WorldWideScience

Sample records for clinical parameters predicting

  1. Do Urinary Cystine Parameters Predict Clinical Stone Activity?

    Science.gov (United States)

    Friedlander, Justin I; Antonelli, Jodi A; Canvasser, Noah E; Morgan, Monica S C; Mollengarden, Daniel; Best, Sara; Pearle, Margaret S

    2018-02-01

    An accurate urinary predictor of stone recurrence would be clinically advantageous for patients with cystinuria. A proprietary assay (Litholink, Chicago, Illinois) measures cystine capacity as a potentially more reliable estimate of stone forming propensity. The recommended capacity level to prevent stone formation, which is greater than 150 mg/l, has not been directly correlated with clinical stone activity. We investigated the relationship between urinary cystine parameters and clinical stone activity. We prospectively followed 48 patients with cystinuria using 24-hour urine collections and serial imaging, and recorded stone activity. We compared cystine urinary parameters at times of stone activity with those obtained during periods of stone quiescence. We then performed correlation and ROC analysis to evaluate the performance of cystine parameters to predict stone activity. During a median followup of 70.6 months (range 2.2 to 274.6) 85 stone events occurred which could be linked to a recent urine collection. Cystine capacity was significantly greater for quiescent urine than for stone event urine (mean ± SD 48 ± 107 vs -38 ± 163 mg/l, p stone activity (r = -0.29, p r = -0.88, p r = -0.87, p stone quiescence. Decreasing the cutoff to 90 mg/l or greater improved sensitivity to 25.2% while maintaining specificity at 90.9%. Our results suggest that the target for capacity should be lower than previously advised. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Clinical parameters predictive of malignancy of thyroid follicular neoplasms

    International Nuclear Information System (INIS)

    Davis, N.L.; Gordon, M.; Germann, E.; Robins, R.E.; McGregor, G.I.

    1991-01-01

    Needle aspiration biopsy is commonly employed in the evaluation of thyroid nodules. Unfortunately, the cytologic finding of a 'follicular neoplasm' does not distinguish between a thyroid adenoma and a follicular cancer. The purpose of this study was to identify clinical parameters that characterize patients with an increased risk of having a thyroid follicular cancer who preoperatively have a 'follicular neoplasm' identified by needle aspiration biopsy. A total of 395 patients initially treated at Vancouver General Hospital and the British Columbia Cancer Agency between the years of 1965 and 1985 were identified and their data were entered into a computer database. Patients with thyroid adenomas were compared to patients with follicular cancer using the chi-square test and Student's t-test. Statistically significant parameters that distinguished patients at risk of having a thyroid cancer (p less than 0.05) included age greater than 50 years, nodule size greater than 3 cm, and a history of neck irradiation. Sex, family history of goiter or neoplasm, alcohol and tobacco use, and use of exogenous estrogen were not significant parameters. Patients can be identified preoperatively to be at an increased risk of having a follicular cancer and accordingly appropriate surgical resection can be planned

  3. Prediction of polycystic ovarian syndrome based on ultrasound findings and clinical parameters.

    Science.gov (United States)

    Moschos, Elysia; Twickler, Diane M

    2015-03-01

    To determine the accuracy of sonographic-diagnosed polycystic ovaries and clinical parameters in predicting polycystic ovarian syndrome. Medical records and ultrasounds of 151 women with sonographically diagnosed polycystic ovaries were reviewed. Sonographic criteria for polycystic ovaries were based on 2003 Rotterdam European Society of Human Reproduction and Embryology/American Society for Reproductive Medicine guidelines: at least one ovary with 12 or more follicles measuring 2-9 mm and/or increased ovarian volume >10 cm(3) . Clinical variables of age, gravidity, ethnicity, body mass index, and sonographic indication were collected. One hundred thirty-five patients had final outcomes (presence/absence of polycystic ovarian syndrome). Polycystic ovarian syndrome was diagnosed if a patient had at least one other of the following two criteria: oligo/chronic anovulation and/or clinical/biochemical hyperandrogenism. A logistic regression model was constructed using stepwise selection to identify variables significantly associated with polycystic ovarian syndrome (p polycystic ovaries and 115 (89.8%) had polycystic ovarian syndrome (p = .009). Lower gravidity, abnormal bleeding, and body mass index >33 were significant in predicting polycystic ovarian syndrome (receiver operating characteristics curve, c = 0.86). Pain decreased the likelihood of polycystic ovarian syndrome. Polycystic ovaries on ultrasound were sensitive in predicting polycystic ovarian syndrome. Ultrasound, combined with clinical parameters, can be used to generate a predictive index for polycystic ovarian syndrome. © 2014 Wiley Periodicals, Inc.

  4. Lactate Parameters Predict Clinical Outcomes in Patients with Nonvariceal Upper Gastrointestinal Bleeding.

    Science.gov (United States)

    Lee, Seung Hoon; Min, Yang Won; Bae, Joohwan; Lee, Hyuk; Min, Byung Hoon; Lee, Jun Haeng; Rhee, Poong Lyul; Kim, Jae J

    2017-11-01

    The predictive role of lactate in patients with nonvariceal upper gastrointestinal bleeding (NVUGIB) has been suggested. This study evaluated several lactate parameters in terms of predicting outcomes of bleeding patients and sought to establish a new scoring model by combining lactate parameters and the AIMS65 score. A total of 114 patients with NVUGIB who underwent serum lactate level testing at least twice and endoscopic hemostasis within 24 hours after admission were retrospectively analyzed. The associations between five lactate parameters and clinical outcomes were evaluated and the predictive power of lactate parameter combined AIMS65s (L-AIMS65s) and AIMS56 scoring was compared. The most common cause of bleeding was gastric ulcer (48.2%). Lactate clearance rate (LCR) was associated with 30-day rebleeding (odds ratio [OR], 0.931; 95% confidence interval [CI], 0.872-0.994; P = 0.033). Initial lactate (OR, 1.313; 95% CI, 1.050-1.643; P = 0.017), maximal lactate (OR, 1.277; 95% CI, 1.037-1.573; P = 0.021), and average lactate (OR, 1.535; 95% CI, 1.137-2.072; P = 0.005) levels were associated with 30-day mortality. Initial lactate (OR, 1.213; 95% CI, 1.027-1.432; P = 0.023), maximal lactate (OR, 1.271; 95% CI, 1.074-1.504; P = 0.005), and average lactate (OR, 1.501; 95% CI, 1.150-1.959; P = 0.003) levels were associated with admission over 7 days. Although L-AIMS65s showed the highest area under the curve for prediction of each outcome, differences between L-AIMS65s and AIMS65 did not reach statistical significance. In conclusion, lactate parameters have a prognostic role in patients with NVUGIB. However, they do not increase the predictive power of AIMS65 when combined. © 2017 The Korean Academy of Medical Sciences.

  5. Prediction models for solitary pulmonary nodules based on curvelet textural features and clinical parameters.

    Science.gov (United States)

    Wang, Jing-Jing; Wu, Hai-Feng; Sun, Tao; Li, Xia; Wang, Wei; Tao, Li-Xin; Huo, Da; Lv, Ping-Xin; He, Wen; Guo, Xiu-Hua

    2013-01-01

    Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.

  6. Preoperative Biometric Parameters Predict the Vault after ICL Implantation: A Retrospective Clinical Study.

    Science.gov (United States)

    Zheng, Qian-Yin; Xu, Wen; Liang, Guan-Lu; Wu, Jing; Shi, Jun-Ting

    2016-01-01

    To investigate the correlation between the preoperative biometric parameters of the anterior segment and the vault after implantable Collamer lens (ICL) implantation via this retrospective study. Retrospective clinical study. A total of 78 eyes from 41 patients who underwent ICL implantation surgery were included in this study. Preoperative biometric parameters, including white-to-white (WTW) diameter, central corneal thickness, keratometer, pupil diameter, anterior chamber depth, sulcus-to-sulcus diameter, anterior chamber area (ACA) and central curvature radius of the anterior surface of the lens (Lenscur), were measured. Lenscur and ACA were measured with Rhinoceros 5.0 software on the image scanned with ultrasound biomicroscopy (UBM). The vault was assessed by UBM 3 months after surgery. Multiple stepwise regression analysis was employed to identify the variables that were correlated with the vault. The results showed that the vault was correlated with 3 variables: ACA (22.4 ± 4.25 mm2), WTW (11.36 ± 0.29 mm) and Lenscur (9.15 ± 1.21 mm). The regressive equation was: vault (mm) = 1.785 + 0.017 × ACA + 0.051 × Lenscur - 0.203 × WTW. Biometric parameters of the anterior segment (ACA, WTW and Lenscur) can predict the vault after ICL implantation using a new regression equation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Multidetector-CT angiography in pulmonary embolism - can image parameters predict clinical outcome?

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, Christoph M.; Lemburg, Stefan P.; Nicolas, Volkmar; Roggenland, Daniela [Berufsgenossenschaftliches Universitaetsklinikum Bergmannsheil GmbH, Ruhr-University of Bochum, Institute of Diagnostic Radiology, Interventional Radiology and Nuclear Medicine, Bochum (Germany); Knoop, Heiko [Berufsgenossenschaftliches Universitaetsklinikum Bergmannsheil GmbH, Medical Clinic III - Pneumology, Allergology, and Sleep Medicine, Bochum (Germany); Holland-Letz, Tim [Ruhr-University of Bochum, Department of Medical Informatics, Biometry and Epidemiology, Bochum (Germany)

    2011-09-15

    To assess if pulmonary CT angiography (CTA) can predict outcome in patients with pulmonary embolism (PE). Retrospective analysis of CTA studies of patients with PE and documentation of pulmonary artery (PA)/aorta ratio, right ventricular (RV)/left ventricular (LV) ratio, superior vena cava (SVC) diameter, pulmonary obstruction index (POI), ventricular septal bowing (VSB), venous contrast reflux (VCR), pulmonary infarction and pleural effusion. Furthermore, duration of total hospital stay, necessity for/duration of ICU therapy, necessity for mechanical ventilation and mortality were recorded. Comparison was performed by logistic/linear regression analysis with significance at 5%. 152 patients were investigated. Mean duration of hospital stay was 21 {+-} 24 days. 66 patients were admitted to the ICU; 20 received mechanical ventilation. Mean duration of ICU therapy was 3 {+-} 8 days. Mortality rate was 8%. Significant positive associations of POI, VCR and pulmonary infarction with necessity for ICU therapy were shown. VCR was significantly associated with necessity for mechanical ventilation and duration of ICU treatment. Pleural effusions were significantly associated with duration of total hospital stay whereas the RV/LV ratio correlated with mortality. Selected CTA findings showed significant associations with the clinical course of PE and may thus be used as predictive parameters. (orig.)

  8. Predictive Clinical Parameters and Glycemic Efficacy of Vildagliptin Treatment in Korean Subjects with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Jin-Sun Chang

    2013-02-01

    Full Text Available BackgroundThe aims of this study are to investigate the glycemic efficacy and predictive parameters of vildagliptin therapy in Korean subjects with type 2 diabetes.MethodsIn this retrospective study, we retrieved data for subjects who were on twice-daily 50 mg vildagliptin for at least 6 months, and classified the subjects into five treatment groups. In three of the groups, we added vildagliptin to their existing medication regimen; in the other two groups, we replaced one of their existing medications with vildagliptin. We then analyzed the changes in glucose parameters and clinical characteristics.ResultsUltimately, 327 subjects were analyzed in this study. Vildagliptin significantly improved hemoglobin A1c (HbA1c levels over 6 months. The changes in HbA1c levels (ΔHbA1c at month 6 were -2.24% (P=0.000, -0.77% (P=0.000, -0.80% (P=0.001, -0.61% (P=0.000, and -0.34% (P=0.025 for groups 1, 2, 3, 4, and 5, respectively, with significance. We also found significant decrements in fasting plasma glucose levels in groups 1, 2, 3, and 4 (P<0.05. Of the variables, initial HbA1c levels (P=0.032 and history of sulfonylurea use (P=0.026 were independently associated with responsiveness to vildagliptin treatment.ConclusionVildagliptin was effective when it was used in subjects with poor glycemic control. It controlled fasting plasma glucose levels as well as sulfonylurea treatment in Korean type 2 diabetic subjects.

  9. Predicting pneumococcal community-acquired pneumonia in the emergency department: evaluation of clinical parameters.

    Science.gov (United States)

    Huijts, S M; Boersma, W G; Grobbee, D E; Gruber, W C; Jansen, K U; Kluytmans, J A J W; Kuipers, B A F; Palmen, F; Pride, M W; Webber, C; Bonten, M J M

    2014-12-01

    The aim of this study was to quantify the value of clinical predictors available in the emergency department (ED) in predicting Streptococcus pneumoniae as the cause of community-acquired pneumonia (CAP). A prospective, observational, cohort study of patients with CAP presenting in the ED was performed. Pneumococcal aetiology of CAP was based on either bacteraemia, or S. pneumoniae being cultured from sputum, or urinary immunochromatographic assay positivity, or positivity of a novel serotype-specific urinary antigen detection test. Multivariate logistic regression was used to identify independent predictors and various cut-off values of probability scores were used to evaluate the usefulness of the model. Three hundred and twenty-eight (31.0%) of 1057 patients with CAP had pneumococcal CAP. Nine independent predictors for pneumococcal pneumonia were identified, but the clinical utility of this prediction model was disappointing, because of low positive predictive values or a small yield. Clinical criteria have insufficient diagnostic capacity to predict pneumococcal CAP. Rapid antigen detection tests are needed to diagnose S. pneumoniae at the time of hospital admission. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  10. Utility of Clinical Parameters and Multiparametric MRI as Predictive Factors for Differentiating Uterine Sarcoma From Atypical Leiomyoma.

