental clinic in Taiwan to analyze patients’ values. A two-stage approach by self-organizing maps and K-means method is applied to segment 1,462 patients into twelve clusters. The average values of L, R, and F excluding monetary covered by national health insurance program are computed for each cluster. In addition, customer value matrix is used to analyze customer values of twelve clusters in terms of frequency and monetary. Customer relationship matrix considering length and recency is also applied to classify different types of customers from these twelve clusters. The results show that three clusters can be classified into loyal patients with L, R, and F values greater than the respective average L, R, and F values, while three clusters can be viewed as lost patients without any variable above the average values of L, R, and F. When different types of patients are identified, marketing strategies can be designed to meet different patients’ needs.

  20. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Brimbal, Daniel, E-mail: Daniel.brimbal@areva.com [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Fournier, Lionel [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Barbu, Alain [Alain Barbu Consultant, 6 Avenue Pasteur Martin Luther King, 78230 Le Pecq (France)

    2016-01-15

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium. - Highlights: • Irradiation of steels with helium is studied through a new cluster dynamics model. • There is only a small effect of helium on cavity distributions in PWR conditions. • An increase in helium production causes an increase in cavity density over 500 °C. • The role of helium is to stabilize cavities via reduced emission of vacancies.

  1. Hydrodynamic clustering of droplets in turbulence

    Science.gov (United States)

    Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.

  2. Cluster state generation in one-dimensional Kitaev honeycomb model via shortcut to adiabaticity

    Science.gov (United States)

    Kyaw, Thi Ha; Kwek, Leong-Chuan

    2018-04-01

    We propose a mean to obtain computationally useful resource states also known as cluster states, for measurement-based quantum computation, via transitionless quantum driving algorithm. The idea is to cool the system to its unique ground state and tune some control parameters to arrive at computationally useful resource state, which is in one of the degenerate ground states. Even though there is set of conserved quantities already present in the model Hamiltonian, which prevents the instantaneous state to go to any other eigenstate subspaces, one cannot quench the control parameters to get the desired state. In that case, the state will not evolve. With involvement of the shortcut Hamiltonian, we obtain cluster states in fast-forward manner. We elaborate our proposal in the one-dimensional Kitaev honeycomb model, and show that the auxiliary Hamiltonian needed for the counterdiabatic driving is of M-body interaction.

  3. Tourism Cluster Competitiveness and Sustainability: Proposal for a Systemic Model to Measure the Impact of Tourism on Local Development

    Directory of Open Access Journals (Sweden)

    Sieglinde Kindl da Cunha

    2005-07-01

    Full Text Available This article proposes a model to measure tourism cluster impact on local development with a view to assessing tourism cluster interaction, competitiveness and sustainability impacts on the economy, society and the environment. The theoretical basis for this model is founded on cluster concept and typology adapting and integrating the systemic competitiveness and sustainability concepts within economic, social, cultural, environmental and political dimensions. The proposed model shows a holistic, multidisciplinary and multi-sector view of local development brought back through a systemic approach to the concepts of competitiveness, social equity and sustainability. Its results make possible strategic guidance to agents responsible for public sector tourism policies, as well as the strategies for competitiveness, competition, cooperation and sustainability in private companies and institutions.

  4. Is the Coma cluster binary dominated?

    International Nuclear Information System (INIS)

    The, L.S.; White, S.D.M.

    1990-01-01

    It is investigated whether the model of an expanding cluster dominated by a massive binary galaxy, first suggested by Valtonen and Byrd (1979), is consistent with optical data on the surface density and velocity dispersion of the Coma cluster. The evolution of this model is simulated for a wide variety of initial conditions. It is found that galaxy counts in the model can be made to agree with observation, but that the observed velocity dispersion profile cannot be reproduced. A number of other arguments suggest that the central galaxies in Coma cannot be as massive as required by the model. This model is not a viable representation of the Coma cluster. 25 refs

  5. Modeling and analysis of the spectrum of the globular cluster NGC 2419

    Science.gov (United States)

    Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2013-06-01

    The properties of the stellar population of the unusual object NGC 2419 are studied; this is the most distant high-mass globular cluster of the Galaxy's outer halo, and a spectrum taken with the 1.93-m telescope of the Haute Provence Observatory displays elemental abundance anomalies. Since traditional high-resolution spectroscopicmethods are applicable to bright stars only, spectroscopic information for the cluster's stellar population as a whole, integrated along the spectrograph slit placed in various positions, is used. Population synthesis is carried out for the spectrum of NGC 2419 using synthetic spectra calculated from a grid of stellar model atmospheres, based on the theoretical isochrone from the literature that best fits the color-magnitude diagram of the cluster. The derived age (12.6 billion years), metallicity ([Fe/H] = -2.25 dex), and abundances of helium ( Y = 0.26) and other chemical elements (a total of 14) are in a good qualitative agreement with estimates from the literature made from high-resolution spectra of eight red giants in the cluster. The influence on the spectrum of deviations from local thermodynamic equilibrium is considered for several elements. The derived abundance of α-elements ([ α/Fe] = 0.13 dex, as the mean of [O/Fe], [Mg/Fe], and [Ca/Fe]) differs from the mean value in the literature ([ α/Fe] = 0.4 for the eight brightest red giants) and may be explained by recently discovered in NGC2419 large [a/Fe] dispersion. Further studies of the integrated properties of the stellar population in NGC 2419 using higher-resolution spectrographs in various wavelength ranges should help improve our understanding of the cluster's chemical anomalies.

  6. Constraints from stellar models on mixing as a viable explanation of abundance anomalies in globular clusters

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Smith, G.H.

    1988-01-01

    Published observational data on changes in the surface abundances of evolving stars in globular clusters are compiled and compared with the predictions of theoretical evolutionary sequences (for stars of mass 0.8 solar mass and metallicity Z = 0.0001 or mass 0.9 solar mass and Z = 0.006) and of models incorporating enhanced envelope-interior mixing at various evolutionary phases. The results are presented in graphs and characterized in detail. It is found that mixing models of CN bimodality in globular-cluster stars can encounter difficulties when abundance anomalies appear early in the evolution of the star. 63 references

  7. STAR CLUSTER PROPERTIES IN TWO LEGUS GALAXIES COMPUTED WITH STOCHASTIC STELLAR POPULATION SYNTHESIS MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Adamo, Angela [Department of Astronomy, Oskar Klein Centre, Stockholm University, SE-10691 Stockholm (Sweden); Fumagalli, Michele [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Wofford, Aida [Institut d’Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France); Calzetti, Daniela; Grasha, Kathryn [Department of Astronomy, University of Massachusetts–Amherst, Amherst, MA (United States); Lee, Janice C.; Whitmore, Bradley C.; Bright, Stacey N.; Ubeda, Leonardo [Space Telescope Science Institute, Baltimore, MD (United States); Gouliermis, Dimitrios A. [Centre for Astronomy, Institute for Theoretical Astrophysics, University of Heidelberg, Heidelberg (Germany); Kim, Hwihyun [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Nair, Preethi [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Ryon, Jenna E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Smith, Linda J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, David [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, Erik, E-mail: mkrumhol@ucsc.edu, E-mail: adamo@astro.su.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden)

    2015-10-20

    We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.

  8. Clustering potential of agriculture in Lviv region

    Directory of Open Access Journals (Sweden)

    N.A. Tsymbalista

    2015-03-01

    Full Text Available The paper emphasizes the need to stimulate the development of integration processes in agro-industrial complex of Ukraine. The advantages of the cluster model of integration are shown: along with the growth of competitiveness of agricultural products, it helps to increase the efficiency of inventory management of material flows, as well as to expand opportunities to attract investment and to implement innovation in agricultural production. Clusters also help to reduce transaction costs by establishing an optimal cooperation between the contracting parties. The theoretical essentiality of agro-industrial clusters is studied and a conceptual model of that kind of clusters is shown. The preconditions of clustering of agriculture in Lviv region are analyzed and feasibility of specific methods of statistical analysis to identify localization areas of the potential members of cluster-forming blocks of regional food clusters is verified. Cluster analysis is carried out to identify potential cluster-forming areas in the region in various sectors of agricultural production.

  9. A Linear Algebra Measure of Cluster Quality.

    Science.gov (United States)

    Mather, Laura A.

    2000-01-01

    Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)

  10. Latent class factor and cluster models, bi-plots and tri-plots and related graphical displays

    NARCIS (Netherlands)

    Magidson, J.; Vermunt, J.K.

    2001-01-01

    We propose an alternative method of conducting exploratory latent class analysis that utilizes latent class factor models, and compare it to the more traditional approach based on latent class cluster models. We show that when formulated in terms of R mutually independent, dichotomous latent

  11. The Business Cluster's Distribution e-Channels

    OpenAIRE

    Milan Davidovic

    2011-01-01

    The business cluster cooperative potential and business capability improvement are dependent on e-business implementation and business model change dynamics in cluster and his members based in new and existing distribution channels, customer relationships management and supplychain integration. In this work analyse cluster’s e-business models, e-commerce forms and distribution e-channels for three business cases: when cluster members are oriented on own business, on cooperative’s project or c...

  12. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

    OpenAIRE

    Li, Guohui; Zhang, Songling; Yang, Hong

    2017-01-01

    Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed ...

  13. Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.

  14. Constituent quarks as clusters in quark-gluon-parton model. [Total cross sections, probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1976-12-01

    We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).

  15. Investigation of the alpha cluster model and the density matrix expansion in ion-ion collision

    International Nuclear Information System (INIS)

    Rashdan, M.B.M.

    1986-01-01

    This thesis deals with the investigation of the alpha cluster model (ACM) of brink and studies of the accuracy of the density matrix expansion (DME) approximation in deriving the real part of the ion-ion optical potential. the ACM is applied to calculate the inelastic 0 1 + →2 1 + charge form factor for electron scattering by 12 C to investigate the validity of this model for 12 C nucleus. it is found that the experimental curve can be fitted over the entire range of the momentum transfer by a generator - coordinate state for the 2 1 + state that consist of a superposition of two triangular ACM states with two different cluster separations and the same oscillator parameter

  16. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

    Science.gov (United States)

    Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin

    2017-08-31

    Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.

  17. Dynamics of rich clusters of galaxies. I. The Coma cluster

    International Nuclear Information System (INIS)

    Kent, S.M.; Gunn, J.E.

