WorldWideScience

Sample records for cluster chemistry structure

  1. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  2. Sodium-water clusters and their role in radiation chemistry

    International Nuclear Information System (INIS)

    Dhar, S.; Kestner, N.R.

    1988-01-01

    Studies of sodium-water clusters are presented which could serve as models for the recently suggested intermediate species in the radiation chemistry of water. The ionization potentials and the lower excited states of sodium with n-water molecules are calculated by ab initio quantum chemistry methods. The ionization potential calculated at the SCF level for the water monomer is 4.10 eV, which becomes 4.34 at the MP2 correlation level. The experimental value is 4.379 ± 0.002 eV. Structural data is presented for the lower members of the sodium with n-water clusters. In addition the Hartree-Fock calculations indicate that there should be some strong charge transfer to solvent transitions at higher energies. (author)

  3. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    Science.gov (United States)

    Turi, László

    2016-04-01

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  4. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary)

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  5. Contribution of radiation chemistry to cluster science

    International Nuclear Information System (INIS)

    Belloni, J.

    2006-01-01

    Nanoclusters are small objects made of a few atoms, with a size of a few nanometers at most, which constitute a state of matter, named mesoscopic, intermediary between the atom and the bulk metal. In the 70's, radiation chemistry experiments have demonstrated that metal clusters exhibited indeed, due to their very small size, specific properties distinct from the bulk metal. The properties, physical and chemical, change with the number of atoms they contain. Their optical absorption spectrum, for example, as well as their redox potential, depends on the nuclearity, and also on the environment. Radiation chemistry methods have been proven to be of high potentiality to induce small and size-monodispersed metal clusters, as nanocolloids or supported on various materials. Pulse radiolysis provides the means to study the dynamics of nucleation and growth of clusters, monoand bi-metallic, from the monomers to the stable nanoparticle and to observe directly their reactivity, especially to determine during the growth their nuclearity-dependent properties, such as the redox potential. These are of crucial importance for the understanding of the mechanism of the cluster growth itself, in the radiation-induced as well as in the chemical or photochemical reduction processes, and also of the mechanism of certain catalytic reactions. (authors)

  6. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B

  7. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Science.gov (United States)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  8. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    J. Lengyel

    2017-11-01

    Full Text Available We investigate the mixed sulfuric acid–water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT calculations. The microhydration of (H2SO4m(H2On clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4m(H2OnHSO4− and (H2OnH2SO4−. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4−  ⋅  ⋅  ⋅  H3O+ formation in the neutral H2SO4(H2On clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO42(H2On this process starts as early as n ≥ 2 water molecules. The (H2SO4m(H2OnHSO4− clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4−  ⋅  ⋅  ⋅  H3O+ ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2OnH2SO4− cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid–water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid–water aerosols are discussed.

  9. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  10. Contribution of radiation chemistry to the study of metal clusters.

    Science.gov (United States)

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development.

  11. Synthetic modeling chemistry of iron-sulfur clusters in nitric oxide signaling.

    Science.gov (United States)

    Fitzpatrick, Jessica; Kim, Eunsuk

    2015-08-18

    Nitric oxide (NO) is an important signaling molecule that is involved in many physiological and pathological functions. Iron-sulfur proteins are one of the main reaction targets for NO, and the [Fe-S] clusters within these proteins are converted to various iron nitrosyl species upon reaction with NO, of which dinitrosyl iron complexes (DNICs) are the most prevalent. Much progress has been made in identifying the origin of cellular DNIC generation. However, it is not well-understood which other products besides DNICs may form during [Fe-S] cluster degradation nor what effects DNICs and other degradation products can have once they are generated in cells. Even more elusive is an understanding of the manner by which cells cope with unwanted [Fe-S] modifications by NO. This Account describes our synthetic modeling efforts to identify cluster degradation products derived from the [2Fe-2S]/NO reaction in order to establish their chemical reactivity and repair chemistry. Our intent is to use the chemical knowledge that we generate to provide insight into the unknown biological consequences of cluster modification. Our recent advances in three different areas are described. First, new reaction conditions that lead to the formation of previously unrecognized products during the reaction of [Fe-S] clusters with NO are identified. Hydrogen sulfide (H2S), a gaseous signaling molecule, can be generated from the reaction between [2Fe-2S] clusters and NO in the presence of acid or formal H• (e(-)/H(+)) donors. In the presence of acid, a mononitrosyl iron complex (MNIC) can be produced as the major iron-containing product. Second, cysteine analogues can efficiently convert MNICs back to [2Fe-2S] clusters without the need for any other reagents. This reaction is possible for cysteine analogues because of their ability to labilize NO from MNICs and their capacity to undergo C-S bond cleavage, providing the necessary sulfide for [2Fe-2S] cluster formation. Lastly, unique dioxygen

  12. Bridging quantum chemistry and nuclear structure theory: Coupled-cluster calculations for closed- and open-shell nuclei

    International Nuclear Information System (INIS)

    Piecuch, Piotr; Wloch, Marta; Gour, Jeffrey R.; Dean, David J.; Papenbrock, Thomas; Hjorth-Jensen, Morten

    2005-01-01

    We review basic elements of the single-reference coupled-cluster theory and discuss large scale ab initio calculations of ground and excited states of 15O, 16O, and 17O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we obtain the converged results for 16O and promising preliminary results for 15O and 17O at the level of two-body interactions. The calculated properties other than energies include matter density, charge radius, and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to 7 or 8 major oscillator shells, for which non-truncated shell-model calculations for nuclei with A = 15 17 active particles are presently not possible. We argue that the use of coupled-cluster methods and computer algorithms developed by quantum chemists to calculate properties of nuclei is an important step toward the development of accurate and affordable many-body theories that cross the boundaries of various physical sciences

  13. Chemistry and kinetics of size-selected cobalt cluster cations at thermal energies. I. Reactions with CO

    Science.gov (United States)

    Guo, B. C.; Kerns, K. P.; Castleman, A. W., Jr.

    1992-06-01

    The chemistry and kinetics of size-selected Co+n cluster-ion (n=2-8) reactions with CO are studied using a selected ion drift tube affixed with a laser vaporization source operated under well-defined thermal conditions. All reactions studied in the present work are found to be association reactions. Their absolute rate constants, which are determined quantitatively, are found to have a strong dependence on cluster size. Similar to the cases of reactions with many other reactants such as H2 and CH4, Co+4 and Co+5 display a higher reactivity toward the CO molecule than do clusters of neighboring size. The multiple-collision conditions employed in the present work have enabled a determination of the maximum coordination number of CO molecules bound onto each Co+n cluster. It is found that the tetramer tends to bond 12 CO molecules, the pentamer 14 CO, hexamer 16 CO, and so on. The results are interpreted in terms of Lauher's calculation and the polyhedral skeletal electron pair theory. All the measured maximum coordination numbers correlate extremely well with the predictions of these theories, except for the trimer where the measured number is one CO less than the predicted value. The good agreement between experiment and theory enables one to gain some insight into the geometric structure of the clusters. Based on the present findings, the cobalt tetramer cation is interpreted to have a tetrahedral structure, the pentamer a trigonal bipyramid, and the hexamer an octahedral structure. Other cluster structures are also discussed.

  14. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  15. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  16. Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery.

    Science.gov (United States)

    Perualila-Tan, Nolen Joy; Shkedy, Ziv; Talloen, Willem; Göhlmann, Hinrich W H; Moerbeke, Marijke Van; Kasim, Adetayo

    2016-08-01

    The modern process of discovering candidate molecules in early drug discovery phase includes a wide range of approaches to extract vital information from the intersection of biology and chemistry. A typical strategy in compound selection involves compound clustering based on chemical similarity to obtain representative chemically diverse compounds (not incorporating potency information). In this paper, we propose an integrative clustering approach that makes use of both biological (compound efficacy) and chemical (structural features) data sources for the purpose of discovering a subset of compounds with aligned structural and biological properties. The datasets are integrated at the similarity level by assigning complementary weights to produce a weighted similarity matrix, serving as a generic input in any clustering algorithm. This new analysis work flow is semi-supervised method since, after the determination of clusters, a secondary analysis is performed wherein it finds differentially expressed genes associated to the derived integrated cluster(s) to further explain the compound-induced biological effects inside the cell. In this paper, datasets from two drug development oncology projects are used to illustrate the usefulness of the weighted similarity-based clustering approach to integrate multi-source high-dimensional information to aid drug discovery. Compounds that are structurally and biologically similar to the reference compounds are discovered using this proposed integrative approach.

  17. Exotic cluster structures on

    CERN Document Server

    Gekhtman, M; Vainshtein, A

    2017-01-01

    This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on \\mathcal{G} corresponds to a cluster structure in \\mathcal{O}(\\mathcal{G}). The authors have shown before that this conjecture holds for any \\mathcal{G} in the case of the standard Poisson-Lie structure and for all Belavin-Drinfeld classes in SL_n, n<5. In this paper the authors establish it for the Cremmer-Gervais Poisson-Lie structure on SL_n, which is the least similar to the standard one.

  18. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  19. Electronic structure of metal clusters

    International Nuclear Information System (INIS)

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  20. Cluster structure in Cf nuclei

    International Nuclear Information System (INIS)

    Singh, Shailesh K.; Biswal, S.K.; Bhuyan, M.; Patra, S.K.; Gupta, R.K.

    2014-01-01

    Due to the availability of advance experimental facilities, it is possible to probe the nuclei upto their nucleon level very precisely and analyzed the internal structure which will help us to resolve some mysterious problem of the decay of nuclei. Recently, the relativistic nuclear collision, confirmed the α cluster type structure in the 12 C which is the mile stone for the cluster structure in nuclei. The clustering phenomena in light and intermediate elements in nuclear chart is very interesting. There is a lot of work done by our group in the clustering behaviour of the nuclei. In this paper, the various prospectus of clustering in the isotopes of Cf nucleus including fission state is discussed. Here, 242 Cf isotope for the analysis, which is experimentally known is taken. The relativistic mean field model with well established NL3 parameter set is taken. For getting the exact ground state configuration of the isotopes, the calculation for minimizing the potential energy surface is performed by constraint method. The clustering structure of other Cf isotopes is discussed

  1. Alpha condensates and nonlocalized cluster structures

    International Nuclear Information System (INIS)

    Funaki, Yasuro

    2014-01-01

    We discuss a container structure for non-gaslike cluster states, in which single Tohsaki-Horiuchi-Schuck-ROpke (THSR) wave functions are shown to be almost 100% equivalent to the full solutions of the corresponding RGM/GCM equations, for the inversion doublet band states in 20 Ne, α-linear-chain states, and α + α + A cluster states in 9 Λ Be. The recognition of the fact that the THSR wave function describes well not only gaslike cluster states but also non-gaslike cluster states is a recent remarkable development of nuclear cluster physics. This fact tells us that the cluster structure is composed of cluster-mean-field motion under the constraint of inter-cluster Pauli repulsion, in which we call the cluster-mean-field potential the container. We demonstrate that the evolution of the cluster structure of a nucleus is governed by the size parameter of the cluster-mean-field potential (container), for 16 O nucleus

  2. Structure and bonding in clusters

    International Nuclear Information System (INIS)

    Kumar, V.

    1991-10-01

    We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab

  3. Modified genetic algorithms to model cluster structures in medium-size silicon clusters

    International Nuclear Information System (INIS)

    Bazterra, Victor E.; Ona, Ofelia; Caputo, Maria C.; Ferraro, Marta B.; Fuentealba, Patricio; Facelli, Julio C.

    2004-01-01

    This paper presents the results obtained using a genetic algorithm (GA) to search for stable structures of medium size silicon clusters. In this work the GA uses a semiempirical energy function to find the best cluster structures, which are further optimized using density-functional theory. For small clusters our results agree well with previously reported structures, but for larger ones different structures appear. This is the case of Si 36 where we report a different structure, with significant lower energy than those previously found using limited search approaches on common structural motifs. This demonstrates the need for global optimization schemes when searching for stable structures of medium-size silicon clusters

  4. α clustering with a hollow structure: Geometrical structure of α clusters from platonic solids to fullerene shape

    Science.gov (United States)

    Tohsaki, Akihiro; Itagaki, Naoyuki

    2018-01-01

    We study α -cluster structure based on the geometric configurations with a microscopic framework, which takes full account of the Pauli principle, and which also employs an effective internucleon force including finite-range three-body terms suitable for microscopic α -cluster models. Here, special attention is focused upon the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids (five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered. Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron, are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations, that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared with the other six configurations.

  5. Determination of the structures of small gold clusters on stepped magnesia by density functional calculations.

    Science.gov (United States)

    Damianos, Konstantina; Ferrando, Riccardo

    2012-02-21

    The structural modifications of small supported gold clusters caused by realistic surface defects (steps) in the MgO(001) support are investigated by computational methods. The most stable gold cluster structures on a stepped MgO(001) surface are searched for in the size range up to 24 Au atoms, and locally optimized by density-functional calculations. Several structural motifs are found within energy differences of 1 eV: inclined leaflets, arched leaflets, pyramidal hollow cages and compact structures. We show that the interaction with the step clearly modifies the structures with respect to adsorption on the flat defect-free surface. We find that leaflet structures clearly dominate for smaller sizes. These leaflets are either inclined and quasi-horizontal, or arched, at variance with the case of the flat surface in which vertical leaflets prevail. With increasing cluster size pyramidal hollow cages begin to compete against leaflet structures. Cage structures become more and more favourable as size increases. The only exception is size 20, at which the tetrahedron is found as the most stable isomer. This tetrahedron is however quite distorted. The comparison of two different exchange-correlation functionals (Perdew-Burke-Ernzerhof and local density approximation) show the same qualitative trends. This journal is © The Royal Society of Chemistry 2012

  6. Structure and clusters of light unstable nuclei

    International Nuclear Information System (INIS)

    En'yo, Yoshiko

    2010-01-01

    As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)

  7. Cluster analysis of track structure

    International Nuclear Information System (INIS)

    Michalik, V.

    1991-01-01

    One of the possibilities of classifying track structures is application of conventional partition techniques of analysis of multidimensional data to the track structure. Using these cluster algorithms this paper attempts to find characteristics of radiation reflecting the spatial distribution of ionizations in the primary particle track. An absolute frequency distribution of clusters of ionizations giving the mean number of clusters produced by radiation per unit of deposited energy can serve as this characteristic. General computation techniques used as well as methods of calculations of distributions of clusters for different radiations are discussed. 8 refs.; 5 figs

  8. The three-cluster structures in 7Li

    International Nuclear Information System (INIS)

    Beck, R.; Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1981-01-01

    A cluster model for the description of light nuclei is investigated which includes the interplay of three-cluster structures with the two-cluster ones and allows molecule-like vibrations of clusters. It is applied to the nucleus 7 Li in order to study the influence of the trhee-cluster structures of the type ( 4 He- 2 H-n) on the low-lying states previously described by two-cluster structures ( 4 He- 3 H) and ( 6 Li-n). An effective central interaction is used in the calculation. The structure of the nucleus 7 Li is described by the two-cluster configuration ( 4 He- 3 H) and the three-cluster configurations ( 4 He- 2 H(Isub(d))-n), with Isub(d) = 0, 1, and the total spin I = 1/2, 3/2. In the wave function of three-cluster structure the pair of values L 1 = 0, L 2 = 1 only is included. The effective nuclear potential V2 of Volkov is used in the calculation. The energy of the ground state described by a single configuration of the two-cluster structure ( 4 He- 3 H) is lowered by 0.66 MeV when this configuration is coupled to two three-cluster configurations and the molecule-like vibration is allowed through solving the Hill-Wheeler equation. Both mechanism have approximately equal effects. The ground-state energy (-38.14 MeV) is 0.3 MeV lower than in the model which describes the 7 Li by a superposition of two-cluster structures ( 4 He- 3 H) and ( 6 Li-n). (orig./HSI)

  9. Tug of war between AO-hybridization and aromaticity in dictating structures of Li-doped alkali clusters

    Science.gov (United States)

    Alexandrova, Anastassia N.

    2012-04-01

    Hybridization of atomic orbitals is a widely appreciated phenomenon in organic chemistry. Here, we demonstrate that hybridization also can dramatically impact the shapes of small all-alkali metal clusters, and oppose σ-aromaticity in defining cluster shapes. The valence-iso-electronic LiNa4- and LiK4- clusters adopt different global minimum structures: LiNa4- is a planar C2v (1A1) species distorted from the perfect pentagon, and LiK4- is a planar square D4h (1A1g) species with Li being in the centre. This effect is rooted in the different degrees of the 2s-2p hybridization in Li in response to binding to Na versus K.

  10. Clustering aspects in nuclear structure functions

    International Nuclear Information System (INIS)

    Hirai, M.; Saito, K.; Watanabe, T.; Kumano, S.

    2011-01-01

    For understanding an anomalous nuclear effect experimentally observed for the beryllium-9 nucleus at the Thomas Jefferson National Accelerator Facility, clustering aspects are studied in structure functions of deep inelastic lepton-nucleus scattering by using momentum distributions calculated in antisymmetrized (or fermionic) molecular dynamics (AMD) and also in a simple shell model for comparison. According to AMD, the 9 Be nucleus consists of two α-like clusters with a surrounding neutron. The clustering produces high-momentum components in nuclear wave functions, which affects nuclear modifications of the structure functions. We investigated whether clustering features could appear in the structure function F 2 of 9 Be along with studies for other light nuclei. We found that nuclear modifications of F 2 are similar in both AMD and shell models within our simple convolution description although there are slight differences in 9 Be. It indicates that the anomalous 9 Be result should be explained by a different mechanism from the nuclear binding and Fermi motion. If nuclear-modification slopes d(F 2 A /F 2 D )/dx are shown by the maximum local densities, the 9 Be anomaly can be explained by the AMD picture, namely by the clustering structure, whereas it certainly cannot be described in the simple shell model. This fact suggests that the large nuclear modification in 9 Be should be explained by large densities in the clusters. For example, internal nucleon structure could be modified in the high-density clusters. The clustering aspect of nuclear structure functions is an unexplored topic which is interesting for future investigations.

  11. Voting-based consensus clustering for combining multiple clusterings of chemical structures

    Directory of Open Access Journals (Sweden)

    Saeed Faisal

    2012-12-01

    Full Text Available Abstract Background Although many consensus clustering methods have been successfully used for combining multiple classifiers in many areas such as machine learning, applied statistics, pattern recognition and bioinformatics, few consensus clustering methods have been applied for combining multiple clusterings of chemical structures. It is known that any individual clustering method will not always give the best results for all types of applications. So, in this paper, three voting and graph-based consensus clusterings were used for combining multiple clusterings of chemical structures to enhance the ability of separating biologically active molecules from inactive ones in each cluster. Results The cumulative voting-based aggregation algorithm (CVAA, cluster-based similarity partitioning algorithm (CSPA and hyper-graph partitioning algorithm (HGPA were examined. The F-measure and Quality Partition Index method (QPI were used to evaluate the clusterings and the results were compared to the Ward’s clustering method. The MDL Drug Data Report (MDDR dataset was used for experiments and was represented by two 2D fingerprints, ALOGP and ECFP_4. The performance of voting-based consensus clustering method outperformed the Ward’s method using F-measure and QPI method for both ALOGP and ECFP_4 fingerprints, while the graph-based consensus clustering methods outperformed the Ward’s method only for ALOGP using QPI. The Jaccard and Euclidean distance measures were the methods of choice to generate the ensembles, which give the highest values for both criteria. Conclusions The results of the experiments show that consensus clustering methods can improve the effectiveness of chemical structures clusterings. The cumulative voting-based aggregation algorithm (CVAA was the method of choice among consensus clustering methods.

  12. Cluster structures influenced by interaction with a surface.

    Science.gov (United States)

    Witt, Christopher; Dieterich, Johannes M; Hartke, Bernd

    2018-05-30

    Clusters on surfaces are vitally important for nanotechnological applications. Clearly, cluster-surface interactions heavily influence the preferred cluster structures, compared to clusters in vacuum. Nevertheless, systematic explorations and an in-depth understanding of these interactions and how they determine the cluster structures are still lacking. Here we present an extension of our well-established non-deterministic global optimization package OGOLEM from isolated clusters to clusters on surfaces. Applying this approach to intentionally simple Lennard-Jones test systems, we produce a first systematic exploration that relates changes in cluster-surface interactions to resulting changes in adsorbed cluster structures.

  13. Structure based alignment and clustering of proteins (STRALCP)

    Science.gov (United States)

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  14. Clustering of low-valence particles: structure and kinetics.

    Science.gov (United States)

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  15. Groundwater Chemistry Regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China

    Directory of Open Access Journals (Sweden)

    Xinyan Li

    2018-03-01

    Full Text Available Knowledge of hydrochemical processes in groundwater helps to identify the relationship between geochemical processes and groundwater quality as well as to understand the hydrochemical evaluation of groundwater, which is important for the sustainable management of groundwater resources. This study aims to identify the chemical characteristics of groundwater in the area of Tongchuan City, China. A total of 58 groundwater samples were collected. A hierarchical cluster analysis divided samples into three clusters and six sub-clusters (cluster 1a, 1b, 2a, 2b, 3a, 3b according to hydrochemical facies. Graphical plots of multiple ionic ratios, saturation indices, and ion exchange indices were employed to examine hydrochemical processes that result in different hydrochemical facies of each cluster. Results show the predominance of carbonate and silicate weathering in cluster 1, silicate weathering in cluster 2, and carbonate weathering in cluster 3. Ionic exchange is a ubiquitous process among all clusters. The distribution of clusters is related to the regional geology, which may result in different hydrochemical processes. Two stratigraphic sections identify the differences in hydrochemical processes resulting from complex stratum structures and varied aquifer media. Cluster 2a shows an interesting difference in water chemistry along the groundwater flow path. Further study by oxygen and hydrogen isotope indicated that mixing between Quaternary and the Permian aquifers resulting from faulting is the main reason for the distinctive characteristic of cluster 2a.

  16. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  17. Structure-based classification and ontology in chemistry

    Directory of Open Access Journals (Sweden)

    Hastings Janna

    2012-04-01

    Full Text Available Abstract Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures, while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational

  18. Coexistence of Cluster Structure and Mean-field-type Structure in Medium-weight Nuclei

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Horiuchi, Hisashi; Kimura, Masaaki

    2006-01-01

    We have studied the coexistence of cluster structure and mean-field-type structure in 20Ne and 40Ca using Antisymmetrized Molecular Dynamics (AMD) + Generator Coordinate Method (GCM). By energy variation with new constraint for clustering, we calculate cluster structure wave function. Superposing cluster structure wave functions and mean-field-type structure wave function, we found that 8Be-12C, α-36Ar and 12C-28Si cluster structure are important components of K π = 0 3 + band of 20Ne, that of normal deformed band of 40Ca and that of super deformed band of 40Ca, respectively

  19. Quantum chemistry of the minimal CdSe clusters

    Science.gov (United States)

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei

    2008-08-01

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding

  20. A facility for using cluster research to study environmental problems

    International Nuclear Information System (INIS)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report

  1. A facility for using cluster research to study environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  2. Macropolyhedral boron-containing cluster chemistry [S2B16H17](-). A new eighteen-vertex thiaborane anion

    Czech Academy of Sciences Publication Activity Database

    Carr, MJ.; Clegg, W.; Kennedy, J.D.; Londesborough, Michael Geoffrey Stephen; Kilner, C. A.

    2010-01-01

    Roč. 75, č. 8 (2010), s. 807-812 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40320502 Keywords : borane cluster * thiaborane * macropolyhedral Subject RIV: CA - Inorganic Chemistry Impact factor: 0.853, year: 2010

  3. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng

    2016-08-26

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated protein structure classifications (e.g., SCOP and CATH) are very successful, but recently suffer the slow updating problem because of the increased throughput of newly solved protein structures. Thus, fully automatic methods to cluster proteins in the protein structure space have been designed and developed. In this study, we observed that the SCOP superfamilies are highly consistent with clustering trees representing hierarchical clustering procedures, but the tree cutting is very challenging and becomes the bottleneck of clustering accuracy. To overcome this challenge, we proposed a novel density-based K-nearest uphill clustering method that effectively eliminates noisy pairwise protein structure similarities and identifies density peaks as cluster centers. Specifically, the density peaks are identified based on K-nearest uphills (i.e., proteins with higher densities) and K-nearest neighbors. To our knowledge, this is the first attempt to apply and develop density-based clustering methods in the protein structure space. Our results show that our density-based clustering method outperforms the state-of-the-art clustering methods previously applied to the problem. Moreover, we observed that computational methods and human experts could produce highly similar clusters at high precision values, while computational methods also suggest to split some large superfamilies into smaller clusters. © 2016 Elsevier B.V.

  4. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  5. Structure and physical properties of silicon clusters and of vacancy clusters in bulk silicon

    International Nuclear Information System (INIS)

    Sieck, A.

    2000-01-01

    In this thesis the growth-pattern of free silicon clusters and vacancy clusters in bulk silicon is investigated. The aim is to describe and to better understand the cluster to bulk transition. Silicon structures in between clusters and solids feature new interesting physical properties. The structure and physical properties of silicon clusters can be revealed by a combination of theory and experiment, only. Low-energy clusters are determined with different optimization techniques and a density-functional based tight-binding method. Additionally, infrared and Raman spectra, and polarizabilities calculated within self-consistent field density-functional theory are provided for the smaller clusters. For clusters with 25 to 35 atoms an analysis of the shape of the clusters and the related mobilities in a buffer gas is given. Finally, the clusters observed in low-temperature experiments are identified via the best match between calculated properties and experimental data. Silicon clusters with 10 to 15 atoms have a tricapped trigonal prism as a common subunit. Clusters with up to about 25 atoms follow a prolate growth-path. In the range from 24 to 30 atoms the geometry of the clusters undergoes a transition towards compact spherical structures. Low-energy clusters with up to 240 atoms feature a bonding pattern strikingly different from the tetrahedral bonding in the solid. It follows that structures with dimensions of several Angstroem have electrical and optical properties different from the solid. The calculated stabilities and positron-lifetimes of vacancy clusters in bulk silicon indicate the positron-lifetimes of about 435 ps detected in irradiated silicon to be related to clusters of 9 or 10 vacancies. The vacancies in these clusters form neighboring hexa-rings and, therefore, minimize the number of dangling bonds. (orig.)

  6. Structure of bimetallic clusters. Extended x-ray absorption fine structure (EXAFS) studies of Rh--Cu clusters

    International Nuclear Information System (INIS)

    Meitzner, G.; Via, G.H.; Lytle, F.W.; Sinfelt, J.H.

    1983-01-01

    An investigation of the structure of the bimetallic clusters present in rhodium--copper catalysts was conducted with the use of extended x-ray absorption fine structure (EXAFS) measurements. Two catalysts were studied, both employing silica as a support for the clusters and both containing 1 wt. % rhodium. In one catalyst the Cu:Rh atomic ratio was 1:2 and in the other 1:1. Studies were made of the EXAFS associated with the K absorption edges of the rhodium and copper. The results of the EXAFS studies indicate that copper concentrates at the surface of the rhodium--copper clusters. In this regard the results are similar to our earlier reported results on ruthenium--copper clusters. However, the extent of surface segregation of the copper appears to be less pronounced for rhodium--copper clusters. This result is reasonable on the basis that rhodium and copper, unlike ruthenium and copper, exhibit at least some miscibility in the bulk

  7. Enhancing prospective chemistry teachers cognitive structures in the topics of bonding and hybridization by internet-assisted chemistry applications

    Directory of Open Access Journals (Sweden)

    Özge Özyalçın Oskay, Sinem Dinçol

    2011-08-01

    Full Text Available The purpose of this study is to determine the effects of internet-assisted chemistry applications on prospective chemistry teachers’ cognitive structures in the topics of bonding and hybridization. The sample of the study consisted of 36 prospective chemistry teachers attending Hacettepe University, Faculty of Education, the Department of Chemistry Education in 2010-2011 academic year and taking Basic Chemistry I lesson. In the study, students were separated into experimental and control groups according to their pre-cognitive structures. Students were requested to answer two open ended questions. Answers by each student were gathered and evaluated by flow map method. “Bonding and hybridization” topics were taught to control group with traditional teaching method and to experimental group besides traditional method internet-assisted applications were conducted. The same open-ended questions were given to both groups and their cognitive structures were examined once more. The differences between control and experimental groups’ cognitive structures were examined. A significant difference was identified in favour of experimental group (p<0, 05. The mean score of the Experimental group was X=19.94, and the mean score of the Control group was X=13.88. In addition, subsequent to internet assisted chemistry applications differences in terms of concepts and descriptions in prospective chemistry teachers’ in experimental and control group cognitive structure have been determined. When post flow maps of prospective chemistry teachers in experimental group, on whom internet assisted chemistry applications were made, are formed, it has been determined that there are more statements about hybridization, hybridization types, molecule geometry and bond angles compared to control grou

  8. Mo{sub 2}B{sub 4}O{sub 9} - connecting borate and metal-cluster chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Martin K.; Huppertz, Hubert [Institut fuer Allgemeine, Anorganische und Theoretische Chemie, Universitaet Innsbruck (Austria); Janka, Oliver; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Benndorf, Christopher [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institut fuer Mineralogie, Kristallographie und Materialwissenschaften, Universitaet Leipzig (Germany); Oliveira, Marcos de Jr. [Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos (Brazil); Eckert, Hellmut [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos (Brazil); Pielnhofer, Florian; Tragl, Amadeus-Samuel [Institut fuer Anorganische Chemie, Universitaet Regensburg (Germany); Weihrich, Richard [Institut fuer Materials Resource Management, Universitaet Augsburg (Germany); Joachim, Bastian [Institut fuer Mineralogie und Petrographie, Universitaet Innsbruck (Austria); Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2017-06-01

    We report on the first thoroughly characterized molybdenum borate, which was synthesized in a high-pressure/high-temperature experiment at 12.3 GPa/1300 C using a Walker-type multianvil apparatus. Mo{sub 2}B{sub 4}O{sub 9} incorporates tetrahedral molybdenum clusters into an anionic borate crystal structure - a structural motif that has never been observed before in the wide field of borate crystal chemistry. The six bonding molecular orbitals of the [Mo{sub 4}] tetrahedron are completely filled with 12 electrons, which are fully delocalized over the four molybdenum atoms. This finding is in agreement with the results of the magnetic measurements, which confirmed the diamagnetic character of Mo{sub 2}B{sub 4}O{sub 9}. The two four-coordinated boron sites can be differentiated in the {sup 11}B MAS-NMR spectrum because of the strongly different degrees of local distortions. Experimentally obtained IR and Raman bands were assigned to vibrational modes based on DFT calculations. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.

    Science.gov (United States)

    Müller, Achim; Gouzerh, Pierre

    2012-11-21

    Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry. The present review presents the first comprehensive report of current knowledge (including synthesis aspects not discussed before) regarding the related giant metal-oxide clusters mainly of the type {Mo(57)M'(6)} (M' = Fe(III), V(IV)) (torus structure), {M(72)M'(30)} (M = Mo, M' = V(IV), Cr(III), Fe(III), Mo(V)), {M(72)Mo(60)} (M = Mo, W) (Keplerates), {Mo(154)}, {Mo(176)}, {Mo(248)} ("big wheels"), and {Mo(368)} ("blue lemon") - all having the important transferable pentagonal {(M)M(5)} groups in common. These discoveries expanded the frontiers of inorganic chemistry to the mesoscopic world, while there is probably no collection of discrete inorganic compounds which offers such a versatile chemistry and the option to study new phenomena of interdisciplinary interest. The variety of different properties of the sphere- and wheel-type metal-oxide-based clusters can directly be related to their unique architectures: The spherical Keplerate-type capsules having 20 crown-ether-type pores and tunable internal functionalities allow the investigation of confined matter as well as that of sphere-surface-supramolecular and encapsulation chemistry - including related new aspects of the biologically important hydrophobic effects - but also of nanoscale ion transport and

  10. Geometric and electronic structures of small GaN clusters

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin

    2004-08-02

    The geometric and electronic structures of Ga{sub x}N{sub y} (x+y{<=}8) clusters have been calculated using a full-potential linear-muffin-tin-orbital method, combined with molecular dynamics and simulated annealing techniques. It is found that the structures, binding energies and HOMO-LUMO gaps of these clusters strongly depend on their size and composition. The lowest energy structures of these clusters are obtained, and the trends in the geometries are discussed. The binding energy of the cluster increases as the size of cluster increases. N-rich cluster has larger binding energy than Ga-rich ones. The HOMO-LUMO gaps of these clusters are evaluated.

  11. The clustered nucleus-cluster structures in stable and unstable nuclei

    International Nuclear Information System (INIS)

    Freer, Martin

    2007-01-01

    The subject of clustering has a lineage which runs throughout the history of nuclear physics. Its attraction is the simplification of the often uncorrelated behaviour of independent particles to organized and coherent quasi-crystalline structures. In this review the ideas behind the development of clustering in light nuclei are investigated, mostly from the stand-point of the harmonic oscillator framework. This allows a unifying description of alpha-conjugate and neutron-rich nuclei, alike. More sophisticated models of clusters are explored, such as antisymmetrized molecular dynamics. A number of contemporary topics in clustering are touched upon; the 3α-cluster state in 12 C, nuclear molecules and clustering at the drip-line. Finally, an understanding of the 12 C+ 12 C resonances in 24 Mg, within the framework of the theoretical ideas developed in the review, is presented

  12. Towards a unified developments of cluster science

    International Nuclear Information System (INIS)

    Wang Guanghou

    1998-01-01

    In the development of cluster science many concepts and methods have been introduced from nuclear physics, condensed matter physics and quantum chemistry, forming an interdisciplinary field between atomic and molecular physics on the one hand and condensed matter physics on the other hand. Recent achievements in the study of the structures and properties of clusters are reviewed in comparison with those of nuclei and quantum dots

  13. Quantum cluster algebra structures on quantum nilpotent algebras

    CERN Document Server

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  14. Structural Chemistry of Human RNA Methyltransferases.

    Science.gov (United States)

    Schapira, Matthieu

    2016-03-18

    RNA methyltransferases (RNMTs) play important roles in RNA stability, splicing, and epigenetic mechanisms. They constitute a promising target class that is underexplored by the medicinal chemistry community. Information of relevance to drug design can be extracted from the rich structural coverage of human RNMTs. In this work, the structural chemistry of this protein family is analyzed in depth. Unlike most methyltransferases, RNMTs generally feature a substrate-binding site that is largely open on the cofactor-binding pocket, favoring the design of bisubstrate inhibitors. Substrate purine or pyrimidines are often sandwiched between hydrophobic walls that can accommodate planar ring systems. When the substrate base is laying on a shallow surface, a 5' flanking base is sometimes anchored in a druggable cavity. The cofactor-binding site is structurally more diverse than in protein methyltransferases and more druggable in SPOUT than in Rossman-fold enzymes. Finally, conformational plasticity observed both at the substrate and cofactor binding sites may be a challenge for structure-based drug design. The landscape drawn here may inform ongoing efforts toward the discovery of the first human RNMT inhibitors.

