WorldWideScience

Sample records for closed water pipes

  1. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  2. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  3. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  4. Aeroacoustics of pipe systems with closed branches

    NARCIS (Netherlands)

    Tonon, D.; Hirschberg, A.; Golliard, J.; Ziada, S.

    2011-01-01

    Flow induced pulsations in resonant pipe networks with closed branches are considered in this review paper. These pulsations, observed in many technical applications, have been identified as self-sustained aeroacoustic oscillations driven by the instability of the flow along the closed branches. The

  5. Closed loop solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-01-01

    The system used for the closed loop operation of the solar chemical heat pipe comprises a reformer, heated by the solar furnace, a methanator and a storage assembly containing a compressor and storage cylinders. (authors). 7 figs

  6. Pressurized water-reactor feedwater piping response to water hammer

    International Nuclear Information System (INIS)

    Arthur, D.

    1978-03-01

    The nuclear power industry is interested in steam-generator water hammer because it has damaged the piping and components at pressurized water reactors (PWRs). Water hammer arises when rapid steam condensation in the steam-generator feedwater inlet of a PWR causes depressurization, water-slug acceleration, and slug impact at the nearest pipe elbow. The resulting pressure pulse causes the pipe system to shake, sometimes violently. The objective of this study is to evaluate the potential structural effects of steam-generator water hammer on feedwater piping. This was accomplished by finite-element computation of the response of two sections of a typical feedwater pipe system to four representative water-hammer pulses. All four pulses produced high shear and bending stresses in both sections of pipe. Maximum calculated pipe stresses varied because the sections had different characteristics and were sensitive to boundary-condition modeling

  7. Water hammer and cavitational hammer in process plant pipe systems

    International Nuclear Information System (INIS)

    Dudlik, A.; Schoenfeld, S.B.H.; Hagemann, O.; Fahlenkamp, H.

    2003-01-01

    Fast acting valves are often applied for quick safety shut-down of pipelines for liquids and gases in the chemical and petrochemical industry as well as in power plants and state water supplies. The fast deceleration of the liquid leads to water hammer upstream the valve and to cavitational hammer downstream the fast closing valve. The valve characteristics given by manufacturers are usually measured at steady state flow conditions of the liquid. In comparison, the dynamic characteristics depend on the initial liquid velocity, valve closing velocity, the absolute pipe pressure and the pipe geometry. Fraunhofer UMSICHT conducts various test series examining valve dynamic characteristics in order of the dynamic analysis of pressure surges in fast closing processes. Therefore a test rig is used which consists of two pipelines of DN 50 and DN 100 with an approximate length of 230 m each. In this paper the results of performed pressure surge experiments with fast closing and opening valves will be compared to calculations of commercial software programs such as MONA, FLOWMASTER 2. Thus the calculation software for water supply, power plants oil and gas and chemical industry can be permanently improved. (orig.)

  8. Smoking water pipe is injurious to lungs

    DEFF Research Database (Denmark)

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...

  9. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  10. Developing an optimal valve closing rule curve for real-time pressure control in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bazarganlari, Mohammad Reza; Afshar, Hossein [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kerachian, Reza [University of Tehran, Tehran (Iran, Islamic Republic of); Bashiazghadi, Seyyed Nasser [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Sudden valve closure in pipeline systems can cause high pressures that may lead to serious damages. Using an optimal valve closing rule can play an important role in managing extreme pressures in sudden valve closure. In this paper, an optimal closing rule curve is developed using a multi-objective optimization model and Bayesian networks (BNs) for controlling water pressure in valve closure instead of traditional step functions or single linear functions. The method of characteristics is used to simulate transient flow caused by valve closure. Non-dominated sorting genetic algorithms-II is also used to develop a Pareto front among three objectives related to maximum and minimum water pressures, and the amount of water passes through the valve during the valve-closing process. Simulation and optimization processes are usually time-consuming, thus results of the optimization model are used for training the BN. The trained BN is capable of determining optimal real-time closing rules without running costly simulation and optimization models. To demonstrate its efficiency, the proposed methodology is applied to a reservoir-pipe-valve system and the optimal closing rule curve is calculated for the valve. The results of the linear and BN-based valve closure rules show that the latter can significantly reduce the range of variations in water hammer pressures.

  11. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  12. The Productive Use of Rural Piped Water in Senegal

    Directory of Open Access Journals (Sweden)

    Ralph P. Hall

    2014-10-01

    Full Text Available Over the past decade there has been a growing interest in the potential benefits related to the productive use of rural piped water around the homestead. However, there is limited empirical research on the extent to which, and conditions under which, this activity occurs. Using data obtained from a comprehensive study of 47 rural piped water systems in Senegal, this paper reveals the extent of piped-water-based productive activity occurring and identifies important system-level variables associated with this activity. Three-quarters (74% of the households surveyed depend on water for their livelihoods with around one-half (54% relying on piped water. High levels of piped-water-based productive activity were found to be associated with shorter distances from a community to a city or paved road (i.e. markets, more capable water system operators and water committees, and communities that contributed to the construction of the piped water system. Further, access to electricity was associated with higher productive incomes from water-based productive activities, highlighting the role that non-water-related inputs have on the extent of productive activities undertaken. Finally, an analysis of the technical performance of piped water systems found no statistically significant association between high vs. low levels of productive activity and system performance; however, a positive relationship was found between system performance and the percentage of households engaged in productive activities.

  13. Thermo-hydrodynamics of closed loop pulsating heat pipe: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Pachghare, Pramod R. [Government College of Engineering, Amravati (India); Mahalle, Ashish [Laxminarayan Institute of Technology, Nagpur (India)

    2014-08-15

    The experimental result on the thermal performance of closed loop pulsating heat pipe (CLPHP) is presented. The CLPHP is made of copper capillary tubes, having inner and outer diameters of 2.0 mm and 3.6 mm respectively. The working fluids employed are water, ethanol, methanol and acetone also binary mixture (1:1 by volume) of water-ethanol, water-methanol and water-acetone. For all experimentations, filling ratio (FR) 50%, two-turns and vertical bottom heat mode position was maintained. The lengths of evaporator, condenser and adiabatic section are selected as 42 mm, 50 mm and 170 mm, respectively. The transparent adiabatic section is partially made of glass tube having length 80 mm, for flow visualization. The CFD analysis by VOF model in Star CCM+ simulation is carried out to validate the experimental results. The result shows that the thermal resistance decreases smoothly up to 40W heat input, thereafter reasonably steady. In comparison with all working fluids, water-acetone binary working fluid has shown the best thermal performance over other working fluids used in CLPHPs.

  14. Thermo-hydrodynamics of closed loop pulsating heat pipe: an experimental study

    International Nuclear Information System (INIS)

    Pachghare, Pramod R.; Mahalle, Ashish

    2014-01-01

    The experimental result on the thermal performance of closed loop pulsating heat pipe (CLPHP) is presented. The CLPHP is made of copper capillary tubes, having inner and outer diameters of 2.0 mm and 3.6 mm respectively. The working fluids employed are water, ethanol, methanol and acetone also binary mixture (1:1 by volume) of water-ethanol, water-methanol and water-acetone. For all experimentations, filling ratio (FR) 50%, two-turns and vertical bottom heat mode position was maintained. The lengths of evaporator, condenser and adiabatic section are selected as 42 mm, 50 mm and 170 mm, respectively. The transparent adiabatic section is partially made of glass tube having length 80 mm, for flow visualization. The CFD analysis by VOF model in Star CCM+ simulation is carried out to validate the experimental results. The result shows that the thermal resistance decreases smoothly up to 40W heat input, thereafter reasonably steady. In comparison with all working fluids, water-acetone binary working fluid has shown the best thermal performance over other working fluids used in CLPHPs.

  15. Water driven turbine/brush pipe cleaner

    Science.gov (United States)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  16. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  17. The insitu lining of cooling water piping

    International Nuclear Information System (INIS)

    Vaughan, W.K.; Oxner, K.B.

    1994-01-01

    The internal corrosion of cooling water piping as well as other industrial piping is becoming an increasing problem to system reliability. There are various alternatives being offered as solutions to the problem including water treatment, coatings, and piping replacement. The in-place lining of these pipes is becoming increasingly popular as a cost-effective method to control corrosion. A cured-in-place plastic composite system can be installed with minimal dismantling or excavation. This paper will examine case histories of the installations of this lining system in power plants at three (3) locations in the United States and one in France. It will also summarize testing that has been performed on the lining system and tests that are currently being performed

  18. Solar chemical heat pipe in a closed loop

    International Nuclear Information System (INIS)

    Levy, M.

    1990-06-01

    The work on the solar CO 2 reforming of methane was completed. A computer program was developed for simulation of the whole process. The calculations agree reasonably well with the experimental results. The work was written up and submitted for publication in Solar Energy. A methanator was built and tested first with a CO/H 2 mixture from cylinders, and then with the products of the solar reformer. The loop was then closed by recirculating the products from the methanator into the solar reformer. Nine closed loop cycles were performed, so far, with the same original gas mixture. This is the first time that a closed loop solar chemical heat pipe was operated anywhere in the world. (author). 13 refs., 12 figs., 3 tabs

  19. A STUDY OF CONDITION MONITORING IN WATER PIPE USING VIBRATION SENSOR

    OpenAIRE

    角田, 裕紀

    2013-01-01

    This paper describes a study of condition monitoring in water pipe using vibration sensor. The vibration sensor composed of condenser microphone is placed at water pipe. This sensor picks up vibration by water flow. We estimate of flow rate from the output voltage waveform. It is high cost that any conventional flowmeter which use at outside pipe such as ultrasonic flowmeter. We develop a lower cost system and make measurement of flow rate in water pipe easier. The validity of sensing pipe vi...

  20. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  1. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  2. Condensation driven water hammer studies for feedwater distribution pipe

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S.; Katajala, S.; Elsing, B.; Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland); Pullinen, J. [IVO Power Engineering Ltd., Vantaa (Finland); Logvinov, S.A.; Trunov, N.B.; Sitnik, J.K. [EDO Gidropress (Russian Federation)

    1997-12-31

    Imatran Voima Oy, IVO, operates two VVER 440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of the feed water distribution (FWD) pipes were observed in 1989. In closer examinations FWD-pipe T-connection turned out to suffer from severe erosion corrosion damages. Similar damages have been found also in other VVER 440 type NPPs. In 1994 the first new FWD-pipe was replaced and in 1996 extensive water hammer experiments were carried out together with EDO Gidropress in Podolsk. After the first phase of the experiments some fundamental changes were made to the construction of the FWD-pipe. The object of this paper is to give short insight to the design of the new FWD-pipe concentrating on water hammer experiments. (orig.).

  3. Condensation driven water hammer studies for feedwater distribution pipe

    International Nuclear Information System (INIS)

    Savolainen, S.; Katajala, S.; Elsing, B.; Nurkkala, P.; Hoikkanen, J.; Pullinen, J.; Logvinov, S.A.; Trunov, N.B.; Sitnik, J.K.

    1997-01-01

    Imatran Voima Oy, IVO, operates two VVER 440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of the feed water distribution (FWD) pipes were observed in 1989. In closer examinations FWD-pipe T-connection turned out to suffer from severe erosion corrosion damages. Similar damages have been found also in other VVER 440 type NPPs. In 1994 the first new FWD-pipe was replaced and in 1996 extensive water hammer experiments were carried out together with EDO Gidropress in Podolsk. After the first phase of the experiments some fundamental changes were made to the construction of the FWD-pipe. The object of this paper is to give short insight to the design of the new FWD-pipe concentrating on water hammer experiments. (orig.)

  4. Condensation driven water hammer studies for feedwater distribution pipe

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S; Katajala, S; Elsing, B; Nurkkala, P; Hoikkanen, J [Imatran Voima Oy, Vantaa (Finland); Pullinen, J [IVO Power Engineering Ltd., Vantaa (Finland); Logvinov, S A; Trunov, N B; Sitnik, J K [EDO Gidropress (Russian Federation)

    1998-12-31

    Imatran Voima Oy, IVO, operates two VVER 440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of the feed water distribution (FWD) pipes were observed in 1989. In closer examinations FWD-pipe T-connection turned out to suffer from severe erosion corrosion damages. Similar damages have been found also in other VVER 440 type NPPs. In 1994 the first new FWD-pipe was replaced and in 1996 extensive water hammer experiments were carried out together with EDO Gidropress in Podolsk. After the first phase of the experiments some fundamental changes were made to the construction of the FWD-pipe. The object of this paper is to give short insight to the design of the new FWD-pipe concentrating on water hammer experiments. (orig.).

  5. Carboxyhaemoglobin levels in water-pipe and cigarette smokers ...

    African Journals Online (AJOL)

    South African Medical Journal ... Water-pipe smoking is growing in popularity, especially among young people, because of the social nature of the smoking session and the assumption that the ... We aimed to measure carboxyhaemoglobin (COHb) blood levels before and after water-pipe and cigarette smoking sessions.

  6. Water Hammer Mitigation on Postulated Pipe Break of Feed Water System

    International Nuclear Information System (INIS)

    Seong, Ho Je; Woo, Kab Koo; Cho, Keon Taek

    2008-01-01

    The Feed Water (FW) system supplies feedwater from the deaerator storage tank to the Steam Generators(S/G) at the required pressure, temperature, flow rate, and water chemistry. The part of FW system, from the S/G to Main Steam Valve House just outside the containment building wall, is designed as safety grade because of its safety function. According to design code the safety related system shall be designed to protect against dynamic effects that may results from a pipe break on high energy lines such as FW system. And the FW system should be designed to minimize blowdown volume of S/G secondary side during the postulated pipe break. Also the FW system should be designed to prevent the initiation or to minimize the effects of water hammer transients which may be induced by the pipe break. This paper shows the results of the hydrodynamic loads induced by the pipe break and the optimized design parameters to mitigate water hammer loads of FW system for Shin-Kori Nuclear Power Plant Unit 3 and 4 (SKN 3 and 4)

  7. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  8. The response of liquid-filled pipes to vapour collapse

    International Nuclear Information System (INIS)

    Tijsseling, A.S.; Fan, D.

    1991-01-01

    The collapse of vapour cavities in liquid is usually accompanied with almost instantaneous pressure rises. These pressure rises impose severe loads on liquid-conveying pipes whenever the cavities become sufficiently large. Due to the impact nature of loadings, movement of the pipe walls can be expected. Tests are performed in a water-filled closed pipe suspended by thin steel wires. Vaporous cavities are induced in the liquid by hitting the pipe axially by a steel rod. The volume of the cavities can be varied by changing the initial pressure of the water. The developing and collapsing of cavities in the liquid is inferred from pressure measurements. Strain gauges and a laser Doppler vibrometer are used to record the response of the pipe to these pressures. The test results are compared with predictions from a numerical model. The model describes 1) axial stress wave propagations in the pipe and 2) water hammer and cavitation phenomena in the liquid. Pipe and liquid interact via 1) the radial expansion and contraction of the pipe wall and 2) the closed ends of the pipe, where large vapour cavities may develop. (author)

  9. The influence of prefabricated pipe cement coatings and those made during pipe renovation on drinking water quality

    OpenAIRE

    Młyńska Anna; Zielina Michał

    2017-01-01

    Nowadays, cement coatings are often used as an anticorrosion protection of the internal surfaces of manufactured ductile iron water pipes. The protective cement linings are also commonly used for old water pipe renovation. In both cases, the cement lining is an excellent anticorrosion protection of the pipelines, effectively separating the pipe wall from the flowing water. Moreover, cement linings protect the pipelines not only by a mechanical barrier, but also by a chemical barrier creating ...

  10. Statistical models for the analysis of water distribution system pipe break data

    International Nuclear Information System (INIS)

    Yamijala, Shridhar; Guikema, Seth D.; Brumbelow, Kelly

    2009-01-01

    The deterioration of pipes leading to pipe breaks and leaks in urban water distribution systems is of concern to water utilities throughout the world. Pipe breaks and leaks may result in reduction in the water-carrying capacity of the pipes and contamination of water in the distribution systems. Water utilities incur large expenses in the replacement and rehabilitation of water mains, making it critical to evaluate the current and future condition of the system for maintenance decision-making. This paper compares different statistical regression models proposed in the literature for estimating the reliability of pipes in a water distribution system on the basis of short time histories. The goals of these models are to estimate the likelihood of pipe breaks in the future and determine the parameters that most affect the likelihood of pipe breaks. The data set used for the analysis comes from a major US city, and these data include approximately 85,000 pipe segments with nearly 2500 breaks from 2000 through 2005. The results show that the set of statistical models previously proposed for this problem do not provide good estimates with the test data set. However, logistic generalized linear models do provide good estimates of pipe reliability and can be useful for water utilities in planning pipe inspection and maintenance

  11. Water Quality and Quantity in Intermittent and Continuous Piped Water Supplies in Hubli-Dharwad, India

    OpenAIRE

    Kumpel, Emily Katherine

    2013-01-01

    In at least 45 low- and middle-income countries, piped water systems deliver water for limited durations. Few data are available of the impact of intermittent water supply (IWS) on the water quality and quantity delivered to households. This thesis examines the impact of intermittently supplied piped water on the quality and quantity of water delivered to residential taps in Hubli-Dharwad, India, when compared to continuous piped water supply. A framework for understanding the pathways throug...

  12. Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Strong, B.R. Jr.; Baschiere, R.J.

    1978-01-01

    The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)

  13. SIMULATION OF NEGATIVE PRESSURE WAVE PROPAGATION IN WATER PIPE NETWORK

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-11-01

    Full Text Available Subject: factors such as pipe wall roughness, mechanical properties of pipe materials, physical properties of water affect the pressure surge in the water supply pipes. These factors make it difficult to analyze the transient problem of pressure evolution using simple programming language, especially in the studies that consider only the magnitude of the positive pressure surge with the negative pressure phase being neglected. Research objectives: determine the magnitude of the negative pressure in the pipes on the experimental model. The propagation distance of the negative pressure wave will be simulated by the valve closure scenarios with the help of the HAMMER software and it is compared with an experimental model to verify the quality the results. Materials and methods: academic version of the Bentley HAMMER software is used to simulate the pressure surge wave propagation due to closure of the valve in water supply pipe network. The method of characteristics is used to solve the governing equations of transient process of pressure change in the pipeline. This method is implemented in the HAMMER software to calculate the pressure surge value in the pipes. Results: the method has been applied for water pipe networks of experimental model, the results show the affected area of negative pressure wave from valve closure and thereby we assess the largest negative pressure that may appear in water supply pipes. Conclusions: the experiment simulates the water pipe network with a consumption node for various valve closure scenarios to determine possibility of appearance of maximum negative pressure value in the pipes. Determination of these values in real-life network is relatively costly and time-consuming but nevertheless necessary for identification of the risk of pipe failure, and therefore, this paper proposes using the simulation model by the HAMMER software. Initial calibration of the model combined with the software simulation results and

  14. Corroded scale analysis from water distribution pipes

    Directory of Open Access Journals (Sweden)

    Rajaković-Ognjanović Vladana N.

    2011-01-01

    Full Text Available The subject of this study was the steel pipes that are part of Belgrade's drinking water supply network. In order to investigate the mutual effects of corrosion and water quality, the corrosion scales on the pipes were analyzed. The idea was to improve control of corrosion processes and prevent impact of corrosion on water quality degradation. The instrumental methods for corrosion scales characterization used were: scanning electron microscopy (SEM, for the investigation of corrosion scales of the analyzed samples surfaces, X-ray diffraction (XRD, for the analysis of the presence of solid forms inside scales, scanning electron microscopy (SEM, for the microstructural analysis of the corroded scales, and BET adsorption isotherm for the surface area determination. Depending on the composition of water next to the pipe surface, corrosion of iron results in the formation of different compounds and solid phases. The composition and structure of the iron scales in the drinking water distribution pipes depends on the type of the metal and the composition of the aqueous phase. Their formation is probably governed by several factors that include water quality parameters such as pH, alkalinity, buffer intensity, natural organic matter (NOM concentration, and dissolved oxygen (DO concentration. Factors such as water flow patterns, seasonal fluctuations in temperature, and microbiological activity as well as water treatment practices such as application of corrosion inhibitors can also influence corrosion scale formation and growth. Therefore, the corrosion scales found in iron and steel pipes are expected to have unique features for each site. Compounds that are found in iron corrosion scales often include goethite, lepidocrocite, magnetite, hematite, ferrous oxide, siderite, ferrous hydroxide, ferric hydroxide, ferrihydrite, calcium carbonate and green rusts. Iron scales have characteristic features that include: corroded floor, porous core that contains

  15. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  16. Performance of wickless heat pipe flat plate solar collectors having different pipes cross sections geometries and filling ratios

    International Nuclear Information System (INIS)

    Hussein, H.M.S.; El-Ghetany, H.H.; Nada, S.A.

    2006-01-01

    In the present study, the effect of wickless heat pipe cross section geometry and its working fluid filling ratio on the performance of flat plate solar collectors has been investigated experimentally. Three groups of wickless heat pipes having three different cross section geometries (namely, circular, elliptical and semi-circular cross sections) were designed and manufactured. Each group of three wickless heat pipes was charged with three different distilled water filling ratios of 10%, 20% and 35%. Each wickless heat pipe was then incorporated into a prototype flat plate solar collector developed for the purpose of the present study. The prototypes wickless heat pipe flat plate solar collectors have been investigated experimentally at different inlet cooling water temperatures, two different cooling water mass flow rates and under the meteorological conditions of Cairo, Egypt. The experimental results indicate that the elliptical cross section wickless heat pipe flat plate solar collectors have better performance than the circular cross section ones at low water filling ratios. The optimum water filling ratio of the elliptical cross section wickless heat pipe solar collector is about 10%, while it is very close to 20% for the circular cross section one. Also, the water filling ratio corresponding to the flooding limit of the elliptical wickless heat pipe solar collector is lower than that of the circular one. At 20% water filling ratio, the semi-circular cross section wickless heat pipe solar collector has bad performance compared with that of the other cross sections

  17. Autogenous Metallic Pipe Leak Repair in Potable Water Systems.

    Science.gov (United States)

    Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A

    2015-07-21

    Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials.

  18. Survival of indicator organisms, e.g. E. coli in drinking water pipes

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Silhan, J.; Corfitzen, Charlotte B.

    2006-01-01

    The survival of E. coli was investigated in used drinking water pipes from households. The investigation showed that E. coli survived longer in plastic pipes than in cupper pipes and galvanized steel pipes. The investigation also showed longer survival at cold water temperatures (15?C) than at hot...

  19. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.

    Science.gov (United States)

    Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir

    2003-04-01

    High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.

  20. Thermal performance of horizontal closed-loop oscillating heat-pipe with check valves

    International Nuclear Information System (INIS)

    Rittidech, S.; Pipatpaiboon, N.; Thongdaeng, S.

    2010-01-01

    This research investigated the thermal performance of various horizontal closed-loop oscillating heat-pipe systems with check valves (HCLOHPs/CVs). Numerous test systems were constructed using copper capillary tubes with assorted inner diameters, evaporator lengths, and check valves. The test systems were evaluated under normal operating conditions using ethanol, R123, and distilled water as working fluids. The system's evaporator sections were heated by hot water from a hot bath, and the heat was removed from the condenser sections by cold water from a cool bath. The adiabatic sections were well insulated with foam insulators. The heat-transfer performance of the various systems was evaluated in terms of the rate of heat transferred to the cold water at the condenser. The results showed that the heat-transfer performance of an HCLOHP/CV system could be improved by decreasing the evaporator length. The highest performance of all tested systems was obtained when the maximum number of system check valves was 2. The maximum heat flux occurred with a 2 mm inner diameter tube, and R123 was determined to be the most suitable working fluid

  1. Effects of valve characteristics and pipe diameter on water hammer phenomena

    International Nuclear Information System (INIS)

    Hur, J.; Kim, T. H.; Mun, B. H.; Choi, H. Y.; Lee, K. W.; Noh, T. S.

    2001-01-01

    The water hammer phenomena mean that the dynamic loads are induced on the pipe, the pipe support and the equipments in the system due to the sudden change of the flow velocity inside the pipe. The sudden changes are mainly caused by the valve sudden on/off and pump sudden start/trip. To develop a selection criterion of the parts to be analyzed for the water hammer, the effects of the valve characteristics and pipe diameter on the water hammer are analyzed. The analyses using Method of Characteristics (MOC) show that the effects of the valve pressure difference and the valve opening time are very significant, but the effects of the pipe diameter are not dominant

  2. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Science.gov (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  3. Flow structure in a downward branch pipe with a closed end. Characteristics of flow velocity in the branch pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Takenaka, Nobuyuki

    2016-01-01

    Many pipes branch off from a main pipe in industrial plants. The penetration of hot water into the branch pipe causes thermal stratification. The thermal stratification layer fluctuates and causes thermal fatigue. The characteristics of velocity distributions in the branch pipe for inner diameters from D_b=21 mm to 43 mm were investigated by laser Doppler velocimetry in this paper. As for the flow in the branch pipe at L=4D_b, the mean velocity of the spiral flow was a simple forced vortex which indicated a straight velocity distribution. The maximum circumferential velocity U_θ _m_a_x and minimum axial velocity U_z _m_i_n at L=4D_b were expressed with D_b and main flow velocity. Empirical formulas were proposed for estimating the distributions of U_θ _m_a_x and U_z _m_i_n in the axial direction. (author)

  4. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  5. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  6. Dynamics of large-diameter water pipes in hydroelectric power plants

    Science.gov (United States)

    Pavić, G.; Chevillotte, F.; Heraud, J.

    2017-04-01

    An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.

  7. Pressure wave propagation in the discharge piping with water pool

    International Nuclear Information System (INIS)

    Bang, Young S.; Seul, Kwang W.; Kim, In Goo

    2004-01-01

    Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined

  8. Bayesian Belief Networks for predicting drinking water distribution system pipe breaks

    International Nuclear Information System (INIS)

    Francis, Royce A.; Guikema, Seth D.; Henneman, Lucas

    2014-01-01

    In this paper, we use Bayesian Belief Networks (BBNs) to construct a knowledge model for pipe breaks in a water zone. To the authors’ knowledge, this is the first attempt to model drinking water distribution system pipe breaks using BBNs. Development of expert systems such as BBNs for analyzing drinking water distribution system data is not only important for pipe break prediction, but is also a first step in preventing water loss and water quality deterioration through the application of machine learning techniques to facilitate data-based distribution system monitoring and asset management. Due to the difficulties in collecting, preparing, and managing drinking water distribution system data, most pipe break models can be classified as “statistical–physical” or “hypothesis-generating.” We develop the BBN with the hope of contributing to the “hypothesis-generating” class of models, while demonstrating the possibility that BBNs might also be used as “statistical–physical” models. Our model is learned from pipe breaks and covariate data from a mid-Atlantic United States (U.S.) drinking water distribution system network. BBN models are learned using a constraint-based method, a score-based method, and a hybrid method. Model evaluation is based on log-likelihood scoring. Sensitivity analysis using mutual information criterion is also reported. While our results indicate general agreement with prior results reported in pipe break modeling studies, they also suggest that it may be difficult to select among model alternatives. This model uncertainty may mean that more research is needed for understanding whether additional pipe break risk factors beyond age, break history, pipe material, and pipe diameter might be important for asset management planning. - Highlights: • We show Bayesian Networks for predictive and diagnostic management of water distribution systems. • Our model may enable system operators and managers to prioritize system

  9. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  10. Noncondensable gas accumulation phenomena in nuclear power plant piping

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Aoki, Kazuyoshi; Sato, Teruaki; Shida, Akira; Ichikawa, Nagayoshi; Nishikawa, Akira; Inagaki, Tetsuhiko

    2011-01-01

    In the case of the boiling water reactor, hydrogen and oxygen slightly exist in the main steam, because these noncondensable gases are generated by the radiolytic decomposition of the reactor water. BWR plants have taken measures to prevent noncondensable gas accumulation. However, in 2001, the detonation of noncondensable gases occurred at Hamaoka-1 and Brunsbuttel, resulting in ruptured piping. The accumulation phenomena of noncondensable gases in BWR closed piping must be investigated and understood in order to prevent similar events from occurring in the future. Therefore, an experimental study on noncondensable gas accumulation was carried out. The piping geometries for testing were classified and modeled after the piping of actual BWR plants. The test results showed that 1) noncondensable gases accumulate in vertical piping, 2) it is hard for noncondensable gases to accumulate in horizontal piping, and 3) noncondensable gases accumulate under low-pressure conditions. A simple accumulation analysis method was proposed. To evaluate noncondensable gas accumulation phenomena, the three component gases were treated as a mixture. It was assumed that the condensation amount of the vapor is small, because the piping is certainly wrapped with heat insulation material. Moreover, local thermal equilibrium was assumed. This analysis method was verified using the noncondensable gas accumulation test data on branch piping with a closed top. Moreover, an experimental study on drain trap piping was carried out. The test results showed that the noncondensable gases dissolved in the drain water were discharged from the drain trap, and Henry's law could be applied to evaluate the amount of dissolved noncondensable gases in the drain water. (author)

  11. The influence of prefabricated pipe cement coatings and those made during pipe renovation on drinking water quality

    Directory of Open Access Journals (Sweden)

    Młyńska Anna

    2017-01-01

    Full Text Available Nowadays, cement coatings are often used as an anticorrosion protection of the internal surfaces of manufactured ductile iron water pipes. The protective cement linings are also commonly used for old water pipe renovation. In both cases, the cement lining is an excellent anticorrosion protection of the pipelines, effectively separating the pipe wall from the flowing water. Moreover, cement linings protect the pipelines not only by a mechanical barrier, but also by a chemical barrier creating a highly alkaline environment in water contact with the metal pipe wall. In addition, cement coatings have an ability for so-called self-regeneration and provide the improvement of hydraulic conditions inside the pipelines. In turn, the differences between the analysed cement coatings mainly depend on the types of cements used and techniques of cement mortar spraying. As was expected, they influence the quality of water having contact with the coating. A comparison of the impact of cement coatings manufactured in factories and sprayed on building sites during the renovation on drinking water quality parameters was performed in the study. The experiments were conducted in laboratory conditions, using the test stands prepared for this purpose. The results include analysis of selected water quality parameters for the samples contacting with cement mortar and collected during the investigation.

  12. Condensation driven water hammer studies for feed water distribution pipe

    International Nuclear Information System (INIS)

    Savolainen, S.; Katajala, S.; Elsing, B.; Nurkkala, P.; Longvinov, S.A.; Trunov, N.B.; Sitnik, Yu.K.

    1997-01-01

    Special T-shaped feedwater distribution pipes were installed in steam generators at the Loviisa (Finland) and Rovno (Russia) nuclear power plants. The new shape was tested in an extensive testing programme. Since the tubes frequently suffer from corrosion damage, large-scale water hammer experiments were performed on a model facility in 1996. The main objectives of the water hammer experiments were to find out the prevailing parameters leading to water hammers, as well as the sensitivity of hammering to boundary conditions. A water hammer may occur when the mass flow rate into the steam generator exceeds 6 kg/s and the temperature difference between steam generator and feedwater exceeds 100 degC. Visual experiments and stress analyses of the pipe were also carried out. The weakest part, the T-joint, may hold against such water hammers only for a limited time of the order of few minutes. (M.D.)

  13. [Water-pipe tobacco smoking among school children in Israel: frequencies, habits, and attitudes].

    Science.gov (United States)

    Varsano, Shabtai; Ganz, Irit; Eldor, Naomi; Garenkin, Mila

    2003-11-01

    Tobacco smoking via a water-pipe (Nargile) is a new phenomena among school children in Israel in recent years. Water-pipe tobacco has the potential for nicotine addiction, for other smoking-related damages and for drug abuse. Our primary goal was to characterize the frequencies of water-pipe smoking among school children in Israel, its distribution according to age, gender, habits and attitudes. The secondary goal was to compare its use to cigarette smoking among these school children. A self-reported questionnaire was distributed among 388 school children (ages 12-18 years old) in grades A, and C, of middle schools and grade B of high schools in a central region of Israel. The questionnaires were answered unanimously and the process was conducted in classes by the school teacher and by nursing school students. Among all school children in this study, 41% smoke a water-pipe at various frequencies. Of all the children, 22% smoke at least every weekend. Water-pipe smoking was 3 times more frequent than cigarette smoking and was almost equally distributed among both genders, but girls were heavier smokers than boys, of either water pipe or cigarette smoking. Six percent of water-pipe smokers add psychoactive drugs or alcohol to the tobacco. The main reasons for water-pipe smoking were the pleasure achieved and the intimacy that it adds to the youngsters' meetings. Ninety percent of all the school children believe that water-pipe smoking is not healthy, but at least 50% believes it is less harmful than cigarettes. According to school children that smoke water-pipes at least every weekend, 40% of their parents are current or ex-smokers of water-pipes, in contrast with 10% of parents to non-smoking children and about a quarter of the children who smoke also do so together with their parents. Tobacco smoking via water-pipes is a very common phenomena among middle and high school children in Israel. Girls are heavier smokers and adding drugs or alcohol to water-pipe

  14. Inventing a paradigm of piped water: the evolution of urban water concessions on the European continent, 1800-1970

    NARCIS (Netherlands)

    Braadbaart, O.D.

    2007-01-01

    European foundries master the art of mass-producing cast iron pipes in the early 1800s (Cast Iron Soil Pipe Institute 2006:1). Slow sand filters, buried pipes with bell and spigot joints, steam powered pumps, and water towers make for a universally applicable technology for urban water supply. Piped

  15. Different senescent HDPE pipe-risk: brief field investigation from source water to tap water in China (Changsha City).

    Science.gov (United States)

    Tang, Jing; Tang, Lin; Zhang, Chang; Zeng, Guangming; Deng, Yaocheng; Dong, Haoran; Wang, Jingjing; Wu, Yanan

    2015-10-01

    Semi-volatile organic compounds (SVOCs) derived from plastic pipes widely used in water distribution definitely influence our daily drinking water quality. There are still few scientific or integrated studies on the release and degradation of the migrating chemicals in pipelines. This investigation was carried out at field sites along a pipeline in Changsha, China. Two chemicals, 2, 4-tert-buthylphenol and 1, 3-diphenylguanidine, were found to be migrating from high density polyethylene (HDPE) pipe material. New pipes released more of these two compounds than older pipes, and microorganisms living in older pipes tended to degrade them faster, indicating that the aged pipes were safer for water transmission. Microorganism degradation in water plays a dominant role in the control of these substances. To minimize the potential harm to human, a more detailed study incorporating assessment of their risk should be carried out, along with seeking safer drinking pipes.

  16. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

    OpenAIRE

    Kazeem B. Adedeji; Yskandar Hamam; Bolanle T. Abe; Adnan M. Abu-Mahfouz

    2017-01-01

    Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exa...

  17. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  18. A numerical study on the conjugate natural convection in a circular pipe containing water

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Young; Choi, Hyoung-Gwon [Seoul National University of Science & Technology, Seoul (Korea, Republic of)

    2017-07-15

    In this paper, the effect of material property of pipe on the conjugate natural convection in a circular pipe containing water was investigated by solving the unsteady incompressible Navier-Stokes equations coupled with energy equations of the water and pipe. Natural convection and conduction of water inside the pipe was coupled with the conduction of the pipe whose bottom was subject to uniform heat source. From the present grid resolution and time-step independent solutions, it has been confirmed that the water temperature inside a PVC pipe was higher than that inside a steel pipe due to the smaller heat capacity of PVC and that the streamline patterns of the two cases were found to be opposite because the thermal diffusivity of steel (PVC) is larger (smaller) than that of water such that steel (PVC) pipe is heated faster (slower) than water. Furthermore, a quantitative comparison of heat flux to water was performed by examining the distributions of the heat flux along the inside walls of steel/PVC. The average temperature of water inside steel was found to be higher than that inside PVC at the initial stage of heating. On the other hand, PVC provided a larger heat flux to water when it reached a steady value.

  19. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  20. Deteriorations of pulmonary function, elevated carbon monoxide levels and increased oxidative stress amongst water-pipe smokers

    Directory of Open Access Journals (Sweden)

    Funda Karaduman Yalcin

    2017-10-01

    Full Text Available Objectives: A water pipe (hookah is a tobacco smoking tool which is thought to be more harmless than a cigarette, and there are no adequate studies about its hazards to health. Water-pipe smoking is threatening health of the youth in the world today. The objective of this study has been to investigate the carbon monoxide (CO levels in breath, examine the changes in pulmonary function tests (PFT and to assess the change of the oxidative stress parameters in blood after smoking a water pipe. Material and Methods: This study is a cross-sectional analytical study that has included 50 volunteers who smoke a water pipe and the control group of 50 volunteers who smoke neither a cigarette nor a water pipe. Carbon monoxide levels were measured in the breath and pulmonary function tests (PFTs were performed before and after smoking a water pipe. Blood samples were taken from either the volunteer control group or water-pipe smokers group after smoking a water pipe for the purpose of evaluation of the parameters of oxidative stress. Results: Carbon monoxide values were measured to be 8.08±7.4 ppm and 28.08±16.5 ppm before and after smoking a water pipe, respectively. This increment was found statistically significant. There were also significant reductions in PFTs after smoking a water pipe. Total oxidative status (TOS, total antioxidant status (TAS and oxidative stress index (OSI were found prominently higher after smoking a water pipe for the group of water-pipe smokers than for the control group. Conclusions: This study has shown that water-pipe smoking leads to deterioration in pulmonary function and increases oxidative stress. To the best of our knowledge this study is the only one that has shown the effect of water-pipe smoking on oxidative stress. More studies must be planned to show the side effects of water-pipe habit and protective policies should be planned especially for young people in Europe. Int J Occup Med Environ Health 2017;30(5:731

  1. Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe.

    Science.gov (United States)

    Heim, Timothy H; Dietrich, Andrea M

    2007-02-01

    Pipes constructed with high-density polyethylene (HDPE) or chlorinated polyvinyl chloride (cPVC) are commonly used in drinking water distribution systems and premise plumbing. In this comprehensive investigation, the effects on odor, organic chemical release, trihalomethane (THM) formation, free chlorine demand and monochloramine demand were determined for water exposed to HDPE and cPVC pipes. The study was conducted in accordance with the Utility Quick Test (UQT), a migration/leaching protocol for analysis of materials in contact with drinking water. The sensory panel consistently attributed a weak to moderate intensity of a "waxy/plastic/citrus" odor to the water from the HDPE pipes but not the cPVC-contacted water samples. The odor intensity generated by the HDPE pipe remained relatively constant for multiple water flushes, and the odor descriptors were affected by disinfectant type. Water samples stored in both types of pipe showed a significant increase in the leaching of organic compounds when compared to glass controls, with HDPE producing 0.14 microgTOC/cm(2) pipe surface, which was significantly greater than the TOC release from cPVC. Water stored in both types of pipe showed disinfectant demands of 0.1-0.9 microg disinfectant/cm(2) pipe surface, with HDPE exerting more demand than cPVC. No THMs were detected in chlorinated water exposed to the pipes. The results demonstrate the impact that synthetic plumbing materials can have on sensory and chemical water quality, as well as the significant variations in drinking water quality generated from different materials.

  2. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials.