    1982-01-01

    The structure and dynamics of the Coma cluster are analyzed using self-consistent equilibrium dynamical models. Observational material for Coma is culled from a variety of sources. Projected surface, density, and velocity-dispersion profiles are derived extending out to a radius of 3 0 from the cluster center, which are essentially free from field contamination. Segregation of galaxies by luminosity and morphology are discussed and a quantitative estimate of the latter is made. The method of constructing self-consistent dynamical models is discussed. Four different forms of the distribution function are analyzed allowing for different possible dependences of f on energy and angular momentum. Properties of typical models that might resemble actual clusters are presented, and the importance of having velocity-dispersion information is empha sized. The effect of a central massive object such as a cD galaxy on the core structure is illustrated. A comparison of these models with Coma reveals that only models with a distribution function in which the ratio of tangential to radial velocity dispersions is everywhere constant give acceptable fits. In particular, it is possible to rule out models that have isotropic motions in the core and predominantly radial motions in the halo. For H 0 = 50, the best-fitting models give a total projected mass inside 3 0 of 2.9 x 10 15 M/sub sun/ , a core radius of 340--400 kpc (8.5'--10'), an upper limit to any central massive object of approx.10 13 M/sub sun/ , and a mass-to-blue-light ratio of M/L = 181. From cosmological considerations the cluster ''edge'' is determined to lie at rapprox.5 0 --6 0 . The possible distribution of ''dark matter'' in Coma is discussed and it is argued that this distribution cannot be significantly different from that of the galaxies. The dynamics of morphological segregation are examined quantitatively, and are explained at least qualitatively

  18. Cluster–cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    International Nuclear Information System (INIS)

    Alves, S G; Martins, M L

    2010-01-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster–cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture

  19. Understanding the stable boron clusters: A bond model and first-principles calculations based on high-throughput screening

    International Nuclear Information System (INIS)

    Xu, Shao-Gang; Liao, Ji-Hai; Zhao, Yu-Jun; Yang, Xiao-Bao

    2015-01-01

    The unique electronic property induced diversified structure of boron (B) cluster has attracted much interest from experimentalists and theorists. B 30–40 were reported to be planar fragments of triangular lattice with proper concentrations of vacancies recently. Here, we have performed high-throughput screening for possible B clusters through the first-principles calculations, including various shapes and distributions of vacancies. As a result, we have determined the structures of B n clusters with n = 30–51 and found a stable planar cluster of B 49 with a double-hexagon vacancy. Considering the 8-electron rule and the electron delocalization, a concise model for the distribution of the 2c–2e and 3c–2e bonds has been proposed to explain the stability of B planar clusters, as well as the reported B cages

  20. Dynamical aspects of galaxy clustering

    International Nuclear Information System (INIS)

    Fall, S.M.

    1980-01-01

    Some recent work on the origin and evolution of galaxy clustering is reviewed, particularly within the context of the gravitational instability theory and the hot big-bang cosmological model. Statistical measures of clustering, including correlation functions and multiplicity functions, are explained and discussed. The close connection between galaxy formation and clustering is emphasized. Additional topics include the dependence of galaxy clustering on the spectrum of primordial density fluctuations and the mean mass density of the Universe. (author)

  1. The random cluster model and a new integration identity

    International Nuclear Information System (INIS)

    Chen, L C; Wu, F Y

    2005-01-01

    We evaluate the free energy of the random cluster model at its critical point for 0 -1 (√q/2) is a rational number. As a by-product, our consideration leads to a closed-form evaluation of the integral 1/(4π 2 ) ∫ 0 2π dΘ ∫ 0 2π dΦ ln[A+B+C - AcosΘ - BcosΦ - Ccos(Θ+Φ)] = -ln(2S) + (2/π)[Ti 2 (AS) + Ti 2 (BS) + Ti 2 (CS)], which arises in lattice statistics, where A, B, C ≥ 0 and S=1/√(AB + BC + CA)

  2. TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling

    Science.gov (United States)

    Nelson, J.; Jones, N.; Ames, D. P.

    2015-12-01

    Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.

  3. HDclassif : An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data

    Directory of Open Access Journals (Sweden)

    Laurent Berge

    2012-01-01

    Full Text Available This paper presents the R package HDclassif which is devoted to the clustering and the discriminant analysis of high-dimensional data. The classification methods proposed in the package result from a new parametrization of the Gaussian mixture model which combines the idea of dimension reduction and model constraints on the covariance matrices. The supervised classification method using this parametrization is called high dimensional discriminant analysis (HDDA. In a similar manner, the associated clustering method iscalled high dimensional data clustering (HDDC and uses the expectation-maximization algorithm for inference. In order to correctly t the data, both methods estimate the specific subspace and the intrinsic dimension of the groups. Due to the constraints on the covariance matrices, the number of parameters to estimate is significantly lower than other model-based methods and this allows the methods to be stable and efficient in high dimensions. Two introductory examples illustrated with R codes allow the user to discover the hdda and hddc functions. Experiments on simulated and real datasets also compare HDDC and HDDA with existing classification methods on high-dimensional datasets. HDclassif is a free software and distributed under the general public license, as part of the R software project.

  4. Mixture model with multiple allocations for clustering spatially correlated observations in the analysis of ChIP-Seq data

    NARCIS (Netherlands)

    Ranciati, Saverio; Viroli, Cinzia; Wit, Ernst C.

    2017-01-01

    Model-based clustering is a technique widely used to group a collection of units into mutually exclusive groups. There are, however, situations in which an observation could in principle belong to more than one cluster. In the context of next-generation sequencing (NGS) experiments, for example, the

  5. On the Modeling and Analysis of Heterogeneous Radio Access Networks using a Poisson Cluster Process

    DEFF Research Database (Denmark)

    Suryaprakash, Vinay; Møller, Jesper; Fettweis, Gerhard P.

    processes, some of which are alluded to (later) in this paper. We model a heterogeneous network consisting of two types of base stations by using a particular Poisson cluster process model. The main contributions are two-fold. First, a complete description of the interference in heterogeneous networks...

  6. Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs.

    Science.gov (United States)

    Han, Yujuan; Lu, Wenlian; Chen, Tianping

    2013-04-01

    In this paper, cluster consensus of multiagent systems is studied via inter-cluster nonidentical inputs. Here, we consider general graph topologies, which might be time-varying. The cluster consensus is defined by two aspects: intracluster synchronization, the state at which differences between each pair of agents in the same cluster converge to zero, and inter-cluster separation, the state at which agents in different clusters are separated. For intra-cluster synchronization, the concepts and theories of consensus, including the spanning trees, scramblingness, infinite stochastic matrix product, and Hajnal inequality, are extended. As a result, it is proved that if the graph has cluster spanning trees and all vertices self-linked, then the static linear system can realize intra-cluster synchronization. For the time-varying coupling cases, it is proved that if there exists T > 0 such that the union graph across any T-length time interval has cluster spanning trees and all graphs has all vertices self-linked, then the time-varying linear system can also realize intra-cluster synchronization. Under the assumption of common inter-cluster influence, a sort of inter-cluster nonidentical inputs are utilized to realize inter-cluster separation, such that each agent in the same cluster receives the same inputs and agents in different clusters have different inputs. In addition, the boundedness of the infinite sum of the inputs can guarantee the boundedness of the trajectory. As an application, we employ a modified non-Bayesian social learning model to illustrate the effectiveness of our results.

  7. Electron attenuation in free, neutral ethane clusters.

    Science.gov (United States)

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  8. Experience of BESIII data production with local cluster and distributed computing model

    International Nuclear Information System (INIS)

    Deng, Z Y; Li, W D; Liu, H M; Sun, Y Z; Zhang, X M; Lin, L; Nicholson, C; Zhemchugov, A

    2012-01-01

    The BES III detector is a new spectrometer which works on the upgraded high-luminosity collider, BEPCII. The BES III experiment studies physics in the tau-charm energy region from 2 GeV to 4.6 GeV . From 2009 to 2011, BEPCII has produced 106M ψ(2S) events, 225M J/ψ events, 2.8 fb −1 ψ(3770) data, and 500 pb −1 data at 4.01 GeV. All the data samples were processed successfully and many important physics results have been achieved based on these samples. Doing data production correctly and efficiently with limited CPU and storage resources is a big challenge. This paper will describe the implementation of the experiment-specific data production for BESIII in detail, including data calibration with event-level parallel computing model, data reconstruction, inclusive Monte Carlo generation, random trigger background mixing and multi-stream data skimming. Now, with the data sample increasing rapidly, there is a growing demand to move from solely using a local cluster to a more distributed computing model. A distributed computing environment is being set up and expected to go into production use in 2012. The experience of BESIII data production, both with a local cluster and with a distributed computing model, is presented here.

  9. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  10. Finite cluster renormalization and new two step renormalization group for Ising model

    International Nuclear Information System (INIS)

    Benyoussef, A.; El Kenz, A.

    1989-09-01

    New types of renormalization group theory using the generalized Callen identities are exploited in the study of the Ising model. Another type of two-step renormalization is proposed. Critical couplings and critical exponents y T and y H are calculated by these methods for square and simple cubic lattices, using different size clusters. (author). 17 refs, 2 tabs

  11. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    International Nuclear Information System (INIS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.

    2016-01-01

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections

  12. Novel Ordered Stepped-Wedge Cluster Trial Designs for Detecting Ebola Vaccine Efficacy Using a Spatially Structured Mathematical Model.

    Directory of Open Access Journals (Sweden)

    Ibrahim Diakite

    2016-08-01

    Full Text Available During the 2014 Ebola virus disease (EVD outbreak, policy-makers were confronted with difficult decisions on how best to test the efficacy of EVD vaccines. On one hand, many were reluctant to withhold a vaccine that might prevent a fatal disease from study participants randomized to a control arm. On the other, regulatory bodies called for rigorous placebo-controlled trials to permit direct measurement of vaccine efficacy prior to approval of the products. A stepped-wedge cluster study (SWCT was proposed as an alternative to a more traditional randomized controlled vaccine trial to address these concerns. Here, we propose novel "ordered stepped-wedge cluster trial" (OSWCT designs to further mitigate tradeoffs between ethical concerns, logistics, and statistical rigor.We constructed a spatially structured mathematical model of the EVD outbreak in Sierra Leone. We used the output of this model to simulate and compare a series of stepped-wedge cluster vaccine studies. Our model reproduced the observed order of first case occurrence within districts of Sierra Leone. Depending on the infection risk within the trial population and the trial start dates, the statistical power to detect a vaccine efficacy of 90% varied from 14% to 32% for standard SWCT, and from 67% to 91% for OSWCTs for an alpha error of 5%. The model's projection of first case occurrence was robust to changes in disease natural history parameters.Ordering clusters in a step-wedge trial based on the cluster's underlying risk of infection as predicted by a spatial model can increase the statistical power of a SWCT. In the event of another hemorrhagic fever outbreak, implementation of our proposed OSWCT designs could improve statistical power when a step-wedge study is desirable based on either ethical concerns or logistical constraints.