  15. Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Cowan, J A

    2017-10-01

    Monothiol glutaredoxins (Grx) serve as intermediate cluster carriers in iron-sulfur cluster trafficking. The [2Fe-2S]-bound holo forms of Grx proteins display cysteinyl coordination from exogenous glutathione (GSH), in addition to contact from protein-derived Cys. Herein, we report mechanistic studies that investigate the role of exogenous glutathione in defining cluster chirality, ligand exchange, and the cluster transfer chemistry of Saccharomyces cerevisiae Grx3. Systematic perturbations were introduced to the glutathione-binding site by substitution of conserved charged amino acids that form crucial electrostatic contacts with the glutathione molecule. Native Grx3 could also be reconstituted in the absence of glutathione, with either DTT, BME or free L-cysteine as the source of the exogenous Fe-S ligand contact, while retaining full functional reactivity. The delivery of the [2Fe-2S] cluster to Grx3 from cluster donor proteins such as Isa, Nfu, and a [2Fe-2S](GS) 4 complex, revealed that electrostatic contacts are of key importance for positioning the exogenous glutathione that in turn influences the chiral environment of the cluster. All Grx3 derivatives were reconstituted by standard chemical reconstitution protocols and found to transfer cluster to apo ferredoxin 1 (Fdx1) at rates comparable to native protein, even when using DTT, BME or free L-cysteine as a thiol source in place of GSH during reconstitution. Kinetic analysis of cluster transfer from holo derivatives to apo Fdx1 has led to a mechanistic model for cluster transfer chemistry of native holo Grx3, and identification of the likely rate-limiting step for the reaction.

  16. A facility for using cluster research to study environmental problems. Workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  17. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  18. Structural properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  19. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  20. Chemistry and structure of technetium complexes

    International Nuclear Information System (INIS)

    Baldas, J.; Boas, J.F.; Bonnyman, J.; Williams, G.A.

    1983-01-01

    The structures of tris(2-aminobenzenethiolato) technetium(VI) and dichlorobis(diethyldithiocarbamato) thionitrosyltechnetium(V) have been determined by single crystal x-ray diffraction analysis. The preparation and chemistry of thiocyanato complexes of technetium have been investigated

  1. Theoretical study of structures of Ga5N5 cluster

    International Nuclear Information System (INIS)

    Song Bin; Cao Peilin

    2002-01-01

    The structures and energies of a Ga 5 N 5 cluster have been calculated using a full-potential linear-muffin-tin-orbital (FP-LMTO) method, combined with molecular dynamics technique. Twenty-four structures for a Ga 5 N 5 cluster have been obtained. The most stable structure is a C 1 planar structure with a N 3 subunit. The Ga 5 N 5 clusters show a preference for a N 3 subunit, revealing the same behavior as in the Ga 3 N 3 and Ga 4 N 4 clusters. The existence of strong N-N bonds dominates the structure of a Ga 5 N 5 cluster. Through the calculation of the density of states we found that the most stable structure of Ga 5 N 5 clusters presented semiconductor-like properties

  2. Cluster structure of 20Ne and 40Ca

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka

    2004-01-01

    A d-constraint for calculating the wave functions of various kinds of configurations of cluster structure and optimizing the inside wave functions of the cluster was developed. The wave functions of various kinds of cluster structures were calculated by constraining and energy variation of the antisymmetrized molecular dynamics wave functions. The cluster structure of nucleus was reproduced by linear combination of the above wave functions by the generator coordinate method. By superposition of both wave functions calculated using d-constraint and β-constraint, K π =O 3 + rotation band of 20 Ne was reproduced. The excitation energies of 20 Ne were calculated. The result of calculation energies of α- 36 Ar structure of 40 Ca are higher values than expected them. Framework, AMD wave function, constraint, calculation results and discussions are stated. (S.Y.)

  3. Structural profiles of human miRNA families from pairwise clustering

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Þórarinsson, Elfar; Reiche, Kristin

    2009-01-01

    secondary structure already predicted, little is known about the patterns of structural conservation among pre-miRNAs. We address this issue by clustering the human pre-miRNA sequences based on pairwise, sequence and secondary structure alignment using FOLDALIGN, followed by global multiple alignment...... of obtained clusters by WAR. As a result, the common secondary structure was successfully determined for four FOLDALIGN clusters: the RF00027 structural family of the Rfam database and three clusters with previously undescribed consensus structures. Availability: http://genome.ku.dk/resources/mirclust...

  4. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao; Li, Kun; Yao, Yingbang; Wang, Qingxiao; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Xixiang; Yang, Wei

    2012-01-01

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first

  5. Structural stability of nano-sized clusters

    NARCIS (Netherlands)

    De Hosson, JTM; Palasantzas, G; Vystavel, T; Koch, S; Ovidko,; Pande, CS; Krishnamoorti, R; Lavernia, E; Skandan, G

    2004-01-01

    This contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during

  6. Chemistry and cosmology.

    Science.gov (United States)

    Black, John H

    2006-01-01

    The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe.

  7. Enhancing prospective chemistry teachers cognitive structures in the topics of bonding and hybridization by internet-assisted chemistry applications

    OpenAIRE

    Özge Özyalçın Oskay, Sinem Dinçol

    2011-01-01

    The purpose of this study is to determine the effects of internet-assisted chemistry applications on prospective chemistry teachers’ cognitive structures in the topics of bonding and hybridization. The sample of the study consisted of 36 prospective chemistry teachers attending Hacettepe University, Faculty of Education, the Department of Chemistry Education in 2010-2011 academic year and taking Basic Chemistry I lesson. In the study, students were separated into experimental and control gr...

  8. Fast large-scale clustering of protein structures using Gauss integrals

    DEFF Research Database (Denmark)

    Harder, Tim; Borg, Mikael; Boomsma, Wouter

    2011-01-01

    trajectories. Results: We present Pleiades, a novel approach to clustering protein structures with a rigorous mathematical underpinning. The method approximates clustering based on the root mean square deviation by rst mapping structures to Gauss integral vectors – which were introduced by Røgen and co......-workers – and subsequently performing K-means clustering. Conclusions: Compared to current methods, Pleiades dramatically improves on the time needed to perform clustering, and can cluster a signicantly larger number of structures, while providing state-ofthe- art results. The number of low energy structures generated...

  9. Cu cluster shell structure at elevated temperatures

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1991-01-01

    Equilibrium structures of small (3–29)-atom Cu clusters are determined by simulated annealing, and finite-temperature ensembles are simulated by Monte Carlo techniques using the effective-medium theory for the energy calculation. Clusters with 8, 18, and 20 atoms are found to be particularly stable....... The equilibrium geometrical structures are determined and found to be determined by a Jahn-Teller distortion, which is found to affect the geometry also at high temperatures. The ‘‘magic’’ clusters retain their large stability even at elevated temperatures....

  10. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  11. Dynamics of cluster structures in a financial market network

    Science.gov (United States)

    Kocheturov, Anton; Batsyn, Mikhail; Pardalos, Panos M.

    2014-11-01

    In the course of recent fifteen years the network analysis has become a powerful tool for studying financial markets. In this work we analyze stock markets of the USA and Sweden. We study cluster structures of a market network constructed from a correlation matrix of returns of the stocks traded in each of these markets. Such cluster structures are obtained by means of the P-Median Problem (PMP) whose objective is to maximize the total correlation between a set of stocks called medians of size p and other stocks. Every cluster structure is an undirected disconnected weighted graph in which every connected component (cluster) is a star, or a tree with one central node (called a median) and several leaf nodes connected with the median by weighted edges. Our main observation is that in non-crisis periods of time cluster structures change more chaotically, while during crises they show more stable behavior and fewer changes. Thus an increasing stability of a market graph cluster structure obtained via the PMP could be used as an indicator of a coming crisis.

  12. Linkage of molecular units in the chemistry of niobium and tantalum cluster halides

    International Nuclear Information System (INIS)

    Perrin, C.; Sergent, M.

    1991-01-01

    In low valency niobium and tantalum halides, interunit linkages are observed between the (Me 6 X 12 )X 6 units. They are insulators and interesting magnetic properties are observed, due to the intrinsic potential magnetism of the Me 6 cluster and depending on the inserted cations, for instance rare earths in MM'Nb 6 Cl 18 (M = monovalent cation, M' = rare earth). Of special interest are the niobium iodides which exhibit (Me 6 X 8 )X 6 units, an exception in the niobium chemistry; interesting properties have been reported for some of these iodides

  13. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function.

    Science.gov (United States)

    Wesley, Nathaniel A; Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2017-11-01

    Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster. © 2017 Federation of European Biochemical Societies.

  14. Structure of small rare earth clusters

    International Nuclear Information System (INIS)

    Rayane, D.; Benamar, A.; Tribollet, B.; Broyer, M.; Melinon, P.

    1991-01-01

    Rare earth clusters are produced by the inert gas condensation technique. The observed size distribution shows large peaks at n=13, 19, 23, 26, 29, 32, 34, 37, 39, 45, .... The beginning of this sequence (up to 34) has been already observed in argon clusters and recently by our group in barium clusters; this sequence may be interpreted in terms of icosahedral structures corresponding to the addition of caps on a core icosahedron of 13 atoms. (orig.)

  15. Clustering coefficient and community structure of bipartite networks

    Science.gov (United States)

    Zhang, Peng; Wang, Jinliang; Li, Xiaojia; Li, Menghui; Di, Zengru; Fan, Ying

    2008-12-01

    Many real-world networks display natural bipartite structure, where the basic cycle is a square. In this paper, with the similar consideration of standard clustering coefficient in binary networks, a definition of the clustering coefficient for bipartite networks based on the fraction of squares is proposed. In order to detect community structures in bipartite networks, two different edge clustering coefficients LC4 and LC3 of bipartite networks are defined, which are based on squares and triples respectively. With the algorithm of cutting the edge with the least clustering coefficient, communities in artificial and real world networks are identified. The results reveal that investigating bipartite networks based on the original structure can show the detailed properties that is helpful to get deep understanding about the networks.

  16. Teaching Beginning Chemistry Students Simple Lewis Dot Structures

    Science.gov (United States)

    Nassiff, Peter; Czerwinski, Wendy A.

    2015-01-01

    Students beginning their initial study of chemistry often have a difficult time mastering simple Lewis dot structures. Textbooks show students how to manipulate Lewis structures by moving valence electron dots around the chemical structure so each atom has an octet or duet. However, an easier method of teaching Lewis structures for simple…

  17. Beyond Low-Rank Representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering.

    Science.gov (United States)

    Wang, Yang; Wu, Lin

    2018-07-01

    Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Computational Design of Clusters for Catalysis

    Science.gov (United States)

    Jimenez-Izal, Elisa; Alexandrova, Anastassia N.

    2018-04-01

    When small clusters are studied in chemical physics or physical chemistry, one perhaps thinks of the fundamental aspects of cluster electronic structure, or precision spectroscopy in ultracold molecular beams. However, small clusters are also of interest in catalysis, where the cold ground state or an isolated cluster may not even be the right starting point. Instead, the big question is: What happens to cluster-based catalysts under real conditions of catalysis, such as high temperature and coverage with reagents? Myriads of metastable cluster states become accessible, the entire system is dynamic, and catalysis may be driven by rare sites present only under those conditions. Activity, selectivity, and stability are highly dependent on size, composition, shape, support, and environment. To probe and master cluster catalysis, sophisticated tools are being developed for precision synthesis, operando measurements, and multiscale modeling. This review intends to tell the messy story of clusters in catalysis.

  19. Recent development in clusters of rare earths and actinides. Chemistry and materials

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhiping (ed.) [Arizona Univ., Tucson, AZ (United States). Dept. of Chemistry and Biochemistry

    2017-02-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  20. Recent development in clusters of rare earths and actinides. Chemistry and materials

    International Nuclear Information System (INIS)

    Zheng, Zhiping

    2017-01-01

    This book contains the following eight contributions: 1. Lanthanide Hydroxide Cluster Complexes via Ligand-Controlled Hydrolysis of the Lanthanide Ions (Zhonghao Zhang, Yanan Zhang, and Zhiping Zheng); 2. Synthesis and Structures of Lanthanide-Transition Metal Clusters (Xiu-Ying Zheng, Xiang-Jian Kong, and La-Sheng Long); 3. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy (Jian-Wen Cheng and Guo-Yu Yang); 4. Oxo Clusters of 5f Elements (Sarah Hickam and Peter C.); 5. Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands (Xiaoping Yang, Shiqing Wang, Chengri Wang, Shaoming Huang, and Richard A.); 6. 4f-Clusters for Cryogenic Magnetic Cooling (Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong); 7. Lanthanide Clusters Toward Single-Molecule Magnets (Tian Han, You-Song Ding, and Yan-Zhen Zheng); 8. Molecular Rare Earth Hydride Clusters (Takanori Shima and Zhaomin Hou).

  1. Ion-molecule reactions: their role in radiation chemistry

    International Nuclear Information System (INIS)

    Lias, S.G.; Ausloos, P.

    1975-01-01

    A comprehensive review of ion--molecule reactions is presented, including information from mass spectrometric, organic chemistry, and NMR studies, from theoretical calculations, and from gas and liquid phase radiation chemistry. Special emphasis is placed on interpreting the role of ion--molecule reactions in systems under high energy irradiation. The discussion is presented under the following chapter headings: ion--molecule reactions and their role in radiation chemistry; unimolecular processes: the nature and structure of ionic intermediates in radiolysis; ion lifetimes and the fate of unreactive ions; kinetics and mechanisms of ion--molecule reactions; proton transfer reactions; negative atom and two-atom transfer reactions; condensation reactions; and, association or clustering reactions

  2. Web document clustering using hyperlink structures

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaofeng; Zha, Hongyuan; Ding, Chris H.Q; Simon, Horst D.

    2001-05-07

    With the exponential growth of information on the World Wide Web there is great demand for developing efficient and effective methods for organizing and retrieving the information available. Document clustering plays an important role in information retrieval and taxonomy management for the World Wide Web and remains an interesting and challenging problem in the field of web computing. In this paper we consider document clustering methods exploring textual information hyperlink structure and co-citation relations. In particular we apply the normalized cut clustering method developed in computer vision to the task of hyperdocument clustering. We also explore some theoretical connections of the normalized-cut method to K-means method. We then experiment with normalized-cut method in the context of clustering query result sets for web search engines.

  3. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao

    2012-12-18

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first time, thanks to the superior properties of graphene, including the monolayer thickness, chemical inertness, mechanical strength, electrical and thermal conductivity. These clusters prefer to take regular planar shapes with morphology changes by local atomic shuffling, as suggested by the early hypothesis of solid-solid transformation. Our observations differ from observations from earlier experimental study and theoretical model, such as icosahedron, decahedron or cuboctahedron. No interaction was observed between Fe atoms or clusters and pristine graphene. However, preferential carving, as observed by other research groups, can be realized only when Fe clusters are embedded in graphene. The techniques introduced here will be of use in investigations of other clusters or even single atoms or molecules.

  4. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters

    Science.gov (United States)

    Linton, Kirsty A.; Wright, Timothy G.; Besley, Nicholas A.

    2018-03-01

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO+.(H2O) that is too high and incorrectly predict the lowest energy structure of NO+.(H2O)2, and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO+. Ab initio molecular dynamics (AIMD) simulations were performed to study the NO+.(H2O)5 H+.(H2O)4 + HONO reaction to investigate the formation of HONO from NO+.(H2O)5. Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO+.(H2O)5 complex following its formation. This article is part of the theme issue `Modern theoretical chemistry'.

  5. Chalcone: A Privileged Structure in Medicinal Chemistry.

    Science.gov (United States)

    Zhuang, Chunlin; Zhang, Wen; Sheng, Chunquan; Zhang, Wannian; Xing, Chengguo; Miao, Zhenyuan

    2017-06-28

    Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.

  6. Clustering methods for the optimization of atomic cluster structure

    Science.gov (United States)

    Bagattini, Francesco; Schoen, Fabio; Tigli, Luca

    2018-04-01

    In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.

  7. Fluoride Bridges as Structure-Directing Motifs in 3d-4f Cluster Chemistry

    DEFF Research Database (Denmark)

    Birk, Torben; Pedersen, Kasper; Thuesen, Christian Aa.

    2012-01-01

    The use of kinetically robust chromium(III) fluorido complexes as synthons for mixed 3d-4f clusters is reported. The tendency toward linear {CrIII–F–LnIII} units dictates the cluster topology. Specifically, we show that reaction of cis-[CrIIIF2(NN)2]NO3 (NN = 1,10-phenanthroline (“phen”) or 2......-nuclear complex and fac-[CrIIIF3L′], with L′ = 1,1,1-tris-((methylamino)methylethane) (“Me3tame”), reacts with [Ln(hfac)3(H2O)2] (hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone) to yield an isostructural series of {Ln3Cr2} (10–14) trigonal bipyramids with no central ligand. The formation of the latter is accompanied...... by a partial solvolysis of the Cr(III) precursor but without formation of insoluble LnF3. The magnetic properties of the gadolinium containing clusters allow quantification of fluoride-mediated, antiferromagnetic Gd–Cr exchange interactions of magnitude between 0.14 cm–1 and 0.71 cm–1 (Ĥ = J12Ŝ1·Ŝ2...

  8. Anomalous properties of technetium clusters

    International Nuclear Information System (INIS)

    Kryuchkov, S.V.

    1985-01-01

    On the basis of critical evaluation of literature data in the field of chemistry of technetium cluster compounds with ligands of a weak field a conclusion is made on specific, ''anomalous'' properties of technetium cluster complexes which consist in an increased ability of the given element to the formation of a series of binuclear and multinuclear clusters, similar in composition and structure and easily transforming in each other. The majority of technetium clusters unlike similar compounds of other elements are paramagnetic with one unpaired electron on ''metallic'' MO of loosening type. All theoretical conceptions known today on the electronic structure of technetium clusters are considered. It is pointed out, that the best results in the explanation of ''anomalous'' properties of technetium clusters can be obtained in the framework of nonempirical methods of self-consistent field taking into account configuration interactions. It is also shown, that certain properties of technetium clusters can be explained on the basis of qualitative model of Coulomb repulsion of metal atoms in clusters. The conclusion is made, that technetium position in the Periodic table, as well as recently detected technetium property to the decrease of effective charge on its atoms during M-M bond formation promote a high ability of the element to cluster formation both with weak field ligands and with strong field one

  9. Macropolyhedral boron-containing cluster chemistry. Cluster opening and B-frame rearrangement in the reaction of B16H20 with [{(IrCl2(eta(5)-C5Me5)}(2)]. Synchrotron X-ray structures of [(eta(5)-C5Me5)(2)Ir2B16H17Cl] and [(eta(5)-C5Me5)(2)Ir2B16H15Cl

    Czech Academy of Sciences Publication Activity Database

    Carr, MJ.; Perera, SD.; Jelínek, Tomáš; Kilner, C. A.; Clegg, W.; Štíbr, Bohumil; Kennedy, J.D.

    2006-01-01

    Roč. 44, - (2006), s. 5221-5224 ISSN 1477-9226 R&D Projects: GA AV ČR(CZ) IAA400320601; GA ČR GA203/05/2646 Grant - others:EPSRC(GB) J/56929; EPSRC(GB) GR/L/49505; EPSRC(GB) R/61949 Institutional research plan: CEZ:AV0Z40320502 Keywords : intercluster bonding intimagy * matallaborane clusters * crystal-structures Subject RIV: CA - Inorganic Chemistry Impact factor: 3.012, year: 2006

  10. Modelling of Krn+ Clusters (n = 2 - 20) I. Structures and Energetics

    Czech Academy of Sciences Publication Activity Database

    Kalus, R.; Paidarová, Ivana; Hrivňák, D.; Paška, P.; Gadea, F. X.

    2003-01-01

    Roč. 294, č. 2 (2003), s. 141-153 ISSN 0301-0104 R&D Projects: GA ČR GA203/00/1025; GA ČR GA203/01/1274 Institutional research plan: CEZ:AV0Z4040901 Keywords : cluster modelling * rare-gas ions * an initio potential Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.070, year: 2003

  11. Fragmentation mechanism reflecting the cluster structure of {sup 19}B

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, H.; Horiuchi, H. [Kyoto Univ., Dept. of Physics, Kyoto (Japan); Ono, A.

    1999-08-01

    Clustering structure of neutron dripline nucleus {sup 19}B which was predicted theoritically is investigated by studying the fragmentation reaction of {sup 19}B. We compare {sup 19}B fragmentation with {sup 13}B fragmentation in {sup 19}B + {sup 14}N and {sup 13}B + {sup 14}N reactions by using antisymmetrized molecular dynamics, where {sup 13}B has no clustering feature in its structure. We find that the cluster structure of the {sup 19}B nucleus is reflected in its fragmentation as the simultaneous production of He and Li isotopes. Furthermore we investigate the dependence of the cluster decay of {sup 19}B on the incident energy, and find that the cluster structure of {sup 19}B in its ground state is more reflected in lower incident-energy reactions. (author)

  12. Agglomerative concentric hypersphere clustering applied to structural damage detection

    Science.gov (United States)

    Silva, Moisés; Santos, Adam; Santos, Reginaldo; Figueiredo, Eloi; Sales, Claudomiro; Costa, João C. W. A.

    2017-08-01

    The present paper proposes a novel cluster-based method, named as agglomerative concentric hypersphere (ACH), to detect structural damage in engineering structures. Continuous structural monitoring systems often require unsupervised approaches to automatically infer the health condition of a structure. However, when a structure is under linear and nonlinear effects caused by environmental and operational variability, data normalization procedures are also required to overcome these effects. The proposed approach aims, through a straightforward clustering procedure, to discover automatically the optimal number of clusters, representing the main state conditions of a structural system. Three initialization procedures are introduced to evaluate the impact of deterministic and stochastic initializations on the performance of this approach. The ACH is compared to state-of-the-art approaches, based on Gaussian mixture models and Mahalanobis squared distance, on standard data sets from a post-tensioned bridge located in Switzerland: the Z-24 Bridge. The proposed approach demonstrates more efficiency in modeling the normal condition of the structure and its corresponding main clusters. Furthermore, it reveals a better classification performance than the alternative ones in terms of false-positive and false-negative indications of damage, demonstrating a promising applicability in real-world structural health monitoring scenarios.

  13. The energetics and structure of nickel clusters: Size dependence

    International Nuclear Information System (INIS)

    Cleveland, C.L.; Landman, U.

    1991-01-01

    The energetics of nickel clusters over a broad size range are explored within the context of the many-body potentials obtained via the embedded atom method. Unconstrained local minimum energy configurations are found for single crystal clusters consisting of various truncations of the cube or octahedron, with and without (110) faces, as well as some monotwinnings of these. We also examine multitwinned structures such as icosahedra and various truncations of the decahedron, such as those of Ino and Marks. These clusters range in size from 142 to over 5000 atoms. As in most such previous studies, such as those on Lennard-Jones systems, we find that icosahedral clusters are favored for the smallest cluster sizes and that Marks' decahedra are favored for intermediate sizes (all our atomic systems larger than about 2300 atoms). Of course very large clusters will be single crystal face-centered-cubic (fcc) polyhedra: the onset of optimally stable single-crystal nickel clusters is estimated to occur at 17 000 atoms. We find, via comparisons to results obtained via atomistic calculations, that simple macroscopic expressions using accurate surface, strain, and twinning energies can usefully predict energy differences between different structures even for clusters of much smaller size than expected. These expressions can be used to assess the relative energetic merits of various structural motifs and their dependence on cluster size

  14. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  15. Gold cluster carbonyls: saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures.

    Science.gov (United States)

    Fielicke, André; von Helden, Gert; Meijer, Gerard; Pedersen, David B; Simard, Benoit; Rayner, David M

    2005-06-15

    We report on the interaction of carbon monoxide with cationic gold clusters in the gas phase. Successive adsorption of CO molecules on the Au(n)(+) clusters proceeds until a cluster size specific saturation coverage is reached. Structural information for the bare gold clusters is obtained by comparing the saturation stoichiometry with the number of available equivalent sites presented by candidate structures of Au(n)(+). Our findings are in agreement with the planar structures of the Au(n)(+) cluster cations with n < or = 7 that are suggested by ion mobility experiments [Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. J. Chem. Phys. 2001, 116, 4094]. By inference we also establish the structure of the saturated Au(n)(CO)(m)(+) complexes. In certain cases we find evidence suggesting that successive adsorption of CO can distort the metal cluster framework. In addition, the vibrational spectra of the Au(n)(CO)(m)(+) complexes in both the CO stretching region and in the region of the Au-C stretch and the Au-C-O bend are measured using infrared photodepletion spectroscopy. The spectra further aid in the structure determination of Au(n)(+), provide information on the structure of the Au(n)(+)-CO complexes, and can be compared with spectra of CO adsorbates on deposited clusters or surfaces.

  16. A grand unified model for liganded gold clusters

    Science.gov (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi

    2016-12-01

    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  17. On clusters and clustering from atoms to fractals

    CERN Document Server

    Reynolds, PJ

    1993-01-01

    This book attempts to answer why there is so much interest in clusters. Clusters occur on all length scales, and as a result occur in a variety of fields. Clusters are interesting scientifically, but they also have important consequences technologically. The division of the book into three parts roughly separates the field into small, intermediate, and large-scale clusters. Small clusters are the regime of atomic and molecular physics and chemistry. The intermediate regime is the transitional regime, with its characteristics including the onset of bulk-like behavior, growth and aggregation, a

  18. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O) n=1-5 clusters.

    Science.gov (United States)

    Linton, Kirsty A; Wright, Timothy G; Besley, Nicholas A

    2018-03-13

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO + (H 2 O) n =1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO + (H 2 O) that is too high and incorrectly predict the lowest energy structure of NO + (H 2 O) 2 , and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO + Ab initio molecular dynamics (AIMD) simulations were performed to study the NO + (H 2 O) 5 [Formula: see text] H + (H 2 O) 4 + HONO reaction to investigate the formation of HONO from NO + (H 2 O) 5 Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO + (H 2 O) 5 complex following its formation.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  19. Weighted voting-based consensus clustering for chemical structure databases

    Science.gov (United States)

    Saeed, Faisal; Ahmed, Ali; Shamsir, Mohd Shahir; Salim, Naomie

    2014-06-01

    The cluster-based compound selection is used in the lead identification process of drug discovery and design. Many clustering methods have been used for chemical databases, but there is no clustering method that can obtain the best results under all circumstances. However, little attention has been focused on the use of combination methods for chemical structure clustering, which is known as consensus clustering. Recently, consensus clustering has been used in many areas including bioinformatics, machine learning and information theory. This process can improve the robustness, stability, consistency and novelty of clustering. For chemical databases, different consensus clustering methods have been used including the co-association matrix-based, graph-based, hypergraph-based and voting-based methods. In this paper, a weighted cumulative voting-based aggregation algorithm (W-CVAA) was developed. The MDL Drug Data Report (MDDR) benchmark chemical dataset was used in the experiments and represented by the AlogP and ECPF_4 descriptors. The results from the clustering methods were evaluated by the ability of the clustering to separate biologically active molecules in each cluster from inactive ones using different criteria, and the effectiveness of the consensus clustering was compared to that of Ward's method, which is the current standard clustering method in chemoinformatics. This study indicated that weighted voting-based consensus clustering can overcome the limitations of the existing voting-based methods and improve the effectiveness of combining multiple clusterings of chemical structures.

  20. Structural transition of (InSb)n clusters at n = 6-10

    Science.gov (United States)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De

    2016-10-01

    An optimization strategy combining global semi-empirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (InSb)n clusters with n = 6-10. A new structural growth pattern of the clusters was observed. The lowest energy structures of (InSb)6 and (InSb)8 were different from that of previously reported results. Competition existed between core-shell and cage-like structures of (InSb)8. The structural transition of (InSb)n clusters occurred at size n = 8-9. For (InSb)9 and (InSb)10 clusters, core-shell structure were more energetically favorable than the cage. The corresponding electronic properties were investigated.

  1. Structure prediction of AlnOm clusters

    International Nuclear Information System (INIS)

    Smok, P

    2011-01-01

    Genetic algorithm simulations, using Buckingham potential to represent the anion-anion and cation-anion short-range interactions, were performed in order to predict the equilibrium positions of the Al and O ions in Al n O m clusters. In order to find the equilibrium structures of compounds a self-organizing genetic algorithm were constructed. The calculation were carried out for several clusters Al n O m , with different numbers of aluminium and oxygen atoms.

  2. Structural motifs of pre-nucleation clusters.

    Science.gov (United States)

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-07

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.

  3. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  4. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Science.gov (United States)

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  5. Size and composition dependence of the frozen structures in Co-based bimetallic clusters

    International Nuclear Information System (INIS)

    Li, Guojian; Wang, Qiang; Cao, Yongze; Du, Jiaojiao; He, Jicheng

    2012-01-01

    This Letter studies the size-dependent freezing of Co, Co–Ni, and Co–Cu clusters by using molecular dynamics with embedded atom method. Size effect occurs in these three types of clusters. The clusters with large sizes always freeze to form their bulk-like structures. However, the frozen structures for small sizes are generally related to their compositions. The icosahedral clusters are formed for Co clusters (for ⩽3.2 nm diameter) and also for Co–Ni clusters but at a larger size range (for ⩽4.08 nm). Upon the Co–Cu clusters, decahedral structure is obtained for small size (for 2.47 nm). The released energy induced the structural transformation plays a key role in the frozen structures. These results indicate that the preformed clusters with special structures can be tuned by controlling their compositions and sizes. -- Highlights: ► The size effect occurs in the Co, Co–Ni, and Co–Cu clusters. ► The clusters with large sizes always freeze to form their bulk-like structures. ► The frozen structures for small sizes are generally related to their compositions. ► Icosahedron is formed for Co and also for Co–Ni but at a larger size range. ► Upon the Co–Cu clusters, decahedral structure is obtained for small size.

  6. Computational Chemistry of Modified [MFe3S4] and [M2Fe2S4] Clusters: Assessment of Trends in Electronic Structure and Properties

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta; Ooi, Bee Lean; Christensen, Hans Erik Mølager

    2008-01-01

    The aim of this work is to understand the molecular evolution of iron−sulfur clusters in terms of electronic structure and function. Metal-substituted models of biological [Fe4S4] clusters in oxidation states [MxFe4−xS4]3+/2+/1+ have been studied by density functional theory (M = Cr, Mn, Fe, Co, ...

  7. LARGE-SCALE FILAMENTARY STRUCTURES AROUND THE VIRGO CLUSTER REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk; Rey, Soo-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Daejeon 305-764 (Korea, Republic of); Bureau, Martin [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Yoon, Hyein; Chung, Aeree [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Jerjen, Helmut [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Lisker, Thorsten [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Jeong, Hyunjin; Sung, Eon-Chang, E-mail: screy@cnu.ac.kr, E-mail: star4citizen@kasi.re.kr [Korea Astronomy and Space Science institute, 776 Daedeokdae-ro, Daejeon 305-348 (Korea, Republic of)

    2016-12-20

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4  h {sup −1} Mpc < SGY < 16  h {sup −1} Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16  h {sup −1} Mpc < SGY < 27  h {sup −1} Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W–M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W–M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z  ≈ 0.

  8. Theoretical study of structures of Ga{sub 5}N{sub 5} cluster

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin

    2002-12-23

    The structures and energies of a Ga{sub 5}N{sub 5} cluster have been calculated using a full-potential linear-muffin-tin-orbital (FP-LMTO) method, combined with molecular dynamics technique. Twenty-four structures for a Ga{sub 5}N{sub 5} cluster have been obtained. The most stable structure is a C{sub 1} planar structure with a N{sub 3} subunit. The Ga{sub 5}N{sub 5} clusters show a preference for a N{sub 3} subunit, revealing the same behavior as in the Ga{sub 3}N{sub 3} and Ga{sub 4}N{sub 4} clusters. The existence of strong N-N bonds dominates the structure of a Ga{sub 5}N{sub 5} cluster. Through the calculation of the density of states we found that the most stable structure of Ga{sub 5}N{sub 5} clusters presented semiconductor-like properties.

  9. Ionospheric plasma density structures associated with magnetopause motion: a case study using the Cluster spacecraft and the EISCAT Svalbard Radar

    Directory of Open Access Journals (Sweden)

    F. Pitout

    2004-07-01

    Full Text Available On 5 January 2003, the footprint of the Cluster spacecraft, then orbiting in the dayside magnetosphere near the magnetopause, was in the close vicinity of the EISCAT Svalbard Radar (ESR in the dayside afternoon sector. This configuration made possible the study of the magnetopause motion and its direct consequences on the ionospheric plasma at high latitude. Cluster observed multiple magnetopause crossings despite its high latitude, while on the ground the magnetic activity was very low, whereas the ionospheric plasma sounded by the ESR exhibited poleward moving plasma density structures. In this paper, we compare the satellite and radar data, in order to show that the plasma density structures are directly related to the magnetopause motion and its associated pulsed ionospheric flow. We propose that the variations in electric field make the convection velocity vary enough to alter the electron population by accelerating the chemistry in the F-region and act as a source of electron depletion. The magnetopause motion is in this case, a source of plasma density structures in the polar dayside ionosphere.

  10. Equilibrium structure and atomic vibrations of Nin clusters

    Science.gov (United States)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  11. The Logical and Psychological Structure of Physical Chemistry and Its Relevance to the Organization/Sequencing of the Major Areas Covered in Physical Chemistry Textbooks

    Science.gov (United States)

    Tsaparlis, Georgios

    2014-01-01

    Jensen's scheme for the logical structure of chemistry is taken as reference to study the logical structure of physical chemistry. The scheme distinguishes three dimensions (composition and structure, energy, and time), with each dimension treated at one of the three levels (molar, molecular, and electrical). Such a structure places the outer…

  12. Cluster structure of light nuclei

    Science.gov (United States)

    Iachello, Francesco

    2018-02-01

    Matter and charge densities of kα structures with k=2 (8Be), k=3 (12C) and k=4 (16O) calculated within the framework of the algebraic cluster model (ACM) are briefly reviewed and explicitly displayed. Their parameters are determined from a comparison with electron scattering data.

  13. a Probabilistic Embedding Clustering Method for Urban Structure Detection

    Science.gov (United States)

    Lin, X.; Li, H.; Zhang, Y.; Gao, L.; Zhao, L.; Deng, M.

    2017-09-01

    Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by "learning" via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.

  14. Coexistence of cluster structure and superdeformation in 44Ti

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Horiuchi, Hisashi

    2006-01-01

    The nucleus 44 Ti has low-lying levels of various kinds of mutually very different nuclear structure displaying the richness of the nuclear many-body dynamics. It is shown that the deformed-basis antisymmetrized molecular dynamics by the use of the Gogny D1S force reproduces successfully and unifiedly two types of coexistence phenomena in 44 Ti. Namely, on one hand, the coexistence of the mean-field structure and the cluster structure is confirmed by verifying the normally deformed structure of the K π =3 1 - band with a 1-particle-1-hole intrinsic configuration and the α+Ca40 cluster structure of the K π =0 2 - band. The mixed character of the mean-field-like structure and the α+Ca40 cluster structure of the ground band is also shown. On the other hand, the coexistence of the normal deformed mean-field and the superdeformed mean-field is confirmed by verifying the triaxial superdeformation of the K π =0 2 + band and the K π =2 1 + band which has a 4-particle-4-hole intrinsic configuration. Good reproduction of the experimental data is shown for many kinds of quantities including the energy spectra, electric transition rates, alpha spectroscopic factors. Preliminary discussions are given on the existence of hyperdeformed excited states, the relation between superdeformation and clustering and so on

  15. A PROBABILISTIC EMBEDDING CLUSTERING METHOD FOR URBAN STRUCTURE DETECTION

    Directory of Open Access Journals (Sweden)

    X. Lin

    2017-09-01

    Full Text Available Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM to find latent features from high dimensional urban sensing data by “learning” via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.

  16. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  17. Fine structure of cluster decays

    International Nuclear Information System (INIS)

    Dumitrescu, O.