    Science.gov (United States)

    Li, Manjie; Liu, Zhaowei; Chen, Yongcan; Hai, Yang

    2016-12-01

    Interaction between old, corroded iron pipe surfaces and bulk water is crucial to the water quality protection in drinking water distribution systems (WDS). Iron released from corrosion products will deteriorate water quality and lead to red water. This study attempted to understand the effects of pipe materials on corrosion scale characteristics and water quality variations in WDS. A more than 20-year-old hybrid pipe section assembled of unlined cast iron pipe (UCIP) and galvanized iron pipe (GIP) was selected to investigate physico-chemical characteristics of corrosion scales and their effects on water quality variations. Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Inductively Coupled Plasma (ICP) and X-ray Diffraction (XRD) were used to analyze micromorphology and chemical composition of corrosion scales. In bench testing, water quality parameters, such as pH, dissolved oxygen (DO), oxidation reduction potential (ORP), alkalinity, conductivity, turbidity, color, Fe 2+ , Fe 3+ and Zn 2+ , were determined. Scale analysis and bench-scale testing results demonstrated a significant effect of pipe materials on scale characteristics and thereby water quality variations in WDS. Characteristics of corrosion scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Thanks to the protection of zinc coatings, GIP system was identified as the best water quality stability, in spite of high zinc release potential. It is deduced that the complicated composition of corrosion scales and structural break by the weld result in the diminished water quality stability in HP system. Measurement results showed that iron is released mainly in ferric particulate form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Smoking Water Pipe Habits of University Students and Related Sociodemographic Characteristics

    Directory of Open Access Journals (Sweden)

    Hilal Ozcebe

    2014-02-01

    CONCLUSION: The water pipe smoking is growing into a behaviour like smoking cigarette among young people. The rate of water pipe smoking is especially more common among young people whose socioecomonic situations are better than others [TAF Prev Med Bull 2014; 13(1.000: 19-28

  4. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  5. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  6. Acoustic imaging in a water filled metallic pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Leskovar, B.; Turko, B.T.

    1985-01-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe

  7. Belgian experience in applying the {open_quotes}leak-before-break{close_quotes} concept to the primary loop piping

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, R.; Malekian, C.; Meessen, O. [Tractebel Energy Engineering, Brussels (Belgium)

    1997-04-01

    The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports in the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.

  8. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Patel, Vipul M.; Gaurav; Mehta, Hemantkumar B.

    2017-01-01

    Highlights: • Startup mechanism and thermal performance of a CLPHP is reported. • Influence of pure fluids, water-based binary fluids and surfactant solutions are investigated. • Startup heat flux is observed lower for acetone and higher for water compared to all other working fluids. • Thermal resistance is observed to decrease with increase in heat input irrespective of working fluids. • CLPHP is observed to perform better with acetone, water-acetone, water-45 PPM and water-60 PPM surfactant solutions. - Abstract: Development of efficient cooling system is a tricky and challenging task in the field of electronics. Pulsating heat pipe has a great prospect in the upcoming days for an effective cooling solution due to its excellent heat transfer characteristics. Experimental investigations are reported on a Closed Loop Pulsating Heat Pipe (CLPHP). The influence of working fluids on startup mechanism and thermal performance of a CLPHP are carried out on 2 mm, nine turn copper capillary. Total eleven (11) working fluids are prepared and investigated. Deionized (DI) Water (H_2O), ethanol (C_2H_6O), methanol (CH_3OH) and acetone (C_3H_6O) are used as pure fluids. The water-based mixture (1:1) of acetone, methanol and ethanol are used as binary fluids. Sodium Dodecyl Sulphate (SDS, NaC_1_2H_2_5SO_4) is used as a surfactant to prepare the water-based surfactant solutions of 30 PPM, 45 PPM, 60 PPM and 100 PPM. The filling ratio is kept as 50%. The vertical bottom heating position of a CLPHP is considered. Heat input is varied in the range of 10–110 W. Significant influence is observed for water-based binary fluids and surfactant solutions on startup mechanism and thermal performance of a CLPHP compared to DI water used as the pure working fluid.

  9. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Experimental investigation of coarse particle conveying in pipes

    Directory of Open Access Journals (Sweden)

    Vlasak Pavel

    2015-01-01

    Full Text Available The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle – water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  11. Study on unstable fracture characteristics of light water reactor piping

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi

    1998-08-01

    Many testing studies have been conducted to validate the applicability of the leak before break (LBB) concept for the light water reactor piping in the world. It is especially important among them to clarify the condition that an inside surface crack of the piping wall does not cause an unstable fracture but ends in a stable fracture propagating only in the pipe thickness direction, even if the excessive loading works to the pipe. Pipe unstable fracture tests performed in Japan Atomic Energy Research Institute had been planned under such background, and clarified the condition for the cracked pipe to cause the unstable fracture under monotonous increase loading or cyclic loading by using test pipes with the inside circumferential surface crack. This paper examines the pipe unstable fracture by dividing it into two parts. One is the static unstable fracture that breaks the pipe with the inside circumferential surface crack by increasing load monotonously. Another is the dynamic unstable fracture that breaks the pipe by the cyclic loading. (author). 79 refs

  12. Reactor process water (PW) piping inspections, 1984--1990

    International Nuclear Information System (INIS)

    Ehrhart, W.S.; Elder, J.B.; Sprayberry, R.E.; Vande Kamp, R.W.

    1990-01-01

    In July 1983, the NRC ordered the shutdown of five boiling water reactors (BWR's) because of concerns about reliability of ultrasonic examination for detecting intergranular stress corrosion cracking (IGSCC). These concerns arose because of leaking piping at Niagara Mohawk's Nine Mile Point which was attributed to IGSCC. The leaks were detected shortly after completion of ultrasonic examinations of the piping. At that time, the Dupont plant manager at Savannah River (SR) directed that investigations be performed to determine if similar problems could exist in SR reactors. Investigation determined that all conditions believed necessary for the initiation and propagation of IGSCC in austenitic stainless steel exist in SR reactor process water (PW) systems. Sensitized, high carbon, austenitic stainless steel, a high purity water system with high levels of dissolved oxygen, and the residual stresses associated with welding during construction combine to provide the necessary conditions. A periodic UT inspection program is now in place to monitor the condition of the reactor PW piping systems. The program is patterned after NRC NUREG 0313, i.e., welds are placed in categories based on their history. Welds in upgraded or replacement piping are examined on a standard schedule (at least every five years) while welds with evidence of IGSCC, evaluated as acceptable for service, are inspected at every extended outage (15 to 18 months). This includes all welds in PW systems three inches in diameter and above. Welds are replaced when MSCC exceeds the replacement criteria of more than twenty percent of pipe circumference of fifty percent of through-wall depth. In the future, we intend to perform flow sizing with automated UT techniques in addition to manual sizing to provide more information for comparison with future examinations

  13. Closed-form plastic collapse loads of pipe bends under combined pressure and in-plane bending

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed

  14. WATER QUALITY AND TREATMENT CONSIDERATIONS FOR CEMENT-LINED AND A-C PIPE

    Science.gov (United States)

    Both cement mortar lined (CML) and asbestos-cement pipes (A-C) are widely used in many water systems. Cement linings are also commonly applied in-situ after pipe cleaning, usually to prevent the recurrence of red water or tuberculation problems. Unfortunately, little consideratio...

  15. Computer-Aided Analysis of Flow in Water Pipe Networks after a Seismic Event

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    2017-01-01

    Full Text Available This paper proposes a framework for a reliability-based flow analysis for a water pipe network after an earthquake. For the first part of the framework, we propose to use a modeling procedure for multiple leaks and breaks in the water pipe segments of a network that has been damaged by an earthquake. For the second part, we propose an efficient system-level probabilistic flow analysis process that integrates the matrix-based system reliability (MSR formulation and the branch-and-bound method. This process probabilistically predicts flow quantities by considering system-level damage scenarios consisting of combinations of leaks and breaks in network pipes and significantly reduces the computational cost by sequentially prioritizing the system states according to their likelihoods and by using the branch-and-bound method to select their partial sets. The proposed framework is illustrated and demonstrated by examining two example water pipe networks that have been subjected to a seismic event. These two examples consist of 11 and 20 pipe segments, respectively, and are computationally modeled considering their available topological, material, and mechanical properties. Considering different earthquake scenarios and the resulting multiple leaks and breaks in the water pipe segments, the water flows in the segments are estimated in a computationally efficient manner.

  16. Numerical simulation of water hammer in low pressurized pipe: comparison of SimHydraulics and Lax-Wendroff method with experiment

    Science.gov (United States)

    Himr, D.

    2013-04-01

    Article describes simulation of unsteady flow during water hammer with two programs, which use different numerical approaches to solve ordinary one dimensional differential equations describing the dynamics of hydraulic elements and pipes. First one is Matlab-Simulink-SimHydraulics, which is a commercial software developed to solve the dynamics of general hydraulic systems. It defines them with block elements. The other software is called HYDRA and it is based on the Lax-Wendrff numerical method, which serves as a tool to solve the momentum and continuity equations. This program was developed in Matlab by Brno University of Technology. Experimental measurements were performed on a simple test rig, which consists of an elastic pipe with strong damping connecting two reservoirs. Water hammer is induced with fast closing the valve. Physical properties of liquid and pipe elasticity parameters were considered in both simulations, which are in very good agreement and differences in comparison with experimental data are minimal.

  17. Numerical simulation of water hammer in low pressurized pipe: comparison of SimHydraulics and Lax-Wendroff method with experiment

    Directory of Open Access Journals (Sweden)

    Himr D.

    2013-04-01

    Full Text Available Article describes simulation of unsteady flow during water hammer with two programs, which use different numerical approaches to solve ordinary one dimensional differential equations describing the dynamics of hydraulic elements and pipes. First one is Matlab-Simulink-SimHydraulics, which is a commercial software developed to solve the dynamics of general hydraulic systems. It defines them with block elements. The other software is called HYDRA and it is based on the Lax-Wendrff numerical method, which serves as a tool to solve the momentum and continuity equations. This program was developed in Matlab by Brno University of Technology. Experimental measurements were performed on a simple test rig, which consists of an elastic pipe with strong damping connecting two reservoirs. Water hammer is induced with fast closing the valve. Physical properties of liquid and pipe elasticity parameters were considered in both simulations, which are in very good agreement and differences in comparison with experimental data are minimal.

  18. Water hammer with fluid-structure interaction in thick-walled pipes

    NARCIS (Netherlands)

    Tijsseling, A.S.

    2007-01-01

    A one-dimensional mathematical model is presented which describes the acoustic behaviour of thick-walled liquid-filled pipes. The model is based on conventional water-hammer and beam theories. Fluid–structure interaction (FSI) is taken into account. The equations governing straight pipes are derived

  19. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  20. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners.

    Science.gov (United States)

    Zhang, Ling; Liu, Shuming; Liu, Wenjun

    2014-02-01

    Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC

  1. Development of methodologies for coupled water-hammer analysis of piping systems and supports

    International Nuclear Information System (INIS)

    Kamil, H.; Gantayat, A.; Attia, A.; Goulding, H.

    1983-01-01

    The paper presents the results of an investigation on the development of methodologies for coupled water-hammer analyses. The study was conducted because the present analytical methods for calculation of loads on piping systems and supports resulting from water-hammer phenomena are overly conservative. This is mainly because the methods do not usually include interaction between the fluid and the piping and thus predict high loads on piping systems and supports. The objective of the investigation presented in this paper was to develop methodologies for coupled water-hammer analyses, including fluid-structure interaction effects, to be able to obtain realistic loads on piping systems and supports, resulting in production of more economical designs. (orig./RW)

  2. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2017-10-01

    Full Text Available Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s of the network and the exact leaking pipelines connected to this segment(s where higher background leakage outflow occurs is a challenging task. Background leakage concerns the outflow from small cracks or deteriorated joints. In addition, because they are diffuse flow, they are not characterised by quick pressure drop and are not detectable by measuring instruments. Consequently, they go unreported for a long period of time posing a threat to water loss volume. Most of the existing research focuses on the detection and localisation of burst type leakages which are characterised by a sudden pressure drop. In this work, an algorithm for detecting and estimating background leakage in water distribution networks is presented. The algorithm integrates a leakage model into a classical WDN hydraulic model for solving the network leakage flows. The applicability of the developed algorithm is demonstrated on two different water networks. The results of the tested networks are discussed and the solutions obtained show the benefits of the proposed algorithm. A noteworthy evidence is that the algorithm permits the detection of critical segments or pipes of the network experiencing higher leakage outflow and indicates the probable pipes of the network where pressure control can be performed. However, the possible position of pressure control elements along such critical pipes will be addressed in future work.

  3. Suitability of pipeline material for buried gas and water piping

    Energy Technology Data Exchange (ETDEWEB)

    Funk, R

    1976-01-01

    Following a brief review of the development of the individual pipe materials and their use in the field of gas and water supply, the various stressing possibilities are dealt with. The corrosion influences from inside and outside, the material specifically for internal and external insulation, as well as the stressing due to sediments, are particularly brought out in this connection. A few remarks on the pressure pipes made of ductile cast iron, steel, reinforced concrete, asbestos cement and plastics are followed by comparisons with representations on material parameters to be proved, safety factors, tensile and pressure resistance, breaking tension and stress-strain diagram, wall thicknesses, friction losses, reactions depending on the E. modulus and distribution of the single pipe materials in the gas and water supply.

  4. Water-pipe smoking effects on pulmonary permeability using technetium-99m DTPA inhalation scintigraphy

    International Nuclear Information System (INIS)

    Aydin, A.; Durak, H.; Ucan, E.S.; Kaya, G.C.; Ceylan, E.; Kiter, G.

    2004-01-01

    Although extensive work has been done on cigarette smoking and its effects on pulmonary function, there are limited number of studies on water-pipe smoking. The effects of water-pipe smoking on health are not widely investigated. The aim of this study was to determine the effects of water-pipe smoking on pulmonary permeability. Technetium-99m DTPA inhalation scintigraphy was performed on 14 water-pipe smoker volunteers (all men, mean age 53.7±9.8) and 11 passive smoker volunteers (1 woman, 10 men, mean age 43.8±12). Clearance half-time (T 1/2) was calculated by placing a monoexponential fit on the time activity curves. Penetration index (PI) of the radioaerosol was also calculated. PI was 0.58±0.14 and 0.50±0.12 for water-pipe smokers (WPS) and passive smokers (PS) respectively. T 1/2 of peripheral lung was 57.3±12.7 and 64.6±13.2 min, central airways was 55.8±23.5 and 80.1±35.2 min for WPS and PS, respectively (p≤0.05). Forced expiratory volume in one second/forced vital capacity (FEV 1 /FVC)% was 82.1±8.5 (%) and 87.7±6.5 (%) for WPS and PS, respectively (0.025< p≤0.05). We suggest that water-pipe smoking effects pulmonary epithelial permeability more than passive smoking. Increased central mucociliary clearance in water-pipe smoking may be due to preserved humidity of the airway tracts. (author)

  5. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based on t...

  6. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    Science.gov (United States)

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The assessment of water loss from a damaged distribution pipe using the FEFLOW software

    Directory of Open Access Journals (Sweden)

    Iwanek Małgorzata

    2017-01-01

    Full Text Available Common reasons of real water loss in distribution systems are leakages caused by the failures or pipe breakages. Depending on the intensity of leakage from a damaged buried pipe, water can flow to the soil surface just after the failure occurs, much later or never at all. The localization of the place where the pipe breakage occurs is relatively easy when water outflow occurs on the soil surface. The volume of lost water strongly depends on the time it takes to localize the place of a pipe breakage. The aim of this paper was to predict the volume of water lost between the moment of a failure occurring and the moment of water outflow on the soil surface, during a prospective failure in a distribution system. The basis of the analysis was a numerical simulation of a water pipe failure using the FEFLOW v. 5.3 software (Finite Element subsurface FLOW systems for a real middle-sized distribution system. Simulations were conducted for variants depending on pipes’ diameter (80÷200 mm for minimal and maximal hydraulic pressure head in the system (20.14 and 60.41 m H2O, respectively. FEFLOW software application enabled to select places in the water system where possible failures would be difficult to detect.

  8. Numerical analysis of water hammer induced by injection of subcooled water into steam flow in a horizontal pipe

    International Nuclear Information System (INIS)

    Minato, Akihiko; Nagoyoshi, Takuji; Nakamura, Akira; Fujii, Yuzo; Aya, Izuo; Yamane, Kenji

    2004-01-01

    Subcooled water injection into steam flow in piping systems may generate a water column containing a large steam slug. The steam slug collapses due to rapid condensation and interfaces on both sides collides with each other. Water hammer takes place and sharp pressure pulse propagates through the pipe. The purpose of this study is to show capability of the present numerical simulation method for predictions of pressure transient and loads on a piping system following steam slug collapse. A three-dimensional computer code for transient gas-liquid two-phase flow was applied to simulate an experiment of steam-condensation-induced water hammer with a horizontal polycarbonate pipe. The code was based on the extended two-fluid model, which treated interface motion using the VOF (Volume of Fluid) technique. The Godunov scheme of highly compressible single-phase flow was modified for application to the Riemann problem solution of gas-liquid mixture. Analysis of local steam slug collapse resulted in comparable peak pressure and pulse width of pressure transients with the observation. The calculation of pressure pulse propagation and impact load on piping system showed the quasi-steady pressure load was imposed especially on elbow at 1/10 of water hammer peak pressure. (author)

  9. Rotating optical geometry sensor for inner pipe-surface reconstruction

    Science.gov (United States)

    Ritter, Moritz; Frey, Christan W.

    2010-01-01

    The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.

  10. Water-hammer in the feed-water pipes for PWR steam generators

    International Nuclear Information System (INIS)

    Gonnet, Bernard; Leroy, Claude; Oullion, Jean; Yazidjian, J.-C.

    1979-01-01

    PWR boiler water feed pipes have been known for several years to be affected by violent water-hammer during start-ups and operation of the plant. In view of the varying results of corrective design modifications in America and Europe, FRAMATOME undertook an experimental research programme which resulted in the adoption of cruciform tubes on the feed-water distributor as the most reliable solution. Subsequent tests at Fessenheim I confirmed the effectiveness of this device [fr

  11. Condensation Dripping Water Detection and Its Control Method from Exhaust Pipe of Gasohol Vehicle under Low Environmental Temperature Conditions: A Case Study in Harbin, China

    Directory of Open Access Journals (Sweden)

    Guangdong Tian

    2012-01-01

    Full Text Available Gasohol is one of renewable clean alternative energies, which is widely used around the world. Gasohol had been raised to be used in 9 provinces of China since 2001. However, its closed use was merely promoted in Heilongjiang province since November 1, 2004. Moreover, this issue aroused extensive discussions and controversies. One of them is the condensation dripping water issue from exhaust pipe in cold winter. Does the ethanol cause the road freezing in cold winter? To deal with this issue, taking the Harbin city as a case study, this work designs detection experiments of the condensation dripping water from exhaust pipe. Moreover, the amount of the condensation dripping water from exhaust pipe for gasohol and gasoline vehicles with the same working condition is obtained and measured, and their results are compared and analyzed. Simultaneously, the method of reducing the condensation dripping water is proposed. The results illustrate the effectiveness of the proposed method.

  12. A study on the initiation of condensation-induced water hammer in a long horizontal pipe

    International Nuclear Information System (INIS)

    Park, Joo Wan

    1992-02-01

    Condensation-induced water hammer (CIWH) is the most severe and has the highest frequency among the water hammer events occurred in nuclear power plants. Among mechanisms associated with this type of water hammer, the steam and water countercurrent flow in a horizontal pipe is known as the dominant mechanism in Pressurized Water Reactors. The CIWH due to steam-water counter-flow in a long horizontal pipe has been analytically investigated with emphasis on the effect of pipe length, in order to identify the conditions necessary to initiate a water hammer and to provide stability maps describing the zone of water hammer to be avoided with the combination of filling water flowrate and pipe length. Analytical models which can be used to predict the limiting boundaries, upper and lower one, of CIWH initiation have been developed and the calculation results have been compared with the data of an actual incident occurred previously in a nuclear power plant. From the approach used in this study, boundary estimates including simple relationships between critical inlet water flowrates and pipe length-to-diameter on the CIWH initiation in a long horizontal pipe could be made, and several corrective actions to prevent water hammer recurrence could be taken. However, because of the limited understanding of the direct-contact condensation phenomena in the typical range of nuclear power plant operation, it is likely that the overall uncertainty of the analysis results will be high. Therefore, further research on this area including scaling analysis is required

  13. Feed water distribution pipe replacement at Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S.; Elsing, B. [Imatran Voima Loviisa NPP (Finland)

    1995-12-31

    Imatran Voima Oy operates two WWER-440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of feed water distribution (FWD) pipe were observed in 1989. The FWD-pipe T-connection had suffered from severe erosion corrosion damages. Similar damages have been been found also in other WWER-440 type NPPs. In 1989 the nozzles of the steam generator YB11 were inspected. No signs of the damages or signs of erosion were detected. The first damaged nozzles were found in 1992 in steam generators of both units. In 1992 it was started studying different possibilities to either repair or replace the damaged FWD-pipes. Due to the difficult conditions for repairing the damaged nozzles it was decided to study different FWD-pipe constructions. In 1991 two new feedwater distributors had been implemented at Dukovany NPP designed by Vitckovice company. Additionally OKB Gidropress had presented their design for new collector. In spring 1994 all the six steam generators of Rovno NPP unit 1 were replaced with FWD-pipes designed by OKB Gidropress. After the implementation an experimental program with the new systems was carried out. Due to the successful experiments at Rovno NPP Unit 1 it was decided to implement `Gidropress solution` during 1994 refueling outage into the steam generator YB52 at Loviisa 2. The object of this paper is to discuss the new FWD-pipe and its effects on the plant safety during normal and accident conditions. (orig.).

  14. Feed water distribution pipe replacement at Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, S; Elsing, B [Imatran Voima Loviisa NPP (Finland)

    1996-12-31

    Imatran Voima Oy operates two WWER-440 reactors. Unit 1 has been operating since 1977 and unit 2 since 1981. First damages of feed water distribution (FWD) pipe were observed in 1989. The FWD-pipe T-connection had suffered from severe erosion corrosion damages. Similar damages have been been found also in other WWER-440 type NPPs. In 1989 the nozzles of the steam generator YB11 were inspected. No signs of the damages or signs of erosion were detected. The first damaged nozzles were found in 1992 in steam generators of both units. In 1992 it was started studying different possibilities to either repair or replace the damaged FWD-pipes. Due to the difficult conditions for repairing the damaged nozzles it was decided to study different FWD-pipe constructions. In 1991 two new feedwater distributors had been implemented at Dukovany NPP designed by Vitckovice company. Additionally OKB Gidropress had presented their design for new collector. In spring 1994 all the six steam generators of Rovno NPP unit 1 were replaced with FWD-pipes designed by OKB Gidropress. After the implementation an experimental program with the new systems was carried out. Due to the successful experiments at Rovno NPP Unit 1 it was decided to implement `Gidropress solution` during 1994 refueling outage into the steam generator YB52 at Loviisa 2. The object of this paper is to discuss the new FWD-pipe and its effects on the plant safety during normal and accident conditions. (orig.).

  15. A low-cost, orientation-insensitive microwave water-cut sensor printed on a pipe surface

    KAUST Repository

    Karimi, Muhammad Akram

    2017-10-24

    This paper presents a novel and contactless water fraction (also known as water cut) measurement technique, which is independent of geometric distribution of oil and water inside the pipe. The sensor is based upon a modified dual helical stub resonators implemented directly on the pipe\\'s outer surface and whose resonance frequency decreases by increasing the water content in oil. The E-fields have been made to rotate and distribute well inside the pipe, despite having narrow and curved ground plane. It makes the sensor\\'s reading dependent only on the water fraction and not on the mixture distribution inside the pipe. That is why, the presented design does not require any flow conditioner to homogenize the oil/water mixture unlike many commercial WC sensors. The presented sensor has been realized by using extremely low cost methods of screen-printing and reusable 3D printed mask. Complete characterization of the proposed WC sensor, both in horizontal and vertical orientations, has been carried out in an industrial flow loop. Excellent repeatability of the sensor\\'s response has been observed under different flow conditions. The measured performance results of the sensor show full range accuracy of ±2-3% while tested under random orientations and wide range of flow rates.

  16. CHARACTERIZING PIPE WALL DEMAND: IMPLICATIONS FOR WATER QUALITY MODELING

    Science.gov (United States)

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical or microbiological in nature. Perhaps one of the most serious aspects of water qua...

  17. PPOOLEX experiments with a modified blowdown pipe outlet

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.

    2009-08-01

    This report summarizes the results of the experiments with a modified blowdown pipe outlet carried out with the PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a vertical DN200 blowdown pipe to the condensation pool. Four reference experiments with a straight pipe and ten with the Forsmark type collar were carried out. The main purpose of the experiment series was to study the effect of a blowdown pipe outlet collar design on loads caused by chugging phenomena (rapid condensation) while steam is discharged into the condensation pool. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. During the experiments the initial temperature level of the condensation pool water was either 20-25 or 50-55 deg. C. The steam flow rate varied from 400 to 1200 g/s and the temperature of incoming steam from 142 to 185 deg. C. In the experiments with 20-25 deg. C pool water, even 10 times higher pressure pulses were measured inside the blowdown pipe in the case of the straight pipe than with the collar. In this respect, the collar design worked as planned and removed the high pressure spikes from the blowdown pipe. Meanwhile, there seemed to be no suppressing effect on the loads due to the collar in the pool side in this temperature range. Registered loads in the pool were approximately in the same range (or even a little higher) with the collar as with the straight pipe. In the experiments with 50-55 deg. C pool water no high pressure pulses were measured inside the blowdown pipe either with the straight pipe or with the collar. In this case, more of the suppressing effect is probably due to the warmer pool water than due to the modified pipe outlet. It has been observed already in the earlier experiments with a straight pipe in the POOLEX and PPOOLEX facilities that warm pool water has a diminishing effect on

  18. PPOOLEX experiments with a modified blowdown pipe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    This report summarizes the results of the experiments with a modified blowdown pipe outlet carried out with the PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a vertical DN200 blowdown pipe to the condensation pool. Four reference experiments with a straight pipe and ten with the Forsmark type collar were carried out. The main purpose of the experiment series was to study the effect of a blowdown pipe outlet collar design on loads caused by chugging phenomena (rapid condensation) while steam is discharged into the condensation pool. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. During the experiments the initial temperature level of the condensation pool water was either 20-25 or 50-55 deg. C. The steam flow rate varied from 400 to 1200 g/s and the temperature of incoming steam from 142 to 185 deg. C. In the experiments with 20-25 deg. C pool water, even 10 times higher pressure pulses were measured inside the blowdown pipe in the case of the straight pipe than with the collar. In this respect, the collar design worked as planned and removed the high pressure spikes from the blowdown pipe. Meanwhile, there seemed to be no suppressing effect on the loads due to the collar in the pool side in this temperature range. Registered loads in the pool were approximately in the same range (or even a little higher) with the collar as with the straight pipe. In the experiments with 50-55 deg. C pool water no high pressure pulses were measured inside the blowdown pipe either with the straight pipe or with the collar. In this case, more of the suppressing effect is probably due to the warmer pool water than due to the modified pipe outlet. It has been observed already in the earlier experiments with a straight pipe in the POOLEX and PPOOLEX facilities that warm pool water has a diminishing effect on

  19. Casing free district heating pipes; Mantelfria fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Saellberg, Sven-Erik; Nilsson, Stefan [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-07-01

    Previous studies have shown that polyurethane insulation (PUR foam) on district heating pipes acts as protection against water if it is of good quality, i.e. free from cracks, cavities and other defects. On the other hand water vapour easily diffuses through PUR foam. However this is not a problem as long as the steel pipe is warmer than the surface layer, since the high temperature will prevent the vapour from condensating. What will happen with the insulation of a casing free district heating pipe where the ground water level occasionally reaches above the pipe has not been studied in detail. The current project has studied to what extent moisture enters the PUR foam insulation of two approximately one meter long district heating pipes without casing which have been in the ground for four years. Occasionally, the ground-water has entirely covered the pipes. In addition, the foam has been studied with respect to damage from the surrounding backfill material. Test specimens were taken out of the casing free pipes and were analysed with respect to moisture content. Additional measurements were done with a moisture indicator, and the electric resistance between the steel pipes and the four surveillance wires in each pipe was measured. The results from the various measurement techniques were the compared. The results show that the PUR foam remains dry as long as the service pipe is hot if no defects, such as crack and cavities, are present. Close to the service pipe, the foam actually dries out over time. The moisture content of the middle layer remains more or less constant. Only the colder parts on the outside exhibit an increase in moisture content. It was also seen that defects may lead to water ingress with subsequent humidification of the foam. However, the damaged foam area is limited. This is not the case for a regular pipe with a vapour tight casing, where experience show that moisture tend to spread along the pipe. The pipes were buried in sand and no

  20. An automated repair method of water pipe infrastructure using carbon fiber bundles

    Science.gov (United States)

    Wisotzkey, Sean; Carr, Heath; Fyfe, Ed

    2011-04-01

    The United States water pipe infrastructure is made up of over 2 million miles of pipe. Due to age and deterioration, a large portion of this pipe is in need of repair to prevent catastrophic failures. Current repair methods generally involve intrusive techniques that can be time consuming and costly, but also can cause major societal impacts. A new automated repair method incorporating innovative carbon fiber technology is in development. This automated method would eliminate the need for trenching and would vastly cut time and labor costs, providing a much more economical pipe repair solution.

  1. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  2. Pipe replacement in a water supply network: coordinated versus uncoordinated replacement and budget effects

    NARCIS (Netherlands)

    Dijk, van D.; Hendrix, E.M.T.

    2016-01-01

    Operators of underground water supply networks are challenged with pipe replacement
    decisions, because pipes are subject to increased failure rates as they age and financial resources
    are often limited.We study the optimal replacement time and optimal number of pipe replacements
    such

  3. Intention to quit water pipe smoking among Arab Americans: Application of the theory of planned behavior.

    Science.gov (United States)

    Athamneh, Liqa; Essien, E James; Sansgiry, Sujit S; Abughosh, Susan

    2017-01-01

    In this study, we examined the effect of theory of planned behavior (TPB) constructs on the intention to quit water pipe smoking by using an observational, survey-based, cross-sectional study design with a convenient sample of Arab American adults in Houston, Texas. Multivariate logistic regression models were used to determine predictors of intention to quit water pipe smoking in the next year. A total of 340 participants completed the survey. Behavioral evaluation, normative beliefs, and motivation to comply were significant predictors of an intention to quit water pipe smoking adjusting for age, gender, income, marital status, and education. Interventions and strategies that include these constructs will assist water pipe smokers in quitting.

  4. Central heating pipes cause unwanted heating; CV-leidingen zorgen voor ongewenste opwarming

    Energy Technology Data Exchange (ETDEWEB)

    Wessels, R. [biq-stadsontwerp, Rotterdam (Netherlands); Nuijten, O. [ISSO, Rotterdam (Netherlands)

    2011-12-15

    Research has shown that the risk of hot spots in the drinking water pipes is very high. Hot spots are, for example, caused by central heating pipes that are too close to the water pipes. The water pipes may be 25 C for a long period, thus creating the risk of legionella growth. The various disciplines need to be careful in the design stage and building stage to prevent such situations from occurring. [Dutch] Onderzoek heeft uitgewezen dat het risico op 'hotspots' in de drinkwaterleidingen erg groot is. Hotspots worden bijvoorbeeld veroorzaakt door cv-leidingen die te dicht in de buurt van waterleidingen lopen. Die waterleidingen kunnen dan langdurig warmer zijn dan 25C en daardoor gevaar opleveren voor legionellagroei. Het vereist zorg van meerdere disciplines in de ontwerpfase en de bouwfase om deze situaties te vermijden.

  5. Selenide isotope generator for the Galileo Mission: copper/water axially-grooved heat pipe topical report

    International Nuclear Information System (INIS)

    Strazza, N.P.

    1979-01-01

    This report presents a summary of the major accomplishments for the development, fabrication, and testing of axially-grooved copper/water heat pipes for Selenide Isotopic Generator (SIG) applications. The early development consisted of chemical, physical, and analytical studies to define an axially-grooved tube geometry that could be successfully fabricated and provide the desired long term (up to seven years) performance is presented. Heat pipe fabrication procedures, measured performance and accelerated life testing of heat pipes S/Ns AL-5 and LT-57 conducted at B and K Engineering are discussed. S/N AL-5 was the first axially-grooved copper/water heat pipe that was fabricated with the new internal coating process for cupric oxide (CuO) and the cleaning and water preparation methods developed by Battelle Columbus Laboratories. Heat pipe S/N LT-57 was fabricated along with sixty other axially-grooved heat pipes allocated for life testing at Teledyne Energy Systems. As of June 25, 1979, heat pipes S/Ns AL-5 and LT-57 have been accelerated life tested for 13,310 and 6,292 respectively, at a nominal operating temperature of 225 0 C without any signs of thermal performance degradation

  6. Pipe rupture hardware minimization in pressurized water reactor system

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Szyslowski, J.J.; Chexal, V.; Norris, D.M.; Goldstein, N.A.; Beaudoin, B.; Quinones, D.; Server, W.

    1987-01-01

    For much of the high energy piping in light water reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but the overall safety and integrity of the plant are improved since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied at Beaver Valley Power Station - Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferritic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in (152 mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel lines as small as 3-in (76 mm) diameter (outside containment) can qualify for pipe rupture hardware elimination

  7. Water hammer in elastic pipes

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2002-01-01

    One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)

  8. Structural evaluation report of piping and support structure for design-changed hot-water layer system

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    After hot-water layer system had been installed, the verification tests to reduce the radiation level at the top of reactor pool were performed many times. The major goal of this report is to assess the structural integrity on the piping and the support structures of design-changed hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pump suction line and the pump discharge line subjected to dead weight, pressure, thermal expansion and seismic loadings. The stress analysis of the support structure was carried out using the reaction forces obtained from the piping stress analysis. The results of structural evaluation for the pipings and the support structures showed that the structural acceptance criteria were satisfied, in compliance with ASME, subsection ND for the piping and subsection NF for the support structures. Therefore based on the results of the analysis and the design, the structural integrity on the piping and the support structures of design-changed hot-water system was proved. (author). 9 refs., 9 tabs., 14 figs

  9. Experimental study on dynamic pipe fracture in consideration of hydropower plant model

    Directory of Open Access Journals (Sweden)

    Kazumi Ishikawa

    2009-12-01

    Full Text Available In the case of sudden valve closure, water hammer creates the most powerful pressure and damage to pipeline systems. The best way to protect the pipeline system is to eliminate water hammer. The main reasons for water hammer occurrence are valve closure, high initial velocity, and static pressure. However, it is difficult to eliminate water hammer. Water hammer tends to occur when the valve is being closed. In this study, the pipe fracture caused by static water pressure, gradually increasing pressure, and suddenly increasing pressure were compared experimentally in a breaking PVC test pipe. The quasi-static zone, the dynamic zone, and the transition zone are defined through the results of those experiments, with consideration of the fracture patterns of test pipes and impulses. The maximum pressure results were used to design the pipeline even though it is in the dynamic zone.

  10. Real-time numerical evaluation of dynamic tests with sudden closing of valves in piping systems

    International Nuclear Information System (INIS)

    Geidel, W.; Leimbach, K.R.

    1979-01-01

    The sudden closing of a valve in a piping system causes a build-up of pressure which, in turn, causes severe vibrations of the structural system. The licensing procedure calls for on-site tests to determine the dynamic effects of such closing of valves, and to check the stresses and displacements against the allowable ones. The measurements include time histories of displacements, accelerations and internal pressure. The computer program KWUROHR for the static and dynamic analysis of piping systems has been used by KWU and several subcontractors during the past four vears. This program has been extended by adding a subroutine package which computes time histories of displacements, accelerations and stresses resulting from the input of measured time histories of internal pressures at selected locations. The computer algorithm establishes the topological connectivity between the internal pressure measuring locations, to set up a logic for linear pressure interpolation between these points and pressure steps at reducers and valves. A minimum number of input points is required to give realistic results. (orig.)

  11. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  12. An experimental study towards the practical application of closed-loop flat-plate pulsating heat pipes

    NARCIS (Netherlands)

    Groeneveld, Gerben; Van Gerner, Henk Jan; Wits, Wessel W.

    2017-01-01

    The thermal performance of a flat-plate closed-loop pulsating heat pipe (PHP) is experimentally obtained. The PHP is manufactured by means of CNC-milling and vacuum brazing of a stainless steel 316L bottom plate and lid. Each channel of the PHP has a 2×2 mm2 square cross section. In total 12

  13. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  14. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  15. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    Science.gov (United States)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  16. Pipe closing device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    The closing device closes the upper end of a support tube for monitoring samples. It meshes with the upper connecting piece of the monitorung sample capsule, and loads the capsule within the bore of the support tube, so that it is fixed but can be released. The closing device consists of an interlocking component with a chamber and several ratchets which hang down. The interlocking component surrounds the actuating component for positioning the ratchets. The interlocking and actuating components are movable axially relative to each other. (DG) [de

  17. Theoretical and experimental investigation into structural and fluid motions at low frequencies in water distribution pipes

    Science.gov (United States)

    Gao, Yan; Liu, Yuyou

    2017-06-01

    Vibrational energy is transmitted in buried fluid-filled pipes in a variety of wave types. Axisymmetric (n = 0) waves are of practical interest in the application of acoustic techniques for the detection of leaks in underground pipelines. At low frequencies n = 0 waves propagate longitudinally as fluid-dominated (s = 1) and shell-dominated (s = 2) waves. Whilst sensors such as hydrophones and accelerometers are commonly used to detect leaks in water distribution pipes, the mechanism governing the structural and fluid motions is not well documented. In this paper, the low-frequency behaviour of the pipe wall and the contained fluid is investigated. For most practical pipework systems, these two waves are strongly coupled; in this circumstance the ratios of the radial pipe wall displacements along with the internal pressures associated with these two wave types are obtained. Numerical examples show the relative insensitivity of the structural and fluid motions to the s = 2 wave for both metallic and plastic pipes buried in two typical soils. It is also demonstrated that although both acoustic and vibration sensors at the same location provide the identical phase information of the transmitted signals, pressure responses have significantly higher levels than acceleration responses, and thus hydrophones are better suited in a low signal-to-noise ratio (SNR) environment. This is supported by experimental work carried out at a leak detection facility. Additional pressure measurements involved excitation of the fluid and the pipe fitting (hydrant) on a dedicated water pipe. This work demonstrates that the s = 1 wave is mainly responsible for the structural and fluid motions at low frequencies in water distribution pipes as a result of water leakage and direct pipe excitation.

  18. Experimental investigation on the thermal performance of a closed oscillating heat pipe in thermal management

    Science.gov (United States)

    Rao, Zhonghao; Wang, Qingchao; Zhao, Jiateng; Huang, Congliang

    2017-10-01

    To investigate the thermal performance of the closed oscillating heat pipe (OHP) as a passive heat transfer device in thermal management system, the gravitation force, surface tension, cooling section position and inclination angle were discussed with applied heating power ranging from 5 to 65 W. The deionized water was chosen as the working fluid and liquid-filling ratio was 50 ± 5%. The operation of the OHP mainly depends on the phase change of the working fluid. The working fluid within the OHP was constantly evaporated and cooled. The results show that the movement of the working fluid was similar to the forced damped mechanical vibration, it has to overcome the capillary resistance force and the stable oscillation should be that the OHP could successful startup. The oscillation frequency slowed and oscillation amplitude decreased when the inclination angle of the OHP increased. However, the thermal resistance increased. With the increment of the heating power, the average temperature of the evaporation and condensation section would be close. If the heating power was further increased, dry-out phenomenon within the OHP would appeared. With the decrement of the L, the start-up heating power also decreased and stable oscillation would be formed.

  19. Development of sea water pipe thickness measurement technique

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Wakayama, Seiichi; Takeuchi, Iwao; Masamori, Sigero; Yamasita, Takesi.