  13. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.; Roose, T.

    2012-01-01

    phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining

  14. Color Gradients Within Globular Clusters: Restricted Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Young-Jong Sohn

    1997-06-01

    Full Text Available The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salpeter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpeter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.

  15. Nonthermal emission from clusters of galaxies

    International Nuclear Information System (INIS)

    Kushnir, Doron; Waxman, Eli

    2009-01-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10 14.5 M ☉ , galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β core and η e . β core is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η e(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β core ≅ η p /200, nearly independent of cluster mass and with a scatter Δln β core ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η e /η p )(T/10 keV) −1/2 and ≅ 150(η e /η p )(T/10 keV) −1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η p ∼ η e ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in

  16. Nonthermal emission from clusters of galaxies

    Science.gov (United States)

    Kushnir, Doron; Waxman, Eli

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M gtrsim 1014.5Msun, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, βcore and ηe. βcore is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and ηe(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that βcore simeq ηp/200, nearly independent of cluster mass and with a scatter Δln βcore simeq 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors simeq 500(ηe/ηp)(T/10 keV)-1/2 and simeq 150(ηe/ηp)(T/10 keV)-1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (gtrsim 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for ηp ~ ηe ~ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in γ-rays. Finally, we show

  17. Effective action and cluster properties of the abelian Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, T; Imbrie, J Z; Jaffe, A

    1988-02-01

    We continue our program to establish the Higgs mechanism and mass gap for the abelian Higgs model in two and three dimensions. We develop a multiscale cluster expansion for the high frequency modes of the theory, within a framework of iterated renormalization group transformations. The expansions yield decoupling properties needed for a proof of exponential decay of correlations. The result of this analysis is a gauge invariant unit lattice theory with a deep Higgs potential of the shape required to exhibit the Higgs mechanism.

  18. PRECISION MEASUREMENTS OF THE CLUSTER RED SEQUENCE USING AN ERROR-CORRECTED GAUSSIAN MIXTURE MODEL

    International Nuclear Information System (INIS)

    Hao Jiangang; Annis, James; Koester, Benjamin P.; Mckay, Timothy A.; Evrard, August; Gerdes, David; Rykoff, Eli S.; Rozo, Eduardo; Becker, Matthew; Busha, Michael; Wechsler, Risa H.; Johnston, David E.; Sheldon, Erin

    2009-01-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error-corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically based cluster cosmology.

  19. Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; /Fermilab /Michigan U.; Koester, Benjamin P.; /Chicago U.; Mckay, Timothy A.; /Michigan U.; Rykoff, Eli S.; /UC, Santa Barbara; Rozo, Eduardo; /Ohio State U.; Evrard, August; /Michigan U.; Annis, James; /Fermilab; Becker, Matthew; /Chicago U.; Busha, Michael; /KIPAC, Menlo Park /SLAC; Gerdes, David; /Michigan U.; Johnston, David E.; /Northwestern U. /Brookhaven

    2009-07-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red-sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically-based cluster cosmology.

  20. Galaxy Clusters in the Swift/BAT era II: 10 more Clusters detected above 15 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Rebusco, P.; /KIPAC, Menlo Park; Cappelluti, N.; /Garching, Max Planck Inst., MPE /Maryland U., Baltimore County; Reimer, O.; /SLAC /Palermo Observ.; Boehringer, H.; /Garching, Max Planck Inst., MPE; La Parola, V.; Cusumano, G.; /Palermo Observ.

    2010-10-27

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/BAT all-sky survey. Among the newly BAT-discovered clusters there are: Bullet, Abell 85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and Abell 3667) we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For Abell 3667 the excess emission can be successfully modeled as a hot component (kT = {approx}13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely thermal origin.

  1. GALAXY CLUSTERS IN THE SWIFT/BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV

    International Nuclear Information System (INIS)

    Ajello, M.; Reimer, O.; Rebusco, P.; Cappelluti, N.; Boehringer, H.; La Parola, V.; Cusumano, G.

    2010-01-01

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/Burst Alert Telescope (BAT) all-sky survey. Among the newly BAT-discovered clusters there are Bullet, A85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters, we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters' emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and A3667), we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law-like, component with a 20-100 keV flux of 3.4 x 10 -12 erg cm -2 s -1 as detected in previous studies. For A3667, the excess emission can be successfully modeled as a hot component (kT ∼ 13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely a thermal origin.

  2. Exploring the Internal Dynamics of Globular Clusters

    Science.gov (United States)

    Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration

    2018-01-01

    Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.

  3. A stepwise-cluster microbial biomass inference model in food waste composting

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Zeng Guangming; Qin Xiaosheng; Sun Xueling

    2009-01-01

    A stepwise-cluster microbial biomass inference (SMI) model was developed through introducing stepwise-cluster analysis (SCA) into composting process modeling to tackle the nonlinear relationships among state variables and microbial activities. The essence of SCA is to form a classification tree based on a series of cutting or mergence processes according to given statistical criteria. Eight runs of designed experiments in bench-scale reactors in a laboratory were constructed to demonstrate the feasibility of the proposed method. The results indicated that SMI could help establish a statistical relationship between state variables and composting microbial characteristics, where discrete and nonlinear complexities exist. Significance levels of cutting/merging were provided such that the accuracies of the developed forecasting trees were controllable. Through an attempted definition of input effects on the output in SMI, the effects of the state variables on thermophilic bacteria were ranged in a descending order as: Time (day) > moisture content (%) > ash content (%, dry) > Lower Temperature (deg. C) > pH > NH 4 + -N (mg/Kg, dry) > Total N (%, dry) > Total C (%, dry); the effects on mesophilic bacteria were ordered as: Time > Upper Temperature (deg. C) > Total N > moisture content > NH 4 + -N > Total C > pH. This study made the first attempt in applying SCA to mapping the nonlinear and discrete relationships in composting processes.

  4. Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions

    Directory of Open Access Journals (Sweden)

    Wiemels Joseph

    2008-09-01

    Full Text Available Abstract Background Epigenetics is the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. One of the most commonly studied epigenetic alterations is cytosine methylation, which is a well recognized mechanism of epigenetic gene silencing and often occurs at tumor suppressor gene loci in human cancer. Arrays are now being used to study DNA methylation at a large number of loci; for example, the Illumina GoldenGate platform assesses DNA methylation at 1505 loci associated with over 800 cancer-related genes. Model-based cluster analysis is often used to identify DNA methylation subgroups in data, but it is unclear how to cluster DNA methylation data from arrays in a scalable and reliable manner. Results We propose a novel model-based recursive-partitioning algorithm to navigate clusters in a beta mixture model. We present simulations that show that the method is more reliable than competing nonparametric clustering approaches, and is at least as reliable as conventional mixture model methods. We also show that our proposed method is more computationally efficient than conventional mixture model approaches. We demonstrate our method on the normal tissue samples and show that the clusters are associated with tissue type as well as age. Conclusion Our proposed recursively-partitioned mixture model is an effective and computationally efficient method for clustering DNA methylation data.

  5. Statistical Issues in Galaxy Cluster Cosmology

    Science.gov (United States)

    Mantz, Adam

    2013-01-01

    The number and growth of massive galaxy clusters are sensitive probes of cosmological structure formation. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneously constrain scaling relations of observable signals with mass. The problem can be cast as one of regression, in which the data set is truncated, the (cosmology-dependent) underlying population must be modeled, and strong, complex correlations between measurements often exist. Simulations of cosmological structure formation provide a robust prediction for the number of clusters in the Universe as a function of mass and redshift (the mass function), but they cannot reliably predict the observables used to detect clusters in sky surveys (e.g. X-ray luminosity). Consequently, observers must constrain observable-mass scaling relations using additional data, and use the scaling relation model in conjunction with the mass function to predict the number of clusters as a function of redshift and luminosity.

  6. A scan statistic for binary outcome based on hypergeometric probability model, with an application to detecting spatial clusters of Japanese encephalitis.

    Science.gov (United States)

    Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong

    2013-01-01

    As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.

  7. Subspace K-means clustering.

    Science.gov (United States)

    Timmerman, Marieke E; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla

    2013-12-01

    To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the existing related clustering methods, including deterministic, stochastic, and unsupervised learning approaches. To evaluate subspace K-means, we performed a comparative simulation study, in which we manipulated the overlap of subspaces, the between-cluster variance, and the error variance. The study shows that the subspace K-means algorithm is sensitive to local minima but that the problem can be reasonably dealt with by using partitions of various cluster procedures as a starting point for the algorithm. Subspace K-means performs very well in recovering the true clustering across all conditions considered and appears to be superior to its competitor methods: K-means, reduced K-means, factorial K-means, mixtures of factor analyzers (MFA), and MCLUST. The best competitor method, MFA, showed a performance similar to that of subspace K-means in easy conditions but deteriorated in more difficult ones. Using data from a study on parental behavior, we show that subspace K-means analysis provides a rich insight into the cluster characteristics, in terms of both the relative positions of the clusters (via the centroids) and the shape of the clusters (via the within-cluster residuals).

  8. 2D Dust Clusters in Theory and Experiments

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Gousein-zade, N.G.; Morfill, G.E.