    1993-07-01

    Within the one level R-matrix approach the hindrance factors of the radioactive decays in which are emitted α and 14 C - nuclei are calculated. The generalization to radioactive decays in which are emitted heavier clusters such as e.g. 20 O, 24 Ne, 25 Ne, 28 Mg. 30 Mg, 32 Si and 34 Si is straightforward. The interior wave functions are supposed to be given by the shell model with effective residual interactions (e.g. the large scale shell model code-OXBASH - in the Michigan State University version for nearly spherical nuclei or by the enlarged superfluid model - ESM - recently proposed for deformed nuclei). The exterior wave functions are calculated from a cluster - nucleus double - folding model potential obtained with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 241 Am and 14 C -decay of 233 Ra. Good agreement with the experimental data is obtained. (author). 78 refs, 2 figs, 6 tabs

  18. Structural chemistry of superconducting pnictides and pnictide oxides with layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Johrendt, Dirk [Ludwig-Maximilians-Univ. Muenchen (Germany). Dept. Chemie und Biochemie; Hosono, Hideo [Tokyo Institute of Technology, Yokohama (Japan). Frontier Research Center; Hoffmann, Rolf-Dieter; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2011-07-01

    The basic structural chemistry of superconducting pnictides and pnictide oxides is reviewed. Crystal chemical details of selected compounds and group subgroup schemes are discussed with respect to phase transitions upon charge-density formation, the ordering of vacancies, or the ordered displacements of oxygen atoms. Furthermore, the influences of doping and solid solutions on the valence electron concentration are discussed in order to highlight the structural and electronic flexibility of these materials. (orig.)

  19. Tight-binding study of the structural and magnetic properties of vanadium clusters

    International Nuclear Information System (INIS)

    Zhao Jijun; Lain, K.D.

    1995-01-01

    The structural and magnetic properties of small vanadium clusters are studied in the framework of tight-binding theory. According to parameters of the cluster dimer and bulk solid, we developed a tight-binding interatomic potential and calculated the bonding energies for the different possible structures to determine the ground state atomic configurations of the small vanadium clusters. The theoretical bonding energies for the vanadium clusters agree with the experiment much better than the simple droplet model. However, the calculated values for the clusters of odd atomic number are somewhat higher than the measured ones, corresponding to the pair occupation of delocalized 4s 1 electrons. Based on the optimized geometries, we study the magnetic properties of these clusters through a parametrized Hubbard Hamiltonian. We find the small V clusters of ground-state structures exhibit antiferromagnetic behavior while the alignment of local moments in the clusters with the unoptimized structures may show either ferromagnetic or antiferromagnetic characteristics. The average magnetic moments of the clusters decrease nonmonotonically as cluster size increases and the theoretical results are consistent with the upper limits obtained from a recent experiment. (orig.)

  20. Progress in organic and physical chemistry structures and mechanisms

    CERN Document Server

    Zaikov, Gennady E; Lobanov, Anton V

    2013-01-01

    Progress in Organic and Physical Chemistry: Structures and Mechanisms provides a collection of new research in the field of organic and physical properties, including new research on: The physical principles of the conductivity of electrical conducting polymer compounds The dependence on constants of electromagnetic interactions upon electron spacial-energy characteristics Effects of chitosan molecultural weight on rehological behavior of chitosan modified nanoclay at hight hydrated state Bio-structural energy criteria of functional states in normal and pathological conditions Potentiometric study on the international between devalent cations and sodium carboxylates in aqueous solutions Structural characteristic changes in erythrocyte membranes of mice bearing Alzheimer's-like disease caused by the olfactory bulbetomy This volume is intended to provide an overview of new studies and research for engineers, faculty, researchers, and upper-level students in the field of organic and physical chemistry.

  1. Spectral shifts and structures of phenol center dot center dot center dot Ar-n clusters

    Czech Academy of Sciences Publication Activity Database

    Armentano, A.; Černý, Jiří; Riese, M.; Taherkhani, M.; Ben Yezzar, M.; Muller-Dethlefs, K.

    2011-01-01

    Roč. 13, č. 13 (2011), s. 6077-6084 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50520701 Keywords : VAN-DER-WAALS * BENZENE-ARGON CLUSTERS * INFRARED-SPECTRA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  2. Experimental studies of the chemistry of metal clusters

    International Nuclear Information System (INIS)

    Parks, E.K.; Riley, S.J.

    1988-01-01

    The procedures for studying chemical reactions of metal clusters in a continuous-flow reactor are described, and examples of such studies are given. Experiments to be discussed include kinetics and thermodynamics measurements, and determination of the composition of clusters saturated with various adsorbate reagents. Specific systems to be covered include the reaction of iron clusters with ammonia and with hydrogen, the reaction of nickel clusters with hydrogen and with ammonia, and the reaction of platinum clusters with ethylene. The last two reactions are characterized by complex, multi-step processes that lead to adsorbate decomposition and hydrogen desorption from the clusters. Methods for probing these processes will be discussed. 26 refs., 8 figs

  3. Effects of Chemistry on Blunt-Body Wake Structure

    Science.gov (United States)

    Dogra, Virendra K.; Moss, James N.; Wilmoth, Richard G.; Taylor, Jeff C.; Hassan, H. A.

    1995-01-01

    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities.

  4. Low temperature surface chemistry and nanostructures

    Science.gov (United States)

    Sergeev, G. B.; Shabatina, T. I.

    2002-03-01

    The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.

  5. Computational chemistry at the petascale: Are we there yet?

    International Nuclear Information System (INIS)

    Apra, E; Harrison, R J; Shelton, W A; Tipparaju, V; Vazquez-Mayagoitia, A

    2009-01-01

    We have run computational chemistry calculations approaching the Petascale level of performance (∼ 0.5 PFlops). We used the Coupled Cluster CCSD(T) module of the computational chemistry code NWChem to evaluate accurate energetics of water clusters on a 1.4 PFlops Cray XT5 computer.

  6. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    Science.gov (United States)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic

  7. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    Science.gov (United States)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  8. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  9. Effects of manganese doping on the structure evolution of small-sized boron clusters

    Science.gov (United States)

    Zhao, Lingquan; Qu, Xin; Wang, Yanchao; Lv, Jian; Zhang, Lijun; Hu, Ziyu; Gu, Guangrui; Ma, Yanming

    2017-07-01

    Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster \\text{MnB}nQ (n  =  10-20 and Q  =  0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small \\text{MnB}n-/0/+ (n  ⩽  13) clusters and gradually transform to Mn-centered double-ring tubular structures at \\text{MnB}16-/0/+ clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger \\text{MnB}n-/0/+ (n  ⩾  19) clusters, among which \\text{MnB}20+ adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral \\text{MnB}\\text{20}+ cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.

  10. Electron-induced chemistry in microhydrated sulfuric acid clusters

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-01-01

    Roč. 17, č. 22 (2017), s. 14171-14180 ISSN 1680-7324 R&D Projects: GA ČR(CZ) GA17-04068S Grant - others:Austrian Science Fund (FWF)(AT) M1983-N34 Institutional support: RVO:61388955 Keywords : induced aerosol formation * particle formation * atmospheric implication Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  11. A General Chemistry Experiment Incorporating Synthesis and Structural Determination

    Science.gov (United States)

    van Ryswyk, Hal

    1997-07-01

    An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin. A single sophisticated instrument can be incorporated into the laboratory given sufficient attention to the use of sampling accessories and software macros. Synthetic experiments coupled with modern instrumental techniques can be used in the general chemistry laboratory to illustrate the concepts of synthesis, structure, bonding, and spectroscopy.

  12. Dark energy and the structure of the Coma cluster of galaxies

    Science.gov (United States)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.

    2013-05-01

    Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.

  13. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  14. Stable structures for Al{sub 20} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yao Changhong [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)]. E-mail: phych@zju.edu.cn; Song Bin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao Peilin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2005-06-20

    The low-lying energy structures of Al{sub 20} cluster are obtained by full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method. A set of new low-lying energy structures including a new lowest energy structure, were found in our calculation. The waist-capped double icosahedral structure, which was considered as the global minimum previously, is merely one of the low-lying structures. Comparison and discussion between Al{sub 20} and Si{sub 20} have been made.

  15. Metastable Structures in Cluster Catalysis from First-Principles: Structural Ensemble in Reaction Conditions and Metastability Triggered Reactivity.

    Science.gov (United States)

    Sun, Geng; Sautet, Philippe

    2018-02-28

    Reactivity studies on catalytic transition metal clusters are usually performed on a single global minimum structure. With the example of a Pt 13 cluster under a pressure of hydrogen, we show from first-principle calculations that low energy metastable structures of the cluster can play a major role for catalytic reactivity and that hence consideration of the global minimum structure alone can severely underestimate the activity. The catalyst is fluxional with an ensemble of metastable structures energetically accessible at reaction conditions. A modified genetic algorithm is proposed to comprehensively search for the low energy metastable ensemble (LEME) structures instead of merely the global minimum structure. In order to reduce the computational cost of density functional calculations, a high dimensional neural network potential is employed to accelerate the exploration. The presence and influence of LEME structures during catalysis is discussed by the example of H covered Pt 13 clusters for two reactions of major importance: hydrogen evolution reaction and methane activation. The results demonstrate that although the number of accessible metastable structures is reduced under reaction condition for Pt 13 clusters, these metastable structures can exhibit high activity and dominate the observed activity due to their unique electronic or structural properties. This underlines the necessity of thoroughly exploring the LEME structures in catalysis simulations. The approach enables one to systematically address the impact of isomers in catalysis studies, taking into account the high adsorbate coverage induced by reaction conditions.

  16. Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2003-01-01

    The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post–Hartree-Fock many-body perturbation theory accounting for all electrons in the system....... We have investigated the appearance of the elements of the hcp structure and metallic evolution of the magnesium clusters, as well as the stability of linear chains and rings of magnesium atoms. The results obtained are compared with the available experimental data and the results of other...

  17. Flocculent and grand design spiral arm structure in cluster galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.M.

    1982-01-01

    A total of 829 spiral galaxies in 22 clusters having redshifts between z = 0.02 and 0.06 were classified according to the appearance of their spiral arm structures. The fraction of galaxies that have a grand design spiral structure was found to be higher among barred galaxies than among non-barred galaxies (at z = 0.02, 95 per cent of strongly barred galaxies have a grand design, compared with 67 per cent of non-barred or weakly barred galaxies). Cluster galaxies and distant non-cluster galaxies have the same fraction of grand design galaxies when resolution effects are considered. The grand design fraction among cluster galaxies is also similar to the fraction observed among nearby galaxies in binary systems and in groups. (author)

  18. Ab initio random structure search for 13-atom clusters of fcc elements

    International Nuclear Information System (INIS)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-01-01

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)

  19. The Zintl Chemistry of the Heavy Tetrel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael Thomas [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    Exploration of the alkali metal/alkaline-earth metal/heavy tetrel (Sn or Pb) systems has revealed a vast array of new chemistry and novel structure types. The structures and properties of these new materials have been studied in an attempt to understand the chemistry of these and other related systems. The first phase reported is Rb4Pb9 (K4Pb9 type). The compound contains two different types of Pb94- deltahedra, a monocapped square pyramid and a distorted tricapped trigonal prism. Both cluster geometries correspond to a nido assignment even though the tricapped trigonal prism is not the classic Wade's rules nido deltahedron expected for a monocapped square antiprism. Also, a series of compounds that contain square pyramidal Tt5 polyanions of tin and lead has been obtained in alkaline-earth or rare-earth metal-tetrel systems by direct fusion of the elements to yield Sr3Sn5, Ba3Pb5, and La3Sn5. These phases contain square pyramidal clusters of the tetrel elements that are weakly interlinked into chains via two types of longer intercluster interactions that are mediated by bridging cations and substantially influenced by cation size and the free electron count. Attempts at incorporating another main-group element to form heteroatomic clusters were also successful. In the case of A5InPb8 (A = K, Rb), the compounds contain clusters composed of two Pb4 tetrahedra that are interbridged by a lone μ6-In atom. The InPb8 units are weakly interlinked into sheets in the ab plane by long intercluster Pb-Pb interactions. Using As led to the formation of the compound K5As3Pb3 which is made up of As3Pb35- crown clusters that can be likened to a 6-atom hypho-cluster based on the tricapped trigonal parent as the closo

  20. Nuclear chemistry on the Czech Technical University in Prague after introduction of structured study and foundation of the Centre for Radiochemistry and Radiation Chemistry

    International Nuclear Information System (INIS)

    John, J.

    2007-01-01

    In this presentation the author (head of the Centre for Radiochemistry and Radiation Chemistry) give a short review of history of the Department of Nuclear Chemistry and of the Centre for Radiochemistry and Radiation Chemistry of the Czech Technical University in Prague. Education in structured study in specialisation of nuclear chemistry in bachelor level, master level, as well as post-graduate study in nuclear chemistry with academic degree PhD. are realised. Some scientific results are presented

  1. FEATURES OF ISLET-LIKE CLUSTERS GENERATION IN PANCREATIC DUCTAL CELL MOLOLAYER CULTURING

    Directory of Open Access Journals (Sweden)

    L. A. Kirsanova

    2012-01-01

    Full Text Available Newborn rabbit pancreatic cell monolayer was obtained as we described earlier.The cultivated epithelial cells were shown by immunofluorescence to express special ductal marker CK19 and were insulin-and glucagon- negative for 10–15 days. A few fusiforms of nestin-positive cells were found in monolayer. Over 2 weeks in serum-free medium the plaques of epithelial cells became crowded and formed 3-dimentional structures – islet- like clusters. Islet-like clusters contain some insulin- and glucagon-positive cells recognized by immunohysto- chemistry staining. Pancreatic endocrine cell generation in 3-dimentional structures is discussed. 

  2. Structure and stability of small H clusters on graphene

    DEFF Research Database (Denmark)

    Sljivancanin, Zeljko; Andersen, Mie; Hammer, Bjørk

    2011-01-01

    The structure and stability of small hydrogen clusters adsorbed on graphene is studied by means of density functional theory (DFT) calculations. Clusters containing up to six H atoms are investigated systematically, with the clusters having either all H atoms on one side of the graphene sheet (cis......-clusters) or having the H atoms on both sides in an alternating manner (trans-clusters). The most stable cis-clusters found have H atoms in ortho- and para-positions with respect to each other (two H’s on neighboring or diagonally opposite carbon positions within one carbon hexagon), while the most stable trans......-clusters found have H atoms in ortho-trans-positions with respect to each other (two H’s on neighboring carbon positions, but on opposite sides of the graphene). Very stable trans-clusters with 13–22 H atoms were identified by optimizing the number of H atoms in ortho-trans-positions and thereby the number...

  3. Computed structure of small benzene clusters

    NARCIS (Netherlands)

    van de Waal, B.W.

    1986-01-01

    The structures of small benzene clusters (C6H6)n, n = 2–7, have been calculated employing potential-energy minimization with respect to molecular translational and rotational coordinates, using exp-6-1 non-bonded atom-atom potential functions. The influence of the adopted point-charge model is

  4. Coexistence of cluster structure and superdeformation in {sup 44}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masaaki [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)]. E-mail: masaaki@yukawa.kyoto-u.ac.jp; Horiuchi, Hisashi [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2006-03-06

    The nucleus {sup 44}Ti has low-lying levels of various kinds of mutually very different nuclear structure displaying the richness of the nuclear many-body dynamics. It is shown that the deformed-basis antisymmetrized molecular dynamics by the use of the Gogny D1S force reproduces successfully and unifiedly two types of coexistence phenomena in {sup 44}Ti. Namely, on one hand, the coexistence of the mean-field structure and the cluster structure is confirmed by verifying the normally deformed structure of the K{sup {pi}}=3{sub 1}{sup -} band with a 1-particle-1-hole intrinsic configuration and the {alpha}+Ca40 cluster structure of the K{sup {pi}}=0{sub 2}{sup -} band. The mixed character of the mean-field-like structure and the {alpha}+Ca40 cluster structure of the ground band is also shown. On the other hand, the coexistence of the normal deformed mean-field and the superdeformed mean-field is confirmed by verifying the triaxial superdeformation of the K{sup {pi}}=0{sub 2}{sup +} band and the K{sup {pi}}=2{sub 1}{sup +} band which has a 4-particle-4-hole intrinsic configuration. Good reproduction of the experimental data is shown for many kinds of quantities including the energy spectra, electric transition rates, alpha spectroscopic factors. Preliminary discussions are given on the existence of hyperdeformed excited states, the relation between superdeformation and clustering and so on.

  5. Structures, Energetics and Spectroscopic Fingerprints of Water Clusters n=2-24

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2017-06-08

    This chapter discusses the structures, energetics, and vibrational spectra of the first few (n$24) water clusters obtained from high-level electronic structure calculations. The results are discussed in the perspective of being used to parameterize/assess the accuracy of classical and quantum force fields for water. To this end, a general introduction with the classification of those force fields is presented. Several low-lying families of minima for the medium cluster sizes are considered. The transition from the “all surface” to the “fully coordinated” cluster structures occurring at nD17 and its spectroscopic signature is presented. The various families of minima for nD20 are discussed together with the low energy networks of the pentagonal dodecahedron (H2O)20 water cage. Finally, the low-energy networks of the tetrakaidecahedron (T-cage) (H2O)24 cluster are shown and their significance in the construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.

  6. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng; Gao, Xin

    2016-01-01

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated

  7. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  8. Density structures inside the plasmasphere: Cluster observations

    DEFF Research Database (Denmark)

    Darrouzet, F.; Decreau, P.M.E.; De Keyser, J.

    2004-01-01

    The electron density profiles derived from the EFW and WHISPER instruments on board the four Cluster spacecraft reveal density structures inside the plasmasphere and at its outer boundary, the plasmapause. We have conducted a statistical study to characterize these density structures. We focus...... on the plasmasphere crossing on I I April 2002, during which Cluster observed several density irregularities inside the plasmasphere, as well as a plasmaspheric plume. We derive the density gradient vectors from simultaneous density measurements by the four spacecraft. We also determine the normal velocity...... of the boundaries of the plume and of the irregularities from the time delays between those boundaries in the four individual density profiles, assuming they are planar. These new observations yield novel insights about the occurrence of density irregularities, their geometry and their dynamics. These in...

  9. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  10. M31 GLOBULAR CLUSTER STRUCTURES AND THE PRESENCE OF X-RAY BINARIES

    International Nuclear Information System (INIS)

    Agar, J. R. R.; Barmby, P.

    2013-01-01

    The Andromeda galaxy, M31, has several times the number of globular clusters found in the Milky Way. It contains a correspondingly larger number of low-mass X-ray binaries (LMXBs) associated with globular clusters, and as such can be used to investigate the cluster properties that lead to X-ray binary formation. The best tracer of the spatial structure of M31 globulars is the high-resolution imaging available from the Hubble Space Telescope (HST), and we have used HST data to derive structural parameters for 29 LMXB-hosting M31 globular clusters. These measurements are combined with structural parameters from the literature for a total of 41 (of 50 known) LMXB clusters and a comparison sample of 65 non-LMXB clusters. Structural parameters measured in blue bandpasses are found to be slightly different (smaller core radii and higher concentrations) than those measured in red bandpasses; this difference is enhanced in LMXB clusters and could be related to stellar population differences. Clusters with LMXBs show higher collision rates for their mass compared to clusters without LMXBs, and collision rates estimated at the core radius show larger offsets than rates estimated at the half-light radius. These results are consistent with the dynamical formation scenario for LMXBs. A logistic regression analysis finds that, as expected, the probability of a cluster hosting an LMXB increases with increasing collision rate and proximity to the galaxy center. The same analysis finds that probability of a cluster hosting an LMXB decreases with increasing cluster mass at a fixed collision rate, although we caution that this could be due to sample selection effects. Metallicity is found to be a less important predictor of LMXB probability than collision rate, mass, or distance, even though LMXB clusters have a higher metallicity on average. This may be due to the interaction of location and metallicity: a sample of M31 LMXBs with a greater range in galactocentric distance would

  11. Structures, stabilities, and electronic properties for rare-earth lanthanum doped gold clusters

    International Nuclear Information System (INIS)

    Zhao, Ya-Ru

    2015-01-01

    The structures, stabilities, and electronic properties of rare-earth lanthanum doped gold La 2 Au n (n = 1-9) and pure gold Au n (n ≤ 11) clusters have been investigated by using density functional theory. The optimized geometries show that the lowest energy structures of La 2 Au n clusters favour the 3D structure at n ≥ 3. The lanthanum atoms can strongly enhance the stabilities of gold clusters and tend to occupy the most highly coordinated position. By analysing the gap, vertical ionization potential, and chemical hardness, it is found that the La 2 Au 6 isomer possesses higher stability for small-sized La 2 Au n clusters (n = 1-9). The charges in the La 2 Au n clusters transfer from La atoms to the Au n host. In addition, Wiberg bond indices analysis reveals that the intensity of different bonds of La 2 Au n clusters exhibits a sequence of La-La bond > La-Au bond > Au-Au bond.

  12. Structure and stability of spiro-cyclic water clusters

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The structure and stability of spiro-cyclic water clusters containing up to 32 water molecules have been ... due to its importance in various real life systems. 1–8. High level ... It is well-known from the crystal structure data- base that the ...

  13. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    Science.gov (United States)

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Atomic and electronic structure of clusters from car-Parrinello method

    International Nuclear Information System (INIS)

    Kumar, V.

    1994-06-01

    With the development of ab-initio molecular dynamics method, it has now become possible to study the static and dynamical properties of clusters containing up to a few tens of atoms. Here I present a review of the method within the framework of the density functional theory and pseudopotential approach to represent the electron-ion interaction and discuss some of its applications to clusters. Particular attention is focussed on the structure and bonding properties of clusters as a function of their size. Applications to clusters of alkali metals and Al, non-metal - metal transition in divalent metal clusters, molecular clusters of carbon and Sb are discussed in detail. Some results are also presented on mixed clusters. (author). 121 refs, 24 ifigs

  15. Unbiased structural search of small copper clusters within DFT

    Energy Technology Data Exchange (ETDEWEB)

    Cogollo-Olivo, Beatriz H., E-mail: bcogolloo@unicartagena.edu.co [Maestría en Ciencias Físicas, Universidad de Cartagena, 130001 Cartagena de Indias, Bolívar (Colombia); Seriani, Nicola, E-mail: nseriani@ictp.it [Condensed Matter and Statistical Physics Section, The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste (Italy); Montoya, Javier A., E-mail: jmontoyam@unicartagena.edu.co [Instituto de Matemáticas Aplicadas, Universidad de Cartagena, 130001 Cartagena de Indias, Bolívar (Colombia); Associates Program, The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste (Italy)

    2015-11-05

    Highlights: • We have been able to identify novel metastable structures for small Cu clusters. • We have shown that a linear structure reported for Cu{sub 3} is actually a local maximum. • Some of the structures reported in literature are actually unstable within DFT. • Some of the isomer structures found shows the limits of educated guesses. - Abstract: The atomic structure of small Cu clusters with 3–6 atoms has been investigated by density functional theory and random search algorithm. New metastable structures have been found that lie merely tens of meV/atom above the corresponding ground state, and could therefore be present at thermodynamic equilibrium at room temperature or slightly above. Moreover, we show that the previously proposed linear configuration for Cu{sub 3} is in fact a local maximum of the energy. Finally, we argue that the random search algorithm also provides qualitative information about the attraction basin of each structure in the energy landscape.

  16. Unbiased structural search of small copper clusters within DFT

    International Nuclear Information System (INIS)

    Cogollo-Olivo, Beatriz H.; Seriani, Nicola; Montoya, Javier A.

    2015-01-01

    Highlights: • We have been able to identify novel metastable structures for small Cu clusters. • We have shown that a linear structure reported for Cu_3 is actually a local maximum. • Some of the structures reported in literature are actually unstable within DFT. • Some of the isomer structures found shows the limits of educated guesses. - Abstract: The atomic structure of small Cu clusters with 3–6 atoms has been investigated by density functional theory and random search algorithm. New metastable structures have been found that lie merely tens of meV/atom above the corresponding ground state, and could therefore be present at thermodynamic equilibrium at room temperature or slightly above. Moreover, we show that the previously proposed linear configuration for Cu_3 is in fact a local maximum of the energy. Finally, we argue that the random search algorithm also provides qualitative information about the attraction basin of each structure in the energy landscape.

  17. Dilute 2α+t cluster structure in 11B

    International Nuclear Information System (INIS)

    Kawabata, T.; Akimune, H.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Hara, K.; Hatanaka, K.; Itoh, M.; Kanada-En'yo, Y.; Kishi, S.; Nakanishi, K.; Sakaguchi, H.; Shimbara, Y.; Tamii, A.; Terashima, S.; Uchida, M.; Wakasa, T.; Yasuda, Y.; Yoshida, H.P.; Yosoi, M.

    2007-01-01

    The cluster structures of the excited states in 11 B are studied by analyzing the isoscalar monopole and quadrupole strengths in the 11 B(d,d') reaction at E d =200 MeV. The excitation strengths are compared with the predictions by the shell-model and antisymmetrized molecular-dynamics (AMD) calculations. It is found that the large monopole strength for the 3/2 3 - state at E x =8.56 MeV is well described by the AMD calculation and is an evidence for a developed 2α+t cluster structure

  18. Investigation of the Structures and Energy Landscapes of Thiocyanate-Water Clusters

    Directory of Open Access Journals (Sweden)

    Lewis C. Smeeton

    2017-03-01

    Full Text Available The Basin Hopping search method is used to find the global minima (GM and map the energy landscapes of thiocyanate-water clusters, (SCN−(H2On with 3–50 water molecules, with empirical potentials describing the ion-water and water-water interactions. (It should be noted that beyond n = 23, the lowest energy structures were only found in 1 out of 8 searches so they are unlikely to be the true GM but are indicative low energy structures. As for pure water clusters, the low energy isomers of thiocyanate-water clusters show a preponderance of fused water cubes and pentagonal prisms, with the weakly solvated thiocyanate ion lying on the surface, replacing two water molecules along an edge of a water polyhedron and with the sulfur atom in lower coordinated sites than nitrogen. However, by comparison with Density Functional Theory (DFT calculations, the empirical potential is found to overestimate the strength of the thiocyanate-water interaction, especially O–H⋯S, with low energy DFT structures having lower coordinate N and (especially S atoms than for the empirical potential. In the case of these finite ion-water clusters, the chaotropic (“disorder-making” thiocyanate ion weakens the water cluster structure but the water molecule arrangement is not significantly changed.

  19. Stable structures of Al510–800 clusters and lowest energy sequence of truncated octahedral Al clusters up to 10,000 atoms

    International Nuclear Information System (INIS)

    Wu, Xia; He, Chengdong

    2012-01-01

    Highlights: ► The stable structures of Al 510–800 clusters are obtained with the NP-B potential. ► Al 510–800 clusters adopt truncated octahedral (TO) growth pattern based on complete TOs at Al 405 , Al 586 , and Al 711 . ► The lowest energy sequence of complete TOs up to the size 10,000 is proposed. -- Abstract: The stable structures of Al 510–800 clusters are obtained using dynamic lattice searching with constructed cores (DLSc) method by the NP-B potential. According to the structural growth rule, octahedra and truncated octahedra (TO) configurations are adopted as the inner cores in DLSc method. The results show that in the optimized structures two complete TO structures are found at Al 586 and Al 711 . Furthermore, Al 510–800 clusters adopt TO growth pattern on complete TOs at Al 405 , Al 586 , and Al 711 , and the configurations of the surface atoms are investigated. On the other hand, Al clusters with complete TO motifs are studied up to the size 10,000 by the geometrical construction method. The structural characteristics of complete TOs are denoted by the term “family”, and the growth sequence of Al clusters is investigated. The lowest energy sequence of complete TOs is proposed.

  20. Amine reactivity with charged sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    B. R. Bzdek

    2011-08-01

    Full Text Available The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS. Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge, both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4(H2SO4x] and [(NH4x(HSO4x+1(H2SO43]. Dimethylamine substitution for ammonia in [(NH4 x(HSO4 x+1(H2SO43] clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4 (H2SO4 x] clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (>m/z 400, whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition

  1. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 3. 4. Chemistry. 5. Biology. 6. Development of methods and instruments

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  2. Chemistry and the development of research into the structure of matter

    Energy Technology Data Exchange (ETDEWEB)

    Coldanskii, V

    1977-06-01

    Efforts have been made recently to explain the structure of the atomic nucleus and the structure of the electron shell of the atom using a unified quantum mechanics description. The applications are surveyed of the knowledge of the nucleus and electron shell structure in chemistry. Electron paramagnetic resonance, nuclear magnetic resonance and gamma resonance spectrometry are presented as examples.

  3. Alpha Cluster Structure in 16O

    Science.gov (United States)

    Dias Rodrigues, Márcia Regina; Borello-Lewin, Thereza; Miyake, Hideaki; Cappuzzello, Francesco; Cavallaro, Manuela; Duarte, José Luciano Miranda; Lima Rodrigues, Cleber; de Souza, Marco Antonio; Horodynski-Matsushigue, Brighitta; Cunsolo, Angelo; Foti, Antonio; Mitsuo Ukita, Gilberto; Neto de Faria, Pedro; Agodi, Clementina; De Napoli, Marzio; Nicolosi, Dario; Bondì, Dario; Carbone, Diana; Tropea, Stefania

    2014-03-01

    The main purpose of the present work is the investigation of the α-cluster phenomenon in 16O. The 12C(6Li,d)16O reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Resonant states around 4α threshold were measured and an energy resolution of 15 keV allows to define states previously unresolved. The angular distributions of the absolute cross sections were determined in a range of 4-40 degree in the center of mass system. The upper limit for the resonance widths was obtained, indicating that the a cluster structure information in this region should be revised.

  4. Alpha cluster structure in 16O

    International Nuclear Information System (INIS)

    Dias Rodrigueres, M.R.; Borello-Lewin, T.; Miyake, H.; Duarte, J.L.M.; Lima Rodrigues, C.; De Souza, M.A.; Horodynski-Matsushigue, L.B.; Neto de Faria, P.; Cappuzzello, F.; Nicolosi, D.; Bondi, M.; Carbone, D.; Tropea, S.; Cavallaro, M.; Cunsolo, A.; Agodi, C.; De Napoli, M.; Foti, A.; Ukita, G.M.

    2014-01-01

    The main purpose of the present work is the investigation of the α-cluster phenomenon in 16 O. The 12 C( 6 Li,d) 16 O reaction was measured at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Resonant states around 4α threshold were measured and an energy resolution of 15 keV has allowed us to define states that were previously unresolved. The angular distributions of the absolute cross sections were determined in a range of 4-40 degrees in the center of mass system. The upper limit for the resonance widths was obtained, indicating that the α cluster structure information in this region should be revised. (authors)

  5. Probing cluster structures through sub-barrier transfer reactions

    Directory of Open Access Journals (Sweden)

    Rafferty D. C.

    2016-01-01

    Full Text Available Multinucleon transfer probabilities and excitation energy distributions have been measured in 16,18O, 19F + 208Pb at energies between 90% - 100% of the Coulomb barrier. A strong 2p2n enhancement is observed for all reactions, though most spectacularly in the 18O induced reaction. Results are interpreted in terms of the Semiclassical model, which seems to suggest α-cluster transfer in all studied systems. The relation to cluster-states in the projectile is discussed, with the experimental results consistent with previous structure studies. Dissipation of energy in the collisions of 18O is compared between different reaction modes, with cluster transfer associated with dissipation over a large number of internal states. Cluster transfer is shown to be a long range dissipation mechanism, which will inform the development of future models to treat these dynamic processes in reactions.

  6. Chemistry and the development of research into the structure of matter

    International Nuclear Information System (INIS)

    Coldanskij, V.

    1977-01-01

    Efforts have been made recently to explain the structure of the atomic nucleus and the structure of the electron shell of the atom using a unified quantum mechanics description. The applications are surveyed of the knowledge of the nucleus and electron shell structure in chemistry. Electron paramagnetic resonance, nuclear magnetic resonance and gamma resonance spectrometry are presented as examples. (J.B.)

  7. Geometric structure of chemistry-relevant graphs zigzags and central circuits

    CERN Document Server

    Deza, Michel-Marie; Shtogrin, Mikhail Ivanovitch

    2015-01-01

    The central theme of the present book is zigzags and central-circuits of three- or four-regular plane graphs, which allow a double covering or covering of the edgeset to be obtained. The book presents zigzag and central circuit structures of geometric fullerenes and several other classes of graph of interest in the fields of chemistry and mathematics. It also discusses the symmetries, parameterization and the Goldberg–Coxeter construction for those graphs. It is the first book on this subject, presenting full structure theory of such graphs. While many previous publications only addressed particular questions about selected graphs, this book is based on numerous computations and presents extensive data (tables and figures), as well as algorithmic and computational information. It will be of interest to researchers and students of discrete geometry, mathematical chemistry and combinatorics, as well as to lay mathematicians.

  8. Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs

    Directory of Open Access Journals (Sweden)

    Theis Fabian J

    2010-10-01

    Full Text Available Abstract Background Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type. Results Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2. Conclusions In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy k-partite graph partitioning

  9. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    Science.gov (United States)

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  11. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  12. Study of structure and spectroscopy of water–hydroxide ion clusters ...

    Indian Academy of Sciences (India)

    Experimen- talists are interested in determining the bonding,1–18 structure and spectroscopy of these systems and the- oreticians have contributed to the logical explanation of experimental findings. There are different types of systems ranging from atomic clusters, especially noble gas clusters (modelled by Lennard Jones ...

  13. The structure of rotational bands in alpha-cluster nuclei

    Directory of Open Access Journals (Sweden)

    Bijker Roelof

    2015-01-01

    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  14. The structures of P{sub 8} and P{sub 9} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin; Zhao Wei; Li Baoxing [Zhejiang Univ., Hangzhou, ZJ (China). Dept. of Physics

    2001-08-01

    Full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO MD) calculations have been performed to investigate the structures and energies of P{sub 8} and P{sub 9} clusters. We get fourteen stable structures for P{sub 8} and fifteen stable structures for P{sub 9}. The results confirm that ''cuneane'' structure is the most stable isomer of P{sub 8} clusters. However, the distortion of a D{sub 3h} prism, which has not been reported so far, is the most stable among the fifteen P{sub 9} isomers. (orig.)

  15. Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n=2-22)

    International Nuclear Information System (INIS)

    Wang Baolin; Zhao Jijun; Chen Xiaoshuang; Shi Daning; Wang Guanghou

    2005-01-01

    The lowest-energy structures and electronic properties of the lead clusters are studied by density-functional-theory calculations with Becke-Lee-Yang-Parr gradient correction. The lowest-energy structures of Pb n (n=2-22) clusters are determined from a number of structural isomers, which are generated from empirical genetic algorithm simulations. The competition between atom-centered compact structures and layered stacking structures leads to the alternative appearance of the two types of structures as global minimum. The size evolution of geometric and electronic properties from covalent bonding towards bulk metallic behavior in Pb clusters is discussed

  16. Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu

    International Nuclear Information System (INIS)

    Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

    1992-01-01

    Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H 2 (D 2 ), H 2 0, NH 3 and N 2 . Measurements at both low coverage and at saturation are discussed

  17. Combinatorial computational chemistry approach to the design of metal catalysts for deNOx

    International Nuclear Information System (INIS)

    Endou, Akira; Jung, Changho; Kusagaya, Tomonori; Kubo, Momoji; Selvam, Parasuraman; Miyamoto, Akira

    2004-01-01

    Combinatorial chemistry is an efficient technique for the synthesis and screening of a large number of compounds. Recently, we introduced the combinatorial approach to computational chemistry for catalyst design and proposed a new method called ''combinatorial computational chemistry''. In the present study, we have applied this combinatorial computational chemistry approach to the design of precious metal catalysts for deNO x . As the first step of the screening of the metal catalysts, we studied Rh, Pd, Ag, Ir, Pt, and Au clusters regarding the adsorption properties towards NO molecule. It was demonstrated that the energetically most stable adsorption state of NO on Ir model cluster, which was irrespective of both the shape and number of atoms including the model clusters

  18. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  19. NATO Advanced Research Workshop on Physics and Chemistry of Finite Systems : from Clusters to Crystals

    CERN Document Server

    Khanna, S; Rao, B

    1992-01-01

    Recent innovations in experimental techniques such as molecular and cluster beam epitaxy, supersonic jet expansion, matrix isolation and chemical synthesis are increasingly enabling researchers to produce materials by design and with atomic dimension. These materials constrained by sire, shape, and symmetry range from clusters containing as few as two atoms to nanoscale materials consisting of thousands of atoms. They possess unique structuraI, electronic, magnetic and optical properties that depend strongly on their size and geometry. The availability of these materials raises many fundamental questions as weIl as technological possibilities. From the academic viewpoint, the most pertinent question concerns the evolution of the atomic and electronic structure of the system as it grows from micro clusters to crystals. At what stage, for example, does the cluster look as if it is a fragment of the corresponding crystal. How do electrons forming bonds in micro-clusters transform to bands in solids? How do the s...