    1995-01-01

    In nuclear and thermal power plants, wall wear of sea water pipes is reported to occur in the inner surface due to corrosion and erosion. From the viewpoint of improving the equipments reliability, it is desirable that wall thickness should be measured from the outer surface of the pipe during operation. In the conventional method, paint on the outer surface of the pipe was locally removed at each point of a 20 by 50 mm grid, and inspection was carried out at these spots. However, this method had some problems, such as (1) it was necessary to replace the paint, and (2) it was difficult to obtain the precise distribution of wall thickness. Therefore, we have developed a wall thickness measuring system which has the following features. (1) It is possible to perform inspection from the outer surface without removing paint during operation. (2) It is possible to measure the distribution of wall thickness and display it as color contour map simultaneously. (3) The work of inspectors can be alleviated by the automatic recording of measured data. (author)

  20. Low Cost and Pipe Conformable Microwave-Based Water-Cut Sensor

    KAUST Repository

    Karimi, Muhammad Akram

    2016-08-11

    Efficient oil production and refining processes require the precise measurement of water content in oil. This paper presents a novel planar microwave sensor for entirely non-intrusive in situ water cut (WC) sensing over the full range of operation, i.e., 0%-100%. A planar configuration has enabled the direct implementation of WC sensor on the pipe surface using low cost method, i.e., screen printing using 3D printed mask. Modified ground plane-based T-resonator design makes this WC sensor usable for the wide range of pipe sizes present in the oil industry. The viability of this sensor has been confirmed through electromagnetic simulations as well as through a prototype characterization. Two cases of oil and water mixtures, namely, separate phases and homogeneous mix, have been studied. Measurements performed over two independently built prototypes show the root mean square variation in results of only 0.1%.

  1. A low cost and pipe conformable microwave-based water-cut sensor

    KAUST Repository

    Karimi, Muhammad Akram

    2016-08-15

    Efficient oil production and refining processes require the precise measurement of water content in oil (i.e., water-cut [WC]) which is extracted during oil production as a by-product. Traditional laboratory water fraction measurements are precise but incapable of providing real-time information, while recently reported inline WC measurements are either incapable of sensing the full WC range (0-100%), restricted to a limited selection of pipe sizes, bulky, intrusive or extremely expensive. This work presents a novel planar microwave sensor for entirely non-intrusive in situ WC sensing over the full range of operation. Its planar configuration has enabled the direct implementation of this sensor on the pipe surface using two low cost methods i.e. copper tape and 3D printed mask. The innovative ground plane design makes this WC sensor usable for the wide range of pipe sizes present in the oil industry. The viability of this sensor has been confirmed through EM simulations as well as through characterization of two types of prototype. The proposed design offers very fine resolution due to its wide sensing range (>110%) in the frequency band of 90-190MHz and repeatability of 0.1%.

  2. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    Directory of Open Access Journals (Sweden)

    Pan Ji

    Full Text Available A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing. To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10 had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  3. Burst failures of water cooling rubber pipes of TRISTAN MR magnet power supplies and magnets

    International Nuclear Information System (INIS)

    Kubo, Tadashi

    1994-01-01

    In 1992, from June to September, the rubber pipes of magnet and magnet power supply for water cooling burst in succession. All the rubber pipes to be dangerous to leave as those were had been replaced to new rubber pipes before the end of the summer accelerator shutdown. (author)

  4. Study (Prediction of Main Pipes Break Rates in Water Distribution Systems Using Intelligent and Regression Methods

    Directory of Open Access Journals (Sweden)

    Massoud Tabesh

    2011-07-01

    Full Text Available Optimum operation of water distribution networks is one of the priorities of sustainable development of water resources, considering the issues of increasing efficiency and decreasing the water losses. One of the key subjects in optimum operational management of water distribution systems is preparing rehabilitation and replacement schemes, prediction of pipes break rate and evaluation of their reliability. Several approaches have been presented in recent years regarding prediction of pipe failure rates which each one requires especial data sets. Deterministic models based on age and deterministic multi variables and stochastic group modeling are examples of the solutions which relate pipe break rates to parameters like age, material and diameters. In this paper besides the mentioned parameters, more factors such as pipe depth and hydraulic pressures are considered as well. Then using multi variable regression method, intelligent approaches (Artificial neural network and neuro fuzzy models and Evolutionary polynomial Regression method (EPR pipe burst rate are predicted. To evaluate the results of different approaches, a case study is carried out in a part ofMashhadwater distribution network. The results show the capability and advantages of ANN and EPR methods to predict pipe break rates, in comparison with neuro fuzzy and multi-variable regression methods.

  5. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the experiments with two transparent blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through either one or two vertical transparent blowdown pipes to the condensation pool. Five experiments with one pipe and six with two parallel pipes were carried out. The main purpose of the experiments was to study loads caused by chugging (rapid condensation) while steam is discharged into the condensation pool filled with sub-cooled water. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. In the experiments the initial temperature of the condensation pool water varied from 12 deg. C to 55 deg. C, the steam flow rate from 40 g/s to 1 300 g/s and the temperature of incoming steam from 120 deg. C to 185 deg. C. In the experiments with only one transparent blowdown pipe chugging phenomenon didn't occur as intensified as in the preceding experiments carried out with a DN200 stainless steel pipe. With the steel blowdown pipe even 10 times higher pressure pulses were registered inside the pipe. Meanwhile, loads registered in the pool didn't indicate significant differences between the steel and polycarbonate pipe experiments. In the experiments with two transparent blowdown pipes, the steamwater interface moved almost synchronously up and down inside both pipes. Chugging was stronger than in the one pipe experiments and even two times higher loads were measured inside the pipes. The loads at the blowdown pipe outlet were approximately the same as in the one pipe cases. Other registered loads around the pool were about 50-100 % higher than with one pipe. The experiments with two parallel blowdown pipes gave contradictory results compared to the earlier studies dealing with chugging loads in case of multiple pipes. Contributing

  6. Experimental investigations of piping phenomena in bentonite based buffer material

    International Nuclear Information System (INIS)

    Suzuki, K.; Asano, H.; Kobayashi, I.; Sellin, P.; Svemar, C.; Holmqvist, M.

    2012-01-01

    Document available in extended abstract form only. Formation of channels in a clay based buffer material is often referred to as 'piping'. Piping is likely to occur in bentonite based buffer materials in a fractured host rock during the early evolution of the repository when strong hydraulic gradients are present. After water saturation of the repository and reestablishment of the hydraulic gradients piping will not be an issue. However, piping in the early phase may still have implications for long-term performance: 1. if the pipes fail to close there may be remaining conductive pathways in the engineered barrier, and 2. piping may lead to erosion or redistribution of material which needs to be taken into account in the long-term performance assessment. This means that the piping process may affect requirements on rock characterization, water inflow and water management during the installation phase, buffer material properties and buffer installation methodology. As a part of the 'Bentonite re-saturation' program, RWMC has initiated and performed studies of the piping process. The main objectives of the studies are to answer: 1. Under what conditions can pipes form? 2. How do pipes evolve with time? 3. When and how do pipes close/reseal? 4. How does piping affect the buffer properties? 5. How much mass can be lost by erosion? The answers will be used in the development of the requirements stated above as well as input to long term performance assessments. overview of the experiment Test apparatuses were manufactured for investigation of the piping phenomena, see Figure 1. The apparatuses have drainage gutter to prevent clogging to take place with eroded material, and to keep an advection field around specimens. There is also a storage chamber for eroded material on the apparatuses. In the investigation, specimens of bentonite block and pellets were used. The block specimen consisted of a mixture of Japanese Na type bentonite, termed Kunigel V1, and 30 wt% silica

  7. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  8. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  9. Unified pipe network method for simulation of water flow in fractured porous rock

    Science.gov (United States)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  10. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  11. Impacting effects of seismic loading in feeder pipes of PHWR power plants

    International Nuclear Information System (INIS)

    Kumar, R.

    1996-01-01

    The core of a pressurized heavy water reactor (PHWR) consists of a large number of fuel channels. These fuel channels are connected to the feeder pipes through which the heavy water flows and transports heat from the reactor core to the steam generators. The feeder pipes are several hundreds in number. They run close to each other with small gaps and have several bends. Thus they represent a complex piping system. Under seismic loading, the adjacent feeder pipes may impact each other. In this paper a simplified procedure has been established to assess such impacting effects. The results of the proposed analysis include bending moment and impact force, which provide the stresses due to impacting effects. These results are plotted in nondimensional form so that they could be utilized for any set of feeder pipes. The procedure used for studying the impacting effects includes seismic analysis of individual feeder pipes without impacting effects, selection of pipes for impact analysis, and estimating their maximum impact velocity. Based on the static and dynamic characteristics of the selected feeder pipes, the maximum bending moment, impact force, and stresses are obtained. The results of this study are useful for quick evaluation of the impacting effects in feeder pipes

  12. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    Science.gov (United States)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  13. An investigation for design and operational procedures to avoid water hammer in NPP piping systems

    International Nuclear Information System (INIS)

    Kim, Jin Weon

    1993-02-01

    To predict waterhammer initiation due to water slug formation in the horizontal section of piping system and to calculate its impact pressure by using the results of waterhammer initiation model, waterhammer initiation model and impact pressure calculation model have been developed. In the impact pressure calculation model, the effects of water layer depth at which water slug formation and water temperature variation with time and space have been included to calculate a more realistic impact pressure. Prediction of waterhammer initiation is compared with experimental data for the various 'L' shaped pipes. The results show that the present waterhammer initiation model well predicts the waterhammer initiation boundary for inverted vertical 'L' shaped pipe filled through the horizontal pipe. Impact pressure calculated by present model also gives good agreement with the range of impact pressure of steam bubble collapse experiment. Impact pressure is calculated at the waterhammer initiation boundary by using the conditions obtained from waterhammer initiation model. From this result, it is seen that low inlet subcooling results in not only low frequency of waterhammer but also minor impact pressure if it does occur

  14. Quality Determination of Pipe-Borne Water in Sokoto Metropolis ...

    African Journals Online (AJOL)

    The quality of the pipe-borne water supplied to Sokoto metropolis was determined in this study. The total bacterial count was carried out using surface plating method of inoculation. The coliforms were enumerated using multiple tube fermentation technique (Most Probable Number Method). Some physicochemical ...

  15. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  16. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Science.gov (United States)

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  17. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  18. Mitigation of inside surface residual stress of type 304 stainless steel pipe welds by inside water cooling method

    International Nuclear Information System (INIS)

    Sasaki, R.

    1980-01-01

    The weld residual stress distributions, macro- and microstructures of heat affected zone and IGSCC susceptibility of Type 304 stainless steel pipe welds by natural and inside water cooling methods have been investigated. The residual stresses of pipe welds by the natural cooling method are high tensile on both the inside and the outside surface. While the residual stresses on the inside surface of pipe welds by the inside water cooling method are compressive in both axial and circumferential directions for each pipe size from 2 to 24 inch diameter. The sensitized zones of welds by the inside water cooling method are closer to the fusion line, much narrower and milder than those by the natural cooling method. According to the constant extension rate test results for specimens taken from the inside surface of pipe welds, the inside water cooled welds are more resistant to IGSCC than naturally cooled ones

  19. Investigation and evaluation of stress-corrosion cracking in piping of light water reactor plants

    International Nuclear Information System (INIS)

    1979-01-01

    In 1975, a Pipe Cracking Study Group, established by the United States Nuclear Regulatory Commission (USNRC), reviewed intergranular stress-corrosion cracking (IGSCC) in Bioling Water Reactors (BWRs) and issued a report. During 1978, IGSCC was reported for the first time in large-diameter piping (> 20 in.) in a BWR in Germany. This discovery, together with the reported questions concerning the interpretation of ultrasonic inspections, led to the activation of a new Pipe Crack Study Group (PCSG) by USNRC. The charter of the new PCSG was expanded: (1) to include review of potential for stress-corrosion cracking in Pressurized Water Reactors (PWRs) as well as BWRs, (2) to examine operating experience in foreign reactors relevant to IGSCC, and (3) to study five specific questions. The PCSG limited the scope of the study to BWR and PWR piping runs and safe ends attached to the reactor pressure vessel. Not considered were components such as the reactor pressure vessel, pumps, valves, steam generators, large steam turbines, etc. Throughout this report, as well as in the title, the safe ends are arbitrarily defined as piping

  20. Wireless Monitoring of the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-01-01

    A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.

  1. Laboratory exercises on oscillation modes of pipes

    Science.gov (United States)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  2. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation.

    Science.gov (United States)

    Alexander, Brittany E; Mueller, Benjamin; Vermeij, Mark J A; van der Geest, Harm H G; de Goeij, Jasper M

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  3. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    OpenAIRE

    Martini, Alberto; Troncossi, Marco; Rivola, Alessandro

    2015-01-01

    The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. Th...

  4. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    CERN Document Server

    Mattsson, H

    2003-01-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the...

  5. Piping reliability model development, validation and its applications to light water reactor piping

    International Nuclear Information System (INIS)

    Woo, H.H.

    1983-01-01

    A brief description is provided of a three-year effort undertaken by the Lawrence Livermore National Laboratory for the piping reliability project. The ultimate goal of this project is to provide guidance for nuclear piping design so that high-reliability piping systems can be built. Based on the results studied so far, it is concluded that the reliability approach can undoubtedly help in understanding not only how to assess and improve the safety of the piping systems but also how to design more reliable piping systems

  6. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    Science.gov (United States)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  7. Leakage detection and estimation algorithm for loss reduction in water piping networks

    CSIR Research Space (South Africa)

    Adedeji, KB

    2017-10-01

    Full Text Available the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exact...

  8. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-28

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  9. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China.

    Science.gov (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan

    2017-01-01

    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  10. Velocity and turbulence measurements of oil-water flow in horizontal and slightly inclined pipes using PIV

    OpenAIRE

    Kumara, W.A.S.; Halvorsen, Britt; Melaaen, Morten Christian

    2009-01-01

    Oil-water flows in horizontal and slightly inclined pipes are investigated using Particle Image Velocimetry (PIV). PIV offers a powerful non-invasive tool to study such flow fields. The experiments are conducted in a 15 m long, 56 mm diameter, inclinable steel pipe using Exxsol D60 oil (viscosity 1.64 mPa s, density 790 kg/m3) and water (viscosity 1.0 mPa s, density 996 kg/m3) as test fluids. The test pipe inclination is changed in the range from 5° upward to 5° downward. The experiments are ...

  11. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    Directory of Open Access Journals (Sweden)

    Brittany E. Alexander

    2015-12-01

    Full Text Available Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community. This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  12. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    Science.gov (United States)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-05

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results

    Science.gov (United States)

    Distribution system modeling simplifies pipe network in skeletonization and simulates the flow and water quality by using generalized water demand patterns. While widely used, the approach has not been examined fully on how it impacts the modeling fidelity. This study intends to ...

  14. Piping benchmark problems for the General Electric Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1993-08-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boiling water reactor standard design, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set

  15. An Application of Planned Behavior Theory in Predicting Nicotine Dependence among Water pipe Consumer Women in Bushehr City in 2013-14

    Directory of Open Access Journals (Sweden)

    M Saeed Firoozabadi

    2016-07-01

    Full Text Available Abstract Introduction: Today, water pipe smoking is widespread in the world that can lead to death of million individuals. This study aimed to determine the predictors of nicotine dependence among women water pipe consumers in Bushehr in 2013-2014. Methods: In this cross-sectional (descriptive and analytical study, 430 women water pipe smokers were selected via simple sampling and snowball methods. A structured interview was conducted on 20 women water pipe consumers in order to design a researcher-made questionnaire via appropriate statistical tests. The collected data were analyzed using SPSS statistical software. Results: The overall mean and standard deviation scores for nicotine dependence were 36.73±13.57 and 40.71±12.63, respectively. The highest and the lowest score were related to nicotine dependence and perceived behavioral control, respectively. All constructs explained water pipe dependence behavior except instrumental attitude and subjective norm. In fact, self-efficacy and affective attitude were introduced as the strongest and the weakest predictors respectively. Conclusion: Regarding unfavorable status of nicotine dependence behavior among water pipe consumer women, intervention programs are recommended in order to enhance the self-efficacy in decreasing this behavior, decrease appropriate affection to water pipe and decrease descriptive norm among these women.

  16. Non-safety piping operability review case study -- Today and tomorrow

    International Nuclear Information System (INIS)

    Flensburg, W.C.; Adams, T.M.

    1995-01-01

    During a 1993 Outage at the Perry Nuclear Power Station, a condition report was issued which identified potential intersystem loss of water between the Emergency Closed Cooling Water System and the Nuclear Closed Cooling Water System during a design basis event. The review of this condition report indicated that if a SSE (safe shutdown earthquake) event were to occur during a design basis event components important to plant safety could potentially be adversely affected if non-seismic/non-safety portions of the Nuclear Closed Cooling Water System could not maintain pressure boundary integrity as a result of the seismic loadings. Presented in this paper are steps, criteria, and methodology used to demonstrate the seismic acceptability of the affected portion of the Nuclear Closed Cooling Water System Piping. Also discussed are the potential benefits and applicability of a recently developed EPRI non-safety, non-seismic operability procedure. This discussion includes the potential cost savings which could have arisen from application of this recently developed procedure

  17. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  18. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingqing [College of Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Chen, Huanyu [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300000 (China); Yao, Lingdan; Wei, Zongyuan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Lou, Liping, E-mail: loulp@zju.edu.cn [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda [Environmental Protection Agency, Office of Research and Development, NRMRL, Cincinnati, OH 45220 (United States); Hu, Baolan [College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhou, Xiaoyan [Shaoxing Water Environmental Science Institute Co. Ltd, Zhejiang 312000 (China)

    2016-11-05

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  19. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system

    International Nuclear Information System (INIS)

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-01-01

    Highlights: • First investigating the spatial distribution of pollutants in pipe-scale. • Spatial distribution of heavy metals indicated their sources were different. • Three main factors effete the distribution of pollutants. • Organic deposits mainly included microbial and microalgae metabolites. - Abstract: In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600 mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography–Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  20. Numerical and experimental investigation of leaks in viscoelastic pressurized pipe flow

    Directory of Open Access Journals (Sweden)

    S. Meniconi

    2013-02-01

    Full Text Available This paper extends the analysis concerning the importance in numerical models of unsteady friction and viscoelasticity to transients in plastic pipes with an external flow due to a leak. In fact recently such a benchmarking analysis has been executed for the cases of a constant diameter pipe (Duan et al., 2010, a pipe with a partially closed in-line valve (Meniconi et al., 2012a, and a pipe with cross-section changes in series (Meniconi et al., 2012b. Tests are based on laboratory experiments carried out at the Water Engineering Laboratory (WEL of the University of Perugia, Italy, and the use of different numerical models. The results show that it is crucial to take into account the viscoelasticity to simulate the main characteristics of the examined transients.

  1. Controlled erosion in asbestos-cement pipe used in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Mariana Ramos, P.

    1990-06-01

    Full Text Available Samples of asbestos-cement pipe used for drinking water conveyance, were submerged in distilled water, and subjected to two controlled erosive treatments, namely agitation (300 rpm for 60 min and ultrasound (47 kHz for 30 min. SEM was used to observe and compare the morphology of the new pipe with and without erosive treatment, and of samples taken from asbestos-cement pipes used in the distribution system of drinking water in Santiago city for 10 and 40-years of service. TEM was used to determine the concentration of asbestos fibers in the test water: 365 MFL and 1690 MFL (millions of fibers per litre as an agitation and result ultrasound, respectively. The erosive treatments by means of agitation or ultrasound applied to new asbestos-cement pipes used in the drinking water distribution system were evaluated as being equivalent to 4 and 10 years of service, respectively.

    Se sometió a dos tratamientos erosivos controlados uno por agitación (300 rpm, 60 min. y otro por ultrasonido (47 kHz, 30 min. a muestras de tubos de asbesto cemento, sumergidas en agua destilada, usados para el trasporte de agua potable. Con SEM se observó la morfología de muestras de tubos sin uso, con y sin tratamiento erosivo y la de muestras extraídas de tubos de asbesto cemento de la red de distribución de agua potable de ía ciudad de Santiago con 10 y 14 años de servicio. Con TEM se determinó la concentración de fibras de asbesto en el agua de ensayo: 365 MFL y 1690 MFL (millones de fibras por litro en agitación y ultrasonido, respectivamente. Se estimó en 4 y 10 años de servicio equivalente los tratamientos erosivos de agitación y ultrasonido, respectivamente en tubos de asbesto cemento empleados en la red de agua potable.

  2. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    International Nuclear Information System (INIS)

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G.

    1995-04-01

    Regulatory Guide 1.45, open-quotes Reactor Coolant Pressure Boundary Leakage Detection Systems,close quotes was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, open-quotes Leak Before Break Evaluation Proceduresclose quotes where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break

  3. Laser-GMA Hybrid Pipe Welding System

    Science.gov (United States)

    2007-11-01

    Investigation of varying laser power. The welded pipe is shown, with close -ups of the rootside reinforcement and macro sections...68 Figure 44. Investigation of varying laser stand-off. The welded pipe is shown, along with close -ups of backside...conventional beveled joints. With appropriate joint configuration and preparation, deep keyhole penetration provided by the laser and additional filler

  4. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  5. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  6. Analysis of Pipe Wall-thinning Caused by Water Chemistry Change in Secondary System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hun; Hwang, Kyeongmo [KEPCO E and C, Gimcheon (Korea, Republic of); Moon, Seung-Jae [Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Pipe wall-thinning by flow-accelerated corrosion (FAC) is a significant and costly damage of secondary system piping in nuclear power plants (NPPs). All NPPs have their management programs to ensure pipe integrity from wall-thinning. This study analyzed the pipe wall-thinning caused by changing the amine, which is used for adjusting the water chemistry in the secondary system of NPPs. The pH change was analyzed according to the addition of amine. Then, the wear rate calculated in two different amines was compared at the steam cycle in NPPs. As a result, increasing the pH at operating temperature (Hot pH) can reduce the rate of FAC damage significantly. Wall-thinning is affected by amine characteristics depending on temperature and quality of water.

  7. Analysis of the flow close to a hump at the wall of a circular pipe

    International Nuclear Information System (INIS)

    Von Linsingen, I.; Silva Ferreira, R.T. da

    1981-01-01

    To study the laminar fully developed flow close to a circunferencial square hump placed at the wall of a smooth circular pipe is studied. An experimental set up was used to determine the reattachment legth and the velocity and shear stress profiles of the flow for different Reynolds numbers. Simple relations were obtained from the analysis of the data for the reattachment length, maximum velocity and maximum shear stress in different positions along the flow and different Reynolds numbers. (Author) [pt

  8. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  9. PPOOLEX experiments on the dynamics of free water surface in the blowdown pipe

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.

    2013-04-01

    This report summarizes the results of the thermal stratification and mixing experiments carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the vertical DN200 blowdown pipe to the condensation pool filled with sub-cooled water. The main objective of the experiments was to obtain verification data for the development of the Effective Momentum Source (EMS) and Effective Heat Source (EHS) models to be implemented in GOTHIC code by KTH. A detailed test matrix and procedure put together on the basis of pre-test calculations was provided by KTH before the experiments. Altogether six experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a higher flow rate mixing period. The dry well structures were heated up to approximately 130 deg. C before the stratification period was initiated. The initial water bulk temperature in the condensation pool was 13-16 deg. C. During the low steam flow rate (85-105 g/s) period steam condensed mainly inside the blowdown pipe. As a result temperatures remained constant below the blowdown pipe outlet while they increased towards the pool surface layers indicating strong thermal stratification of the wet well pool water. In the end of the stratification period the temperature difference between the pool bottom and surface was 15-30 deg. C depending on the test parameters and the duration of the low flow rate period. In the beginning of the mixing phase the steam flow rate was increased rapidly to 300-425 g/s to mix the pool water totally. Depending on the used steam flow rate and initial pool water temperature it took 150-500 s to achieve total mixing. If the test was continued long enough the water pool began to stratify again after the water bulk temperature had reached ∼50 deg. C despite of steam mass flux belonging to the chugging region of the

  10. PPOOLEX experiments on the dynamics of free water surface in the blowdown pipe

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. [Lappeenranta Univ. of Technology, Lappeenranta (Finland)

    2013-04-15

    This report summarizes the results of the thermal stratification and mixing experiments carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the vertical DN200 blowdown pipe to the condensation pool filled with sub-cooled water. The main objective of the experiments was to obtain verification data for the development of the Effective Momentum Source (EMS) and Effective Heat Source (EHS) models to be implemented in GOTHIC code by KTH. A detailed test matrix and procedure put together on the basis of pre-test calculations was provided by KTH before the experiments. Altogether six experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a higher flow rate mixing period. The dry well structures were heated up to approximately 130 deg. C before the stratification period was initiated. The initial water bulk temperature in the condensation pool was 13-16 deg. C. During the low steam flow rate (85-105 g/s) period steam condensed mainly inside the blowdown pipe. As a result temperatures remained constant below the blowdown pipe outlet while they increased towards the pool surface layers indicating strong thermal stratification of the wet well pool water. In the end of the stratification period the temperature difference between the pool bottom and surface was 15-30 deg. C depending on the test parameters and the duration of the low flow rate period. In the beginning of the mixing phase the steam flow rate was increased rapidly to 300-425 g/s to mix the pool water totally. Depending on the used steam flow rate and initial pool water temperature it took 150-500 s to achieve total mixing. If the test was continued long enough the water pool began to stratify again after the water bulk temperature had reached {approx}50 deg. C despite of steam mass flux belonging to the chugging region

  11. An algorithm for leak locating using coupled vibration of pipe-water

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin

    2004-01-01

    Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband sound from a leak location and this sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the Acoustic Emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m

  12. The water treatment in the dual-purpose nuclear plants of Babcock and Wilcox with straight pipes

    International Nuclear Information System (INIS)

    Martynova, O.I.

    1978-01-01

    A report is given on water processing and water chemistry in the dual-purpose nuclear power plants (as compared to the single-purpose nuclear power plants) of Babcock and Wilcox, with flow steam generators with straight pipes. The most important materials, especially regarding their corrosion resistance, and the water composition during 'hot' start-up of the Okonie-I power plant, the quality factors of the feedwater, the water quality factors of the steam generator with fast start-up and the experience with numerous corrosion-caused defects in steam generator pipes are dealt with from the aspect of optimum water processing and successful continuous operation. (HK) [de

  13. Long-term study of migration of volatile organic compounds from cross-linked polyethylene (PEX) pipes and effects on drinking water quality.

    Science.gov (United States)

    Lund, Vidar; Anderson-Glenna, Mary; Skjevrak, Ingun; Steffensen, Inger-Lise

    2011-09-01

    The objectives of this study were to investigate migration of volatile organic compounds (VOCs) from cross-linked polyethylene (PEX) pipes used for drinking water produced by different production methods, and to evaluate their potential risk for human health and/or influence on aesthetic drinking water quality. The migration tests were carried out in accordance with EN-1420-1, and VOCs were analysed by gas chromatography-mass spectrometry. The levels of VOC migrating from new PEX pipes were generally low, and decreasing with time of pipe use. No association was found between production method of PEX pipes and concentration of migration products. 2,4-di-tert-butyl phenol and methyl tert-butyl ether (MTBE) were two of the major individual components detected. In three new PEX pipes, MTBE was detected in concentrations above the recommended US EPA taste and odour value for drinking water, but decreased below this value after 5 months in service. However, the threshold odour number (TON) values for two pipes were similar to new pipes even after 1 year in use. For seven chemicals for which conclusions on potential health risk could be drawn, this was considered of no or very low concern. However, odour from some of these pipes could negatively affect drinking water for up to 1 year.

  14. Nuclear piping criteria for Advanced Light-Water Reactors, Volume 1--Failure mechanisms and corrective actions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This WRC Bulletin concentrates on the major failure mechanisms observed in nuclear power plant piping during the past three decades and on corrective actions taken to minimize or eliminate such failures. These corrective actions are applicable to both replacement piping and the next generation of light-water reactors. This WRC Bulletin was written with the objective of meeting a need for piping criteria in Advanced Light-Water Reactors, but there is application well beyond the LWR industry. This Volume, in particular, is equally applicable to current nuclear power plants, fossil-fueled power plants, and chemical plants including petrochemical. Implementation of the recommendations for mitigation of specific problems should minimize severe failures or cracking and provide substantial economic benefit. This volume uses a case history approach to high-light various failure mechanisms and the corrective actions used to resolve such failures. Particular attention is given to those mechanisms leading to severe piping failures, where severe denotes complete severance, large ''fishmouth'' failures, or long throughwall cracks releasing a minimum of 50 gpm. The major failure mechanisms causing severe failure are erosion-corrosion and vibrational fatigue. Stress corrosion cracking also has been a common problem in nuclear piping systems. In addition thermal fatigue due to mixing-tee and to thermal stratification also is discussed as is microbiologically-induced corrosion. Finally, water hammer, which represents the ultimate in internally-generated dynamic high-energy loads, is discussed

  15. Cultured Construction: Global Evidence of the Impact of National Values on Piped-to-Premises Water Infrastructure Development.

    Science.gov (United States)

    Kaminsky, Jessica A

    2016-07-19

    In 2016, the global community undertook the Sustainable Development Goals. One of these goals seeks to achieve universal and equitable access to safe and affordable drinking water for all people by the year 2030. In support of this undertaking, this paper seeks to discover the cultural work done by piped water infrastructure across 33 nations with developed and developing economies that have experienced change in the percentage of population served by piped-to-premises water infrastructure at the national level of analysis. To do so, I regressed the 1990-2012 change in piped-to-premises water infrastructure coverage against Hofstede's cultural dimensions, controlling for per capita GDP, the 1990 baseline level of coverage, percent urban population, overall 1990-2012 change in improved sanitation (all technologies), and per capita freshwater resources. Separate analyses were carried out for the urban, rural, and aggregate national contexts. Hofstede's dimensions provide a measure of cross-cultural difference; high or low scores are not in any way intended to represent better or worse but rather serve as a quantitative way to compare aggregate preferences for ways of being and doing. High scores in the cultural dimensions of Power Distance, Individualism-Collectivism, and Uncertainty Avoidance explain increased access to piped-to-premises water infrastructure in the rural context. Higher Power Distance and Uncertainty Avoidance scores are also statistically significant for increased coverage in the urban and national aggregate contexts. These results indicate that, as presently conceived, piped-to-premises water infrastructure fits best with spatial contexts that prefer hierarchy and centralized control. Furthermore, water infrastructure is understood to reduce uncertainty regarding the provision of individually valued benefits. The results of this analysis identify global trends that enable engineers and policy makers to design and manage more culturally appropriate

  16. Some Comments on the Entropy-Based Criteria for Piping

    Directory of Open Access Journals (Sweden)

    Emöke Imre

    2015-04-01

    Full Text Available This paper is an extension of previous work which characterises soil behaviours using the grading entropy diagram. The present work looks at the piping process in granular soils, by considering some new data from flood-protection dikes. The piping process is divided into three parts here: particle movement at the micro scale to segregate free water; sand boil development (which is the initiation of the pipe, and pipe growth. In the first part of the process, which occurs during the rising flood, the increase in shear stress along the dike base may cause segregation of water into micro pipes if the subsoil in the dike base is relatively loose. This occurs at the maximum dike base shear stress level (ratio of shear stress and strength zone which is close to the toe. In the second part of the process, the shear strain increment causes a sudden, asymmetric slide and cracking of the dike leading to the localized excess pore pressure, liquefaction and the formation of a sand boil. In the third part of the process, the soil erosion initiated through the sand boil continues, and the pipe grows. The piping in the Hungarian dikes often occurs in a two-layer system; where the base layer is coarser with higher permeability and the cover layer is finer with lower permeability. The new data presented here show that the soils ejected from the sand boils are generally silty sands and sands, which are prone to both erosion (on the basis of the entropy criterion and liquefaction. They originate from the cover layer which is basically identical to the soil used in the Dutch backward erosion experiments.

  17. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Science.gov (United States)

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-01

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094

  18. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    Directory of Open Access Journals (Sweden)

    Shanguo Zhao

    2018-01-01

    Full Text Available The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  19. Soil-pipe interaction modeling for pipe behavior prediction with super learning based methods

    Science.gov (United States)

    Shi, Fang; Peng, Xiang; Liu, Huan; Hu, Yafei; Liu, Zheng; Li, Eric

    2018-03-01

    Underground pipelines are subject to severe distress from the surrounding expansive soil. To investigate the structural response of water mains to varying soil movements, field data, including pipe wall strains in situ soil water content, soil pressure and temperature, was collected. The research on monitoring data analysis has been reported, but the relationship between soil properties and pipe deformation has not been well-interpreted. To characterize the relationship between soil property and pipe deformation, this paper presents a super learning based approach combining feature selection algorithms to predict the water mains structural behavior in different soil environments. Furthermore, automatic variable selection method, e.i. recursive feature elimination algorithm, were used to identify the critical predictors contributing to the pipe deformations. To investigate the adaptability of super learning to different predictive models, this research employed super learning based methods to three different datasets. The predictive performance was evaluated by R-squared, root-mean-square error and mean absolute error. Based on the prediction performance evaluation, the superiority of super learning was validated and demonstrated by predicting three types of pipe deformations accurately. In addition, a comprehensive understand of the water mains working environments becomes possible.

  20. Leak Detection and Location of Water Pipes Using Vibration Sensors and Modified ML Prefilter.

    Science.gov (United States)

    Choi, Jihoon; Shin, Joonho; Song, Choonggeun; Han, Suyong; Park, Doo Il

    2017-09-13

    This paper proposes a new leak detection and location method based on vibration sensors and generalised cross-correlation techniques. Considering the estimation errors of the power spectral densities (PSDs) and the cross-spectral density (CSD), the proposed method employs a modified maximum-likelihood (ML) prefilter with a regularisation factor. We derive a theoretical variance of the time difference estimation error through summation in the discrete-frequency domain, and find the optimal regularisation factor that minimises the theoretical variance in practical water pipe channels. The proposed method is compared with conventional correlation-based techniques via numerical simulations using a water pipe channel model, and it is shown through field measurement that the proposed modified ML prefilter outperforms conventional prefilters for the generalised cross-correlation. In addition, we provide a formula to calculate the leak location using the time difference estimate when different types of pipes are connected.

  1. Leak Detection and Location of Water Pipes Using Vibration Sensors and Modified ML Prefilter

    Directory of Open Access Journals (Sweden)

    Jihoon Choi

    2017-09-01

    Full Text Available This paper proposes a new leak detection and location method based on vibration sensors and generalised cross-correlation techniques. Considering the estimation errors of the power spectral densities (PSDs and the cross-spectral density (CSD, the proposed method employs a modified maximum-likelihood (ML prefilter with a regularisation factor. We derive a theoretical variance of the time difference estimation error through summation in the discrete-frequency domain, and find the optimal regularisation factor that minimises the theoretical variance in practical water pipe channels. The proposed method is compared with conventional correlation-based techniques via numerical simulations using a water pipe channel model, and it is shown through field measurement that the proposed modified ML prefilter outperforms conventional prefilters for the generalised cross-correlation. In addition, we provide a formula to calculate the leak location using the time difference estimate when different types of pipes are connected.

  2. Do estrogenic compounds in drinking water migrating from plastic pipe distribution system pose adverse effects to human? An analysis of scientific literature.

    Science.gov (United States)

    Liu, Ze-Hua; Yin, Hua; Dang, Zhi

    2017-01-01

    With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.

  3. Effect of active cigarettes smoking, water-pipe smoking and snuff ...

    African Journals Online (AJOL)

    Effect of active cigarettes smoking, water-pipe smoking and snuff (naffa) inhalation on BMI, lipid profile, and plasma glucose. ... East African Journal of Public Health ... Methods: The study was conducted on 200 healthy male subjects, including, 50 non-smokers aged 40.98±8.07, 50 cigarette smokers aged 41.32±7.39, ...

  4. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  5. Pipe rupture test results: 4-inch pipe whip tests under PWR LOCA conditions

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Ueda, Shuzo; Isozaki, Toshikuni; Kato, Rokuro; Kurihara, Ryoichi; Yano, Toshikazu; Miyazono, Shohachiro

    1982-09-01

    This report summarizes the results of 4-inch pipe whip tests (RUN No. 5506, 5507, 5508 and 5604) under the PWR LOCA conditions. The dynamic behaviors of the test pipe and restraints were studied in the tests. In the tests, the gap between the test pipe and the restraints was kept at the constant value of 8.85 mm and the overhang length was varied from 250 mm to 650 mm. The dynamic behaviors of the test pipe and the restraint were made clear by the outputs of strain gages and the measurements of residual deformations. The data of water hammer in subcooled water were also obtained by the pressure transducers mounted on the test pipe. The main conclusions obtained from the tests are as follows. (1) The whipping of pipe can be prevented more effectively as the overhang length becomes shorter. (2) The load acting on the restraint-support structure becomes larger as the overhang length becomes shorter. (3) The restraint farther from the break location does not limit the pipe movement except for the first impact when the overhang length is long. (4) The ultimate moment M sub(u) of the pipe at the restraint location can be used to predict the plastic collapse of the whipping pipe. (5) The restraints slide along the pipe axis and are subjected to bending moment, when the overhang length is long. (author)

  6. Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks

    Science.gov (United States)

    Hooda, Nikhil; Damani, Om

    2017-06-01

    The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.

  7. Multiple blowdown pipe experiments with the PPOOLEX facility

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-03-01

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  8. Multiple blowdown pipe experiments with the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  9. Reactor Materials Program process water piping indirect failure frequency

    International Nuclear Information System (INIS)

    Daugherty, W.L.

    1989-01-01

    Following completion of the probabilistic analyses, the LOCA Definition Project has been subject to various external reviews, and as a result the need for several revisions has arisen. This report updates and summarizes the indirect failure frequency analysis for the process water piping. In this report, a conservatism of the earlier analysis is removed, supporting lower failure frequency estimates. The analysis results are also reinterpreted in light of subsequent review comments

  10. Implementation of a Water Heat Pipe at CETIAT

    Science.gov (United States)

    Favreau, J. O.; Georgin, E.; Savanier, B.; Merlone, A.

    2017-12-01

    CETIAT's calibration laboratory, accredited by COFRAC, is a secondary thermometry laboratory. It uses overflow and stirred calibration baths (from - 80 {°}C up to + 215 {°}C), dry blocks and furnaces (from + 100 {°}C up to + 1050 {°}C) and thermostatic chambers (from - 30 {°}C up to + 160 {°}C). Typical calibration uncertainties that can be reached for platinum resistance thermometers in a thermostatic bath are between 0.03 {°}C and 0.06 {°}C. In order to improve its calibration capabilities, CETIAT is working on the implementation of a gas-controlled heat pipe (GCHP) temperature generator, used for industrial sensor calibrations. This article presents the results obtained during the characterization of water GCHP for industrial applications. This is a new approach to the use of a heat pipe as a temperature generator for industrial sensor calibrations. The objective of this work is to improve measurement uncertainties and daily productivity. Indeed, as has been shown in many studies (Dunn and Reay in Heat Pipes, Pergamon Press, Oxford, 1976; Merlone et al. 2012), the temperature of the system is pressure dependent and the response time, in temperature, follows the pressure accordingly. Thanks to this generator, it is possible to perform faster calibrations with smaller uncertainties. In collaboration with INRiM, the GCHP developed at CETIAT works with water and covers a temperature range from + 30 {°}C up to + 150 {°}C. This device includes some improvements such as a removable cover, which allows us to have different sets of thermometric wells adjustable according to the probe to be calibrated, and a pressure controller based on a temperature sensor. This article presents the metrological characterization in terms of homogeneity and stability in temperature. A rough investigation of the response time of the system is also presented in order to evaluate the time for reaching thermal equilibrium. The results obtained in this study concern stability and

  11. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  12. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    International Nuclear Information System (INIS)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  13. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    Science.gov (United States)

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  14. Route Scherrer and Route Einstein closed for construction work

    CERN Multimedia

    2015-01-01

    Please note that Route Scherrer will be inaccessible for two and a half months from the beginning of March and that part of Route Einstein will be closed for two weeks from the end of February.   Figure 1. The part of Route Scherrer between Building 510 and Building 53 (see Figure 1) will be closed from the beginning of March until mid-May for civil engineering works.   The superheated water pipes supplying the buildings in this area date back to 1959 and therefore present a significant risk of leakage. In order to ensure the reliable supply of superheated water, and, by extension, heating, to all premises near the Main Building (i.e. Buildings 500, 501, 503, 60, 62, 63 and 64), a new buried service duct will be installed between the basements of Buildings 53 and 61 to house a new superheated water pipe. Figure 2. The following car parks will, however, remain accessible for the duration of the works: the Cèdres car park, the car park for Buildings 4 and 5, and the ca...