    2005-01-01

    The theory is applied for more detail analysis of existing experiments of 2D dust clusters with parabolic confinement. It is shown that the equilibrium condition and the frequency of one of the modes of the cluster determines all dimensionless parameters of the cluster allowing to predict the value of other modes and compare them with existing experimental data. This comparison depends on the shielding model, the calculations starting with N = 4 cluster breathing mode predict for Debye shielding model without attraction the frequency of the antisymmetric mode in disagreement with the observed value about 6 standard deviations, while the same calculations for the non-linear screening model gives disagreement about 1 standard deviation. Including the attraction provides an agrement with observations only for non-linear screening model showing the sensitivity of cluster structure to dust attraction. The value of the obtained attractions coefficient is in reasonable agreement with the theoretically expected value. It is shown theoretically that in absence of external parabolic confinement a weak shadow attraction can provide an existence of equilibria for 2D clusters. The equilibrium radius is rapidly decreasing with an increase of the attraction coefficient and with number of grains N in a cluster. The energies of one shell clusters with different N and the energies of N - 1 grain clusters with additional grain in the center of the shell are calculated as functions of attraction coefficient. It is demonstrated that a dissociation of cluster in several smaller clusters needs less energy than a removal of one grain from the cluster. The calculations were performed for Yukawa screening and for non-linear screening and demonstrate the sensitivity of cluster structures to the screening. Frequencies of all modes are calculated up to N = 7 for one shell structure. Stable and unstable modes as well as universal magic numbers are found

  9. A Fuzzy Neural Network Based on Non-Euclidean Distance Clustering for Quality Index Model in Slashing Process

    Directory of Open Access Journals (Sweden)

    Yuxian Zhang

    2015-01-01

    Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.

  10. The mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels: The case of Fe-Cu model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, A.V., E-mail: Alexey.V.Subbotin@gmail.com [Scientific and Production Complex Atomtechnoprom, Moscow 119180 (Russian Federation); Panyukov, S.V., E-mail: panyukov@lpi.ru [PN Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924 (Russian Federation)

    2016-08-15

    Mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels is proposed and developed in case of Fe-Cu model alloys. The suggested solute-drag mechanism is analogous to the well-known zone-refining process. We show that the obtained results are in good agreement with available experimental data on the parameters of clusters enriched with the alloying elements. Our model explains why the formation of solute-enriched clusters does not happen in austenitic stainless steels with fcc lattice structure. It also allows to quantify the method of evaluation of neutron irradiation dose for the process of RPV steels hardening.

  11. JOINT ANALYSIS OF X-RAY AND SUNYAEV-ZEL'DOVICH OBSERVATIONS OF GALAXY CLUSTERS USING AN ANALYTIC MODEL OF THE INTRACLUSTER MEDIUM

    International Nuclear Information System (INIS)

    Hasler, Nicole; Bulbul, Esra; Bonamente, Massimiliano; Landry, David; Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Mantz, Adam; Marrone, Daniel P.; Plagge, Thomas; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Joy, Marshall; Kolodziejczak, Jeffery; Miller, Amber; Mroczkowski, Tony

    2012-01-01

    We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204.

  12. Light nuclei: an experimental proving ground for the microscopic cluster model

    International Nuclear Information System (INIS)

    Brown, R.E.

    1978-01-01

    A selected review is given of comparisons of experimental data for low-mass nuclear systems with results of calculations using microscopic cluster models. Stress is on the mass-4, -7, and -8 systems. Topics include influence of components of the nucleon-nucleon force, some consequences of the Pauli principle, effects of the Coulomb-exchange interaction, specific distortion, absorption in elastic scattering, and future needs and directions. Some as yet unpublished results are presented

  13. Cluster model study of the excited states of /sup 4/He

    Energy Technology Data Exchange (ETDEWEB)

    Furutani, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Excited states of /sup 4/He are studied in the energy region E sub(x) = 20 -- 35 MeV within the framework of a (3N + N)-cluster model. (/sup 3/H + p) - (/sup 3/He + n) coupled channel calculation is carried out and results are compared with /sup 3/H(p, p)/sup 3/H, /sup 3/He(n, n)/sup 3/He and /sup 3/H(p, n)/sup 3/He reactions.

  14. Clusters of PCS for high-speed computation for modelling of the climate

    International Nuclear Information System (INIS)

    Pabon C, Jose Daniel; Eslava R, Jesus Antonio; Montoya G, Gerardo de Jesus

    2001-01-01

    In order to create high speed computing capability, the Program of Post grade in Meteorology of the Department of Geosciences, National University of Colombia installed a cluster of 8 PCs for parallel processing. This high-speed processing machine was tested with the Climate Community Model (CCM3). In this paper, the results related to the performance of this machine are presented

  15. Degradation Assessment and Fault Diagnosis for Roller Bearing Based on AR Model and Fuzzy Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Lingli Jiang

    2011-01-01

    Full Text Available This paper proposes a new approach combining autoregressive (AR model and fuzzy cluster analysis for bearing fault diagnosis and degradation assessment. AR model is an effective approach to extract the fault feature, and is generally applied to stationary signals. However, the fault vibration signals of a roller bearing are non-stationary and non-Gaussian. Aiming at this problem, the set of parameters of the AR model is estimated based on higher-order cumulants. Consequently, the AR parameters are taken as the feature vectors, and fuzzy cluster analysis is applied to perform classification and pattern recognition. Experiments analysis results show that the proposed method can be used to identify various types and severities of fault bearings. This study is significant for non-stationary and non-Gaussian signal analysis, fault diagnosis and degradation assessment.

  16. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    Science.gov (United States)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  17. Investigating the Correspondence Between Transcriptomic and Proteomic Expression Profiles Using Coupled Cluster Models

    International Nuclear Information System (INIS)

    Rogers, Simon; Girolami, Mark; Kolch, Walter; Waters, Katrina M.; Liu, Tao; Thrall, Brian D.; Wiley, H. S.

    2008-01-01

    Modern transcriptomics and proteomics enable us to survey the expression of RNAs and proteins at large scales. While these data are usually generated and analyzed separately, there is an increasing interest in comparing and co-analyzing transcriptome and proteome expression data. A major open question is whether transcriptome and proteome expression is linked and how it is coordinated. Results: Here we have developed a probabilistic clustering model that permits analysis of the links between transcriptomic and proteomic profiles in a sensible and flexible manner. Our coupled mixture model defines a prior probability distribution over the component to which a protein profile should be assigned conditioned on which component the associated mRNA profile belongs to. By providing probabilistic assignments this approach sits between the two extremes of concatenating the data on the assumption that mRNA and protein clusters would have a one-to-one relationship, and independent clustering where the mRNA profile provides no information on the protein profile and vice-versa. We apply this approach to a large dataset of quantitative transcriptomic and proteomic expression data obtained from a human breast epithelial cell line (HMEC) stimulated by epidermal growth factor (EGF) over a series of timepoints corresponding to one cell cycle. The results reveal a complex relationship between transcriptome and proteome with most mRNA clusters linked to at least two protein clusters, and vice versa. A more detailed analysis incorporating information on gene function from the gene ontology database shows that a high correlation of mRNA and protein expression is limited to the components of some molecular machines, such as the ribosome, cell adhesion complexes and the TCP-1 chaperonin involved in protein folding. Conclusions: The dynamic regulation of the transcriptome and proteome in mammalian cells in response to an acute mitogenic stimulus appears largely independent with very little

  18. Implementation of a cluster Beowulf

    International Nuclear Information System (INIS)

    Victorino Guzman, Jorge Enrique

    2001-01-01

    One of the simulation systems that put a great stress on computational resources and performance are the climatic models, with a high cost of implementation, making difficult its acquisition. An alternative that offers good performance at a reasonable cost is the construction of Cluster Beowulf that allows to emulate the behaviour of a computer with several processors. In the present article we discuss the requirements of hardware for the construction of the Cluster Beowulf, the software resources for the implementation of the model CCM3.6 and the performance of the Cluster Beowulf, of the Group of Investigation in Meteorology at the National University of Colombia, with different number of processors

  19. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-05-01

    Full Text Available We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  20. *K-means and Cluster Models for Cancer Signatures

    OpenAIRE

    Kakushadze, Zura; Yu, Willie

    2017-01-01

    We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF’s. Using 1389 published samples for 14 cancer types, we find that 3 cancer...

  1. On tidal radius determination for a globular cluster

    International Nuclear Information System (INIS)

    Ninkovic, S.

    1985-01-01

    A tidal radius determination for a globular cluster based on its density minimum, which is caused by the galactic tidal forces and derivable from a model of the Galaxy, is proposed. Results obtained on the basis of the Schmidt model for two clusters are in a satisfactory agreement with those obtained earlier by means of other methods. A mass determination for the clusters through the tidal radius, when the latter one is identified with the cluster perigalactic distance, yields unusually large mass values. Probably, the tidal radius should be identified with the instantaneous galactocentric distance. Use of models more recent than the Schmidt one indicates that a globular cluster may contain a significant portion of an invisible interstellar matter. (author)

  2. Clustering aspects in nuclear structure functions

    International Nuclear Information System (INIS)

    Hirai, M.; Saito, K.; Watanabe, T.; Kumano, S.

    2011-01-01

    For understanding an anomalous nuclear effect experimentally observed for the beryllium-9 nucleus at the Thomas Jefferson National Accelerator Facility, clustering aspects are studied in structure functions of deep inelastic lepton-nucleus scattering by using momentum distributions calculated in antisymmetrized (or fermionic) molecular dynamics (AMD) and also in a simple shell model for comparison. According to AMD, the 9 Be nucleus consists of two α-like clusters with a surrounding neutron. The clustering produces high-momentum components in nuclear wave functions, which affects nuclear modifications of the structure functions. We investigated whether clustering features could appear in the structure function F 2 of 9 Be along with studies for other light nuclei. We found that nuclear modifications of F 2 are similar in both AMD and shell models within our simple convolution description although there are slight differences in 9 Be. It indicates that the anomalous 9 Be result should be explained by a different mechanism from the nuclear binding and Fermi motion. If nuclear-modification slopes d(F 2 A /F 2 D )/dx are shown by the maximum local densities, the 9 Be anomaly can be explained by the AMD picture, namely by the clustering structure, whereas it certainly cannot be described in the simple shell model. This fact suggests that the large nuclear modification in 9 Be should be explained by large densities in the clusters. For example, internal nucleon structure could be modified in the high-density clusters. The clustering aspect of nuclear structure functions is an unexplored topic which is interesting for future investigations.

  3. Spatial cluster detection using dynamic programming

    Directory of Open Access Journals (Sweden)

    Sverchkov Yuriy

    2012-03-01

    Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic

  4. Synthetic horizontal branch models for globular clusters - the luminosity of the horizontal branch and the Oosterhoff effect

    International Nuclear Information System (INIS)

    Lee, Y.W.; Demarque, P.; Zinn, R.