  20. Mixed-metal cluster chemistry. 28. Core enlargement of tungsten-iridium clusters with alkynyl, ethyndiyl, and butadiyndiyl reagents.

    Science.gov (United States)

    Dalton, Gulliver T; Viau, Lydie; Waterman, Susan M; Humphrey, Mark G; Bruce, Michael I; Low, Paul J; Roberts, Rachel L; Willis, Anthony C; Koutsantonis, George A; Skelton, Brian W; White, Allan H

    2005-05-02

    Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.

  1. Structure of s - p bonded metal clusters with 8, 20 and 40 valence electrons

    International Nuclear Information System (INIS)

    Kumar, V.

    1992-10-01

    From studies on some clusters of metals and semiconductors, there appear some similarities in the structure of clusters with a given number of atoms and having the number of valence electrons corresponding to a shell closing. Here we present results of the atomic and electronic structure of a few other clusters with 20 and 40 valence electrons, namely Sb 4 , Sn 5 and Sb 8 using the density functional molecular dynamics method. We suggest that the similarities in the structure and deviation from them may help to understand bonding characteristics in clusters and its evolution to bulk behaviour. Our results on Sb 8 cluster are preliminary but indicate that above room temperature its structure is two weakly interacting tetrahedra which is in general agreement with the observation of predominently antimony tetramers at T > 300 K. (author). 16 refs, 2 figs

  2. Formation of global energy minimim structures in the growth process of Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Koshelev, Andrey; Shutovich, Andrey

    2003-01-01

    that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic numbers sequence for the clusters of noble gases atoms and compare...

  3. Structure and Mobility of Metal Clusters in MOFs: Au, Pd, and AuPd Clusters in MOF-74

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Walton, Krista S.; Sholl, David S.

    2012-01-01

    is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster......Understanding the adsorption and mobility of metal–organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density...... functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au8, Pd8, and Au4Pd4 we find that the organic part of the MOF...

  4. Theoretical study of the structure of a Ga{sub 6}N{sub 6} cluster

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin; Li Baoxing

    2003-08-25

    The structures and energies of a Ga{sub 6}N{sub 6} cluster have been calculated using a full-potential linear-muffin-tin-orbital (FP-LMTO) method, combined with molecular dynamics and simulated annealing techniques. We obtained 19 structures for a Ga{sub 6}N{sub 6} cluster. The most stable structure we obtained is a C{sub s} three-dimensional structure with a N{sub 2} and N{sub 3} subunits. The calculated results show that the existence of strong N-N bonds still dominates the structure of a Ga{sub 6}N{sub 6} cluster, supporting the previous result made by Kandalam et al. [J. Phys. Chem. B 106 (2002) 1945]. Through the calculation of the density of states we found that the most stable structure of Ga{sub 6}N{sub 6} clusters presented semiconductor-like properties.

  5. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  6. Connecting Structure-Property and Structure-Function Relationships across the Disciplines of Chemistry and Biology: Exploring Student Perceptions

    Science.gov (United States)

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    While many university students take science courses in multiple disciplines, little is known about how they perceive common concepts from different disciplinary perspectives. Structure-property and structure-function relationships have long been considered important explanatory concepts in the disciplines of chemistry and biology, respectively.…

  7. Structural properties of silicon clusters: An empirical potential study

    International Nuclear Information System (INIS)

    Gong, X.G.; Zheng, Q.Q.; He Yizhen

    1993-09-01

    By using our newly proposed empirical interatomic potential for silicon, the structure and some dynamical properties of silicon cluster Si n (10 ≤ n ≤ 24) have been studied. It is found that the obtained results are close to those from ab-initio methods. From present results, we can gain a new insight into the understanding of the experimental data on the Si n clusters. (author). 20 refs, 6 figs

  8. Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters: Ab initio study

    International Nuclear Information System (INIS)

    Bezi Javan, Masoud

    2015-01-01

    Highlights: • Electronic and magnetic properties of small Zr n Pd m (n + m ⩽ 5) have been investigated. • Binding energies of the Zr n clusters are significantly higher than Pd n clusters. • Binding energy of the Pd n clusters increase with substituting one or more Zr atom. • HOMO–LUMO gap of the Zr n Pd m clusters increase in comparison with pure states. - Abstract: Structural, electronic and magnetic properties of small bimetallic zirconium–palladium clusters, Zr n Pd m (n + m ⩽ 5), have been investigated using density functional theory with considering generalized gradient approximation and PBE functional. We have determined the ground state conformations of the bimetallic zirconium–palladium clusters by substitution of Zr and Pd atoms in the optimized lowest energy structures of pure zirconium and palladium clusters. Results reveal that binding energies of the pure Zr n clusters are significantly higher than Pd n clusters with the same number of atoms. Also it is found that binding energy of the Zr n and Pd n clusters increase with growth of the number of consisting atoms in the clusters. Results indicate that, for both Zr n and Pd n clusters the binding energy of planar forms is lower than three-dimensional structures. We have also found that the binding energy of the Pd n clusters increase with substituting one or more Zr atoms in these clusters. We have also studied the HOMO–LUMO energy gap and magnetic moment of the pure and combined Zr and Pd clusters. The energy gap analysis of the pure and combined Pd and Zr clusters show that in generally the HOMO–LUMO gap of the bimetallic Zr n Pd m clusters increase in comparison with their corresponding pure clusters with the same number of atoms. According to the spin polarization DFT calculations all of the Zr n Pd m (n + m ⩽ 5) have net magnetic moments as instance the Zr 2 , Pd 2 and ZrPd clusters show a total magnetic moment value of 2 μ B . Some more discussions around charge population

  9. Searching for filaments and large-scale structure around DAFT/FADA clusters

    Science.gov (United States)

    Durret, F.; Márquez, I.; Acebrón, A.; Adami, C.; Cabrera-Lavers, A.; Capelato, H.; Martinet, N.; Sarron, F.; Ulmer, M. P.

    2016-04-01

    Context. Clusters of galaxies are located at the intersection of cosmic filaments and are still accreting galaxies and groups along these preferential directions. However, because of their relatively low contrast on the sky, filaments are difficult to detect (unless a large amount of spectroscopic data are available), and unambiguous detections have been limited until now to relatively low redshifts (zDAFT/FADA survey for which we had deep wide field photometric data. For each cluster, based on a colour-magnitude diagram, we selected galaxies that were likely to belong to the red sequence, and hence to be at the cluster redshift, and built density maps. By computing the background for each of these maps and drawing 3σ contours, we estimated the elongations of the structures detected in this way. Whenever possible, we identified the other structures detected on the density maps with clusters listed in NED. Results: We find clear elongations in twelve clusters out of thirty, with sizes that can reach up to 7.6 Mpc. Eleven other clusters have neighbouring structures, but the zones linking them are not detected in the density maps at a 3σ level. Three clusters show no extended structure and no neighbours, and four clusters are of too low contrast to be clearly visible on our density maps. Conclusions: The simple method we have applied appears to work well to show the existence of filaments and/or extensions around a number of clusters in the redshift range 0.4 cluster samples such as the clusters detected in the CFHTLS and SDSS-Stripe 82 surveys in the near future. Based on our own data (see Guennou et al. 2014) and archive data obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and

  10. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  11. Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lahtinen, Tanja; Salorinne, Kirsi [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Häkkinen, Hannu [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Palmer, Richard E., E-mail: richardepalmerwork@yahoo.com [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-05-15

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au{sub 144}(SCH{sub 2}CH{sub 2}Ph){sub 60} provided by two different research groups. The MP Au clusters were “weighed” by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123–151 atoms, only 3% of clusters matched the theoretically predicted Au{sub 144}(SR){sub 60} structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. - Highlights: • Chemically synthesised gold clusters were “weighed” by atom counting to get true size. • Image simulations show a few percent of clusters have the predicted atomic structure. • But a specific ring-dot feature indicates local icosahedral order in many clusters.

  12. Of the crystal chemistry of Ruddlesden-Porter type structures in high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Dwivedi, A.; Cormack, A.N.

    1990-01-01

    This paper reports on atomistic computer simulation employed to examine the energetics and crystal chemistry of some Ruddlesden-Popper type oxide superconductors. Similar structural patterns have been noticed in the superconducting oxides. The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is similar in many respects to that seen in the system Sr-Ti-O. However, there are some significant differences, for example, the rocksalt and perovskite blocks in the new superconducting compounds are not necessarily electrically neutral unlike in the Sr-Ti-O system and this may well lead to significant differences in their structural chemistry

  13. Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters

    International Nuclear Information System (INIS)

    Zhao, Zheng; Li, Mingjiang; Cheng, Daojian; Zhu, Jiqin

    2014-01-01

    Highlights: • Structural properties of Au–Pd–Pt clusters are studied by Monte Carlo simulation. • Melting of Au–Pd–Pt clusters is studied by molecular dynamics simulation. • Au atoms are systematically segregated on the surface of the Au–Pd–Pt clusters. • Linear decrease in cluster melting point with the inverse cluster diameter. - Abstract: In this work, surface segregation phenomena of Au–Pd–Pt trimetallic clusters are investigated by using semi-grand Monte Carlo simulations based on the Gupta potential. It is found that Au atoms are systematically segregated on the surface of the Au–Pd–Pt clusters (6–24 at.% higher than the overall Au concentration), due to the competition among the surface energies of Au, Pd, and Pt. The melting properties of Au–Pd–Pt trimetallic clusters with different composition and size are investigated by using molecular dynamics simulations, based on the same Gupta potential. It is found that the Au–Pd–Pt trimetallic cluster with the highest melting point corresponds to the one with the most stable structure. In addition, linear decrease in cluster melting point with the inverse cluster diameter is predicted for both pure and trimetallic clusters, which is well-known as the Pawlow’s law

  14. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  15. Titanium embedded cage structure formation in AlnTi+ clusters and their interaction with Ar

    International Nuclear Information System (INIS)

    Torres, M. B.; Vega, A.; Balbás, L. C.; Aguilera-Granja, F.

    2014-01-01

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al n Ti + [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n c determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al n Ti + , experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic properties of singly titanium doped cationic clusters, Al n Ti + (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n c = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n c = 21) and their neutral counterparts (n c = 20). For the Al n Ti + · Ar complexes, and for n n Ti + clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For n c = 21, the smallest size of endohedral Ti doped cationic clusters, the Ar binding energy decreases drastically, whereas the Ar-cluster distance increases substantially, point to Ar physisorption, as assumed by the experimentalists. Calculated Ar adsorption energies agree well with available experimental binding

  16. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  17. Protactinium and the intersection of actinide and transition metal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; De Sio, Stephanie; Vallet, Valérie

    2018-02-12

    The role of the 5f and 6d orbitals in the chemistry of the actinide elements has been of considerable interest since their discovery and synthesis. Relativistic effects cause the energetics of the 5f and 6d orbitals to change as the actinide series is traversed left to right imparting a rich and complex chemistry. The 5f and 6d atomic states cross in energy at protactinium (Pa), making it a potential intersection between transition metal and actinide chemistries. Herein, we report the synthesis of a Pa-peroxo cluster, A(6)(Pa4O(O-2)(6)F-12) [A = Rb, Cs, (CH3)(4)N], formed in pursuit of an actinide polyoxometalate. Quantum chemical calculations at the density functional theory level demonstrate equal 5f and 6d orbital participation in the chemistry of Pa and increasing 5f orbital participation for the heavier actinides. Periodic changes in orbital character to the bonding in the early actinides highlights the influence of the 5f orbitals in their reactivity and chemical structure.

  18. Cluster structure in the correlation coefficient matrix can be characterized by abnormal eigenvalues

    Science.gov (United States)

    Nie, Chun-Xiao

    2018-02-01

    In a large number of previous studies, the researchers found that some of the eigenvalues of the financial correlation matrix were greater than the predicted values of the random matrix theory (RMT). Here, we call these eigenvalues as abnormal eigenvalues. In order to reveal the hidden meaning of these abnormal eigenvalues, we study the toy model with cluster structure and find that these eigenvalues are related to the cluster structure of the correlation coefficient matrix. In this paper, model-based experiments show that in most cases, the number of abnormal eigenvalues of the correlation matrix is equal to the number of clusters. In addition, empirical studies show that the sum of the abnormal eigenvalues is related to the clarity of the cluster structure and is negatively correlated with the correlation dimension.

  19. Magneto-structural correlations in exchange coupled systems

    International Nuclear Information System (INIS)

    Willett, R.D.; Gatteschi, D.; Kahn, O.

    1985-01-01

    This book contains 19 chapters. Some of the chapter titles are: Optical Spectroscophy; The Basis of Spin-Hamiltonian Theory; Inelastic Neutorn Scattering From Clusters; Magneto-structural Correlations in Bioinorganic Chemistry; and Magnetic Exchange Interactions Propagated by Multi-Atom Bridges

  20. Construction Cluster Volume I [Wood Structural Framing].

    Science.gov (United States)

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the first of a series, to be integrated with a G.E.D. program, containing instructional materials at the basic skills level for the construction cluster. It focuses on wood structural framing and contains 20 units: (1) occupational information; (2) blueprint reading; (3) using leveling instruments and laying out building lines; (4)…

  1. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  2. Electron-triggered chemistry in HNO3/H2O complexes

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Ončák, M.; Fedor, Juraj; Kočišek, Jaroslav; Pysanenko, Andriy; Beyer, M. K.; Fárník, Michal

    2017-01-01

    Roč. 19, č. 19 (2017), s. 11753-11758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : electron-triggered chemistry * acid-water clusters * gas-phase reactions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  3. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    International Nuclear Information System (INIS)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-01-01

    In this work we have studied the structural and magnetic properties of Ni 13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H 2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni 12 Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni 12 MnH 2 . Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H 2 absorption in the doped Ni 13−m Mn m alloy clusters. This has been reported earlier for smaller Ni n clusters [1

  4. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    Science.gov (United States)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-06-01

    In this work we have studied the structural and magnetic properties of Ni13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni12Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni12MnH2. Our analysis of the stability and HOMO-LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H2 absorption in the doped NiMnm alloy clusters. This has been reported earlier for smaller Nin clusters [1].

  5. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures

    International Nuclear Information System (INIS)

    Huang Aimin; Liu Chunli; Ma Lin; Tong Zhangfa; Lin Ruisen

    2012-01-01

    Graphical abstract: Together with static light scattering measurement, volumetric properties of glycine, L-alanine and L-serine were determined and utilized to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrated that the interaction between amino acids and DMSO was greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. Hydrophobic aggregating of DMSO lead to a decrease in the hydrophobic effect of DMSO and the hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids, which was reflected by the solvation of proteins. Highlights: ► Determine volumetric properties of three amino acids in aqueous DMSO in details. ► Static light scattering measurement for clustering structure of aqueous DMSO. ► Volumetric behaviour of amino acids depends on clustering structure of aqueous DMSO. ► Clustering structure of aqueous DMSO influences solvation of protein and cellulose. - Abstract: For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, L-alanine and L-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2

  6. Evolution of galaxy cluster scaling and structural properties from XMM observations: probing the physics of structure formation

    International Nuclear Information System (INIS)

    Anokhin, Sergey

    2008-01-01

    Clusters of galaxies are the largest gravitationally bound objects in the Universe. It is possible to study the hierarchical structure formation based on these youngest objects in the Universe. In order to complete the results found with hot clusters, we choose the cold distant galaxy clusters selected from The Southern SHARC catalogue. In the same time, we studied archived galaxy clusters to test the theory and treatment analysis. To study these weak cluster of galaxies, we optimized our treatment analysis: in particular, searching for the best background subtraction and modeling it for our surface brightness profile and spectra. Our results are in a good agreement with Scaling Relation obtained from hot galaxy clusters. (author) [fr

  7. Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.

    Science.gov (United States)

    Albetel, Angela-Nadia; Outten, Caryn E

    2018-01-01

    Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions. © 2018 Elsevier Inc. All rights reserved.

  8. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    Science.gov (United States)

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  9. Coupled-cluster calculations for ground and excited states of closed- and open-shell nuclei using methods of quantum chemistry

    International Nuclear Information System (INIS)

    Wloch, Marta; Gour, Jeffrey R; Piecuch, Piotr; Dean, David J; Hjorth-Jensen, Morten; Papenbrock, Thomas

    2005-01-01

    We discuss large-scale ab initio calculations of ground and excited states of 16 O and preliminary calculations for 15 O and 17 O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we are able to obtain the virtually converged results for 16 O and promising results for 15 O and 17 O at the level of two-body interactions. The calculated properties other than binding and excitation energies include charge radius and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to seven or eight major oscillator shells, for which nontruncated shell-model calculations for nuclei with A = 15-17 active particles are presently not possible

  10. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    International Nuclear Information System (INIS)

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  11. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  12. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  13. Electron-triggered chemistry in HNO3/H2O complexes

    Czech Academy of Sciences Publication Activity Database

    Lengyel, Jozef; Ončák, M.; Fedor, Juraj; Kočišek, Jaroslav; Pysanenko, Andriy; Beyer, M. K.; Fárník, Michal

    2017-01-01

    Roč. 19, č. 19 (2017), s. 11753-11758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : electron-triggered chemistry * acid-water clusters * gas-phase reaction s Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  14. Structural stabilities and electronic properties of Mg28-nAln clusters: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bao-Juan Lu

    2017-09-01

    Full Text Available In this paper, we have constructed the alloy configurations of Mg28-nAln by replacing atoms at various possible positions, starting from the stable structures of Mg28 and Al28 clusters. According to the symmetry of the cluster structure, the isomers of these initial structures have been screened with the congruence check, which would reduce computational hours and improve efficiency. Using the first-principles method, the structural evolution, mixing behavior and electronic properties of Mg28-nAln clusters are investigated for all compositions. We conclude that Al atoms prefer to reside in the central positions of Mg−Al clusters and Mg atoms tend to occupy the peripheral location. The negative mixing enthalpies imply the stabilities of these Mg-Al clusters and thus possible applications in catalysis and hydrogen storage materials. Among Mg28-nAln clusters, Mg24Al4, Mg21Al7, Mg14Al14, Mg26Al2 and Mg27Al1 present relatively high thermodynamic stabilities, and the electronic properties of these stable structures are discussed with the charge distributions around the Fermi level.

  15. A-dependence of structure functions and multiquark clusters in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.; Shmatikov, M.

    1984-01-01

    Assuming existence of 12q-clusters (bags) in nuclei the structure functions of deep inelastic scattering of leptons on nuclei are discussed. Universal momentum distribution of quarks in a multiquark cluster is used with high-momentum component falling exponentially PHIsub(q)sup(2)(k) approximately esup(-k/ksub(0)) with k 0 approximately equal to 50-60 MeV/c. The admixture of 12q-cluster W required for the description of SLAG data increases from 10% for 4 He to 30% for Au. The A-dependence of W agrees well with the A-dependence of cumulative particle spectra

  16. STM-electroluminescence from clustered C3N4 nanodomains synthesized via green chemistry process.

    Science.gov (United States)

    Andrade, E P; Costa, B B A; Chaves, C R; de Paula, A M; Cury, L A; Malachias, A; Safar, G A M

    2018-01-01

    A Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and synchrotron X-ray diffraction study on clustered C 3 N 4 nanoparticles (nanoflakes) is conducted on green-chemistry synthesized samples obtained from chitosan through high power sonication. Morphological aspects and the electronic characteristics are investigated. The observed bandgap of the nanoflakes reveals the presence of different phases in the material. Combining STM morphology, STS spectra and X-ray diffraction (XRD) results one finds that the most abundant phase is graphitic C 3 N 4 . A high density of defects is inferred from the XRD measurements. Additionally, STM-electroluminescence (STMEL) is detected in C 3 N 4 nanoflakes deposited on a gold substrate. The tunneling current creates photons that are three times more energetic than the tunneling electrons of the STM sample. We ponder about the two most probable models to explain the observed photon emission energy: either a nonlinear optical phenomenon or a localized state emission. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Site-Specific Biomolecule Labeling with Gold Clusters

    OpenAIRE

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (...

  18. Ioniclike energy structure of neutral core-excited states in free Kr clusters

    International Nuclear Information System (INIS)

    Peredkov, S.; Sorensen, S.L.; Kivimaeki, A.; Schulz, J.; Maartensson, N.; Oehrwall, G.; Lundwall, M.; Rander, T.; Lindblad, A.; Bergersen, H.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2005-01-01

    The development of electronic states in krypton clusters is investigated by high-resolution core-level electron spectroscopy. The energy ordering of bulk versus surface 3d -1 np(n>5) core-excited states in neutral clusters is demonstrated to be reversed to the 3d -1 5p level situation. The cluster 3d -1 6p,7p states are proven to be at a lower energy than the corresponding atomic levels. These findings reveal the ioniclike energy structure of the neutral cluster core-excited levels. The phenomenon is explained by a spatial spread of the excited orbitals over the cluster lattice

  19. Using Structure-Based Organic Chemistry Online Tutorials with Automated Correction for Student Practice and Review

    Science.gov (United States)

    O'Sullivan, Timothy P.; Hargaden, Gra´inne C.

    2014-01-01

    This article describes the development and implementation of an open-access organic chemistry question bank for online tutorials and assessments at University College Cork and Dublin Institute of Technology. SOCOT (structure-based organic chemistry online tutorials) may be used to supplement traditional small-group tutorials, thereby allowing…

  20. Similarities and Differences Between Atomic Nuclei and Clusters: Toward a Unified Development of Cluster Science. Proceedings

    International Nuclear Information System (INIS)

    Abe, Y.; Arai, I.; Lee, S.; Yabana, K.

    1998-01-01

    These proceedings represent papers presented at the symposium on Similarities and Differences Between Atomic Nuclei and Clusters held in Tsukuba, Japan in July, 1997. A wide range of topics were covered including the quantum and thermal properties of free clusters to high energy impacts of clusters on solid surfaces. Fullerenes and carbon clusters chemistry was discussed in some detail. This symposium brought together scientists from many disciplines: nuclear and solid state physicists, chemists, and material scientists. There are 62 papers in the proceedings and 3 have been abstracted for the Energy Science and Technology database

  1. Multi-level flow-based Markov clustering for design structure matrices

    NARCIS (Netherlands)

    Wilschut, T.; Etman, P.L.F.; Rooda, J.E.; Adan, I.J.B.F.

    2016-01-01

    For decomposition and integration of systems one requires extensive knowledge on system structure. A Design Structure Matrix (DSM) can provide a simple, compact and visual representation of dependencies between system elements. By permuting the rows and columns of a DSM using a clustering algorithm,

  2. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-03-06

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  3. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  4. Influence of system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. L.; Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); He, Y. F.; Wu, L. [College of Information and Electrical Engineering, China Agricultural University, Beijing 100083 (China); Liu, Y. H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Chen, Z. Y. [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2015-06-15

    Influence of the system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas is investigated through laboratory experiment and molecular dynamics simulation. The micro-structures, defect numbers, and pair correlation function of the dust clusters are studied for different system temperatures. The dust grains' trajectories, the mean square displacement, and the corresponding self-diffusion coefficient of the clusters are calculated for different temperatures for illustrating the phase properties of the dust clusters. The simulation results confirm that with the increase in system temperature, the micro-structures and dynamics of dust clusters are gradually changed, which qualitatively agree with experimental results.

  5. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  6. Structurally Based Therapeutic Evaluation: A Therapeutic and Practical Approach to Teaching Medicinal Chemistry.

    Science.gov (United States)

    Alsharif, Naser Z.; And Others

    1997-01-01

    Explains structurally based therapeutic evaluation of drugs, which uses seven therapeutic criteria in translating chemical and structural knowledge into therapeutic decision making in pharmaceutical care. In a Creighton University (Nebraska) medicinal chemistry course, students apply the approach to solve patient-related therapeutic problems in…

  7. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity.

    Science.gov (United States)

    Nicoludis, John M; Lau, Sze-Yi; Schärfe, Charlotta P I; Marks, Debora S; Weihofen, Wilhelm A; Gaudet, Rachelle

    2015-11-03

    Clustered protocadherin (Pcdh) proteins mediate dendritic self-avoidance in neurons via specific homophilic interactions in their extracellular cadherin (EC) domains. We determined crystal structures of EC1-EC3, containing the homophilic specificity-determining region, of two mouse clustered Pcdh isoforms (PcdhγA1 and PcdhγC3) to investigate the nature of the homophilic interaction. Within the crystal lattices, we observe antiparallel interfaces consistent with a role in trans cell-cell contact. Antiparallel dimerization is supported by evolutionary correlations. Two interfaces, located primarily on EC2-EC3, involve distinctive clustered Pcdh structure and sequence motifs, lack predicted glycosylation sites, and contain residues highly conserved in orthologs but not paralogs, pointing toward their biological significance as homophilic interaction interfaces. These two interfaces are similar yet distinct, reflecting a possible difference in interaction architecture between clustered Pcdh subfamilies. These structures initiate a molecular understanding of clustered Pcdh assemblies that are required to produce functional neuronal networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  9. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  10. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    Science.gov (United States)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  11. Site-Specific Biomolecule Labeling with Gold Clusters

    Science.gov (United States)

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  12. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…

  13. Trinuclear rhenium(III) halide clusters with carboxylate ligands

    Science.gov (United States)

    Dougan, Jeffrey Steven

    Four mono(carboxylato)trirhenium complexes and three bis(carboxylato)trirhenium complexes have been synthesized and characterized, principally by mass spectrometry, with supporting evidence from X-ray diffraction. These compounds represent the first trinuclear rhenium carboxylate complexes. The reactions generally proceed readily under comparatively mild conditions. Mass spectrometry has again proved its usefulness as a technique in the field of metal cluster chemistry, having provided the initial identification of the products of the reactions studied. These compounds provide a further base to which future mass spectra of metal cluster compounds can be compared. Re-examination of a reaction reported by Taha and Wilkinson has also cast considerable doubt onto the validity of a conversion widely reported in the literature that transforms (Re3Cl9) x into [Re2(O2CCH3)4Cl 2]. We believe that the literature result is a consequence of the purity of the metal precursor, and suggest that the starting material in the earlier work may have contained ReCl4 or ReCl5. The importance of mass spectrometry in the characterization of the new compounds synthesized in this project has led to a thorough study of calculated isotopic distributions. The information gathered suggests that for isotopically simple molecules, the choice of algorithm for computing an isotopic distribution is unimportant. However, it is important to compute the mass spectrum of an isotopically complex molecule using an algorithm that can, if desired, show the underlying isotopic fine structure of a peak of interest. In the last chapter of this thesis, the results of a project in chemistry education research are presented. Predicting the success of students in general chemistry has long been of interest to the chemistry education community, and several factors have been identified as contributing factors. An off-hand comment by a student inspired an examination of whether continuity with the same instructor for

  14. Nickel group cluster anion reactions with carbon monoxide: Rate coefficients and chemisorption efficiency

    Science.gov (United States)

    Hintz, Paul A.; Ervin, Kent M.

    1994-04-01

    Reactions of Ni-n(n=3-10), Pd-n(n=3-8), and Pt-n(n=3-7) with CO are studied in a flow tube reactor. Bimolecular rate coefficients are measured for the association reaction of CO adsorbing on the cluster surface. The rate coefficients range from about 10% of the collision rate for the trimer anions to near the collision rate for clusters larger than four atoms. The maximum number of CO molecules that bind to each cluster is determined. Whereas the saturation limits for nickel are typical for an 18 electron transition metal, the limits for platinum are lower, reflecting the electron deficient structures observed in condensed phase chemistry. The CO saturated palladium clusters represent the first examples of saturated binary palladium carbonyl compounds. Comparisons are made to similar studies on metal cation and neutral clusters and also to surface scattering studies of nickel group metals.

  15. A New Approach to the General Chemistry Laboratory

    Science.gov (United States)

    Bieron, Joseph F.; McCarthy, Paul J.; Kermis, Thomas W.

    1996-11-01

    Background Canisius College is a medium-sized liberal arts college with a longstanding tradition of maintaining an excellent chemistry program. We realized a few years ago, however, that this tradition was not being sustained by our General Chemistry laboratory course, which had not changed significantly in years. With the help of a grant from the National Science Foundation, our department has been able to design a new laboratory course built around several guiding principles. The design called for experiments to be grouped in units or clusters. Each cluster has a unifying theme or common thread, which gives some coherence to the experiments. The clusters and experiments are listed in the appendix and briefly explained below. Course Design Cluster A's topic is organic and polymer chemistry, and its main objective is to show that chemistry can be enjoyable and relevant to common experiences. Data collection is minimal and hands-on manipulation with observable products is emphasized. Cluster B is a case study of the chemistry of maintaining a swimming pool. The common theme is solution chemistry, and the experiments are designed to promote critical thinking. Cluster C encompasses both oxidation - reduction reactions and electrochemistry, and attempts to show the commonality of these important topics. Cluster D is a series of experiments on methods and techniques of analytical chemistry; in this group the analysis of unknown materials is undertaken. Cluster E is covered last in the second semester, and it stresses important concepts in chemistry at a slightly more advanced level. The emphasis is on the relationship of experiment to theory, and the cluster involves experiments in kinetics, equilibrium, and synthesis. Other guidelines that we considered important in our design were the use of computers (when appropriate), the introduction of microscale chemistry, and the use of instrumentation whenever possible. A separate cluster, labeled Mac, was developed to provide

  16. Mental State Talk Structure in Children’s Narratives: A Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Giuliana Pinto

    2017-01-01

    Full Text Available This study analysed children’s Theory of Mind (ToM as assessed by mental state talk in oral narratives. We hypothesized that the children’s mental state talk in narratives has an underlying structure, with specific terms organized in clusters. Ninety-eight children attending the last year of kindergarten were asked to tell a story twice, at the beginning and at the end of the school year. Mental state talk was analysed by identifying terms and expressions referring to perceptual, physiological, emotional, willingness, cognitive, moral, and sociorelational states. The cluster analysis showed that children’s mental state talk is organized in two main clusters: perceptual states and affective states. Results from the study confirm the feasibility of narratives as an outlet to inquire mental state talk and offer a more fine-grained analysis of mental state talk structure.

  17. A pilot cluster randomized controlled trial of structured goal-setting following stroke.

    Science.gov (United States)

    Taylor, William J; Brown, Melanie; William, Levack; McPherson, Kathryn M; Reed, Kirk; Dean, Sarah G; Weatherall, Mark

    2012-04-01

    To determine the feasibility, the cluster design effect and the variance and minimal clinical importance difference in the primary outcome in a pilot study of a structured approach to goal-setting. A cluster randomized controlled trial. Inpatient rehabilitation facilities. People who were admitted to inpatient rehabilitation following stroke who had sufficient cognition to engage in structured goal-setting and complete the primary outcome measure. Structured goal elicitation using the Canadian Occupational Performance Measure. Quality of life at 12 weeks using the Schedule for Individualised Quality of Life (SEIQOL-DW), Functional Independence Measure, Short Form 36 and Patient Perception of Rehabilitation (measuring satisfaction with rehabilitation). Assessors were blinded to the intervention. Four rehabilitation services and 41 patients were randomized. We found high values of the intraclass correlation for the outcome measures (ranging from 0.03 to 0.40) and high variance of the SEIQOL-DW (SD 19.6) in relation to the minimally importance difference of 2.1, leading to impractically large sample size requirements for a cluster randomized design. A cluster randomized design is not a practical means of avoiding contamination effects in studies of inpatient rehabilitation goal-setting. Other techniques for coping with contamination effects are necessary.

  18. Structures and dynamical properties of Cn, Sin, Gen, and Snn clusters with n up to 13

    International Nuclear Information System (INIS)

    Lu, Zhong-Yi; Wang, Cai-Zhuang; Ho, Kai-Ming

    2000-01-01

    Car-Parrinello molecular dynamics simulated annealings were carried out for clusters Si n , Ge n , and Sn n (n≤13). We investigate the temperature regions in which these clusters transform from a ''liquidlike'' phase to a ''solidlike'' phase, and then from the ''solidlike'' phase to the ground-state structures. Additional simulated annealing was also performed for the cluster C 13 which is selected as a prototype of small carbon clusters. In addition to the discovery of structures for Sn and Ge clusters, our simulation results also provide insights into the dynamics of cluster formation. (c) 2000 The American Physical Society

  19. Structure activity study on the quinone/quinone methide chemistry of flavonoids

    NARCIS (Netherlands)

    Awad, H.M.; Boersma, M.G.; Boeren, S.; Bladeren, van P.J.; Vervoort, J.; Rietjens, I.M.C.M.

    2001-01-01

    A structure-activity study on the quinone/quinone methide chemistry of a series of 3',4'-dihydroxyflavonoids was performed. Using the glutathione trapping method followed by HPLC, 1H NMR, MALDI-TOF, and LC/MS analysis to identify the glutathionyl adducts, the chemical behavior of the

  20. Relation between financial market structure and the real economy: comparison between clustering methods.

    Science.gov (United States)

    Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T

    2015-01-01

    We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover,we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging [corrected].

  1. Relation between financial market structure and the real economy: comparison between clustering methods.

    Directory of Open Access Journals (Sweden)

    Nicoló Musmeci

    Full Text Available We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover,we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging [corrected].

  2. Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Kodzuka, M.; Yamamura, H.; Saito, T.; Iba, H.; Hono, K.

    2013-01-01

    Atom probe tomography and high resolution transmission electron microscopy have shown the presence of nano-sized amorphous Si clusters in non-disproportionated amorphous SiO powders are under consideration for anode materials in Li-ion batteries. After Li insertion/extraction, no change was found in the chemistry and structure of the Si clusters. However, Li atoms were found to be trapped at the amorphous SiO phase after Li insertion/extraction, which may be attributed to the large capacity fade after the first charge/discharge cycle

  3. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...and electronic excited-state absorption spectra for eqilibrium structures of SixOy molecular clusters using density function theory (DFT) and time

  4. Electronic structure and optical properties of the thiolate-protected Au28(SMe)20 cluster.

    Science.gov (United States)

    Knoppe, Stefan; Malola, Sami; Lehtovaara, Lauri; Bürgi, Thomas; Häkkinen, Hannu

    2013-10-10

    The recently reported crystal structure of the Au28(TBBT)20 cluster (TBBT: p-tert-butylbenzenethiolate) is analyzed with (time-dependent) density functional theory (TD-DFT). Bader charge analysis reveals a novel trimeric Au3(SR)4 binding motif. The cluster can be formulated as Au14(Au2(SR)3)4(Au3(SR)4)2. The electronic structure of the Au14(6+) core and the ligand-protected cluster were analyzed, and their stability can be explained by formation of distorted eight-electron superatoms. Optical absorption and circular dichroism (CD) spectra were calculated and compared to the experiment. Assignment of handedness of the intrinsically chiral cluster is possible.

  5. The far from equilibrium structure of argon clusters doped with krypton or xenon.

    Science.gov (United States)

    Lindblad, A; Bergersen, H; Rander, T; Lundwall, M; Ohrwall, G; Tchaplyguine, M; Svensson, S; Björneholm, O

    2006-04-28

    Heterogeneous clusters created by doping Ar host clusters with Kr or Xe are shown to have radically different structures from the mixed clusters of the same type created by co-expansion of Ar-Kr or Ar-Xe gas mixtures. In contrast to the co-expansion case, the doped mixed clusters can be produced with Kr or Xe on the surface and Ar in the bulk. With the doping technique it is thus possible to control the surface composition of a specific cluster. A study of the cluster properties as a function of the doping pressure is also reported for the case of Ar clusters doped with Xe. The clusters have been studied by means of synchrotron radiation based X-ray photoelectron spectroscopy.