  15. Recycling of water of high pressure cleaning of pipes. Phase 1. Quality demands and economical aspects

    International Nuclear Information System (INIS)

    Van Weers, A.W.; Zwaard, J.

    1999-01-01

    According to the regulation 6.1 in the current licence Surface Water Pollution Law (WVO, abbreviated in Dutch) of October 10, 1997, ECN carried out the first phase of a study on the title subject with respect to pipes applied in oil and gas exploration. In the present situation water of the so-called pipe-cleaner is transported via a seapipe after precipitation and membrane filtration. Next to the quality demands and economical aspects attention is paid to a number of environmental aspects

  16. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  17. Route Scherrer closed for construction work

    CERN Multimedia

    2015-01-01

    Please note that Route Scherrer will be inaccessible for two and a half months from the beginning of March.   The part of Route Scherrer between Building 510 and Building 53 (see Figure) will be closed from the beginning of March until mid-May for civil engineering works. The superheated water pipes supplying the buildings in this area date back to 1959 and therefore present a significant risk of leakage. In order to ensure the reliable supply of superheated water, and, by extension, heating, to all premises near the Main Building (i.e. Buildings 500, 501, 503, 60, 62, 63 and 64), a new buried service duct will be installed between the basements of Buildings 53 and 61 to house a new superheated water pipe. The following car parks will, however, remain accessible for the duration of the works: the Cèdres car park, the car park for Buildings 4 and 5, and the car park situated between Buildings 32, 38 and 168.

  18. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  19. PIV measurement at the blowdown pipe outlet

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.; Pyy, L.; Telkkae, J.

    2013-04-01

    This report summarizes the findings of the PIV measurement tests carried out in January - February 2013 with the scaled down PPOOLEX test facility at LUT. The main objective of the tests was to find out the operational limits of the PIV system regarding suitable test conditions and correct values of different adjustable PIV parameters. An additional objective was to gather CFD grade data for verification/validation of numerical models. Both water and steam injection tests were carried out. PIV measurements with cold water injection succeeded well. Raw images were of high quality, averaging over the whole measurement period could be done and flow fields close to the blowdown pipe outlet could be determined. In the warm water injection cases the obtained averaged velocity field images were harder to interpret, especially if the blowdown pipe was also filled with warm water in the beginning of the measurement period. The absolute values of the velocity vectors seemed to be smaller than in the cold water injection cases. With very small steam flow rates the steam/water interface was inside the blowdown pipe and quite stable in nature. The raw images were of good quality but due to some fluctuation in the velocity field averaging of the velocity images over the whole measured period couldn't be done. Condensation of steam in the vicinity of the pipe exit probably caused these fluctuations. A constant outflow was usually followed by a constant inflow towards the pipe exit. Vector field images corresponding to a certain phase of the test could be extracted and averaged but this would require a very careful analysis so that the images could be correctly categorized. With higher steam flow rates rapid condensation of large steam bubbles created small gas bubbles which were in front of the measurement area of the PIV system. They disturbed the measurements by reflecting laser light like seeding particles and therefore the raw images were of poor quality and they couldn't be

  20. Operation control of fluids pumping in curved pipes during annular flow: a numerical evaluation

    Directory of Open Access Journals (Sweden)

    T Andrade

    2016-10-01

    Full Text Available To generate projects which provide significant volume recovery from heavy oils reservoirs and improve existing projects, is important to develop new production and transport technologies, especially in the scenario of offshore fields. The core-flow technique is one of new technologies used in heavy oil transportation. This core-flow pattern is characterized by a water pellicle that is formed close or adjacent to the inner wall of the pipe, functioning as a lubricant. The oil flows in the center of the pipe causing a reduction in longitudinal pressure drop. In this sense, this work presents a numerical study of heavy oil annular flow (core-flow assisted by computational tool ANSYS CFX® Release 12.0. It was used a three-dimensional, transient and isothermal mathematical model considered by the mixture and turbulence - models to address the water-heavy oil two-phase flow, assuming laminar flow for oil phase and turbulent flow for water phase. Results of the pressure, velocity and volume fraction distributions of the phases and the pressure drop for different operation conditions are presented and evaluated. It was observed that the oil core flowing eccentrically in the pipe and stops of the water flux considerably increases the pressure drop in the pipe after the restart of the pump.

  1. Rate of Isotope Exchange Reaction Between Tritiated Water in a Gas Phase and Water on the Surface of Piping Materials

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Yamaguchi, Junya; Kobayashi, Ryusuke; Nishikawa, Masabumi

    2001-01-01

    The system effect of tritium arises from the interaction of tritium in the gas phase with water on the surface of piping materials. It has been reported that the system effect can be quantified by applying the serial reactor model to the piping system and that adsorption and isotope exchange reactions play the main roles in the trapping of tritium. The isotope exchange reaction that occurs when the chemical form of tritium in the gas phase is in the molecular form, i.e., HT or T 2 , has been named isotope exchange reaction 1, and that which occurs when tritium in the gas phase is in water form, i.e., HTO or T 2 O, has been named isotope exchange reaction 2.The rate of isotope exchange reaction 2 is experimentally quantified, and the rate is observed to be about one-third of the rate of adsorption. The trapping and release behavior of tritium from the piping surface due to isotope exchange reaction 2 is also discussed. It is certified that swamping of water vapor to process gas is effective to release tritium from the surface contaminated with tritium

  2. Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements

    Directory of Open Access Journals (Sweden)

    Alberto Martini

    2016-12-01

    Full Text Available The implementation of effective strategies to manage leaks represents an essential goal for all utilities involved with drinking water supply in order to reduce water losses affecting urban distribution networks. This study concerns the early detection of leaks occurring in small-diameter customers’ connections to water supply networks. An experimental campaign was carried out in a test bed to investigate the sensitivity of Acoustic Emission (AE monitoring to water leaks. Damages were artificially induced on a polyethylene pipe (length 28 m, outer diameter 32 mm at different distances from an AE transducer. Measurements were performed in both unburied and buried pipe conditions. The analysis permitted the identification of a clear correlation between three monitored parameters (namely total Hits, Cumulative Counts and Cumulative Amplitude and the characteristics of the examined leaks.

  3. Investigation and examination on the cracking of pipings in boiling water reactors

    International Nuclear Information System (INIS)

    1977-01-01

    This is the report made by the Reactor Safety Technology Expert Committee to the Atomic Energy Commission regarding the investigation and examination on stress corrosion cracking which seems to be the cause of the cracking of pipings in boiling water reactors, the measures to reduce it, and the subjects of research hereafter. Recently, the stress corrosion cracking of primary coolant pipings has been often observed, and this phenomenon occurred in the pressure boundary of primary coolant, consequently it is possible to be linked to the troubles of large scale. The Reactor Material Subcommittee was established on May 14, 1975, and investigated the cracking phenomena in the recirculating system and core spray system of BWRs in Japan and foreign countries. The recent cases have been concentrated to the heat-affected part due to welding of 304 type austenitic stainless steel pipings of from 4 in to 10 in diameter for BWRs. They are the stress corrosion cracking at grain boundaries occurred under the loaded condition and in the environment of high temperature, high pressure water. The cracking of this kind was never experienced in PWRs. The results of the technical examination, the consideration of the mechanism of stress corrosion cracking, and the countermeasures are described. (Kako, I.)

  4. Piped water supply interruptions and acute diarrhea among under-five children in Addis Ababa slums, Ethiopia: A matched case-control study.

    Science.gov (United States)

    Adane, Metadel; Mengistie, Bezatu; Medhin, Girmay; Kloos, Helmut; Mulat, Worku

    2017-01-01

    The problem of intermittent piped water supplies that exists in low- and middle-income countries is particularly severe in the slums of sub-Saharan Africa. However, little is known about whether there is deterioration of the microbiological quality of the intermittent piped water supply at a household level and whether it is a factor in reducing or increasing the occurrence of acute diarrhea among under-five children in slums of Addis Ababa. This study aimed to determine the association of intermittent piped water supplies and point-of-use (POU) contamination of household stored water by Escherichia coli (E. coli) with acute diarrhea among under-five children in slums of Addis Ababa. A community-based matched case-control study was conducted from November to December, 2014. Cases were defined as under-five children with acute diarrhea during the two weeks before the survey. Controls were matched by age and neighborhood with cases by individual matching. Data were collected using a pre-tested structured questionnaire and E. coli analysis of water from piped water supplies and household stored water. A five-tube method of Most Probable Number (MPN)/100 ml standard procedure was used for E. coli analysis. Multivariable conditional logistic regression with 95% confidence interval (CI) was used for data analysis by controlling potential confounding effects of selected socio-demographic characteristics. During the two weeks before the survey, 87.9% of case households and 51.0% of control households had an intermittent piped water supply for an average of 4.3 days and 3.9 days, respectively. POU contamination of household stored water by E. coli was found in 83.3% of the case households, and 52.1% of the control households. In a fully adjusted model, a periodically intermittent piped water supply (adjusted matched odds ratio (adjusted mOR) = 4.8; 95% CI: 1.3-17.8), POU water contamination in household stored water by E. coli (adjusted mOR = 3.3; 95% CI: 1.1-10.1), water

  5. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  6. Water supply pipe dimensioning using hydraulic power dissipation

    Science.gov (United States)

    Sreemathy, J. R.; Rashmi, G.; Suribabu, C. R.

    2017-07-01

    Proper sizing of the pipe component of water distribution networks play an important role in the overall design of the any water supply system. Several approaches have been applied for the design of networks from an economical point of view. Traditional optimization techniques and population based stochastic algorithms are widely used to optimize the networks. But the use of these approaches is mostly found to be limited to the research level due to difficulties in understanding by the practicing engineers, design engineers and consulting firms. More over due to non-availability of commercial software related to the optimal design of water distribution system,it forces the practicing engineers to adopt either trial and error or experience-based design. This paper presents a simple approach based on power dissipation in each pipeline as a parameter to design the network economically, but not to the level of global minimum cost.

  7. Thermal resistance of rotating closed-loop pulsating heat pipes: Effects of working fluids and internal diameters

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2017-01-01

    Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.

  8. Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger

    International Nuclear Information System (INIS)

    Hussein, H.M.S.

    2007-01-01

    In this work, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was investigated theoretically and experimentally under the meteorological conditions of Cairo, Egypt. The author's earlier simulation program of wickless heat pipes flat plate solar water heaters was modified to be valid for the present type of wickless heat pipes solar collector by including the solution of the dimensionless governing equations of the present analysis. For verifying the modified simulation program, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was designed, constructed, and tested at different meteorological conditions and operating parameters. These parameters include different cooling water mass flow rates and different inlet cooling water temperatures. The comparison between the experimental results and their corresponding simulated ones showed considerable agreement. Under different climatic conditions, the experimental and theoretical results showed that the optimal mass flow rate is very close to the ASHRAE standard mass flow rate for testing conventional flat plate solar collectors. Also, the experimental and theoretical results indicated that the number of wickless heat pipes has a significant effect on the collector efficiency

  9. Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants

    International Nuclear Information System (INIS)

    Goldberg, A.; Streit, R.D.

    1981-05-01

    Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads

  10. Influence of the pipe diameter on the structure of the gas-liquid interface in a vertical two-phase pipe flow

    International Nuclear Information System (INIS)

    Prasser, H. M.; Beyer, M.; Boettger, A.; Carl, H.; Lucas, D.; Schaffrath, A.; Schutz, P.; Weiss, F. P.; Zschau, J.

    2003-01-01

    Two-phase flow tests in a 194.1 mm diameter vertical pipe (DN200) with an air-water mixture are reported. Close to the upper end of a 9 m tall test section a wire-mesh sensor is installed that delivers instantaneous void fraction distributions over the entire cross section with time resolution of 2500 frames per second. The sensor disposes of 64 x 64 measuring points, which corresponds to a spatial resolution of 3 mm. Beside an fast flow visualisations, void-fraction profiles and bubble size distributions were obtained. Earlier, similar experiments were carried out in a pipe of 51.2 mm inner diameter (DN50). A comparison of the data from the two different facilities allows to study the scaling effects on void fraction profiles, bubbles size distributions and the flow patterns. In the small pipe, the increase of the air flow rate leads to a transition from bubbly via slug to churn turbulent flow. The transition to slug flow is accompanied by the appearance of a second peak in the bubble size distribution that corresponds to the class of large Taylor bubbles. A similar qualitative behaviour was found in the large pipe, though the large bubble fraction has a significantly bigger mean diameter at identical superficial velocities, the peak is less tall but wider. Bubbles move more freely than in the small pipe, since the confining action of the pipe walls to the flow is less pronounced, while the large Taylor bubbles occupy almost the entire cross section in case of the small pipe. Furthermore, the bubbles show much more deformations in the large pipe. Shapes of such large bubbles were characterised in three dimensions for the first time. They can rather be complicated and far from the shape of ideal Taylor bubbles. Also the small bubble fraction tends to bigger sizes in the large pipe

  11. Investigation and evaluation of cracking incidents in piping in pressurized water reactors. Technical report

    International Nuclear Information System (INIS)

    1980-09-01

    This report summarizes an investigation of known cracking incidents in pressurized water reactor plants. Several instances of cracking in feedwater piping in 1979, together with reported cases of stress corrosion cracking at Three Mile Island Unit 1, led to the establishment of the third Pipe Crack Study Group. Major differences between the scope of the third PCSG and the previous two are: (1) the emphasis given to systems safety implications of cracking, and (2) the consideration given all cracking mechanisms known to affect PWR piping, including the failure of small lines in secondary safety systems. The present PCSG reviewed existing information on cracking of PWR pipe systems, either contained in written records of collected from meetings in the United States, and made recommendations in response to the PCSG charter questions and to othe major items that may be considered to either reduce the potential for cracking or to improve licensing bases

  12. Fracture evaluation of a crack in the service water piping system to an emergency diesel generator

    International Nuclear Information System (INIS)

    Rudland, D.; Scott, P.; Rahman, S.; Wilkowski, G.

    1995-01-01

    A pipe fracture experiment was conducted on a section of 6-inch nominal diameter pipe which was degraded by microbiologically induced corrosion (MIC) at a circumferential girth weld. The pipe was a section of one of the service water piping system to one of the emergency diesel generators at the Haddam Neck (Connecticut Yankee) plant. The experimental results will help validate future ASME Section XI pipe flaw evaluation criteria for other than Class 1 piping. A critical aspect of this experiment was an assessment of the degree of conservatism embodied in the ASME definition of flaw size. The ASME flaw size definition assumes a rectangular shaped, constant depth flaw with a depth equal to its maximum depth for its entire length. Since most service flaws are very irregular in shape, this definition can be very conservative. Alternative equivalent flaw size definitions for irregular shaped flaws are explored in this paper. (author). 7 refs., 2 figs., 4 tabs

  13. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  14. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  15. Microstructure and Mechanical Properties of J55ERW Steel Pipe Processed by On-Line Spray Water Cooling

    Directory of Open Access Journals (Sweden)

    Zejun Chen

    2017-04-01

    Full Text Available An on-line spray water cooling (OSWC process for manufacturing electric resistance welded (ERW steel pipes is presented to enhance their mechanical properties and performances. This technique reduces the processing needed for the ERW pipe and overcomes the weakness of the conventional manufacturing technique. Industrial tests for J55 ERW steel pipe were carried out to validate the effectiveness of the OSWC process. The microstructure and mechanical properties of the J55 ERW steel pipe processed by the OSWC technology were investigated. The optimized OSWC technical parameters are presented based on the mechanical properties and impact the performance of steel pipes. The industrial tests show that the OSWC process can be used to efficiently control the microstructure, enhance mechanical properties, and improve production flexibility of steel pipes. The comprehensive mechanical properties of steel pipes processed by the OSWC are superior to those of other published J55 grade steels.

  16. Further experiments for mean velocity profile of pipe flow at high Reynolds number

    Science.gov (United States)

    Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.

    2018-05-01

    This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.

  17. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan

    2003-06-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the precision of the measurements is to be improved. The shape of the background in PNA affects the shape and position of the time spectrum. The nature of the background has been determined using one detector upstream and one downstream of the neutron generator. The background was shown to be caused by {sup 16}N. A method that subtracts the background from the PNA time spectrum was also developed.

  18. Developments in Pulsed Neutron Activation for Determination of Water Flow in Pipes

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2003-06-01

    In PNA (pulsed neutron activation) it is important that the measured data can be related to the total mass flow. In this thesis two fundamental problems of the measurement technique and data treatment have been investigated: transport/mixing and background radiation. The principle of PNA is to introduce a radioactive substance into a pipe by bombarding fluid in the pipe with neutron pulses. The fluid in the pipe is activated and subsequently transported and mixed with the flow. Gamma radiation emitted from the activity is measured with one or two detectors downstream from the activation point. The time-resolved signal from the detectors is used to calculate the average velocity of the water flow. Due to the short distance between the neutron generator and the pipe the activity in the pipe becomes highly inhomogeneous. The transport and mixing of the activity were simulated using colour which was injected into the flow. It was found that the inhomogeneous activity distribution must be taken into account if the precision of the measurements is to be improved. The shape of the background in PNA affects the shape and position of the time spectrum. The nature of the background has been determined using one detector upstream and one downstream of the neutron generator. The background was shown to be caused by 16 N. A method that subtracts the background from the PNA time spectrum was also developed

  19. Prediction of Availability Indicator of Water Pipes Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Kutyłowska Małgorzata

    2017-01-01

    Full Text Available The paper presents the results of artificial neural networks application to the availability indicator prediction. The forecasted results indicate that artificial networks may be used to model the reliability level of the water supply systems. The network was trained using 147 and 173 operational data from one Polish medium-sized city (distribution pipes and house connections, respectively. 50% of all data was chosen for learning, 25% for testing and 25% for validation. In prognosis phase, the best created network used 100% of 114 and 133 values for testing. Following functions were used to activate neurons in hidden and output layers: linear, logistic, hyperbolic tangent, exponential. The learning of the artificial network was performed using following input parameters: material, total length, diameter. In the optimal models hyperbolic tangent was chosen to activate the hidden and output neurons in modeling the availability indicator of house connections during 68 epochs of training. Hidden and output neurons were activated (20 epochs of learning respectively by hyperbolic tangent and linear function during the prediction of availability indicator of distribution pipes. The maximum relative errors in learning and prognosis step were equal to 0.10% and 1.20% as well as 0.27% and 1.15% for distribution pipes and house connections, respectively.

  20. Fluid-structure interaction with pipe-wall viscoelasticity during water hammer

    Science.gov (United States)

    Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.

    2012-01-01

    Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.

  1. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  2. Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation.

    Science.gov (United States)

    Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen

    2011-05-01

    Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus

  3. Failure analysis of cracked head spray piping from the Dresden Unit 2 Boiling Water Reactor

    International Nuclear Information System (INIS)

    Diercks, D.R.; Dragel, G.M.

    1983-07-01

    Several sections of Type 304 stainless steel head spray piping, 6.25 cm (2.5 in.) in diameter, from the Dresden Unit 2 Boiling Water Reactor were examined to determine the nature and causes of coolant leakages detected during hydrostatic tests. Extensive pitting was observed on the outside surface of the piping, and three cracks, all located at a helical stripe apparently rubbed onto the outer surface of the piping, were also noted. Metallographic examination revealed that the cracking had initiated at the outer surface of the pipe, and showed it to be transgranular and highly branched, characteristic of chloride stress corrosion cracking. The surface pitting also appeared to have been caused by chlorides. A scanning electron microprobe x-ray analysis of the corrosion product in the cracks confirmed the presence of chlorides and also indicated the presence of calcium

  4. Experimental investigation of thermal mixing phenomena in a tee pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Shiue; Hsieh, Huai-En; Zhang, Zhi-Yu; Pei, Bau-Shi [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science

    2015-05-15

    T-pipe designs have been widely used in the industry. Among them, mixing of hot and cold water is a common application. In the mixing process, cold and hot fluids are respectively injected through main and branch pipes, and are mixed in the downstream area of T-tube. High temperature hot water flows through the main pipe for a long time; hence, the pipe wall is at high temperatures. The fluid injected into the branch pipe is a cooling fluid. After mixing, the wall of the main pipe is under high thermal fluctuations causing strong thermal stresses, which will eventually lead to pipe damage and water loss. Through flow rate adjustments of the branch and main pipes, when the branch/main velocity ratio was greater than 7.8, showing that cold water hit the bottom of the main pipe and created a reverse flow. This reverse flow created large thermal stresses on the wall. Hence, the branch/main velocity ratio and the hot-water-mixing phenomenon are the focus of this study.

  5. Stratified flow instability and slug formation leading to condensation-induced water hammer in a horizontal refrigerant pipe

    International Nuclear Information System (INIS)

    Samuel Martin, C.

    2005-01-01

    Full text of publication follows: An experimental apparatus was designed for the purpose of investigating the phenomenon of condensation-induced water hammer in an ammonia refrigeration system. Water hammer was initiated by introducing warm ammonia gas over static subcooled ammonia liquid placed in a horizontal 146.3 mm diameter carbon steel pipe 6.0 m in length. By means of fast response piezoelectric pressure transducers and a high speed data acquisition system rapid dynamic pressures were recorded whenever a shock event occurred. Moreover, by means of top-mounted diaphragm pressure transducers the speed of liquid slugs propagating along the pipe was determined. The occurrence of condensation induced water hammer depended upon three major variables; namely, (1) initial liquid depth, (2) liquid temperature, and (3) mass flow rate of warm gas. For given liquid depth and temperature, once the warm gas threshold conditions were exceeded shocks occurred with greater magnitude as the mass flow rate of gas input was increased. With adequate subcooling condensation-induced water hammer occurred for initial liquid depths ranging from 25% to 95% of internal pipe diameter. The threshold mass flow rate of warm gas necessary to initiate water hammer was greater as the initial liquid depth was lowered. Based upon experimental results obtained from four pressure transducers located on the top of the test pipe conditions corresponding to bridging were ascertained. For various initial liquid depths the onset of instability from stratified flow to bridging was correlated with the Taitel-Dukler instability criterion. (author)

  6. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 4. Evaluation of other loads and load combinations

    International Nuclear Information System (INIS)

    1984-12-01

    Six topical areas were covered by the Task Group on Other Dynamic Loads and Load Combinations as described below: Event Combinations - dealing with the potential simultaneous occurrence of earthquakes, pipe ruptures, and water hammer events in the piping design basis; Response Combinations - dealing with multiply supported piping with independent inputs, the sequence of combinations between spacial and modal components of response, and the treatment of high frequency modes in combination with low frequency modal responses; Stress Limits/Dynamic Allowables - dealing with inelastic allowables for piping and strain rate effects; Water Hammer Loadings - dealing with code and design specifications for these loadings and procedures for identifying potential water hammer that could affect safety; Relief Valve Opening and Closing Loads - dealing with the adequacy of analytical tools for predicting the effects of these events and, in addition, with estimating effective cycles for fatigue evaluations; and Piping Vibration Loads - dealing with evaluation procedures for estimating other than seismic vibratory loads, the need to consider reciprocating and rotary equipment vibratory loads, and high frequency vibratory loads. NRC staff recommendations or regulatory changes and additional study appear in this report

  7. Unsteady hydraulic characteristics in pipe with elbow under high Reynolds condition

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A.; Kimura, N.; Kamide, H.; Tobita, A. [Japan Atomic Energy Agency, O-arai, Ibaraki (Japan)

    2011-07-01

    In the design of Japan Sodium-cooled Fast Reactor (JSFR), coolant velocity is beyond 9 m/s in the primary hot leg pipe of 1.27 m diameter. The Reynolds number in the piping reaches 4.2x10{sup 7}. Moreover, a short-elbow (r/D=1.0, r: curvature radius, D: pipe diameter) is adopted in the hot leg pipe in order to achieve compact plant layout and reduce plant construction cost. Therefore, the flow-induced vibration (FIV) arising from the piping geometry may occur in the short-elbow pipe. The FIV is due to the excitation force which is caused by the pressure fluctuation on the wall. The pressure fluctuation on the pipe wall is closely related with the flow fluctuation. In this study, water experiments using two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0 and 1.5 (short-elbow and long-elbow), were conducted in order to investigate the mechanism of velocity and pressure fluctuation in the elbow and its downstream. The experiments were carried out at Re=5.4x10{sup 5} conditions. Measurement of velocity fluctuation and pressure fluctuation in two types of elbows with different curvature revealed that behavior of separation region and the circumferential secondary flow affected the pressure fluctuation on the wall of the elbow greatly. (author)

  8. PWR composite materials use. A particular case of safety-related service water pipes

    International Nuclear Information System (INIS)

    Pays, M.F.; Le Courtois, T.

    1997-11-01

    This paper shows the present and future uses of composite materials in French nuclear and fossil-fuel power plants. Electricite de France has decided to install composite materials in service water piping in its future nuclear power plant (PWR) at Civaux (West of France) and for the firs time in France, in safety-related applications. A wide range of studies has been performed about the durability, the control and damage mechanisms of those materials under service conditions among an ongoing Research and Development project. The main results are presented under the following headlines: selection of basic materials and manufacturing processes; aging processes (mechanical behavior during 'lifetime'); design rules; non destructive examination during manufacturing process and during operation. The studies have been focused on epoxy pipings. The importance of strong quality insurance policy requirements are outlined. A study of the use of composite pipes in power plants (hydraulic, fossil fuel, and nuclear) in France and around the world (USA, Japan, Western Europe) are presented whether it be safety related or non safety-related applications. The different technical solutions for materials and manufacturing processes are presented and an economic comparison is made between steel and composite pipes. (author)

  9. PWR composite materials use. A particular case of safety-related service water pipes

    Energy Technology Data Exchange (ETDEWEB)

    Pays, M.F.; Le Courtois, T

    1997-11-01

    This paper shows the present and future uses of composite materials in French nuclear and fossil-fuel power plants. Electricite de France has decided to install composite materials in service water piping in its future nuclear power plant (PWR) at Civaux (West of France) and for the firs time in France, in safety-related applications. A wide range of studies has been performed about the durability, the control and damage mechanisms of those materials under service conditions among an ongoing Research and Development project. The main results are presented under the following headlines: selection of basic materials and manufacturing processes; aging processes (mechanical behavior during `lifetime`); design rules; non destructive examination during manufacturing process and during operation. The studies have been focused on epoxy pipings. The importance of strong quality insurance policy requirements are outlined. A study of the use of composite pipes in power plants (hydraulic, fossil fuel, and nuclear) in France and around the world (USA, Japan, Western Europe) are presented whether it be safety related or non safety-related applications. The different technical solutions for materials and manufacturing processes are presented and an economic comparison is made between steel and composite pipes. (author) 2 refs.

  10. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    International Nuclear Information System (INIS)

    1979-08-01

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125 0 C, 54,000 at 165 0 C, 48,000 at 185 0 C, and 8500 at 225 0 C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125 0 C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125 0 C. It was concluded that, for a heat pipe temperature of 125 0 C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125 0 C) and 98% (based on 1,430,000 accelerated pipe-h at 125 0 C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  11. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Alberto Martini

    2015-01-01

    Full Text Available The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. The first experimental data were used for assessing the leak detection performance of a prototypal algorithm based on the calculation of the standard deviation of acceleration signals. The experimental campaign is here described and discussed. The proposed algorithm, enhanced by means of proper signal filtering techniques, was successfully tested on all monitored leaks, thus proving effective for leak detection purpose.

  12. Manufacture and test of prototype water pipe chase barrier in ITER Magnet Feeder system

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Kun, E-mail: lukun@ipp.ac.cn [Institute of Plasma Physics, Shushan Hu Road 350, Hefei, Anhui (China); Wen, Xinjie; Liu, Chen; Song, Yuntao [Institute of Plasma Physics, Shushan Hu Road 350, Hefei, Anhui (China); Niu, Erwu [ITER China, 15B Fuxing Road, Beijing 100862 (China); Gung, Chenyu; Su, Man [ITER Organization, Route de Vinon-sur-Verdon – CS 90046, 13067 St Paul-lez-Durance Cedex (France)

    2016-11-01

    The Magnet Feeder system in the International Thermonuclear Experimental Reactor (ITER) deploys electrical currents and supercritical helium to the superconducting magnets and the magnet diagnostic signals to the operators. In the current design, the feeders located in the upper L3 level of the Tokamak gallery penetrate the Tokamak coolant water system vault, the biological shield and the cryostat. As a secondary confinement to contain the activated coolant water in the vault in the case of water pipe burst accident, a water barrier is welded between the penetration in the water pipe chase outer wall and the mid-plane of the vacuum jacket of the Feeder Coil Terminal Box (CTB). A thin-wall stainless steel diaphragm with an omega shape profile is welded around the CTB as the water barrier to endure 2 bar hydraulic pressure. In addition, the barrier is designed as a flexible compensator to withstand a maximum of 15 mm of axial displacement of the CTB in case of helium leak accident without failure. This paper presents the detail configuration, the manufacturing and assembly processes of the water barrier. Test results of the prototype water barrier under simulated accident conditions are also reported. Successful qualification of the design and manufacturing process of the water barrier lays a good foundation for the series production of this subsystem.

  13. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  14. Rupture hardware minimization in pressurized water reactor piping

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Ski, J.J.; Chexal, V.; Norris, D.M.; Goldstein, N.A.; Beaudoin, B.F.; Quinones, D.F.; Server, W.L.

    1989-01-01

    For much of the high-energy piping in light reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but also improves the overall safety and integrity of the plant since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied a Beaver Valley Power Station- Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferrutic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in. (152-mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel line as small as 3-in. (76-mm) diameter (outside containment) can qualify for pipe rupture hardware elemination

  15. Will Jakarta Be The Next Atlantis? Excessive Groundwater Use Resulting From A Failing Piped Water Network

    Directory of Open Access Journals (Sweden)

    Nicola Colbran

    2009-06-01

    Full Text Available This article examines the connection between a failing piped water network and excessive groundwater use in Jakarta. It discusses the political history of the city's piped water network, which was privatised in 1998, and how privatisation was intended to increase access to clean, safe water for its residents. The article asserts that this has not eventuated, and that tap water remains costly, unreliable and does not provide noticeable benefits when compared with groundwater. The result is that households, industry, businesses, luxury apartment complexes and hotels choose alternative water sources and distribution methods, in particular groundwater. This is having an unsustainable impact on groundwater levels and Jakarta 's natural environment, causing significant land subsidence, pollution and salinisation of aquifers, and increased levels of flooding. The effect is so severe that the World Bank has predicted much of Jakarta will be inundated by seawater in 2025, rendering one third of the city uninhabitable and displacing millions. The article concludes by discussing and assessing the steps the government has taken to address excessive and unlicensed groundwater use. These steps include new regulations on groundwater, a public awareness campaign on the importance of groundwater and a commitment to improve the raw water supplied to the piped water network. However, the article observes that the government is yet to develop long term policies for improvement of the network itself. The question therefore remains, has the government done enough, or will groundwater use continue unabated making Jakarta the next lost city of Atlantis?

  16. Report on the water leakage from instrumentation pipe in JMTR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    On December 10, 2002, the leakage was found at the pressure instrumentation pipe attached to the exit pipe of No.1 charging pump of the purification system of a primary cooling system at JMTR in the Oarai Research establishment, JAERI. The Investigation Committee for Water Leakage from Instrumentation Pipe in JMTR was established and organized by specialists from inside and outside JAERI on December 16 and its meeting was held in public 3 times by 6th January, 2003. They found out the cause and countermeasures of cracks, and also investigated enhancement of safety management. As the result, it was considered that the leakage started around the 6th of December 2002 and the cause of the cracks was due to fatigue by vibration of the charging pump during operation. The committee discovered following incorrect actions in the safety management. First, operation of JMTR was continued without keeping careful watch in spite of occurrence of leakage detector alarm. Second, every time when the alarm range for the reasons other than the leakage, appropriate investigation and countermeasure were not taken. Third, the manager in charge didn't have a fair understanding of the situation and didn't give an appropriate direction. This is the report on the cause and countermeasures of cracks and enhancement of safety management. (author)

  17. Water limits to closing yield gaps

    Science.gov (United States)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Garrassino, Francesco; Chiarelli, Davide; Seveso, Antonio; D'Odorico, Paolo

    2017-01-01

    Agricultural intensification is often seen as a suitable approach to meet the growing demand for agricultural products and improve food security. It typically entails the use of fertilizers, new cultivars, irrigation, and other modern technology. In regions of the world affected by seasonal or chronic water scarcity, yield gap closure is strongly dependent on irrigation (blue water). Global yield gap assessments have often ignored whether the water required to close the yield gap is locally available. Here we perform a gridded global analysis (10 km resolution) of the blue water consumption that is needed annually to close the yield gap worldwide and evaluate the associated pressure on renewable freshwater resources. We find that, to close the yield gap, human appropriation of freshwater resources for irrigation would have to increase at least by 146%. Most study countries would experience at least a doubling in blue water requirement, with 71% of the additional blue water being required by only four crops - maize, rice, soybeans, and wheat. Further, in some countries (e.g., Algeria, Morocco, Syria, Tunisia, and Yemen) the total volume of blue water required for yield gap closure would exceed sustainable levels of freshwater consumption (i.e., 40% of total renewable surface and groundwater resources).

  18. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  19. Water Pipe Steam Stones: Familiarity and Use Among US Young Adults

    Science.gov (United States)

    Shensa, Ariel; Primack, Brian A.

    2015-01-01

    Introduction: Water pipe tobacco smoking (WTS) is associated with substantial toxicant exposure. Water pipe steam stones (WSS) are marketed as a healthier alternative. The purpose of this study was to determine, in a nationally representative sample, young adults’ familiarity with, perceptions regarding, and use of WSS. Methods: A survey about WTS was completed by 3,253 members of an online nonvolunteer access panel. Four items specifically addressed WSS. Results: Of the 228 individuals who had heard of WSS, 17% (n = 41) reported using them. Use was associated with ever (adjusted odds ratio [AOR] = 7.7, 95% confidence interval [CI] = 2.7–21.8) and current (AOR = 16.1, 95% CI = 5.1–51.5) WTS. Compared with those who thought that WSS had about the same harm as WTS, those who thought that WSS was “a lot less harmful” to a person’s health had substantially higher odds of having tried WSS (AOR = 6.8, 95% CI = 2.0–23.1). Conclusions: Approximately 1 in 6 young adults who have heard of WSS used them. WSS use is associated with the perception of reduced harm. PMID:25145376

  20. [Relationship of the quality of drinking water to its use regimens and the types of water supply pipes].

    Science.gov (United States)

    Mysiakin, A E; Korolik, V V

    2010-01-01

    Drinking water running along the pipes made from different materials was investigated. Two experiments could determine the material that assured at least of all the quality of drinking water in accordance with SanPin 2.1.4.1074-01. The mechanism for worsening the quality of water supplied to a user was revealed in relation to the water use regimen. Short-term flow stoppage of water was found to result in its lower oxygen levels, a larger number of different groups of iron- and manganese-reducing bacteria and an enhanced bacterial reduction of oxides. The latter was accompanied by the dissolution of heavy metals, which induced secondary water contamination.

  1. Model for cobalt 60/58 deposition on primary coolant piping in a boiling water reactor

    International Nuclear Information System (INIS)

    Dehollander, W.R.

    1979-01-01

    A first principles model for deposition of radioactive metals into the corrosion films of primary coolant piping is proposed. It is shown that the predominant mechanism is the inclusion of the radioactive species such as Cobalt 60 into the spinel structure of the corrosion film during the act of active corrosion. This deposition can occupy only a defined fraction of the available plus 2 valence sites of the spinel. For cobalt ions, this ratio is roughly 4.6 x 10 -3 of the total iron sites. Since no distinction is made between Cobalt 60, Cobalt 58, and Cobalt 59 in this process, the radioactivity associated with this inclusion is a function of the ratio of the radioactive species to the nonradioactive species in the water causing the corrosion of the pipe metal. The other controlling parameter is the corrosion rate of the pipe material. This can be a function of time, for example, and it shown that freshly descaled metal when exposed to the cobalt containing water can incorporate as much as 10 x 10 -3 cobalt ions per iron atom in the initial corrosion period. This has implications for the problem of decontaminating nuclear reactor piping. Equations and selected observations are presented without reference to any specifically identified reactor or utility, so as to protect any proprietary interest

  2. HS-SPME-GC-MS analysis of antioxidant degradation products migrating to drinking water from PE materials and PEX pipes

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Waul, Christopher Kevin; Andersen, Henrik Rasmus

    2013-01-01

    degradation products may leach and enter drinking water. The aim of this investigation was to develop a method for measuring these degradation products with a performance meeting the drinking water quality criteria of 20 µg L−1. Using headspace solid phase microextraction coupled to a gas chromatograph......Polyethylene (PE) and cross-linked polyethylene (PEX) pipes are frequently used in water supply systems. Such pipes contain added antioxidants with phenolic structures, e.g. Irgafos 168, Irganox 1010 and 1076, in order to improve durability. However, phenol, ketone and quinone antioxidant...

  3. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  4. On the Acoustic Filtering of the Pipe and Sensor in a Buried Plastic Water Pipe and its Effect on Leak Detection: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Fabrício Almeida

    2014-03-01

    Full Text Available Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.

  5. On the acoustic filtering of the pipe and sensor in a buried plastic water pipe and its effect on leak detection: an experimental investigation.

    Science.gov (United States)

    Almeida, Fabrício; Brennan, Michael; Joseph, Phillip; Whitfield, Stuart; Dray, Simon; Paschoalini, Amarildo

    2014-03-20

    Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.

  6. Prediction of Availability Indicator of Water Pipes Using Artificial Intelligence

    OpenAIRE

    Kutyłowska Małgorzata

    2017-01-01

    The paper presents the results of artificial neural networks application to the availability indicator prediction. The forecasted results indicate that artificial networks may be used to model the reliability level of the water supply systems. The network was trained using 147 and 173 operational data from one Polish medium-sized city (distribution pipes and house connections, respectively). 50% of all data was chosen for learning, 25% for testing and 25% for validation. In prognosis phase, t...

  7. Remote mechanized equipment for the repair and replacement of boiling water reactor recirculation loop piping

    International Nuclear Information System (INIS)

    Mauser, D.; Busch, D.F.