    Science.gov (United States)

    Bi, Qiu; Xiao, Zhibo; Lv, Fajin; Liu, Yao; Zou, Chunxia; Shen, Yiqing

    2018-02-05

    The objective of this study was to find clinical parameters and qualitative and quantitative magnetic resonance imaging (MRI) features for differentiating uterine sarcoma from atypical leiomyoma (ALM) preoperatively and to calculate predictive values for uterine sarcoma. Data from 60 patients with uterine sarcoma and 88 patients with ALM confirmed by surgery and pathology were collected. Clinical parameters, qualitative MRI features, diffusion-weighted imaging with apparent diffusion coefficient values, and quantitative parameters of dynamic contrast-enhanced MRI of these two tumor types were compared. Predictive values for uterine sarcoma were calculated using multivariable logistic regression. Patient clinical manifestations, tumor locations, margins, T2-weighted imaging signals, mean apparent diffusion coefficient values, minimum apparent diffusion coefficient values, and time-signal intensity curves of solid tumor components were obvious significant parameters for distinguishing between uterine sarcoma and ALM (all P Abnormal vaginal bleeding, tumors located mainly in the uterine cavity, ill-defined tumor margins, and mean apparent diffusion coefficient values of uterine sarcoma. When the overall scores of these four predictors were greater than or equal to 7 points, the sensitivity, the specificity, the accuracy, and the positive and negative predictive values were 88.9%, 99.9%, 95.7%, 97.0%, and 95.1%, respectively. The use of clinical parameters and multiparametric MRI as predictive factors was beneficial for diagnosing uterine sarcoma preoperatively. These findings could be helpful for guiding treatment decisions. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Clinical Significance of Hemostatic Parameters in the Prediction for Type 2 Diabetes Mellitus and Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Lianlian Pan

    2018-01-01

    Full Text Available It would be important to predict type 2 diabetes mellitus (T2DM and diabetic nephropathy (DN. This study was aimed at evaluating the predicting significance of hemostatic parameters for T2DM and DN. Plasma coagulation and hematologic parameters before treatment were measured in 297 T2DM patients. The risk factors and their predicting power were evaluated. T2DM patients without complications exhibited significantly different activated partial thromboplastin time (aPTT, platelet (PLT, and D-dimer (D-D levels compared with controls (P<0.01. Fibrinogen (FIB, PLT, and D-D increased in DN patients compared with those without complications (P<0.001. Both aPTT and PLT were the independent risk factors for T2DM (OR: 1.320 and 1.211, P<0.01, resp., and FIB and PLT were the independent risk factors for DN (OR: 1.611 and 1.194, P<0.01, resp.. The area under ROC curve (AUC of aPTT and PLT was 0.592 and 0.647, respectively, with low sensitivity in predicting T2DM. AUC of FIB was 0.874 with high sensitivity (85% and specificity (76% for DN, and that of PLT was 0.564, with sensitivity (60% and specificity (89% based on the cutoff values of 3.15 g/L and 245 × 109/L, respectively. This study suggests that hemostatic parameters have a low predicting value for T2DM, whereas fibrinogen is a powerful predictor for DN.

  12. Clinical validation of the LKB model and parameter sets for predicting radiation-induced pneumonitis from breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Tsougos, Ioannis; Mavroidis, Panayiotis; Theodorou, Kyriaki; Rajala, J; Pitkaenen, M A; Holli, K; Ojala, A T; Hyoedynmaa, S; Jaervenpaeae, Ritva; Lind, Bengt K; Kappas, Constantin

    2006-01-01

    The choice of the appropriate model and parameter set in determining the relation between the incidence of radiation pneumonitis and dose distribution in the lung is of great importance, especially in the case of breast radiotherapy where the observed incidence is fairly low. From our previous study based on 150 breast cancer patients, where the fits of dose-volume models to clinical data were estimated (Tsougos et al 2005 Evaluation of dose-response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy Phys. Med. Biol. 50 3535-54), one could get the impression that the relative seriality is significantly better than the LKB NTCP model. However, the estimation of the different NTCP models was based on their goodness-of-fit on clinical data, using various sets of published parameters from other groups, and this fact may provisionally justify the results. Hence, we sought to investigate further the LKB model, by applying different published parameter sets for the very same group of patients, in order to be able to compare the results. It was shown that, depending on the parameter set applied, the LKB model is able to predict the incidence of radiation pneumonitis with acceptable accuracy, especially when implemented on a sub-group of patients (120) receiving D-bar-bar vertical bar EUD higher than 8 Gy. In conclusion, the goodness-of-fit of a certain radiobiological model on a given clinical case is closely related to the selection of the proper scoring criteria and parameter set as well as to the compatibility of the clinical case from which the data were derived. (letter to the editor)

  13. A new model using routinely available clinical parameters to predict significant liver fibrosis in chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Wai-Kay Seto

    Full Text Available OBJECTIVE: We developed a predictive model for significant fibrosis in chronic hepatitis B (CHB based on routinely available clinical parameters. METHODS: 237 treatment-naïve CHB patients [58.4% hepatitis B e antigen (HBeAg-positive] who had undergone liver biopsy were randomly divided into two cohorts: training group (n = 108 and validation group (n = 129. Liver histology was assessed for fibrosis. All common demographics, viral serology, viral load and liver biochemistry were analyzed. RESULTS: Based on 12 available clinical parameters (age, sex, HBeAg status, HBV DNA, platelet, albumin, bilirubin, ALT, AST, ALP, GGT and AFP, a model to predict significant liver fibrosis (Ishak fibrosis score ≥3 was derived using the five best parameters (age, ALP, AST, AFP and platelet. Using the formula log(index+1 = 0.025+0.0031(age+0.1483 log(ALP+0.004 log(AST+0.0908 log(AFP+1-0.028 log(platelet, the PAPAS (Platelet/Age/Phosphatase/AFP/AST index predicts significant fibrosis with an area under the receiving operating characteristics (AUROC curve of 0.776 [0.797 for patients with ALT <2×upper limit of normal (ULN] The negative predictive value to exclude significant fibrosis was 88.4%. This predictive power is superior to other non-invasive models using common parameters, including the AST/platelet/GGT/AFP (APGA index, AST/platelet ratio index (APRI, and the FIB-4 index (AUROC of 0.757, 0.708 and 0.723 respectively. Using the PAPAS index, 67.5% of liver biopsies for patients being considered for treatment with ALT <2×ULN could be avoided. CONCLUSION: The PAPAS index can predict and exclude significant fibrosis, and may reduce the need for liver biopsy in CHB patients.

  14. Non-invasive clinical parameters for the prediction of urodynamic bladder outlet obstruction: analysis using causal Bayesian networks.

    Directory of Open Access Journals (Sweden)

    Myong Kim

    Full Text Available To identify non-invasive clinical parameters to predict urodynamic bladder outlet obstruction (BOO in patients with benign prostatic hyperplasia (BPH using causal Bayesian networks (CBN.From October 2004 to August 2013, 1,381 eligible BPH patients with complete data were selected for analysis. The following clinical variables were considered: age, total prostate volume (TPV, transition zone volume (TZV, prostate specific antigen (PSA, maximum flow rate (Qmax, and post-void residual volume (PVR on uroflowmetry, and International Prostate Symptom Score (IPSS. Among these variables, the independent predictors of BOO were selected using the CBN model. The predictive performance of the CBN model using the selected variables was verified through a logistic regression (LR model with the same dataset.Mean age, TPV, and IPSS were 6.2 (±7.3, SD years, 48.5 (±25.9 ml, and 17.9 (±7.9, respectively. The mean BOO index was 35.1 (±25.2 and 477 patients (34.5% had urodynamic BOO (BOO index ≥40. By using the CBN model, we identified TPV, Qmax, and PVR as independent predictors of BOO. With these three variables, the BOO prediction accuracy was 73.5%. The LR model showed a similar accuracy (77.0%. However, the area under the receiver operating characteristic curve of the CBN model was statistically smaller than that of the LR model (0.772 vs. 0.798, p = 0.020.Our study demonstrated that TPV, Qmax, and PVR are independent predictors of urodynamic BOO.

  15. Advancement Flap for Treatment of Complex Cryptoglandular Anal Fistula: Prediction of Therapy Success or Failure Using Anamnestic and Clinical Parameters.

    Science.gov (United States)

    Boenicke, Lars; Karsten, Eduard; Zirngibl, Hubert; Ambe, Peter

    2017-09-01

    Multiple new procedures for treatment of complex anal fistula have been described in the past decades, but an ideal single technique has yet not been identified. Factors that predict the outcome are required to identify the best procedure for each individual patient. The aim of this study was to find those predictors for advancement flap at midterm follow-up. From 2012 to 2015 in a tertiary university clinic, all patients who underwent advancement flap for treatment of complex cryptoglandular fistula were prospectively enrolled. Pre- and postoperatively standardized anamnestic and clinical examinations were performed. Predictive factors for therapy failure were identified using univariate and multivariate analysis. Out of 65 patients, 61 (93%) completed all examinations and were included in the study. Therapy failure after a mean follow-up period of 25 months occurred in total n = 11 patients (18%). There was no significant disturbance of continence among the entire study cohort as shown by the incontinence score (preop 0.34 ± 0.91 pts., postop 0.37 ± 0.97 pts.; p = 0.59). Univariate analysis for risk factors for therapy failure revealed age (p = 0.004), history of surgical abscess drainage (p = 0.04), BMI (p = 0.002), suprasphincteric fistula (p = 0.019) and horseshoe abscess (p = 0.036) as independent parameters for therapy failure. During multivariate analysis, only history of surgical abscess drainage (OR = 8.09, p = 0.048, 95% CI 0.98-64.96), suprasphincteric fistula (OR = 6.83, p = 0.032, 95% CI 1.17-6.83) and BMI (OR = 1.23, p = 0.017, 95% CI 1.03-1.46) were independent parameters for therapy failure. Advancement flap for treatment of complex fistula is effective and has low risk of disturbed continence. BMI, suprasphincteric fistula and history of surgical abscess drainage are predictors for therapy failure.

  16. The Usefulness of Clinical and Laboratory Parameters for Predicting Severity of Dehydration in Children with Acute Gastroenteritis

    OpenAIRE

    Hoxha, Teuta Faik; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-jaha, Vlora; Grajqevci, Violeta; Petrela, Ela

    2014-01-01

    ABSTRACT Background: An accurate assessment of the degree of dehydration in infants and children is important for proper decision-making and treatment. This emphasizes the need for laboratory tests to improve the accuracy of clinical assessment of dehydration. The aim of this study was to assess the relationship between clinical and laboratory parameters in the assessment of dehydration. Methods: We evaluated prospectively 200 children aged 1 month to 5 years who presented with diarrhea, vomi...

  17. A prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2, based on simple clinical parameters.

    Science.gov (United States)

    Koeneman, Margot M; van Lint, Freyja H M; van Kuijk, Sander M J; Smits, Luc J M; Kooreman, Loes F S; Kruitwagen, Roy F P M; Kruse, Arnold J

    2017-01-01

    This study aims to develop a prediction model for spontaneous regression of cervical intraepithelial neoplasia grade 2 (CIN 2) lesions based on simple clinicopathological parameters. The study was conducted at Maastricht University Medical Center, the Netherlands. The prediction model was developed in a retrospective cohort of 129 women with a histologic diagnosis of CIN 2 who were managed by watchful waiting for 6 to 24months. Five potential predictors for spontaneous regression were selected based on the literature and expert opinion and were analyzed in a multivariable logistic regression model, followed by backward stepwise deletion based on the Wald test. The prediction model was internally validated by the bootstrapping method. Discriminative capacity and accuracy were tested by assessing the area under the receiver operating characteristic curve (AUC) and a calibration plot. Disease regression within 24months was seen in 91 (71%) of 129 patients. A prediction model was developed including the following variables: smoking, Papanicolaou test outcome before the CIN 2 diagnosis, concomitant CIN 1 diagnosis in the same biopsy, and more than 1 biopsy containing CIN 2. Not smoking, Papanicolaou class predictive of disease regression. The AUC was 69.2% (95% confidence interval, 58.5%-79.9%), indicating a moderate discriminative ability of the model. The calibration plot indicated good calibration of the predicted probabilities. This prediction model for spontaneous regression of CIN 2 may aid physicians in the personalized management of these lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Prediction of Radiation Esophagitis in Non–Small Cell Lung Cancer Using Clinical Factors, Dosimetric Parameters, and Pretreatment Cytokine Levels

    Directory of Open Access Journals (Sweden)

    Peter G. Hawkins

    2018-02-01

    Full Text Available Radiation esophagitis (RE is a common adverse event associated with radiotherapy for non–small cell lung cancer (NSCLC. While plasma cytokine levels have been correlated with other forms of radiation-induced toxicity, their association with RE has been less well studied. We analyzed data from 126 patients treated on 4 prospective clinical trials. Logistic regression models based on combinations of dosimetric factors [maximum dose to 2 cubic cm (D2cc and generalized equivalent uniform dose (gEUD], clinical variables, and pretreatment plasma levels of 30 cytokines were developed. Cross-validated estimates of area under the receiver operating characteristic curve (AUC and log likelihood were used to assess prediction accuracy. Dose-only models predicted grade 3 RE with AUC values of 0.750 (D2cc and 0.727 (gEUD. Combining clinical factors with D2cc increased the AUC to 0.779. Incorporating pretreatment cytokine measurements, modeled as direct associations with RE and as potential interactions with the dose-esophagitis association, produced AUC values of 0.758 and 0.773, respectively. D2cc and gEUD correlated with grade 3 RE with odds ratios (ORs of 1.094/Gy and 1.096/Gy, respectively. Female gender was associated with a higher risk of RE, with ORs of 1.09 and 1.112 in the D2cc and gEUD models, respectively. Older age was associated with decreased risk of RE, with ORs of 0.992/year and 0.991/year in the D2cc and gEUD models, respectively. Combining clinical with dosimetric factors but not pretreatment cytokine levels yielded improved prediction of grade 3 RE compared to prediction by dose alone. Such multifactorial modeling may prove useful in directing radiation treatment planning.

  19. Neurologic dysfunction in patients with rheumatoid arthritis of the cervical spine. Predictive value of clinical, radiographic and MR imaging parameters

    International Nuclear Information System (INIS)

    Reijnierse, M.; Kroon, H.M.; Holscher, H.C.; Bloem, J.L.; Dijkmans, B.A.C.; Breedveld, F.C.; Hansen, B.; Pope, T.L.

    2001-01-01

    The aim of this study was to evaluate if subjective symptoms, radiographic and especially MR parameters of cervical spine involvement, can predict neurologic dysfunction in patients with severe rheumatoid arthritis (RA). Sequential radiographs, MR imaging, and neurologic examination were performed yearly in 46 consecutive RA patients with symptoms indicative of cervical spine involvement. Radiographic parameters were erosions of the dens or intervertebral joints, disc-space narrowing, horizontal and vertical atlantoaxial subluxation, subluxations below C2, and the diameter of the spinal canal. The MR features evaluated were presence of dens and atlas erosion, brainstem compression, subarachnoid space encroachment, pannus around the dens, abnormal fat body caudal to the clivus, cervicomedullary angle, and distance of the dens to the line of McRae. Muscle weakness was associated with a tenfold increased risk of neurologic dysfunction. Radiographic parameters were not associated. On MR images atlas erosion and a decreased distance of the dens to the line of McRae showed a fivefold increased risk of neurologic dysfunction. Subarachnoid space encroachment was associated with a 12-fold increased risk. Rheumatoid arthritis patients with muscle weakness and subarachnoid space encroachment of the entire cervical spine have a highly increased risk of developing neurologic dysfunction. (orig.)