  6. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters.

    Science.gov (United States)

    Negishi, Yuichi; Nakazaki, Tafu; Malola, Sami; Takano, Shinjiro; Niihori, Yoshiki; Kurashige, Wataru; Yamazoe, Seiji; Tsukuda, Tatsuya; Häkkinen, Hannu

    2015-01-28

    We report on how the transition from the bulk structure to the cluster-specific structure occurs in n-dodecanethiolate-protected gold clusters, Au(n)(SC12)m. To elucidate this transition, we isolated a series of Au(n)(SC12)m in the n range from 38 to ∼520, containing five newly identified or newly isolated clusters, Au104(SC12)45, Au(∼226)(SC12)(∼76), Au(∼253)(SC12)(∼90), Au(∼356)(SC12)(∼112), and Au(∼520)(SC12)(∼130), using reverse-phase high-performance liquid chromatography. Low-temperature optical absorption spectroscopy, powder X-ray diffractometry, and density functional theory (DFT) calculations revealed that the Au cores of Au144(SC12)60 and smaller clusters have molecular-like electronic structures and non-fcc geometric structures, whereas the structures of the Au cores of larger clusters resemble those of the bulk gold. A new structure model is proposed for Au104(SC12)45 based on combined approach between experiments and DFT calculations.

  7. Experimental analysis of clustering structures in magnetic and MR fluids using ultrasound

    International Nuclear Information System (INIS)

    Bramantya, M A; Takuma, H; Faiz, M; Sawada, T; Motozawa, M

    2009-01-01

    The formation of clustering structures in magnetic and MR fluids has an influence on ultrasonic propagation. We propose a qualitative analysis of these structures by measuring properties of ultrasonic propagation. Since magnetic and MR fluids are opaque, the non-contact inspection using this ultrasonic technique can be very useful for analyzing the inner structures of magnetic and MR fluids. We measured ultrasonic propagation velocity in a hydrocarbon-based magnetic fluid and MR fluid precisely. Based on these results, the clustering structures of these fluids were analyzed experimentally in terms of elapsed time dependence, effect of external magnetic field strength and angle, and hysteresis phenomena. A comparison of ultrasonic velocity propagation between magnetic and MR fluid was discussed.

  8. Proceedings of the DAE-BRNS fifth interdisciplinary symposium on materials chemistry

    International Nuclear Information System (INIS)

    Jafar, Mohsin; Tyagi, Adish; Tyagi, Deepak

    2014-12-01

    The focus of the present symposium on materials chemistry was on research areas in materials chemistry like: nuclear materials; high purity materials; nanomaterials and clusters; carbon based materials; fuel cell materials and other electro-ceramics; biomaterials; polymers and soft condensed matter; materials for energy conversion; thin films and surface chemistry; magnetic materials; catalysis; chemical sensors; organic and organometallic compounds; computational material chemistry etc. Papers relevant to INIS are indexed separately

  9. Enhanced magnetostriction derived from magnetic single domain structures in cluster-assembled SmCo films

    Science.gov (United States)

    Bai, Yulong; Yang, Bo; Guo, Fei; Lu, Qingshan; Zhao, Shifeng

    2017-11-01

    Cluster-assembled SmCo alloy films were prepared by low energy cluster beam deposition. The structure, magnetic domain, magnetization, and magnetostriction of the films were characterized. It is shown that the as-prepared films are assembled in compact and uniformly distributed spherical cluster nanoparticles, most of which, after vacuum in situ annealing at 700 K, aggregated to form cluster islands. These cluster islands result in transformations from superparamagnetic states to magnetic single domain (MSD) states in the films. Such MSD structures contribute to the enhanced magnetostrictive behaviors with a saturation magnetostrictive coefficient of 160 × 10-6 in comparison to 105 × 10-6 for the as-prepared films. This work demonstrates candidate materials that could be applied in nano-electro-mechanical systems, low power information storage, and weak magnetic detecting devices.

  10. Structural Parameters of Star Clusters: Signal to Noise Effects

    Directory of Open Access Journals (Sweden)

    Narbutis D.

    2015-09-01

    Full Text Available We study the impact of photometric signal to noise on the accuracy of derived structural parameters of unresolved star clusters using MCMC model fitting techniques. Star cluster images were simulated as a smooth surface brightness distribution following a King profile convolved with a point spread function. The simulation grid was constructed by varying the levels of sky background and adjusting the cluster’s flux to a specified signal to noise. Poisson noise was introduced to a set of cluster images with the same input parameters at each node of the grid. Model fitting was performed using “emcee” algorithm. The presented posterior distributions of the parameters illustrate their uncertainty and degeneracies as a function of signal to noise. By defining the photometric aperture containing 80% of the cluster’s flux, we find that in all realistic sky background level conditions a signal to noise ratio of ~50 is necessary to constrain the cluster’s half-light radius to an accuracy better than ~20%. The presented technique can be applied to synthetic images simulating various observations of extragalactic star clusters.

  11. Direct Atomic Scale Observation of the Structure and Chemistry of Order/Disorder Interfaces

    National Research Council Canada - National Science Library

    Srinivasan, R; Banerjee, R; Hwang, J. Y; Viswanathan, G. B; Tiley, J; Fraser, H. L

    2008-01-01

    ... distributed ordered intermetallic precipitates within a disordered matrix. The structure and chemistry at the precipitate/matrix interface plays a critical role in determining the effectiveness of the strengthening mechanism...

  12. Polyhedral boron-containing cluster chemistry: Aspects of architecture beyond the icosahedron

    Czech Academy of Sciences Publication Activity Database

    Shea, S. L.; Bould, J.; Londesborough, M. G. S.; Perea, S. D.; Franken, A.; Ormsby, D. L.; Jelínek, Tomáš; Štíbr, Bohumil; Holub, Josef; Kilner, C. A.; Thorton-Pett, M.; Kennedy, J. D.

    2003-01-01

    Roč. 75, č. 9 (2003), s. 1239-1248 ISSN 0033-4545 R&D Projects: GA MŠk LN00A028 Grant - others:UK EPRC(GB) J56929 Institutional research plan: CEZ:AV0Z4032918 Keywords : molecular chemistry * carbon hydrides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.471, year: 2003

  13. Structure of boron clusters revisited, Bn with n = 14-20

    Science.gov (United States)

    Tai, Truong Ba; Tam, Nguyen Minh; Nguyen, Minh Tho

    2012-03-01

    We reinvestigate the structures of neutral boron clusters Bn, with n = 14-20. G3B3 calculations confirm that a transition between 2D and 3D shape occurs at B20, which has a tubular form. In disagreement with Boustani et al. (Phys. Rev. B, 83 (2011) 193405), we find a planar B19 cluster. Standard heats of formation are obtained and used to evaluate the clusters stability. The average binding energy tends to increase with increasing size toward a limit. Higher stability is found B14, B16, B18 and B20. All Bn have negative NICS-values. The bonding nature and electron delocalization of B20 are re-examined using CMO and LOL.

  14. Spectroscopic and computational studies of ionic clusters as models of solvation and atmospheric reactions

    Science.gov (United States)

    Kuwata, Keith T.

    Ionic clusters are useful as model systems for the study of fundamental processes in solution and in the atmosphere. Their structure and reactivity can be studied in detail using vibrational predissociation spectroscopy, in conjunction with high level ab initio calculations. This thesis presents the applications of infrared spectroscopy and computation to a variety of gas-phase cluster systems. A crucial component of the process of stratospheric ozone depletion is the action of polar stratospheric clouds (PSCs) to convert the reservoir species HCl and chlorine nitrate (ClONO2) to photochemically labile compounds. Quantum chemistry was used to explore one possible mechanism by which this activation is effected: Cl- + ClONO2 /to Cl2 + NO3- eqno(1)Correlated ab initio calculations predicted that the direct reaction of chloride ion with ClONO2 is facile, which was confirmed in an experimental kinetics study. In the reaction a weakly bound intermediate Cl2-NO3- is formed, with ~70% of the charge localized on the nitrate moiety. This enables the Cl2-NO3- cluster to be well solvated even in bulk solution, allowing (1) to be facile on PSCs. Quantum chemistry was also applied to the hydration of nitrosonium ion (NO+), an important process in the ionosphere. The calculations, in conjunction with an infrared spectroscopy experiment, revealed the structure of the gas-phase clusters NO+(H2O)n. The large degree of covalent interaction between NO+ and the lone pairs of the H2O ligands is contrasted with the weak electrostatic bonding between iodide ion and H2O. Finally, the competition between ion solvation and solvent self-association is explored for the gas-phase clusters Cl/-(H2O)n and Cl-(NH3)n. For the case of water, vibrational predissociation spectroscopy reveals less hydrogen bonding among H2O ligands than predicted by ab initio calculations. Nevertheless, for n /ge 5, cluster structure is dominated by water-water interactions, with Cl- only partially solvated by the

  15. Electronic structure and properties of designer clusters and cluster-assemblies

    International Nuclear Information System (INIS)

    Khanna, S.N.; Jena, P.

    1995-01-01

    Using self-consistent calculations based on density functional theory, we demonstrate that electronic shell filling and close atomic packing criteria can be used to design ultra-stable clusters. Interaction of these clusters with each other and with gas atoms is found to be weak confirming their chemical inertness. A crystal composed of these inert clusters is expected to have electronic properties that are markedly different from crystals where atoms are the building blocks. The recent observation of ferromagnetism in potassium clusters assembled in zeolite cages is discussed. (orig.)

  16. Dynamic analysis of clustered building structures using substructures methods

    International Nuclear Information System (INIS)

    Leimbach, K.R.; Krutzik, N.J.

    1989-01-01

    The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods

  17. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  18. Symmetry and topology code of the cluster self-assembly of framework MT structures of alumophosphates AlPO4(H2O)2 (metavariscite and variscite) and Al2(PO4)2(H2O)3 (APC)

    Science.gov (United States)

    Ilyushin, G. D.; Blatov, V. A.

    2017-03-01

    The supramolecular chemistry of alumophosphates, which form framework 3D MT structures from polyhedral AlO4(H2O)2 clusters with octahedral O coordination (of M polyhedra) and PO4 and AlO4 with tetrahedral O coordination (of T polyhedra), is considered. A combinatorial-topological modeling of the formation of possible types of linear (six types) and ring (two types) tetrapolyhedral cluster precursors M2T2 from MT monomers is carried out. Different versions of chain formation from linked (MT)2 rings (six types) are considered. The model, which has a universal character, has been used to simulate the cluster selfassembly of the crystal structure of AlPO4(H2O)2 minerals (metavariscite, m-VAR, and variscite, VAR) and zeolite [Al2(PO4)2(H2O)2] · H2O (APC). A tetrapolyhedral linear precursor is established for m-VAR and a ring precursor (MT)2 is established for VAR and APC. The symmetry and topology code of the processes of crystal structure self-assembly from cluster precursors is completely reconstructed. The functional role of the O-H···O hydrogen bonds is considered for the first time. The cluster self-assembly model explains the specific features of the morphogenesis of single crystals: m-VAR prisms, flattened VAR octahedra, and needleshaped APC square-base prisms.

  19. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  20. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    Science.gov (United States)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  1. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe-2S] cluster optical spectra and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Bonfio, Claudia; Mansy, Sheref S; Cowan, J A

    2018-03-01

    Human glutaredoxin 5 (Grx5) is one of the core components of the Isc (iron-sulfur cluster) assembly and trafficking machinery, and serves as an intermediary cluster carrier, putatively delivering cluster from the Isu scaffold protein to target proteins. The tripeptide glutathione is intimately involved in this role, providing cysteinyl coordination to the iron center of the Grx5-bound [2Fe-2S] cluster. Grx5 has a well-defined glutathione-binding pocket with protein amino acid residues providing many ionic and hydrogen binding contacts to the bound glutathione. In this report, we investigated the importance of these interactions in cluster chirality and exchange reactivity by systematically perturbing the crucial contacts by use of natural and non-natural amino acid substitutions to disrupt the binding contacts from both the protein and glutathione. Native Grx5 could be reconstituted with all of the glutathione analogs used, as well as other thiol ligands, such as DTT or L-cysteine, by in vitro chemical reconstitution, and the holo proteins were found to transfer [2Fe-2S] cluster to apo ferredoxin 1 at comparable rates. However, the circular dichroism spectra of these derivatives displayed prominent differences that reflect perturbations in local cluster chirality. These studies provided a detailed molecular understanding of glutathione-protein interactions in holo Grx5 that define both cluster spectroscopy and exchange chemistry.

  2. Structure, reactivity and electronic properties of Mn doped Ni{sub 13} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com

    2013-06-15

    In this work we have studied the structural and magnetic properties of Ni{sub 13} cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H{sub 2} molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni{sub 12}Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni{sub 12}MnH{sub 2}. Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H{sub 2} absorption in the doped Ni{sub 13−m}Mn{sub m} alloy clusters. This has been reported earlier for smaller Ni{sub n} clusters [1].

  3. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.

    2004-01-01

    The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...

  4. Structural, electronic, and magnetic properties of 3D metal trioxide and tetraoxide superhalogen cluster-doped monolayer BN

    International Nuclear Information System (INIS)

    Meng, Jingjing; Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2016-01-01

    The structural, electronic, and magnetic properties of monolayer BN doped with 3D metal trioxide and tetraoxide superhalogen clusters are investigated using first-principle calculations. TMO_3_(_4_)-doped monolayer BN exhibits a low negative formation energy, whereas TM atoms embedded in monolayer BN show a high positive formation energy. TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. Compared with TMO_3-doped structures, TMO_4-doped structures have a higher structural stability because of their higher binding energies. Given their low negative formation energies, TMO_4-doped structures are more favored for specific applications than TMO_3-doped structures and TM atom-doped structures. Large magnetic moments per supercell and significant ferromagnetic couplings between a TM atom and neighboring B and N atoms on the BN layer were observed in all TMO_4-doped structures, except for TiO_4-doped structures. - Highlights: • TMO_3_(_4_) superhalogen clusters incorporated into monolayer BN were investigated. • TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. • TMO_4-doped structures are more favored for specific applications. • Large magnetic moments were observed in TMO_4-doped structures. • The band gap was sensitively dependent on the doped clusters.

  5. Self-selection in size and structure in argon clusters formed on amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Krainyukova, Nina V.; Waal, Benjamin W. van de

    2004-07-01

    Argon clusters formed on an amorphous carbon substrate as deposited from the vapor phase were studied by means of transmission high energy electron diffraction using the liquid helium cryostat. Electron diffractograms were analysed on the basis of assumption that there exist a cluster size distribution in samples formed on substrate and multi-shell structures such as icosahedra, decahedra, fcc and hcp were probed for different sizes up to {approx}15 000 atoms. The experimental data were considered as a result of a superposition of diffracted intensities from clusters of different sizes and structures. The comparative analysis was based on the R-factor minimization that was found to be equal to 0.014 for the best fit between experiment and modelling. The total size and structure distribution function shows the presence of 'non-crystallographic' structures such as icosahedra and decahedra with five-fold symmetry that was found to prevail and a smaller amount of fcc and hcp structures. Possible growth mechanisms as well as observed general tendency to self-selection in sizes and structures are presumably governed by confined pore-like geometry in an amorphous carbon substrate.

  6. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  7. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Directory of Open Access Journals (Sweden)

    Górecki J.

    2017-01-01

    Full Text Available Several successful approaches to structure determination of hierarchical Archimedean copulas (HACs proposed in the literature rely on agglomerative clustering and Kendall’s correlation coefficient. However, there has not been presented any theoretical proof justifying such approaches. This work fills this gap and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coefficients corresponding to a HAC, its structure can be recovered by an agglomerative clustering technique.

  8. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    Science.gov (United States)

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  9. Application of the AMPLE cluster-and-truncate approach to NMR structures for molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bibby, Jaclyn [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Keegan, Ronan M. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom)

    2013-11-01

    Processing of NMR structures for molecular replacement by AMPLE works well. AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.

  10. The Formation of Competitive Advantages for Corporate Structures Based on the Cluster Integration

    Directory of Open Access Journals (Sweden)

    Ekaterina Vasilyevna Pustynnikova

    2017-06-01

    Full Text Available The article studies the cluster forms of integration as well as the development of corporate and cluster connections. At present, economic knowledge is rather focused on the development of integrated regional systems recognized as one of the most effective forms of integration. In turn, the processes, based on the interdependence and cooperation of economic entities located on the same territory, determine the possibility of stable economic relations, synergetic effect and growth of the competitive advantages of these territories. Such development tendencies reflect corporate interests and define trends for the integration of corporations in the context of regional and industrial limitations. Thus, one of the main aspects of integration is focused on the establishment of sustainable cost-beneficial relationships between corporate entities. The dialectical unity of the coordination and cooperation of corporate structures in economic clusters expands the traditional boundaries of economic benefits. Considering the government of corporate structure on the basis of internal approach, we can see that the benefits from the fragmented leadership may be neutralized due to unevenness of expenses. The corporate-cluster approach of corporate structure government allows not only to coordinate actions at the micro-level but also to generate more sustainable economic relations at the industrial, market and regional levels. It is reflected in the synergistic effect. The coordination of economic processes and geographic concentration contribute to system flexibility and adaptability in the market conditions as well as stimulate economic processes. Therefore, all cluster participants benefit from mutually beneficial cooperation. This, in turn, contributes to the decrease of total expenses and hastens the responses of entities on different market changes. The authors’ hypothesis assumes the coordination of interests in the economic cluster that allows to create

  11. Inferring hierarchical clustering structures by deterministic annealing

    International Nuclear Information System (INIS)

    Hofmann, T.; Buhmann, J.M.

    1996-01-01

    The unsupervised detection of hierarchical structures is a major topic in unsupervised learning and one of the key questions in data analysis and representation. We propose a novel algorithm for the problem of learning decision trees for data clustering and related problems. In contrast to many other methods based on successive tree growing and pruning, we propose an objective function for tree evaluation and we derive a non-greedy technique for tree growing. Applying the principles of maximum entropy and minimum cross entropy, a deterministic annealing algorithm is derived in a meanfield approximation. This technique allows us to canonically superimpose tree structures and to fit parameters to averaged or open-quote fuzzified close-quote trees

  12. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    International Nuclear Information System (INIS)

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-01-01

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  13. Three-dimensional cluster formation and structure in heterogeneous dose distribution of intensity modulated radiation therapy.

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Narayanasamy, Ganesh; Yuan, Yading; Lo, Yeh-Chi; Peñagarícano, José A

    2018-05-01

    To investigate three-dimensional cluster structure and its correlation to clinical endpoint in heterogeneous dose distributions from intensity modulated radiation therapy. Twenty-five clinical plans from twenty-one head and neck (HN) patients were used for a phenomenological study of the cluster structure formed from the dose distributions of organs at risks (OARs) close to the planning target volumes (PTVs). Initially, OAR clusters were searched to examine the pattern consistence among ten HN patients and five clinically similar plans from another HN patient. Second, clusters of the esophagus from another ten HN patients were scrutinized to correlate their sizes to radiobiological parameters. Finally, an extensive Monte Carlo (MC) procedure was implemented to gain deeper insights into the behavioral properties of the cluster formation. Clinical studies showed that OAR clusters had drastic differences despite similar PTV coverage among different patients, and the radiobiological parameters failed to positively correlate with the cluster sizes. MC study demonstrated the inverse relationship between the cluster size and the cluster connectivity, and the nonlinear changes in cluster size with dose thresholds. In addition, the clusters were insensitive to the shape of OARs. The results demonstrated that the cluster size could serve as an insightful index of normal tissue damage. The clinical outcome of the same dose-volume might be potentially different. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. NoFold: RNA structure clustering without folding or alignment.

    Science.gov (United States)

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Mokkath, Junais Habeeb, E-mail: Junais.Mokkath@kaust.edu.sa

    2014-01-15

    The structural, electronic and magnetic properties of small Co{sub m}Pd{sub n}(N=m+n=8,m=0−N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ{sup ¯}{sub N} increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin–orbit interactions on the cluster properties is also discussed. - Highlights: • This work analyses the structural and magnetic properties of CoPd nanoclusters. • The magnetic order is found to be ferromagnetic-like for all the ground-state structures. • The average magnetic moment per atom increases approximately linearly with Co content. • The influence of spin–orbit interactions on the cluster properties is discussed.

  16. Analysis of the Structures and Properties of (GaSb)n (n = 4-9) Clusters through Density Functional Theory.

    Science.gov (United States)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo

    2016-07-07

    An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.

  17. Structure and dynamics of molecular clusters. 2. Melting and freezing of CCl4 clusters

    International Nuclear Information System (INIS)

    Bartell, L.S.; Chen, Jian

    1992-01-01

    Phase transitions of a 225-molecule cluster of carbon tetrachloride have been studied by a molecular dynamics simulation. A five-site model potential function was developed to reproduce the density and heat of vaporization of the bulk liquid. Computations began with orientationally disordered molecules distributed in fcc lattice sites of a nearly spherical cluster. The cluster was heated from a low temperature to 200 K in 10-deg steps of 50 ps each and then cooled to 10 K. Translational and rotational transitions were monitored by following several indicators including the translational and rotational diffusion and rotational entropies of individual molecules. Melting began at the surface and propagated inward as the temperature increased. Solidification of the molten cluster proceeded from the center to the surface. At the high cooling rate of the simulation, however, molecules were unable to organize into a crystalline array and solidified into a glassy structure instead. Except for spatial order, the indicators of degree of liquefaction exhibited almost the same temperature dependence in the crystsl → liquid as in the liquid → glass transition, a behavior that could be rationalized on the basis of Lindemann's theory of melting. Results were compared with predictions of an illustrative model due to Reiss, Mirabel, and Whetten. Qualitatively, the model included all of the features of the simulation. Quantitatively, the model grossly underestimated the range over which the melting transition took place. 40 refs., 10 figs., 1 tab

  18. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Science.gov (United States)

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  19. Semiparametric Bayesian analysis of accelerated failure time models with cluster structures.

    Science.gov (United States)

    Li, Zhaonan; Xu, Xinyi; Shen, Junshan

    2017-11-10

    In this paper, we develop a Bayesian semiparametric accelerated failure time model for survival data with cluster structures. Our model allows distributional heterogeneity across clusters and accommodates their relationships through a density ratio approach. Moreover, a nonparametric mixture of Dirichlet processes prior is placed on the baseline distribution to yield full distributional flexibility. We illustrate through simulations that our model can greatly improve estimation accuracy by effectively pooling information from multiple clusters, while taking into account the heterogeneity in their random error distributions. We also demonstrate the implementation of our method using analysis of Mayo Clinic Trial in Primary Biliary Cirrhosis. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Structural evolution in nanoporous anodic aluminium oxide

    International Nuclear Information System (INIS)

    Rocca, Emmanuel; Vantelon, Delphine; Reguer, Solenn; Mirambet, François

    2012-01-01

    Nanoporous and self-organized layers of aluminium alloys are used in many applications as membranes, templates for nanometric objects or corrosion protection for aluminium alloys. The use of this nanometric structure widely remains empirical, especially in the case of very small pores ( 4 into AlO 6 cluster and a partial release of sulphate ions are an important chemical transformation of the amorphous structure. This structural transformation defines the chemistry (pH and surface charge) inside the nanopores, the ageing behaviour and the possible incorporation or diffusion of chemical species in the nanostructure. Highlights: ► Investigations of local chemical environment of aluminium atoms in anodic aluminium oxide. ► The oxide structure is constituted by 2/3 of aluminium in tetrahedral coordination 1/3 in octahedral coordination. ► In contact with water, AlO 4 clusters are transformed into AlO 6 cluster and the aluminium sulphate bonds are hydrolysed. ► These transformations induce a pH decrease inside the nanostructure.

  1. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  2. Structural, magnetic and electronic properties of FexCoyIrz (x + y + z = 5, 6) clusters: an ab initio study

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2014-05-01

    Investigations on freestanding binary and ternary clusters of Fe (x) Co (y) Ir (z) (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic structure of the clusters are analyzed for the entire range of composition. Composition dependent structural transition is observed in the five atom clusters, while octahedral geometry prevailed in clusters with six atoms. Both the clusters show increment in binding energy with the increase in number of heterogeneous bonds. Analysis based on the chemical order parameter indicates that clusters favor mixing rather than segregation. The clusters exhibit ferromagnetic ordering and the inter-dependence of optimal cluster geometry to the magnetic moments and electronic structure is observed.

  3. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    International Nuclear Information System (INIS)

    Yu, P.; Block, H.; Niu, Z.; Doiron, K.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h 01 ) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2B station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at ∼1732 (carbonyl C(double b ond)O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH 2 stretching band) and 2885 cm -1 (CH 3 stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the

  4. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  5. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  6. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  7. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  8. Modern electronic structure theory and applications in organic chemistry

    CERN Document Server

    Davidson, ER

    1997-01-01

    This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is n

  9. The structure and energetic of AlAsn (n = 1-15) clusters: A first-principles study

    International Nuclear Information System (INIS)

    Guo Ling

    2010-01-01

    Geometric structures of AlAs n (n = 1-15) clusters are reported. The binding energy, dissociation energy, stability of these clusters are studied with the three-parameter hybrid generalized gradient approximation (GGA) due to Becke-Lee-Yang-Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static polarizabilities are calculated for the ground-state structures within the same method. The growth pattern for AlAs n (n = 6-15) clusters is Al-substituted pure As n+1 clusters and it keeps the similar frameworks of the most stable As n+1 clusters (for example AlAs 6 , AlAs 7 , AlAs 9 , AlAs 14 and AlAs 15 clusters) or capping the different sides of the low-lying geometry of As n clusters (for example AlAs 8 , AlAs 10 , AlAs 11 , and AlAs 12 clusters). The Al atom prefer to occupy a peripheral position for n n (n = 1-5, 13) clusters. The odd-even oscillations from AlAs n (n = 5-15) in the dissociation energy, the second-order energy differences, the HOMO-LUMO gaps, the electron affinity, and the hardness are more pronounced. The stability analysis based on the energies clearly shows the AlAs n clusters from n = 5 with an even number of valence electrons are more stable than clusters with odd number of valence electrons.

  10. Mixing and matching siderophore clusters: structure and biosynthesis of serratiochelins from Serratia sp. V4.

    Science.gov (United States)

    Seyedsayamdost, Mohammad R; Cleto, Sara; Carr, Gavin; Vlamakis, Hera; João Vieira, Maria; Kolter, Roberto; Clardy, Jon

    2012-08-22

    Interrogation of the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores-soluble, low molecular weight compounds-have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition to acquire iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of "odd" siderophores can reveal the evolutionary strategy that led to their creation. We report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well-known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholera vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.

  11. Cluster-cluster aggregation of Ising dipolar particles under thermal noise

    KAUST Repository

    Suzuki, Masaru

    2009-08-14

    The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1) to crystalline (D2) through fractal structures (D1.45), where D is the fractal dimension. By calculating the bending energy of the chainlike structure, it is found that the transition temperature is associated with the energy gap between the chainlike and crystalline configurations. The aggregation dynamics changes from being dominated by attraction to diffusion involving changes in the dynamic exponent z=0.2 to 0.5. In the region of temperature where the fractal clusters grow, different growth rates are observed between charged and neutral clusters. Using the Smoluchowski equation with a twofold kernel, this hetero-aggregation process is found to result from two types of dynamics: the diffusive motion of neutral clusters and the weak attractive motion between charged clusters. The fact that changes in structures and dynamics take place at the same time suggests that transitions in the structure of clusters involve marked changes in the dynamics of the aggregation processes. © 2009 The American Physical Society.

  12. Structure and Stability of GeAun, n = 1-10 clusters: A Density Functional Study

    International Nuclear Information System (INIS)

    Priyanka,; Dharamvir, Keya; Sharma, Hitesh

    2011-01-01

    The structures of Germanium doped gold clusters GeAu n (n = 1-10) have been investigated using ab initio calculations based on density functional theory (DFT). We have obtained ground state geometries of GeAu n clusters and have it compared with Silicon doped gold clusters and pure gold clusters. The ground state geometries of the GeAu n clusters show patterns similar to silicon doped gold clusters except for n = 5, 6 and 9. The introduction of germanium atom increases the binding energy of gold clusters. The binding energy per atom of germanium doped cluster is smaller than the corresponding silicon doped gold cluster. The HUMO-LOMO gap for Au n Ge clusters have been found to vary between 0.46 eV-2.09 eV. The mullikan charge analysis indicates that charge of order of 0.1e always transfers from germanium atom to gold atom.

  13. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  14. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    Science.gov (United States)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  15. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    Science.gov (United States)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts

  16. A full-configuration-interaction nuclear orbital approach and application for small doped He clusters

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, M. P. de, E-mail: delara@iff.csic.es; Aguirre, N. F., E-mail: delara@iff.csic.es; Delgado-Barrio, G., E-mail: delara@iff.csic.es; Villarreal, P., E-mail: delara@iff.csic.es [Instituto de Física Fundamental (CSIC), Serrano 123, 28006 Madrid (Spain); Mitrushchenkov, A. O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2015-01-22

    An efficient full-configuration-interaction 'nuclear orbital' treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic 'solvent' wave-functions and applied to {sup 3}He{sub N} clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped {sup 3}He{sub N} clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-{sup 3}He{sub N} clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl{sub 2}(X)-({sup 4}He){sub N} clusters, are also shown.

  17. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    Science.gov (United States)

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  18. Structures, Vibrational And Electronic Properties Of (F2O)N (N=2-4) Clusters

    International Nuclear Information System (INIS)

    Bahat, M.

    2008-01-01

    Recently, molecular clusters are the subject of several experimental and computational studies by means of their bonding structures. We studied, first time, small difluorine monoxide clusters such as dimer (linear, cyclic, bifurcated), trimer and tetramer structures using B3LYP variant of density functional theory with cc-pVDZ basis set. On the basis of the optimized geometry, various energy properties such as binding energy, molecular orbital energies, two and three body interaction energies have been calculated. Additionally dipole moment, polarizability, anisotropic polarizability and hyper polarizability have been calculated and compared with monomer structure

  19. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas; Park, Sungwoo; Hansen, Nils; Sarathy, Mani

    2014-01-01

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model's capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  20. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas

    2014-06-14

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model\\'s capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  1. The structure of small clusters ejected by ion bombardment of solids

    International Nuclear Information System (INIS)

    Ali, M.; Smith, R.

    1993-01-01

    The structure of small clusters predicted by the many-body potentials used in Molecular Dynamics (MD) simulations of semiconductor processes is investigated. The potential minima are determined by using global optimisation algorithms which also find the local minima. It is shown that there are many such local minima for the Tersoff type potentials. If an MD simulation requires an accurate description of the small cluster geometries and energetics, then the potential can describe them provided they are included in the fitting process. (Author)

  2. Broyden's method in nuclear structure calculations

    International Nuclear Information System (INIS)

    Baran, Andrzej; Bulgac, Aurel; Forbes, Michael McNeil; Hagen, Gaute; Nazarewicz, Witold; Schunck, Nicolas; Stoitsov, Mario V.

    2008-01-01

    Broyden's method, widely used in quantum chemistry electronic-structure calculations for the numerical solution of nonlinear equations in many variables, is applied in the context of the nuclear many-body problem. Examples include the unitary gas problem, the nuclear density functional theory with Skyrme functionals, and the nuclear coupled-cluster theory. The stability of the method, its ease of use, and its rapid convergence rates make Broyden's method a tool of choice for large-scale nuclear structure calculations

  3. A workshop report on nuclear reaction and cluster structure

    International Nuclear Information System (INIS)

    1985-01-01

    A work shop was held in June 1984 at RCNP (Research Center for Nuclear Physics), Osaka University, to discuss theory of nuclear reactions based on studies from microscopic or cluster structure viewpoints. About forty researchers participated in this work shop and 27 paperes were presented. All these papers with English abstracts are gathered in this collective report. (Aoki, K.)

  4. Cluster Analysis of Time-Dependent Crystallographic Data: Direct Identification of Time-Independent Structural Intermediates

    Science.gov (United States)

    Kostov, Konstantin S.; Moffat, Keith

    2011-01-01

    The initial output of a time-resolved macromolecular crystallography experiment is a time-dependent series of difference electron density maps that displays the time-dependent changes in underlying structure as a reaction progresses. The goal is to interpret such data in terms of a small number of crystallographically refinable, time-independent structures, each associated with a reaction intermediate; to establish the pathways and rate coefficients by which these intermediates interconvert; and thereby to elucidate a chemical kinetic mechanism. One strategy toward achieving this goal is to use cluster analysis, a statistical method that groups objects based on their similarity. If the difference electron density at a particular voxel in the time-dependent difference electron density (TDED) maps is sensitive to the presence of one and only one intermediate, then its temporal evolution will exactly parallel the concentration profile of that intermediate with time. The rationale is therefore to cluster voxels with respect to the shapes of their TDEDs, so that each group or cluster of voxels corresponds to one structural intermediate. Clusters of voxels whose TDEDs reflect the presence of two or more specific intermediates can also be identified. From such groupings one can then infer the number of intermediates, obtain their time-independent difference density characteristics, and refine the structure of each intermediate. We review the principles of cluster analysis and clustering algorithms in a crystallographic context, and describe the application of the method to simulated and experimental time-resolved crystallographic data for the photocycle of photoactive yellow protein. PMID:21244840

  5. CO chemistry/research trends in CO chemistry in the US

    Energy Technology Data Exchange (ETDEWEB)

    Cantacuzene, M

    1978-10-01

    Research trends in CO chemistry in the U.S. include the development of stable and selective homogeneous catalysts which would facilitate the removal of the heat of reaction and be resistant to sulfur poisoning for the methanation reaction, methanol synthesis, and Fischer-Tropsch synthesis; development of low-temperature homogeneous water gas shift catalysts; and research on the coordination chemistry and photochemical conversions of CO/sub 2/. In 1977, the National Science Foundation awarded 16 contracts for a total of $720,000 to promote the research in this field, including studies on chemisorption and heterogeneous catalysis (four contracts) and on transition metal complexes (ten contracts, of which seven are dedicated to metal clusters). Carbon monoxide-based processes, including water gas shift reactions, CO reduction to alkanes and alcohols, hydroformylation, and homogeneous carbonylation processes, recently developed in the U.S. are listed.

  6. Structure and energetics of clusters relevant to thorium tetrachloride melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    2000-08-01

    We study within an ionic model the structure and the energetics of neutral and charged clusters which may exist as structural units in molten ThCl 4 and in its liquid mixtures with alkali chlorides, with reference to Raman scattering experiments by Photiadis and Papatheodorou. As stressed by these authors, the most striking facts for ThCl 4 in comparison with other tetrachlorides (and in particular with ZrCl 4 ) are the appreciable ionic conductivity of the pure melt and the continuous structural changes which occur in the melt mixtures with varying composition. After adjusting our model to data on the isolated ThCl 4 tetrahedral molecule, we evaluate (i) the Th 2 Cl 8 dimer and the singly charged species obtained by chlorine-ion transfer between two such neutral dimers; (ii) the ThCl 6 and ThCl 7 clusters both as charged anions and as alkali -compensated species; and (iii) various oligomers carrying positive or negative double charges. Our study shows that the characteristic structural properties of the ThCl 4 compound and of the alkali-Th chloride systems are the consequence of the relatively high ionic character of the binding, which is already evident in the isolated ThCl 4 molecular monomer. (author)

  7. Probing the structural and electronic properties of cationic rubidium-gold clusters: [AunRb]+ (n = 1-10)

    Science.gov (United States)

    Zhao, Ya-Ru; Zhang, Hai-Rong; Qian, Yu; Duan, Xu-Chao; Hu, Yan-Fei

    2016-03-01

    Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1-10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even-odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1-10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study.