    1983-01-01

    Equipment has been assembled for the remote repair or replacement of boiling water reactor nuclear plant piping in the diameter range of 4 to 28 inches (10-71 cm). The objectives of this program were to produce high-quality pipe welds, reduce plant downtime, and reduce man-rem exposure. The repair strategy was to permit repair personnel to install and check out the repair subsystems and then leave the radiation zone allowing the operations to be conducted at a distance of up to 300 feet (91 m) from the operator. The complete repair system comprises subsystems for pipe severing, dimensional gaging, joint preparation, counterboring, welding, postweld nondestructive inspection (conceptual design), and audio, electronic, and visual monitoring of all operations. Components for all subsystems, excluding those for postweld nondestructive inspection, were purchased and modified as needed for integration into the repair system. Subsystems were designed for two sizes of Type 304 stainless steelpipe. For smaller, 12-inch-diameter (30.5 cm) pipe, severing is accomplished by a power hack saw and joint preparation and counterboring by an internally mounted lathe. The 22-inch-diameter (56 cm) pipe is severed, prepared, and counterbored using an externally mounted, single-point machining device. Dimensional gaging is performed to characterize the pipe geometry relative to a fixed external reference surface, allowing the placement of the joint preparation and the counterbore to be optimized. For both pipe sizes, a track-mounted gas tungsten-arc welding head with filler wire feed is used

  8. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns

    OpenAIRE

    Kulinkina, Alexandra V.; Kosinski, Karen C.; Liss, Alexander; Adjei, Michael N.; Ayamgah, Gilbert A.; Webb, Patrick; Gute, David M.; Plummer, Jeanine D.; Naumova, Elena N.

    2016-01-01

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. Despite providing the highest and most flexible level of service with better microbiological water quality to their users, these systems remain vulnerable to rural water sustainability challenges. We assessed temporal and spatial patterns in water consumption from public stan...

  9. Method to study water hammer with fluid-structure interaction in spatial pipe

    International Nuclear Information System (INIS)

    Xi Zhide; Ma Jianzhong; Sun Lei

    2013-01-01

    The theory of coupling 4-function models and its solution approach are first introduced in this paper, and the method of CFD to calculate fluid-structure interaction is also introduced. Finally, the model in related reference is applied with this method to simulate the process of water hammer. By CFD calculation for the classical water hammer, the numerical scheme and grid are selected, and the results of CFD are compared with reference. The results show that the method in this paper can be used in more complex pipe system to simulate the water hammer effect. (authors)

  10. Identification of significant problems related to light water reactor piping systems

    International Nuclear Information System (INIS)

    1980-07-01

    Work on the project was divided into three tasks. In Task 1, past surveys of LWR piping system problems and recent Licensee Event Report summaries are studied to identify the significant problems of LWR piping systems and the primary causes of these problems. Pipe cracking is identified as the most recurring problem and is mainly due to the vibration of pipes due to operating pump-pipe resonance, fluid-flow fluctuations, and vibration of pipe supports. Research relevant to the identified piping system problems is evaluated. Task 2 studies identify typical LWR piping systems and the current loads and load combinations used in the design of these systems. Definitions of loads are reviewed. In Task 3, a comparative study is carried out on the use of nonlinear analysis methods in the design of LWR piping systems. The study concludes that the current linear-elastic methods of analysis may not predict accurately the behavior of piping systems under seismic loads and may, under certain circumstances, result in nonconservative designs. Gaps at piping supports are found to have a significant effect on the response of the piping systems

  11. Modelling of Cold Water Hammer with WAHA code

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2003-01-01

    The Cold Water Hammer experiment described in the present paper is a simple facility where overpressure accelerates a column of liquid water into the steam bubble at the closed vertical end of the pipe. Severe water hammer with high pressure peak occurs when the vapor bubble condenses and the liquid column hits the closed end of the pipe. Experimental data of Forschungszentrum Rossendorf are being used to test the newly developed computer code WAHA and the computer code RELAP5. Results show that a small amount of noncondensable air in the steam bubble significantly affects the magnitude of the calculated pressure peak, while the wall friction and condensation rate only slightly affect the simulated phenomena. (author)

  12. Reactor Materials Program probability of indirectly--induced failure of L and P reactor process water piping

    International Nuclear Information System (INIS)

    Daugherty, W.L.

    1988-01-01

    The design basis accident for the Savannah River Production Reactors is the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping material. The Reactor Materials Program was initiated to provide the technical basis for an alternate credible design basis accident. One aspect of this work is to determine the probability of the DEGB; to show that in addition to being incredible, it is also highly improbable. The probability of a DEGB is broken into two parts: failure by direct means, and indirectly-induced failure. Failure of the piping by direct means can only be postulated to occur if an undetected crack grows to the point of instability, causing a large pipe break. While this accident is not as severe as a DEGB, it provides a conservative upper bound on the probability of a direct DEGB of the piping. The second part of this evaluation calculates the probability of piping failure by indirect causes. Indirect failure of the piping can be triggered by an earthquake which causes other reactor components or the reactor building to fall on the piping or pull it from its supports. Since indirectly-induced failure of the piping will not always produce consequences as severe as a DEGB, this gives a conservative estimate of the probability of an indirectly- induced DEGB. This second part, indirectly-induced pipe failure, is the subject of this report. Failure by seismic loads in the piping itself will be covered in a separate report on failure by direct causes. This report provides a detailed evaluation of L reactor. A walkdown of P reactor and an analysis of the P reactor building provide the basis for extending the L reactor results to P reactor

  13. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  14. Residual stress improved by water jet peening using cavitation for small-diameter pipe inner surfaces

    International Nuclear Information System (INIS)

    Yasuo, Nakamura; Toshizo, Ohya; Koji, Okimura

    2001-01-01

    As one of degradation conditions on components used in water, the overlapping effect of environment, material and stress might cause stress corrosion cracking (SCC). Especially, for the tensile residual stress produced by welding, it is particularly effective to reduce the tensile residual stress on the material surface to prevent SCC. In this paper, the residual stress improvement method using cavitation impact generated by a water jet, called Water Jet Peening (WJP), has been developed as the maintenance technology for the inner surfaces of small-diameter Ni-Cr-Fe alloy (Alloy 600) pipes. As the results, by WJP for the inner surface of Alloy 600 pipe (inner diameter; approximately 10-15 mm), we confirmed that the compressive stress generated within the range from the surface to the inner part about 0.5 mm deep and took a maximum value about 350 MPa on the surface. (author)

  15. Provision of private, piped water and sewerage connections and directly observed handwashing of mothers in a peri-urban community of Lima, Peru.

    Science.gov (United States)

    Oswald, William E; Hunter, Gabrielle C; Kramer, Michael R; Leontsini, Elli; Cabrera, Lilia; Lescano, Andres G; Gilman, Robert H

    2014-04-01

    To estimate the association between improved water and sanitation access and handwashing of mothers living in a peri-urban community of Lima, Peru. We observed 27 mothers directly, before and after installation of private, piped water and sewerage connections in the street just outside their housing plots, and measured changes in the proportion of faecal-hand contamination and hand-to-mouth transmission events with handwashing. After provision of water and sewerage connections, mothers were approximately two times more likely to be observed washing their hands within a minute of defecation, compared with when they relied on shared, external water sources and non-piped excreta disposal (RR = 2.14, 95% CI = 0.99-4.62). With piped water and sewerage available at housing plots, handwashing with or without soap occurred within a minute after 48% (10/21) of defecation events and within 15 min prior to 8% (11/136) of handling food events. Handwashing increased following installation of private, piped water and sewerage connections, but its practice remained infrequent, particularly before food-related events. Infrastructural interventions should be coupled with efforts to promote hygiene and ensure access to water and soap at multiple on-plot locations convenient to mothers. © 2014 John Wiley & Sons Ltd.

  16. THE EFFECT OF PHOSPHATE ON THE MORPHOLOGICAL AND SPECTROSCOPIC PROPERTIES OF COPPER DRINKING WATER PIPES EXPERIENCING LOCALIZED CORROSION

    Science.gov (United States)

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole...

  17. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  18. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  19. Experimental Investigation of Two-Phase Oil (D130)-Water Flow in 4″ Pipe for Different Inclination Angles

    Science.gov (United States)

    Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.

    2018-03-01

    Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.

  20. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  1. The construction for remediation work of contaminated water at Fukushima Daiichi Nuclear Power Plant. Closure work of seawater piping trench and screen pump chamber

    International Nuclear Information System (INIS)

    Hibi, Yasuki; Yanai, Shuji; Nishikori, Kazumasa; Soma, Yu

    2016-01-01

    In the seawater piping trench of Fukushima Daiichi Nuclear Power Plant, highly contaminated water was stagnating, which flowed in from the reactor building and turbine building affected by the tsunami caused by the Tohoku Pacific Ocean Earthquake. Although the screen pump chamber, adjacent to the seawater piping trench, escaped from the inflow and retention of contaminated water, it was exposed to the leakage risk of contaminated water from the seawater piping trench. As measures against these conditions, the following emergency work was applied: (1) contaminated water replacement and removal operation based on the implantation of fillers into the seawater piping trench, and (2) closure operation of the screen pump chamber by implanting fillers into the screen pump chamber. In face of these operations, long-distance underwater flow special filler, high workable concrete, and underwater non-separation concrete were developed and used. The implantation of the long-distance underwater-flow special fillers into the seawater piping trench was successfully completed by filling to the tunnel top without gap and without water head difference, and by preventing the occurrence of movement or water path formation of the fillers in the initial curing process. Other fillers were also able to be implanted as planned. The leakage risk of contaminated water to the periphery could be suppressed to a large extent by this work. (A.O.)

  2. New assessment of feed water piping in GKN I including optimisation of piping supports

    International Nuclear Information System (INIS)

    Zaiss, W.; Heil, C.; Baier, B.; Manke, A.

    2003-01-01

    The quality of nuclear power plant components and piping is specified according to the then current state of knowledge. In operation, the quality can be reduced by ageing phenomena, so in-service quality assessment is constantly required. The contribution discusses the individual aspects of reassessment and its technical procedure, using the example of a feedwater pipe in the GKN I containment. (orig.) [de

  3. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants

    International Nuclear Information System (INIS)

    1984-08-01

    IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry

  4. Flow induced vibration of secondary piping of LMFBR

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    This paper presents a method for evaluating the characteristics of vibrations caused by internal flow in three-dimensional piping systems conveying high density fluids. The excitation of the circuit is mainly caused by the flow singularities, and it is shown that the problem may be reduced to calculate the response of the circuit to an acoustical pressure discontinuity, localised at each flow singularity. The paper is divided into two main parts: First part is devoted to the theoretical formulation of the coupled acoustical-mechanical problem and to its numerical solution by the french computer code TEDEL. Second part describes an experimental test of the method. The tested piping system consists of a stainless steel tube circuit comprising four 909 bends, conveying water. Vibrations are excited by a half closed gate valve. Satisfactory results are obtained concerning both the frequencies of resonance of the circuit and the level of the vibrations observed

  5. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  7. These Pipes Are "Happening"

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  8. Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360)

    Science.gov (United States)

    Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...

  9. Effect of wick configuration of the heat pipe performance

    International Nuclear Information System (INIS)

    Kim, Seong Won; Kang, Shin Hyung; Lee, Jin Ho

    1990-01-01

    Experimental investigation is made to study the dependence of performance characteristics of heat pipe on the types of wick shapes. Types of wick shapes adoped are open groove wick, screen wick, closed groove wick and no wick.(thermo-syphone). The dependence of heat pipe performance on the wick shape is turned out in the following order ; open groove wick, closed groove wick, screen wick and no wick. This shows that the heat transfer efficiency of heat pipe depends more upon the returning capacity of liquid from condenser to evaporator, implying that the wick which has low capillary pressure but good permeability is better than those which has higher capillary pressure. (Author)

  10. PIV measurement at the blowdown pipe outlet. [Particle Image Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A.; Pyy, L.; Telkkae, J. [Lappeenranta Univ. of Technology, Lappeenranta (Finland)

    2013-04-15

    This report summarizes the findings of the PIV measurement tests carried out in January - February 2013 with the scaled down PPOOLEX test facility at LUT. The main objective of the tests was to find out the operational limits of the PIV system regarding suitable test conditions and correct values of different adjustable PIV parameters. An additional objective was to gather CFD grade data for verification/validation of numerical models. Both water and steam injection tests were carried out. PIV measurements with cold water injection succeeded well. Raw images were of high quality, averaging over the whole measurement period could be done and flow fields close to the blowdown pipe outlet could be determined. In the warm water injection cases the obtained averaged velocity field images were harder to interpret, especially if the blowdown pipe was also filled with warm water in the beginning of the measurement period. The absolute values of the velocity vectors seemed to be smaller than in the cold water injection cases. With very small steam flow rates the steam/water interface was inside the blowdown pipe and quite stable in nature. The raw images were of good quality but due to some fluctuation in the velocity field averaging of the velocity images over the whole measured period couldn't be done. Condensation of steam in the vicinity of the pipe exit probably caused these fluctuations. A constant outflow was usually followed by a constant inflow towards the pipe exit. Vector field images corresponding to a certain phase of the test could be extracted and averaged but this would require a very careful analysis so that the images could be correctly categorized. With higher steam flow rates rapid condensation of large steam bubbles created small gas bubbles which were in front of the measurement area of the PIV system. They disturbed the measurements by reflecting laser light like seeding particles and therefore the raw images were of poor quality and they couldn

  11. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  12. Cleanings of the silica scale settled in the transportation-pipes of the geothermal hot water of the Onuma Geothermal Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ito, J

    1978-09-01

    At the Onuma Geothermal Power Station, silica scale deposits in the hot water transportation pipes between production wells and injection wells, increased the thickness. The operations for cleaning the scale were effectively carried out by the following three methods. (1) Poli-Pig method: The shell-shaped plastic foam sponge mass named Poli-Pig was pressed in the pipes. Various shaped Poli-Pig such as armed by the steel spikes made scratches on the surface of the scale, and then stripped off. This method is effective when thickness of the scale is thinner than 20 mm. (2) Impact-Cutter method. Various shaped steel cutter blocks were attached at the end of a flexible shaft, and gave continuous impact by rotation on the scale and then smashing it away. This method is effective for various thickness, but pipes had to be cut off matched to the length of the flexible shaft. (3) Water-jet method. High pressured water jet through the special nozzle smashed away the scale. For this method the pipe had to be cut off at every joint.

  13. Pore-water pressures associated with clogging of soil pipes: Numerical analysis of laboratory experiments

    Science.gov (United States)

    Clogging of soil pipes due to excessive internal erosion has been hypothesized to cause extreme erosion events such as landslides, debris flows, and gullies, but confirmation of this phenomenon has been lacking. Laboratory and field measurements have failed to measure pore water pressures within pip...

  14. New design solutions for low-power energy production in water pipe systems

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos

    2009-12-01

    Full Text Available This study is the result of ongoing research for a European Union 7th Framework Program Project regarding energy converters for very low heads, and aims to analyze optimization of new cost-effective hydraulic turbine designs for possible implementation in water supply systems (WSSs or in other pressurized water pipe infrastructures, such as irrigation, wastewater, or drainage systems. A new methodology is presented based on a theoretical, technical and economic analysis. Viability studies focused on small power values for different pipe systems were investigated. Detailed analyses of alternative typical volumetric energy converters were conducted on the basis of mathematical and physical fundamentals as well as computational fluid dynamics (CFD associated with the interaction between the flow conditions and the system operation. Important constraints (e.g., size, stability, efficiency, and continuous steady flow conditions can be identified and a search for alternative rotary volumetric converters is being conducted. As promising cost-effective solutions for the coming years, adapted rotor-dynamic turbomachines and non-conventional axial propeller devices were analyzed based on the basic principles of pumps operating as turbines, as well as through an extensive comparison between simulations and experimental tests.

  15. The organization closed water battery plant Aircraft Factory

    Directory of Open Access Journals (Sweden)

    В.М. Ісаєнко

    2008-01-01

    Full Text Available  The information on unrational water usage and losts is given in the article. The necessity of closed water cycle introduction is shown for the aircraft repairing plant. The principle scheme of closed cycle water usage is developed for the accumulator department of the aircraft repairing plant. Modern technological equipment is offered for implementation.

  16. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  17. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    Science.gov (United States)

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  18. Potential migration of organic pollutants in pipes of polyethylene. Study in pipelines of distribution net of drinkable water; Migracion potential de contaminantes organicos en tubos de polietileno. Estudio en tuberias de red de distribuciond e agua potable

    Energy Technology Data Exchange (ETDEWEB)

    Ballel, X.; Ciurana de, C.; Caixach, J.; Cortina, M.; Om, M.

    2002-07-01

    Polyethylene pipes and connections are being widely used in treated water distribution services. Migration of low molecular weight compounds from the polyethylene into the water can change its final quality. This paper is about the concentrations and identification of the migration compounds found in treated water after staying in contact with low and high-density polyethylene. Identification and quantification were carried out using CLSA (Closed Loop Stripping Analysis) extraction technique and gas chromatography coupled to mass spectrometry (HRGC/HRMS). (Author) 12 refs.

  19. Experimental basis for parameters contributing to energy dissipation in piping systems

    International Nuclear Information System (INIS)

    Ibanez, P.; Ware, A.G.

    1985-01-01

    The paper reviews several pipe testing programs to suggest the phenomena causing energy dissipation in piping systems. Such phenomena include material damping, plasticity, collision in gaps and between pipes, water dynamics, insulation straining, coupling slippage, restraints (snubbers, struts, etc.), and pipe/structure interaction. These observations are supported by a large experimental data base. Data are available from in-situ and laboratory tests (pipe diameters up to about 20 inches, response levels from milli-g's to responses causing yielding, and from excitation wave forms including sinusoid, snapback, random, and seismic). A variety of pipe configurations have been tested, including simple, bare, straight sections and complex lines with bends, snubbers, struts, and insulation. Tests have been performed with and without water and at zero to operating pressure. Both light water reactor and LMFBR piping have been tested

  20. Gamma-radiography techniques applied to quality control of welds in water pipe lines

    International Nuclear Information System (INIS)

    Sanchez, W.; Oki, H.

    1974-01-01

    Non-destructive testing of welds may be done by the gamma-radiography technique, in order to detect the presence or absence of discontinuities and defects in the bulk of deposited metal and near the base metal. Gamma-radiography allows the documentation of the test with a complete inspection record, which is a fact not common in other non-destructive testing methods. In the quality control of longitudinal or transversal welds in water pipe lines, two exposition techniques are used: double wall and panoramic exposition. Three different water pipe lines systems have analysed for weld defects, giving a total of 16,000 gamma-radiographies. The tests were made according to the criteria established by the ASME standard. The principal metallic discontinuites found in the weld were: porosity (32%), lack of penetration (29%), lack of fusion (20%), and slag inclusion (19%). The percentage of gamma-radiographies showing welds without defects was 39% (6168 gamma-radiographies). On the other hand, 53% (8502 gamma-radiographies) showed the presence of acceptable discontinuities and 8% (1330 gamma-radiographies) were rejected according to the ASME standards [pt

  1. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  2. An Experimental Study of Oil / Water Flow in Horizontal Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Elseth, Geir

    2001-07-01

    The purpose of this thesis is to study the behaviour of the simultaneous flow of oil and water in horizontal pipes. In this connection, two test facilities are used. Both facilities have horizontal test sections with inner pipe diameters equal to 2 inches. The largest facility, called the model oil facility, has reservoirs of 1 m{sub 3} of each medium enabling flow rates as high as 30 m{sub 3}/h, which corresponds to mixture velocities as high as 3.35 m/s. The flow rates of oil and water can be varied individually producing different flow patterns according to variations in mixture velocity and input water cut. Two main classes of flows are seen, stratified and dispersed. In this facility, the main focus has been on stratified flows. Pressure drops and local phase fractions are measured for a large number of flow conditions. Among the instruments used are differential pressure transmitters and a traversing gamma densitometer, respectively. The flow patterns that appear are classified in flow pattern maps as functions of either mixture velocity and water cut or superficial velocities. From these experiments a smaller number of stratified flows are selected for studies of velocity and turbulence. A laser Doppler anemometer (LDA) is applied for these measurements in a transparent part of the test section. To be able to produce accurate measurements a partial refractive index matching procedure is used. The other facility, called the matched refractive index facility, has a 0.2 m{sub 3} reservoir enabling mainly dispersed flows. Mixture velocities range from 0.75 m/s to 3 m/s. The fluids in this facility are carefully selected to match the refractive index of the transparent part of the test section. A full refractive index matching procedure is carried out producing excellent optical conditions for velocity and turbulence studies by LDA. In addition, pressure drops and local phase fractions are measured. (author)

  3. Pipes of glassfiber reinforced plastics and prestressed concrete for hot-water transportation

    International Nuclear Information System (INIS)

    Schmeling, P.; Roseen, R.

    1980-06-01

    The report constitutes stage 2-3 of a project for the evaluation of pipes made from glass reinforced plastics and prestressed concrete. This stage was made possible through funds from the Swedish National Board for Energy Source Development and the participation of three industrial firms. Experimental pipes of large dimensions (O.D. 0.5 m) were tested at elevated temperatures and pressures. The glass reinforced plastic tubes showed in general an acceptable short term strength at 100-110 degree C. Further long term testing is needed in order to predict the life time; their manufacture requires a strictrly controlled process. The pipes made from prestressed concrete were tested at 95 and 110 degree C for more than a year with good results, and their resistence to thermal shocks was shown to be acceptable. Long term stress relaxation of the EPDM rubber for the joints was measured at 125 and 110 degree C. The best rubbers can be used for 3 years at 110 degree C and a compression of 35 percent, a longer life time is most probable but cannot be foreseen until results from continued testing have been collected. It was demonstrated that the relaxation rate is lowered in water with low oxygen contents. (author)

  4. Experimental Study of Weepage in Multi-layer Glass Reinforced Piping

    KAUST Repository

    Al Sinan, Hussain

    2014-05-01

    Glass Reinforced Polymer pipes, commonly used in water transport applications, are prone to long term weepage. Weepage is defined as the transfer of fluid through the pipe and is considered a functional failure. An experimental investigation of weepage in multi-layered GRP pipes was carried out in two parts aiming to understand the phenomenon to help enhance the weepage resistance of manufactured pipes. First, liner surface profilometry investigation was carried out to identify microscopic features that might serve in initiating weepage. Second, MRI and x-ray tomography and SEM imaging of pipe samples aged with water and dye penetrant was carried out to capture weepage development through the pipe thickness. Diffusion through liner fiber/resin interface, propagation in the direction of poorly wetted hoop fibers and transverse cracks were found to be the likely causes of accelerating weepage in the samples. Fiber rich zones in the liner were considered weak spots that water can use for fast penetration of the liner. Finally, polyester netting used to hold core layer was found to help in water accumulation and transport through the pipe increasing the chances of failure.

  5. Experimental Study of Weepage in Multi-layer Glass Reinforced Piping

    KAUST Repository

    Al Sinan, Hussain

    2014-01-01

    Glass Reinforced Polymer pipes, commonly used in water transport applications, are prone to long term weepage. Weepage is defined as the transfer of fluid through the pipe and is considered a functional failure. An experimental investigation of weepage in multi-layered GRP pipes was carried out in two parts aiming to understand the phenomenon to help enhance the weepage resistance of manufactured pipes. First, liner surface profilometry investigation was carried out to identify microscopic features that might serve in initiating weepage. Second, MRI and x-ray tomography and SEM imaging of pipe samples aged with water and dye penetrant was carried out to capture weepage development through the pipe thickness. Diffusion through liner fiber/resin interface, propagation in the direction of poorly wetted hoop fibers and transverse cracks were found to be the likely causes of accelerating weepage in the samples. Fiber rich zones in the liner were considered weak spots that water can use for fast penetration of the liner. Finally, polyester netting used to hold core layer was found to help in water accumulation and transport through the pipe increasing the chances of failure.

  6. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

    Science.gov (United States)

    Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

    2018-04-01

    Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

  7. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  8. Experimentation with and knowledge regarding water-pipe tobacco smoking among medical students at a major university in Brazil

    Directory of Open Access Journals (Sweden)

    Stella Regina Martins

    2014-04-01

    Full Text Available OBJECTIVE: Water-pipe tobacco smoking is becoming increasingly more common among young people. The objective of this study was to estimate the prevalence of the use of water pipes and other forms of tobacco use, including cigarette smoking, among medical students, as well as to examine the attitudes, beliefs, and knowledge of those students regarding this issue. METHODS: We administered a questionnaire to students enrolled in the University of São Paulo School of Medicine, in São Paulo, Brazil. The respondents were evaluated in their third and sixth years of medical school, between 2008 and 2013. Comparisons were drawn between the two years. RESULTS: We evaluated 586 completed questionnaires. Overall, the prevalence of current cigarette smokers was low, with a decline among males (9.78% vs. 5.26% and an increase among females (1.43% vs. 2.65% in the 3rd and 6th year, respectively. All respondents believed that health professionals should advise patients to quit smoking. However, few of the medical students who smoked received physician advice to quit. Experimentation with other forms of tobacco use was more common among males (p<0.0001. Despite their knowledge of its harmful effects, students experimented with water-pipe tobacco smoking in high proportions (47.32% and 46.75% of the third- and sixth-year students, respectively. CONCLUSIONS: The prevalence of experimentation with water-pipe tobacco smoking and other forms of tobacco use is high among aspiring physicians. Our findings highlight the need for better preventive education programs at medical schools, not only to protect the health of aspiring physicians but also to help them meet the challenge posed by this new epidemic.

  9. Earthquake free design of pipe lines

    International Nuclear Information System (INIS)

    Kurihara, Chizuko; Sakurai, Akio

    1974-01-01

    Long structures such as cooling sea water pipe lines of nuclear power plants have a wide range of extent along the ground surface, and are incurred by not only the inertia forces but also forces due to ground deformations or the seismic wave propagation during earthquakes. Since previous reports indicated the earthquake free design of underground pipe lines, it is discussed in this report on behaviors of pipe lines on the ground during earthquakes and is proposed the aseismic design of pipe lines considering the effects of both inertia forces and ground deformations. (author)

  10. Effects of Climate Change on Drinking Water Distribution Network Integrity : Predicting Pipe Failure Resulting from Differential Soil Settlement

    NARCIS (Netherlands)

    Wols, B.A.; Van Daal, K.; Van Thienen, P.

    2014-01-01

    Climate change may result in lowering of ground water levels and consolidation of the soil. The resulting (differential) settlements, associated with soil property transitions, may damage underground pipe infrastructure, such as drinking water distribution sys- tems. The work presented here offers

  11. Short cracks in piping and piping welds. Seventh program report, March 1993-December 1994. Volume 4, Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)

    1995-04-01

    This is the seventh progress report of the U.S. Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports.

  12. Shock resistance of composite material pipes

    International Nuclear Information System (INIS)

    Pays, M.F.

    1995-01-01

    Composite materials have found a wide range of applications for EDF nuclear plants. Applications include fire pipework, demineralized water, service water, and emergency-supplied service water piping. Some of those pipework is classified nuclear safety, their integrity (resistance to water aging and earthquakes or accidental excess pressure (water hammer)) must be safeguarded. As composite materials generally suffer damage for low energy impacts (under 10 J), the pipes planned for the Civaux power plant have been studied for their resistance to a low speed shock (0 to 50 m/s) and of a 0 to 110 J energy level. For three representative diameters (20, 150, 600 mm), the minimum impact energy that leads to a leak has been determined to be respectively 18, 20 and 48 J. Then the leak rate versus impact energy was plotted; until roughly 90 J, the leak rate remains stable at less than 25 cm 3 /h and raises to higher values (300 cm 3 /h) afterwards. The level of leakage in the range of impact energy tested always stays within the limits set by the Safety Authorities for metallic pipes. These results have been linked to destructive examinations, to clarify the damage mechanisms. Other tests are still ongoing to follow the evolution of the damage and of the leak rate while the pipe is maintained under service pressure during one year

  13. A spreadsheet tool for the analysis of flows in small-scale water piping networks

    CSIR Research Space (South Africa)

    Adedeji, KB

    2017-07-01

    Full Text Available and the hybrid method to mention but a few, to solve a system of partly linear, and partly non-linear hydraulic equations. In this paper, the authors demonstrate the use of Excel solver to verify the Hardy Cross method for the analysis of flow in water piping...

  14. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  15. Optimal Dynamics of Intermittent Water Supply

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  16. Theoretical and experimental analysis of dynamic processes of pipe branch for supply water to the Pelton turbine

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir Lj.

    2012-01-01

    Full Text Available The paper presents the results of the analysis of pipe branch A6 to feed the Hydropower Plant ”Perućica” with integrated action Pelton turbines. The analysis was conducted experimentally (tensometric and numerically. The basis of the experimental research is the numerical finite element analysis of pipe branch A6 in pipeline C3. Pipe branch research was conducted in order to set the experiment and to determine extreme stress states. The analysis was used to perform the determination of the stress state of a geometrically complex assembly. This was done in detail as it had never been done before, even in the design phase. The actual states of the body pipe branch were established, along with the possible occurrence of water hammer accompanied by the appearance of hydraulic oscillation. This provides better energetic efficiency of the turbine devices. [Projekat Ministarstva nauke Republike Srbije, br. TR35049 and br. TR 33040

  17. Investigation of two-phase flow structure in model of draught pipe of water boiling reactor VK-300

    International Nuclear Information System (INIS)

    Efanov, A.D.; Kuznetzov, Y.N.; Kaliakin, S.G.; Lisitza, F.D.; Remizov, O.V.; Serdun, N.P.

    2001-01-01

    VK-300 reactor represents a vessel-type boiling reactor with integral arrangement of assemblies and in-vessel steam separation at one-circuit scheme. The circuit consists of core, draught pipes, and separation facilities. The vessel of VK-300 reactor is chosen on the base of the dimensions of that of VVER-1000 reactor. The following thermal-hydraulic parameters of nuclear power plant (NPP) were investigated experimentally: dependence of void fraction upon the steam quality in mixing chamber (on the draught section input); pressure losses at different, specific zones of up-flow and down-flow sections of the circuit with free circulation; degree of steam separation in the separating chamber (at the first step of phase separation) and its dependence upon steam quality; structure of steam-water flow in draught pipes (distribution of phases over the draught pipe cross- section); presence of steam hovering and height of this hovering in inter-pipe space of draught section. (author)

  18. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application

    International Nuclear Information System (INIS)

    Clement, Jason; Wang Xia

    2013-01-01

    A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. - Highlights: ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.

  19. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  20. Mouse-resistant insulated covers keep pipes from freezing

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    Fabric wellhead covers and insulated blankets are commonly used at well sites in the Wyoming coalbed methane field to keep surface pipes from freezing. These materials are often chewed up by mice who build nests close to the warm pipes. The mice attract rattlesnakes, a potentially serious problem for the workmen who check the wells daily. Kennon Products of Sheridan, Wyoming solved this problem by making a flexible covering material that has a coating of hardened guard plates that prevents mice from chewing through it. More than a hundred of Kennon's mouse-resistant wellhead covers have been used successfully in the gas fields for over a year. They can be installed in less than 30 minutes and cost only a fraction of what a fiberglass hut costs to purchase and install. Huts are being discouraged for use on federal lands because they alter the nesting patterns of eagles, who perch upon them to hunt rodents. Huts also trap methane gas, which is a potential safety hazard. Kennon's mouse-resistant wellhead covers are lower than the fiberglass huts and blend into the landscape. The company is working on camouflage colours to make wellheads less noticeable. In the future, the company plans to insulate water pipes. 1 fig.

  1. Measurement of tritium activity in the aluminum pipe of JRR-2 heavy water primary cooling system using imaging plate

    International Nuclear Information System (INIS)

    Motoishi, Shoji; Kobayashi, Katsutoshi

    2000-12-01

    JRR-2 is the heavy water cooling type nuclear reactor, which has been operated for 36 years (1960-1976) and in the process of decommissioning at present. For this reason, evaluation of tritium quantity permeated into the pipe and apparatus of the primary coolant heavy water circulating system is important. In the Radioisotope Production Division, activity of tritium in aluminum pipe was measured with imaging plate (IP), liquid scintillation analyzer and high purity germanium detector (HPGe). After acrylic paints was applied for the region except for tritium contamination on the surface of aluminum pipe, only the oxidized contaminated part was dissolved by 1.5%(1.21M) HF for 3 minutes, and measured with IP. As a result, the tritium was found to permeate in the depth of 25 μm. Moreover, 90% of it was found to be distributed within 7 μm. (author)

  2. Experimental study on the simple water hammer pump; Kan`igata water hammer pump ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Muto, M; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1997-11-25

    Outlined herein are experimental results with a water hammer pump. It is a unique pump in that it depends only on potential energy of water to pump-up water. Water flows downwards from a reservoir at a high position into the pump , and is released from the exhaust valve. When velocity of water flowing in the pipe reaches a certain level, hydraulic force exceeds gravity of the exhaust valve to rapidly closes it, which is accompanied by rapid increase in pressure in the pump. High-pressure water flows into the air chamber, after pushing up the lifting valve, to compress air in the chamber. The lifting valve is closed, when pressure in the air chamber exceeds that in the pump, to pump up water in the chamber through the lifting pipe. Closure of the lifting valve produces a negative pressure within the pump, which, together with gravity of the exhaust valve, opens the valve again. The pump lifts water at 1.64l/min under the conditions of head: 3m and lift: 6m at an efficiency of 48.1%. 1 ref., 4 fig., 2 tab.

  3. Working Fluids for Increasing Capacities of Heat Pipes

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the

  4. The influences of soil and nearby structures on dispersion characteristics of wave propagating along buried plastic pipes

    Science.gov (United States)

    Liu, Shuyong; Jiang, J.; Parr, Nicola

    2016-09-01

    Water loss in distribution systems is a global problem for the water industry and governments. According to the international water supply association (IWSA), as a result of leaks from distribution pipes, 20% to 30% of water is lost while in transit from treatment plants to consumers. Although governments have tried to push the water industry to reduce the water leaks, a lot of experts have pointed out that a wide use of plastic pipes instead of metal pipes in recent years has caused difficulties in the detection of leaks using current acoustic technology. Leaks from plastic pipes are much quieter than traditional metal pipes and comparing to metal pipes the plastic pipes have very different coupling characteristics with soil, water and surrounding structures, such as other pipes, road surface and building foundations. The dispersion characteristics of wave propagating along buried plastic pipes are investigated in this paper using finite element and boundary element based models. Both empty and water- filled pipes were considered. Influences from nearby pipes and building foundations were carefully studied. The results showed that soil condition and nearby structures have significant influences on the dispersion characteristics of wave propagating along buried plastic pipes.

  5. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  6. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  7. Simulation of pulsed neutron activation for determination of water flow in pipes

    International Nuclear Information System (INIS)

    Mattsson, H.; Owrang, F.; Nordlund, A.

    2002-01-01

    The effect of the asymmetric distribution of activated water in PNA (pulsed neutron activation) measurements has been investigated experimentally by depositing a small amount of colour, simulating the activated water, in a transparent Plexiglas pipe. Based on the colour experiments, a semi-empirical model has been developed that describes the distribution of the activated water at different distances from the activation point. The model shows that the combination of inhomogeneous activation and a radial velocity profile makes the mean velocity of the activity lower than the mean velocity of the water. It can also be seen that the velocity of the activity increases as the distance from the activation point increases. The model has been compared with experimental values from PNA measurements and the measured mean velocity shows a similar dependence on the distance form the activation point. (orig.) [de

  8. Pipe break prediction based on evolutionary data-driven methods with brief recorded data

    International Nuclear Information System (INIS)

    Xu Qiang; Chen Qiuwen; Li Weifeng; Ma Jinfeng

    2011-01-01

    Pipe breaks often occur in water distribution networks, imposing great pressure on utility managers to secure stable water supply. However, pipe breaks are hard to detect by the conventional method. It is therefore necessary to develop reliable and robust pipe break models to assess the pipe's probability to fail and then to optimize the pipe break detection scheme. In the absence of deterministic physical models for pipe break, data-driven techniques provide a promising approach to investigate the principles underlying pipe break. In this paper, two data-driven techniques, namely Genetic Programming (GP) and Evolutionary Polynomial Regression (EPR) are applied to develop pipe break models for the water distribution system of Beijing City. The comparison with the recorded pipe break data from 1987 to 2005 showed that the models have great capability to obtain reliable predictions. The models can be used to prioritize pipes for break inspection and then improve detection efficiency.

  9. The analysis of scaling mechanism for water-injection pipe columns in the Daqing Oilfield

    OpenAIRE

    Jing, Guolin; Tang, Shan; Li, Xiaoxiao; Wang, Huaiyuan

    2013-01-01

    Although water-injection in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), in the process of development in the oilfield, scale has been produced in water-injection pipe columns. The ability to prevent and control the deposition of scale is critical to the efficient recovery of crude oil from hard environments, as part of the broader discipline of “flow assurance” in the petroleum industry. To this end laboratory-scale deposition tests have been useful to und...

  10. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorination by-products in drinking water and the coatings of water pipes by automated solid-phase microextraction followed by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Tillner, Jocelyn; Hollard, Caroline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier

    2013-11-08

    In this study, an automated method for the simultaneous determination of polycyclic aromatic hydrocarbons (PAHs) and their chlorination by-products in drinking water was developed based on online solid-phase microextraction-gas chromatography-mass spectrometry. The main focus was the optimisation of the solid-phase microextraction step. The influence of the agitation rate, type of fibre, desorption time, extraction time, extraction temperature, desorption temperature, and solvent addition was examined. The method was developed and validated using a mixture of 17 PAHs, 11 potential chlorination by-products (chlorinated and oxidised PAHs) and 6 deuterated standards. The limit of quantification was 10 ng/L for all target compounds. The validated method was used to analyse drinking water samples from three different drinking water distribution networks and the presumably coal tar-based pipe coatings of two pipe sections. A number of PAHs were detected in all three networks although individual compositions varied. Several PAH chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also found, their presence correlating closely with that of their respective parent compounds. Their concentrations were always below 100 ng/L. In the coatings, all PAHs targeted were detected although concentrations varied between the two coatings (76-12,635 mg/kg and 12-6295 mg/kg, respectively). A number of chlorination by-products (anthraquinone, fluorenone, cyclopenta[d,e,f]phenanthrenone, 3-chlorofluoranthene, and 1-chloropyrene) were also detected (from 40 to 985 mg/kg), suggesting that the reaction of PAHs with disinfectant agents takes place in the coatings and not in the water phase after migration. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Domestic hot water. Measurements of consumption and heat loss from circulation pipes; Varmt brugsvand. Maaling af forbrug og varmetab fra cirkulationsledninger

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.; Schroeder, F.; Bergsoee, N.C.

    2009-07-01

    It is likely that the production and distribution of domestic hot water (DHW) in buildings will constitute a dominant share of both the present and in particular future energy design requirements. The goal of this project has been to propose more energy efficient and environmentally friendly solutions for DHW systems based on analyses of existing conditions. The possibilities include new types of circulation pipes, which have the potential of a 40 per cent reduction of heat losses. In addition to the reduction of heat losses inside the building, a low return temperature from the hot water system will have a large impact on the heat losses from the district heating network when the building is being heated by district heating. The results of this project could influence not only future buildings but also existing buildings in case of renovation of the installations. In this project measurements of water and energy consumptions have been carried out in a number of buildings, and heat losses from the production of domestic hot water and the distribution lines have been measured. In addition to the measurements, analyses and simulations have been carried out. Two models have been developed: One of an apartment room with vertical pipes passing through the room, and one of a room above a basement with horizontal heating pipes. The models make it possible to assess how much of the heat loss from the heating pipes is utilised for space heating. The following recommendations are pointed out: 1) In large buildings e.g. apartment buildings and office buildings the technical installations should be provided with meters so that it is possible to separate the energy consumption for DHW, space heating and ventilation, respectively. 2) In new buildings and in case of retrofitting existing buildings, careful planning of the placement and disposition of hot water taps compared with the location of the hot water tank or heat exchanger is recommended. Also, the necessity of a

  12. Interactions and ``puff clustering'' close to the critical point in pipe flow

    Science.gov (United States)

    Vasudevan, Mukund; Hof, Björn

    2017-11-01

    The first turbulent structures to arise in pipe flow are puffs. Albeit transient in nature, their spreading determines if eventually turbulence becomes sustained. Due to the extremely long time scales involved in these processes it is virtually impossible to directly observe the transition and the flow patterns that are eventually assumed in the long time limit. We present a new experimental approach where, based on the memoryless nature of turbulent puffs, we continuously recreate the flow pattern exiting the pipe. These periodic boundary conditions enable us to show that the flow pattern eventually settles to a statistically steady state. While our study confirms the value of the critical point of Rec 2040 , the flow fields show that puffs interact over longer ranges than previously suspected. As a consequence puffs tend to cluster and these regions of large puff densities travel across the puff pattern in a wave like fashion. While transition in Couette flow has been shown to fall into the ``directed percolation'', pipe flow may be more complicated since long range interactions are prohibited for the percolation transition type. Extensive measurements at the critical point will be presented to clarify the nature of the transition.