    1987-01-01

    The variation of horizontal-branch (HB) luminosities with metal abundances is analyzed on the basis of HB models synthesized from theoretical HB evolutionary tracks. The focus is on the Oosterhoff effect, as related to period shifts in globular-cluster RR Lyr variables. The construction of the models and the Oosterhoff period groups is explained in detail, and the implications for globular-cluster ages are considered. The ratio of Delta M(bol) (RR) to Delta Fe/H for the HB is calculated as 0.24, slightly steeper than that found by Sandage (1981 and 1982). 35 references

  5. Inelastic electron scattering as an indicator of clustering in wave functions

    International Nuclear Information System (INIS)

    1998-01-01

    While the shell model is the most fundamental of nuclear structure models, states in light nuclei also have been described successfully in terms of clusters. Indeed, Wildemuth and Tang have shown a correspondence between the cluster and shell models, the clusters arising naturally as correlations out of the shell model Hamiltonian. For light nuclei, the cluster model reduces the many-body problem to a few-body one, with interactions occurring between the clusters. These interactions involve particle exchanges, since the nucleons may still be considered somewhat freely moving, with their motion not strictly confined to the clusters themselves. Such is the relation of the cluster model to the shell model. For a realistic shell model then, one may expect some evidence of clustering in the wave functions for those systems in which the cluster model is valid. The results obtained using the multi-ℎωshell model wave functions are closer in agreement with experiment than the results obtained using the 0ℎωwave functions. Yet in all cases, that level of agreement is not good, with the calculations underpredicting the measured values by at least a factor of two. This indicates that the shell model wave functions do not exhibit clustering behavior, which is expected to manifest itself at small momentum transfer. The exception is the transition to the 7 - /2 state in 7 Li, for which the value obtained from the γ-decay width is in agreement with the value obtained from the MK3W and (0 + 2 + 4)ℎωshell model calculations

  6. Cluster dynamics models of irradiation damage accumulation in ferritic iron. II. Effects of reaction dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Kohnert, Aaron A.; Wirth, Brian D. [University of Tennessee, Knoxville, Tennessee 37996-2300 (United States)

    2015-04-21

    The black dot damage features which develop in iron at low temperatures exhibit significant mobility during in situ irradiation experiments via a series of discrete, intermittent, long range hops. By incorporating this mobility into cluster dynamics models, the temperature dependence of such damage structures can be explained with a surprising degree of accuracy. Such motion, however, is one dimensional in nature. This aspect of the physics has not been fully considered in prior models. This article describes one dimensional reaction kinetics in the context of cluster dynamics and applies them to the black dot problem. This allows both a more detailed description of the mechanisms by which defects execute irradiation-induced hops while allowing a full examination of the importance of kinetic assumptions in accurately assessing the development of this irradiation microstructure. Results are presented to demonstrate whether one dimensional diffusion alters the dependence of the defect population on factors such as temperature and defect hop length. Finally, the size of interstitial loops that develop is shown to depend on the extent of the reaction volumes between interstitial clusters, as well as the dimensionality of these interactions.

  7. Cluster Tracking with Time-of-Flight Cameras

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Hansen, Mads; Kirschmeyer, Martin

    2008-01-01

    We describe a method for tracking people using a time-of-flight camera and apply the method for persistent authentication in a smart-environment. A background model is built by fusing information from intensity and depth images. While a geometric constraint is employed to improve pixel cluster...... coherence and reducing the influence of noise, the EM algorithm (expectation maximization) is used for tracking moving clusters of pixels significantly different from the background model. Each cluster is defined through a statistical model of points on the ground plane. We show the benefits of the time...

  8. Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters

    Science.gov (United States)

    Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles

    2018-01-01

    Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.

  9. Further developments of the Neyman-Scott clustered point process for modeling rainfall

    Science.gov (United States)

    Cowpertwait, Paul S. P.

    1991-07-01

    This paper provides some useful results for modeling rainfall. It extends work on the Neyman-Scott cluster model for simulating rainfall time series. Several important properties have previously been found for the model, for example, the expectation and variance of the amount of rain captured in an arbitrary time interval (Rodriguez-Iturbe et al., 1987a), In this paper additional properties are derived, such as the probability of an arbitrary interval of any chosen length being dry. In applications this is a desirable property to have, and is often used for fitting stochastic rainfall models to field data. The model is currently being used in rainfall time series research directed toward improving sewage systems in the United Kingdom. To illustrate the model's performance an example is given, where the model is fitted to 10 years of hourly data taken from Blackpool, England.

  10. Effects of anisotropy on gravitational infall in galaxy clusters using an exact general relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Troxel, M.A.; Peel, Austin; Ishak, Mustapha, E-mail: troxel@utdallas.edu, E-mail: austin.peel@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX, 75083 (United States)

    2013-12-01

    We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaȋtre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall — the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found to increase by 2.5, 10, and 20 km s{sup −1} (0.5%, 2%, and 4.5%), respectively, for the same three levels of anisotropy. This response to the anisotropy in a structure is found to be strongly nonlinear with respect to the strength of anisotropy. These relative velocities correspond to an equivalent increase in the total mass of the spherically symmetric structure of 1%, 3.8%, and 8.4%, indicating that not accounting for the presence of anisotropic mass distributions in cluster models can strongly bias the determination of physical properties like the total mass.

  11. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.

    Science.gov (United States)

    Mo, Qianxing; Shen, Ronglai; Guo, Cui; Vannucci, Marina; Chan, Keith S; Hilsenbeck, Susan G

    2018-01-01

    Identification of clinically relevant tumor subtypes and omics signatures is an important task in cancer translational research for precision medicine. Large-scale genomic profiling studies such as The Cancer Genome Atlas (TCGA) Research Network have generated vast amounts of genomic, transcriptomic, epigenomic, and proteomic data. While these studies have provided great resources for researchers to discover clinically relevant tumor subtypes and driver molecular alterations, there are few computationally efficient methods and tools for integrative clustering analysis of these multi-type omics data. Therefore, the aim of this article is to develop a fully Bayesian latent variable method (called iClusterBayes) that can jointly model omics data of continuous and discrete data types for identification of tumor subtypes and relevant omics features. Specifically, the proposed method uses a few latent variables to capture the inherent structure of multiple omics data sets to achieve joint dimension reduction. As a result, the tumor samples can be clustered in the latent variable space and relevant omics features that drive the sample clustering are identified through Bayesian variable selection. This method significantly improve on the existing integrative clustering method iClusterPlus in terms of statistical inference and computational speed. By analyzing TCGA and simulated data sets, we demonstrate the excellent performance of the proposed method in revealing clinically meaningful tumor subtypes and driver omics features. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Nonthermal emission from clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, Doron; Waxman, Eli, E-mail: doron.kushnir@weizmann.ac.il, E-mail: eli.waxman@weizmann.ac.il [Physics Faculty, Weizmann Institute of Science, PO Box 26, Rehovot (Israel)

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10{sup 14.5}M{sub ☉}, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β{sub core} and η{sub e}. β{sub core} is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η{sub e(p)} is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β{sub core} ≅ η{sub p}/200, nearly independent of cluster mass and with a scatter Δln β{sub core} ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η{sub e}/η{sub p})(T/10 keV){sup −1/2} and ≅ 150(η{sub e}/η{sub p})(T/10 keV){sup −1/2} respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η{sub p} ∼ η{sub e} ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular

  13. Construct validation of the hybrid model of posttraumatic stress disorder: Distinctiveness of the new symptom clusters.

    Science.gov (United States)

    Silverstein, Madison W; Dieujuste, Nathalie; Kramer, Lindsay B; Lee, Daniel J; Weathers, Frank W

    2018-03-01

    Despite the factor analytic support for the seven-factor hybrid model (Armour et al., 2015) of posttraumatic stress disorder (PTSD), little research has examined the degree to which newly established symptom clusters (i.e., negative affect, anhedonia, dysphoric arousal, anxious arousal, externalizing behavior) functionally and meaningfully differ in their associations with other clinical phenomena. The aim of the current study was to examine the degree to which newly established PTSD symptom clusters differentially relate to co-occurring psychopathology and related clinical phenomena through Wald testing using latent variable modeling. Participants were 535 trauma-exposed undergraduates who completed the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5; Weathers et al., 2013) and Personality Assessment Inventory (PAI; Morey, 1991). As expected and in line with results from previous studies, significant heterogeneity emerged for dysphoric arousal, anxious arousal, and externalizing behavior. However, there was less evidence for the distinctiveness of negative affect and anhedonia. Results indicate that only some of the newly established symptom clusters significantly differ in their associations with related clinical phenomena and that the hybrid model might not provide a meaningful framework for understanding which PTSD symptoms relate to associated features. Limitations include a non-clinical sample and reliance on retrospective self-report assessment measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Dedicated Mixture Model for Clustering Smart Meter Data: Identification and Analysis of Electricity Consumption Behaviors

    Directory of Open Access Journals (Sweden)

    Fateh Nassim Melzi

    2017-09-01

    Full Text Available The large amount of data collected by smart meters is a valuable resource that can be used to better understand consumer behavior and optimize electricity consumption in cities. This paper presents an unsupervised classification approach for extracting typical consumption patterns from data generated by smart electric meters. The proposed approach is based on a constrained Gaussian mixture model whose parameters vary according to the day type (weekday, Saturday or Sunday. The proposed methodology is applied to a real dataset of Irish households collected by smart meters over one year. For each cluster, the model provides three consumption profiles that depend on the day type. In the first instance, the model is applied on the electricity consumption of users during one month to extract groups of consumers who exhibit similar consumption behaviors. The clustering results are then crossed with contextual variables available for the households to show the close links between electricity consumption and household socio-economic characteristics. At the second instance, the evolution of the consumer behavior from one month to another is assessed through variations of cluster sizes over time. The results show that the consumer behavior evolves over time depending on the contextual variables such as temperature fluctuations and calendar events.

  15. Fine structure of cluster decays

    International Nuclear Information System (INIS)

    Dumitrescu, O.