  8. Structural and electronic properties of V{sub 2}B{sub n} (n = 1–10) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li-Nan; Jia, Jianfeng, E-mail: jiajf@dns.sxnu.edu.cn; Wu, Hai-Shun, E-mail: wuhs@mail.sxnu.edu.cn

    2015-09-28

    Highlights: • Ground state isomers of V{sub 2}B{sub n} clusters are presented. • The growth pattern of V{sub 2}B{sub n} clusters is discussed. • V{sub 2}B{sub 6} is found to be the magically stable cluster. • The different ground state structure of V{sub 2}B{sub n} from that of Ta{sub 2}B{sub n} is caused by the small atomic radius of V atom. - Abstract: Inspired by the discovery of a series of Ta{sub 2}B{sub n} clusters, the geometric structures, stabilities, and electronic properties of V{sub 2}B{sub n} clusters up to n = 10 have been systematically investigated based on the density-functional B3LYP method and the CCSD(T) method. Among the small size clusters, the V{sub 2}B{sub 5} cluster was observed to have different geometric motif than Sc{sub 2}B{sub 5}, Ti{sub 2}B{sub 5} and Ta{sub 2}B{sub 5}. For V{sub 2}B{sub n} clusters with an n ⩾ 6, the bipyramidal structure is energetically favored, as for Sc{sub 2}B{sub n} and Ti{sub 2}B{sub n}. The second-order difference of energies, binding energies, dissociation energies, vertical ionization potentials, vertical electron affinities and chemical hardness of the V{sub 2}B{sub n} clusters were calculated and analyzed. The V{sub 2}B{sub 6} cluster was determined to be stable thermodynamically and might be observed in a future experiment. To understand the stability of the V{sub 2}B{sub 6} cluster, a detailed inspection of its occupied valence orbitals was performed.

  9. Structure and chemistry of the Si(111)/AlN interface

    Science.gov (United States)

    Radtke, G.; Couillard, M.; Botton, G. A.; Zhu, D.; Humphreys, C. J.

    2012-01-01

    We investigate the atomic structure and the chemistry of the Si(111)/AlN interface for an AlN film grown at low-temperature (735 °C) by metalorganic vapor phase epitaxy. A heterogeneous interface is formed from the alternation of crystallographically abrupt and partly amorphous regions. The polarity of the AlN film, along with the projected atomic structure of the crystalline interface, is retrieved using high-angle annular dark field imaging, and a model, based on these experimental observations, is proposed for the bonding at the interface. Electron energy-loss spectrum-imaging, however, also reveals a chemical intermixing, placing our growth conditions at the onset of SiNx interlayer formation.

  10. Electronic and atomic structure of the AlnHn+2 clusters

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Alonso, J.A.

    2008-01-01

    The electronic and atomic structure of the family of hydrogenated Al clusters AlnHn+2 with n=4-11 has been studied using the density functional theory with the generalized gradient approximation (GGA) for exchange and correlation. All these clusters have substantial gaps between the highest...... a polyhedron of n vertices and n H atoms form strong H-Al terminal bonds; one pair of electrons is involved in each of those bonds. The remaining n+1 electron pairs form a delocalized cloud over the surface of the Al cage. The clusters fulfilling the Wade-Mingos rule have wider HOMO-LUMO gaps...... and are chemically more stable. The trends in the gap have some reflections in the form of the photoabsorption spectra, calculated in the framework of time-dependent density functional theory using the GGA single-particle energies and orbitals and a local density approximation exchange-correlation kernel....

  11. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  12. Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster from X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yano, Junko; Yachandra, Vittal K.

    2007-10-24

    Light-driven oxidation of water to dioxygen in plants, algae and cyanobacteria iscatalyzed within photosystem II (PS II) by a Mn4Ca cluster. Although the cluster has been studied by many different methods, the structure and the mechanism have remained elusive. X-ray absorption and emission spectroscopy and EXAFS studies have been particularly useful in probing the electronic and geometric structure, and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn4Ca cluster geometry to a setof three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 Angstrom-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-rayspectroscopy and crystallography are predominantly because of damage to the Mn4Ca cluster by X-rays under the conditions used for structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn4Ca catalytic center as it cycles through the five intermediate states known as the Si-states (i=0-4). The electronic structure of the Mn4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formaloxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms that includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structure of the Mn4Ca cluster in the S-states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of the O-O bond formation during the photosynthetic water

  13. LMC clusters: young

    International Nuclear Information System (INIS)

    Freeman, K.C.

    1980-01-01

    The young globular clusters of the LMC have ages of 10 7 -10 8 y. Their masses and structure are similar to those of the smaller galactic globular clusters. Their stellar mass functions (in the mass range 6 solar masses to 1.2 solar masses) vary greatly from cluster to cluster, although the clusters are similar in total mass, age, structure and chemical composition. It would be very interesting to know why these clusters are forming now in the LMC and not in the Galaxy. The author considers the 'young globular' or 'blue populous' clusters of the LMC. The ages of these objects are 10 7 to 10 8 y, and their masses are 10 4 to 10 5 solar masses, so they are populous enough to be really useful for studying the evolution of massive stars. The author concentrates on the structure and stellar content of these young clusters. (Auth.)

  14. Non-standard base pairing and stacked structures in methyl xanthine clusters

    Czech Academy of Sciences Publication Activity Database

    Callahan, M. P.; Gengeliczki, Z.; Svadlenak, N.; Valdes, Haydee; Hobza, Pavel; de Vries, M. S.

    2008-01-01

    Roč. 10, č. 19 (2008), s. 2819-2826 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:NSF(US) CHE-0615401 Institutional research plan: CEZ:AV0Z40550506 Keywords : non-standard base pairing * stacked structures * in methyl xanthine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.064, year: 2008

  15. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  16. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  17. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  18. In-situ small/wide-angle neutron scattering studies of the cluster structure in polyelectrolyte membrane for fuel cells

    International Nuclear Information System (INIS)

    Nakano, Tomohiro; Kaneko, Michiyo; Otomo, Toshiya; Kamiyama, Takashi; Sugiyama, Masaaki; Fukunaga, Toshiharu; Kanno, Ryoji; Yamamoto, Satoru; Hyodo, Shiaki

    2007-01-01

    Proton conductivity of Nafion membrane is varied by humidity and it has been thought to be affected by the cluster structure of the membrane. We applied Small-Angle Scattering technique under humidity-controlled atmosphere with X-ray (SAXS) and neutron (SANS) to clarify the relationship between the cluster structure and molecular structure in two types of Nafion membrane, N115 and NE151F, which have different equivalent weight (EW). The proton conductivity of N115 is higher than that of NE151F. By these two measurements, three different sized periodic structures were observed in the Nafion membrane. Contrast variation method (D/H=60/40, 75/25, 80/20, 90/10) was also applied in SANS experiments and it was suggested that two of three peaks are originated from two different sizes of water clusters. A distinguishing peak at q=0.2[A -1 ], which shifts to lower q region by humidity increase, was reproduced by a simulation of Dissipative Particle Dynamics (DPD): the shifts of the peak was interpreted as the swelling of cluster structure. The size of the cluster calculated from the peak position is positively correlated with the proton conductivity. Finally, the effect of EW on the proton conductivity of Nafion membrane was briefly discussed from the point of its cluster structure. (author)

  19. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  20. Expanding Comparative Literature into Comparative Sciences Clusters with Neutrosophy and Quad-stage Method

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2016-08-01

    Full Text Available By using Neutrosophy and Quad-stage Method, the expansions of comparative literature include: comparative social sciences clusters, comparative natural sciences clusters, comparative interdisciplinary sciences clusters, and so on. Among them, comparative social sciences clusters include: comparative literature, comparative history, comparative philosophy, and so on; comparative natural sciences clusters include: comparative mathematics, comparative physics, comparative chemistry, comparative medicine, comparative biology, and so on.

  1. On the structure and stability of Arn and Arn+ clusters at finite temperature

    International Nuclear Information System (INIS)

    Schulte, J.

    1991-01-01

    For Ar 2-29 and Ar 2-29 + clusters at 20 K in the polarization model presented here the electrodynamical dipole-dipole many-body problem is solved selfconsistently with the Monte-Carlo method (MC) at 20 K, i.e. the instantaneous dipole-dipole interaction is solved to infinite perturbation order and in cluster expansion to the order of the cluster size. The long range many-body dipole-dipole interaction is coupled to exchange interaction by a modified effective dipole polarizability. This model will be compared to the dimer model and classical MC simulation of Ar n . The resulting different magic numbers in the binding energies are discussed in this connection with different experimental techniques of cluster ionization. By the mean square cluster diameter a shape parameter is introduced and it is found that with this parameter structural form transition in cluster growth can be resolved, and surprinsingly do not correlate with the magic numbers. (orig.)

  2. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    Science.gov (United States)

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  3. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).

    Science.gov (United States)

    Watters, Kyle E; Lucks, Julius B

    2016-01-01

    Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.

  4. Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study

    Institute of Scientific and Technical Information of China (English)

    Dai Xian-Qi; Tang Ya-Nan; Dai Ya-Wei; Li Yan-Hui; Zhao Jian-Hua; Zhao Bao; Yang Zong-Xian

    2011-01-01

    The structures of Pt clusters on nitrogen-, boron-, silicon- doped graphenes are theoretically studied using densityfunctional theory. These dopants (nitrogen, boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form. The formation energy of the silicon-graphene system is lower than those of the nitrogen-, boron-doped graphenes, indicating that the silicon atom is easier to incorporate into the graphene.All the substitutional impurities enhance the interaction between the Pt atom and the graphene. The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen- and boron-doped graphenes.The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size. The stable structures of Pt clusters on the doped-graphenes are dimeric, triangle and tetrahedron with the increase of the Pt coverage. Of all the studied structures, the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.

  5. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    Science.gov (United States)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  6. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn (N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ̄N increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed. © 2013 Elsevier B.V.

  7. A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ha L.; Gándara, Felipe; Furukawa, Hiroyasu; Doan, Tan L. H.; Cordova, Kyle E.; Yaghi, Omar M.

    2016-04-06

    A crystalline material with a two-dimensional structure, termed metal–organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent–organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titanium metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol–1) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.

  8. Proceedings of DAE-BRNS third international symposium on materials chemistry

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Banerjee, Atindra Mohan; Nigam, Sandeep; Varma, Salil; Tripathi, Arvind Kumar; Bharadwaj, Shyamala Rajkumar; Das, Dasarathi

    2010-12-01

    The present volume consists of the proceedings of the DAE-BRNS Third International Symposium on Materials Chemistry. In order to keep pace with the advancements made in the area of materials chemistry, new topics like materials for energy conversion, biomaterials, carbon based materials, soft condensed materials, thin films, surface chemistry, polymer based materials, organic and organometallics, magnetic materials and high purity materials have been included in this symposium while topics like nuclear materials, nanomaterials and clusters, catalysis, chemical sensors, fuel cell materials and computational research in materials chemistry have been continued as important features of the symposium. Papers relevant to INIS are indexed separately

  9. THREE DISCRETE GROUPS WITH HOMOGENEOUS CHEMISTRY ALONG THE RED GIANT BRANCH IN THE GLOBULAR CLUSTER NGC 2808

    International Nuclear Information System (INIS)

    Carretta, E.

    2014-01-01

    We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC 6752. This finding suggests that different classes of polluters were probably at work in NGC 2808 as well

  10. Titanium embedded cage structure formation in Al{sub n}Ti{sup +} clusters and their interaction with Ar

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M. B., E-mail: begonia@ubu.es [Departamento de Matemáticas y Computación, Universidad de Burgos, 09006 Burgos (Spain); Vega, A.; Balbás, L. C. [Departamento de Física Teórica, Universidad de Valladolid, 47011 Valladolid (Spain); Aguilera-Granja, F. [Instituto de Física, Universidad de San Luis Potosí, 78000 San Luis de Potosí (Mexico)

    2014-05-07

    Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic properties of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support

  11. Modelling of Krn+ Clusters. II. Photoabsorption Spectra of Small Clusters (n=2 - 5)

    Czech Academy of Sciences Publication Activity Database

    Kalus, R.; Paidarová, Ivana; Hrivňák, D.; Gadea, F. X.

    2004-01-01

    Roč. 298, 1/3 (2004), s. 155-166 ISSN 0301-0104 R&D Projects: GA ČR GA203/02/1204 Grant - others:Barrande Program(XE) 2003-024-1 Institutional research plan: CEZ:AV0Z4040901 Keywords : krypton * rare gases * cluster ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.316, year: 2004

  12. From bismuth oxide/hydroxide precursor clusters towards stable oxides: Proton transfer reactions and structural reorganization govern the stability of [Bi18O13(OH)10]-nitrate clusters

    Science.gov (United States)

    Walther, M.; Zahn, D.

    2018-01-01

    Structural relaxation and stability of a Bi18-cluster as obtained from association of [Bi6O4(OH)4](NO3)6 precursor clusters in DMSO solution is investigated from a combination of quantum chemical calculations and μs-scale molecular dynamics simulations using empirical interaction potentials. The Bi18-cluster undergoes a OH⋯OH proton transfer reaction, followed by considerable structural relaxation. While the aggregation of the Bi18-cluster is induced by the dissociation of a single nitrate ion leading to [Bi6O4(OH)4](NO3)5+ as an activated precursor species that can bind two more Bi6-clusters, we find the [Bi18O13(OH)10](NO3)18-x+x species (explored for x = 1-6) rather inert against either nitrate dissociation, collision with Bi6-precursors or combinations thereof.

  13. Melodic pattern discovery by structural analysis via wavelets and clustering techniques

    DEFF Research Database (Denmark)

    Velarde, Gissel; Meredith, David

    We present an automatic method to support melodic pattern discovery by structural analysis of symbolic representations by means of wavelet analysis and clustering techniques. In previous work, we used the method to recognize the parent works of melodic segments, or to classify tunes into tune......-means to cluster melodic segments into groups of measured similarity and obtain a raking of the most prototypical melodic segments or patterns and their occurrences. We test the method on the JKU Patterns Development Database and evaluate it based on the ground truth defined by the MIREX 2013 Discovery of Repeated...... Themes & Sections task. We compare the results of our method to the output of geometric approaches. Finally, we discuss about the relevance of our wavelet-based analysis in relation to structure, pattern discovery, similarity and variation, and comment about the considerations of the method when used...

  14. Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters.

    Science.gov (United States)

    Bae, Chae Yun; Min, Mun-kyeong; Kim, Hail; Park, Je-Kyun

    2014-07-07

    A microstructure-based hydrogel was employed to study the relationship between spatial specificity and cellular behavior, including cell fate, proliferation, morphology, and insulin secretion in pancreatic β-cells. To effectively form homogeneous cell clusters in vitro, we made cell-containing hydrogel membrane constructs with an adapted grid structure based on a hexagonal micropattern. Homogeneous cell clusters (average diameter: 83.6 ± 14.2 μm) of pancreatic insulinoma (MIN6) cells were spontaneously generated in the floating hydrogel membrane constructs, including a hexagonal grid structure (size of cavity: 100 μm, interval between cavities: 30 μm). Interestingly, 3D clustering of MIN6 cells mimicking the structure of pancreatic islets was coalesced into a merged aggregate attaching to each hexagonal cavity of the hydrogel grid structure. The fate and insulin secretion of homogeneous cell clusters in the hydrogel grid structure were also assessed. The results of these designable hydrogel-cell membrane constructs suggest that facultative in vitro β-cell proliferation and maintenance can be applied to biofunctional assessments.

  15. Size-selected methyl lactate clusters: fragmentation and spectroscopic fingerprints of chiral recognition

    Czech Academy of Sciences Publication Activity Database

    Fárník, Michal; Weimann, M.; Steinbach, Ch.; Buck, U.; Borho, N.; Adler, T. B.; Suhm, M. A.

    2006-01-01

    Roč. 8, č. 10 (2006), s. 1148-1158 ISSN 1463-9076 Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 357; Deutsche Forschungsgemeinschaft(DE) GRK 782 Institutional research plan: CEZ:AV0Z40400503 Keywords : electron-bombardment fragmentation * methanol clusters * methanol clusters * water clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2006

  16. Probing the structure and dynamics of cage-like clusters: from water to Met-Cars

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1995-01-01

    Our recent work on metal compounds led to the discovery of a new class of metal-carbon clusters which are of finite size and have specific geometry, but exhibit varying electronic character because of the different metals of which they can be comprised. We term these metallo-carbohedrenes or Met-Cars for short. This paper reviews the progress made in elucidating the structures if these two classes of clusters which seem to be quite different, but have some interesting common features involving structural considerations. (orig.)

  17. MicroED Structure of Au146(p-MBA)57 at Subatomic Resolution Reveals a Twinned FCC Cluster.

    Science.gov (United States)

    Vergara, Sandra; Lukes, Dylan A; Martynowycz, Michael W; Santiago, Ulises; Plascencia-Villa, Germán; Weiss, Simon C; de la Cruz, M Jason; Black, David M; Alvarez, Marcos M; López-Lozano, Xochitl; Barnes, Christopher O; Lin, Guowu; Weissker, Hans-Christian; Whetten, Robert L; Gonen, Tamir; Yacaman, Miguel Jose; Calero, Guillermo

    2017-11-16

    Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au 146 (p-MBA) 57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C 2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au 146 (p-MBA) 57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

  18. Application of digital image processing methods on the cluster structure at the wall of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-guang; Zhao, Zeng-wu; Li, Bao-wei; Wu, Wen-fei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Environment and Energy

    2013-07-01

    This paper describes experiments to investigate the cluster structure of gas-particle flow at the wall region of a circulating fluidized bed (CFB). The setup is in a cold scale-model circulating fluidized bed with a riser that has a 0.30 m 0.28 m cross-section and is 2.9 m tall. A video camera was utilized to visualize the cluster structure through a transparent Plexiglas wall. An image processing system was used to analyze images, which were obtained under different superficial gas velocities and solid circulating rates. The results show that distinctly different cluster structures exist in the different operating conditions, which the number, shape and size of the clusters are affected by main air flow.

  19. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  20. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  1. The role of supramolecular chemistry in stimuli responsive and hierarchically structured functional organic materials

    NARCIS (Netherlands)

    Schenning, A.P.H.J.; Bastiaansen, C.W.M.; Broer, D.J.; Debije, M.G.

    2014-01-01

    ABSTRACT: In this review, we show the important role of supramolecular chemistry in the fabrication of stimuli responsive and hierarchically structured liquid crystalline polymer networks. Supramolecular interactions can be used to create three dimensional order or as molecular triggers in materials

  2. Electronic structure and geometries of small compound metal clusters: Progress report, August 1, 1988--July 31, 1989

    International Nuclear Information System (INIS)

    Jena, P.; Rao, B.K.; Khanna, S.N.

    1989-04-01

    Our research during this reporting period has focused on the following two aspects of cluster research. Electronic structure and stability of charged clusters and studies of evolution of magnetic properties with increasing cluster size. Following is a summary of our results

  3. Electronic Structure and Bonding Situation in M2O2 (M=Be,Mg,Ca) Rhombic Clusters.

    Czech Academy of Sciences Publication Activity Database

    Li, W.-L.; Lu, J.-B.; Zhao, L.; Ponec, Robert; Cooper, D.L.; Li, J.; Frenking, G.

    Roč. 122, č. 10 ( 2018 ), s. 2816-2822 ISSN 1089-5639 Grant - others:NNSFCH(CN) 21590792; NNSFCH(CN) 21433005; NNSFCH(CN) 21703099; JPY NSF(CN) BK20170964; NTU(CN) 39837123 Institutional support: RVO:67985858 Keywords : electronic structures * M2O2n clustery * theoretical isnights Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  4. Structures, electronic properties and magnetisms of FeBN (N ≤ 15) clusters: density functional theory investigations

    International Nuclear Information System (INIS)

    Liu Huoyan; Lel Xueling; Chen Hang; Liu Zhifeng; Liu Liren; Zhu Hengjiang

    2011-01-01

    The equilibrium structures, electronic properties and magnetisms of FeB N (N ≤ 15) clusters have been investigated by generalized gradient approximation (GGA) of density functional theory at different spin multiplicities. The average atomic binding energies, second-order energy differences and gaps of ground-state structures are calculated and discussed. The results show that FeB 3 , FeB 8 , FeB 12 and FeB 14 possess relatively higher stabilities. Moreover, there is a distinct hybridization between the d orbital of Fe and the p orbital of B for the ground-state cluster. The total magnetic moment for groundstate cluster is mainly provided by 3 d orbital of Fe atom, and exhibits the odd-even oscillation tendency with the increasing of cluster size. (authors)

  5. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    Science.gov (United States)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  6. Oxygen trapped by rare earth tetrahedral clusters in Nd4FeOS6: Crystal structure, electronic structure, and magnetic properties

    International Nuclear Information System (INIS)

    Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud’ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.

    2015-01-01

    Single crystals of Nd 4 FeOS 6 were grown from an Fe–S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd 4 MnOSe 6 -type structure (P6 3 mc, a=9.2693(1) Å, c=6.6650(1)Å, V=495.94(1) Å 3 , Z=2), featuring parallel chains of face-sharing [FeS 6×1/2 ] 4− trigonal antiprisms and interlinked [Nd 4 OS 3 ] 4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd 4 clusters in the [Nd 4 OS 3 ] 4 + chains. Structural differences among Nd 4 MnOSe 6 -type Nd 4 FeOS 6 and the related La 3 CuSiS 7 − and Pr 8 CoGa 3 -type structures have been described. Magnetic susceptibility measurements on Nd 4 FeOS 6 suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 K was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions. - Graphical abstract: Trapping of oxygen in Nd 4 tetrahedral clusters results in the formation of the Nd 4 MnOSe 6 -type Nd 4 FeOS 6 , in contrast to the La 3 CuSiS 7 -type oxygen-free Nd 4 FeS 7 and related Pr 8 CoGa 3 -type structures. Complex magnetic frustration inhibits magnetic ordering at low temperature. - Highlights: • Single crystals of Nd 4 FeOS 6 were grown using self-flux method. • Oxygen was found trapped by Nd 4 tetrahedral clusters. • Comparison with two closely related structural types were discussed. • Magnetic measurements revealed antiferromagnetic (AFM) interaction. • VASP calculations confirmed strong magnetic frustration in AFM model

  7. Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis

    International Nuclear Information System (INIS)

    Rao, B.K.; Jena, P.

    1999-01-01

    Density-functional theory with generalized gradient approximation for the exchange-correlation potential has been used to calculate the global equilibrium geometries and electronic structure of neutral, cationic, and anionic aluminum clusters containing up to 15 atoms. The total energies of these clusters are then used to study the evolution of their binding energy, relative stability, fragmentation channels, ionization potential, and vertical and adiabatic electron affinities as a function of size. The geometries are found to undergo a structural change from two dimensional to three dimensional when the cluster contains 6 atoms. An interior atom emerges only when clusters contain 11 or more atoms. The geometrical changes are accompanied by corresponding changes in the coordination number and the electronic structure. The latter is reflected in the relative concentration of the s and p electrons of the highest occupied molecular orbital. Aluminum behaves as a monovalent atom in clusters containing less than seven atoms and as a trivalent atom in clusters containing seven or more atoms. The binding energy evolves monotonically with size, but Al 7 , Al 7 + , Al 7 - , Al 11 - , and Al 13 - exhibit greater stability than their neighbors. Although the neutral clusters do not conform to the jellium model, the enhanced stability of these charged clusters is demonstrated to be due to the electronic shell closure. The fragmentation proceeds preferably by the ejection of a single atom irrespective of the charge state of the parent clusters. While odd-atom clusters carry a magnetic moment of 1μ B as expected, clusters containing even number of atoms carry 2μ B for n≤10 and 0 ampersand hthinsp;μ B for n>10. The calculated results agree very well with all available experimental data on magnetic properties, ionization potentials, electron affinities, and fragmentation channels. The existence of isomers of Al 13 cluster provides a unique perspective on the anomaly in the

  8. Fine structure in the cluster decays of the translead nuclei

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Cioaca, C.

    1994-06-01

    Within the one level R-matrix approach several hindrance factors for the radioactive decays in which are emitted α and other nuclei (such as 14 C and 20 O) are calculated. The interior wave functions are supposed to be given by the shell model with effective residual interactions. The exterior wave functions are calculated from a cluster - nucleus double - folding model potential with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 255 Fm, 14 C - decay of 223 Ra and 20 O - decay of 229 Th and 225 Fm. Good agreement with the experimental data is obtained. (author). 38 refs, 6 tabs

  9. Ground state structures and properties of Si3Hn (n= 1–6) clusters

    Indian Academy of Sciences (India)

    The ground state structures and properties of Si3H (1 ≤ ≤ 6) clusters have been calculated using Car–Parrinello molecular dynamics with simulated annealing and steepest descent optimization methods. We have studied cohesive energy per particle and first excited electronic level gap of the clusters as a function of ...

  10. Structural, electronic, and magnetic properties of Y(n)O (n=2-14) clusters: Density functional study.

    Science.gov (United States)

    Yang, Zhi; Xiong, Shi-Jie

    2008-09-28

    The geometries stability, electronic properties, and magnetism of Y(n)O clusters up to n=14 are systematically studied with density functional theory. In the lowest-energy structures of Y(n)O clusters, the equilibrium site of the oxygen atom gradually moves from an outer site of the cluster, via a surface site, and finally, to an interior site as the number of the Y atoms increases from 2 to 14. Starting from n=12, the O atom falls into the center of the cluster with the Y atoms forming the outer frame. The results show that clusters with n=2, 4, 8, and 12 are more stable than their respective neighbors, and that the total magnetic moments of Y(n)O clusters are all quite small except Y(12)O cluster. The lowest-energy structure of Y(12)O cluster is a perfect icosahedron with a large magnetic moment 6mu(B). In addition, we find that the total magnetic moments are quenched for n=2, 6, and 8 due to the closed-shell electronic configuration. The calculated ionization potentials and electron affinities are in good agreement with the experimental results, which imply that the present theoretical treatments are satisfactory.

  11. THE GEMINI/HST CLUSTER PROJECT: STRUCTURAL AND PHOTOMETRIC PROPERTIES OF GALAXIES IN THREE z = 0.28-0.89 CLUSTERS

    International Nuclear Information System (INIS)

    Chiboucas, Kristin; Joergensen, Inger; Barr, Jordi; Collobert, Maela; Davies, Roger; Flint, Kathleen

    2009-01-01

    We present the data processing and analysis techniques we are using to determine the structural and photometric properties of galaxies in our Gemini/HST Galaxy Cluster Project sample. The goal of this study is to understand cluster galaxy evolution in terms of scaling relations and structural properties of cluster galaxies at redshifts 0.15 1/4 law and Sersic function two-dimensional surface brightness profiles to each of the galaxies in our sample. Using simulated galaxies, we test how the assumed profile affects the derived parameters and how the uncertainties affect our Fundamental Plane results. We find that while fitting galaxies that have Sersic index n 1/4 law profiles systematically overestimates the galaxy radius and flux, the combination of profile parameters that enter the Fundamental Plane has uncertainties that are small. Average systematic offsets and associated random uncertainties in magnitude and log r e for n>2 galaxies fitted with r 1/4 law profiles are -0.1 ± 0.3 and 0.1 ± 0.2, respectively. The combination of effective radius and surface brightness, log r e - βlog (I) e , that enters the Fundamental Plane produces offsets smaller than -0.02 ± 0.10. This systematic error is insignificant and independent of galaxy magnitude or size. A catalog of photometry and surface brightness profile parameters is presented for three of the clusters in our sample, RX J0142.0+2131, RX J0152.7-1357, and RX J1226.9+3332 at redshifts 0.28, 0.83, and 0.89, respectively.

  12. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de.

    1977-07-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt

  13. New conception of the spatial structure of the galactic clusters: Pleiades, Praesepe and Coma Berenices

    International Nuclear Information System (INIS)

    Pejkov, Z.I.

    1990-01-01

    The spatial structure of the galactic cluster Pleiads, Praesepe and Coma Berenices in the dependence on different star magnitude intervals and on different limiting star magnitudes is investigated on the basis of the star density distribution functions which were published by Kholopov and Artyukhina. It is shown that the spatial structure of these clusters, similarly to the globular ones, systematically changes with the star magnitude of the included stars, starting from the brightest stars of the upper part of the main sequance and descending along the 'V, B-V' diagram for the clusters. This change consists in an increase of the spatial zones radii, following the same law, whith the transition to the fainter stars

  14. PREFACE: Nuclear Cluster Conference; Cluster'07

    Science.gov (United States)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  15. Human population structure detection via multilocus genotype clustering

    Directory of Open Access Journals (Sweden)

    Starmer Joshua

    2007-06-01

    Full Text Available Abstract Background We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. Results We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. Conclusion The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.

  16. Geometric structure of percolation clusters.

    Science.gov (United States)

    Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin

    2014-01-01

    We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).

  17. Analysis of mixed nitric oxide - Water clusters by complementary ionization methods

    Czech Academy of Sciences Publication Activity Database

    Šmídová, Daniela; Lengyel, Jozef; Kočišek, Jaroslav; Pysanenko, Andriy; Fárník, Michal

    2017-01-01

    Roč. 421, OCT 2017 (2017), s. 144-149 ISSN 1387-3806 R&D Projects: GA ČR(CZ) GA17-04068S Institutional support: RVO:61388955 Keywords : Cluster mass spectrometry * Atmospheric aerosols * Electron attachment Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.702, year: 2016

  18. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  19. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    Science.gov (United States)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  20. Galaxy clusters, type Ia supernovae and the fine structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, street Baraúnas, Campina Grande, PB, 58429-500 (Brazil); Busti, V.C. [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, CEP 05508-090 Brazil (Brazil); Colaço, L.R. [Departamento de Física, Universidade Federal de Campina Grande, street Aprígio Veloso, Campina Grande, PB, 58429-900 (Brazil); Alcaniz, J.S. [Observatório Nacional, Street José Cristino, Rio de Janeiro, RJ, 20921-400 (Brazil); Landau, S.J., E-mail: holanda@uepb.edu.br, E-mail: viniciusbusti@gmail.com, E-mail: colacolrc@gmail.com, E-mail: alcaniz@on.br, E-mail: slandau@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Viamonte, Buenos Aires, 1053 Argentina (Argentina)

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){sup 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.

  1. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N.A., E-mail: nkulagin@bestnet.kharkov.u [Kharkiv National University for Radio Electronics, Avenue Shakespeare 6-48, 61045 Kharkiv (Ukraine)

    2011-03-15

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr{sup +4} ions in oxides, Cu{sup +2} in HTSC, Nd{sup +2} in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10{sup -9} m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: External influence and variation of technology induce changes in valence of nl ions in compounds. Wave function of cluster presented as anti-symmetrical set of ions wave functions. The main equation describes the self-consistent field depending on state of all electrons of cluster. Level scheme of Cr{sup 4+} ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. Plasma treatment effects in appearance of systems of unit crystallites with size of about 10{sup -6}-10{sup -9} m.

  2. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    International Nuclear Information System (INIS)

    Kulagin, N.A.

    2011-01-01

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr +4 ions in oxides, Cu +2 in HTSC, Nd +2 in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10 -9 m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: → External influence and variation of technology induce changes in valence of nl ions in compounds. → Wave function of cluster presented as anti-symmetrical set of ions wave functions. → The main equation describes the self-consistent field depending on state of all electrons of cluster. → Level scheme of Cr 4+ ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. → Plasma treatment effects in appearance of systems of unit crystallites with size of about 10 -6 -10 -9 m.

  3. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  4. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  5. Argonne National Lab gets Linux network teraflop cluster

    CERN Multimedia

    2003-01-01

    "Linux NetworX, Salt Lake City, Utah, has delivered an Evolocity II (E2) Linux cluster to Argonne National Laboratory that is capable of performing more than one trillion calculations per second (1 teraFLOP). The cluster, named "Jazz" by Argonne, is designed to provide optimum performance for multiple disciplines such as chemistry, physics and reactor engineering and will be used by the entire scientific community at the Lab" (1 page).

  6. Is the largest aqueous gold cluster a superatom complex? Electronic structure & optical response of the structurally determined Au146(p-MBA)57.

    Science.gov (United States)

    López-Lozano, Xóchitl; Plascencia-Villa, G; Calero, G; Whetten, R L; Weissker, Hans-Christian

    2017-12-07

    The new water-soluble gold cluster Au 146 (p-MBA) 57 , the structure of which has been recently determined at sub-atomic resolution by Vergara et al., is the largest aqueous gold cluster ever structurally determined and likewise the smallest cluster with a stacking fault. The core presents a twinned truncated octahedron, while additional peripheral gold atoms follow a C 2 rotational symmetry. According to the usual counting rules of the superatom complex (SAC) model, the compound attains a number of 92 SAC electrons if the overall net charge is 3- (three additional electrons). As this is the number of electrons required for a major shell closing, the question arises of whether Au 146 (p-MBA) 57 should be regarded as a superatom complex. Starting from the experimental coordinates we have analyzed the structure using density-functional theory. The optimized (relaxed) structure retains all the connectivity of the experimental coordinates, while removing much of its irregularities in interatomic distances, thereby enhancing the C 2 -symmetry feature. On analyzing the angular-momentum-projected states, we show that, despite a small gap, the electronic structure does not exhibit SAC model character. In addition, optical absorption spectra are found to be relatively smooth compared to the example of the Au 144 (SR) 60 cluster. The Au 146 (SR) 57 does not derive its stability from SAC character; it cannot be considered as a superatom complex.

  7. Cluster model of the nucleus

    International Nuclear Information System (INIS)

    Horiuchi, H.; Ikeda, K.

    1986-01-01

    This article reviews the development of the cluster model study. The stress is put on two points; one is how the cluster structure has come to be regarded as a fundamental structure in light nuclei together with the shell-model structure, and the other is how at present the cluster model is extended to and connected with the studies of the various subjects many of which are in the neighbouring fields. The authors the present the main theme with detailed explanations of the fundamentals of the microscopic cluster model which have promoted the development of the cluster mode. Examples of the microscopic cluster model study of light nuclear structure are given

  8. Clustering in the stellar abundance space

    Science.gov (United States)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  9. Influence of the photothermal effect of a gold nanorod cluster on biofilm disinfection

    International Nuclear Information System (INIS)

    Jo, Wonjin; Kim, Min Jun

    2013-01-01

    We evaluate a method for biofilm disinfection by raising biofilm temperature using the photothermal effect of a gold nanorod cluster. Gold nanorods (GNRs) are capable of generating enough heat to lyse bacteria by heating biofilm via laser irradiation. To test this, GNRs are synthesized using wet chemistry and a single GNR cluster is fabricated using photo-lithography technique. The GNR cluster is directly applied to the biofilm and its effects on bacteria are measured before and after laser irradiation. The photothermal effect of GNRs on the biofilm structure results in a considerable reduction of cell viability and biofilm thickness. Several quantitative measurements of bacterial mortality and biofilm destruction show an increase in efficacy with increasing durations of laser irradiation. Scanning electron microscopy images of the irradiated bacteria show obvious morphological damage such as rupture or collapse of the bacterial cell membrane in the biofilm. These results indicate that GNRs are useful and a potential material for use in photothermal treatments, particularly biofilm disinfection. (paper)

  10. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  11. Contribution from philosophy of chemistry to chemistry education: In a case of ionic liquids as technochemistry

    Science.gov (United States)

    Mudzakir, Ahmad; Hernani, Widhiyanti, Tuszie; Sudrajat, Devi Pratiwi

    2017-08-01

    Traditional chemistry education is commonly handing down of concepts, principles, and theories, such as mechanical properties, the relationship between structure and properties as well as chemical structure and chemical bonding theory, to students without engaging them in the processes of chemical inquiry. This practice leads to the lack of opportunity for the students to construct an appropriate understanding of these concepts, principles, and theories. Students are also rarely facilitated in modeling the structure and function of matter themselves. This situation shows that the philosophy of chemistry has not received as much attention from chemistry educators. The main idea of this paper is to embed philosophy of chemistry through the implementation of technochemistry in chemistry education. One of the most interesting and rapidly developing areas of modern chemistry, technologies and engineering is Ionic Liquids (ILs) as an emerging knowledge on technochemistry which can be applied to chemistry education. The developments between academic researchers and industrial developments in the ILs area are conducted in parallel. In order to overcome the existing problems of scientific development in chemistry education, the science and technology of ILs can be used for reconceptualizing the teaching and learning of chemistry to embrace the epistemology in chemistry. This study promises a potential contribution by philosophy of chemistry. The main objectives of this study are to develop: (i) a perspective based on philosophy of science considerations (rational reconstruction) in order to understand ionic liquids and (ii) teaching materials that can be used to enhance pre-service teacher's view of nature of science and technology (VNOST). The method used in the study is analytical-descriptive (elementarization), i.e. the first step in the model of educational reconstruction (MER). This study concludes that the development of the concepts and their applications of ionic

  12. Proceedings of the DAE-BRNS fourth interdisciplinary symposium on materials chemistry

    International Nuclear Information System (INIS)

    Tyagi, D.; Banerjee, A.M.; Bhattacharyya, K.; Nigam, S.; Varma, S.; Tripathi, A.K.; Das, D.