  13. Analysis on shock wave speed of water hammer of lifting pipes for deep-sea mining

    Science.gov (United States)

    Zhou, Zhi-jin; Yang, Ning; Wang, Zhao

    2013-04-01

    Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.

  14. Water sampling device for detecting fuel failure

    International Nuclear Information System (INIS)

    Masubuchi, Yukio.

    1997-01-01

    A notched portion is formed at the lower end of an outer cap, and an extensible air bag is disposed being in contact with the inner side of the notched portion. A compressed air is sent into the outer gap through an air supply pipe to urge coolants thereby lowering the water level. A portion of the compressed air gets out of the outer gap from the notched portion, and if air bubbles are observed on the surface of coolants in a pressure vessel of a reactor, the outer cap is confirmed to be attached to the upper lattice plate. Compressed air is supplied to the air bag to close the notched portion. Then, coolants are sucked from a water level confirmation pipe. The level of coolants is further lowered, and the compressed air is sucked from the water level confirmation pipe instead of the coolants. Then, the level of the coolants at the inner side of the inner cap is confirmed to be made lower than the upper end of the channel box of a reactor fuel assembly. Then, coolants in the channel box are sampled, as a specimen water, through a water sampling pipe. (I.N.)

  15. In-Line Acoustic Device Inspection of Leakage in Water Distribution Pipes Based on Wavelet and Neural Network

    Directory of Open Access Journals (Sweden)

    Dileep Kumar

    2017-01-01

    Full Text Available Traditionally permanent acoustic sensors leak detection techniques have been proven to be very effective in water distribution pipes. However, these methods need long distance deployment and proper position of sensors and cannot be implemented on underground pipelines. An inline-inspection acoustic device is developed which consists of acoustic sensors. The device will travel by the flow of water through the pipes which record all noise events and detect small leaks. However, it records all the noise events regarding background noises, but the time domain noisy acoustic signal cannot manifest complete features such as the leak flow rate which does not distinguish the leak signal and environmental disturbance. This paper presents an algorithm structure with the modularity of wavelet and neural network, which combines the capability of wavelet transform analyzing leakage signals and classification capability of artificial neural networks. This study validates that the time domain is not evident to the complete features regarding noisy leak signals and significance of selection of mother wavelet to extract the noise event features in water distribution pipes. The simulation consequences have shown that an appropriate mother wavelet has been selected and localized to extract the features of the signal with leak noise and background noise, and by neural network implementation, the method improves the classification performance of extracted features.

  16. Seismic re-evaluation of piping systems of heavy water plant, Kota

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2002-05-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic event. The aim of this exercise is to assess the effects of the maximum probable earthquake at the plant site on the various systems and components of the plant. This exercise is further aimed at ensuring the adequacy of seismic supports to maintain the integrity of the system in case of a seismic event and to suggest some retrofitting measures, if required. Seismic re-evaluation of the piping of Heavy Water Plant, Kota has been performed taking into account the interaction effects from the connected equipment. Each layout has been qualified using the latest provisions of ASME Code Section III, Subsection ND wherein the earthquake loading has been considered as a reversing dynamic load. The maximum combined stresses for all the layouts due to pressure, weight and seismic loadings have been found to be well within the code allowable limit. Therefore, it has been concluded that during a maximum probable seismic event, the possibility of pipe rupture can be safely

  17. Structural dynamics and fracture mechanics calculations of the behaviour of a DN 425 test piping system subjected to transient loading by water hammer

    International Nuclear Information System (INIS)

    Kussmaul, K.; Kobes, E.; Diem, H.; Schrammel, D.; Brosi, S.

    1994-01-01

    Within the scope of the German HDR safety programme, several tests were carried out to investigate transient pipe loading initiated by a simulated double-ended guillotine break event, and subsequent closure of a feedwater check valve (water hammer, blow-down). Numerical analyses by means of finite element programmes were performed in parallel to the experiments. Using water hammer tests of a DN 425 piping system with predamaged components, the procedure of such analyses will be demonstrated. The results are presented, beginning with structural dynamic calculations of the undamaged piping; followed by coupling of structural dynamics and fracture mechanics computations with simple flaw elements (line spring); and finishing with costly three-dimensional fracture mechanics analyses. A good description of the real piping behaviour can be made by the numerical methods, even in the case of high plastification processes. ((orig.))

  18. Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: techniques and experimental results.

    Science.gov (United States)

    Jeffrey Yang, Y; Haught, Roy C; Goodrich, James A

    2009-06-01

    Accurate detection and identification of natural or intentional contamination events in a drinking water pipe is critical to drinking water supply security and health risk management. To use conventional water quality sensors for the purpose, we have explored a real-time event adaptive detection, identification and warning (READiw) methodology and examined it using pilot-scale pipe flow experiments of 11 chemical and biological contaminants each at three concentration levels. The tested contaminants include pesticide and herbicides (aldicarb, glyphosate and dicamba), alkaloids (nicotine and colchicine), E. coli in terrific broth, biological growth media (nutrient broth, terrific broth, tryptic soy broth), and inorganic chemical compounds (mercuric chloride and potassium ferricyanide). First, through adaptive transformation of the sensor outputs, contaminant signals were enhanced and background noise was reduced in time-series plots leading to detection and identification of all simulated contamination events. The improved sensor detection threshold was 0.1% of the background for pH and oxidation-reduction potential (ORP), 0.9% for free chlorine, 1.6% for total chlorine, and 0.9% for chloride. Second, the relative changes calculated from adaptively transformed residual chlorine measurements were quantitatively related to contaminant-chlorine reactivity in drinking water. We have shown that based on these kinetic and chemical differences, the tested contaminants were distinguishable in forensic discrimination diagrams made of adaptively transformed sensor measurements.

  19. Applying CFD in the Analysis of Heavy-Oil Transportation in Curved Pipes Using Core-Flow Technique

    Directory of Open Access Journals (Sweden)

    S Conceição

    2017-06-01

    Full Text Available Multiphase flow of oil, gas and water occurs in the petroleum industry from the reservoir to the processing units. The occurrence of heavy oils in the world is increasing significantly and points to the need for greater investment in the reservoirs exploitation and, consequently, to the development of new technologies for the production and transport of this oil. Therefore, it is interesting improve techniques to ensure an increase in energy efficiency in the transport of this oil. The core-flow technique is one of the most advantageous methods of lifting and transporting of oil. The core-flow technique does not alter the oil viscosity, but change the flow pattern and thus, reducing friction during heavy oil transportation. This flow pattern is characterized by a fine water pellicle that is formed close to the inner wall of the pipe, aging as lubricant of the oil flowing in the core of the pipe. In this sense, the objective of this paper is to study the isothermal flow of heavy oil in curved pipelines, employing the core-flow technique. A three-dimensional, transient and isothermal mathematical model that considers the mixture and k-e  turbulence models to address the gas-water-heavy oil three-phase flow in the pipe was applied for analysis. Simulations with different flow patterns of the involved phases (oil-gas-water have been done, in order to optimize the transport of heavy oils. Results of pressure and volumetric fraction distribution of the involved phases are presented and analyzed. It was verified that the oil core lubricated by a fine water layer flowing in the pipe considerably decreases pressure drop.

  20. Advancing smoke-free public spaces: the challenge of water-pipe in the Canadian context

    Directory of Open Access Journals (Sweden)

    Lesley James

    2018-03-01

    In recent years, Canada has made great strides in securing further protection with regard to water-pipe tobacco. The battle is not yet over, and large communities within Canada continue to be without regulation. Cases from across Canada can serve as useful lessons to make progress in the rest of the country and in the global context.

  1. Simulation of water hammer experiments using RELAP5 code

    International Nuclear Information System (INIS)

    Kaliatka, A.; Vaisnoras, M.

    2005-01-01

    The rapid closing or opening of a valve causes pressure transients in pipelines. The fast deceleration of the liquid results in high pressure surges upstream the valve, thus the kinetic energy is transformed into the potential energy, which leads to the temporary pressure increases. This phenomenon is called water hammer. The intensity of water hammer effects will depend upon the rate of change in the velocity or momentum. Generally water hammer can occur in any thermal-hydraulic systems and it is extremely dangerous for the thermal-hydraulic system since, if the pressure induced exceeds the pressure range of a pipe given by the manufacturer, it can lead to the failure of the pipeline integrity. Due to its potential for damage of pipes, water hammer has been a subject of study since the middle of the nineteenth century. Many theoretical and experimental investigations were performed. The experimental investigation of the water hammer tests performed at Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT) [1] and Cold Water Hammer experiment performed by Forschungszentrum Rossendorf (CWHTF) [2] should be mentioned. The UMSICHT facility in Oberhausen was modified in order to simulate a piping system and associated supports that are typical for a nuclear power plant [3]. The Cold water hammer experiment is interesting and instructive because it covers a wide spectrum of particularities. One of them is sub-cooled water interaction with condensing steam at the closed end of the vertical pipe at room temperature and corresponding saturation pressure [4]. In the paper, the capabilities of RELAP5 code to correctly represent the water hammer phenomenon are presented. Paper presents the comparison of RELAP5 calculated and measured at UMSICHT and CWHTF test facilities pressure transient values after the fast closure (opening) of valves. The analyses of rarefaction wave travels inside the pipe and condensation of vapour bubbles in the liquid column

  2. Numerical investigation on pulsating heat pipes with nitrogen or hydrogen

    Science.gov (United States)

    Y Han, D.; Sun, X.; Gan, Z. H.; Y Luo, R.; Pfotenhauer, J. M.; Jiao, B.

    2017-12-01

    With flexible structure and excellent performance, pulsating heat pipes (PHP) are regarded as a great solution to distribute cooling power for cryocoolers. The experiments on PHPs with cryogenic fluids have been carried out, indicating their efficient performances in cryogenics. There are large differences in physical properties between the fluids at room and cryogenic temperature, resulting in their different heat transfer and oscillation characteristics. Up to now, the numerical investigations on cryogenic fluids have rarely been carried out. In this paper, the model of the closed-loop PHP with multiple liquid slugs and vapor plugs is performed with nitrogen and hydrogen as working fluids, respectively. The effects of heating wall temperature on the performance of close-looped PHPs are investigated and compared with that of water PHP.

  3. Drainage of shallow peat harvesting areas with pipe drains; Madaltuneen turvetuotantokentaen kuivatustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, V. [Vapo Oy, Jyvaeskylae (Finland)

    1997-12-01

    This study aims to develop pipe draining techniques in peat harvesting areas, which have been in active use so long time that the remaining peat layer is about one meter thick. The method should be technically and economically feasible as well as environmentally acceptable. Special attention is paid to pipe installation techniques, drain spacing and impacts on watercourses, which receive the drainage waters. After pipe installation the area was monitored by measuring pipe runoffs, water tables, moisture content of peat and quality of drain water. These are the results of second year. (orig.)

  4. Development of high-strength heavy-wall sour-service seamless line pipe for deep water by applying inline heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y.; Kondo, K.; Hamada, M.; Hisamune, N.; Murao, N.; Murase, T.; Osako, H. [Sumitomo Metal Industries Ltd., Tokyo (Japan)

    2004-07-01

    This paper provided details of a new high-strength heavy-wall sour service seamless line pipe developed for use in deep water applications. Pig iron was processed in a blast furnace and refined. Molten steel was degassed to reduce impurities and poured into a continuous caster with a round mold. Billets were then heated in a walking-beam furnace and then pierced to form a hollow shell. The shell was then rolled to a specific thickness in a compact mandrel mill and rolled to a specified outer diameter by an extracting sizer. A heating furnace was used to improve the uniformity of the pipes. The heated pipes were then moved to a cooling zone, then rotated quickly while a high-pressured jet flow was injected inside the pipe at the same time as a slit laminar flow was applied to the outside of the pipe. Higher strength was achieved by using the high performance quenching device. It was noted that while pipes manufactured using the inline heat treatment process were able to achieve higher strengths, toughness was reduced. Metallurgical tests were conducted to improve the toughness value of the seamless pipe. Both the microstructure and the fracture surface of test specimens were examined using scanning electron microscopy. Results of the tests showed that lowering sulphur (S) and titanium (Ti) content improved the toughness properties of the pipes. It was concluded that control of microalloys is important to secure improved toughness for pipes manufactured using inline heat treatments. 5 tabs., 12 figs.

  5. Water Hammer Analysis using RELAP5/MOD 3.3 for Yonggwang Nuclear Power Unit 1 and 2 Blowdown System

    International Nuclear Information System (INIS)

    Lee, Sang Il; Kim, Hea Zoo; Chu, Jung Ho; Ahn, Se Hong; Jung, Chang Ho

    2010-01-01

    Water hammer can be defined as a rapid pressure step occurring in the liquid in a closed pipe caused by a sudden change in the liquid velocity. This pressure acts for a period which is twice the transit time of sonic wave in the pipe. Generally, water hammer can occur in any thermal-hydraulic systems like nuclear power plant and is extremely dangerous for nuclear power plant piping system since, if the pressure induced exceeds the pressure range of the pipe given by the manufacturer, it can lead to the failure of the piping system integrity. For Yonggwang nuclear power unit 1 and 2, water hammer occurred repeatedly on the outlet piping of regenerative heat exchanger of steam generator blowdown system. Thus, design modification was performed to prevent the water hammer and the analysis of effect on water hammer before and after design modification was performed to verify the validity of the design modification

  6. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season.

    Science.gov (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-10-27

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight ("before") in the indoor water pipes was 15-17 °C, and the water temperature decreased to 4-6 °C after flushing for 10 min ("flushed"). The highest bacterial cell number was observed in water stagnated overnight, and was 5-11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant "flushed" and "taps" values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p heating periods.

  7. The effects of resonances on time delay estimation for water leak detection in plastic pipes

    Science.gov (United States)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.

    2018-04-01

    In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.

  8. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions

  9. Askøy municipality. Environmental status and assessment of municipal waste water with regard to the requirement of secondary treatment in the EU Urban Waste Water Directive

    OpenAIRE

    Johnsen, T.

    2011-01-01

    Measurements of nutrients available for phytoplankton, chlorophyll-a and secchidepth and control of macroalgae close to municipal waste water discharges gave classification “High” or “Good” environmental conditions in the upper part of the watermasses around Askøy. Investigations of the soft bottom fauna and visual inspection with ROV at the pipe lines ends showed natural environmental conditions except at one station where technical problems had caused a clogged discharge pipe. Good water ex...

  10. Comparative study on heat pipe performance using aqueous solutions of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, R.; Vaidyanathan, S.; Sivaraman, B. [Annamalai University, Department of Mechanical Engineering, Annamalai Nagar, Tamil Nadu (India)

    2012-12-15

    This paper deals with the performance characterization of heat pipes using an aqueous solution of long chain alcohols like n-Butanol, n-Pentanol, n-Hexanol and n-Heptanol as working mediums. These solutions are called as self-rewetting fluids, since these fluid mixtures possess a non-linear dependence of the surface tension with temperature. A cylindrical heat pipe made up of copper with two layers of wrapped screen is used as a wick material and partially filled with the self-rewetting fluid water mixture and tested for its heat transport capability like thermal efficiency and thermal resistance at different inclinations and input power levels. A number of tests have been performed with heat pipes, filled with various aqueous solutions of alcohols with a concentration of 2 ml/l in de-ionized water (DI water) on volume basis. The results obtained for heat pipes using self rewetting fluids show improved performances, when compared to DI water heat pipes. (orig.)

  11. Optimization analysis of swing check valve closing induced water hammer

    International Nuclear Information System (INIS)

    Han Wenwei; Han Weishi; Guo Qing; Wang Xin; Liu Chunyu

    2014-01-01

    A mathematical-physics model of double pump parallel feed system was constructed. The water hammer was precisely calculated, which was formed in the closing process of swing check valve. And a systematic analysis was carried out to determine the influence of the torques from both valve plate and damping torsion spring on the valve closing induced water hammer. The results show that the swing check valve would distinctly produce the water hammer during the closing procedure in the double pump parallel feed water system. The torques of the valve plate can partly reduce the water hammer effect, and implying appropriate materials of valve plate and appropriate spring can effectively relieve the harm of water hammer. (authors)

  12. Mechanism of selective corrosion in electrical resistance seam welded carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fajardo, Pedro; Godinez Salcedo, Jesus; Gonzalez Velasquez, Jorge L. [Instituto Politecnico Nacional, Mexico D.F., (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas. Dept. de Ingenieria Metalurgica

    2009-07-01

    In this investigation the studies of the mechanism of selective corrosion in electrical resistance welded (ERW) carbon steel pipe was started. Metallographic characterizations and evaluations for inclusions were performed. The susceptibility of ERW pipe to selective corrosion in sea water (NACE 1D182, with O{sub 2} or CO{sub 2} + H{sub 2}S) was studied by the stepped potential Potentiostatic electrochemical test method in samples of 1 cm{sup 3} (ASTM G5) internal surface of the pipe (metal base-weld). The tests were looking for means for predicting the susceptibility of ERW pipe to selective corrosion, prior to placing the pipeline in service. Manganese sulfide inclusions are observed deformed by the welding process and they are close to the weld centerline. A slight decarburization at the weld line is observed, and a distinct out bent fiber pattern remains despite the post-weld seam annealing. The microstructure of the weld region consists of primarily polygonal ferrite grains mixed with small islands of pearlite. It is possible to observe the differences of sizes of grain of the present phases in the different zones. Finally, scanning electron microscopic observation revealed that the corrosion initiates with the dissolution of MnS inclusions and with small crack between the base metal and ZAC. (author)

  13. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  14. 36 CFR 13.1188 - Where to get charts depicting closed waters.

    Science.gov (United States)

    2010-07-01

    ... closed waters. 13.1188 Section 13.1188 Parks, Forests, and Public Property NATIONAL PARK SERVICE... and Preserve Vessel Operating Restrictions § 13.1188 Where to get charts depicting closed waters. Closed waters and islands within Glacier Bay as described in §§ 13.1174-13.1180 of this subpart are...

  15. Water pipe (Shisha, Hookah, Arghile) Smoking and Secondhand Tobacco Smoke Effects on CYP1A2 and CYP2A6 Phenotypes as Measured by Caffeine Urine Test.

    Science.gov (United States)

    Yılmaz, Şenay Görücü; Llerena, Adrián; De Andrés, Fernando; Karakaş, Ümit; Gündoğar, Hasan; Erciyas, Kamile; Kimyon, Sabit; Mete, Alper; Güngör, Kıvanç; Özdemir, Vural

    2017-03-01

    Public policies to stop or reduce cigarette smoking and exposure to secondhand smoke and associated diseases have yielded successful results over the past decade. Yet, the growing worldwide popularity of another form of tobacco consumption, water pipe smoking, has received relatively less attention. To the best of our knowledge, no study to date has evaluated the effects of water pipe smoking on cytochrome P450 (CYP450) activities and drug interaction potential in humans, whereas only limited information is available on the impact of secondhand smoke on drug metabolism. In a sample of 99 healthy volunteers (28 water pipe smokers, 30 secondhand tobacco smoke exposed persons, and 41 controls), we systematically compared CYP1A2 and CYP2A6 enzyme activities in vivo using caffeine urine test. The median self-reported duration of water pipe smoking was 7.5 h/week and 3 years of exposure in total. The secondhand smoke group had a median of 14 h of self-reported weekly exposure to tobacco smoke indoor where a minimum of five cigarettes were smoked/hour for a total of 3.5 years (median). Analysis of variance did not find a significant difference in CYP1A2 and CYP2A6 activities among the three study groups (p > 0.05). Nor was there a significant association between the extent of water pipe or secondhand smoke exposure and the CYP1A2 and CYP2A6 activities (p > 0.05). Further analysis in a subsample with smoke exposure more than the median values also did not reveal a significant difference from the controls. Although we do not rule out an appreciable possible impact of water pipe smoke and secondhand smoke on in vivo activities of these two drug metabolism pathways, variability in smoke constituents from different tobacco consumption methods (e.g., water pipe) might affect drug metabolism in ways that might differ from that of cigarette smoke. Further studies in larger prospective samples are recommended to evaluate water pipe and secondhand tobacco smoke effects

  16. Round dance in pipes; Runddans i roer

    Energy Technology Data Exchange (ETDEWEB)

    Steensen, Anders J.

    2004-07-01

    On the offshore production plants, oil, water, and gas are separated from the well streams. The oil is sold on the market while the gas is in part exported, in part reinjected into the wells in large quantities to sustain the pressure in the reservoirs. The water is cleaned, some is pumped to the sea and some returned to the reservoir. Although these processes may seem straightforward, they cause a great deal of worry since there are so many complex processing and pipe systems taking up space. Pipes vibrate and make noise, most often because of pressure fluctuations created by the flowing liquid and gas. Or vortices form inside the pipe that make the whole pipe drone. In the offshore activities, these phenomena can be very annoying; on the Statfjord B platform people baulked at entering the area where the produced water treatment system was standing. A new system had to be developed since existing equipment would take up too much space. In the new system, a pipe section is installed in the pipeline that makes the gas/liquid mixture spin rapidly as in a centrifuge. The gas collects along the centre of the pipe and is tapped off. The principle can also be used to separate liquid from gas. In many gas treatment systems, liquid accumulation, or carry over, is detrimental. But gas dehydrators are usually dimensioned for a minimal content of liquid in the gas. Important features of these new pipe-based separators are that they are small, remove bottlenecks in the production, and are straightforward to install. But operators who live with the problems every day are very sceptical about the new separators and should be given the opportunity to test them on land before they are installed in the field.

  17. An analysis on water hammer in liquid injection shutdown system of CANDU-9

    International Nuclear Information System (INIS)

    Kim, T. H.; Heo, J.; Han, S. K.; Choi, H. Y.; No, T. S.

    2000-01-01

    The water hammer analysis code, PTRAN, is used for computation of transient pressures and pressure differentials in the Liquid Injection Shutdown System(LISS) piping network of CANDU-9 to ensure that the design allowables for LEVEL C Service Limit are met for the water hammer loads resulting from the water hammer. The LISS piping network of CANDU-9 has incorporated design improvement in considering the water hammer, such as declining the horizontal part of helium header, and raising the elevation of the overall system piping configuration, etc. The maximum pressure in the LISS piping network is found to be 7.92 MPa(a) at the closed valve in the vent line, which is below the allowable working pressure and the valve design pressure under Level C service conditions. And it is also shown that the maximum pressure in CANDU-9 is much lower than that in CANDU-6

  18. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum.

    Science.gov (United States)

    Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua

    2015-11-30

    The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system.

  19. Environmental Assisted Fatigue Evaluation of Direct Vessel Injection Piping Considering Thermal Stratification

    International Nuclear Information System (INIS)

    Kim, Taesoon; Lee, Dohwan

    2016-01-01

    As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years

  20. Drainage of shallow peat harvesting areas with pipe drains; Mataloituneen turvekentaen kuivatus putkisalaojilla

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, V.; Saenkiaho, K. [Vapo Oy, Jyvaeskylae (Finland); Rautiainen, O. [Ojamarkkinointi Oy, Heinola (Finland)

    1996-12-31

    This study aims to develop pipe draining technics in peat harvesting areas, which have been in active use so long time that the remaining peat layer is about one meter thick. The method should be technically and economically feasible as well as environmentally acceptable. Special attention is paid to pipe installation techniques, drain spacing and impacts on watercourses, which receive the drainage waters. After pipe installation the area is monitored by measuring pipe runoffs, water tables, moisture content of peat and quality of drain water

  1. 36 CFR 13.1180 - Closed waters, motor vessels and seaplanes.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Closed waters, motor vessels... and Preserve Vessel Operating Restrictions § 13.1180 Closed waters, motor vessels and seaplanes. (a... Hugh Miller Inlet. (4) Waters within the Beardslee Island group (except the Beardslee Entrance), that...

  2. Flow induced vibrations of secondary piping of L.M.F.B.R

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    A method for evaluating the characteristics of vibrations caused by internal flow in three-dimensional piping systems conveying high density fluids, is presented. The excitation of the circuit is mainly caused by the flow singularities, and it is shown that the problem may be reduced to calculate the response of the circuit to an acoustical pressure discontinuity, localized at each flow singularity. The theoretical formulation of the coupled acoustical-mechanical problem and its numerical solution by the french computer code TEDEL, are given. An experimental test of the method is described. The tested piping system consists of a stainless steel tube circuit comprising four 90 0 bends, conveying water. Vibrations are excited by a half closed gate valve. Satisfactory results are obtained concerning both the frequencies of resonance of the circuit and the level of the vibrations observed

  3. Water inventory management in condenser pool of boiling water reactor

    International Nuclear Information System (INIS)

    Gluntz, D.M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs

  4. Passive cooling applications for nuclear power plants using pulsating steam-water heat pipes

    International Nuclear Information System (INIS)

    Aparna, J.; Chandraker, D.K.

    2015-01-01

    Gen IV reactors incorporate passive principles in their system design as an important safety philosophy. Passive safety systems use inherent physical phenomena for delivering the desired safe action without any external inputs or intrusion. The accidents in Fukushima have renewed the focus on passive self-manageable systems capable of unattended operation, for long hours even in extended station blackout (SBO) and severe accident conditions. Generally, advanced reactors use water or atmospheric air as their ultimate heat sink and employ passive principles in design for enhanced safety. This paper would be discussing the experimental results on pulsating steam water heat-pipe devices and their applications in passive cooling. (author)

  5. Experimental research on density wave oscillation of steam-water two-phase flow in parallel inclined internally ribbed pipes

    International Nuclear Information System (INIS)

    Gao Feng; Chen Tingkuan; Luo Yushan; Yin Fei; Liu Weimin

    2005-01-01

    At p=3-10 MPa, G=300-600 kg/(m 2 ·s), Δt sub =30-90 degree C, and q=0-190 kW/m 2 , the experiments on steam-water two-phase flow instabilities have been performed. The test sections are parallel inclined internally ribbed pipes with an outer diameter of φ38.1 mm, a wall thinkness of 7.5 mm, a obliquity of 19.5 and a length more than 15 m length. Based on the experimental results, the effects of pressure, mass velocity, inlet subcooling and asymmetrical heat flux on steam-water two-phase flow density wave oscillation were analyzed. The experimental results showed that the flow system were more stable as pressure increased. As an increase in mass velocity, critical heat flux increased but critical steam quality decreased. Inlet subcooling had a monotone effect on density wave oscillation, when inlet subcooling decreased, critical heat flux decreased. Under a certain working condition, critical heat flux on asymmetrically heating parallel pipes is higher than that on symmetrically heating parallel pipes, that means the system with symmetrically heating parallel pips was more stable. (authors)

  6. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  7. Piping analysis for the life extension of Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-02-01

    Heavy water production in India has achieved many milestones in the past. One of the most successfully running heavy water plant situated at Kota (Rajasthan) is on the verge of completion of its design life in near future. Heavy Water Plant, Kota is hydrogen sulfide based plant. Various exercises have been planned with an aim to assess the fatigue usage for the various components of these plants in order to extend their life. Considering the process parameters and past history of the plant performance, 25 process critical nozzle locations and connected piping systems are identified. Analyses have been carried out for these critical piping systems for mainly two kinds of loading, viz. sustained loads and the expansion loads. The static analysis has been carried out to find the induced stress levels due to sustained as well as thermal expansion loading as per the design code ANSI B31.3. Due consideration is given to the design corrosion allowance while evaluating the stresses due to sustained loads. At the locations where induced stresses (S 1 ) due to the sustained loads are exceeding the allowable limits (S h ), exercises have been carried out considering the reduced corrosion allowance value. This strategy is adopted due to the fact that the corrosion measurements carried out at site at various critical locations show a very low rate of corrosion. Where it is found that system is getting qualified with reduced corrosion allowance values, it is recommended to keep that location under periodic monitoring. The strategy adopted for carrying out the analysis for thermal expansion loading is to qualify the system as per the code allowable value (S a ). Where it is found that the stresses are more than the allowable value, credit of liberal allowable value as suggested in the code i.e., with the addition of the term (S h -S 1 ) to the allowable stress (S a ) value, has been taken. If at any location, it is found that the problem of high thermal stress still persists, the

  8. The Characteristics of natural convection heat transfer of Al_2O_3–water nano fluid flow in a vertical annulus pipe

    International Nuclear Information System (INIS)

    Reinaldy Nazar

    2016-01-01

    Results of several researches have shown that nano fluids have better thermal characteristics than conventional fluid (water). In this regard, ideas for using nano fluids as an alternative heat transfer fluid in the reactor coolant system have been well developed. Meanwhile the natural convection in a vertical annulus pipe is one of the important mechanisms of heat transfer and is found at the TRIGA research reactor, the new generation nuclear power plants and other energy conversion devices. On the other hand, the heat transfer characteristics of nano fluids in a vertical annulus pipe has not been known. Therefore, it is important to do research continuously to analyze the heat transfer nano fluids in a vertical annulus pipe. This study has carried out numerical analysis by using computer code of CFD (computational of fluids dynamic) on natural convection heat transfer characteristics of nano fluids flow of Al_2O_3-water 2 % volume in the vertical annulus pipe. The results showed an increase in heat transfer performance (Nusselt numbers - NU) by 20.5 % - 35 %. In natural convection mode with Rayleigh numbers 2.471 e"+"0"9 ≤ Ra ≤ 1.955 e"+"1"3 obtained empirical correlations for water is N_U = 1.065 (R_a(D_H/x))"0"."1"7"9 and empirical correlations for Al_2O_3-water nano fluids is N_U = 14.869 (R_a(D_H/x))"0"."1"1"5.(author)

  9. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  10. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  11. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    International Nuclear Information System (INIS)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage

  12. Stress analysis of the O-element pipe during the process of flue gases purification

    Directory of Open Access Journals (Sweden)

    Nekvasil R.

    2008-11-01

    Full Text Available Equipment for flue gases purification from undesired substances is used throughout power and other types of industry. This paper deals with damaging of the O-element pipe designed to remove sulphur from the flue gases, i.e. damaging of the pipe during flue gases purification. This purification is conducted by spraying the water into the O-shaped pipe where the flue gases flow. Thus the sulphur binds itself onto the water and gets removed from the flue gas. Injection of cold water into hot flue gases, however, causes high stress on the inside of the pipe, which can gradually damage the O-element pipe. In this paper initial injection of water into hot pipe all the way to stabilization of temperature fields will be analyzed and the most dangerous places which shall be considered for fatigue will be determined.

  13. 4D ERT Monitoring of Subsurface Water Pipe Leakage During a Controlled Field Experiment

    Science.gov (United States)

    Inauen, C.; Chambers, J. E.; Wilkinson, P. B.; Meldrum, P.; Swift, R. T.; Uhlemann, S.; Gunn, D.; Dashwood, B.; Taxil, J.; Curioni, G.

    2016-12-01

    Locating and delineating leakage from subsurface pipelines is an important task for civil engineers. 4D Electrical Resistivity Tomography (ERT) allows changes in subsurface resistivity to be imaged at a high spatial and temporal resolution in a minimally invasive manner. It is therefore a promising tool to supplement conventional point-sensing techniques to monitor subsurface flow processes. To assess the efficacy of ERT for pipe leakage monitoring several controlled leak experiments were carried out at a test site in Blagdon, Bristol, UK. To simulate the leak, a plastic pipe with a hole was buried below a flat, grassed area at a depth of 0.7 m, representing a standard UK mains water pipe installation. The water table at the site lies well below the surface meaning that the experiment took entirely place in the vadose zone, where changes in resistivity are primarily sensitive to water content variations. The ERT array covered an area of 6.5m x 6.5m around the leak location. Data acquisition was carried out with the BGS PRIME (Proactive Infrastructure Monitoring and Evaluation) system, which facilitates remote scheduling and autonomous ERT data collection and transmission. To obtain the resistivity changes of the subsurface a 4D inversion was carried out using a Gauss-Newton approach with spatial and temporal smoothness constraints. We were able to reliably observe the onset, spread and cessation of the leakage. Measurements from in-situ soil sensors at several depths above and below the leak complemented the ERT data and allowed us to assess their reliability and directly relate them to hydrogeological processes. Moreover, through experimental tests with soil samples from the test area, a Waxman-Smits relation was obtained to directly convert the changes in electrical resistivity to gravimetric soil moisture content. With future experiments on the test site more work is planned towards survey optimization, automated processing and tracking of leakage plumes.

  14. Non-stationary flow of hydraulic oil in long pipe

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  15. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  16. Modeling and Optimization for Management of Intermittent Water Supply

    Science.gov (United States)

    Lieb, A. M.; Wilkening, J.; Rycroft, C.

    2014-12-01

    In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.

  17. Investigation of transient cavitating flow in viscoelastic pipes

    International Nuclear Information System (INIS)

    Keramat, A; Tijsseling, A S; Ahmadi, A

    2010-01-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  18. Investigation of transient cavitating flow in viscoelastic pipes

    Science.gov (United States)

    Keramat, A.; Tijsseling, A. S.; Ahmadi, A.

    2010-08-01

    A study on water hammer in viscoelastic pipes when the fluid pressure drops to liquid vapour pressure is performed. Two important concepts including column separation and the effects of retarded strains in the pipe wall on the fluid response have been investigated separately in recent works, but there is some curiosity as to how the results for pressure and discharge are when column separation occurs in a viscoelastic pipe. For pipes made of plastic such as polyethylene (PE) and polyvinyl chloride (PVC), viscoelasticity is a crucial mechanical property which changes the hydraulic and structural transient responses. Based on previous developments in the analysis of water hammer, a model which is capable of analysing column separation in viscoelastic pipes is presented and used for solving the selected case studies. For the column-separation modelling the Discrete Vapour Cavity Model (DVCM) is utilised and the viscoelasticity property of the pipe wall is modelled by Kelvin-Voigt elements. The effects of viscoelasticity play an important role in the column separation phenomenon because it changes the water hammer fundamental frequency and so affects the time of opening or collapse of the cavities. Verification of the implemented computer code is performed for the effects of viscoelasticity and column separation - separately and simultaneously - using experimental results from the literature. In the provided examples the focus is placed on the simultaneous effect of viscoelasticity and column separation on the hydraulic transient response. The final conclusions drawn are that if rectangular grids are utilised the DVCM gives acceptable predictions of the phenomenon and that the pipe wall material's retarded behaviour strongly dampens the pressure spikes caused by column separation.

  19. Analysis of the Effect of Explosion on Altering the Tensions and Strains in Buried Water Pipes

    Directory of Open Access Journals (Sweden)

    Ebrahim Alamatian

    2015-09-01

    Full Text Available Pipelines that are buried in ground are used for transference of water and energy sources. These lines are considered infrastructures and have a high importance. In this paper behavior of soil and pipes are simulated using the finite-element based software ABAQUS, and effect of blast wave on the amount of tension and displacement of a pipe is investigated. The simulations are run for the pipe’s substance, burial depth, dimension, and also the intensity and situation of the explosion. AUTODYN software is used for evaluation of blast wave’s power. Simulation results show the positive effect of increasing the pipe’s dimension and burial depth on reducing the destruction caused by explosion.

  20. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  1. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  2. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it

  3. Leak isolation self-repairing tape for a water storage vessel and piping against holes

    International Nuclear Information System (INIS)

    Nagaya, Kosuke; Sekiguchi, Takahiro; Chen, Zhichao; Murakami, Iwanori

    2007-01-01

    A new type taping for a water storage vessel or piping is presented, in which water leakage is isolated automatically by its self-repairing mechanism against holes. The self-repairing unit (sealant layer) is consisting of three pieces of net with polymer particles inside lattices. Polymer particles, which expand their volume with water, is used for having self-repairing forces. In ordinary tapes, water leaks along the boundary between the tape and the vessel. In order to retain the leak isolation force, this article first discusses a method for making the sealant tape, then develops a method for fixing the sealant to the vessel. The portion of water leakage can be checked on this tape, and the method of detecting the hole or crack portion of the vessel is also presented by using the tape. (author)

  4. Pipe line systems in nuclear power plant

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Tanno, Kazuo; Shibato, Eizo.

    1979-01-01

    Purpose: To prevent stress corrosion cracks, in particular, for branched pipeways by conducting water quality control in the branched pipeways as well as in the main pipeways, and reducing the thermal stress in the branched pipeways. Constitution: A water quality monitoring device is provided to a drain pipe and a failed element detection pipe to monitor the quality of stagnated water continuously or periodically. If the impurity concentration or oxygen concentration exceeds a specified value in the stagnated water, a drain valve or a check valve is opened by a signal from the water quality monitoring device to replace the stagnated water with recycling water in the main pipeway. The temperature for the branched loop pipeway and the main pipeway are collectively kept to a same temperature to thereby reduce the thermal stress in the branched pipeway. (Kawakami, Y.)

  5. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  6. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids

    International Nuclear Information System (INIS)

    Huminic, Gabriela; Huminic, Angel

    2013-01-01

    Highlights: • Numerical study of nanofluid heat transfer in thermosyphon heat pipes is performed. • Effect of nanoparticle concentration and operating temperature are studied. • Fe 2 O 3 –water nanofluid with 5.3% volume concentration shows the best performance. • Results show the improvement the thermal performances of thermosyphon heat pipe with nanofluids. - Abstract: In this work, a three-dimensional analysis is used to investigate the heat transfer of thermosyphon heat pipe using water and nanofluids as the working fluid. The study focused mainly on the effects of volume concentrations of nanoparticles and the operating temperature on the heat transfer performance of the thermosyphon heat pipe using the nanofluids. The analysis was performed for water and γ-Fe 2 O 3 nanoparticles, three volume concentrations of nanoparticles (0 vol.%, 2 vol.% and 5.3 vol.%) and four operating temperatures (60, 70, 80 and 90 °C). The numerical results show that the volume concentration of nanoparticles had a significant effect in reducing the temperature difference between the evaporator and condenser. Experimental and numerical results show qualitatively that the thermosyphon heat pipe using the nanofluid has better heat transfer characteristics than the thermosyphon heat pipe using water

  7. Performance analysis of a solar still coupled with evacuated heat pipes

    Science.gov (United States)

    Pramod, B. V. N.; Prudhvi Raj, J.; Krishnan, S. S. Hari; Kotebavi, Vinod

    2018-02-01

    In developing countries the need for better quality drinking water is increasing steadily. We can overcome this need by using solar energy for desalination purpose. This process includes fabrication and analysis of a pyramid type solar still coupled with evacuated heat pipes. This experiment using evacuated heat pipes are carried in mainly three modes namely 1) Still alone 2) Using heat pipe with evacuated tubes 3)Using evacuated heat pipe. For this work single basin pyramid type solar still with 1m2 basin area is fabricated. Black stones and Black paint are utilised in solar still to increase evaporation rate of water in basin. The heat pipe’s evaporator section is placed inside evacuated tube and the heat pipe’s condenser section is connected directly to the pyramid type solar still’s lower portion. The output of distillate water from still with evacuated heat pipe is found to be 40% more than the still using only evacuated tubes.