    1993-07-01

    Within the one level R-matrix approach the hindrance factors of the radioactive decays in which are emitted α and 14 C - nuclei are calculated. The generalization to radioactive decays in which are emitted heavier clusters such as e.g. 20 O, 24 Ne, 25 Ne, 28 Mg. 30 Mg, 32 Si and 34 Si is straightforward. The interior wave functions are supposed to be given by the shell model with effective residual interactions (e.g. the large scale shell model code-OXBASH - in the Michigan State University version for nearly spherical nuclei or by the enlarged superfluid model - ESM - recently proposed for deformed nuclei). The exterior wave functions are calculated from a cluster - nucleus double - folding model potential obtained with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 241 Am and 14 C -decay of 233 Ra. Good agreement with the experimental data is obtained. (author). 78 refs, 2 figs, 6 tabs

  16. Inelastic electron scattering as an indicator of clustering in wave functions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    While the shell model is the most fundamental of nuclear structure models, states in light nuclei also have been described successfully in terms of clusters. Indeed, Wildemuth and Tang have shown a correspondence between the cluster and shell models, the clusters arising naturally as correlations out of the shell model Hamiltonian. For light nuclei, the cluster model reduces the many-body problem to a few-body one, with interactions occurring between the clusters. These interactions involve particle exchanges, since the nucleons may still be considered somewhat freely moving, with their motion not strictly confined to the clusters themselves. Such is the relation of the cluster model to the shell model. For a realistic shell model then, one may expect some evidence of clustering in the wave functions for those systems in which the cluster model is valid. The results obtained using the multi-{Dirac_h}{omega}shell model wave functions are closer in agreement with experiment than the results obtained using the 0{Dirac_h}{omega}wave functions. Yet in all cases, that level of agreement is not good, with the calculations underpredicting the measured values by at least a factor of two. This indicates that the shell model wave functions do not exhibit clustering behavior, which is expected to manifest itself at small momentum transfer. The exception is the transition to the 7{sup -}/2 state in {sup 7}Li, for which the value obtained from the {gamma}-decay width is in agreement with the value obtained from the MK3W and (0 + 2 + 4){Dirac_h}{omega}shell model calculations 17 refs., 1 tab., 2 figs.

  17. nIFTy galaxy cluster simulations II: radiative models

    CSIR Research Space (South Africa)

    Sembolini, F

    2016-04-01

    Full Text Available Valerio 2, I-34127 Trieste, Italy 12Physics Department, University of the Western Cape, Cape Town 7535, Sotuh Africa 13Physics Department, University of Western Cape, Bellville, Cape Town 7535, South Africa 14South African Astronomical Observatory, PO Box...IFTy cluster comparison project (Sembolini et al., 2015): a study of the latest state-of- the-art hydrodynamical codes using simulated galaxy clusters as a testbed for theories of galaxy formation. Simulations are indis- pensable tools in the interpretation...

  18. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  19. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2011-01-01

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: → Electrodeposition of cobalt clusters. →Mono to multidomain magnetic transition. → Magnetic phase diagram.

  20. Cluster modeling of solid state defects and adsorbates: Beyond the Hartree-Fock level

    International Nuclear Information System (INIS)

    Kunz, A.B.

    1990-01-01

    The use of finite clusters of atoms to represent the physically interesting portion of a condensed matter system has been an accepted technique for the past two decades. Physical systems have been studied in this way using both density functional and Hartree-Fock methodologies, as well as a variety of empirical or semiempirical techniques. In this article, the author concentrates on the Hartree-Fock based methods. The attempt here is to construct a theoretical basis for the inclusion of correlation corrections in such an approach, as well as a strategy by which the limits of a finite cluster may be transcended in such a study. The initial appeal will be to a modeling approach, but methods to convert the model to a self-contained theory will be described. It will be seen for the case of diffusion of large ions in solids that such an approach is quite useful. A further study of the case of adsorption of rare gas atoms on simple metals will demonstrate the value of inclusion of electron correlation

  1. Persistence drives gene clustering in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Rocha Eduardo PC

    2008-01-01

    Full Text Available Abstract Background Gene clustering plays an important role in the organization of the bacterial chromosome and several mechanisms have been proposed to explain its extent. However, the controversies raised about the validity of each of these mechanisms remind us that the cause of this gene organization remains an open question. Models proposed to explain clustering did not take into account the function of the gene products nor the likely presence or absence of a given gene in a genome. However, genomes harbor two very different categories of genes: those genes present in a majority of organisms – persistent genes – and those present in very few organisms – rare genes. Results We show that two classes of genes are significantly clustered in bacterial genomes: the highly persistent and the rare genes. The clustering of rare genes is readily explained by the selfish operon theory. Yet, genes persistently present in bacterial genomes are also clustered and we try to understand why. We propose a model accounting specifically for such clustering, and show that indispensability in a genome with frequent gene deletion and insertion leads to the transient clustering of these genes. The model describes how clusters are created via the gene flux that continuously introduces new genes while deleting others. We then test if known selective processes, such as co-transcription, physical interaction or functional neighborhood, account for the stabilization of these clusters. Conclusion We show that the strong selective pressure acting on the function of persistent genes, in a permanent state of flux of genes in bacterial genomes, maintaining their size fairly constant, that drives persistent genes clustering. A further selective stabilization process might contribute to maintaining the clustering.

  2. Structure and clusters of light unstable nuclei

    International Nuclear Information System (INIS)

    En'yo, Yoshiko

    2010-01-01

    As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)

  3. JOINT ANALYSIS OF X-RAY AND SUNYAEV-ZEL'DOVICH OBSERVATIONS OF GALAXY CLUSTERS USING AN ANALYTIC MODEL OF THE INTRACLUSTER MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Hasler, Nicole; Bulbul, Esra; Bonamente, Massimiliano; Landry, David [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States); Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Mantz, Adam; Marrone, Daniel P.; Plagge, Thomas [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Hawkins, David; Lamb, James W.; Muchovej, Stephen [Owens Valley Radio Observatory, California Institute of Technology, Big Pine, CA 93513 (United States); Joy, Marshall; Kolodziejczak, Jeffery [Space Science-VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Miller, Amber [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Mroczkowski, Tony [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); and others

    2012-04-01

    We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204.

  4. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    Science.gov (United States)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  5. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Tinker, Jeremy L.; Blanton, Michael R.; Sheldon, Erin S.; Wechsler, Risa H.; Becker, Matthew R.; Rozo, Eduardo; Zu, Ying; Weinberg, David H.; Zehavi, Idit; Busha, Michael T.; Koester, Benjamin P.

    2012-01-01

    We place constraints on the average density (Ω m ) and clustering amplitude (σ 8 ) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w p (r p ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w p (r p ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w p (r p ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when Ω m or σ 8 is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w p (r p ) and M/N alone, we find Ω 0.5 m σ 8 = 0.465 ± 0.026, with individual constraints of Ω m = 0.29 ± 0.03 and σ 8 = 0.85 ± 0.06. Combined with current cosmic microwave background data, these constraints are Ω m = 0.290 ± 0.016 and σ 8 = 0.826 ± 0.020. All errors are 1σ. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.

  6. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tinker, Jeremy L.; Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10013 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Becker, Matthew R.; Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Zu, Ying; Weinberg, David H. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Zehavi, Idit [Department of Astronomy and CERCA, Case Western Reserve University, Cleveland, OH 44106 (United States); Busha, Michael T. [Institute for Theoretical Physics, Department of Physics, University of Zurich, CH-8057 Zurich (Switzerland); Koester, Benjamin P. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 6037 (United States)

    2012-01-20

    We place constraints on the average density ({Omega}{sub m}) and clustering amplitude ({sigma}{sub 8}) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w{sub p} (r{sub p} ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w{sub p} (r{sub p} ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w{sub p} (r{sub p} ) and M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when {Omega}{sub m} or {sigma}{sub 8} is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w{sub p} (r{sub p} ) and M/N alone, we find {Omega}{sup 0.5}{sub m}{sigma}{sub 8} = 0.465 {+-} 0.026, with individual constraints of {Omega}{sub m} = 0.29 {+-} 0.03 and {sigma}{sub 8} = 0.85 {+-} 0.06. Combined with current cosmic microwave background data, these constraints are {Omega}{sub m} = 0.290 {+-} 0.016 and {sigma}{sub 8} = 0.826 {+-} 0.020. All errors are 1{sigma}. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy

  7. Modeling and possible implementation of self-learning equivalence-convolutional neural structures for auto-encoding-decoding and clusterization of images

    Science.gov (United States)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-08-01

    Self-learning equivalent-convolutional neural structures (SLECNS) for auto-coding-decoding and image clustering are discussed. The SLECNS architectures and their spatially invariant equivalent models (SI EMs) using the corresponding matrix-matrix procedures with basic operations of continuous logic and non-linear processing are proposed. These SI EMs have several advantages, such as the ability to recognize image fragments with better efficiency and strong cross correlation. The proposed clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively processing algorithms and to k-average method. The experimental results confirmed that larger images and 2D binary fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an image with dimension of 256x256 (a reference array) and fragments with dimensions of 7x7 and 21x21 for clustering is carried out. The experiments, using the software environment Mathcad, showed that the proposed method is universal, has a significant convergence, the small number of iterations is easily, displayed on the matrix structure, and confirmed its prospects. Thus, to understand the mechanisms of self-learning equivalence-convolutional clustering, accompanying her to the competitive processes in neurons, and the neural auto-encoding-decoding and recognition principles with the use of self-learning cluster patterns is very important which used the algorithm and the principles of non-linear processing of two-dimensional spatial functions of images comparison. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar

  8. COCOA Code for Creating Mock Observations of Star Cluster Models

    OpenAIRE

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2017-01-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or \\textit{N}-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the C...

  9. Remarks on stellar clusters

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    In the following, a few simple remarks on the evolution and properties of stellar clusters will be collected. In particular, globular clusters will be considered. Though details of such clusters are often not known, a few questions can be clarified with the help of primitive arguments. These are:- why are spherical clusters spherical, why do they have high densities, why do they consist of approximately a million stars, how may a black hole of great mass form within them, may they be the origin of gamma-ray bursts, may their invisible remnants account for the missing mass of our galaxy. The available data do not warrant a detailed evaluation. However, it is remarkable that exceedingly simple models can shed some light on the questions enumerated above. (author)

  10. Density-Based Clustering with Geographical Background Constraints Using a Semantic Expression Model

    Directory of Open Access Journals (Sweden)

    Qingyun Du

    2016-05-01

    Full Text Available A semantics-based method for density-based clustering with constraints imposed by geographical background knowledge is proposed. In this paper, we apply an ontological approach to the DBSCAN (Density-Based Geospatial Clustering of Applications with Noise algorithm in the form of knowledge representation for constraint clustering. When used in the process of clustering geographic information, semantic reasoning based on a defined ontology and its relationships is primarily intended to overcome the lack of knowledge of the relevant geospatial data. Better constraints on the geographical knowledge yield more reasonable clustering results. This article uses an ontology to describe the four types of semantic constraints for geographical backgrounds: “No Constraints”, “Constraints”, “Cannot-Link Constraints”, and “Must-Link Constraints”. This paper also reports the implementation of a prototype clustering program. Based on the proposed approach, DBSCAN can be applied with both obstacle and non-obstacle constraints as a semi-supervised clustering algorithm and the clustering results are displayed on a digital map.