    2012-12-01

    This symposium covers almost all the contemporary research areas of materials chemistry like materials for energy conversion, biomaterials, carbon based materials, chemical sensors, fuel cell materials and other electro-ceramics, polymers and soft condensed matters, thin films and surface chemistry, organic and organometallics, high purity materials, nanomaterials and clusters to acquaint ourselves with the advancement made in these emerging areas. Topics like nuclear materials, magnetic materials, catalysis and computational materials chemistry continue to be important facet of ISMC series of symposia. Papers relevant to INIS are indexed separately

  13. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics

    Science.gov (United States)

    Ünal, Aslı; Bozkaya, Uǧur

    2018-03-01

    An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol-1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol-1. Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol-1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.

  14. Crystal structures and second-order NLO properties of borogermanates

    International Nuclear Information System (INIS)

    Zhang, Jian-Han; Kong, Fang; Xu, Xiang; Mao, Jiang-Gao

    2012-01-01

    Borogermanates are a class of very important compounds in materials chemistry. In this paper, the syntheses, structures, and properties of metal borogermanates are reviewed. Organically templated borogermanates with zeolite-like open-frameworks show potential applications as microporous materials. Many compounds in alkali or alkaline-earth borogermanate systems are structurally acentric or polar, some of which exhibit excellent Second Harmonic Generation (SHG) coefficients, wide transparency regions, and high optical-damage thresholds as well as excellent thermal stability. Most of the lanthanide borogermanates are structurally centrosymmetric and not SHG active; however, they are able to emit strong luminescence in visible or near-IR region. In the B-rich compounds, BO 3 and BO 4 groups can be polymerized into a variety of discrete polynuclear anionic cluster units or extended architectures via B–O–B bridges; whereas in the Ge-rich compounds, GeO 4 and GeO 6 polyhedra can also be polymerized. The combinations of borate and germinate afforded rich structural and topological types. - Graphical abstract: Borogermanates are a class of very important compounds in materials chemistry. Both BO x (x=3, 4) and GeO y (y=4, 6) polyhedra can be polymerized into a variety of discrete polynuclear anionic cluster units or extended architectures. The combinations of borate and germanate groups in the same oxide framework not only give rise to a rich structural chemistry, but also afford many polar compounds with good SHG properties. Highlights: ► Borogermanates are a class of new materials. ► They feature to be the combination of B and Ge atoms into the same oxide framework. ► They can form a large number of novel 2D and 3D framework structures. ► Some of them are acentric or polar with moderate strong SHG responses.

  15. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  16. Chemistry and the iron - only hydrogenase

    International Nuclear Information System (INIS)

    Tard, C.; Razavet, M.; Liu, X.; Ibrahim, S.; Pickett, Ch.

    2005-01-01

    Complete text of publication follows: Chemistry related to the hydrogenases is developing very rapidly and providing some informative insights into how the biological systems might function. Although still very much at a blue skies stage, there is some prospect for the design of artificial assemblies, materials and devices with technological application for hydrogen production/uptake provided robust system can be designed with low over potentials for hydrogen/proton interconversion (1). The iron-only hydrogenase possesses a peculiar di-iron unit coordinated by CO and CN, ligands which are normally associated with poisoning biological function. This sub-site unit is attached to a [4Fe4S] cubane center to form the catalytic site of the hydrogenase which is known as the 'H-cluster'. The synthesis of artificial sub-sites will first be described together with how their structures, spectroscopy and reactivity provides some key insights into the natural system viz. unprecedented bridging carbonyl and Fe(I) motifs in biology (2-4). How we have approached putting together the entire iron-sulfur framework of the H-cluster will then be described together with its electron-transfer and electrocatalytic properties (4). Finally, I will describe some early work on how we are beginning to incorporate structural motifs of the active-site into conducting polymer matrices, how they function as (albeit poor) electrocatalysts for hydrogen evolution, and where we see the way ahead. (1)The Chemistry and the Hydrogenases. D.J. Evans and C.J. Pickett, Chem. Soc. Rev., 32, 268-275, 2003; (2)Electron-Transfer at a Di-thiolate-Bridged Di-Iron Assembly; Electrocatalytic Hydrogen Evolution. S.J. Borg, T. Behrsing and S.P. Best, M. Ravazet, X. Liu and C.J. Pickett, J Amer. Chem. Soc., 2004, 126, 509-533; (3) Dissecting the intimate mechanism of cyanation of [Fe2S3] complexes related to the active site of all-iron hydrogenases by DFT analysis of energetics, transition states, intermediates and

  17. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  18. Structure and reactivity of molybdenum oxide cluster ions in the gas phase

    International Nuclear Information System (INIS)

    Goncharov, V.B.; Fialko, E.F.

    2002-01-01

    A set of cluster ions of molybdenum oxides Mo x O y + (x = 1-5, y = 1-15) was prepared using a combination of the ionic cyclotron resonance method and Knudsen effusion source. Dependence of concentration of different molybdenum oxide ions on the time of retention and their interaction with carbon monoxide was studied. It is shown that Mo x O y + ions with x>3 contain cyclic fragment Mo 3 O 9 in their structure. Oxygen binding energies within ionic clusters Mo x O y + were estimated [ru

  19. Mass-selected iron-cobalt alloy clusters. Correlation of magnetic and structural properties; Massenselektierte Eisen-Kobalt-Legierungscluster. Korrelation magnetischer und struktureller Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Furkan

    2008-10-13

    In this work, I present results concerning structural and magnetic properties of massselected iron-cobalt alloy clusters with diameters between 5 and 15 nm. I have studied the structure of FeCo alloy clusters with high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM). I have also investigated the crystalline structure of pure iron and pure cobalt clusters with HRTEM to ensure a reliable determination of the lattice parameter for the alloy clusters. The FeCo nanoparticles have a truncated dodecahedral shape with a CsCl-structure. The clusters were produced with a continuously working arc cluster ion source and subsequently mass-selected with an electrostatic quadrupole deflector. The composition of the alloy clusters was checked with energy dispersive x-ray spectroscopy (EDX). The lateral size distribution was investigated by TEM and the height of the deposited FeCo clusters on the (110) surface of tungsten was determined by STM. Comparing the results I have observed that the supported clusters were flattened due to the high surface energy of W(110). The decrease in height of the mass-selected supported clusters amounts to about 1 nm. Furthermore, element specific magnetic studies performed by means of X-ray magnetic circular dichroism (XMCD) have shown that magnetic moments of Fe{sub 50}Co{sub 50} alloy clusters are in good agreement with the theoretically expected values in the bulk. I have also examined the behavior of the alloy clusters at elevated temperatures. The clusters exhibit an anisotropic melting on the W(110) surface. (orig.)

  20. Program package for calculating matrix elements of two-cluster structures in nuclei

    International Nuclear Information System (INIS)

    Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1982-01-01

    Matrix elements of operators between Slater determinants of two-cluster structures must be expanded into partial waves for the purpose of angular momentum projection. The expansion coefficients contain integrals over the spherical angles theta and phi. (orig.)

  1. Electric dipole, polarizability and structure of cesium chloride clusters with one-excess electron

    International Nuclear Information System (INIS)

    Jraij, A.; Allouche, A.R.; Rabilloud, F.; Korek, M.; Aubert-Frecon, M.; Rayane, D.; Compagnon, I.; Antoine, R.; Broyer, M.; Dugourd, Ph.

    2006-01-01

    The measurement of the electric dipole of gas phase one-excess electron Cs n Cl n-1 clusters is reported together with a theoretical ab initio prediction of stable structures, dipole moments and electronic polarizabilities for these species in their ground state. Results are in agreement with NaCl cubic structures

  2. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh

    2016-07-15

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  3. Electronic Structure of Au25 Clusters: Between Discrete and Continuous

    KAUST Repository

    Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Katla, Saikrishna; Li, Ruipeng; Mei, Wai Ning; Skrabalak, Sara; Challa, Challa; Losovyj, Yaroslav

    2016-01-01

    Here, an approach based on synchrotron resonant photoemission is emplyed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states at the vicinity of the Fermi level. These observations are supported by DFT studies.

  4. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  5. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.; Martinez, Kristina; Ramon, Guy Z.; Hoek, Eric M.V.

    2012-01-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane's water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane's structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  6. Some aspects of the chemistry of fast reactor fuel, structural material and decontamination

    International Nuclear Information System (INIS)

    Ganesan, V.

    2012-01-01

    The chemistry of materials pertaining to fast reactors is both fascinating and challenging considering the nature of materials involved such as the fuel, coolant, control and shielding materials in addition to the interactions between the structural materials and the fuel/coolant depending on the nature and conditions involved. The different chemical forms of fuel materials, the need to operate up to high burnups with consequent interactions of the fuel with clad materials, the need to close the fuel cycle by recovery of the fuel materials from spent fuels for refabrication and the necessity to manage the waste, throw a host of challenges which make their study scientifically interesting and technologically important. The use of liquid sodium as coolant in fast reactor heat transport systems combined with its inherent chemical reactivity opens up an interesting branch of chemistry involving liquid sodium especially in contact with structural materials during normal operation of the reactor and with fuels in the event of fuel pin failure. The phenomenon of sodium wetting and the associated corrosion of structural materials in contact with it combined with the need to carryout decontamination of such materials make it interesting to examine and evaluate their suitability for reuse without compromising on their structural integrity. Boron being the material of choice for control and shielding applications in fast reactors with varying isotopic enrichment and the technological challenge to produce large quantities of boron carbide makes it unique. Some of these aspects are addressed in this paper. (author)

  7. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.

    2012-02-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane\\'s water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane\\'s structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  8. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    Science.gov (United States)

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  9. Cluster-cluster aggregation of Ising dipolar particles under thermal noise

    KAUST Repository

    Suzuki, Masaru; Kun, Ferenc; Ito, Nobuyasu

    2009-01-01

    The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed from chainlike (D1

  10. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism

    International Nuclear Information System (INIS)

    Gardet, G.

    1995-01-01

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)

  11. Electronic structure and geometries of small compound metal clusters: Progress report, August 1, 1987-July 31, 1988

    International Nuclear Information System (INIS)

    Jena, P.; Rao, B.K.; Khanna, S.N.

    1988-04-01

    Our research during this reporting period has focused on studying electronic structure and properties of both gas-phase clusters and clusters as models of crystals and defects. We have also concentrated on developing new theoretical techniques that can allow us to study large clusters in a computationally effective manner. Following is a summary of results

  12. Influence of Cr doping on the stability and structure of small cobalt oxide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Nguyen Thanh; Lievens, Peter; Janssens, Ewald, E-mail: ewald.janssens@fys.kuleuven.be [Laboratory of Solid-State Physics and Magnetism, KU Leuven, B-3001 Leuven (Belgium); Tam, Nguyen Minh; Nguyen, Minh Tho [Department of Chemistry, KU Leuven, B-3001 Leuven (Belgium)

    2014-07-28

    The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, Co{sub n}O{sub m}{sup +} and Co{sub n−1}CrO{sub m}{sup +} (n = 2, 3; m = 2–6 and n = 4; m = 3–8), has been investigated using photodissociation mass spectrometry. Oxygen-rich Co{sub n}O{sub m}{sup +} clusters (m ⩾ n + 1 for n = 2, 4 and m ⩾ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Co{sub n−1}CrO{sub m}{sup +} clusters, except CoCrO{sub 2}{sup +} and CoCrO{sub 3}{sup +}, prefer to decay by eliminating a neutral oxygen molecule. Co{sub 2}O{sub 2}{sup +}, Co{sub 4}O{sub 3}{sup +}, Co{sub 4}O{sub 4}{sup +}, and CoCrO{sub 2}{sup +} are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.

  13. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  14. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  15. New Constraints on Spatial Variations of the Fine Structure Constant from Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Ivan De Martino

    2016-12-01

    Full Text Available We have constrained the spatial variation of the fine structure constant using multi-frequency measurements of the thermal Sunyaev-Zeldovich effect of 618 X-ray selected clusters. Although our results are not competitive with the ones from quasar absorption lines, we improved by a factor 10 and ∼2.5 previous results from Cosmic Microwave Background power spectrum and from galaxy clusters, respectively.

  16. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  17. Designing a Scalable Fault Tolerance Model for High Performance Computational Chemistry: A Case Study with Coupled Cluster Perturbative Triples.

    Science.gov (United States)

    van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A

    2011-01-11

    In the past couple of decades, the massive computational power provided by the most modern supercomputers has resulted in simulation of higher-order computational chemistry methods, previously considered intractable. As the system sizes continue to increase, the computational chemistry domain continues to escalate this trend using parallel computing with programming models such as Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) programming models such as Global Arrays. The ever increasing scale of these supercomputers comes at a cost of reduced Mean Time Between Failures (MTBF), currently on the order of days and projected to be on the order of hours for upcoming extreme scale systems. While traditional disk-based check pointing methods are ubiquitous for storing intermediate solutions, they suffer from high overhead of writing and recovering from checkpoints. In practice, checkpointing itself often brings the system down. Clearly, methods beyond checkpointing are imperative to handling the aggravating issue of reducing MTBF. In this paper, we address this challenge by designing and implementing an efficient fault tolerant version of the Coupled Cluster (CC) method with NWChem, using in-memory data redundancy. We present the challenges associated with our design, including an efficient data storage model, maintenance of at least one consistent data copy, and the recovery process. Our performance evaluation without faults shows that the current design exhibits a small overhead. In the presence of a simulated fault, the proposed design incurs negligible overhead in comparison to the state of the art implementation without faults.

  18. Excess electrons in methanol clusters: Beyond the one-electron picture

    Science.gov (United States)

    Pohl, Gábor; Mones, Letif; Turi, László

    2016-10-01

    We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.

  19. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    International Nuclear Information System (INIS)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-01-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network

  20. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    Science.gov (United States)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-12-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.

  1. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  2. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  3. Cluster shell model: I. Structure of 9Be, 9B

    Science.gov (United States)

    Della Rocca, V.; Iachello, F.

    2018-05-01

    We calculate energy spectra, electromagnetic transition rates, longitudinal and transverse electron scattering form factors and log ft values for beta decay in 9Be, 9B, within the framework of a cluster shell model. By comparing with experimental data, we find strong evidence for the structure of these nuclei to be two α-particles in a dumbbell configuration with Z2 symmetry, plus an additional nucleon.

  4. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  5. A density functional study of structures and stability of SinCN clusters

    International Nuclear Information System (INIS)

    Gai Zhigang; Yang Li; Zhao Jie; Chu Shibo

    2011-01-01

    In this paper, density functional theory (DFT) B3LYP method with 6-311G * basis set has been used to investigate geometric configurations, vibrational frequencies and ground state energies of Si n CN (n = 2 ∼ 6) clusters. The energies and spin multiplicities of ground states and substable states have been discussed, respectively. Harmonic frequencies and infrared spectra intensity for these clusters are given in order to aid in the characterization of the stable structures. The results show that the zero point energy (ZPE), thermocapacity and entropies are nearly in proportion to increased n, whose average enhancement are 0.80 kcal/mol, 5.20 cal/mol · K and 12.72 cal/ mol · K, respectively. The stability of Si n CN (n = 2 ∼ 6) clusters with even n are greater than that with odd n. (authors)

  6. Application of cluster computing in materials science

    International Nuclear Information System (INIS)

    Kuzmin, A.

    2006-01-01

    Solution of many problems in materials science requires that high performance computing (HPC) be used. Therefore, a cluster computer, Latvian Super-cluster (LASC), was constructed at the Institute of Solid State Physics of the University of Latvia in 2002. The LASC is used for advanced research in the fields of quantum chemistry, solid state physics and nano materials. In this work we overview currently available computational technologies and exemplify their application by interpretation of x-ray absorption spectra for nano-sized ZnO. (author)

  7. Small gold clusters on graphene, their mobility and clustering: a DFT study

    International Nuclear Information System (INIS)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V

    2011-01-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au 4 D cluster is the ground state structure, whereas the Y-shaped Au 4 Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au 3 . All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au 1-4 on graphene along the C-C bonds.

  8. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  9. Optical properties of DNA-hosted silver clusters

    NARCIS (Netherlands)

    Markešević, Nemanja

    2015-01-01

    DNA-hosted silver clusters (Ag:DNAs) have attracted a lot of attention due to their small size (~20 atoms), wide range of applications in chemistry and biology, and sequence-dependent optical tunability. Most of the previous studies are focused on the ensemble of emitters in solution. However,

  10. The structure of the nuclear stellar cluster of the Milky Way

    International Nuclear Information System (INIS)

    Schoedel, Rainer; Eckart, Andreas

    2006-01-01

    The structure of the nuclear stellar cluster of the Milky Way is of particular interest because it is the densest stellar cluster in our Galaxy, where the theoretical prediction of the formation of a stellar cusp around the central supermassive black hole, Sagittarius A* (Sgr A*) can be examined. We present high-resolution adaptive optics observations with multiple intermediate band liters of the inner ∼20'' around Sgr A*. From the images, stellar number counts and a detailed map of the interstellar extinction toward the central 0.5 pc of the Milky Way were determined. The extinction map is consistent with a putative southwest-northeast aligned outfbw from the central arcseconds. An azimuthally averaged, crowding and extinction corrected stellar density profle presents clear evidence for the existence of a stellar cusp around Sgr A*. We show that the profle of the surface brightness density is dominated by the brightest stars in the central arcseconds and is different from the shape of the stellar cluster as inferred from the number counts. Several density peaks found in the cluster may indicate clumping, possibly related to the last epoch of star formation in the Galactic Center. There is evidence for a common proper motion of the stars in one of these clumps

  11. Cluster-based analysis of multi-model climate ensembles

    Science.gov (United States)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and

  12. Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties.

    Science.gov (United States)

    Coutiño-Gonzalez, Eduardo; Baekelant, Wouter; Steele, Julian A; Kim, Cheol Woong; Roeffaers, Maarten B J; Hofkens, Johan

    2017-09-19

    Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemical properties (molecule-like discrete energy levels, for example), make them very attractive for a wide variety of applied research fields, from biotechnology and the environmental sciences to fundamental chemistry and physics. Apart from useful catalytic properties, silver clusters (Ag n , n counterbalancing ions, silver loading, and zeolite topology, and cannot be overlooked. This Account is intended to shed light on the current state-of-the-art of luminescent Ag-CLs confined in zeolitic matrices, emphasizing the use of combinatorial approaches to overcome problems associated with the correct characterization and correlation of their structural, electronic, and photoluminescence properties, all to establish the important design principles for developing functional silver-zeolite-based materials. Additionally, examples of emerging applications and future perspectives for functional luminescent Ag-zeolite materials are addressed in this Account.

  13. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  14. Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets

    NARCIS (Netherlands)

    da Silva, F. Ferreira; Jaksch, S.; Martins, G.; Dang, H. M.; Dampc, M.; Denifl, S.; Maerk, T. D.; Limao-Vieira, P.; Liu, J.; Yang, S.; Ellis, A. M.; Scheier, P.

    2009-01-01

    The effect of incident electrons on acetic acid clusters is explored for the first time. The acetic acid clusters are formed inside liquid helium nanodroplets and both cationic and anionic products ejected into the gas phase are detected by mass spectrometry. The cation chemistry (induced by

  15. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko

    2008-12-01

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.

  16. A microgrid cluster structure and its autonomous coordination control strategy

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    This paper proposes a microgrid cluster structure and its autonomous coordination control strategy. Unlike existing microgrids that are purely AC or DC, the microgrid cluster studied here is an interconnected system with multiple AC and DC microgrids, which enables mutual power support among...... control method combining the normalized droop-based control and adaptive control is proposed for PEU, which can effectively realize mutual power support among microgrids and reduce the bus voltage or frequency deviation in microgrids. In addition, the adaptive control strategy of PEU can ensure...... that the bigger the normalized index of microgrid is, the larger the active power exchange coefficient is, which can make all of microgrids operate around the rated state as much as possible. Besides, EP is mainly used to balance the system power, and the hierarchical coordinated control method of EP is proposed...

  17. Bonding, structure and solid-state chemistry

    CERN Document Server

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  18. Chemical structure and dynamics: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  19. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  20. Managing expectations: assessment of chemistry databases generated by automated extraction of chemical structures from patents.

    Science.gov (United States)

    Senger, Stefan; Bartek, Luca; Papadatos, George; Gaulton, Anna

    2015-12-01

    First public disclosure of new chemical entities often takes place in patents, which makes them an important source of information. However, with an ever increasing number of patent applications, manual processing and curation on such a large scale becomes even more challenging. An alternative approach better suited for this large corpus of documents is the automated extraction of chemical structures. A number of patent chemistry databases generated by using the latter approach are now available but little is known that can help to manage expectations when using them. This study aims to address this by comparing two such freely available sources, SureChEMBL and IBM SIIP (IBM Strategic Intellectual Property Insight Platform), with manually curated commercial databases. When looking at the percentage of chemical structures successfully extracted from a set of patents, using SciFinder as our reference, 59 and 51 % were also found in our comparison in SureChEMBL and IBM SIIP, respectively. When performing this comparison with compounds as starting point, i.e. establishing if for a list of compounds the databases provide the links between chemical structures and patents they appear in, we obtained similar results. SureChEMBL and IBM SIIP found 62 and 59 %, respectively, of the compound-patent pairs obtained from Reaxys. In our comparison of automatically generated vs. manually curated patent chemistry databases, the former successfully provided approximately 60 % of links between chemical structure and patents. It needs to be stressed that only a very limited number of patents and compound-patent pairs were used for our comparison. Nevertheless, our results will hopefully help to manage expectations of users of patent chemistry databases of this type and provide a useful framework for more studies like ours as well as guide future developments of the workflows used for the automated extraction of chemical structures from patents. The challenges we have encountered

  1. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  2. Structures and Electronic Properties of Cu{sub 3}O{sub n} (n =1-6) Clusters using ab initio Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Gyun-Tack [Chungbuk National University, Cheongju (Korea, Republic of)

    2016-05-15

    We studied the structures and electronic properties of copper oxide clusters, Cu{sub 3}O{sub n} (n =1-6), using ab initio Monte Carlo simulations and density functional theory calculations. All lowest energy structures of neutral and charged Cu{sub 3}O{sub n} clusters with n =1-6 are optimized with the B3LYP functional and LANL2DZ basis set. We found that the lowest energy structures of neutral and charged Cu{sub 3}O{sub n} (n =1-6) clusters are planar or near-planar. Selected electronic properties including atomization energies, ionization energies, electron affinities, second difference in energies, HOMO - LUMO gaps, and Bader charges are calculated and examined for each n. We concluded that the Cu{sub 3}O{sub 3} cluster is the first ring structure and the most stable structure.

  3. Structure, stability, and properties of the trans peroxo nitrate radical: the importance of nondynamic correlation.

    Science.gov (United States)

    Dutta, Achintya Kumar; Dar, Manzoor; Vaval, Nayana; Pal, Sourav

    2014-02-27

    We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.

  4. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    Science.gov (United States)

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  5. A contribution to the study of the structure, reactivity and bioinorganic chemistry of iron

    International Nuclear Information System (INIS)

    Toma, H.E.

    1984-01-01

    The research work on inorganic and biological chemistry of iron developed at the University of Sao Paulo (SP, Brazil) is reviewed. Considerations are made about: π interactions, electronic structure and spectroscopy of cyanoferrates; solvation studies and kinetics of substitution reactions involving iron complexes; reactivity of coordinating ligands and iron interactions with biomolecules. (C.L.B.) [pt

  6. Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional

    OpenAIRE

    Su, Julius T.; Xu, Xin; Goddard, William A., III

    2004-01-01

    We predict structures and energies of water clusters containing up to 19 waters with X3LYP, an extended hybrid density functional designed to describe noncovalently bound systems as accurately as covalent systems. Our work establishes X3LYP as the most practical ab initio method today for calculating accurate water cluster structures and energies. We compare X3LYP/aug-cc-pVTZ energies to the most accurate theoretical values available (n = 2−6, 8), MP2 with basis set superposition error (BSSE)...

  7. Structural study of CH4, CO2 and H2O clusters containing from several tens to several thousands of molecules

    Science.gov (United States)

    Torchet, G.; Farges, J.; de Feraudy, M. F.; Raoult, B.

    Clusters are produced during the free jet expansion of gaseous CH4, CO2 or H2O. For a given stagnation temperature To, the mean cluster size is easily increased by increasing the stagnation pressure p0. On the other hand, the cluster temperature does not depend on stagnation conditions but mainly on properties of the condensed gas. An electron diffraction analysis provides information about the cluster structure. Depending on whether the diffraction patterns exhibit crystalline lines or not, the structure is worked out either by using crystallographic methods or by constructing cluster models. When they contain more than a few thousand molecules, clusters show a crystalline structure identical to that of one phase, namely, the cubic phase, known in bulk solid: plastic phase (CH4), unique solid phase (CO2) or metastable cubic phase (H2O). When decreasing the cluster size, the studied compounds behave quite differently: CO2 clusters keep the same crystalline structure, CH4 clusters show the multilayer icosahedral structure wich has been found in rare gas clusters, and H2O clusters adopt a disordered structure different from the amorphous structures of bulk ice. Des agrégats sont produits au cours de la détente en jet libre des gaz CH4, CO2 ou H2O. Pour une température initiale donnée To, on accroît facilement la taille moyenne des agrégats en augmentant la pression initiale po . Par contre, la température des agrégats dépend principalement des propriétés du gaz condensé. Une analyse par diffraction électronique permet l'étude de la structure des agrégats. Selon que les diagrammes de diffraction contiennent ou non des raies cristallines, on a recours soit à des méthodes cristallographiques soit à la construction de modèles d'agrégats. Lorsqu'ils renferment plus de quelques milliers de molécules, les agrégats adoptent la structure cristalline de l'une des phases connues du solide massif et plus précisément la phase cubique : phase plastique pour

  8. Structure and chemistry of passivated SiC/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Houston Dycus, J.; Xu, Weizong; LeBeau, James M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Lichtenwalner, Daniel J.; Hull, Brett; Palmour, John W. [Power Devices R& D, Wolfspeed, A Cree Company, Research Triangle Park, North Carolina 27709 (United States)

    2016-05-16

    Here, we report on the chemistry and structure of 4H-SiC/SiO{sub 2} interfaces passivated either by nitric oxide annealing or Ba deposition. Using aberration corrected scanning transmission electron microscopy and spectroscopy, we find that Ba and N remain localized at SiC/SiO{sub 2} interface after processing. Further, we find that the passivating species can introduce significant changes to the near-interface atomic structure of SiC. Specifically, we quantify significant strain for nitric oxide annealed sample where Si dangling bonds are capped by N. In contrast, strain is not observed at the interface of the Ba treated samples. Finally, we place these results in the context of field effect mobility.

  9. Resemblance profiles as clustering decision criteria: Estimating statistical power, error, and correspondence for a hypothesis test for multivariate structure.

    Science.gov (United States)

    Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F

    2017-04-01

    Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.

  10. Chemistry That Applies. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2012

    2012-01-01

    "Chemistry That Applies" is an instructional unit designed to help students in grades 8-10 understand the law of conservation of matter. It consists of 24 lessons organized in four clusters. Working in groups, students explore four chemical reactions: burning, rusting, the decomposition of water, and the reaction of baking soda and…

  11. A DFT study on the structures and electronic states of zinc cluster Znn (n = 2-32)

    International Nuclear Information System (INIS)

    Iokibe, Kei; Tachikawa, Hiroto; Azumi, Kazuhisa

    2007-01-01

    Ab-initio and density functional theory (DFT) calculations have been carried out for zinc clusters Zn n (n = 2-32, n is the number of atoms to form a cluster) to elucidate the structure and electronic charge states of the clusters and the mechanism of clustering. The binding energies of Zn atoms were negligibly small at n = 2-3, whereas the energy increased significantly at n = 4 (the first transition). The second transition occurred at n = 8-16. In the larger clusters (n = 16-32), the binding energy increased slightly with increasing cluster size (n). The cluster size dependence of the binding energy and bond length between zinc atoms agreed well with that of the natural population of electrons in the 4p orbital of the zinc atom. In the larger clusters (n > 20), it was found that the zinc atoms in the surface region of the cluster have a positive charge, whereas those in the interior region have a negative charge with a large population in the 4p orbital. The formation mechanism of zinc clusters was discussed on the basis of the theoretical results

  12. Cluster Headache

    OpenAIRE

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  13. The HST/ACS Coma Cluster Survey - VII. Structure and assembly of massive galaxies in the centre of the Coma cluster

    NARCIS (Netherlands)

    Weinzirl, Tim; Jogee, Shardha; Neistein, Eyal; Khochfar, Sadegh; Kormendy, John; Marinova, Irina; Hoyos, Carlos; Balcells, Marc; den Brok, Mark; Hammer, Derek; Peletier, Reynier F.; Kleijn, Gijs Verdoes; Carter, David; Goudfrooij, Paul; Lucey, John R.; Mobasher, Bahram; Trentham, Neil; Erwin, Peter; Puzia, Thomas

    2014-01-01

    We constrain the assembly history of galaxies in the projected central 0.5 Mpc of the Coma cluster by performing structural decomposition on 69 massive (M⋆ ≥ 109 M⊙) galaxies using high-resolution F814W images from the Hubble Space Telescope (HST) Treasury Survey of Coma. Each galaxy is modelled

  14. Structure evolution during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters

    International Nuclear Information System (INIS)

    Li Guojian; Wang Qiang; Li Donggang; Lue Xiao; He Jicheng

    2008-01-01

    Constant-temperature molecular dynamics with general EAM was employed to study the structure evolutions during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters. It shows that the desired particle morphologies and structures can be obtained by controlling the composition and distribution of hetero atoms during synthesis process

  15. Ground state structures and properties of Si3Hn (n = 1–6) clusters

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Car–Parrinello molecular dynamics; hydrogenated silicon clusters; electronic structure calcula- ... the molecular dynamics simulation, allows us to describe dynamics of ... work through charge density analysis (Balamurugan and.

  16. Design of compound libraries based on natural product scaffolds and protein structure similarity clustering (PSSC)

    NARCIS (Netherlands)

    Balamurugan, Rengarajan; Dekker, Frank J; Waldmann, Herbert; Dekker, Frans

    Recent advances in structural biology, bioinformatics and combinatorial chemistry have significantly impacted the discovery of small molecules that modulate protein functions. Natural products which have evolved to bind to proteins may serve as biologically validated starting points for the design

  17. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  18. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs

    Science.gov (United States)

    Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.

    2001-05-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  19. The Existence of a Designer Al=Al Double Bond in the LiAl2 H4- Cluster Formed by Electronic Transmutation.

    Science.gov (United States)

    Lundell, Katie A; Zhang, Xinxing; Boldyrev, Alexander I; Bowen, Kit H

    2017-12-22

    The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl 2 H 4 - cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl 2 H 4 - cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si 2 H 4 , demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The resonating group method three cluster approach to the ground state 9 Li nucleus structure

    International Nuclear Information System (INIS)

    Filippov, G.F.; Pozdnyakov, Yu.A.; Terenetsky, K.O.; Verbitsky, V.P.

    1994-01-01

    The three-cluster approach for light atomic nuclei is formulated in frame of the algebraic version of resonating group method. Overlap integral and Hamiltonian matrix elements on generating functions are obtained for 9 Li nucleus. All permissible by Pauli principle 9 Li different cluster nucleon permutations were taken into account in the calculations. The results obtained can be easily generalised on any three-cluster system up to 12 C. Matrix elements obtained in the work were used in the variational calculations of the ground state energetic and geometric 9 Li characteristics. It is shown that 9 Li ground state is not adequate to the shell model limit and has pronounced three-cluster structure. (author). 16 refs., 4 tab., 2 figs

  1. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  2. Study of structure formation scenarios with X-ray and SZ observed galaxy clusters

    International Nuclear Information System (INIS)

    Democles, Jessica

    2010-01-01

    Galaxy clusters are the largest structures formed by gravitational collapse. They are cited as cosmological probes for their dependence on the matter density parameter Ω_M, the normalization of the power spectrum of density fluctuations σ_8 and the Dark Energy parameters Ω_D_E and w_D_E. This thesis takes advantage of the multi-wavelength observation of galaxy clusters in order to optimize their cosmological exploitation. In particular, it deals with two aspects: the statistical characterization of cluster catalogues and the existence of scaling relations between their mass and their observables. It presents an observation model for SZ detected cluster catalogues, as it is the case for the Planck and SPT experiments. This model characterizes of the catalogues in terms of completeness, photometry and contamination. Its direct application to the theoretical distribution of clusters enables us to compute the observed cluster abundance. A Fisher analysis estimates the potential of cosmological parameter constraints associated with this abundance. We notice that one of the main limitations of constraints comes from the uncertainty of the scaling relation. Dissipative physics of the baryons are the main feature of the complexification of the scaling relations. The data analysis of two fossil groups observed with XMM-Newton shed light on the influence of dissipative physics on both the scaling relations and the matter distribution of gas and dark matter at group scale. (author) [fr

  3. The Royal Society of Chemistry and the delivery of chemistry data repositories for the community

    Science.gov (United States)

    Williams, Antony; Tkachenko, Valery

    2014-10-01

    Since 2009 the Royal Society of Chemistry (RSC) has been delivering access to chemistry data and cheminformatics tools via the ChemSpider database and has garnered a significant community following in terms of usage and contribution to the platform. ChemSpider has focused only on those chemical entities that can be represented as molecular connection tables or, to be more specific, the ability to generate an InChI from the input structure. As a structure centric hub ChemSpider is built around the molecular structure with other data and links being associated with this structure. As a result the platform has been limited in terms of the types of data that can be managed, and the flexibility of its searches, and it is constrained by the data model. New technologies and approaches, specifically taking into account a shift from relational to NoSQL databases, and the growing importance of the semantic web, has motivated RSC to rearchitect and create a more generic data repository utilizing these new technologies. This article will provide an overview of our activities in delivering data sharing platforms for the chemistry community including the development of the new data repository expanding into more extensive domains of chemistry data.

  4. Fragmentation dynamics of size selected pyrrole clusters prepared by electron impact ionization: Forming a solvated dimer ion core

    Czech Academy of Sciences Publication Activity Database

    Profant, V.; Poterya, Viktoriya; Fárník, Michal; Slavíček, P.; Buck, U.