  8. Kasza: design of a closed water system for the greenhouse horticulture.

    Science.gov (United States)

    van der Velde, Raphaël T; Voogt, Wim; Pickhardt, Pieter W

    2008-01-01

    The need for a closed and sustainable water system in greenhouse areas is stimulated by the implementation in the Netherlands of the European Framework Directive. The Dutch national project Kasza: Design of a Closed Water System for the Greenhouse Horticulture will provide information how the water system in a greenhouse horticulture area can be closed. In this paper the conceptual design of two systems to close the water cycle in a greenhouse area is described. The first system with reverse osmosis system can be used in areas where desalination is required in order to be able to use the recycle water for irrigation of all crops. The second system with advanced oxidation using UV and peroxide can be applied in areas with more salt tolerant crops and good (low sodium) water sources for irrigation. Both systems are financially feasible in new greenhouse areas with substantial available recycle water. (c) IWA Publishing 2008.

  9. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1993-01-01

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  10. Evaluation of annual corrosion tests for aggressive water

    Science.gov (United States)

    Dubová, V.; Ilavský, J.; Barloková, D.

    2011-12-01

    Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

  11. Plug the socket of the main closing valve in a nuclear power plant

    International Nuclear Information System (INIS)

    Neupauer, J.; Bednar, B.

    1988-01-01

    The plug is designed for closing the main closing valve socket during a refuelling shutdown of a nuclear power plant. The plug is fixed in the using jaws forced against the socket ring part. The socket is sealed by expanding a ring between two cone trays. A valve provided in the plug allows draining the pipe. The plug is inserted in the socket using a jib suspended on a rail. Following sealing both sockets the inner surfaces of the closing valve can be decontaminated. Following decontamination, a water-proof cover is slid over the plug protecting the plug moving mechanism from damage. (J.B.). 1 fig

  12. Design criteria for piping and nozzles program

    International Nuclear Information System (INIS)

    Moore, S.E.; Bryson, J.W.

    1977-01-01

    This report reviews the activities and accomplishments of the Design Criteria for Piping and Nozzles program being conducted by the Oak Ridge National Laboratory for the period July 1, 1975, to September 30, 1976. The objectives of the program are to conduct integrated experimental and analytical stress analysis studies of piping system components and isolated and closely-spaced pressure vessel nozzles in order to confirm and/or improve the adequacy of structural design criteria and analytical methods used to assure the safe design of nuclear power plants. Activities this year included the development of a finite-element program for analyzing two closely spaced nozzles in a cylindrical pressure vessel; a limited-parameter study of vessels with isolated nozzles, finite-element studies of piping elbows, a fatigue test of an out-of-round elbow, summary and evaluation of experimental studies on the elastic-response and fatigue failure of tees, parameter studies on the behavior of flanged joints, publication of fifteen topical reports and papers on various experimental and analytical studies; and the development and acceptance of a number of design rules changes to the ASME Code. 2 figures, 2 tables

  13. Farm Water Supply and Sanitation--Pipe, Plumbing, Skills and Symbols. Student Materials. V.A. III. V-D-1, V-D-2.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Designed for use by individuals enrolled in vocational agricultural classes, these student materials deal with farm water supply, sanitation, and plumbing skills. Topics covered in the unit are maintaining the farm water supply; repairing faucets and valves, leaks in pipes and storage tanks, and water closets; clearing clogged drains and traps;…

  14. CLOSYS: Closed System for Water and Nutrient Management in Horticulture

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Dieleman, J.A.; Boulard, T.; Garate, A.; Kittas, C.; Buschmann, C.; Brajeul, E.; Wieringa, G.; Groot, de F.; Loon, van A.; Kocsanyi, L.

    2006-01-01

    The EU project CLOSYS aimed at developing a CLOsed SYStem for water and nutrients in horticulture. The main objective was to control water and nutrients accurately such that pollution is minimized and crop quality enhanced. The closed system as developed in this project consists of crop growth

  15. Estimating head and frictional losses through pipe fittings in building ...

    African Journals Online (AJOL)

    By extending pipe length by equal increments, with corresponding increments in number of sanitary appliances and total water flow rates to a water distribution system of a building, fractions of the total frictional loss throu-gh pipe fittings for varying work complexities were obtained. The fractions varied from 0.342 to 0.377 as ...

  16. Calculation of forces on reactor containment fan cooler piping

    International Nuclear Information System (INIS)

    Miller, J.S.; Ramsden, K.

    2004-01-01

    The purpose of this paper is to present the results of the Reactor Containment Fan Cooler (RCFC) system piping load calculations. These calculations are based on piping loads calculated using the EPRI methodology and RELAP5 to simulate the hydraulic behavior of the system. The RELAP5 generated loads were compared to loads calculated using the EPRI GL-96-06 methodology. This evaluation was based on a pressurized water reactor's RCFC coils thermal hydraulic behavior during a Loss of Offsite Power (LOOP) and a loss of coolant accident (LOCA). The RCFC consist of two banks of service water and chill water coils. There are 5 SX and 5 chill water coils per bank. Therefore, there are 4 RCFC units in the containment with 2 banks of coils per RCFC. Two Service water pumps provide coolant for the 4 RCFC units (8 banks total, 2 banks per RCFC unit and 2 RCFC units per pump). Following a LOOP/LOCA condition, the RCFC fans would coast down and upon being re-energized, would shift to low-speed operation. The fan coast down is anticipated to occur very rapidly due to the closure of the exhaust damper as a result of LOCA pressurization effects. The service water flow would also coast down and be restarted in approximately 43 seconds after the initiation of the event. The service water would drain from the RCFC coils during the pump shutdown and once the pumps restart, water is quickly forced into the RCFC coils causing hydraulic loading on the piping. Because of this scenario and the potential for over stressing the piping, an evaluation was performed by the utility using RELAP5 to assess the piping loads. Subsequent to the hydraulic loads being analyzed using RELAP5, EPRI through GL-96-06 provided another methodology to assess loads on the RCFC piping system. This paper presents the results of using the EPRI methodology and RELAP5 to perform thermal hydraulic load calculations. It is shown that both EPRI methodology and RELAP5 calculations can be used to generate hydraulic loads

  17. Kasza: Design of a closed water system for the greenhouse horticulture

    NARCIS (Netherlands)

    Velde, van der R.T.; Voogt, W.; Pickhardt, P.W.

    2008-01-01

    The need for a closed and sustainable water system in greenhouse areas is stimulated by the implementation in the Netherlands of the European Framework Directive. The Dutch national project Kasza: Design of a Closed Water System for the Greenhouse Horticulture will provide information how the water

  18. Evaluation of the influence of water and oil derivatives absorption on PVC pipes

    International Nuclear Information System (INIS)

    Carpio, D.C.F. del; D'Almeida, J.R.M.

    2010-01-01

    PVC is the only polymer of large consume that is not totally obtained from petroleum, since it contains 57% of chlorine. As chlorine containing materials are resistant to bacteria rich environments, such as buried pipes, PVC is being used for fluid transportation, principally water, but it can also be considered as an alternative material for the transportation of other fluids. This work analyzes the aging behavior of PVC exposed to water, ethanol and diesel oil, using TGA, DSC, FT-IR and DR-X techniques. The results showed that the chemical structure of PVC is not affected by exposure to water and ethanol. For these fluids a dipolar interaction could be occurring, increasing at the beginning of the absorption process, the polymer thermal stability. The diesel oil caused plasticization, with reduction of the Tg since the beginning of the aging process. (author)

  19. Water level detection pipeline

    International Nuclear Information System (INIS)

    Koshikawa, Yukinobu; Imanishi, Masatoshi; Niizato, Masaru; Takagi, Masahiro

    1998-01-01

    In the present invention, water levels of a feedwater heater and a drain tank in a nuclear power plant are detected at high accuracy. Detection pipeline headers connected to the upper and lower portions of a feedwater heater or a drain tank are connected with each other. The connection line is branched at appropriate two positions and an upper detection pipeline and a lower detection pipeline are connected thereto, and a gauge entrance valve is disposed to each of the detection pipelines. A diaphragm of a pressure difference generator is connected to a flange formed to the end portion. When detecting the change of water level in the feedwater heater or the drain tank as a change of pressure difference, gauge entrance valves on the exit side of the upper and lower detection pipelines are connected by a connection pipe. The gauge entrance valve is closed, a tube is connected to the lower detection pipe to inject water to the diaphragm of the pressure difference generator passing through the connection pipe thereby enabling to calibrate the pressure difference generator. The accuracy of the calibration of instruments is improved and workability thereof upon flange maintenance is also improved. (I.S.)

  20. Detection of water leakage in buried pipes using infrared technology; a comparative study of using high and low resolution infrared cameras for evaluating distant remote detection

    OpenAIRE

    Shakmak, B; Al-Habaibeh, A

    2015-01-01

    Water is one of the most precious commodities around the world. However, significant amount of water is lost daily in many countries through broken and leaking pipes. This paper investigates the use of low and high resolution infrared systems to detect water leakage in relatively dry countries. The overall aim is to develop a non-contact and high speed system that could be used to detect leakage in pipes remotely via the effect of the change in humidity on the temperature of the ground due to...

  1. Effect of nanofluids on thermal performance of heat pipes

    OpenAIRE

    Ferizaj, Drilon; Kassem, Mohamad

    2014-01-01

    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...

  2. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines

    Directory of Open Access Journals (Sweden)

    Ali M. Sadeghioon

    2014-02-01

    Full Text Available Asset monitoring, specifically infrastructure monitoring such as water distribution pipelines, is becoming increasingly critical for utility owners who face new challenges due to an aging network. In the UK alone, during the period of 2009–2010, approximately 3281 mega litres (106 of water were wasted due to failure or leaks in water pipelines. Various techniques can be used for the monitoring of water distribution networks. This paper presents the design, development and testing of a smart wireless sensor network for leak detection in water pipelines, based on the measurement of relative indirect pressure changes in plastic pipes. Power consumption of the sensor nodes is minimised to 2.2 mW based on one measurement every 6 h in order to prolong the lifetime of the network and increase the sensor nodes’ compatibility with current levels of power available by energy harvesting methods and long life batteries. A novel pressure sensing method is investigated for its performance and capabilities by both laboratory and field trials. The sensors were capable of measuring pressure changes due to leaks. These pressure profiles can also be used to locate the leaks.

  3. Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water

    Directory of Open Access Journals (Sweden)

    Christian Klassert

    2015-07-01

    Full Text Available Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 m3 per year significantly below the absolute scarcity threshold of 500 m3, and strong population growth, especially due to the Syrian refugee crisis. A transition to more sustainable water consumption patterns will likely require Jordan’s water authorities to rely more strongly on water demand management in the future. We conduct a case study of the effects of pricing policies, using an agent-based model of household water consumption in Jordan’s capital Amman, in order to analyze the distribution of burdens imposed by demand-side policies across society. Amman’s households face highly intermittent piped water supply, leading them to supplement it with water from storage tanks and informal private tanker operators. Using a detailed data set of the distribution of supply durations across Amman, our model can derive the demand for additional tanker water. We find that integrating these different supply sources into our model causes demand-side policies to have strongly heterogeneous effects across districts and income groups. This highlights the importance of a disaggregated perspective on water policy impacts in order to identify and potentially mitigate excessive burdens.

  4. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  5. Performance Study of Solar Heat Pipe with Different Working Fluids and Fill Ratios

    Science.gov (United States)

    Harikrishnan, S. S.; Kotebavi, Vinod

    2016-09-01

    This paper elaborates on the testing of solar heat pipes using different working fluids, fill ratios and tilt angles. Methanol, Acetone and water are used as working fluids, with fill ratios 25%, 50%, 75% and 100%. Experiments were carried out at 600 and 350 inclinations. Heat pipe condenser section is placed inside a water basin containing 200ml of water. The evaporator section is exposed to sunlight where the working fluid gets heated and it becomes vapour and moves towards the condenser section. In the condenser section the heat is given to the water in the basin and the vapour becomes liquid and comes back to the evaporator section due to gravitational force. Two modes of experiments are carried out: 1) using a parabolic collector and 2) using heat pipe with evacuated tubes. On comparative study, optimum fill ratio is been found to be 25% in every case and acetone exhibited slightly more efficiency than methanol and water. As far as the heat pipe orientation is concerned, 600 inclination of the heat pipe showed better performance than 350

  6. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 5. Summary - Piping Review Committee conclusions and recommendations

    International Nuclear Information System (INIS)

    1985-04-01

    This document summarizes a comprehensive review of NRC requirements for Nuclear Piping by the US NRC Piping Review Committee. Four topical areas, addressed in greater detail in Volumes 1 through 4 of this report, are included: (1) Stress Corrosion Cracking in Piping of Boiling Water Reactor Plants; (2) Evaluation of Seismic Design; (3) Evaluation of Potential for Pipe Breaks; and (4) Evaluation of Other Dynamic Loads and Load Combinations. This volume summarizes the major issues, reviews the interfaces, and presents the Committee's conclusions and recommendations for updating NRC requirements on these issues. This report also suggests research or other work that may be required to respond to issues not amenable to resolution at this time

  7. Overview of Prevention for Water Hammer by Check Valve Action in Nuclear Reactor

    International Nuclear Information System (INIS)

    Kim, Dayong; Yoon, Hyungi; Seo, Kyoungwoo; Kim, Seonhoon

    2016-01-01

    Water hammer can cause serious damage to pumping system and unexpected system pressure rise in the pipeline. In nuclear reactor, water hammer can influence on the integrity of safety related system. Water hammer in nuclear reactor have been caused by voiding in normally water-filled lines, steam condensation line containing both steam and water, as well as by rapid check valve action. Therefore, this study focuses on the water hammer by check valve among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. This study focuses on the water hammer by check valve action among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. If the inadvertent pump trip or pipe rupture in high velocity and pressure pipe is predicted, the fast response check valve such as tiled disc, dual disc and nozzle check valve should be installed in the system. If the inadvertent pump trip or pipe rupture in very high velocity and pressure pipe and excessively large revered flow velocity are predicted, the very slowly closing check valve such as controlled closure check valve should be installed in the system

  8. Overview of Prevention for Water Hammer by Check Valve Action in Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dayong; Yoon, Hyungi; Seo, Kyoungwoo; Kim, Seonhoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Water hammer can cause serious damage to pumping system and unexpected system pressure rise in the pipeline. In nuclear reactor, water hammer can influence on the integrity of safety related system. Water hammer in nuclear reactor have been caused by voiding in normally water-filled lines, steam condensation line containing both steam and water, as well as by rapid check valve action. Therefore, this study focuses on the water hammer by check valve among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. This study focuses on the water hammer by check valve action among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. If the inadvertent pump trip or pipe rupture in high velocity and pressure pipe is predicted, the fast response check valve such as tiled disc, dual disc and nozzle check valve should be installed in the system. If the inadvertent pump trip or pipe rupture in very high velocity and pressure pipe and excessively large revered flow velocity are predicted, the very slowly closing check valve such as controlled closure check valve should be installed in the system.

  9. [Analysis of different pipe corrosion by ESEM and bacteria identification by API in pilot distribution network].

    Science.gov (United States)

    Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun

    2008-07-01

    To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.

  10. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Anglaret, G.; Lasne, M.

    1983-08-01

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  11. Probabilistic fracture mechanics analysis for leak-before-break evaluation of light water reactor's piping

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Yagawa, Genki; Akiba, Hiroshi; Fujioka, Terutaka.

    1997-01-01

    This paper describes Probabilistic Fracture Mechanics (PFM) analyses for quantitative evaluation of the likelihood of Leak-Before-Break (LBB) of Light Water Reactor's (LWR's) piping. The PFM analyses in general assume probabilistic distributions of initial crack size, applied stress cycles, crack growth laws, fracture criteria, leakage detection capability, defect inspection capability and so on. Referring to the deterministic procedure for LBB evaluation, most appropriate PFM models and data for LBB evaluation are discussed. Here the LBB index is newly proposed in order to quantitatively evaluate the likelihood of LBB. Through intensive sensitivity analyses, it is clarified that the LBB is more likely to occur for larger diameter pipe; the performance of leakage detection significantly affects the LBB likelihood; the LBB likelihood increases with plant's aging even conservatively assuming leak detection capability; the R6 method (Category 1, Option 1) for fracture criterion gives very conservative results; and In-Service Inspection (ISI) reduces the increase rate of failure probability than the failure probability itself. (author)

  12. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  13. Pipe-to-pipe impact program

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984

  14. Leak-thight seals got high pressure testing of pipes, tanks, valves

    International Nuclear Information System (INIS)

    Estrade, J.

    1985-01-01

    Leak-tight seals ensure quick, safe and efficient testing of pipes with plain-ended or flanged openings, valves with flanged or welded edges, manifields, recipients, etc. They are inserted into the pipe end manually then simply a slight turn of the seal treated wheel commences the pressure test. Hydraulic pressure is supplied by a pump through the inlet seal and air is purged through the outlet seal which then closes. The higher the pressure, the greater the sealing strength of the seal which prevents accidental unplugging. There are different types of seals: for interior plain-ended openings, for pipes with plain-ended opening, for flanged pipes. (author)

  15. Model engineering for piping layout of boiling water reactor nuclear station

    International Nuclear Information System (INIS)

    Tsukada, Koji; Uchiyama, Masayuki; Wada, Takanao; Jibu, Noboru.

    1977-01-01

    A nuclear power station is made up of a wide variety of equipment, piping, ventilation ducts, conduits, and cable trays, etc. Even if equipment arrangement and piping layout are carefully planned on drawings, troubles such as interference often occur at field installation. Accordingly, it is thought very useful to make thorough examinations with plastic three-dimensional models in addition to drawings in reducing troubles at field, shortening the construction period, and improving economics. Examination with plastic models offers the following features: (1) It permits visual three-dimensional examination. (2) Group thinking and examination is possible. (3) Troubles due to failure to understand complicated drawings can be reduced drastically. Manufacturing a 1/20 scale model of the reactor building of the Tokai No. 2 Power Station of the Japan Atomic Power Co., Hitachi has performed model engineering-solution of interference troubles related to equipment and piping, securing of work space for in-service inspection (ISI), carry-in/installation of various equipment and piping, and determination of the piping route of which only the starting and terminating points were given under the complicated ambient conditions. Success with this procedure has confirmed that model engineering is an effective technique for future plant engineering. (auth.)

  16. Experimental Investigation on Corrosion of Cast Iron Pipes

    Directory of Open Access Journals (Sweden)

    H. Mohebbi

    2011-01-01

    Full Text Available It is well known that corrosion is the predominant mechanism for the deterioration of cast iron pipes, leading to the reduction of pipe capacity and ultimate collapse of the pipes. In order to assess the remaining service life of corroded cast iron pipes, it is imperative to understand the mechanisms of corrosion over a long term and to develop models for pipe deterioration. Although many studies have been carried out to determine the corrosion behavior of cast iron, little research has been undertaken to understand how cast iron pipes behave over a longer time scale than hours, days, or weeks. The present paper intends to fill the gap regarding the long-term corrosion behaviour of cast iron pipes in the absence of historical data. In this paper, a comprehensive experimental program is presented in which the corrosion behaviour of three exservice pipes was thoroughly examined in three simulated service environments. It has been found in the paper that localised corrosion is the primary form of corrosion of cast iron water pipes. It has also been found that the microstructure of cast irons is a key factor that affects the corrosion behaviour of cast iron pipes. The paper concludes that long-term tests on corrosion behaviour of cast iron pipes can help develop models for corrosion-induced deterioration of the pipes for use in predicting the remaining service life of the pipes.

  17. Finite-element analysis of flawed and unflawed pipe tests

    International Nuclear Information System (INIS)

    James, R.J.; Nickell, R.E.; Sullaway, M.F.

    1989-12-01

    Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a ''macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab

  18. An experimental study of the response of the multiple support piping systems

    International Nuclear Information System (INIS)

    Chiba, T.; Koyanagi, R.

    1987-01-01

    From the test results, following remarks have been obtained. 1. Since the effect of internal pressure was not so small on the stress response, its effect should be considered in the design of piping systems. 2. The effect of the phase of excitations was fairly dominant to the response of piping systems. From this fact, the adopting of the support structures which have different dynamic characteristics may be one of the more realistic approaches to reduce the response of piping systems. 3. The acceleration responses near the support points are always underestimated because the natural modes of the analysis are zero at these support points. 4. If the pseudo-static response is dominant, the stress responses near the support points are always overestimated by the ABS method to support groups. In such case the SRSS method is recommended. 5. The 10% method to the closely spaced modes is conservative for the flexible piping. The closely spaced mode methods to these flexible piping systems should be used carefully. 6. The SRSS combination method is offered the reasonable results to the space, modes and support groups in the multiple response spectra method. (orig.)

  19. Evaluation of stresses in large diameter, thin walled piping at support locations

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.; Rawls, G.B. Jr.

    1992-01-01

    The highest stresses in many thin walled piping systems are the local stresses at the pipe supports. These secondary stresses are caused by saddles or other structural discontinuities that restrain pipe ovalization. A static analysis of a thin walled pipe supported on structural steel saddle under dead weight loading is presented. The finite element analysis is performed using a shell model with distributed gravity and hydrostatic pressure loading. Parametric studies on global and local stress are performed to determine the effect of the pipe diameter to thickness ratio. Two aspects of the saddle design are also investigated: the effect of saddle width, and the effect of saddle wrap angle. Additionally, the computed stresses are compared to closed form solutions

  20. Laser fluorescent method for monitoring leaks from petrol pipes based on the neural network algorithm

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2014-01-01

    Full Text Available Current systems for monitoring leaks from petrol pipes can detect large leaks only, and their sensitivity limit is about 1% of the whole petrol pipe’s capacity. In this paper, a problem of remote detection of small leaks (less than 1% from petrol pipes was considered. One of possible variations of such a system is a monitoring system of oil pollution at the earth surface along the petrol pipe. In this paper experimentally obtained data such as fluorescence spectra of oil products (crude oil, light-end oil products, heavy oil products, various earth surfaces (soil, vegetation, water, asphalt and oil products spilled over various earth's surface were used for the excitation wavelength of 266 nm. It was shown that use of the laser method based on detection of fluorescence radiation within three narrow spectral bands and a neural network algorithm of measured data processing allowed one to detect oil pollution on the earth surface with a probability of correct classification close to 1 and low probability of false alarm.

  1. Limit load solutions for piping branch junctions under out-of-plane bending

    International Nuclear Information System (INIS)

    Xu, Ying Hu; Lee, Kuk Hee; Jeon, Jun Young; Kim, Yun Jae

    2009-01-01

    Approximate plastic limit load solutions for piping branch junctions under out-of plane bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. Two types of bending are considered; out-of-plane bending to the branch pipe and out-of-plane bending to the run pipe. Accordingly closed-form approximations are proposed for piping branch junctions under out-of-plane bending based on the FE results. The proposed solutions are valid for the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 2.0 to 20.0. And, this study provides effects of reinforcement area on plastic limit loads.

  2. Screening method for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Lee, Na Young; Oh, Young Jin; Kim, Ji Hyun; Park, Jin Ho; Sohn, Chang Ho

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon has persisted its impact on plant reliability and personnel safety. Unless we change the operation condition drastically, most parameters affecting FAC will not be effectively controlled. In order to help expand piping inspection coverage, we have developed a screening approach to monitor the wall thinning by direct current potential drop (DCPD) technique. To improve the applicability to the complex piping network such as the secondary cooling water system in PWR's, we devised the equipotential control method that can eliminate undesired leakage currents outside a measurement section. In this paper, we present Wide Range Monitoring (WiRM) and Narrow Range Monitoring (NaRM) with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to rapidly monitor the thinning of piping. Based on the WiRM results, susceptible locations can be identified for further inspection by ultrasound technique (UT). On-line monitoring of a thinned location can be made by NaRM. Finite element analysis results and a closed-form resistance model are developed for the comparison with measured wall thinning by the developed DCPD technique. Verification experiments were conducted using UT as the reference. The result shows that model predictions and the experimental results agree well to confirm that both WiRM and NaRM based on ES-DCPD can be applicable to FAC management efforts

  3. Screening method for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, K.H.; Hwang, I.S.; Lee, N.Y.; Oh, Y.J.; Park, J.H.; Sohn, C.H.

    2007-01-01

    Flow accelerated corrosion (FAC) phenomenon has persisted in its impact on plant reliability and personnel safety. Unless we change the operation condition drastically, most parameters affecting FAC will not be effectively controlled. In order to help expand piping inspection coverage, we have developed a screening approach to monitor the wall thinning by a Direct Current Potential drop (DCPD) technique. To improve the applicability to the complex piping network such as the secondary cooling water system in PWR's, we devised the equipotential control method that can eliminate undesired leakage currents outside a measurement section. In this paper, we present Wide Range Monitoring (WiRM) and Narrow Range Monitoring (NaRM) with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to rapidly monitor the thinning of piping. Based on the WiRM results, susceptible locations can be identified for further inspection by Ultrasonic Technique (UT). On-line monitoring of a thinned location can be made by NaRM. Finite element analysis results and a closed-form resistance model are developed for the comparison with measured wall thinning by the developed DCPD technique. Verification experiments were conducted using UT as the reference. The result shows that model predictions and the experimental results agree well to confirm that both WiRM and NaRM based on ES-DCPD can be applicable to FAC management efforts. (author)

  4. Application of ultrasonic testing technique to detect gas accumulation in important pipings for pressurized water reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Yasuyuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Since 1988, the USNRC has pointed out that gas-binding events might occur at high head safety injection (HHSI) pumps of pressurized water reactors (PWRs). In Japanese PWR plants, corrective actions were taken in response to gas-binding events that occurred on HHSI pumps in the USA, so no gas accumulation event has been reported so far. However, when venting frequency is prolonged with operating cycle extension, the probability of gas accumulation in pipings may increase as in the USA. The purpose of this study was to establish a technique to identify gas accumulation and to measure the gas volume accurately. Taking dominant causes of the gas-binding events in the USA into consideration, we pointed out the following sections in the Japanese PWRs where gas srtipping and/or gas accumulation might occur: residual heat removal system pipings and charging/safety injection pump minimum flow line. Then an ultrasonic testing technique, adopted to identify gas accumulation in the USA, was applied to those sections of the typical Japanese PWR. Consequently, no gas accumulation was found in those pipings. (author)

  5. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  6. Coarse particles-water mixtures flow in pipes

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel

    2017-01-01

    Roč. 225, č. 2017 (2017), s. 338-341 ISSN 2411-3336 R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : hydrotransport * coarse particles pipeline installation * pressure drop * pipe inclination Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics)

  7. New generation of Sour Service Drill Pipe allows addressing highly sour field challenges

    Directory of Open Access Journals (Sweden)

    Thomazic A.

    2013-11-01

    Full Text Available Drill pipes are commonly produced by assembling pipe and tool joints through friction welding. The weld, as a result of this process, presents some challenges for preserving corrosion resistance due to some metallurgical factors such as heterogeneous microstructure, different chemical compositions between the tool joint and the pipe body and heterogeneous mechanical properties close to the welded line. Hence a new drill pipe configuration have been developed including modified chemical composition and modified manufacturing process. These modifications allow for the improvement of mechanical properties performance and corrosion resistance in the welded zone.

  8. Smart Pipes—Instrumented Water Pipes, Can This Be Made a Reality?

    Directory of Open Access Journals (Sweden)

    Nicole Metje

    2011-07-01

    Full Text Available Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods.

  9. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    Science.gov (United States)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  10. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted with...

  11. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING NO.5006

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows through the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements

  12. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    International Nuclear Information System (INIS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-01-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  13. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiya, E-mail: flying850612@126.com; Tian, Yimei, E-mail: ymtian_2000@126.com; Wan, Jianmei, E-mail: 563926510@qq.com; Zhao, Peng, E-mail: zhpeng@tju.edu.cn

    2015-12-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  14. Characteristics of coupled acoustic wave propagation in metal pipe

    International Nuclear Information System (INIS)

    Kim, Ho Wuk; Kim, Min Soo; Lee, Sang Kwon

    2008-01-01

    The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies

  15. Heat-pipe transient model for space applications

    International Nuclear Information System (INIS)

    Tournier, J.; El-Genk, M.S.; Juhasz, A.J.

    1991-01-01

    A two-dimensional model is developed for simulating heat pipes transient performance following changes in the input/rejection power or in the evaporator/condenser temperatures. The model employs the complete form of governing equations and momentum and energy jump conditions at the liquid-vapor interface. Although the model is capable of handling both cylindrical and rectangular geometries, the results reported are for a circular heat pipe with liquid lithium as the working fluid. The model incorporates a variety of other working fluids, such as water, ammonia, potassium, sodium, and mercury, and offers combinations of isothermal, isoflux, convective and radiative heating/cooling conditions in the evaporator and condenser regions of the heat pipe. Results presented are for lithium heat pipes with exponential heating of the evaporator and isothermal cooling of the condenser

  16. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  17. Radioactive recontamination on mechanically polished piping at Shimane-1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Umeda, K.; Komoto, I.; Imamura, K.; Kataoka, I.; Uchida, S.

    1998-01-01

    In a series of preventive maintenance tasks for an aging plant, recirculation pipes of Shimane-1 NPP have been replaced by newly fabricated type 316 NG stainless steel pipes. Suppression of shutdown dose rate caused by 60 Co recontamination on the newly replaced piping was one of the major concerns in the recirculation pipe replacement. In order to suppress the shutdown dose rate, control of the 60 Co deposition rate coefficient as well as 60 Co radioactivity in the reactor water are essential. The deposition rate coefficient depends on surface roughness. The coefficient is suppressed by reduction of the effective surface area of pipes through mechanical polishing. Then the inner surface of the pipes was polished mechanically to reduce roughness prior to application in the plant. After measuring and evaluating radioactive recontamination, it was estimated that deposited amounts of radioactive corrosion products on the pipe inner surface would reach the saturated value in a few years, and would not exceed the level before replacement unless water chemistry is degraded. (author)

  18. Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests

    International Nuclear Information System (INIS)

    Baum, M.R.

    1987-01-01

    This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)

  19. Pipe-anchor discontinuity analysis utilizing power series solutions, Bessel functions, and Fourier series

    International Nuclear Information System (INIS)

    Williams, Dennis K.; Ranson, William F.

    2003-01-01

    One of the paradigmatic classes of problems that frequently arise in piping stress analysis discipline is the effect of local stresses created by supports and restraints attachments. Over the past 20 years, concerns have been identified by both regulatory agencies in the nuclear power industry and others in the process and chemicals industries concerning the effect of various stiff clamping arrangements on the expected life of the pipe and its various piping components. In many of the commonly utilized geometries and arrangements of pipe clamps, the elasticity problem becomes the axisymmetric stress and deformation determination in a hollow cylinder (pipe) subjected to the appropriate boundary conditions and respective loads per se. One of the geometries that serve as a pipe anchor is comprised of two pipe clamps that are bolted tightly to the pipe and affixed to a modified shoe-type arrangement. The shoe is employed for the purpose of providing an immovable base that can be easily attached either by bolting or welding to a structural steel pipe rack. Over the past 50 years, the computational tools available to the piping analyst have changed dramatically and thereby have caused the implementation of solutions to the basic problems of elasticity to change likewise. The need to obtain closed form elasticity solutions, however, has always been a driving force in engineering. The employment of symbolic calculus that is currently available through numerous software packages makes closed form solutions very economical. This paper briefly traces the solutions over the past 50 years to a variety of axisymmetric stress problems involving hollow circular cylinders employing a Fourier series representation. In the present example, a properly chosen Fourier series represent the mathematical simulation of the imposed axial displacements on the outside diametrical surface. A general solution technique is introduced for the axisymmetric discontinuity stresses resulting from an

  20. Assessment of cracked pipes in primary piping systems of PWR nuclear reactors

    International Nuclear Information System (INIS)

    Jong, Rudolf Peter de

    2004-01-01

    Pipes related to the Primary System of Pressurized Water Reactors (PWR) are manufactured from high toughness austenitic and low alloy ferritic steels, which are resistant to the unstable growth of defects. A crack in a piping system should cause a leakage in a considerable rate allowing its identification, before its growth could cause a catastrophic rupture of the piping. This is the LBB (Leak Before Break) concept. An essential step in applying the LBB concept consists in the analysis of the stability of a postulated through wall crack in a specific piping system. The methods for the assessment of flawed components fabricated from ductile materials require the use of Elasto-Plastic Fracture Mechanics (EPFM). Considering that the use of numerical methods to apply the concepts of EPFM may be expensive and time consuming, the existence of the so called simplified methods for the assessment of flaws in piping are still considered of great relevance. In this work, some of the simplified methods, normalized procedures and criteria for the assessment of the ductile behavior of flawed components available in literature are described and evaluated. Aspects related to the selection of the material properties necessary for the application of these methods are also discussed. In a next .step, the methods are applied to determine the instability load in some piping configurations under bending and containing circumferential through wall cracks. Geometry and material variations are considered. The instability loads, obtained for these piping as the result of the application of the selected methods, are analyzed and compared among them and with some experimental results obtained from literature. The predictions done with the methods demonstrated that they provide consistent results, with good level of accuracy with regard to the determination of maximum loads. These methods are also applied to a specific Study Case. The obtained results are then analyzed in order to give

  1. Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Spinato, Giulia; Borhani, Navid; Thome, John R.

    2015-01-01

    In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained. - Highlights: • A novel synchronized thermal and visual investigation technique was applied to a CLPHP. • Thermal and hydrodynamic behaviors were analyzed by means of spectral analysis. • 3D frequency spectra for temperature and flow data show significant trends. • A spring-mass-damper system model was developed for the two-phase flow motion. • System stiffness and mass have an effect on the two-phase flow dynamics.

  2. A study for a guide chart of lower and upper boundary regions to avoid the condensation-induced water hammer in a long horizontal pipe

    International Nuclear Information System (INIS)

    Lee, Byung Jin

    1995-02-01

    Effects of the key system parameters such as the pipe length, the pipe diameter, the feedwater temperature and the system pressure on the critical flow rates of both the upper and the lower boundaries have been examined for long horizontal pipes. The upper and lower critical flow rates are sensitive to the pipe diameter, the pipe length and the system pressure, but not to the feedwater temperature over the practical operating ranges. Guide charts of the CIWH region boundary have been developed to be used in the system design and operation to predict the operating conditions vulnerable to the CIWH. The charts illustrate a series of the operating ranges bounded by the lower and the upper limiting curves where the water hammer is very likely to occur. A design and operational procedure has also been provided to help the designer and the operator to avoid the CIWH

  3. Evaluation of Reductive Option of Water Hammer Phenomenon for a Water Conveyance System, A Case Study of Shahid Shirdom Residential District-Tehran

    Directory of Open Access Journals (Sweden)

    Kiyomars roshangar

    2015-01-01

    Full Text Available Sudden changes in the boundary conditions of water transmission systems, such as sudden opening and closing of valves or abrupt on and off switching of pumps and turbines cause a transient flow called ‘water hammer’. In this study, comparisons were made between the effective parameters including pipeline material, on the one hand, and the equipment and tools available for reducing the effects of water hammer, on the other. For this purpose, a practical example of a water transmission line from a pumping station located near Shahid Shirdom Residential District to the upstream reservoir in Tehran was used for modeling by the Bentley Hammer XMV: 8 software. The results obtained for the different parameters and options were compared and it was revealed that, regarding the pipe material, GRP pipes reduced pressure by 49.1 Kpa compared to the Asbestos cement pipes and by 50.3 Kpa compared to the iron pipes. Comparison of the results for the protective systems indicated that the surge tank outperformed the other alternatives in controlling pressure such that maximum pressure was reduced by 3.9 bar when using surge tanks compared to the flywheel and by 5 bar compared to the check valve. Finally, it was found that the concurrent use of the surge tank and the flywheel would be the most ideal method for controlling the water hammer effects.

  4. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    Science.gov (United States)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  5. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    International Nuclear Information System (INIS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P Henrik

    2011-01-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  6. Boiling water reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Inoue, Kotaro; Ishida, Masayoshi.

    1975-01-01

    Object: To connect a feedwater pipe to a recycling pipe line, the recycling pipe line being made smaller in diameter, thereby minimizing loss of coolant resulting from rupture of the pipe and improving safety against trouble of coolant loss. Structure: A feedwater pipe is directly connected to a recycling pipe line before a booster pump, and a mixture of recycling water and feedwater is increased in pressure by the booster pump, after which it is introduced into a jet pump in the form of water for driving the jet pump to suck surrounding water causing it to be flown into the core. In accordance with the abovementioned structure, since the flow of feedwater can be used as a part of water for driving the jet pump, the flow within the recycling pipe line may be decreased so that the recycling pipe line can be made smaller in diameter to reduce the flow of coolant in the reactor, which flows out when the pipe is ruptured. (Furukawa, Y.)

  7. Damping considerations in CANDU feeder pipe design and analysis

    International Nuclear Information System (INIS)

    Usmani, S.A.; Saleem, M.A.; So, G.

    1990-01-01

    Recent developments in pipe damping indicate a trend towards more realistic and less conservative values, which result in less rigid and safer pipe designs. The CANDU-PHW (Canada deuterium uranium, pressurized heavy water) reactor feeder pipe designs have applied similar approaches which permit seismic qualifications without overly restraining these compact arrays of pipes to cater for the large creep and thermal anchor movement. This paper reviews the feeder design aspects, especially pertaining to the design provisions, experimental verification and analytical modelling for seismic qualification in the light of recent pipe dynamic developments. Using illustrative examples, comparison of seismic analysis results is provided for the ASME Code Case N-411 dampings, and those traditionally used in the feeder seismic qualification. The results confirm acceptability of the traditional approach which permit simplified analysis to demonstrate seismic qualificationqualification of CANDU feeder pipes

  8. Pressure management strategies for water loss reduction in large-scale water piping networks: a review

    CSIR Research Space (South Africa)

    Adedeji, K

    2017-06-01

    Full Text Available . Therefore, in a WDN with kth number of pipes, the probability of a pipe breakage in the network as a result of the system pressure variations is estimated as [17] 4.35 3.738 5 8 0.0021 21.4 Pr 1 10 k kD D k k k e D e D     (5) where Prk...

  9. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  10. Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology

    Science.gov (United States)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan

    2018-02-01

    The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.

  11. Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2015-01-01

    Heat pipe is a highly efficient and reliable heat transfer component. It is a closed container designed to transfer a large amount of heat in system. Since the heat pipe operates on a closed two-phase cycle, the heat transfer capacity is greater than for solid conductors. Also, the thermal response time is less than with solid conductors. The three major elemental parts of the rotating heat pipe are: a cylindrical evaporator, a truncated cone condenser, and a fixed amount of working fluid. In this paper, a recently proposed new stochastic advanced optimization algorithm called TLBO (Teaching–Learning-Based Optimization) algorithm is used for single objective as well as multi-objective design optimization of heat pipe. It is easy to implement, does not make use of derivatives and it can be applied to unconstrained or constrained problems. Two examples of heat pipe are presented in this paper. The results of application of TLBO algorithm for the design optimization of heat pipe are compared with the NPGA (Niched Pareto Genetic Algorithm), GEM (Grenade Explosion Method) and GEO (Generalized External optimization). It is found that the TLBO algorithm has produced better results as compared to those obtained by using NPGA, GEM and GEO algorithms. - Highlights: • The TLBO (Teaching–Learning-Based Optimization) algorithm is used for the design and optimization of a heat pipe. • Two examples of heat pipe design and optimization are presented. • The TLBO algorithm is proved better than the other optimization algorithms in terms of results and the convergence

  12. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, Claudie

    1995-01-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tri dimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows. (author) [fr

  13. Experimental investigation and numerical simulations of void profile development in a vertical cylindrical pipe

    International Nuclear Information System (INIS)

    Grossetete, C.