  11. Some properties of ion and cluster plasma

    International Nuclear Information System (INIS)

    Gudzenko, L.I.; Derzhiev, V.I.; Yakovlenko, S.I.

    1982-01-01

    The aggregate of problems connected with the physics of ion and cluster plasma is qualitatively considered. Such a plasma can exist when a dense gas is ionized by a hard ionizer. The conditions for the formation of an ion plasma and the difference between its characteristics and those of an ordinary electron plasma are discussed; a solvated-ion model and the distribution of the clusters with respect to the number of solvated molecules are considered. The recombination rate of the positively and negatively charged clusters is roughly estimated. The parameters of a ball-lightning plasma are estimated on the basis of the cluster model

  12. A High-Order CFS Algorithm for Clustering Big Data

    Directory of Open Access Journals (Sweden)

    Fanyu Bu

    2016-01-01

    Full Text Available With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learning model, whose functionality rests on three pillars: (i an adaptive dropout deep learning model to learn features from each type of data, (ii a feature tensor model to capture the correlations of heterogeneous data, and (iii a tensor distance-based high-order CFS algorithm to cluster heterogeneous data. Furthermore, we verify our proposed algorithm on different datasets, by comparison with other two clustering schemes, that is, HOPCM and CFS. Results confirm the effectiveness of the proposed algorithm in clustering heterogeneous data.

  13. Intergalactic stellar populations in intermediate redshift clusters

    Science.gov (United States)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  14. A first packet processing subdomain cluster model based on SDN

    Science.gov (United States)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.

  15. Is the non-isothermal double β-model incompatible with no time evolution of galaxy cluster gas mass fraction?

    Science.gov (United States)

    Holanda, R. F. L.

    2018-05-01

    In this paper, we propose a new method to obtain the depletion factor γ(z), the ratio by which the measured baryon fraction in galaxy clusters is depleted with respect to the universal mean. We use exclusively galaxy cluster data, namely, X-ray gas mass fraction (fgas) and angular diameter distance measurements from Sunyaev-Zel'dovich effect plus X-ray observations. The galaxy clusters are the same in both data set and the non-isothermal spherical double β-model was used to describe their electron density and temperature profiles. In order to compare our results with those from recent cosmological hydrodynamical simulations, we suppose a possible time evolution for γ(z), such as, γ(z) =γ0(1 +γ1 z) . As main conclusions we found that: the γ0 value is in full agreement with the simulations. On the other hand, although the γ1 value found in our analysis is compatible with γ1 = 0 within 2σ c.l., our results show a non-negligible time evolution for the depletion factor, unlike the results of the simulations. However, we also put constraints on γ(z) by using the fgas measurements and angular diameter distances obtained from the flat ΛCDM model (Planck results) and from a sample of galaxy clusters described by an elliptical profile. For these cases no significant time evolution for γ(z) was found. Then, if a constant depletion factor is an inherent characteristic of these structures, our results show that the spherical double β-model used to describe the galaxy clusters considered does not affect the quality of their fgas measurements.

  16. Calculations of light scattering matrices for stochastic ensembles of nanosphere clusters

    International Nuclear Information System (INIS)

    Bunkin, N.F.; Shkirin, A.V.; Suyazov, N.V.; Starosvetskiy, A.V.

    2013-01-01

    Results of the calculation of the light scattering matrices for systems of stochastic nanosphere clusters are presented. A mathematical model of spherical particle clustering with allowance for cluster–cluster aggregation is used. The fractal properties of cluster structures are explored at different values of the model parameter that governs cluster–cluster interaction. General properties of the light scattering matrices of nanosphere-cluster ensembles as dependent on their mean fractal dimension have been found. The scattering-matrix calculations were performed for finite samples of 10 3 random clusters, made up of polydisperse spherical nanoparticles, having lognormal size distribution with the effective radius 50 nm and effective variance 0.02; the mean number of monomers in a cluster and its standard deviation were set to 500 and 70, respectively. The implemented computation environment, modeling the scattering matrices for overall sequences of clusters, is based upon T-matrix program code for a given single cluster of spheres, which was developed in [1]. The ensemble-averaged results have been compared with orientation-averaged ones calculated for individual clusters. -- Highlights: ► We suggested a hierarchical model of cluster growth allowing for cluster–cluster aggregation. ► We analyzed the light scattering by whole ensembles of nanosphere clusters. ► We studied the evolution of the light scattering matrix when changing the fractal dimension

  17. The X-ray spectra of clusters of galaxies and their relationship to other cluster properties

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Dickens, R.J.; Burnell, S.J.B.; Culhane, J.L.

    1979-01-01

    New observations with the MSSL proportional counter spectrometer on the Ariel V satellite of the X-ray spectra of 20 candidate clusters of galaxies are reported. The data are compared with the results from the OSO-8 satellite and the combined sample of some 30 cluster X-ray spectra are analysed. The present study finds generally larger values of Lsub(X) than do Uhuru or the SSI, which, because of the larger field of view, may indicate significant amounts of hot gas away from the cluster centres. The validity of all X-ray cluster identifications has been examined, and sources have been classified according to certainty of identification. The incidence of X-ray line emission from the clusters has been investigated and temperatures, kTsub(X), have been derived on the basis of an isothermal model. Relationships between X-ray, optical and radio properties of the clusters have been studied. The more massive, centrally condensed clusters generally contain higher temperature gas and have a greater luminosity than the less massive, more irregular clusters. (author)

  18. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.; Hou, Siqing

    2017-01-01

    baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number

  19. Concordance of X-ray cluster data with big bang nucleosynthesis in mixed dark matter models

    International Nuclear Information System (INIS)

    Strickland, R.W.; Schramm, D.N.

    1997-01-01

    If the hot, X-ray-emitting gas in rich clusters forms a fair sample of the universe as in cold dark matter (CDM) models and the universe is at the critical density Ω T =1, then the data appear to imply a baryon fraction Ω b,X (Ω b,X ≡Ω b derived from X-ray cluster data), larger than that predicted by big bang nucleosynthesis (BBN). While other systematic effects such as clumping can lower Ω b,X , in this paper we use an elementary analysis to show that a simple admixture of hot dark matter (HDM; low-mass neutrinos) with CDM to yield mixed dark matter shifts Ω b,X down so that significant overlap with Ω b from BBN can occur for H 0 approx-lt 73kms -1 Mpc -1 , even without invoking the possible aforementioned effects. The overlap interval is slightly larger for lower mass neutrinos since fewer of them cluster on the scale of the hot X-ray gas. We illustrate this result quantitatively in terms of a simple isothermal model. More realistic velocity dispersion profiles, with less centrally peaked density profiles, imply that fewer neutrinos are trapped and thus further increase the interval of overlap. copyright 1997 The American Astronomical Society

  20. "K"-Means May Perform as well as Mixture Model Clustering but May Also Be Much Worse: Comment on Steinley and Brusco (2011)

    Science.gov (United States)

    Vermunt, Jeroen K.

    2011-01-01

    Steinley and Brusco (2011) presented the results of a huge simulation study aimed at evaluating cluster recovery of mixture model clustering (MMC) both for the situation where the number of clusters is known and is unknown. They derived rather strong conclusions on the basis of this study, especially with regard to the good performance of…

  1. Young star clusters in nearby molecular clouds

    Science.gov (United States)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  2. The three-cluster structures in 7Li

    International Nuclear Information System (INIS)

    Beck, R.; Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1981-01-01

    A cluster model for the description of light nuclei is investigated which includes the interplay of three-cluster structures with the two-cluster ones and allows molecule-like vibrations of clusters. It is applied to the nucleus 7 Li in order to study the influence of the trhee-cluster structures of the type ( 4 He- 2 H-n) on the low-lying states previously described by two-cluster structures ( 4 He- 3 H) and ( 6 Li-n). An effective central interaction is used in the calculation. The structure of the nucleus 7 Li is described by the two-cluster configuration ( 4 He- 3 H) and the three-cluster configurations ( 4 He- 2 H(Isub(d))-n), with Isub(d) = 0, 1, and the total spin I = 1/2, 3/2. In the wave function of three-cluster structure the pair of values L 1 = 0, L 2 = 1 only is included. The effective nuclear potential V2 of Volkov is used in the calculation. The energy of the ground state described by a single configuration of the two-cluster structure ( 4 He- 3 H) is lowered by 0.66 MeV when this configuration is coupled to two three-cluster configurations and the molecule-like vibration is allowed through solving the Hill-Wheeler equation. Both mechanism have approximately equal effects. The ground-state energy (-38.14 MeV) is 0.3 MeV lower than in the model which describes the 7 Li by a superposition of two-cluster structures ( 4 He- 3 H) and ( 6 Li-n). (orig./HSI)

  3. Computational Design of Clusters for Catalysis

    Science.gov (United States)

    Jimenez-Izal, Elisa; Alexandrova, Anastassia N.

    2018-04-01

    When small clusters are studied in chemical physics or physical chemistry, one perhaps thinks of the fundamental aspects of cluster electronic structure, or precision spectroscopy in ultracold molecular beams. However, small clusters are also of interest in catalysis, where the cold ground state or an isolated cluster may not even be the right starting point. Instead, the big question is: What happens to cluster-based catalysts under real conditions of catalysis, such as high temperature and coverage with reagents? Myriads of metastable cluster states become accessible, the entire system is dynamic, and catalysis may be driven by rare sites present only under those conditions. Activity, selectivity, and stability are highly dependent on size, composition, shape, support, and environment. To probe and master cluster catalysis, sophisticated tools are being developed for precision synthesis, operando measurements, and multiscale modeling. This review intends to tell the messy story of clusters in catalysis.