  20. Neurologic dysfunction in patients with rheumatoid arthritis of the cervical spine. Predictive value of clinical, radiographic and MR imaging parameters

    Energy Technology Data Exchange (ETDEWEB)

    Reijnierse, M.; Kroon, H.M.; Holscher, H.C.; Bloem, J.L. [Dept. of Radiology, University Hospital Leiden (Netherlands); Dijkmans, B.A.C.; Breedveld, F.C. [Dept. of Rheumatology, University Hospital Leiden (Netherlands); Hansen, B. [Dept. of Medical Statistics, University Hospital Leiden (Netherlands); Pope, T.L. [Dept. of Diagnostic Radiology, Univ. of South Carolina (United States)

    2001-03-01

    The aim of this study was to evaluate if subjective symptoms, radiographic and especially MR parameters of cervical spine involvement, can predict neurologic dysfunction in patients with severe rheumatoid arthritis (RA). Sequential radiographs, MR imaging, and neurologic examination were performed yearly in 46 consecutive RA patients with symptoms indicative of cervical spine involvement. Radiographic parameters were erosions of the dens or intervertebral joints, disc-space narrowing, horizontal and vertical atlantoaxial subluxation, subluxations below C2, and the diameter of the spinal canal. The MR features evaluated were presence of dens and atlas erosion, brainstem compression, subarachnoid space encroachment, pannus around the dens, abnormal fat body caudal to the clivus, cervicomedullary angle, and distance of the dens to the line of McRae. Muscle weakness was associated with a tenfold increased risk of neurologic dysfunction. Radiographic parameters were not associated. On MR images atlas erosion and a decreased distance of the dens to the line of McRae showed a fivefold increased risk of neurologic dysfunction. Subarachnoid space encroachment was associated with a 12-fold increased risk. Rheumatoid arthritis patients with muscle weakness and subarachnoid space encroachment of the entire cervical spine have a highly increased risk of developing neurologic dysfunction. (orig.)

  1. The Usefulness of Clinical and Laboratory Parameters for Predicting Severity of Dehydration in Children with Acute Gastroenteritis

    Science.gov (United States)

    Hoxha, Teuta Faik; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-jaha, Vlora; Grajqevci, Violeta; Petrela, Ela

    2014-01-01

    ABSTRACT Background: An accurate assessment of the degree of dehydration in infants and children is important for proper decision-making and treatment. This emphasizes the need for laboratory tests to improve the accuracy of clinical assessment of dehydration. The aim of this study was to assess the relationship between clinical and laboratory parameters in the assessment of dehydration. Methods: We evaluated prospectively 200 children aged 1 month to 5 years who presented with diarrhea, vomiting or both. Dehydration assessment was done following a known clinical scheme. Results: We enrolled in the study 200 children (57.5% were male). The mean age was 15.62±9.03 months, with more than half those studied being under 24 months old. Overall, 46.5% (93) had mild dehydration, 34% (68) had moderate dehydration, 5.5% (11) had severe dehydration whereas, 14% (28) had no dehydration. Patients historical clinical variables in all dehydration groups did not differ significantly regarding age, sex, fever, frequency of vomiting, duration of diarrhea and vomiting, while there was a trend toward severe dehydration in children with more frequent diarrhea (p=0.004). Serum urea and creatinine cannot discriminate between mild and moderate dehydration but they showed a good specificity for severe dehydration of 99% and 100% respectively. Serum bicarbonates and base excess decreased significantly with a degree of dehydration and can discriminate between all dehydration groups (P<0.001). Conclusion: Blood gases were useful to diagnose the degree of dehydration status among children presenting with acute gastroenteritis. Serum urea and creatinine were the most specific tests for severe dehydration diagnosis. Historical clinical patterns apart from frequency of diarrhea did not correlate with dehydration status. Further studies are needed to validate our results. PMID:25568559

  2. The usefulness of clinical and laboratory parameters for predicting severity of dehydration in children with acute gastroenteritis.

    Science.gov (United States)

    Hoxha, Teuta Faik; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-Jaha, Vlora; Grajqevci, Violeta; Petrela, Ela

    2014-10-01

    An accurate assessment of the degree of dehydration in infants and children is important for proper decision-making and treatment. This emphasizes the need for laboratory tests to improve the accuracy of clinical assessment of dehydration. The aim of this study was to assess the relationship between clinical and laboratory parameters in the assessment of dehydration. We evaluated prospectively 200 children aged 1 month to 5 years who presented with diarrhea, vomiting or both. Dehydration assessment was done following a known clinical scheme. We enrolled in the study 200 children (57.5% were male). The mean age was 15.62±9.03 months, with more than half those studied being under 24 months old. Overall, 46.5% (93) had mild dehydration, 34% (68) had moderate dehydration, 5.5% (11) had severe dehydration whereas, 14% (28) had no dehydration. Patients historical clinical variables in all dehydration groups did not differ significantly regarding age, sex, fever, frequency of vomiting, duration of diarrhea and vomiting, while there was a trend toward severe dehydration in children with more frequent diarrhea (p=0.004). Serum urea and creatinine cannot discriminate between mild and moderate dehydration but they showed a good specificity for severe dehydration of 99% and 100% respectively. Serum bicarbonates and base excess decreased significantly with a degree of dehydration and can discriminate between all dehydration groups (Pdehydration status among children presenting with acute gastroenteritis. Serum urea and creatinine were the most specific tests for severe dehydration diagnosis. Historical clinical patterns apart from frequency of diarrhea did not correlate with dehydration status. Further studies are needed to validate our results.

  3. Prediction of therapeutic response in steroid-treated pulmonary sarcoidosis. Evaluation of clinical parameters, bronchoalveolar lavage, gallium-67 lung scanning, and serum angiotensin-converting enzyme levels

    International Nuclear Information System (INIS)

    Hollinger, W.M.; Staton, G.W. Jr.; Fajman, W.A.; Gilman, M.J.; Pine, J.R.; Check, I.J.

    1985-01-01

    To find a pretreatment predictor of steroid responsiveness in pulmonary sarcoidosis the authors studied 21 patients before and after steroid treatment by clinical evaluation, pulmonary function tests, bronchoalveolar lavage (BAL), gallium-67 lung scan, and serum angiotensin-converting enzyme (SACE) level. Although clinical score, forced vital capacity (FVC), BAL percent lymphocytes (% lymphs), quantitated gallium-67 lung uptake, and SACE levels all improved with therapy, only the pretreatment BAL % lymphs correlated with the improvement in FVC (r = 0.47, p less than 0.05). Pretreatment BAL % lymphs of greater than or equal to 35% predicted improvement in FVC of 10/11 patients, whereas among 10 patients with BAL % lymphs less than 35%, 5 patients improved and 5 deteriorated. Clinical score, pulmonary function parameters, quantitated gallium-67 lung uptake, and SACE level used alone, in combination with BAL % lymphs or in combination with each other, did not improve this predictive value. The authors conclude that steroid therapy improves a number of clinical and laboratory parameters in sarcoidosis, but only the pretreatment BAL % lymphs are useful in predicting therapeutic responsiveness

  4. Value of quantitative MRI parameters in predicting and evaluating clinical outcome in conservatively treated patients with chronic midportion Achilles tendinopathy: A prospective study.

    Science.gov (United States)

    Tsehaie, J; Poot, D H J; Oei, E H G; Verhaar, J A N; de Vos, R J

    2017-07-01

    To evaluate whether baseline MRI parameters provide prognostic value for clinical outcome, and to study correlation between MRI parameters and clinical outcome. Observational prospective cohort study. Patients with chronic midportion Achilles tendinopathy were included and performed a 16-week eccentric calf-muscle exercise program. Outcome measurements were the validated Victorian Institute of Sports Assessment-Achilles (VISA-A) questionnaire and MRI parameters at baseline and after 24 weeks. The following MRI parameters were assessed: tendon volume (Volume), tendon maximum cross-sectional area (CSA), tendon maximum anterior-posterior diameter (AP), and signal intensity (SI). Intra-class correlation coefficients (ICCs) and minimum detectable changes (MDCs) for each parameter were established in a reliability analysis. Twenty-five patients were included and complete follow-up was achieved in 20 patients. The average VISA-A scores increased significantly with 12.3 points (27.6%). The reliability was fair-good for all MRI-parameters with ICCs>0.50. Average tendon volume and CSA decreased significantly with 0.28cm 3 (5.2%) and 4.52mm 2 (4.6%) respectively. Other MRI parameters did not change significantly. None of the baseline MRI parameters were univariately associated with VISA-A change after 24 weeks. MRI SI increase over 24 weeks was positively correlated with the VISA-A score improvement (B=0.7, R 2 =0.490, p=0.02). Tendon volume and CSA decreased significantly after 24 weeks of conservative treatment. As these differences were within the MDC limits, they could be a result of a measurement error. Furthermore, MRI parameters at baseline did not predict the change in symptoms, and therefore have no added value in providing a prognosis in daily clinical practice. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Reliable prediction of clinical outcome in patients with chronic HCV infection and compensated advanced hepatic fibrosis: a validated model using objective and readily available clinical parameters.

    Science.gov (United States)

    van der Meer, Adriaan J; Hansen, Bettina E; Fattovich, Giovanna; Feld, Jordan J; Wedemeyer, Heiner; Dufour, Jean-François; Lammert, Frank; Duarte-Rojo, Andres; Manns, Michael P; Ieluzzi, Donatella; Zeuzem, Stefan; Hofmann, W Peter; de Knegt, Robert J; Veldt, Bart J; Janssen, Harry L A

    2015-02-01

    Reliable tools to predict long-term outcome among patients with well compensated advanced liver disease due to chronic HCV infection are lacking. Risk scores for mortality and for cirrhosis-related complications were constructed with Cox regression analysis in a derivation cohort and evaluated in a validation cohort, both including patients with chronic HCV infection and advanced fibrosis. In the derivation cohort, 100/405 patients died during a median 8.1 (IQR 5.7-11.1) years of follow-up. Multivariate Cox analyses showed age (HR=1.06, 95% CI 1.04 to 1.09, pstatistic=0.78, 95% CI 0.72 to 0.83). In the validation cohort, 58/296 patients with cirrhosis died during a median of 6.6 (IQR 4.4-9.0) years. Among patients with estimated 5-year mortality risks 10%, the observed 5-year mortality rates in the derivation cohort and validation cohort were 0.9% (95% CI 0.0 to 2.7) and 2.6% (95% CI 0.0 to 6.1), 8.1% (95% CI 1.8 to 14.4) and 8.0% (95% CI 1.3 to 14.7), 21.8% (95% CI 13.2 to 30.4) and 20.9% (95% CI 13.6 to 28.1), respectively (C statistic in validation cohort = 0.76, 95% CI 0.69 to 0.83). The risk score for cirrhosis-related complications also incorporated HCV genotype (C statistic = 0.80, 95% CI 0.76 to 0.83 in the derivation cohort; and 0.74, 95% CI 0.68 to 0.79 in the validation cohort). Prognosis of patients with chronic HCV infection and compensated advanced liver disease can be accurately assessed with risk scores including readily available objective clinical parameters. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Factors predictive of abnormal semen parameters in male partners of couples attending the infertility clinic of a tertiary hospital in south-western Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Olusola Aduloju

    2016-11-01

    Full Text Available Background: Infertility is a common gynaecological problem and male factor contributes significantly in the aetiology of infertility. Semen analysis has remained a useful investigation in the search for male factor infertility. Aim: This study assessed the pattern of semen parameters and predictive factors associated with abnormal parameters in male partners of infertile couples attending a Nigerian tertiary hospital. Methods: A descriptive study of infertile couples presenting at the clinic between January 2012and December 2015 was done at Ekiti State University Teaching Hospital, Ado-Ekiti. Seminal fluid from the male partners were analysed in the laboratory using the WHO 2010 criteria for human semen characteristics. Data was analysed using SPSS 17 and logistic regression analysis was used to determine the predictive factors associated with abnormal semen parameters. Results: A total of 443 men participated in the study and 38.2% had abnormal sperm parameters. Oligozoospermia (34.8% and asthenozoospermia (26.9% are leading single factor abnormality found, astheno-oligozoospermia occurred in 14.2% and oligo-astheno-teratozoospermia in 3.6% of cases. The prevalence of azoospermia was 3.4%. Smoking habit, past infection with mumps and previous groin surgery significantly predicted abnormal semen parameters with p values of 0.025, 0.040 and 0.017 respectively. Positive cultures were recorded in 36.2% of cases and staph aureus was the commonest organism. Conclusion: Male factor abnormalities remain significant contributors to infertility and men should be encouraged through advocacy to participate in investigation of infertility to reduce the level of stigmatization and ostracizing of women with infertility especially in sub-Saharan Africa.

  7. Factors predictive of abnormal semen parameters in male partners of couples attending the infertility clinic of a tertiary hospital in southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Peter Aduloju

    2016-12-01

    Full Text Available Background: Infertility is a common gynaecological problem and male factor contributes significantly in the aetiology of infertility. Semen analysis has remained a useful investigation in the search for male factor infertility.Aim: This study assessed the pattern of semen parameters and predictive factors associated with abnormal parameters in male partners of infertile couples attending a Nigerian tertiary hospital.Methods: A descriptive study of infertile couples presenting at the clinic between January 2012and December 2015 was done at Ekiti State University Teaching Hospital, Ado-Ekiti.  Seminal fluid from the male partners were analysed in the laboratory using the WHO 2010 criteria for human semen characteristics. Data was analysed using SPSS 17 and logistic regression analysis was used to determine the predictive factors associated with abnormal semen parameters.Results: A total of 443 men participated in the study and 38.2% had abnormal sperm parameters. Oligozoospermia (34.8% and asthenozoospermia (26.9% are leading single factor abnormality found, astheno-oligozoospermia occurred in 14.2% and oligo-astheno-teratozoospermia in 3.6% of cases. The prevalence of azoospermia was 3.4%. Smoking habit, past infection with mumps and previous groin surgery significantly predicted abnormal semen parameters with p values of 0.025, 0.040 and 0.017 respectively. Positive cultures were recorded in 36.2% of cases and staph aureus was the commonest organism.Conclusion: Male factor abnormalities remain significant contributors to infertility and men should be encouraged through advocacy to participate in investigation of infertility to reduce the level of stigmatization and ostracizing of women with infertility especially in sub-Saharan Africa.

  8. Clinical-Radiological Parameters Improve the Prediction of the Thrombolysis Time Window by Both MRI Signal Intensities and DWI-FLAIR Mismatch.

    Science.gov (United States)

    Madai, Vince Istvan; Wood, Carla N; Galinovic, Ivana; Grittner, Ulrike; Piper, Sophie K; Revankar, Gajanan S; Martin, Steve Z; Zaro-Weber, Olivier; Moeller-Hartmann, Walter; von Samson-Himmelstjerna, Federico C; Heiss, Wolf-Dieter; Ebinger, Martin; Fiebach, Jochen B; Sobesky, Jan

    2016-01-01

    With regard to acute stroke, patients with unknown time from stroke onset are not eligible for thrombolysis. Quantitative diffusion weighted imaging (DWI) and fluid attenuated inversion recovery (FLAIR) MRI relative signal intensity (rSI) biomarkers have been introduced to predict eligibility for thrombolysis, but have shown heterogeneous results in the past. In the present work, we investigated whether the inclusion of easily obtainable clinical-radiological parameters would improve the prediction of the thrombolysis time window by rSIs and compared their performance to the visual DWI-FLAIR mismatch. In a retrospective study, patients from 2 centers with proven stroke with onset value/mean value of the unaffected hemisphere). Additionally, the visual DWI-FLAIR mismatch was evaluated. Prediction of the thrombolysis time window was evaluated by the area-under-the-curve (AUC) derived from receiver operating characteristic (ROC) curve analysis. Factors such as the association of age, National Institutes of Health Stroke Scale, MRI field strength, lesion size, vessel occlusion and Wahlund-Score with rSI were investigated and the models were adjusted and stratified accordingly. In 82 patients, the unadjusted rSI measures DWI-mean and -SD showed the highest AUCs (AUC 0.86-0.87). Adjustment for clinical-radiological covariates significantly improved the performance of FLAIR-mean (0.91) and DWI-SD (0.91). The best prediction results based on the AUC were found for the final stratified and adjusted models of DWI-SD (0.94) and FLAIR-mean (0.96) and a multivariable DWI-FLAIR model (0.95). The adjusted visual DWI-FLAIR mismatch did not perform in a significantly worse manner (0.89). ADC-rSIs showed fair performance in all models. Quantitative DWI and FLAIR MRI biomarkers as well as the visual DWI-FLAIR mismatch provide excellent prediction of eligibility for thrombolysis in acute stroke, when easily obtainable clinical-radiological parameters are included in the prediction

  9. Parameter prediction for microwave garnets

    International Nuclear Information System (INIS)

    Ramer, R.