    1995-12-01

    We present here an experimental investigation and some numerical simulations of void profile development in a vertical cylindrical pipe. This study is motivated by the lack of information dealing with the influence of entrance effects and bubble size evolution upon the multidimensional development of upward bubbly flow in pipe. The axial development of two-phase air-water upward bubbly and bubbly-to-slug transition flows in a vertical pipe is investigated experimentally first. Profiles of liquid mean velocity, liquid axial turbulent intensity, void fraction, bubble frequency, bubble velocity, mean equivalent bubble diameter and volumetric interfacial area are determined along the same test section at three axial locations. It is found that the bubbly-to-slug transition can be deduced from the simultaneous analysis of the different measured profiles. Local analysis of the studied bubbly flows shows that their development does not depend on the shape of the void distribution at the inlet. However, it is found that the bubble size evolution strongly affects the void distribution. Secondly, multidimensional numerical simulations of bubbly flows with very different gas injection modes are made with the help of the tridimensional two-fluid ASTRID code. It is shown that the classical models used to close the transverse momentum equations of the two-fluid model (lift and dispersion forces) do not capture the physical phenomena of bubble migration in pipe flows

  14. The role of heat pipes in intensified unit operations

    International Nuclear Information System (INIS)

    Reay, David; Harvey, Adam

    2013-01-01

    Heat pipes are heat transfer devices that rely, most commonly, on the evaporation and condensation of a working fluid contained within them, with passive pumping of the condensate back to the evaporator. They are sometimes referred to as ‘thermal superconductors’ because of their exceptionally high effective thermal conductivity (substantially higher than any metal). This, together with several other characteristics make them attractive to a range of intensified unit operations, particularly reactors. The majority of modern computers deploy heat pipes for cooling of the CPU. The application areas of heat pipes come within a number of broad groups, each of which describes a property of the heat pipe. The ones particularly relevant to chemical reactors are: i. Separation of heat source and sink. ii. Temperature flattening, or isothermalisation. iii. Temperature control. Chemical reactors, as a heat pipe application area, highlight the benefits of the heat pipe based on isothermalisation/temperature flattening device and on being a highly effective heat transfer unit. Temperature control, done passively, is also of relevance. Heat pipe technology offers a number of potential benefits to reactor performance and operation. The aim of increased yield of high purity, high added value chemicals means less waste and higher profitability. Other intensified unit operations, such as those employing sorption processes, can also profit from heat pipe technology. This paper describes several variants of heat pipe and the opportunities for their use in intensified plant, and will give some current examples. -- Highlights: ► Heat pipes – thermal superconductors – can lead to improved chemical reactor performance. ► Isothermalisation within a reactor vessel is an ideal application. ► The variable conductance heat pipe can control reaction temperatures within close limits. ► Heat pipes can be beneficial in intensified reactors

  15. Assessment of LWR piping design loading based on plant operating experience

    International Nuclear Information System (INIS)

    Svensson, P.O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading

  16. Volatile organic compounds in natural biofilm in polyethylene pipes supplied with lake water and treated water from the distribution network.

    Science.gov (United States)

    Skjevrak, Ingun; Lund, Vidar; Ormerod, Kari; Herikstad, Hallgeir

    2005-10-01

    The objective of this work was investigation of volatile organic compounds (VOC) in natural biofilm inside polyethylene (HDPE) pipelines at continuously flowing water. VOC in biofilm may contribute to off-flavour episodes in drinking water. The pipelines were supplied with raw lake water and treated water from the distribution network. Biofilm was established at test sites located at two different drinking water distribution networks and their raw water sources. A whole range of volatile compounds were identified in the biofilm, including compounds frequently associated with cyanobacteria and algae, such as ectocarpene, dictyopterene A and C', geosmin, beta-ionone and 6-methyl-5-hepten-2-one. In addition, volatile amines, dimethyldisulphide and 2-nonanone, presumably originating from microorganisms growing in the biofilm, were identified. C8-compounds such as 1-octen-3-one and 3-octanone were believed to be products from microfungi in the biofilm. Degradation products from antioxidants such as Irgafos 168, Irganox 1010 and Irganox 1076 used in HDPE pipes, corresponding to 2,4-di-tert-butylphenol and 2,6-di-tert-butylbenzoquinone, were present in the biofilm.

  17. Pipe clamp effects on thin-walled pipe design

    International Nuclear Information System (INIS)

    Lindquist, M.R.

    1980-01-01

    Clamp induced stresses in FFTF piping are sufficiently large to require structural assessment. The basic principles and procedures used in analyzing FFTF piping at clamp support locations for compliance with ASME Code rules are given. Typical results from a three-dimensional shell finite element pipe model with clamp loads applied over the clamp/pipe contact area are shown. Analyses performed to categorize clamp induced piping loads as primary or secondary in nature are described. The ELCLAMP Computer Code, which performs analyses at clamp locations combining clamp induced stresses with stresses from overall piping system loads, is discussed. Grouping and enveloping methods to reduce the number of individual clamp locations requiring analysis are described

  18. Application of tearing modulus stability concepts to nuclear piping. Final report

    International Nuclear Information System (INIS)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK

  19. Mode Identification of Guided Waves in a Curved Pipe

    International Nuclear Information System (INIS)

    Eom, Heung-Seop; Lim, Sa-Hoe; Kim, Jae-Hee

    2006-01-01

    Ultrasonic guided wave technique has been widely employed for the long range inspection of structures such as plates and pipes because it has the ability to propagate over long distances. In the nuclear power field, there recently appeared a need for on-line nondestructive monitoring which can be employed during the operation stage of power plants. As ultrasonic guided waves have shown promise for on-line monitoring of power plants, a lot of work has been done in the institutes and universities on this matter. In the case of detecting defects in simple straight pipes, the dispersion curves obtained from the modeling processes are closely akin to the experimental results. But the modeling of wave propagation in some structures, such as an elbow region of a pipe, is not practical due to elbow echo and unpredictable interface conditions. This paper presents an experimental approach to identify the most dominant modes of guided waves in a curved region of a pipe, which is a key factor in detecting flaws in a pipe

  20. Effect of using acetone and distilled water on the performance of open loop pulsating heat pipe (OLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Afrose, Tonima; Tahmina, Halima Khatun; Rinky, Rumana Parvin; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new innovation in the modern era of miniaturizes thermal management system for its higher heating and cooling capacity. The objective of this experiment is to observe the performance of open loop pulsating heat pipe using two fluids at different filling ratios. This OLPHP is a copper capillary tube of 2.5mm outer diameter and 2mm inner diameter. It consists of 8 loops where the evaporative section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is conducted with distilled water and acetone at 40%, 50%, 60%, and 70% filling ratios where 0° (vertical) is considered as definite angle of inclination. Distilled water and acetone are selected as working fluids considering their different latent heat of vaporization and surface tension. It is found that acetone shows lower thermal resistance than water at all heat inputs. Best performance of acetone is attained at 70% filling ratio. Water displays better heat transfer capability at 50% filling ratio.

  1. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil

    Science.gov (United States)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa

    2017-12-01

    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  2. Seismic re-evaluation of piping systems of heavy water plant, Kota

    CERN Document Server

    Mishra, R; Soni, R S; Venkat-Raj, V

    2002-01-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic e...

  3. Condensation induced non-condensable accumulation in a non-vented horizontal pipe connected with an elbow and a vertical pipe

    International Nuclear Information System (INIS)

    Stevanovic, V.D.; Stosic, Z.V.; Stoll, U.

    2005-01-01

    In this paper the radiolytic gases (hydrogen and oxygen) accumulation is investigated numerically for the pipe geometry consisting of a horizontal pipe closed at one end, and connected via a downward directed elbow with a vertical pipe open at its bottom end. This configuration is a typical part of many pipeline systems or measuring lines. The steam inside the pipes is condensed due to heat losses to the surrounding atmosphere, the condensate is drained and the concentration of the remaining noncondensable radiolytic gases is increased. Three dimensional numerical simulations are performed with the thermal-hydraulic and physico-chemical code HELIO, especially developed for the simulation and analyses of radiolytic gases accumulation in pipelines. The HELIO code model is based on the mass, momentum and energy conservation equations for the gas mixture and wall condensate film flow, as well as on the transport equations for non-condensable diffusion and convection. At the liquid film surface, the phases are coupled through the no-slip velocity condition and the mass transfer due to steam condensation and non-condensable absorption and degassing. Obtained numerical results show the gas mixture and condensate liquid film flow fields. In case of here analyzed geometry, the gas mixture circulates in the elbow and the horizontal pipe due to buoyancy forces induced by concentration and related density differences. The circulation flow prevents the formation of the radiolytic gases concentration front. The non-condensable radiolytic gases are transported from the pipe through the open end by the mechanisms of diffusion and convection. The analyzed geometry is the same as in case of venting pipe mounted on the steam pipeline. The results are of practical importance since they show that radiolytic gases accumulation does not occur in the geometry of the venting pipes. (authors)

  4. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-02-15

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  5. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik; Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae

    2015-01-01

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  6. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  7. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  8. Early response of pressurized hot water in a pipe to a sudden break. Final report

    International Nuclear Information System (INIS)

    Alamgir, M.; Kan, C.Y.; Lienhard, J.H.

    1981-06-01

    Experimental and analytic studies that explain the details of early pressure variations during rapid depressurization in water-cooled reactors are presented as a means of assessing sudden break consequences in a coolant pipe. The report includes (1) a description of the experiment, (2) an analysis of the new bubble growth law for thermally controlled growth of vapor bubbles in an exponentially-varying pressure field, and (3) a review of previous studies and additional observations of blowdown behavior

  9. Methods for Analyzing Pipe Networks

    DEFF Research Database (Denmark)

    Nielsen, Hans Bruun

    1989-01-01

    to formulate the flow equations in terms of pipe discharges than in terms of energy heads. The behavior of some iterative methods is compared in the initial phase with large errors. It is explained why the linear theory method oscillates when the iteration gets close to the solution, and it is further...... demonstrated that this method offers good starting values for a Newton-Raphson iteration....

  10. Stress analysis of piping systems and piping supports. Documentation

    International Nuclear Information System (INIS)

    Rusitschka, Erwin

    1999-01-01

    The presentation is focused on the Computer Aided Tools and Methods used by Siemens/KWU in the engineering activities for Nuclear Power Plant Design and Service. In the multi-disciplinary environment, KWU has developed specific tools to support As-Built Documentation as well as Service Activities. A special application based on Close Range Photogrammetry (PHOCAS) has been developed to support revamp planning even in a high level radiation environment. It comprises three completely inter-compatible expansion modules - Photo Catalog, Photo Database and 3D-Model - to generate objects which offer progressively more utilization and analysis options. To support the outage planning of NPP/CAD-based tools have been developed. The presentation gives also an overview of the broad range of skills and references in: Plant Layout and Design using 3D-CAD-Tools; evaluation of Earthquake Safety (Seismic Screening); Revamps in Existing Plants; Inter-disciplinary coordination of project engineering and execution fields; Consulting and Assistance; Conceptual Studies; Stress Analysis of Piping Systems and Piping Supports; Documentation; Training and Supports in CAD-Design, etc. All activities are performed to the greatest extent possible using proven data-processing tools. (author)

  11. Fibre optic monitoring of pipes a world first

    International Nuclear Information System (INIS)

    Kuen, Thomas

    2014-01-01

    Full text: This article explains how water authorities can remotely monitor vast kilometres of underground pipe, quickly pinpoint faults and, more importantly, assess how critical they are. A new fibre optic system developed in a collaboration between Melbourne Water, Monash University, South East Water, CSIRO Land and Water, and Hawk Measurement Systems has the potential to provide 24/7 monitoring, inexpensive fault and deterioration location, and to reduce unnecessary pipe maintenance. Trials show the system is accurate to within one metre along 50km of pipe. A grant from the Department of State Development, Business and Innovation's Market Validation Program, along with cash and in-kind contributions, has resulted in a $2.5 million project. Existing fibre optic-sensing technology was known to have the capability to monitor the condition and integrity of pipes, but available solutions were largely confined to those above ground. What was needed was a system that allowed sensors to be installed and managed on buried pipes in a cost- effective manner for the long service life of water pipelines - about 100 years. Traditionally, leaks need to become visible first. They are then located with a stethoscope-like instrument, which requires a site visit. This observation can be drawn out because leaking water often appears at the surface some distance from the actual pipe fracture. With the new fibre optic system, once a fault is identified it can be evaluated remotely using a data-acquisition system capable of sensing three variables - stress and strain (or pressure), sound vibrations and temperature. A laser beam is sent to the optical fibre, which measures the signals coming back. Analysis of the spectrum interprets the signals, telling the operator what kind of fault is occurring, its location and dimensions. Continuous, long-term remote monitoring using fibre optics eliminates the need for onsite inspection. All the sensed variables are monitored and accuracy is

  12. Pipe Leak Detection Technology Development

    Science.gov (United States)

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  13. An Experimental investigation of critical flow rates of subcooled water through short pipes with small diameters

    International Nuclear Information System (INIS)

    Park, Choon Kyung

    1997-02-01

    The primary objective of this study is to improve our understanding on critical flow phenomena in a small size leak and to develop a model which can be used to estimate the critical mass flow rates through reactor vessel or primary coolant pipe wall. For this purpose, critical two-phase flow phenomena of subcooled water through short pipes (100 ≤ L ≤ 400 mm) with small diameters (3.4 ≤ D ≤ 7.15 mm) have been experimentally investigated for wide ranges of subcooling (0∼199 .deg. C) and pressure (0.5∼2.0MPa). To examine the effects of various parameters (i.e., the location of flashing inception, the degree of subcooling, the stagnation temperature and pressure, and the pipe size) on the critical two-phase flow rates of subcooled water, a total of 135 runs were made for various combinations of test parameters using four different L/D test sections. Experimental results that show effects of various parameters on subcooled critical two-phase flow rates are presented. The measured static pressure profiles along the discharge pipe show that the critical flow rate can be strongly influenced by the flashing location. The locations of saturation pressure for different values of the stagnation subcooling have been consistently determined from the pressure profiles. Based upon the test results, two important parameters have been identified. These are cold state discharge coefficient and dimensionless subcooling, which are found to efficiently take into account the test section geometry and the stagnation conditions, respectively. A semi-empirical model has been developed to predict subcooled two-phase flow rates through small size openings. This model provides a simple and direct calculation of the critical mass flow rates with information on the initial condition and on the test section geometry. Comparisons between the mass fluxes calculated by present model and a total of 755 selected experimental data from 9 different investigators show that the agreement is

  14. Heat exchanger nozzle stresses due to pipe vibration

    International Nuclear Information System (INIS)

    Wolgemuth, G.A.

    1983-01-01

    A large diameter pipe in a heavy water production plant was excited into a low frequency vibration due to void collapse of the pipe contents at a sharp vertical drop in the pipe run. Fears that this vibration would fatigue the inlet nozzle to the heat exchanger prompted the introduction of a flow of cold water into the pipe to prevent the two-phase flow from developing but at the cost of reduced heat exchanger efficiency. An investigation was carried out to determine the stress levels in the nozzle with the quenching flow off and suggest means of reducing them if excessive. A finite element dynamic simulation of the pipe run was performed to determine the likely mode shapes. This information was used to optimize the placement of velocity probes on the pipe. Field measurements of vibration were taken for several operating conditions. This data was analyzed and the results used to refine the support stiffness used in the finite element simulation. The finite element model was then used to predict the nozzle forces and moments. In turn this data was used to determine the local stresses in the nozzle. The ASME Section III code was used to determine the allowable fully reversing stresses for the unit in question. It was found that the endurance limit of 83 MPa was exceeded in the analysis only when using the most conservative estimates for each uncertainty. It was recommended that if the safety factor was not deemed high enough, the nozzle should be built up with a reinforcing pad no thicker than 12 mm

  15. Comparing the effect of various pipe materials on biofilm formation ...

    African Journals Online (AJOL)

    Comparing the effect of various pipe materials on biofilm formation in chlorinated and combined chlorine-chloraminated water systems. ... The capability of bacterial regrowth occurring on the surface of test pipe materials during this period was linked to the depletion of the concentration of monochloramine residual.

  16. Localization of leaks in underground pipes with the application of radioactive isotopes

    International Nuclear Information System (INIS)

    Klupa, A.; Morawiec, J.

    1983-01-01

    A method of leaks localization on gas pipe-lines during resistance and tightness tests was elaborated. The leaks were localized using tracer technique. Sodium 24 was used as a tracer for short sections of the pipe-line (up to 30 km). Only 1 m 3 of water with a tracer was introduced into the pipe-line. A measuring probe was also put into pipe-line. All leaks were detected and the method appeared useful. For the longer sections of the pipe-line iodine 131 ought to be used. (A.S.)

  17. Stresses in a curved pipe subject to an in-plane bending moment

    International Nuclear Information System (INIS)

    Hofmann, E.; Heeschen, U.

    1979-01-01

    The design of the KWU-primary component supports is mainly defined by the loads of the postulated pipe breaks. To estimate the maximum loading of a component support it is necessary to know the maximum in-plane bending moment (opening and closing) that can be transmitted by a pipe bend. Another reason for such information is that the displacements and distortions of the components cause higher stresses in elbows than in straight pipes. With a detailed knowledge of the deformation characteristic of a pipe bend an integrity analysis could be done without an expensive plastic system analysis. With this purpose in mind experiments were performed with straight pipes and pipe bends of different dimensions subject to in-plane bending moments. The experimental results give the ratio between the maximum transmittable moment of a pipe bend to that of a straight pipe or, the distortion of the end cross-sections and the flattening of the elbow cross-section. An attempt is made to derive simple expressions for estimating the behaviour at pipe elbows. Parallel to the experiments calculations were done for the straight pipe and elbow with a finite difference code with plastic capabilities. The results of the experiment and calculation are compared with the formulas of the ASME-Code section III subjection NB. (orig.)

  18. Heat transfer pipe shielding device for heat exchanger

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1991-01-01

    The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)

  19. Failure rate of piping in hydrogen sulphide systems

    International Nuclear Information System (INIS)

    Hare, M.G.

    1993-08-01

    The objective of this study is to provide information about piping failures in hydrogen sulphide service that could be used to establish failures rates for piping in 'sour service'. Information obtained from the open literature, various petrochemical industries and the Bruce Heavy Water Plant (BHWP) was used to quantify the failure analysis data. On the basis of this background information, conclusions from the study and recommendations for measures that could reduce the frequency of failures for piping systems at heavy water plants are presented. In general, BHWP staff should continue carrying out their present integrity and leak detection programmes. The failure rate used in the safety studies for the BHWP appears to be based on the rupture statistics for pipelines carrying sweet natural gas. The failure rate should be based on the rupture rate for sour gas lines, adjusted for the unique conditions at Bruce

  20. Study on Change of Pipes Formed in the Upper Part of a Collapse in a Crystalline Schist Area and Response of Pipe Flow to Rain

    OpenAIRE

    平松, 晋也; 前川, 美紀子; 小山内, 信智; Shinya, HIRAMATSU; Mikiko, MAEKAWA; Nobutomo, OSANAI; 高知大学農学部; 高知大学農学部; 国土交通名四国山地砂防工事事務所; Faculty of Agriculture, Kochi University; Faculty of Agriculture, Kochi University; Shikoku Mountainous Region Sabo Work Office, Ministry of Land, Infrastructure and Transport

    2002-01-01

    Pipes formed by a small animal-activity, root decay and underground erosion exist frequently in the upper part of rain-induced collapse sites. These pipes affect significantly on water discharge and occurrences of hillside landslides in a watershed. Many hillside landslides occurred at Nishiiyayama village in Tokushima Prefecture, on June 29 th, 1999, due to heavy rainfall. In the upper part of C torrent of Tobinosu-valley, hillside landslides occurred, and several pipes appeared. Investigati...

  1. Pipe and hose decontamination apparatus

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1985-01-01

    A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit

  2. Conceptual design of pipe whip restraints using interactive computer analysis

    International Nuclear Information System (INIS)

    Rigamonti, G.; Dainora, J.

    1975-01-01

    Protection against pipe break effects necessitates a complex interaction between failure mode analysis, piping layout, and structural design. Many iterations are required to finalize structural designs and equipment arrangements. The magnitude of the pipe break loads transmitted by the pipe whip restraints to structural embedments precludes the application of conservative design margins. A simplified analytical formulation of the nonlinear dynamic problems associated with pipe whip has been developed and applied using interactive computer analysis techniques. In the dynamic analysis, the restraint and the associated portion of the piping system, are modeled using the finite element lumped mass approach to properly reflect the dynamic characteristics of the piping/restraint system. The analysis is performed as a series of piecewise linear increments. Each of these linear increments is terminated by either formation of plastic conditions or closing/opening of gaps. The stiffness matrix is modified to reflect the changed stiffness characteristics of the system and re-started using the previous boundary conditions. The formation of yield hinges are related to the plastic moment of the section and unloading paths are automatically considered. The conceptual design of the piping/restraint system is performed using interactive computer analysis. The application of the simplified analytical approach with interactive computer analysis results in an order of magnitude reduction in engineering time and computer cost. (Auth.)

  3. Analytical models for lower and upper bounds of the condensation-induced water hammer in long horizontal pipes

    International Nuclear Information System (INIS)

    Chun, Moon Hyun; Park, Joo Wan; Nam, Ho Yun

    1992-01-01

    Improved analytical models have been proposed that can predict the lower and upper limits of the water hammer region for given flow conditions by incorporation of recent advances made in the understanding of phenomena associated with the condensation-induced water hammer into existing methods. Present models are applicable for steam-water counterflow in a long horizontal pipe geometry. Both lower and upper bounds of the water hammer region are expressed in terms of the 'critical inlet water flow rate' as a function of axial position. Water hammer region boundaries predicted by present and typical existing models are compared for particular flow conditions of the water hammer event occurred at San Onofre Unit 1 to assess the applicability of the models examined. The result shows that present models for lower and upper bounds of the water hammer region compare favorably with the best performing existing models

  4. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  5. Water hammer with column separation : a historical review

    NARCIS (Netherlands)

    Bergant, A.; Simpson, A.R.; Tijsseling, A.S.

    2006-01-01

    Column separation refers to the breaking of liquid columns in fully filled pipelines. This may occur in a water-hammer event when the pressure in a pipeline drops to the vapor pressure at specific locations such as closed ends, high points or knees (changes in pipe slope). The liquid columns are

  6. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  7. Inspection of piping wall loss with flow accelerated corrosion accelerated simulation test

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun

    2009-01-01

    Flow Accelerated Corrosion (FAC) has become a hot issue for aging of passive components. Ultrasonic Technique (UT) has been adopted to inspect the secondary piping of Nuclear Power Plants (NPPs). UT, however, uses point detection method, which results in numerous detecting points and thus takes time. We developed an Equipotential Switching Direct Current Potential Drop (ES-DCPD) method to monitor the thickness of piping that covers wide range of piping at once time. Since the ES-DCPD method covers area, not a point, it needs less monitoring time. This can be a good approach to broad carbon steel piping system such as secondary piping of NPPs. In this paper, FAC accelerated simulation test results is described. We realized accelerated FAC phenomenon by 2 times test: 23.7% thinning in 216.7 hours and 51% thinning in 795 hours. These were monitored by ES-DCPD and traditional UT. Some parameters of water chemistry are monitored and controlled to accelerate FAC process. As sensitive factors on FAC, temperature and pH was changed during the test. The wall loss monitored results reflected these changes of water chemistry successfully. Developed electrodes are also applied to simulation loop to monitor water chemistry. (author)

  8. Survey on application of probabilistic fracture mechanics approach to nuclear piping

    International Nuclear Information System (INIS)

    Kashima, Koichi

    1987-01-01

    Probabilistic fracture mechanics (PFM) approach is newly developed as one of the tools to evaluate the structural integrity of nuclear components. This report describes the current status of PFM studies for pressure vessel and piping system in light water reactors and focuses on the investigations of the piping failure probability which have been undertaken by USNRC. USNRC reevaluates the double-ended guillotine break (DEGB) of rector coolant piping as a design basis event for nuclear power plant by using the PFM approach. For PWR piping systems designed by Westinghouse, two causes of pipe break are considered: pipe failure due to the crack growth and pipe failure indirectly caused by failure of component supports due to an earthquake. PFM approach shows that the probability of DEGB from either cause is very low and that the effect of earthquake on pipe failure can be neglected. (author)

  9. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  10. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    International Nuclear Information System (INIS)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations

  11. Probabilistic based design rules for intersystem LOCAS in ABWR piping

    International Nuclear Information System (INIS)

    Ware, A.G.; Wesley, D.A.

    1993-01-01

    A methodology has been developed for probability-based standards for low-pressure piping systems that are attached to the reactor coolant loops of advanced light water reactors (ALWRs) which could experience reactor coolant loop temperatures and pressures because of multiple isolation valve failures. This accident condition is called an intersystem loss-of-coolant accident (ISLOCA). The methodology was applied to various sizes of carbon and stainless steel piping designed to advanced boiling water reactor (ABWR) temperatures and pressures

  12. Fluid structure interaction in piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Svingen, Bjoernar

    1996-12-31

    The Dr. ing. thesis relates to an analysis of fluid structure interaction in piping systems in the frequency domain. The governing equations are the water hammer equations for the liquid, and the beam-equations for the structure. The fluid and structural equations are coupled through axial stresses and fluid continuity relations controlled by the contraction factor (Poisson coupling), and continuity and force relations at the boundaries (junction coupling). A computer program has been developed using the finite element method as a discretization technique both for the fluid and for the structure. This is made for permitting analyses of large systems including branches and loops, as well as including hydraulic piping components, and experiments are executed. Excitations are made in a frequency range from zero Hz and up to at least one thousand Hz. Frequency dependent friction is modelled as stiffness proportional Rayleigh damping both for the fluid and for the structure. With respect to the water hammer equations, stiffness proportional damping is seen as an artificial (bulk) viscosity term. A physical interpretation of this term in relation to transient/oscillating hydraulic pipe-friction is given. 77 refs., 72 figs., 4 tabs.

  13. Water resources protection today: end-of-pipe technology and cleaner production. Case study of the Czech Odra River watershed.

    Science.gov (United States)

    Chour, V

    2001-01-01

    This paper reports on integrated watershed-based protection and sustainable use of water resources to increase the effectiveness of water pollution abatement. The approach includes improvements in end-of-pipe waste-water treatment technologies and implementation of Cleaner Production (CP) principles and policies within the watershed. An example of the general effectiveness of this approach is illustrated by the Czech Odra River Cleaner Production Project where reductions in pollution were achieved with improved industrial production. The CP theme is worth considering as an important challenge for the IWA.

  14. Condensation of steam in horizontal pipes: model development and validation

    International Nuclear Information System (INIS)

    Szijarto, R.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct

  15. Piping and erosion in buffer and backfill materials. Current knowledge

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Sanden, Torbjoern

    2006-09-01

    The water inflow into the deposition holes and tunnels in a repository will mainly take place through fractures in the rock and will lead to that the buffer and backfill will be wetted and homogenised. But in general the buffer and backfill cannot absorb all water that runs through a fracture, which leads to that a water pressure will be generated in the fracture when the inflow is hindered. If the counter pressure and strength of the buffer or backfill is insufficiently high, piping and subsequent erosion may take place. The processes and consequences of piping and erosion have been studied in some projects and several laboratory test series in different scales have been carried through. This brief report describes these tests and the results and conclusions that have emerged. The knowledge of piping and erosion is insufficient today and additional studies are needed and running

  16. Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.

    Science.gov (United States)

    Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit

    2014-02-01

    To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Seismic fragility analysis of buried steel piping at P, L, and K reactors

    International Nuclear Information System (INIS)

    Wingo, H.E.

    1989-10-01

    Analysis of seismic strength of buried cooling water piping in reactor areas is necessary to evaluate the risk of reactor operation because seismic events could damage these buried pipes and cause loss of coolant accidents. This report documents analysis of the ability of this piping to withstand the combined effects of the propagation of seismic waves, the possibility that the piping may not behave in a completely ductile fashion, and the distortions caused by relative displacements of structures connected to the piping

  18. Mixing at double-Tee junctions with unequal pipe sizes in water distribution systems

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pipe flow mixing with various solute concentrations and flow rates at pipe junctions is investigated. The degree of mixing affects the spread of contaminants in a...

  19. Nuclear piping and pipe support design and operability relating to loadings and small bore piping

    International Nuclear Information System (INIS)

    Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.

    1994-01-01

    The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes

  20. Performance testing of a hydrogen heat pipe

    International Nuclear Information System (INIS)

    Alario, J.; Kosson, R.

    1980-01-01

    Test results are presented for a reentrant groove heat pipe with hydrogen working fluid. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady-state performance data taken over a 19 to 23 K temperature range indicated the following: (1) maximum heat transport capacity 5.4 W-m (2) static wicking height 1.42 cm and (3) overall heat pipe conductance 1.7 W/C. These data agreed remarkably well with extrapolations made from comparable ammonia test results. The maximum heat transport capacity is 9.5% larger than the extrapolated value, but the static wicking height is the same. The overall conductance is 29% of the ammonia value, which is close to the ratio of liquid thermal conductivities (24%). Also, recovery from a completely frozen condition was accomplished within 5 min by simply applying an evaporater heat load of 1.8 W

  1. Application of LBB to high energy piping systems in operating PWR

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  2. Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria

    Science.gov (United States)

    Many US water utilities using chloramine as their secondary disinfectant have experienced nitrification episodes that detrimentally impact water quality in their distribution systems. A semi-closed pipe-loop chloraminated drinking water distribution system (DWDS) simulator was u...

  3. Rupture disc opening property for using pipe rupture test in JAERI

    International Nuclear Information System (INIS)

    Kato, Rokuro

    1983-03-01

    In the Mechanical Strength and Structure Lab of JAERI there are being performed pipe break tests which are a postulated instantaneous guillotine break of the primary coolant piping in nuclear power plants. The test being performed are pipe whip tests and jet discharging tests. The bursting of the rupture disc is initiated by an electrical arc and is concluded by the internal pressure. Because the time characteristics during the opening of the rupture disc affects the dynamic thrust force of the pipe, it is necessary to measure these time characteristics. However, it is difficult to measure the conditions during this continuous opening because at the same time of the opening the high temperature and high pressure water is flashing. Therefore, the rupture disc opening was postulated on the measuring of the effective opening characteristics with electric contraction terminals which were attached to the inner surface of the test pipe downstream of the rupture disc and were extended toward the pipe centerline in a ring whose area is about 60 % of the area of the pipe flow sectional area. The measurement voltage was recorded when the data recorder was started in sequence with the electrical arc release from a trigger signal. As a result, it is evident that under high temperature and high pressure water the effective opening time is delayed by a few milliseconds. (author)

  4. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1987-08-01

    Piping in light water reactor (LWR) power systems is affected by several types of environmental degradation: intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping in boiling water reactors (BWRs) has required research, inspection, and mitigation programs that will ultimately cost several billion dollars; erosion-corrosion of carbon steel piping has been observed frequently in the secondary systems of both BWRs and pressurized water reactors (PWRs); the effect of the BWR environment can greatly diminish the design margin inherent in the ASME Section III fatigue design curves for carbon steel piping; and cast stainless steels are subject to embrittlement after extended thermal aging at reactor operating temperatures. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  5. Main steam system piping response under safety/relief valve opening events

    International Nuclear Information System (INIS)

    Swain, E.O.; Esswein, G.A.; Hwang, H.L.; Nieh, C.T.

    1980-01-01

    The stresses in the main steam branch pipe of a Boiling Water Reactor due to safety/relief valve blowdown has been measured from an in situ piping system test. The test results were compared with analytical results. The predicted stresses using the current state of art analytical methods used for BWR SRV discharge transient piping response loads were found to be conservative when compared to the measured stress values. 3 refs

  6. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  7. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  8. Effects of Polluted Water on the Metallic Water Pipelines

    OpenAIRE

    Abdul-Khaliq M. Hussain; Bashir A. Tantosh; El-Sadeg A. Abdalla

    2010-01-01

    Corrosion of metallic water pipelines buried below ground surface is a function of the nature of the surrounding soil and groundwater. This gives the importance of knowing the physical and chemical characteristics of the pipe-s surrounding environment. The corrosion of externally – unprotected metallic water pipelines, specially ductile iron pipes, in localities with aggressive soil conditions is becoming a significant problem. Anticorrosive protection for metallic water ...

  9. Evaluation of temporary non-code repairs in safety class 3 piping systems

    International Nuclear Information System (INIS)

    Godha, P.C.; Kupinski, M.; Azevedo, N.F.

    1996-01-01

    Temporary non-ASME Code repairs in safety class 3 pipe and piping components are permissible during plant operation in accordance with Nuclear Regulatory Commission Generic Letter 90-05. However, regulatory acceptance of such repairs requires the licensee to undertake several timely actions. Consistent with the requirements of GL 90-05, this paper presents an overview of the detailed evaluation and relief request process. The technical criteria encompasses both ductile and brittle piping materials. It also lists appropriate evaluation methods that a utility engineer can select to perform a structural integrity assessment for design basis loading conditions to support the use of temporary non-Code repair for degraded piping components. Most use of temporary non-code repairs at a nuclear generating station is in the service water system which is an essential safety related system providing the ultimate heat sink for various plant systems. Depending on the plant siting, the service water system may use fresh water or salt water as the cooling medium. Various degradation mechanisms including general corrosion, erosion/corrosion, pitting, microbiological corrosion, galvanic corrosion, under-deposit corrosion or a combination thereof continually challenge the pressure boundary structural integrity. A good source for description of corrosion degradation in cooling water systems is provided in a cited reference

  10. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  11. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  12. Corrosion of welded steel piping in domestic hot water: A case history. Corrosion de una instalacion de tubos soldados de acero galvanizado para agua caliente

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, E J; Soria, L; Gallardo, J M

    1993-01-01

    Many leaks had occurred after seven years of service in the hot sanitary water system of building. The results of the failure analysis have led to the conclusion that the reduced life of the piping system was primarily promoted by the use of a dissimilar metal (galvanized steel-copper) installation and by an excessive service temperature. Through precuations were taking to electrically insulate both types of tubing by employing dielectric fittings and water flow followed the ''rule of flow'' (zinc[yields] copper), an indirect galvanic attach on galvanized steel took place. Localized corrosion was originated by microcells formed by plating out of soluble copper. Corrosive attack was most severe at weld seams. The microstructure of the weld zone was very different from that of the surrounding pipe. In addition, some pipes presented signs of incomplete fusion (welding without filling metal) and others had protruding weld seams which produced crevice attack and erosion-corrosion, respectively. Author (10 refs.)

  13. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  14. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  15. Analytical prediction on the pump-induced pulsating pressure in a reactor coolant pipe

    International Nuclear Information System (INIS)

    Lee, K.B.; Im, I.Y.; Lee, S.K.

    1992-01-01

    An analytical method is presented for predicting the amplitudes of pump-induced fluctuating pressures in a reactor coolant pipe using a linear transformation technique which reduces a homogeneous differential equation with non-homogeneous boundary conditions into a nonhomogeneous differential equation with homogeneous boundary conditions. At the end of the pipe, three types of boundary conditions are considered-open, closed and piston-spring supported. Numerical examples are given for a typical reactor. Comparisons of measured pressure amplitudes in the pipe with model prediction are shown to be in good agreement for the forcing frequencies. (author)

  16. Corrosion monitoring in insulated pipes using x-ray radiography

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Abd Nasir Ibrahim; Suffian Saad; Shaharuddin Sayuti; Shukri Ahmad

    2000-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as very challenging tasks. In general, this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Besides the thickness, types of corrosion can also be identified easily. Result of this study is presented and discussed in this paper. (Author)

  17. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  18. Apparatus for the separation of water from water-steam mixtures

    International Nuclear Information System (INIS)

    Judith, H.; Schwerdtner, O. von.

    1975-01-01

    Steam flowing from the high-pressure part of a saturated-steam turbine of nuclear power stations to the preheater or steam directly passing off to the low-pressure part contains a high amount of moisture. This is removed by a separating device in the overflow pipe working as an axial cyclon. To this end a twist generator with radially mounted guide vanes forces a twisting movement on the water-steam mixture whereby the water component is thrown towards the wall of the overflow pipe. Behind the twist generator the overflow pipe is provided with ring slots or annular gaps through which the centrifuged water gets into water collecting chambers concentrically surrounding the overflow pipe. The main water seperation results from the first annular gap through centrifugal effects. The rest is removed by steam suction through the other gaps. For steam suction purposes, i.e. in order to produce an underpressure, the collecting chambers of these gaps are connected with the overflow pipe behind the twist generators by means of a suction pipe. In order to also remove small water droplets without increasing the twist, an agglomerator is installed in the overflow pipe before the twist generator. It consists of baffle or guide plates within an elliptic intermediate piece in a bend of the overflow pipe. Therefore the flanks of the guide plates run parallel to the flow direction of the steam. (DG/PB) [de

  19. Environmental factor approach to account for water effects in pressure vessel and piping fatigue evaluations

    International Nuclear Information System (INIS)

    Mehta, H.S.; Gosselin, S.R.

    1998-01-01

    This paper summarizes past and current studies of the environmental fatigue effects in light water reactor (LWR) applications. Current Argonne and Japanese research efforts are reviewed and an approach to calculate an environmental correction factor is described. A description of how the proposed approach can be implemented in section III, NB-3600 and NB-3200-type fatigue evaluations is presented along with examples of applying the approach to piping (NB-3600) and safe end fatigue evaluations. These procedures were applied to several BWR and pressurized water reactor (PWR) example cases. The results of these case studies indicated that there is a modest increase in calculated fatigue usage, which is considerably less than the results obtained when the NUREG/CR-5999 curves are applied directly. (orig.)

  20. Response of buried pipes to missile impact

    International Nuclear Information System (INIS)

    Vardanega, C.; Cremonini, M.G.; Mirone, M.; Luciani, A.

    1989-01-01

    This paper presents the methodology and results of the analyses carried out to determine an effective layout and the dynamic response of safety related cooling water pipes, buried in backfill, for the Alto Lazio Nuclear Power Plant in Italy, subjected to missile impact loading at the backfill surface. The pipes are composed of a steel plate encased in two layers of high-quality reinforced concrete. The methodology comprises three steps. The first step is the definition of the 'free-field' dynamic response of the backfill soil, not considering the presence of the pipes, through a dynamic finite element direct integration analysis utilizing an axisymmetric model. The second step is the pipe-soil interaction analysis, which is conducted by utilizing the soil displacement and stress time-histories obtained in the previous steps. Soil stress time-histories, combined with the geostatic and other operational stresses (such as those due to temperature and pressure), are used to obtain the actions in the pipe walls due to ring type deformation. For the third step, the analysis of the beam type response, a lumped parameter model is developed which accounts for the soil stiffness, the pipe characteristics and the position of the pipe with respect to the impact area. In addition, the effect of the presence of large concrete structures, such as tunnels, between the ground surface and the pipe is evaluated. The results of the structural analyses lead to defining the required steel thickness and also allow the choice of appropriate embedment depth and layout of redundant lines. The final results of the analysis is not only the strength verification of the pipe section, but also the definition of an effective layout of the lines in terms of position, depth, steel thickness and joint design. (orig.)