  4. Radiobiological analyse based on cell cluster models

    International Nuclear Information System (INIS)

    Lin Hui; Jing Jia; Meng Damin; Xu Yuanying; Xu Liangfeng

    2010-01-01

    The influence of cell cluster dimension on EUD and TCP for targeted radionuclide therapy was studied using the radiobiological method. The radiobiological features of tumor with activity-lack in core were evaluated and analyzed by associating EUD, TCP and SF.The results show that EUD will increase with the increase of tumor dimension under the activity homogeneous distribution. If the extra-cellular activity was taken into consideration, the EUD will increase 47%. Under the activity-lack in tumor center and the requirement of TCP=0.90, the α cross-fire influence of 211 At could make up the maximum(48 μm)3 activity-lack for Nucleus source, but(72 μm)3 for Cytoplasm, Cell Surface, Cell and Voxel sources. In clinic,the physician could prefer the suggested dose of Cell Surface source in case of the future of local tumor control for under-dose. Generally TCP could well exhibit the effect difference between under-dose and due-dose, but not between due-dose and over-dose, which makes TCP more suitable for the therapy plan choice. EUD could well exhibit the difference between different models and activity distributions,which makes it more suitable for the research work. When the user uses EUD to study the influence of activity inhomogeneous distribution, one should keep the consistency of the configuration and volume of the former and the latter models. (authors)

  5. Effects of cluster-shell competition and BCS-like pairing in 12C

    Science.gov (United States)

    Matsuno, H.; Itagaki, N.

    2017-12-01

    The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.

  6. THE INFRARED PROPERTIES OF EMBEDDED SUPER STAR CLUSTERS: PREDICTIONS FROM THREE-DIMENSIONAL RADIATIVE TRANSFER MODELS

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Remy; Whitney, Barbara A.; Wood, Kenneth

    2011-01-01

    With high-resolution infrared data becoming available that can probe the formation of high-mass stellar clusters for the first time, appropriate models that make testable predictions of these objects are necessary. We utilize a three-dimensional radiative transfer code, including a hierarchically clumped dusty envelope, to study the earliest stages of super star cluster (SSC) evolution. We explore a range of parameter space in geometric sequences that mimic the hypothesized evolution of an embedded SSC. The inclusion of a hierarchically clumped medium can make the envelope porous, in accordance with previous models and supporting observational evidence. The infrared luminosity inferred from observations can differ by a factor of two from the true value in the clumpiest envelopes depending on the viewing angle. The infrared spectral energy distribution also varies with viewing angle for clumpy envelopes, creating a range in possible observable infrared colors and magnitudes, silicate feature depths, and dust continua. General observable features of cluster evolution differ between envelopes that are relatively opaque or transparent to mid-infrared photons. For optically thick envelopes, evolution is marked by a gradual decline of the 9.8 μm silicate absorption feature depth and a corresponding increase in the visual/ultraviolet flux. For the optically thin envelopes, clusters typically begin with a strong hot dust component and silicates in emission, and these features gradually fade until the mid-infrared polycyclic aromatic hydrocarbon features are predominant. For the models with a smooth dust distribution, the Spitzer MIPS or Herschel PACS [70]-[160] color is a good probe of the stellar mass relative to the total mass or star formation efficiency (SFE). Likewise, the IRAC/MIPS [3.6]-[24] color can be used to constrain the R in and R out values of the envelope. However, clumpiness confuses the general trends seen in the smooth dust distribution models, making it

  7. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  8. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.

    2014-06-11

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  9. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.; Ugarte, M. D.; Goicoa, T.; Genton, Marc G.

    2014-01-01

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  10. Monopole excitations of the 12C nucleus in the cluster model

    International Nuclear Information System (INIS)

    Mikhelashvili, T.Ya.; Shirokov, A.M.; Smirnov, Yu.F.

    1990-01-01

    The monopole excitations of the 12 C nucleus are studied in the 3α-cluster model. The 3α-continuum is taken into account by means of scattering theory in the harmonic oscillator representation. Only the 'true' three-body scattering is considered. The role of the continuum is essential. Particularly, at excitation energies between 12-25 MeV, instead of a number of sharp resonances, a single smooth resonance on a broad pedestal arises. The pedestal may be easily misinterpreted as a 'background' in experimental studies. (author)

  11. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    Science.gov (United States)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  12. Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas

    Science.gov (United States)

    Paul, Subhajit; Das, Subir K.

    2018-03-01

    Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.

  13. Measurement Error Correction Formula for Cluster-Level Group Differences in Cluster Randomized and Observational Studies

    Science.gov (United States)

    Cho, Sun-Joo; Preacher, Kristopher J.

    2016-01-01

    Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and…

  14. A qualitative multi-attribute model for the selection of the private hydropower plant investments in Turkey: By foundation of the search results clustering engine (Carrot2, hydropower plant clustering, DEXi and DEXiTree

    Directory of Open Access Journals (Sweden)

    Burak Omer Saracoglu

    2016-03-01

    Full Text Available Purpose: The electricity demand in Turkey has been increasing for a while. Hydropower is one of the major electricity generation types to compensate this electricity demand in Turkey. Private investors (domestic and foreign in the hydropower electricity generation sector have been looking for the most appropriate and satisfactory new private hydropower investment (PHPI options and opportunities in Turkey. This study aims to present a qualitative multi-attribute decision making (MADM model, that is easy, straightforward, and fast for the selection of the most satisfactory reasonable PHPI options during the very early investment stages (data and information poorness on projects. Design/methodology/approach: The data and information of the PHPI options was gathered from the official records on the official websites. A wide and deep literature review was conducted for the MADM models and for the hydropower industry. The attributes of the model were identified, selected, clustered and evaluated by the expert decision maker (EDM opinion and by help of an open source search results clustering engine (Carrot2 (helpful for also comprehension. The PHPI options were clustered according to their installed capacities main property to analyze the options in the most appropriate, decidable, informative, understandable and meaningful way. A simple clustering algorithm for the PHPI options was executed in the current study. A template model for the selection of the most satisfactory PHPI options was built in the DEXi (Decision EXpert for Education and the DEXiTree software. Findings: The basic attributes for the selection of the PHPI options were presented and afterwards the aggregate attributes were defined by the bottom-up structuring for the early investment stages. The attributes were also analyzed by help of Carrot2. The most satisfactory PHPI options in Turkey in the big options data set were selected for each PHPI options cluster by the EDM evaluations in

  15. Charge exchange in galaxy clusters

    Science.gov (United States)

    Gu, Liyi; Mao, Junjie; de Plaa, Jelle; Raassen, A. J. J.; Shah, Chintan; Kaastra, Jelle S.

    2018-03-01

    Context. Though theoretically expected, the charge exchange emission from galaxy clusters has never been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As previously suggested, a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. Aim. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM-Newton. Methods: We introduce a sample of 21 clusters observed with the RGS. In order to search for O VIII charge exchange, the sample selection criterion is a >35σ detection of the O VIII Lyα line in the archival RGS spectra. The dominating thermal plasma emission is modeled and subtracted with a two-temperature thermal component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. Results: By the residual stacking, we do find a hint of a line-like feature at 14.82 Å, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8σ, and the average equivalent width is 2.5 × 10-4 keV. We further demonstrate that the putative feature can be barely affected by the systematic errors from continuum modeling and instrumental effects, or the atomic uncertainties of the neighboring thermal lines. Conclusions: Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we expect that the oxygen abundance could have been overestimated by 8-22% in previous X

  16. Molecular dynamic simulation on boron cluster implantation for shallow junction formation

    International Nuclear Information System (INIS)

    Yuan Li; Yu Min; Li Wei; Ji Huihui; Ren Liming; Zhan Kai; Huang Ru; Zhang Xing; Wang Yangyuan; Zhang Jinyu; Oka, Hideki

    2006-01-01

    Boron cluster ion implantation is a potential technology for shallow junction formation in integrated circuits manufacture. A molecular dynamic method for cluster implantation simulation, aiming at microelectronics application, is presented in this paper. Accurate geometric structures of boron clusters are described by the model, and the H atoms in clusters are included. A potential function taking the form of combining the ZBL and the SW potentials is presented here to model interaction among the atoms in the boron cluster. The impact of these models on cluster implantation simulation is investigated. There are notable impact on dopant distribution and amount of implantation defects with consideration of these models. The simulation on the distributions of B and H are verified by SIMS data

  17. Structure and dynamics of molecular clusters. 2. Melting and freezing of CCl4 clusters

    International Nuclear Information System (INIS)

    Bartell, L.S.; Chen, Jian

    1992-01-01

    Phase transitions of a 225-molecule cluster of carbon tetrachloride have been studied by a molecular dynamics simulation. A five-site model potential function was developed to reproduce the density and heat of vaporization of the bulk liquid. Computations began with orientationally disordered molecules distributed in fcc lattice sites of a nearly spherical cluster. The cluster was heated from a low temperature to 200 K in 10-deg steps of 50 ps each and then cooled to 10 K. Translational and rotational transitions were monitored by following several indicators including the translational and rotational diffusion and rotational entropies of individual molecules. Melting began at the surface and propagated inward as the temperature increased. Solidification of the molten cluster proceeded from the center to the surface. At the high cooling rate of the simulation, however, molecules were unable to organize into a crystalline array and solidified into a glassy structure instead. Except for spatial order, the indicators of degree of liquefaction exhibited almost the same temperature dependence in the crystsl → liquid as in the liquid → glass transition, a behavior that could be rationalized on the basis of Lindemann's theory of melting. Results were compared with predictions of an illustrative model due to Reiss, Mirabel, and Whetten. Qualitatively, the model included all of the features of the simulation. Quantitatively, the model grossly underestimated the range over which the melting transition took place. 40 refs., 10 figs., 1 tab

  18. Intracluster age gradients in numerous young stellar clusters

    Science.gov (United States)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  19. Conditions for the Evolution of Gene Clusters in Bacterial Genomes

    Science.gov (United States)

    Ballouz, Sara; Francis, Andrew R.; Lan, Ruiting; Tanaka, Mark M.

    2010-01-01

    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992

  20. Comparisons between observational color-magnitude diagrams and synthetic cluster diagrams for young star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Recker, S.A.; Brunish, W.M.; Mathews, G.J.

    1984-01-01

    Young star clusters ( 8 yr) in the Magellanic Clouds (MC) can be used to test the current status of the theory of stellar evolution as applied to intermediate and massive stars. The color-magnitude diagram of many young clusters in the MC shows large numbers of stars in both the main sequence and post main sequence evolutionary phases. Using a grid of stellar evolution models, synthetic cluster H-R diagrams are constructed and compared to observed color-magnitude diagrams to determine the age, age spread, and composition for any given cluster. In addition, for those cases where the data is of high quality, detailed comparisons between theory and observation can provide a diagnostic of the accuracy of the stellar evolution models. Initial indications of these comparisons suggest that the theoretical models should be altered to include: a larger value for the mixing length parameter, a larger rate of mass loss during the asymptotic giant branch phase, and possibly convective overshoot during the core burning phases. (Auth.)