    1996-01-01

    Full text: Linearity of the microwave parameters (resonance linewidth ΔH and effective linewidth ΔH eff ) is demonstrated and their use in the Computer-aided design (CAD)/Computer-aided manufacturing (CAM) of new microwave garnets is proposed. Such an approach would combine a numerical database of microwave data and several computational programs. The model is an applied formulation of the analysis of a wide range of microwave garnets

  10. Genetic parameters of blood β-hydroxybutyrate predicted from milk infrared spectra and clinical ketosis, and their associations with milk production traits in Norwegian Red cows.

    Science.gov (United States)

    Belay, T K; Svendsen, M; Kowalski, Z M; Ådnøy, T

    2017-08-01

    The aim of this study was to estimate genetic parameters for blood β-hydroxybutyrate (BHB) predicted from milk spectra and for clinical ketosis (KET), and to examine genetic association of blood BHB with KET and milk production traits (milk, fat, protein, and lactose yields, and milk fat, protein, and lactose contents). Data on milk traits, KET, and milk spectra were obtained from the Norwegian Dairy Herd Recording System with legal permission from TINE SA (Ås, Norway), the Norwegian Dairy Association that manages the central database. Data recorded up to 120 d after calving were considered. Blood BHB was predicted from milk spectra using a calibration model developed based on milk spectra and blood BHB measured in Polish dairy cows. The predicted blood BHB was grouped based on days in milk into 4 groups and each group was considered as a trait. The milk components for test-day milk samples were obtained by Fourier transform mid-infrared spectrometer with previously developed calibration equations from Foss (Hillerød, Denmark). Veterinarian-recorded KET data within 15 d before calving to 120 d after calving were used. Data were analyzed using univariate or bivariate linear animal models. Heritability estimates for predicted blood BHB at different stages of lactation were moderate, ranging from 0.250 to 0.365. Heritability estimate for KET from univariate analysis was 0.078, and the corresponding average estimate from bivariate analysis with BHB or milk production traits was 0.002. Genetic correlations between BHB traits were higher for adjacent lactation intervals and decreased as intervals were further apart. Predicted blood BHB at first test day was moderately genetically correlated with KET (0.469) and milk traits (ranged from -0.367 with protein content to 0.277 with milk yield), except for milk fat content from across lactation stages that had near zero genetic correlation with BHB (0.033). These genetic correlations indicate that a lower BHB is genetically

  11. The predictive value of parameters of clinical presentations for sperm yield in patients with nonobstructive azoospermia receiving microdissection testicular sperm extraction

    Directory of Open Access Journals (Sweden)

    Ming-Hsuan Ku

    2017-12-01

    Conclusion: Clinical presentations or phenotypes can be used as predictive factors for successful sperm retrieval during mTESE in patients with NOA. Hypogonadotropic hypogonadism and cases with UDT history have a higher chance of sperm retrieval. Initial testicular needle biopsy, if available, can provide valuable information about chances of sperm retrieval. Hypospermatogenesis predicts high sperm yield rate, and LMA can have best upgrade results of sperm yield after mTESE.

  12. Stent parameters predict major adverse clinical events and the response to platelet glycoprotein IIb/IIIa blockade: findings of the ESPRIT trial.

    Science.gov (United States)

    Tcheng, James E; Lim, Ing Haan; Srinivasan, Shankar; Jozic, Joseph; Gibson, C Michael; O'Shea, J Conor; Puma, Joseph A; Simon, Daniel I

    2009-02-01

    Only limited data describe relationships between stent parameters (length and diameter), adverse events after percutaneous coronary intervention, and effects of platelet glycoprotein IIb/IIIa blockade by stent parameters. In this post hoc analysis of the 1983 patients receiving a stent in the Enhanced Suppression of the Platelet Glycoprotein IIb/IIIa Receptor with Integrilin Therapy randomized percutaneous coronary intervention trial of eptifibatide versus placebo, rates of the major adverse cardiac event (MACE) end point (death, myocardial infarction, urgent target-vessel revascularization, or thrombotic bailout) at 48 hours and 1 year were correlated with stent parameters and then analyzed by randomization to eptifibatide versus placebo. In the placebo group, MACE increased with number of stents implanted, total stent length (by quartiles of or=30 mm), and total stented vessel area (by quartiles of area or=292 mm(2)). By stent parameters, MACE at 48 hours was reduced in the eptifibatide group at stent lengths of 18 to or=30 mm (OR, 0.43; 95% CI, 0.25 to 0.75; P=0.003), stent diameters of >2.5 to <3.5 mm (OR, 0.56; 95% CI, 0.39 to 0.82; P=0.002), and with 2 stents implanted (OR, 0.39; 95% CI, 0.22 to 0.69; P=0.001). In the placebo group, near-linear relationships were observed between both increasing stent length and increasing stented vessel area and MACE at 48 hours and 1 year (all, P<0.001); these gradients were flattened in the eptifibatide group (P=0.005 for stent length). Stent parameters predict MACE after percutaneous coronary intervention. Glycoprotein IIb/IIIa blockade mitigates much of the hazard of increasing procedural complexity.

  13. Clinicopathologic and gene expression parameters predict liver cancer prognosis

    International Nuclear Information System (INIS)

    Hao, Ke; Zhong, Hua; Greenawalt, Danielle; Ferguson, Mark D; Ng, Irene O; Sham, Pak C; Poon, Ronnie T; Molony, Cliona; Schadt, Eric E; Dai, Hongyue; Luk, John M; Lamb, John; Zhang, Chunsheng; Xie, Tao; Wang, Kai; Zhang, Bin; Chudin, Eugene; Lee, Nikki P; Mao, Mao

    2011-01-01

    The prognosis of hepatocellular carcinoma (HCC) varies following surgical resection and the large variation remains largely unexplained. Studies have revealed the ability of clinicopathologic parameters and gene expression to predict HCC prognosis. However, there has been little systematic effort to compare the performance of these two types of predictors or combine them in a comprehensive model. Tumor and adjacent non-tumor liver tissues were collected from 272 ethnic Chinese HCC patients who received curative surgery. We combined clinicopathologic parameters and gene expression data (from both tissue types) in predicting HCC prognosis. Cross-validation and independent studies were employed to assess prediction. HCC prognosis was significantly associated with six clinicopathologic parameters, which can partition the patients into good- and poor-prognosis groups. Within each group, gene expression data further divide patients into distinct prognostic subgroups. Our predictive genes significantly overlap with previously published gene sets predictive of prognosis. Moreover, the predictive genes were enriched for genes that underwent normal-to-tumor gene network transformation. Previously documented liver eSNPs underlying the HCC predictive gene signatures were enriched for SNPs that associated with HCC prognosis, providing support that these genes are involved in key processes of tumorigenesis. When applied individually, clinicopathologic parameters and gene expression offered similar predictive power for HCC prognosis. In contrast, a combination of the two types of data dramatically improved the power to predict HCC prognosis. Our results also provided a framework for understanding the impact of gene expression on the processes of tumorigenesis and clinical outcome

  14. Optimal design criteria - prediction vs. parameter estimation

    Science.gov (United States)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  15. Formula for the prediction of apnea / hypopnea index in children with obstructive sleep apnea without polysomnography according to the clinical parameters: Is it reliable?

    Science.gov (United States)

    Kljajić, Zlatko; Roje, Željka; Bečić, Kristijan; Čapkun, Vesna; Vilović, K; Ivanišević, Petar; Marušić, Eugenija

    2017-09-01

    The aim of the study was to propose "the risk formula" for obstructive sleep apnea in children according to the general and local clinical parameters and findings relevant for obstructive sleep apnea (OSA) severity. The unmet need for this formula arises from the economic burden of polysomnography (device, staff, training, special sleep centers, etc) as the golden standard for the diagnostics. The study was performed from January 2013 until January 2016 in the Sleep Center, Department for Neuroscience, School of Medicine of the University of Split, Department of Pediatrics, University Hospital Split, Croatia and ENT Dept. University Hospital in Split, Croatia. Inclusion criteria were: age > two years, AHI >1 diagnosed by polysomnography. Exclusion criteria were: chronic lung disease, active tonsillitis/pharyngitis at the time of the physical exam and syndromes that affect breathing. All polysomnograms were scored by a qualified sleep technologist and interpreted by two board certified sleep physicians independently. Age, sex, BMI, Mallampati score, tonsillar size and adenoids size were recorded. All statistical calculations were performed using SPSS 20. In total 60 children were included in the study. The median of age was 5 years (range 2-9). There were 19 (32%) girls and 41 (68%) boys. Of all evaluated predictors, there were statistically significant differences in the values of AHI among children with different modified Mallampati score (χ2 = 28.2; p partial correlation = 0.542, r = 0.631) was found, as well as positive correlation of AHI with tonsillar size (standardized B = 0.246; partial correlation = 0.295,R = 0.489) in the multivariate forward stepwise regression analysis. Even though we are aware that PSG is the gold standard for diagnostics of SDB there is a significant financial burden for this diagnostic procedure. That is why there is a necessity for establishing good clinical standards and possible formula for OSA severity evaluation

  16. What Clinical and Laboratory Parameters Distinguish Between ...

    African Journals Online (AJOL)

    Introduction: In developing countries, a large number of patients presenting acutely in renal failure are indeed cases of advanced chronic renal failure. In this study, we compared clinical and laboratory parameters between patients with acute renal failure (ARF) and chronic renal failure (CRF), to identify discriminatory ...

  17. Can Clinical and Surgical Parameters Be Combined to Predict How Long It Will Take a Tibia Fracture to Heal? A Prospective Multicentre Observational Study: The FRACTING Study

    Directory of Open Access Journals (Sweden)

    Leo Massari

    2018-01-01

    Full Text Available Background. Healing of tibia fractures occurs over a wide time range of months, with a number of risk factors contributing to prolonged healing. In this prospective, multicentre, observational study, we investigated the capability of FRACTING (tibia FRACTure prediction healING days score, calculated soon after tibia fracture treatment, to predict healing time. Methods. The study included 363 patients. Information on patient health, fracture morphology, and surgical treatment adopted were combined to calculate the FRACTING score. Fractures were considered healed when the patient was able to fully weight-bear without pain. Results. 319 fractures (88% healed within 12 months from treatment. Forty-four fractures healed after 12 months or underwent a second surgery. FRACTING score positively correlated with days to healing: r=0.63 (p<0.0001. Average score value was 7.3 ± 2.5; ROC analysis showed strong reliability of the score in separating patients healing before versus after 6 months: AUC = 0.823. Conclusions. This study shows that the FRACTING score can be employed both to predict months needed for fracture healing and to identify immediately after treatment patients at risk of prolonged healing. In patients with high score values, new pharmacological and nonpharmacological treatments to enhance osteogenesis could be tested selectively, which may finally result in reduced disability time and health cost savings.

  18. The Clinical Prediction of Dangerousness.

    Science.gov (United States)

    1985-05-01

    8217 8 ings. Szasz (1963) has argued persuasively that clinical predictions of future dangerous behavior are unfairly focused on the mentally ill...Persons labeled paranoid, Szasz states, are readily commitable, while highly dangerous drunken drivers are not. Indeed, dangerousness such as that...Psychology, 31, 492-494. Szasz , T. (1963). Law, liberty and psychiatry. New York: Macmillan. Taft, R. (1955). The ability to judge people. Psychological

  19. Predictive value of PSA velocity over early clinical and pathological parameters in patients with localized prostate cancer who undergo radical retropubic prostatectomy

    Directory of Open Access Journals (Sweden)

    Martinez Carlos A.L.

    2004-01-01

    Full Text Available OBJECTIVES: To analyze the behavior of the prostate specific antigen velocity (PSAV in localized prostate adenocarcinoma. MATERIALS AND METHODS: We conducted a retrospective study of 500 men who had localized prostate adenocarcinoma, who underwent radical retropubic prostatectomy between January 1986 and December 1999. The PSAV was calculated for each patient and subsequently, the values were correlated with 5 groups: age, initial PSA value, clinical stage, tumor volume and Gleason score. RESULTS: The behavior of PSAV presented statistic significance with an increment between 1.3 ng/mL and 9.6 ng/mL, ranging from 38.6% and 59.8% when compared with the initial PSA value (p < 0.0001, clinical stage (p = 0.0002, tumor volume (p < 0.0001 and Gleason score (p = 0.0009. CONCLUSION: PSAV up to 2.5 ng/mL/year is associated with factors of good prognosis, such as initial PSA below 10 mg/mL, clinical stage T1, tumor volume below 20% and Gleason score lower than 7.

  20. Predicting Long-term Ischemic Events Using Routine Clinical Parameters in Patients with Coronary Artery Disease: The OPT-CAD Risk Score.

    Science.gov (United States)

    Han, Yaling; Chen, Jiyan; Qiu, Miaohan; Li, Yi; Li, Jing; Feng, Yingqing; Qiu, Jian; Meng, Liang; Sun, Yihong; Tao, Guizhou; Wu, Zhaohui; Yang, Chunyu; Guo, Jincheng; Pu, Kui; Chen, Shaoliang; Wang, Xiaozeng

    2018-06-05

    The prognosis of patients with coronary artery disease (CAD) at hospital discharge was constantly varying, and post-discharge risk of ischemic events remain a concern. However, risk prediction tools to identify risk of ischemia for these patients has not yet been reported. We sought to develop a scoring system for predicting long-term ischemic events in CAD patients receiving antiplatelet therapy that would be beneficial in appropriate personalized decision-making for these patients. In this prospective Optimal antiPlatelet Therapy for Chinese patients with Coronary Artery Disease (OPT-CAD, NCT01735305) registry, a total of 14,032 patients with CAD receiving at least one kind of antiplatelet agent were enrolled from 107 centers across China, from January 2012 to March 2014. The risk scoring system was developed in a derivation cohort (enrolled initially 10,000 patients in the database) using a logistic regression model and was subsequently tested in a validation cohort (the last 4,032 patients). Points in risk score was assigned based on the multivariable odds ratio of each factor. Ischemic events were defined as the composite of cardiac death, myocardial infarction or stroke. Ischemic events occurred in 342 (3.4%) patients in the derivation cohort and 160 (4.0%) patients in the validation cohort during 1-year follow-up. The OPT-CAD score, ranging from 0-257 points, consist of 10 independent risk factors, including age (0-71 points), heart rates (0-36 points), hypertension (0-20 points), prior myocardial infarction (16 points), prior stroke (16 points), renal insufficient (21 points), anemia (19 points), low ejection fraction (22 points), positive cardiac troponin (23 points) and ST-segment deviation (13 points). In predicting 1-year ischemic events, the area under receiver operating characteristics curve were 0.73 and 0.72 in derivation and validation cohort, respectively. The incidences of ischemic events in low- (0-90 points), medium- (91-150 points) and

  1. Dst Prediction Based on Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Park

    2009-12-01

    Full Text Available We reevaluate the Burton equation (Burton et al. 1975 of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q and the decay time (tau of the equation, we examine the relationships between Dst* and VB_s, Delta Dst* and VB_s, and Delta Dst* and Dst* during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to the solar wind forcing. The injection term is found to be Q({nT}/h=-3.56VB_s for VB_s>0.5mV/m and Q({nT}/h=0 for VB_s leq0.5mV/m. The tau (hour is estimated as 0.060 Dst* + 16.65 for Dst*>-175nT and 6.15 hours for Dst* leq -175nT. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted Dst* is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975 and O'Brien & McPherron (2000a. The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms (Dst* lesssim -200nT.