    2007-01-01

    Roč. 111, č. 49 (2007), s. 12477-12486 ISSN 1089-5639 R&D Projects: GA AV ČR KAN400400651; GA ČR GA203/06/1290 Grant - others:GA ČR GP203/07/P449; University Grant(CZ) 8113-10/257852 Institutional research plan: CEZ:AV0Z40400503 Source of funding: V - iné verejné zdroje Keywords : pyrrole cluster s * structure * dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007

  5. Molecular Dynamics Studies of Thermal Induced Chemistry in Tatb

    Science.gov (United States)

    Quenneville, J.; Germann, T. C.; Thompson, A. P.; Kober, E. M.

    2007-12-01

    A reactive force field (ReaxFF) is used with molecular dynamics to probe the chemistry induced by intense heating (`accelerated cook-off') of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Large-system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 32-molecule simulations, we calculate the reaction rate as a function of temperature and compare the Arrhenius-predicted activation energy with experiment. Decomposition product evolution (mainly N2, H2O, CO2 and graphitic carbon clusters) is followed using a 576-molecule larger simulation, which also illustrates the effect of system size on both carbon clustering and reaction rate.

  6. Clustered atom-replaced structure in single-crystal-like metal oxide

    Science.gov (United States)

    Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi

    2018-06-01

    By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.

  7. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Science.gov (United States)

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  8. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  9. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction......Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...

  10. Synthesis, Magnetism, and X-ray Molecular Structure of the Mixed-Valence Vanadium(IV/V)-Oxygen Cluster [VO(4) subset(V(18)O(45))](9-).

    Science.gov (United States)

    Suber, Lorenza; Bonamico, Mario; Fares, Vincenzo

    1997-05-07

    Within the transition metal oxide systems, vanadium presents a unique chemistry due to its capacity to form a great number of mixed-valence oxo clusters which often have the peculiarity to incorporate species that function, for size, shape, and charge, as templates. Prismatic, lustrous dark brown crystals of [(n-C(4)H(9))NH(3)](9)[V(19)O(49)].7H(2)O are obtained by reacting (n-C(4)H(9)NH(3))VO(3), VOSO(4), and (n-C(4)H(9))NH(2) in H(2)O. The X-ray crystal structure shows an ellipsoidal metal-oxo cluster formed by 15 VO(5) and 3 VO(4) polyhedra surrounding an almost regular VO(4) tetrahedron located on the 3-fold axis of a trigonal cell of dimensions a = 19.113(5) Å and c = 13.743(5) Å with space group P&thremacr; and Z = 2. Exponentially weighted bond valence sum calculations, manganometric titration of the V(IV) centers, and magnetic measurements are consistent with the presence of three localized and three delocalized electrons. Variable-temperature solid-state susceptibility studies indicate antiferromagnetic coupling between V(IV) centers. Cyclic voltammetry in acetonitrile shows a irreversible reduction at -1.24 V and a reversible oxidation at +0.17 V (vs Ag/AgCl). The title compound converts quantitatively to the metal oxide K(2)V(3)O(8) with an extended layered structure as soon as a potassium salt is added to a neutral aqueous solution of the polyoxoanion.

  11. Influence of Structure and Charge State on the Mechanism of CO Oxidation on Gold Clusters

    Science.gov (United States)

    Johnson, Grant; Burgel, Christian; Reilly, Nelly; Mitric, Roland; Kimble, Michele; Tyo, Eric; Castleman, A. W.; Bonacic-Koutecky, Vlasta

    2008-05-01

    Gas-phase reactivity experiments and high level theoretical calculations have been employed to study the interaction of both positively and negatively charged gold oxide clusters with carbon monoxide (CO). We demonstrate that for negatively charged clusters CO is oxidized to CO2 by an Eley-Ridel-like (ER-) mechanism involving the attack of CO on oxygen rather than gold. In contrast, for positively charged clusters, the oxidation reaction may also occur by a Langmuir-Hinshelwood-like (LH-) mechanism involving the initial binding of CO to a gold atom followed by subsequent migration to an oxygen site. The LH mechanism is made possible through the large energy gain associated with the adsorption of two CO molecules onto cationic gold clusters. Structure-reactivity relationships are also established which demonstrate that terminally bound oxygen atoms are the most active sites for CO oxidation. Bridge bonded oxygen atoms and molecularly bound O2 units are shown to be inert. We also establish an inverse relationship between the binding energy of CO to gold clusters and the energy of the clusters lowest unoccupied molecular orbital (LUMO).

  12. Workshop report on large-scale matrix diagonalization methods in chemistry theory institute

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.

    1996-10-01

    The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of

  13. Electronic structure of the BiSI cluster

    Energy Technology Data Exchange (ETDEWEB)

    Audzijonis, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Gaigalas, G. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Zigas, L. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)]. E-mail: kkol@vpu.lt; Pauliukas, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Zaltauskas, R. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Cerskus, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Narusis, J. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania); Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania); Kvedaravicius, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)

    2007-03-15

    The energy levels of valence bands (VB) and core levels (CL) of the BiSI crystals have been investigated theoretically. The molecular model of this crystal was used for calculation of VB and CL by the unrestricted Hartree-Fock method using GAMESS program, with Hw and MINI basis set. The molecular cluster consisting of 20 molecules of BiSI was used for calculations of averaged total density of states including atom vibrations. The spectra of averaged total density of states from VB of BiSI cluster has been compared with experimental X-ray photoelectron spectra (XPS) of VB of SbSI crystal. The results clarify that the atomic vibrations is one of possible reasons for the smoother appearance of the experimental XPS. The investigation of vibrational spectrum reveals new experimental information about the reflection spectrum of BiSI crystals. The cluster model calculations have shown that the splitting of the CL in the BiSI may be caused by the photoelectron emission from the atoms at the surface that is in different valence states. The cluster model calculation showed that splitting energy of CL depends on difference of ionic charges of the same atoms at the edges of BiSI cluster.

  14. Electronic structure of the BiSI cluster

    International Nuclear Information System (INIS)

    Audzijonis, A.; Gaigalas, G.; Zigas, L.; Pauliukas, A.; Zaltauskas, R.; Cerskus, A.; Narusis, J.; Kvedaravicius, A.

    2007-01-01

    The energy levels of valence bands (VB) and core levels (CL) of the BiSI crystals have been investigated theoretically. The molecular model of this crystal was used for calculation of VB and CL by the unrestricted Hartree-Fock method using GAMESS program, with Hw and MINI basis set. The molecular cluster consisting of 20 molecules of BiSI was used for calculations of averaged total density of states including atom vibrations. The spectra of averaged total density of states from VB of BiSI cluster has been compared with experimental X-ray photoelectron spectra (XPS) of VB of SbSI crystal. The results clarify that the atomic vibrations is one of possible reasons for the smoother appearance of the experimental XPS. The investigation of vibrational spectrum reveals new experimental information about the reflection spectrum of BiSI crystals. The cluster model calculations have shown that the splitting of the CL in the BiSI may be caused by the photoelectron emission from the atoms at the surface that is in different valence states. The cluster model calculation showed that splitting energy of CL depends on difference of ionic charges of the same atoms at the edges of BiSI cluster

  15. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    Science.gov (United States)

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  16. First principles study of structural, electronic and magnetic properties of SnGe n (0, ±1) ( n = 1–17) clusters

    Science.gov (United States)

    Djaadi, Soumaia; Eddine Aiadi, Kamal; Mahtout, Sofiane

    2018-04-01

    The structures, relative stability and magnetic properties of pure Ge n +1, neutral cationic and anionic SnGe n (n = 1–17) clusters have been investigated by using the first principles density functional theory implemented in SIESTA packages. We find that with the increasing of cluster size, the Ge n +1 and SnGe n (0, ±1) clusters tend to adopt compact structures. It has been also found that the Sn atom occupied a peripheral position for SnGe n clusters when n 12. The structural and electronic properties such as optimized geometries, fragmentation energy, binding energy per atom, HOMO–LUMO gaps and second-order differences in energy of the pure Ge n +1 and SnGe n clusters in their ground state are calculated and analyzed. All isomers of neutral SnGe n clusters are generally nonmagnetic except for n = 1 and 4, where the total spin magnetic moments is 2μ b. The total (DOS) and partial density of states of these clusters have been calculated to understand the origin of peculiar magnetic properties. The cluster size dependence of vertical ionization potentials, vertical electronic affinities, chemical hardness, adiabatic electron affinities and adiabatic ionization potentials have been calculated and discussed.

  17. Structure and gene cluster of the O-antigen of Escherichia coli O54.

    Science.gov (United States)

    Naumenko, Olesya I; Guo, Xi; Senchenkova, Sof'ya N; Geng, Peng; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-06-15

    Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O54 afforded an O-polysaccharide, which was studied by sugar analysis, solvolysis with anhydrous trifluoroacetic acid, and 1 H and 13 C NMR spectroscopy. Solvolysis cleaved predominantly the linkage of β-d-Ribf and, to a lesser extent, that of β-d-GlcpNAc, whereas the other linkages, including the linkage of α-l-Rhap, were stable under selected conditions (40 °C, 5 h). The following structure of the O-polysaccharide was established: →4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1 → 2)-β-d-Ribf-(1 → 4)-β-d-Galp-(1 → 3)-β-d-GlcpNAc-(1→ The O-antigen gene cluster of E. coli O54 was analyzed and found to be consistent in general with the O-polysaccharide structure established but there were two exceptions: i) in the cluster, there were genes for phosphoserine phosphatase and serine transferase, which have no apparent role in the O-polysaccharide synthesis, and ii) no ribofuranosyltransferase gene was present in the cluster. Both uncommon features are shared by some other enteric bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Structural material anomaly detection system using water chemistry data

    International Nuclear Information System (INIS)

    Asakura, Yamato; Nagase, Makoto; Uchida, Shunsuke; Ohsumi, Katsumi.

    1992-01-01

    The concept of an advanced water chemistry diagnosis system for detection of anomalies and preventive maintenance of system components is proposed and put into a concrete form. Using the analogy to a medical inspection system, analyses of water chemistry change will make it possible to detect symptoms of anomalies in system components. Then, correlations between water chemistry change and anomaly occurrence in the components of the BWR primary cooling system are analyzed theoretically. These fragmentary correlations are organized and reduced to an algorithm for the on-line diagnosis system using on-line monitoring data, pH and conductivity. By using actual plant data, the on-line diagnosis model system is verified to be applicable for early and automatic finding of the anomaly cause and for timely supply of much diagnostic information to plant operators. (author)

  19. Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Mochament, Konstantinos; Agathangelidis, Andreas

    2016-01-01

    study, we used the structure prediction tools PIGS and I-TASSER for creating the 3D models and the TM-align algorithm to superpose them. The innovation of the current methodology resides in the usage of methods adapted from 3D content-based search methodologies to determine the local structural...... determine it are extremely laborious and demanding. Hence, the ability to gain insight into the structure of Igs at large relies on the availability of tools and algorithms for producing accurate Ig structural models based on their primary sequence alone. These models can then be used to determine...... to achieve an optimal solution to this task yet their results were hindered mainly due to the lack of efficient clustering methods based on the similarity of 3D structure descriptors. Here, we present a novel workflow for robust Ig 3D modeling and automated clustering. We validated our protocol in chronic...

  20. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  1. Structure, Stabilities, Thermodynamic Properties, and IR Spectra of Acetylene Clusters (C2H2)n=2-5.

    Science.gov (United States)

    Karthikeyan, S; Lee, Han Myoung; Kim, Kwang S

    2010-10-12

    There are no clear conclusions over the structures of the acetylene clusters. In this regard, we have carried out high-level calculations for acetylene clusters (C2H2)2-5 using dispersion-corrected density functional theory (DFT-D), Møller-Plesset second-order perturbation theory (MP2); and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] at the complete basis set limit. The lowest energy structure of the acetylene dimer has a T-shaped structure of C2v symmetry, but it is nearly isoenergetic to the displaced stacked structure of C2h symmetry. We find that the structure shows the quantum statistical distribution for configurations between the T-shaped and displaced stacked structures for which the average angle (|θ̃|) between two acetylene molecules would be 53-78°, close to the T-shaped structure. The trimer has a triangular structure of C3h symmetry. The tetramer has two lowest energy isomers of S4 and C2h symmetry in zero-point energy (ZPE)-uncorrected energy (ΔEe), but one lowest energy isomer of C2v symmetry in ZPE-corrected energy (ΔE0). For the pentamer, the global minimum structure is C1 symmetry with eight sets of T-type π-H interactions and a set of π-π interactions. Our high-level ab initio calculations are consistent with available experimental data.

  2. Benchmarking uranyl peroxide capsule chemistry in organic media

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Harrison A.; Nyman, May [Department of Chemistry, Oregon State University, Corvallis, OR (United States); Szymanowski, Jennifer; Fein, Jeremy B.; Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States)

    2017-01-03

    Uranyl peroxide capsules are a recent addition to polyoxometalate (POM) chemistry. Ten years of development has ensued only in water, while transition metal POMs are commonly exploited in aqueous and organic media, controlled by counterions or ligation to render the clusters hydrophilic or hydrophobic. Here, new uranyl POM behavior is recognized in organic media, including (1) stabilization and immobilization of encapsulated hydrophilic countercations, identified by Li nuclear magnetic resonance (NMR) spectroscopy, (2) formation of new cluster species upon phase transfer, (3) extraction of uranyl clusters from different starting materials including simulated spent nuclear fuel, (4) selective phase transfer of one cluster type from a mixture, and (5) phase transfer of clusters from both acidic and alkaline media. The capsule morphology of the uranyl POMs renders accurate characterization by X-ray scattering, including the distinction of geometrically similar clusters. Compositional analysis of the aqueous phase post-extraction provided a quantitative determination of the ion exchange process that enables transfer of the clusters into the organic phase. Preferential partitioning of uranyl POMs into organic media presents new frontiers in metal ion behavior and chemical reactions in the confined space of the cluster capsules in hydrophobic media, as well as the reactivity of clusters at the organic/aqueous interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Benchmarking uranyl peroxide capsule chemistry in organic media

    International Nuclear Information System (INIS)

    Neal, Harrison A.; Nyman, May; Szymanowski, Jennifer; Fein, Jeremy B.; Burns, Peter C.

    2017-01-01

    Uranyl peroxide capsules are a recent addition to polyoxometalate (POM) chemistry. Ten years of development has ensued only in water, while transition metal POMs are commonly exploited in aqueous and organic media, controlled by counterions or ligation to render the clusters hydrophilic or hydrophobic. Here, new uranyl POM behavior is recognized in organic media, including (1) stabilization and immobilization of encapsulated hydrophilic countercations, identified by Li nuclear magnetic resonance (NMR) spectroscopy, (2) formation of new cluster species upon phase transfer, (3) extraction of uranyl clusters from different starting materials including simulated spent nuclear fuel, (4) selective phase transfer of one cluster type from a mixture, and (5) phase transfer of clusters from both acidic and alkaline media. The capsule morphology of the uranyl POMs renders accurate characterization by X-ray scattering, including the distinction of geometrically similar clusters. Compositional analysis of the aqueous phase post-extraction provided a quantitative determination of the ion exchange process that enables transfer of the clusters into the organic phase. Preferential partitioning of uranyl POMs into organic media presents new frontiers in metal ion behavior and chemical reactions in the confined space of the cluster capsules in hydrophobic media, as well as the reactivity of clusters at the organic/aqueous interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Density functional study of structural and catalytic properties of free and supported metal nano cluster; Dichtefunktionalstudie der strukturellen und katalytischen Eigenschaften freier und getraegerter Metallnanocluster

    Energy Technology Data Exchange (ETDEWEB)

    Huber, B.

    2007-04-11

    The structural and catalytic properties of metal clusters were determined in the framework of density functional theory. The first part of this work investigates the electronic and geometrical structure of sodium clusters with up to 309 atoms. The ground-state structures of the clusters are determined and the corresponding electronic density of states is compared to experimental photoelectron spectras. The excellent agreement to the experimental results indicates that the correct growth motive of the sodium clusters was found. Small clusters from Na{sup -}{sub 20} to Na{sup -}{sub 42} prefer pentagonal and icosahedral structures with anti-Mackay overlayers, while clusters larger than Na{sup -}{sub 50} prefer icosahedral structures with Mackay overlayers. Clusters between the closed-shell Mackay Clusters often exhibit a twist deformation with respect to the regular Mackay positions. The second part of this work investigates the catalytic properties of free and supported palladium clusters. For both cases the oxidation of small Pd{sub N} clusters (N {<=} 9) was studied. It turned out that MgO supported Pd-clusters dissociate oxygen with a significant lower reaction energy than free clusters or supported systems with particles consisting of several thousands of atoms. The reaction with oxygen transforms the non-crystalline Pd-clusters into crystalline Pd{sub x}O{sub y} nano-oxide clusters that are in epitaxy with the underlying support. Simulations of the CO oxidation on the Pd{sub x}O{sub y} cluster predict a low-temperature reaction mechanism. By calculating the electronic density of states and CO stretch frequencies, different ways of verifying the results experimentally are discussed. (orig.)

  5. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  6. Structure-related clustering of gene expression fingerprints of thp-1 cells exposed to smaller polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wan, B; Yarbrough, J W; Schultz, T W

    2008-01-01

    This study was undertaken to test the hypothesis that structurally similar PAHs induce similar gene expression profiles. THP-1 cells were exposed to a series of 12 selected PAHs at 50 microM for 24 hours and gene expressions profiles were analyzed using both unsupervised and supervised methods. Clustering analysis of gene expression profiles revealed that the 12 tested chemicals were grouped into five clusters. Within each cluster, the gene expression profiles are more similar to each other than to the ones outside the cluster. One-methylanthracene and 1-methylfluorene were found to have the most similar profiles; dibenzothiophene and dibenzofuran were found to share common profiles with fluorine. As expression pattern comparisons were expanded, similarity in genomic fingerprint dropped off dramatically. Prediction analysis of microarrays (PAM) based on the clustering pattern generated 49 predictor genes that can be used for sample discrimination. Moreover, a significant analysis of Microarrays (SAM) identified 598 genes being modulated by tested chemicals with a variety of biological processes, such as cell cycle, metabolism, and protein binding and KEGG pathways being significantly (p < 0.05) affected. It is feasible to distinguish structurally different PAHs based on their genomic fingerprints, which are mechanism based.

  7. Electronic shell structure in multiply charged silver clusters

    International Nuclear Information System (INIS)

    Kandler, O.; Athanassenas, K.; Echt, O.; Kreisle, D.; Leisner, T.; Recknagel, E.

    1991-01-01

    Silver clusters are generated by standard laser vaporization technique and ionized via multiphoton ionization. Time-of-flight mass spectrometry reveals singly, doubly and triply charged clusters, Ag n z+ (z=1, 2, 3). The spectra show, for all charge states, intensity variations, indicating enhanced stabilities for cluster sizes with closed electronic configurations in accord with the spherical jellium model. (orig.)

  8. Adaptation of quantum chemistry software for the electronic structure calculations on GPU for solid-state systems

    International Nuclear Information System (INIS)

    Gusakov, V.E.; Bel'ko, V.I.; Dorozhkin, N.N.

    2015-01-01

    We report on adaptation of quantum chemistry software - Quantum Espresso and LASTO - for the electronic structure calculations for the complex solid-state systems on the GeForce series GPUs using the nVIDIA CUDA technology. Specifically, protective covering based on transition metal nitrides are considered. (authors)

  9. Using Cluster Analysis to Characterize Meaningful Learning in a First-Year University Chemistry Laboratory Course

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective learning in the university chemistry laboratory. The MLLI was administered at the beginning and the end of the first semester to first-year university chemistry students to measure their expectations and experiences for learning in…

  10. Future in actinoids coordination chemistry

    International Nuclear Information System (INIS)

    Kitazawa, Takafumi

    2006-01-01

    Actinoids coordination chemistry is concerned with spent nuclear fuel reprocessing, specifically with solid-state chemistry of nuclear fuels, separation process with radioactive substances, and geological disposal of high-level radioactive substances. In the 21st century, accumulation of minor actinides, Np, Am, Cm, and others will be realized according with the present program of nuclear energy development. The present article briefly introduces general properties of actinide elements, followed by their coordination chemistry compared with rare earths coordination chemistry. Special facility needed to treat actinoids as well as their chemistry is briefly explained, together with the specific experimental apparatus such as X-ray Absorption Fine Structure (XAFS) and time-resolved laser-induced fluorescence spectrometry (TRLFS) with synchrotron radiation facilities. The effect of coordination with actinoids in the environment chemistry is important in underground disposal of high-level radioactive wastes. For theoretical analysis of the results with actinoids chemistry, relativistic calculation is needed. (S. Ohno)

  11. Aggregation kinetics and structure of cryoimmunoglobulins clusters

    CERN Document Server

    De Spirito, M; Bassi, F A; Di Stasio, E; Giardina, B; Arcovito, G

    2002-01-01

    Cryoimmunoglobulins are pathological antibodies characterized by a temperature-dependent reversible insolubility. Rheumatoid factors (RF) are immunoglobulins possessing anti-immunoglobulin activity and usually consist of an IgM antibody that recognizes IgG as antigen. These proteins are present in sera of patients affected by a large variety of different pathologies, such as HCV infection, neoplastic and autoimmune diseases. Aggregation and precipitation of cryoimmunoglobulins, leading to vasculiti, are physical phenomena behind such pathologies. A deep knowledge of the physico-chemical mechanisms regulating such phenomena plays a fundamental role in biological and clinical applications. In this work, a preliminary investigation of the aggregation kinetics and of the final macro- molecular structure of the aggregates is presented. Through static light scattering techniques, the gyration radius R/sub g/ and the fractal dimension D/sub m/ of the growing clusters have been determined. However, while the initial ...

  12. Ab Initio Electronic Structure Calculation of [4Fe-3S] Cluster of Hydrogenase as Dihydrogen Dissociation/Production Catalyst

    Science.gov (United States)

    Kim, Jaehyun; Kang, Jiyoung; Nishigami, Hiroshi; Kino, Hiori; Tateno, Masaru

    2018-03-01

    Hydrogenases catalyze both the dissociation and production of dihydrogen (H2). Most hydrogenases are inactivated rapidly and reactivated slowly (in vitro), in the presence of dioxygen (O2) and H2, respectively. However, membrane-bound [NiFe] hydrogenases (MBHs) sustain their activity even together with O2, which is termed "O2 tolerance". In previous experimental analyses, an MBH was shown to include a hydroxyl ion (OH-) bound to an Fe of the super-oxidized [4Fe-3S]5+ cluster in the proximity of the [NiFe] catalytic cluster. In this study, the functional role of the OH- in the O2 tolerance was investigated by ab initio electronic structure calculation of the [4Fe-3S] proximal cluster. The analysis revealed that the OH- significantly altered the electronic structure, thereby inducing the delocalization of the lowest unoccupied molecular orbital (LUMO) toward the [NiFe] catalytic cluster, which may intermediate the electron transfer between the catalytic and proximal clusters. This can promote the O2-tolerant catalytic cycle in the hydrogenase reaction.

  13. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uhlik, Filip [Charles Univ., Prague (Czech Republic); Moucka, Filip [Purkinje Univ. (Czech Republic); Nezbeda, Ivo [Purkinje Univ. (Czech Republic); Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Chialvo, Ariel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-16

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.

  14. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  15. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.

    Science.gov (United States)

    Moitessier, Nicolas; Pottel, Joshua; Therrien, Eric; Englebienne, Pablo; Liu, Zhaomin; Tomberg, Anna; Corbeil, Christopher R

    2016-09-20

    Computational methods for docking small molecules to proteins are prominent in drug discovery. There are hundreds, if not thousands, of documented examples-and several pertinent cases within our research program. Fifteen years ago, our first docking-guided drug design project yielded nanomolar metalloproteinase inhibitors and illustrated the potential of structure-based drug design. Subsequent applications of docking programs to the design of integrin antagonists, BACE-1 inhibitors, and aminoglycosides binding to bacterial RNA demonstrated that available docking programs needed significant improvement. At that time, docking programs primarily considered flexible ligands and rigid proteins. We demonstrated that accounting for protein flexibility, employing displaceable water molecules, and using ligand-based pharmacophores improved the docking accuracy of existing methods-enabling the design of bioactive molecules. The success prompted the development of our own program, Fitted, implementing all of these aspects. The primary motivation has always been to respond to the needs of drug design studies; the majority of the concepts behind the evolution of Fitted are rooted in medicinal chemistry projects and collaborations. Several examples follow: (1) Searching for HDAC inhibitors led us to develop methods considering drug-zinc coordination and its effect on the pKa of surrounding residues. (2) Targeting covalent prolyl oligopeptidase (POP) inhibitors prompted an update to Fitted to identify reactive groups and form bonds with a given residue (e.g., a catalytic residue) when the geometry allows it. Fitted-the first fully automated covalent docking program-was successfully applied to the discovery of four new classes of covalent POP inhibitors. As a result, efficient stereoselective syntheses of a few screening hits were prioritized rather than synthesizing large chemical libraries-yielding nanomolar inhibitors. (3) In order to study the metabolism of POP inhibitors by

  16. Minimalist's linux cluster

    International Nuclear Information System (INIS)

    Choi, Chang-Yeong; Kim, Jeong-Hyun; Kim, Seyong

    2004-01-01

    Using barebone PC components and NIC's, we construct a linux cluster which has 2-dimensional mesh structure. This cluster has smaller footprint, is less expensive, and use less power compared to conventional linux cluster. Here, we report our experience in building such a machine and discuss our current lattice project on the machine

  17. A catalogue of masses, structural parameters and velocity dispersion profiles of 112 Milky Way globular clusters

    Science.gov (United States)

    Baumgardt, H.; Hilker, M.

    2018-05-01

    We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.

  18. Clustering of 770,000 genomes reveals post-colonial population structure of North America

    Science.gov (United States)

    Han, Eunjung; Carbonetto, Peter; Curtis, Ross E.; Wang, Yong; Granka, Julie M.; Byrnes, Jake; Noto, Keith; Kermany, Amir R.; Myres, Natalie M.; Barber, Mathew J.; Rand, Kristin A.; Song, Shiya; Roman, Theodore; Battat, Erin; Elyashiv, Eyal; Guturu, Harendra; Hong, Eurie L.; Chahine, Kenneth G.; Ball, Catherine A.

    2017-02-01

    Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.

  19. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  20. Structure and Spectrum of Dust Coulomb Clusters

    International Nuclear Information System (INIS)

    Cheung, F.M.H.; Ford, C.; Barkby, S.; Samarian, A.A.; Vladimirov, S.V.

    2005-01-01

    In our study, the dynamics of Coulomb cluster systems were simulated for different number of particles. The spectra of energy states of dust Coulomb clusters corresponding to various packing sequences were obtained. The broadening of the spectrum due to inter-ring twist was discovered. It was found that the inter-ring twist will lead to a change in the energy spectrum of Coulomb cluster. This change was accompanied by a distortion of stable shells such that particles are able to compensate for any additional Coulomb energy (owing to the inter-ring twist) by further reducing their radial distance as much as possible. The overall effect is a change in the shape of the outer-shell from circular to elliptical

  1. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    Science.gov (United States)

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for nphotoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  2. Algorithms for solving atomic structures of nanodimensional clusters in single crystals based on X-ray and neutron diffuse scattering data

    International Nuclear Information System (INIS)

    Andrushevskii, N.M.; Shchedrin, B.M.; Simonov, V.I.

    2004-01-01

    New algorithms for solving the atomic structure of equivalent nanodimensional clusters of the same orientations randomly distributed over the initial single crystal (crystal matrix) have been suggested. A cluster is a compact group of substitutional, interstitial or other atoms displaced from their positions in the crystal matrix. The structure is solved based on X-ray or neutron diffuse scattering data obtained from such objects. The use of the mathematical apparatus of Fourier transformations of finite functions showed that the appropriate sampling of the intensities of continuous diffuse scattering allows one to synthesize multiperiodic difference Patterson functions that reveal the systems of the interatomic vectors of an individual cluster. The suggested algorithms are tested on a model one-dimensional structure

  3. Chemistry Teachers' Views of Creativity

    Science.gov (United States)

    Akkanat, Çigdem; Gökdere, Murat

    2015-01-01

    The purpose of this study was to determine chemistry teachers' views of creativity. In this study, phenomenology method, one of the qualitative research patterns, was used. The participants of this study were 13 chemistry teachers working in Amasya. A semi-structured interview form was used for data collection. By using NVivo 9 qualitative…

  4. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

    Czech Academy of Sciences Publication Activity Database

    Górecki, J.; Hofert, M.; Holeňa, Martin

    2017-01-01

    Roč. 5, č. 1 (2017), s. 75-87 ISSN 2300-2298 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : structure determination * agglomerative clustering * Kendall’s tau * Archimedean copula Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  5. New experimental investigation of cluster structures in 10 Be and 16 C neutron-rich nuclei

    Science.gov (United States)

    Dell'Aquila, L.; Acosta, D.; Auditore, L.; Cardella, G.; De Filippo, E.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    The existence of cluster structures in ^{10} Be and ^{16} C neutron-rich isotopes is investigated via projectile break-up reactions induced on polyethylene (CH _2 target. We used a fragmentation beam constituted by 55MeV/u ^{10} Be and 49MeV/u ^{16} C beams provided by the FRIBs facility at INFN-LNS. Invariant mass spectra of 4{He}+ 6 He and 6{He} + ^{10} Be breakup fragments are reconstructed by means of the CHIMERA 4π detector to investigate the presence of excited states of projectile nuclei characterized by cluster structure. In the first case, we suggest the presence of a new state in ^{10} Be at 13.5MeV. A non-vanishing yield corresponding to 20.6MeV excitation energy of ^{16} C was observed in the 6{He} + ^{10} Be cluster decay channel. To improve the results of the present analysis, a new experiment has been performed recently, taking advantage of the coupling of CHIMERA and FARCOS. In the paper we describe the data reduction process of the new experiment together with preliminary results.

  6. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  7. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  8. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  9. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study.

    Science.gov (United States)

    Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar

    2010-01-18

    The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).

  10. Range-clustering queries

    NARCIS (Netherlands)

    Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.

    2017-01-01

    In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute

  11. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  12. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  13. The radiation chemistry of macromolecules

    CERN Document Server

    1973-01-01

    The Radiation Chemistry of Macromolecules, Volume II is a collection of papers that discusses radiation chemistry of specific systems. Part 1 deals with radiation chemistry of substituted vinyl polymers, particularly polypropylene (PP) as its structure is intermediate between polyethylene and polyisobutylene. This part also discusses polypropylene oxide (PPOx) for it can be prepared in the atactic, isotactic, and optically active forms. One paper focuses on the fundamental chemical processes and the changes in physical properties that give rise to many different applications of polystyrene. An

  14. Oxetanes: Recent Advances in Synthesis, Reactivity, and Medicinal Chemistry.

    Science.gov (United States)

    Bull, James A; Croft, Rosemary A; Davis, Owen A; Doran, Robert; Morgan, Kate F

    2016-10-12

    The four-membered oxetane ring has been increasingly exploited for its contrasting behaviors: its influence on physicochemical properties as a stable motif in medicinal chemistry and its propensity to undergo ring-opening reactions as a synthetic intermediate. These applications have driven numerous studies into the synthesis of new oxetane derivatives. This review takes an overview of the literature for the synthesis of oxetane derivatives, concentrating on advances in the last five years up to the end of 2015. These methods are clustered by strategies for preparation of the ring and further derivatization of preformed oxetane-containing building blocks. Examples of the use of oxetanes in medicinal chemistry are reported, including a collation of oxetane derivatives appearing in recent patents for medicinal chemistry applications. Finally, examples of oxetane derivatives in ring-opening and ring-expansion reactions are described.

  15. Structure and stability of M6N8 clusters (M = Si, Ge, Sn, Ti).

    Science.gov (United States)

    Davydova, Elena I; Timoshkin, Alexey Y; Frenking, Gernot

    2010-06-10

    The structures and stabilities of the M(6)N(8) clusters (M = Si, Ge, Sn, Ti) have been theoretically studied at DFT and ab initio levels of theory. Two new isomers have been considered: cage-like molecules and propeller-like molecules. It is shown that only for M = Si are both isomers true minima on the potential energy surface. The thermodynamics of the dissociation process (1/6)M(6)N(8) --> (1/3)M(3)N(4) is discussed. For each M(3)N(4) molecule, four structures with different multiplicity are considered. The thermodynamic analysis shows that independently of the multiplicity of M(3)N(4) nitrides all M(6)N(8) clusters are stable in the gas phase in a wide temperature range and could be potential intermediates in chemical vapor deposition of the nitride materials.

  16. PSPP: a protein structure prediction pipeline for computing clusters.

    Directory of Open Access Journals (Sweden)

    Michael S Lee

    2009-07-01

    Full Text Available Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1. This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-throughput structural genomic applications that performs all three classes of prediction methodologies: comparative modeling, fold recognition, and ab initio. This software can be deployed on a user's own high-performance computing cluster.The pipeline consists of a Perl core that integrates more than 20 individual software packages and databases, most of which are freely available from other research laboratories. The query protein sequences are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison against the Structural Classification of Proteins (SCOP fold database. Furthermore, secondary structure, solvent accessibility, transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext markup language (HTML formats. So far, the pipeline has been used to study viral and bacterial proteomes.The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users to devote their own computing assets to process a potentially unlimited number of queries as well as perform

  17. α cluster structures in unbound states in 19Ne

    Science.gov (United States)

    Otani, Reiji; Iwasaki, Masataka; Ito, Makoto

    2016-06-01

    Cluster structures in 19Ne are studied by the microscopic and macroscopic cluster models. In the microscopic calculation, the coupled-channels problem of (3He+16O) + (α+15O) is solved, and the adiabatic energy surfaces, which are the series of the energy eigenvalues as a function of the He-O distance, are investigated. In the adiabatic energy curves, the several local minima are generated in the spatial region of the small core distance, where the neutron hole inside of the He or O nucleus is strongly coupled to the residual nuclei. The energy spectra, which are constructed from the strong coupling states, nicely reproduce the the low-lying energy levels in the 19Ne nucleus. In the macroscopic approach, the α + 15O potential is evaluated from the elastic scattering of the α + 15N system, and the resonant levels of the α + 15O system are calculated under the absorbing boundary condition. The potential model predicts the existence of the resonances above the α threshold, which has a weak-coupling scheme of the α particle and one hole inside of the 16O nucleus. The extended microscopic calculations of (3He+16O) + (α+15O) + (5He+14O) are performed in order to see the coupling effect of the 5p-2h configuration, which corresponds to the shell model limit of the 5He + 14O cluster configuration. The extended calculation suggests that the 5He + 14O configuration plays an important role on the formation of the 3/2+ resonance at 0.5 MeV with respect to the α threshold.

  18. Structural calculations and experimental detection of small Ga mS n clusters using time-of-flight mass spectrometry

    Science.gov (United States)

    BelBruno, J. J.; Sanville, E.; Burnin, A.; Muhangi, A. K.; Malyutin, A.

    2009-08-01

    Ga mS n clusters were generated by laser ablation of a solid sample of Ga 2S 3. The resulting molecules were analyzed in a time-of-flight mass spectrometer. In addition to atomic species, the spectra exhibited evidence for the existence of GaS3+, GaS4+, GaS5+, and GaS6+ clusters. The potential neutral and cationic structures of the observed Ga mS n clusters were computationally investigated using a density-functional approach. Reference is made to the kinetic pathways required for production of clusters from the starting point of the stoichiometric molecule or molecular ion. Cluster atomization enthalpies are compared with bulk values from the literature.

  19. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  20. Investigating Students' Similarity Judgments in Organic Chemistry

    Science.gov (United States)

    Graulich, N.; Bhattacharyya, G.

    2017-01-01

    Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…