  2. Prediction of room acoustical parameters (A)

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1991-01-01

    -averaged acoustical data. The results are presented in the form of linear, multiple regression formulas that may be used to predict the values of the newer measures of level, clarity, spaciousness, and musicians' conditions on the orchestra platform in halls with given RT and geometry....

  3. Myocardial gene expression of microRNA-133a and myosin heavy and light chains, in conjunction with clinical parameters, predict regression of left ventricular hypertrophy after valve replacement in patients with aortic stenosis.

    Science.gov (United States)

    Villar, Ana V; Merino, David; Wenner, Mareike; Llano, Miguel; Cobo, Manuel; Montalvo, Cecilia; García, Raquel; Martín-Durán, Rafael; Hurlé, Juan M; Hurlé, María A; Nistal, J Francisco

    2011-07-01

    Left ventricular (LV) reverse remodelling after valve replacement in aortic stenosis (AS) has been classically linked to the hydraulic performance of the replacement device, but myocardial status at the time of surgery has received little attention. To establish predictors of LV mass (LVM) regression 1 year after valve replacement in a surgical cohort of patients with AS based on preoperative clinical and echocardiographic parameters and the myocardial gene expression profile at surgery. Transcript levels of remodelling-related proteins and regulators were determined in LV intraoperative biopsies from 46 patients with AS by RT-PCR. Using multiple linear regression analysis, an equation was developed (adjusted R²=0.73; pregression analysis identified microRNA-133a as a significant positive predictor of LVM normalisation, whereas β-myosin heavy chain and BMI constituted negative predictors. Hypertrophy regression 1 year after pressure overload release is related to the preoperative myocardial expression of remodelling-related genes, in conjunction with the patient's clinical background. In this scenario, miR-133 emerges as a key element of the reverse remodelling process. Postoperative improvement of valve haemodynamics does not predict the degree of hypertrophy regression or LVM normalisation. These results led us to reconsider the current reverse remodelling paradigm and (1) to include criteria of hypertrophy reversibility in the decision algorithm used to decide timing for the operation; and (2) to modify other prevailing factors (overweight, diabetes, etc) known to maintain LV hypertrophy.

  4. System Predicts Critical Runway Performance Parameters

    Science.gov (United States)

    Millen, Ernest W.; Person, Lee H., Jr.

    1990-01-01

    Runway-navigation-monitor (RNM) and critical-distances-process electronic equipment designed to provide pilot with timely and reliable predictive navigation information relating to takeoff, landing and runway-turnoff operations. Enables pilot to make critical decisions about runway maneuvers with high confidence during emergencies. Utilizes ground-referenced position data only to drive purely navigational monitor system independent of statuses of systems in aircraft.

  5. Representative parameter of immunostimulatory ginseng polysaccharide to predict radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyeog Jin; Shim, Ji Young; Ahn, Ji Yeon; Yun, Yeon Sook; Song, Jie Young [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-09-15

    According to the increase in the use of radiotherapy to cancer patients, many approaches have been tried to develop new agents for the protection of surrounding normal tissues. However, it is still few applied in the clinic as a radioprotector. We aim to find a representative parameter for radioprotection to easily predict the activity of in vivo experiment from the results of in vitro screening. The polysaccharide extracted from Panax ginseng was used in this study because the immunostimulator has been regarded as one of the radioprotective agent category and was already reported having a promising radioprotective activity through the increase of hematopoietic cells and the production of several cytokines. Mitogenic activity, AK cells activity and nitric oxide production were monitored for the in vitro immunological assay, and endogenous Colony-Forming Unit (e-CFU) was measured as in vivo radioprotective parameter. The immunological activity was increased by the galactose contents of ginseng polysaccharide dependently. The result of this study suggests that mitogenic activity of splenocytes demonstrated a good correlation with in vivo radioprotective effect, and may be used as a representative parameter to screen the candidates for radioprotector.

  6. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-01-01

    parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while

  7. Factors predictive of abnormal semen parameters in male partners ...

    African Journals Online (AJOL)

    analysis was used to determine the predictive factors associated with abnormal semen parameters. .... for frequency, mean and χ2 with the level of significance set at p<0.05. ... was obtained from each couple participating in the study, following.

  8. Predictive parameters of infectiologic complications in patients after TIPSS

    International Nuclear Information System (INIS)

    Cohnen, M.; Saleh, A.; Moedder, U.; Luethen, R.; Bode, J.; Haeussinger, D.; Daeubener, W.

    2003-01-01

    Aim To define predictive parameters of a complicated clinical course after the TIPSS procedure. Blood cultures were drawn prospectively in 41 patients from a central line and from the portal venous blood before stent placement as well as from the central line 20 min after intervention. C-reactive proteine (CRP) (mg/dl) and white blood cell count (WBC,/μl) on the day of TIPSS-procedure (d0), the first (d1) and seven (d7) days after TIPSS were compared in patients with a complicated clinical course (spontaneous bacterial peritonitis, pneumonia, sepsis; group I) to patients without clinical complications (group II) Group I showed a significant increase in CRP (d0: 1.8±1.0; d1: 3.2±1.5; d7: 4.3±3.2), and white blood cell count (d0: 7700±2600; d1: 10800±2800; d7: 7500±1800) on the first day after TIPSS-procedure in comparison to group II (CRP: d0: 1.6±0.6; d1: 1.8±1.0; d7: 1.9±0.6. WBC: d0: 6900±1500; d1: 8000±1600; d7: 7600±1400).Microbiological analysis showed in 12% skin or oral flora in the last sample. The course of CRP and WBC-count during the first week after TIPSS procedure may indicate patients with a potential risk of a complicated clinical course. (orig.) [de

  9. Clinical studies of biomarkers in suicide prediction

    OpenAIRE

    Jokinen, Jussi

    2007-01-01

    Suicide is a major clinical problem in psychiatry and suicidal behaviours can be seen as a nosological entity per se. Predicting suicide is difficult due to its low base-rate and the limited specificity of clinical predictors. Prospective biological studies suggest that dysfunctions in the hypothalamo pituitary adrenal (HPA) axis and the serotonergic system have predictive power for suicide in mood disorders. Suicide attempt is the most robust clinical predictor making suici...

  10. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  11. Updated climatological model predictions of ionospheric and HF propagation parameters

    International Nuclear Information System (INIS)

    Reilly, M.H.; Rhoads, F.J.; Goodman, J.M.; Singh, M.

    1991-01-01

    The prediction performances of several climatological models, including the ionospheric conductivity and electron density model, RADAR C, and Ionospheric Communications Analysis and Predictions Program, are evaluated for different regions and sunspot number inputs. Particular attention is given to the near-real-time (NRT) predictions associated with single-station updates. It is shown that a dramatic improvement can be obtained by using single-station ionospheric data to update the driving parameters for an ionospheric model for NRT predictions of f(0)F2 and other ionospheric and HF circuit parameters. For middle latitudes, the improvement extends out thousands of kilometers from the update point to points of comparable corrected geomagnetic latitude. 10 refs

  12. Modelling hydrodynamic parameters to predict flow assisted corrosion

    International Nuclear Information System (INIS)

    Poulson, B.; Greenwell, B.; Chexal, B.; Horowitz, J.

    1992-01-01

    During the past 15 years, flow assisted corrosion has been a worldwide problem in the power generating industry. The phenomena is complex and depends on environment, material composition, and hydrodynamic factors. Recently, modeling of flow assisted corrosion has become a subject of great importance. A key part of this effort is modeling the hydrodynamic aspects of this issue. This paper examines which hydrodynamic parameter should be used to correlate the occurrence and rate of flow assisted corrosion with physically meaningful parameters, discusses ways of measuring the relevant hydrodynamic parameter, and describes how the hydrodynamic data is incorporated into the predictive model

  13. Optimal parameters of the SVM for temperature prediction

    Directory of Open Access Journals (Sweden)

    X. Shi

    2015-05-01

    Full Text Available This paper established three different optimization models in order to predict the Foping station temperature value. The dimension was reduced to change multivariate climate factors into a few variables by principal component analysis (PCA. And the parameters of support vector machine (SVM were optimized with genetic algorithm (GA, particle swarm optimization (PSO and developed genetic algorithm. The most suitable method was applied for parameter optimization by comparing the results of three different models. The results are as follows: The developed genetic algorithm optimization parameters of the predicted values were closest to the measured value after the analog trend, and it is the most fitting measured value trends, and its homing speed is relatively fast.

  14. Effect of uncertainty parameters on graphene sheets Young's modulus prediction

    International Nuclear Information System (INIS)

    Sahlaoui, Habib; Sidhom Habib; Guedri, Mohamed

    2013-01-01

    Software based on molecular structural mechanics approach (MSMA) and using finite element method (FEM) has been developed to predict the Young's modulus of graphene sheets. Obtained results have been compared to results available in the literature and good agreement has been shown when the same values of uncertainty parameters are used. A sensibility of the models to their uncertainty parameters has been investigated using a stochastic finite element method (SFEM). The different values of the used uncertainty parameters, such as molecular mechanics force field constants k_r and k_θ, thickness (t) of a graphene sheet and length ( L_B) of a carbon carbon bonds, have been collected from the literature. Strong sensibilities of 91% to the thickness and of 21% to the stretching force (k_r) have been shown. The results justify the great difference between Young's modulus predicted values of the graphene sheets and their large disagreement with experimental results.

  15. Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database.

    Science.gov (United States)

    Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M

    2015-07-01

    Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.

  16. Radiogenomics: predicting clinical normal tissue radiosensitivity

    DEFF Research Database (Denmark)

    Alsner, Jan

    2006-01-01

    Studies on the genetic basis of normal tissue radiosensitivity, or  'radiogenomics', aims at predicting clinical radiosensitivity and optimize treatment from individual genetic profiles. Several studies have now reported links between variations in certain genes related to the biological response...... to radiation injury and risk of normal tissue morbidity in cancer patients treated with radiotherapy. However, after these initial association studies including few genes, we are still far from being able to predict clinical radiosensitivity on an individual level. Recent data from our own studies on risk...

  17. Diagnostic utility of clinical and biochemical parameters in ...

    African Journals Online (AJOL)

    Diagnostic utility of clinical and biochemical parameters in pancreatic head malignancy ... Department of Surgery, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, ..... technical review on the epidemiology, diagnosis, and.

  18. Prediction of interest rate using CKLS model with stochastic parameters

    International Nuclear Information System (INIS)

    Ying, Khor Chia; Hin, Pooi Ah

    2014-01-01

    The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ (j) of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ (j) , we assume that φ (j) depends on φ (j−m) , φ (j−m+1) ,…, φ (j−1) and the interest rate r j+n at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r j+n+1 of the interest rate at the next time point when the value r j+n of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r j+n+d at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters

  19. Prediction of interest rate using CKLS model with stochastic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Khor Chia [Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Hin, Pooi Ah [Sunway University Business School, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor (Malaysia)

    2014-06-19

    The Chan, Karolyi, Longstaff and Sanders (CKLS) model is a popular one-factor model for describing the spot interest rates. In this paper, the four parameters in the CKLS model are regarded as stochastic. The parameter vector φ{sup (j)} of four parameters at the (J+n)-th time point is estimated by the j-th window which is defined as the set consisting of the observed interest rates at the j′-th time point where j≤j′≤j+n. To model the variation of φ{sup (j)}, we assume that φ{sup (j)} depends on φ{sup (j−m)}, φ{sup (j−m+1)},…, φ{sup (j−1)} and the interest rate r{sub j+n} at the (j+n)-th time point via a four-dimensional conditional distribution which is derived from a [4(m+1)+1]-dimensional power-normal distribution. Treating the (j+n)-th time point as the present time point, we find a prediction interval for the future value r{sub j+n+1} of the interest rate at the next time point when the value r{sub j+n} of the interest rate is given. From the above four-dimensional conditional distribution, we also find a prediction interval for the future interest rate r{sub j+n+d} at the next d-th (d≥2) time point. The prediction intervals based on the CKLS model with stochastic parameters are found to have better ability of covering the observed future interest rates when compared with those based on the model with fixed parameters.

  20. Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness.

    Science.gov (United States)

    Hodges-Simeon, Carolyn R; Gaulin, Steven J C; Puts, David A

    2010-12-01

    Low mean fundamental frequency (F(0)) in men's voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fertile and non-fertile menstrual cycle phases for desirability in short-term and long-term relationships. Five vocal parameters were analyzed: mean F(0) (an acoustic correlate of vocal fold size), F(0) variation, intensity (loudness), utterance duration, and formant dispersion (D(f), an acoustic correlate of vocal tract length). Parallel but separate ratings of speech transcripts served as controls for content. Multiple regression analyses were used to examine the independent contributions of each of the predictors. Physical dominance was predicted by low F(0) variation and physically dominant word content. Social dominance was predicted only by socially dominant word content. Ratings of attractiveness by women were predicted by low mean F(0), low D(f), high intensity, and attractive word content across cycle phase and mating context. Low D(f) was perceived as attractive by fertile-phase women only. We hypothesize that competitors and potential mates may attend more strongly to different components of men's voices because of the different types of information these vocal parameters provide.

  1. What predicts performance during clinical psychology training?

    OpenAIRE

    Scior, Katrina; Bradley, Caroline E; Potts, Henry W W; Woolf, Katherine; de C Williams, Amanda C

    2013-01-01

    Objectives While the question of who is likely to be selected for clinical psychology training has been studied, evidence on performance during training is scant. This study explored data from seven consecutive intakes of the UK's largest clinical psychology training course, aiming to identify what factors predict better or poorer outcomes. Design Longitudinal cross-sectional study using prospective and retrospective data. Method Characteristics at application were analysed in relation to a r...

  2. Investigation on Cardiovascular Risk Prediction Using Physiological Parameters

    Directory of Open Access Journals (Sweden)

    Wan-Hua Lin

    2013-01-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of death worldwide. Early prediction of CVD is urgently important for timely prevention and treatment. Incorporation or modification of new risk factors that have an additional independent prognostic value of existing prediction models is widely used for improving the performance of the prediction models. This paper is to investigate the physiological parameters that are used as risk factors for the prediction of cardiovascular events, as well as summarizing the current status on the medical devices for physiological tests and discuss the potential implications for promoting CVD prevention and treatment in the future. The results show that measures extracted from blood pressure, electrocardiogram, arterial stiffness, ankle-brachial blood pressure index (ABI, and blood glucose carry valuable information for the prediction of both long-term and near-term cardiovascular risk. However, the predictive values should be further validated by more comprehensive measures. Meanwhile, advancing unobtrusive technologies and wireless communication technologies allow on-site detection of the physiological information remotely in an out-of-hospital setting in real-time. In addition with computer modeling technologies and information fusion. It may allow for personalized, quantitative, and real-time assessment of sudden CVD events.

  3. Physiotherapy clinical educators' perceptions and experiences of clinical prediction rules.

    Science.gov (United States)

    Knox, Grahame M; Snodgrass, Suzanne J; Rivett, Darren A

    2015-12-01

    Clinical prediction rules (CPRs) are widely used in medicine, but their application to physiotherapy practice is more recent and less widespread, and their implementation in physiotherapy clinical education has not been investigated. This study aimed to determine the experiences and perceptions of physiotherapy clinical educators regarding CPRs, and whether they are teaching CPRs to students on clinical placement. Cross-sectional observational survey using a modified Dillman method. Clinical educators (n=211, response rate 81%) supervising physiotherapy students from 10 universities across 5 states and territories in Australia. Half (48%) of respondents had never heard of CPRs, and a further 25% had never used CPRs. Only 27% reported using CPRs, and of these half (51%) were rarely if ever teaching CPRs to students in the clinical setting. However most respondents (81%) believed CPRs assisted in the development of clinical reasoning skills and few (9%) were opposed to teaching CPRs to students. Users of CPRs were more likely to be male (pphysiotherapy (pStudents are unlikely to be learning about CPRs on clinical placement, as few clinical educators use them. Clinical educators will require training in CPRs and assistance in teaching them if students are to better learn about implementing CPRs in physiotherapy clinical practice. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  4. Predicting plant biomass accumulation from image-derived parameters

    Science.gov (United States)

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  5. Using neural networks for prediction of nuclear parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear

    2013-07-01

    Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)

  6. Using neural networks for prediction of nuclear parameters

    International Nuclear Information System (INIS)

    Pereira Filho, Leonidas; Souto, Kelling Cabral; Machado, Marcelo Dornellas

    2013-01-01

    Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)

  7. Mathematical models to predict rheological parameters of lateritic hydromixtures

    Directory of Open Access Journals (Sweden)

    Gabriel Hernández-Ramírez

    2017-10-01

    Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.

  8. Adverse drug reactions after intravenous rituximab infusion are more common in hematologic malignancies than in autoimmune disorders and can be predicted by the combination of few clinical and laboratory parameters: results from a retrospective, multicenter study of 374 patients.

    Science.gov (United States)

    D'Arena, Giovanni; Simeon, Vittorio; Laurenti, Luca; Cimminiello, Michele; Innocenti, Idanna; Gilio, Michele; Padula, Angela; Vigliotti, Maria Luigia; De Lorenzo, Sonya; Loseto, Giacomo; Passarelli, Anna; Di Minno, Matteo Nicola Dario; Tucci, Marco; De Feo, Vincenzo; D'Auria, Fiorella; Silvestris, Francesco; Di Minno, Giovanni; Musto, Pellegrino

    2017-11-01

    Rituximab is an effective treatment for CD20 + B-cell malignancies and autoimmune disorders. However, adverse drug reactions (ADRs) may occur after rituximab infusion, causing, in rare cases, its discontinuation. In this multicenter, retrospective study, among 374 patients treated with rituximab i.v., 23.5% experienced ADRs. Mean follow-up was 20.6 months (range 8-135). Overall, ADRs were significantly more frequent in non-Hodgkin lymphomas (NHL) and chronic lymphocytic leukemias (25-35.9%), than in autoimmune diseases (9.4-17.5%) (p < .0001). Grade 3-4 toxicity was observed in eight patients (2.1%), and in four of them (1% of all patients) definitive drug discontinuation was necessary. Interestingly, three groups of patients with different risk of developing ADR were identified, according to a predictive heat-map developed combining four parameters (splenomegaly, history of allergy, hemoglobin levels and gender) selected by multivariate analysis. This model may be useful in identifying patients at higher risk of ADRs, needing appropriate preventing therapies.

  9. Monitoring of Physiological Parameters to Predict Exacerbations of Chronic Obstructive Pulmonary Disease (COPD: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Ahmed M. Al Rajeh

    2016-11-01

    Full Text Available Introduction: The value of monitoring physiological parameters to predict chronic obstructive pulmonary disease (COPD exacerbations is controversial. A few studies have suggested benefit from domiciliary monitoring of vital signs, and/or lung function but there is no existing systematic review. Objectives: To conduct a systematic review of the effectiveness of monitoring physiological parameters to predict COPD exacerbation. Methods: An electronic systematic search compliant with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines was conducted. The search was updated to April 6, 2016. Five databases were examined: Medical Literature Analysis and Retrieval System Online, or MEDLARS Online (Medline, Excerpta Medica dataBASE (Embase, Allied and Complementary Medicine Database (AMED, Cumulative Index of Nursing and Allied Health Literature (CINAHL and the Cochrane clinical trials database. Results: Sixteen articles met the pre-specified inclusion criteria. Fifteen of these articules reported positive results in predicting COPD exacerbation via monitoring of physiological parameters. Nine studies showed a reduction in peripheral oxygen saturation (SpO2% prior to exacerbation onset. Three studies for peak flow, and two studies for respiratory rate reported a significant variation prior to or at exacerbation onset. A particular challenge is accounting for baseline heterogeneity in parameters between patients. Conclusion: There is currently insufficient information on how physiological parameters vary prior to exacerbation to support routine domiciliary monitoring for the prediction of exacerbations in COPD. However, the method remains promising.

  10. Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters

    International Nuclear Information System (INIS)

    Hao, Ke; Sham, Pak C; Poon, Ronnie TP; Luk, John M; Lee, Nikki PY; Mao, Mao; Zhang, Chunsheng; Ferguson, Mark D; Lamb, John; Dai, Hongyue; Ng, Irene O

    2009-01-01

    Surgical resection is one important curative treatment for hepatocellular carcinoma (HCC), but the prognosis following surgery differs substantially and such large variation is mainly unexplained. A review of the literature yields a number of clinicopathologic parameters associated with HCC prognosis. However, the results are not consistent due to lack of systemic approach to establish a prediction model incorporating all these parameters. We conducted a retrospective analysis on the common clinicopathologic parameters from a cohort of 572 ethnic Chinese HCC patients who received curative surgery. The cases were randomly divided into training (n = 272) and validation (n = 300) sets. Each parameter was individually tested and the significant parameters were entered into a linear classifier for model building, and the prediction accuracy was assessed in the validation set Our findings based on the training set data reveal 6 common clinicopathologic parameters (tumor size, number of tumor nodules, tumor stage, venous infiltration status, and serum α-fetoprotein and total albumin levels) that were significantly associated with the overall HCC survival and disease-free survival (time to recurrence). We next built a linear classifier model by multivariate Cox regression to predict prognostic outcomes of HCC patients after curative surgery This analysis detected a considerable fraction of variance in HCC prognosis and the area under the ROC curve was about 70%. We further evaluated the model using two other protocols; leave-one-out procedure (n = 264) and independent validation (n = 300). Both were found to have excellent prediction power. The predicted score could separate patients into distinct groups with respect to survival (p-value = 1.8e-12) and disease free survival (p-value = 3.2e-7). This described model will provide valuable guidance on prognosis after curative surgery for HCC in clinical practice. The adaptive nature allows easy accommodation for future new

  11. Clinical parameters associated with periodontitis in untreated persons

    NARCIS (Netherlands)

    Lembariti, BS; Van't Hof, MA; Pilot, T; Van Palenstein-Helderman, WH

    The purpose of this study was to investigate the relationship between clinical parameters and periodontitis in a population receiving no regular prophylactic dental care. From a sample of 164 adult rural and urban Tanzanian subjects aged between 30 and 44 years, 16% were identified with

  12. Diagnostic utility of clinical and biochemical parameters in ...

    African Journals Online (AJOL)

    Diagnostic utility of clinical and biochemical parameters in pancreatic head malignancy patients with normal carbohydrate antigen 19-9 levels. Xiaoli Jin1, Yulian Wu2. 1. Department of Surgery, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, 3 Qingchun. Road East, Hangzhou, Zhejiang Province ...

  13. Predicting hepatic steatosis and liver fat content in obese children based on biochemical parameters and anthropometry.

    Science.gov (United States)

    Zhang, H-X; Xu, X-Q; Fu, J-F; Lai, C; Chen, X-F

    2015-04-01

    Predictors of quantitative evaluation of hepatic steatosis and liver fat content (LFC) using clinical and laboratory variables available in the general practice in the obese children are poorly identified. To build predictive models of hepatic steatosis and LFC in obese children based on biochemical parameters and anthropometry. Hepatic steatosis and LFC were determined using proton magnetic resonance spectroscopy in 171 obese children aged 5.5-18.0 years. Routine clinical and laboratory parameters were also measured in all subjects. Group analysis, univariable correlation analysis, and multivariate logistic and linear regression analysis were used to develop a liver fat score to identify hepatic steatosis and a liver fat equation to predict LFC in each subject. The predictive model of hepatic steatosis in our participants based on waist circumference and alanine aminotransferase had an area under the receiver operating characteristic curve of 0.959 (95% confidence interval: 0.927-0.990). The optimal cut-off value of 0.525 for determining hepatic steatosis had sensitivity of 93% and specificity of 90%. A liver fat equation was also developed based on the same parameters of hepatic steatosis liver fat score, which would be used to calculate the LFC in each individual. The liver fat score and liver fat equation, consisting of routinely available variables, may help paediatricians to accurately determine hepatic steatosis and LFC in clinical practice, but external validation is needed before it can be employed for this purpose. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  14. Correlation of salivary immunoglobulin A against lipopolysaccharide of Porphyromonas gingivalis with clinical periodontal parameters

    Directory of Open Access Journals (Sweden)

    Pushpa S Pudakalkatti

    2015-01-01

    Full Text Available Background: A major challenge in clinical periodontics is to find a reliable molecular marker of periodontal tissue destruction. Aim: The aim of the present study was to assess, whether any correlation exists between salivary immunoglobulin A (IgA level against lipopolysaccharide of Porphyromonas gingivalis and clinical periodontal parameters (probing depth and clinical attachment loss. Materials and Methods: Totally, 30 patients with chronic periodontitis were included for the study based on clinical examination. Unstimulated saliva was collected from each study subject. Probing depth and clinical attachment loss were recorded in all selected subjects using University of North Carolina-15 periodontal probe. Extraction and purification of lipopolysaccharide were done from the standard strain of P. gingivalis (ATCC 33277. Enzyme linked immunosorbent assay (ELISA was used to detect the level of IgA antibodies against lipopolysaccharide of P. gingivalis in the saliva of each subject by coating wells of ELISA kit with extracted lipopolysaccharide antigen. Statistical Analysis: The correlation between salivary IgA and clinical periodontal parameters was checked using Karl Pearson′s correlation coefficient method and regression analysis. Results: The significant correlation was observed between salivary IgA level and clinical periodontal parameters in chronic periodontitis patients. Conclusion: A significant strong correlation was observed between salivary IgA against lipopolysaccharide of P. gingivalis and clinical periodontal parameters which suggest that salivary IgA level against lipopolysaccharide of P. gingivalis can be used to predict the severity of periodontal destruction in chronic periodontitis patients.

  15. Systematic review of dose-volume parameters in the prediction of esophagitis in thoracic radiotherapy

    International Nuclear Information System (INIS)

    Rose, Jim; Rodrigues, George; Yaremko, Brian; Lock, Michael; D'Souza, David

    2009-01-01

    Purpose: With dose escalation and increasing use of concurrent chemoradiotherapy, radiation esophagitis (RE) remains a common treatment-limiting acute side effect in the treatment of thoracic malignancies. The advent of 3DCT planning has enabled investigators to study esophageal dose-volume histogram (DVH) parameters as predictors of RE. The purpose of this study was to assess published dosimetric parameters and toxicity data systematically in order to define reproducible predictors of RE, both for potential clinical use, and to provide recommendations for future research in the field. Materials and methods: We performed a systematic literature review of published studies addressing RE in the treatment of lung cancer and thymoma. Our search strategy included a variety of electronic medical databases, textbooks and bibliographies. Both prospective and retrospective clinical studies were included. Information relating to the relationship among measured dosimetric parameters, patient demographics, tumor characteristics, chemotherapy and RE was extracted and analyzed. Results: Eighteen published studies were suitable for analysis. Eleven of these assessed acute RE, while the remainder assessed both acute and chronic RE together. Heterogeneity of esophageal contouring practices, individual differences in information reporting and variability of RE outcome definitions were assessed. Well-described clinical and logistic modeling directly related V 35Gy , V 60Gy and SA 55Gy to clinically significant RE. Conclusions: Several reproducible dosimetric parameters exist in the literature, and these may be potentially relevant in the prediction of RE in the radiotherapy of thoracic malignancies. Further clarification of the predictive relationship between such standardized dosimetric parameters and observed RE outcomes is essential to develop efficient radiation treatment planning in locally advanced NSCLC in the modern concurrent chemotherapy and image-guided IMRT era.

  16. Parameter estimation and prediction of nonlinear biological systems: some examples

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2006-01-01

    Rearranging and reparameterizing a discrete-time nonlinear model with polynomial quotient structure in input, output and parameters (xk = f(Z, p)) leads to a model linear in its (new) parameters. As a result, the parameter estimation problem becomes a so-called errors-in-variables problem for which

  17. Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry

    International Nuclear Information System (INIS)

    Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.

    2009-01-01

    Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V 90 and V 95 larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our

  18. Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization

    International Nuclear Information System (INIS)

    Xu Ruirui; Chen Tianlun; Gao Chengfeng

    2006-01-01

    Nonlinear time series prediction is studied by using an improved least squares support vector machine (LS-SVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.

  19. Adolescent oligomenorrhea in a biracial schoolgirl cohort: a simple clinical parameter predicting impaired fasting glucose plus type 2 diabetes mellitus, insulin, glucose, insulin resistance, and centripetal obesity from age 19 to 25 years.

    Science.gov (United States)

    Morrison, John A; Glueck, Charles J; Daniels, Stephen; Wang, Ping; Stroop, Davis

    2011-09-01

    We hypothesized that adolescent oligomenorrhea (ages 14-19) would independently predict impaired fasting glucose (IFG; ≥110 to fasting glucose + T2DM at ages 19 to 24 were more common in girls having 1 (6%), 2 (11%), and ≥3 (38%) oligomenorrhea reports from ages 14 to 19 than in girls without oligomenorrhea (3%; P = .0003). Positive explanatory variables (all Ps ≤ .05) for homeostasis model assessment of IR at ages 19 to 24 included age 14 waist (partial R(2) = 30.1%), oligomenorrhea with hyperandrogenism (polycystic ovary syndrome; partial R(2) = 4.1%), black race (3.8%), and oligomenorrhea frequency during ages 14 to 19 (0.8%); sex hormone binding globulin was a negative explanatory variable (0.7%). This is the first prospective study to report an independent association of adolescent oligomenorrhea with young adult IFG + T2DM, with insulin and glucose levels, and with IR. Age 14 waist circumference, oligomenorrhea with hyperandrogenism (polycystic ovary syndrome), black race, oligomenorrhea frequency at ages 14 to 19, and age 14 sex hormone binding globulin were independently associated with IR at ages 19 to 24, potentially facilitating primary prevention of IFG, T2DM, and hyperinsulinemia. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Mechanomyographic Parameter Extraction Methods: An Appraisal for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-12-01

    Full Text Available The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity.

  1. Parameter transferability within homogeneous regions and comparisons with predictions from a priori parameters in the eastern United States

    Science.gov (United States)

    Chouaib, Wafa; Alila, Younes; Caldwell, Peter V.

    2018-05-01

    The need for predictions of flow time-series persists at ungauged catchments, motivating the research goals of our study. By means of the Sacramento model, this paper explores the use of parameter transfer within homogeneous regions of similar climate and flow characteristics and makes comparisons with predictions from a priori parameters. We assessed the performance using the Nash-Sutcliffe (NS), bias, mean monthly hydrograph and flow duration curve (FDC). The study was conducted on a large dataset of 73 catchments within the eastern US. Two approaches to the parameter transferability were developed and evaluated; (i) the within homogeneous region parameter transfer using one donor catchment specific to each region, (ii) the parameter transfer disregarding the geographical limits of homogeneous regions, where one donor catchment was common to all regions. Comparisons between both parameter transfers enabled to assess the gain in performance from the parameter regionalization and its respective constraints and limitations. The parameter transfer within homogeneous regions outperformed the a priori parameters and led to a decrease in bias and increase in efficiency reaching a median NS of 0.77 and a NS of 0.85 at individual catchments. The use of FDC revealed the effect of bias on the inaccuracy of prediction from parameter transfer. In one specific region, of mountainous and forested catchments, the prediction accuracy of the parameter transfer was less satisfactory and equivalent to a priori parameters. In this region, the parameter transfer from the outsider catchment provided the best performance; less-biased with smaller uncertainty in medium flow percentiles (40%-60%). The large disparity of energy conditions explained the lack of performance from parameter transfer in this region. Besides, the subsurface stormflow is predominant and there is a likelihood of lateral preferential flow, which according to its specific properties further explained the reduced

  2. Connecting clinical and actuarial prediction with rule-based methods

    NARCIS (Netherlands)

    Fokkema, M.; Smits, N.; Kelderman, H.; Penninx, B.W.J.H.

    2015-01-01

    Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction

  3. Histogram analysis of diffusion kurtosis imaging of nasopharyngeal carcinoma: Correlation between quantitative parameters and clinical stage.

    Science.gov (United States)

    Xu, Xiao-Quan; Ma, Gao; Wang, Yan-Jun; Hu, Hao; Su, Guo-Yi; Shi, Hai-Bin; Wu, Fei-Yun

    2017-07-18

    To evaluate the correlation between histogram parameters derived from diffusion-kurtosis (DK) imaging and the clinical stage of nasopharyngeal carcinoma (NPC). High T-stage (T3/4) NPC showed significantly higher Kapp-mean (P = 0.018), Kapp-median (P = 0.029) and Kapp-90th (P = 0.003) than low T-stage (T1/2) NPC. High N-stage NPC (N2/3) showed significantly lower Dapp-mean (P = 0.002), Dapp-median (P = 0.002) and Dapp-10th (P Histogram parameters, including mean, median, 10th, 90th percentiles, skewness and kurtosis of Dapp and Kapp were calculated. Patients were divided into low and high T, N and clinical stage based on American Joint Committee on Cancer (AJCC) staging system. Differences of histogram parameters between low and high T, N and AJCC stages were compared using t test. Multiple receiver operating characteristic (ROC) curves were used to determine and compare the value of significant parameters in predicting high T, N and AJCC stage, respectively. DK imaging-derived parameters correlated well with clinical stage of NPC, therefore could serve as an adjunctive imaging technique for evaluating NPC.

  4. Prediction of meteorological parameters - 3: Rainfall and droughts

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-11-01

    We describe two new methods by which rainfall and hence meteorological droughts at any location on the earth may be predicted. The first method is based upon well supported observations that rainfall distribution at a given location during any local sunspot-related temperature/heat cycle is approximately similar to the distribution during another cycle associated with approximately similar sunspot cycle provided that the two temperature/heat cycles involved are immediately preceded by approximately similar sunspot cycles. The second method is based upon the fact that rainfall belts or patterns seem to be closely related to certain spatial and time-dependent temperature/heat patterns in the earth-atmosphere system. Reasonable predictions of these temperature/heat patterns may be made, and hence the associated rainfall patterns or belts may correspondingly be predicted. Specific examples are given to illustrate the two prediction methods. (author). 12 refs, 11 figs, 1 tab

  5. Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study

    NARCIS (Netherlands)

    Onland, Wes; Debray, Thomas P.; Laughon, Matthew M.; Miedema, Martijn; Cools, Filip; Askie, Lisa M.; Asselin, Jeanette M.; Calvert, Sandra A.; Courtney, Sherry E.; Dani, Carlo; Durand, David J.; Marlow, Neil; Peacock, Janet L.; Pillow, J. Jane; Soll, Roger F.; Thome, Ulrich H.; Truffert, Patrick; Schreiber, Michael D.; van Reempts, Patrick; Vendettuoli, Valentina; Vento, Giovanni; van Kaam, Anton H.; Moons, Karel G.; Offringa, Martin

    2013-01-01

    Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Very different models using clinical parameters at an early postnatal age to predict BPD have been developed with little extensive quantitative validation. The objective of this study is to review and validate clinical

  6. Vomiting and migraine-related clinical parameters in pediatric migraine.

    Science.gov (United States)

    Eidlitz-Markus, Tal; Haimi-Cohen, Yishai; Zeharia, Avraham

    2017-06-01

    To investigate the characteristics of vomiting in pediatric migraineurs and the relationship of vomiting with other migraine-related parameters. The cohort included children and adolescents with migraine attending a headache clinic of a tertiary pediatric medical center from 2010 to 2016. Patients were identified by a retrospective database search. Data were collected from medical files. The presence of vomiting was associated with background and headache-related parameters. The study group included 453 patients, 210 boys (46.4%) and 243 girls (53.6%), of mean age 11.3 ± 3.7 years. Vomiting was reported by 161 patients (35.5%). On comparison of patients with and without vomiting, vomiting was found to be significantly associated with male gender (54% vs 42.1%, P migraine onset (8.0 ± 3. years vs 9.6 ± 3.7 years, P migraine (67% vs 58.7%, P migraine (24.1% vs 10.1%, P migraine in both parents (9.3% vs 3.1%, P = .007), and migraine in either parent (57.5% vs 45.5%, P = .02). The higher rate of vomiting in the younger patients and the patients with awakening pain may be explained by a common underlying pathogenetic mechanism of vomiting and migraine involving autonomic nerve dysfunction/immaturity. The association of vomiting with parental migraine points to a genetic component of vomiting and migraine. It should be noted that some of the findings may simply reflect referral patterns in the tertiary clinic. © 2017 American Headache Society.

  7. Predicting hospital-acquired infections by scoring system with simple parameters.

    Directory of Open Access Journals (Sweden)

    Ying-Jui Chang

    Full Text Available BACKGROUND: Hospital-acquired infections (HAI are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR and validated by Artificial Neural Networks (ANN simultaneously. METHODOLOGY/PRINCIPAL FINDINGS: A total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507 to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447. The scoring system also performed extremely well in the internal (AUC: 0.965 and external (AUC: 0.871 validations. CONCLUSIONS: We developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction

  8. Wear prediction on total ankle replacement effect of design parameters

    CERN Document Server

    Saad, Amir Putra Bin Md; Harun, Muhamad Noor; Kadir, Mohammed Rafiq Abdul

    2016-01-01

    This book develops and analyses computational wear simulations of the total ankle replacement for the stance phase of gait cycle. The emphasis is put on the relevant design parameters. The book presents a model consisting of three components; tibial, bearing and talar representing their physiological functions.

  9. Variable input parameter influence on river corridor prediction

    NARCIS (Netherlands)

    Zerfu, T.; Beevers, L.; Crosato, A.; Wright, N.

    2015-01-01

    This paper considers the erodible river corridor, which is the area in which the main river channel is free to migrate over a period of time. Due to growing anthropogenic pressure, predicting the corridor width has become increasingly important for the planning of development along rivers. Several

  10. Review article. Predicting disease onset in clinically healthy people

    Directory of Open Access Journals (Sweden)

    Zeliger . Harold I.

    2016-06-01

    Full Text Available Virtually all human disease is induced by oxidative stress. Oxidative stress, which is caused by toxic environmental exposure, the presence of disease, lifestyle choices, stress, chronic inflammation or combinations of these, is responsible for most disease. Oxidative stress from all sources is additive and it is the total oxidative stress from all sources that induces the onset of most disease. Oxidative stress leads to lipid peroxidation, which in turn produces Malondialdehyde. Serum malondialdehyde level is an additive parameter resulting from all sources of oxidative stress and, therefore, is a reliable indicator of total oxidative stress which can be used to predict the onset of disease in clinically asymptomatic individuals and to suggest the need for treatment that can prevent much human disease.

  11. Which nerve conduction parameters can predict spontaneous electromyographic activity in carpal tunnel syndrome?

    Science.gov (United States)

    Chang, Chia-Wei; Lee, Wei-Ju; Liao, Yi-Chu; Chang, Ming-Hong

    2013-11-01

    We investigate electrodiagnostic markers to determine which parameters are the best predictors of spontaneous electromyographic (EMG) activity in carpal tunnel syndrome (CTS). We enrolled 229 patients with clinically proven and nerve conduction study (NCS)-proven CTS, as well as 100 normal control subjects. All subjects were evaluated using electrodiagnostic techniques, including median distal sensory latencies (DSLs), sensory nerve action potentials (SNAPs), distal motor latencies (DMLs), compound muscle action potentials (CMAPs), forearm median nerve conduction velocities (FMCVs) and wrist-palm motor conduction velocities (W-P MCVs). All CTS patients underwent EMG examination of the abductor pollicis brevis (APB) muscle, and the presence or absence of spontaneous EMG activities was recorded. Normal limits were determined by calculating the means ± 2 standard deviations from the control data. Associations between parameters from the NCS and EMG findings were investigated. In patients with clinically diagnosed CTS, abnormal median CMAP amplitudes were the best predictors of spontaneous activity during EMG examination (p95% (positive predictive rate >95%). If the median CMAP amplitude was higher than the normal limit (>4.9 mV), the rate of no spontaneous EMG activity was >94% (negative predictive rate >94%). An abnormal SNAP amplitude was the second best predictor of spontaneous EMG activity (p<0.001; OR 4.13; 95% CI 2.16-7.90), and an abnormal FMCV was the third best predictor (p=0.01; OR 2.10; 95% CI 1.20-3.67). No other nerve conduction parameters had significant power to predict spontaneous activity upon EMG examination. The CMAP amplitudes of the APB are the most powerful predictors of the occurrence of spontaneous EMG activity. Low CMAP amplitudes are strongly associated with spontaneous activity, whereas high CMAP amplitude are less associated with spontaneous activity, implying that needle EMG examination should be recommended for the detection of

  12. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions.

    Science.gov (United States)

    Wendler, Michael; Belli, Renan; Valladares, Diana; Petschelt, Anselm; Lohbauer, Ulrich

    2018-06-01

    Chemical and mechanical degradation play a key role on the lifetime of dental restorative materials. Therefore, prediction of their long-term performance in the oral environment should base on fatigue, rather than inert strength data, as commonly observed in the dental material's field. The objective of the present study was to provide mechanistic fatigue parameters of current dental CAD/CAM materials under cyclic biaxial flexure and assess their suitability in predicting clinical fracture behaviors. Eight CAD/CAM materials, including polycrystalline zirconia (IPS e.max ZirCAD), reinforced glasses (Vitablocs Mark II, IPS Empress CAD), glass-ceramics (IPS e.max CAD, Suprinity PC, Celtra Duo), as well as hybrid materials (Enamic, Lava Ultimate) were evaluated. Rectangular plates (12×12×1.2mm 3 ) with highly polished surfaces were prepared and tested in biaxial cyclic fatigue in water until fracture using the Ball-on-Three-Balls (B3B) test. Cyclic fatigue parameters n and A* were obtained from the lifetime data for each material and further used to build SPT diagrams. The latter were used to compare in-vitro with in-vivo fracture distributions for IPS e.max CAD and IPS Empress CAD. Susceptibility to subcritical crack growth under cyclic loading was observed for all materials, being more severe (n≤20) in lithium-based glass-ceramics and Vitablocs Mark II. Strength degradations of 40% up to 60% were predicted after only 1 year of service. Threshold stress intensity factors (K th ) representing the onset of subcritical crack growth (SCG), were estimated to lie in the range of 0.37-0.44 of K Ic for the lithium-based glass-ceramics and Vitablocs Mark II and between 0.51-0.59 of K Ic for the other materials. Failure distributions associated with mechanistic estimations of strength degradation in-vitro showed to be useful in interpreting failure behavior in-vivo. The parameter K th stood out as a better predictor of clinical performance in detriment to the SCG n

  13. Fluid Volume Expansion and Depletion in Hemodialysis Patients Lack Association with Clinical Parameters

    Directory of Open Access Journals (Sweden)

    Sylvia Kalainy

    2015-12-01

    Full Text Available Background: Achievement of normal volume status is crucial in hemodialysis (HD, since both volume expansion and volume contraction have been associated with adverse outcome and events. Objectives: The objectives of this study are to assess the prevalence of fluid volume expansion and depletion and to identify the best clinical parameter or set of parameters that can predict fluid volume expansion in HD patients. Design: This study is cross-sectional. Setting: This study was conducted in three hemodialysis units. Patients: In this study, there are 194 HD patients. Methods: Volume status was assessed by multifrequency bio-impedance spectroscopy (The Body Composition Monitor, Fresenius prior to the mid-week HD session. Results: Of all patients, 48 % ( n = 94 were volume-expanded and 9 % of patients were volume-depleted ( n = 17. Interdialytic weight gain was not different between hypovolemic, normovolemic, and hypervolemic patients. Fifty percent of the volume-expanded patients were hypertensive. Paradoxical hypertension was very common (31 % of all patients; its incidence was not different between patient groups. Intradialytic hypotension was relatively common and was more frequent among hypovolemic patients. Multivariate regression analysis identified only four predictors for volume expansion (edema, lower BMI, higher SBP, and smoking. None of these parameters displayed both a good sensitivity and specificity. Limitations: The volume assessment was performed once. Conclusions: The study indicates that volume expansion is highly prevalent in HD population and could not be identified using clinical parameters alone. No clinical parameters were identified that could reliably predict volume status. This study shows that bio-impedance can assist to determine volume status. Volume status, in turn, is not related to intradialytic weight gain and is unable to explain the high incidence of paradoxical hypertension.

  14. Mathematical models to predict rheological parameters of lateritic hydromixtures

    OpenAIRE

    Gabriel Hernández-Ramírez; Arístides A. Legrá-Lobaina; Beatriz Ramírez-Serrano; Liudmila Pérez-García

    2017-01-01

    The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to...

  15. Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness

    OpenAIRE

    Hodges-Simeon, Carolyn R.; Gaulin, Steven J. C.; Puts, David A.

    2010-01-01

    Low mean fundamental frequency (F 0) in men’s voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fert...

  16. [The role of epicardial fat and obesity parameters in the prediction of coronary heart disease].

    Science.gov (United States)

    Prídavková, Dana; Kantárová, Daniela; Lišková, Renáta; Červeň, Peter; Kovář, František; Mokáň, Marián

    2016-04-01

    To assess the relationship of parameters of obesity in relationship to coronary angiography findings with correlation of epicardial fat (EF) thickness in uppermentioned context. There were 80 patients examined (43 males, 37 postmenopausal females) undergoing elective coronary angiography. We examined the regular obesity parameters - BMI, waist circumference (WC), neck circumference (NC), total body fat (TBF), and visceral fat (VF) using bioimpedance. We assessed the echocardiographically measured EF thickness. We added examination of lipidogram, glycaemia, HOMA-IR (insulin resistance index) and AIP (aterogenic index of plasma). The set was divided into group with coronarographically proved stenosis or stenoses (withCS), and a group without finding of quantifiable stenosis or stenoses (withoutCS). The average thickness of EF in withCS group was 6.3 vs 5.6 mm in group withoutCS (p obesity parameters in assessment of pre-clinical stages of coronary atherosclerosis and prediction of risk of coronary heart disease. In adipose parameters, EF thickness was correlated the most by WC. Risk stratification of coronary artery disease is supplemented by increased HOMA-IR and AIP.

  17. Cervical Vertebral Body’s Volume as a New Parameter for Predicting the Skeletal Maturation Stages

    Directory of Open Access Journals (Sweden)

    Youn-Kyung Choi

    2016-01-01

    Full Text Available This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5–18 years of age. We performed Pearson’s correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P<0.05. The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.

  18. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages.

    Science.gov (United States)

    Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5-18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.

  19. Prediction of Milk Quality Parameters Using Vibrational Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae

    fatty acids, protein fractions and coagulation properties from Fourier transform infrared measurements. This thesis shows how such predictions are trapped in a cage of covariance with major milk constituents like total fat and protein content. The prediction models for detailed milk composition...... are not based on causal relationships and this may seriously compromise calibration robustness. It is not recommended to implement indirect models for detailed milk composition in milk recording or breeding programs as such model are providing information on, for example, total protein rather than the specific...... protein fractions. If Fourier transform infrared based models on detailed milk composition are to be implemented in, for example, breeding programs it is recommended to decompose, for example, the individual fatty acids into functional groups, such as methyl, methylene, olefinic and carboxylic groups...

  20. Clinical Predictive Modeling Development and Deployment through FHIR Web Services.

    Science.gov (United States)

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.

  1. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2014-01-01

    This paper presents evidence that model prediction uncertainty does not necessarily rise with parameter dimensionality (the number of parameters). Here by prediction we mean future simulation of a variable of interest conditioned on certain future values of input variables. We utilize a relationship

  2. Clinical and Biochemical Parameters of Children and Adolescents Applying Pesticides

    Directory of Open Access Journals (Sweden)

    A Ismail

    2010-06-01

    Full Text Available Background: The primary agricultural product in Egypt is the cotton crop. Children and adolescents work seasonally in the cotton fields applying pesticides. Objectives: To examine the effect of pesticide exposure on clinical and biochemical parameters in children and adolescents applying pesticides. Methods: Male children currently applying pesticides and aged between 9 and 19 years (n = 50 were recruited for this study. They were asked to complete work, health, and exposure questionnaires; examined for any medical and neurological problems with particular attention to sensory and motor functions including cranial nerves, sensory and motor system, and reflexes. From each participant, a blood sample was taken to measure acetylcholinesterase activity, and liver and kidney functions. Children who have never worked in agriculture (n = 50, matched on age, education, and socioeconomic status were also studied and served as controls. Results: More neuromuscular disorders were identified in pesticide applicators than controls. A significant lower level of acetylcholinesterase was found in the applicator group compared to the controls. There was also a significant difference in hematological, renal and hepatic indices in the exposed children compared to the control children. Working more days in the current season and also working more years as a pesticide applicator were both associated with an increase in the prevalence of neuromuscular abnormalities and significant changes in the laboratory tests. Conclusion: Children and adolescent pesticide applicators working in farms of Egypt are at risk of developing serious health problems similar to those of adults.

  3. Clinical abdominal palpation for predicting oligohydramnios in ...

    African Journals Online (AJOL)

    with normal AFV being reassuring for expectant management, and reduced AFV a trigger for labour induction.[3] According to textbooks, clinical evidence of reduced AFV (oligohydramnios) includes ... [11,12] AFI was used as the reference.

  4. Prediction of compressibility parameters of the soils using artificial neural network.

    Science.gov (United States)

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  5. Clinical abdominal palpation for predicting oligohydramnios in ...

    African Journals Online (AJOL)

    Objective. In view of the scarcity of ultrasound in low-resource settings, to evaluate abdominal palpation for prediction of oligohydramnios in suspected prolonged pregnancy, using the ultrasound-obtained amniotic fluid index (AFI) as a gold standard, taking into account maternal and fetal factors that may affect amniotic fluid ...

  6. Toe Pressures are Superior to Duplex Parameters in Predicting Wound Healing following Toe and Foot Amputations.

    Science.gov (United States)

    Stone, Patrick A; Glomski, Alexis; Thompson, Stephanie N; Adams, Elliott

    2018-01-01

    No criteria, including preamputation vascular diagnostic thresholds, have been established to reliably predict healing versus nonhealing following minor lower extremity amputations. Thus, the goal of our study was to identify clinical factors, including noninvasive vascular laboratory measures, associated with wound healing following toe, forefoot, and midfoot amputations. We retrospectively examined records of patients receiving elective toe, forefoot, or midfoot amputation at our institution over a 5-year span (2010-2015). A total of 333 amputations received noninvasive vascular assessment of the lower extremity preamputation and follow-up at 90 days postamputation. Multivariate binomial logistic regression was used to identify variables predicting wound healing as defined as the absence of reamputation due to wound breakdown. Wound healing occurred in 81% of amputations. A total of 23 (7%) patients required revisions of the foot while 39 (12%) patients required major amputations by 90 days. Chi-squared analysis found that toe pressure at or above the value of 47 mm Hg (P = 0.04), bi/triphasic anterior tibial (P = 0.01), and posterior tibial artery (P = 0.01) waveforms were associated with wound healing. When these diagnostic parameters were examined in the presence of confounders (increasing age, chronic kidney disease, and concomitant revascularization), only toe pressure ≥ 47 mm Hg predicted amputation site healing (odds ratio: 3.1 [95% CI: 1.0-9.4], P = 0.04). Preamputation toe pressures of 47 mm Hg and above are associated with wound healing. No other noninvasive vascular studies predicted wound healing in the presence of confounders. Thus, toe pressures may assist in clinical decision-making and should be routinely obtained preamputation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Evaluation of accelerated test parameters for CMOS IC total dose hardness prediction

    International Nuclear Information System (INIS)

    Sogoyan, A.V.; Nikiforov, A.Y.; Chumakov, A.I.

    1999-01-01

    The approach to accelerated test parameters evaluation is presented in order to predict CMOS IC total dose behavior in variable dose-rate environment. The technique is based on the analytical model of MOSFET parameters total dose degradation. The simple way to estimate model parameter is proposed using IC's input-output MOSFET radiation test results. (authors)

  8. Cognitive Models of Risky Choice: Parameter Stability and Predictive Accuracy of Prospect Theory

    Science.gov (United States)

    Glockner, Andreas; Pachur, Thorsten

    2012-01-01

    In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are…

  9. Predictive parameters of infectiologic complications in patients after TIPSS; Praediktive Parameter infektiologischer Komplikationen bei Patienten nach TIPSS-Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Cohnen, M.; Saleh, A.; Moedder, U. [Institut fuer Diagnostische Radiologie, Universitaetsklinikum Duesseldorf (Germany); Luethen, R.; Bode, J.; Haeussinger, D. [Klinik fuer Gastroenterologie, Hepatologie und Infektiologie, Universitaetsklinikum Duesseldorf (Germany); Daeubener, W. [Institut fuer Mikrobiologie und Virologie, Universitaetsklinikum Duesseldorf (Germany)

    2003-02-01

    Aim To define predictive parameters of a complicated clinical course after the TIPSS procedure. Blood cultures were drawn prospectively in 41 patients from a central line and from the portal venous blood before stent placement as well as from the central line 20 min after intervention. C-reactive proteine (CRP) (mg/dl) and white blood cell count (WBC,/{mu}l) on the day of TIPSS-procedure (d0), the first (d1) and seven (d7) days after TIPSS were compared in patients with a complicated clinical course (spontaneous bacterial peritonitis, pneumonia, sepsis; group I) to patients without clinical complications (group II) Group I showed a significant increase in CRP (d0: 1.8{+-}1.0; d1: 3.2{+-}1.5; d7: 4.3{+-}3.2), and white blood cell count (d0: 7700{+-}2600; d1: 10800{+-}2800; d7: 7500{+-}1800) on the first day after TIPSS-procedure in comparison to group II (CRP: d0: 1.6{+-}0.6; d1: 1.8{+-}1.0; d7: 1.9{+-}0.6. WBC: d0: 6900{+-}1500; d1: 8000{+-}1600; d7: 7600{+-}1400).Microbiological analysis showed in 12% skin or oral flora in the last sample. The course of CRP and WBC-count during the first week after TIPSS procedure may indicate patients with a potential risk of a complicated clinical course. (orig.) [German] Fragestellung Definition praediktiver Parameter infektiologischer Komplikationen bei Patienten nach TIPSS-Anlage.Methodik Bei 41 Patienten wurden Blutproben prospektiv vor intrahepatischer Stentanlage zentralvenoes und portalvenoes sowie 20 min postinterventionell erneut zentralvenoes entnommen und mikrobiologisch analysiert. C-reaktives Protein (CRP) (mg/dl) und Leukozytenzahl (/{mu}l) wurden am Interventionstag (d0), am 1. (d1) sowie 7 Tage (d7) postinterventionell bestimmt. Patienten mit kompliziertem Verlauf (spontane bakterielle Peritonitis,Pneumonie, Sepsis; Gruppe 1) wurden von Patienten ohne klinische Komplikationen (Gruppe 2) unterschieden.Ergebnisse Gruppe 1 wies einen signifikanten Anstieg des CRP (d0: 1,8{+-}1,0; d1: 3,2{+-}1,5; d7: 4,3{+-}3,2) und

  10. Long-range hydrometeorological ensemble predictions of drought parameters

    Science.gov (United States)

    Fundel, F.; Jörg-Hess, S.; Zappa, M.

    2012-06-01

    Low streamflow as consequence of a drought event affects numerous aspects of life. Economic sectors that may be impacted by drought are, e.g. power production, agriculture, tourism and water quality management. Numerical models have increasingly been used to forecast low-flow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the low-flow indices duration, severity and magnitude, with a forecast lead-time of one month, to assess their potential usefulness for predictions. The ECMWF VarEPS 5 member reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification shows that, compared to peak flow, probabilistic low-flow forecasts are skillful for longer lead-times, low-flow index forecasts could also be beneficially included in a decision-making process. The results suggest monthly runoff forecasts are useful for accessing the risk of hydrological droughts.

  11. Prediction of the association state of insulin using spectral parameters.

    Science.gov (United States)

    Uversky, Vladimir N; Garriques, Liza Nielsen; Millett, Ian S; Frokjaer, Sven; Brange, Jens; Doniach, Sebastian; Fink, Anthony L

    2003-04-01

    Human insulin exists in different association states, from monomer to hexamer, depending on the conditions. In the presence of zinc the "normal" state is a hexamer. The structural properties of 20 variants of human insulin were studied by near-UV circular dichroism, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The mutants showed different degrees of association (monomer, dimers, tetramers, and hexamers) at neutral pH. A correlation was shown between the accessibility of tyrosines to acrylamide quenching and the degree of association of the insulin mutants. The near-UV CD spectra of the insulins were affected by protein association and by mutation-induced structural perturbations. However, the shape and intensity of difference CD spectra, obtained by subtraction of the spectra measured in 20% acetic acid (where all insulin species were monomeric) from the corresponding spectra measured at neutral pH, correlate well with the degree of insulin association. In fact, the near-UV CD difference spectra for monomeric, dimeric, tetrameric, and hexameric insulin are very distinctive, both in terms of intensity and shape. The results show that the spectral properties of the insulins reflect their state of association, and can be used to predict their oligomeric state. Copyright 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:847-858, 2003

  12. ABDOMINAL OBESITY, AN ANTHROPOMETRIC PARAMETER PREDICTING METABOLIC DISORDERS

    Directory of Open Access Journals (Sweden)

    Maricel Castellanos González

    2011-08-01

    Full Text Available Background: Waist circumference perimeter, as an indirect indicator of abdominal obesity, is commonly presented as an essential element in the clinical assessment of obesity. The link between abdominal obesity and insulin resistance is proposed as the core of metabolic syndrome’s pathophysiology and complications. Objective: To determine whether individuals with abdominal obesity present characteristics related to metabolic syndrome’s factors that differ from those observed in individuals with no abdominal obesity. Methods: A comparative analytical study was performed including cases control and design in two different groups. The sample was composed of 98 individuals of both sexes randomly selected out of a universe of 510 workers population at the Medical University of Cienfuegos from September to December 2005. They were all tested as to blood pressure, cholesterol, HDL cholesterol, fasting glucose and triglycerides. Results: Abdominal obesity was found in 30.6% of individuals. It was predominant in females (83.3% older than 40 years. The number of cases of obesity linked to hypertension was similar to the number of cases with low HDL cholesterol (53.3%. Impaired glucose was found in 16.7% of cases. Conclusions: Abdominal obesity is a health problem in the population included in this study and it increases as age does. Individuals with abdominal obesity are exposed to a higher risk of metabolic disorders, such as low levels of HDL cholesterol, high levels of triglycerides and total cholesterol, glucose alterations and hypertension.

  13. A clinical prediction rule for histological chorioamnionitis in preterm newborns.

    Directory of Open Access Journals (Sweden)

    Jasper V Been

    Full Text Available BACKGROUND: Histological chorioamnionitis (HC is an intrauterine inflammatory process highly associated with preterm birth and adverse neonatal outcome. HC is often clinically silent and diagnosed postnatally by placental histology. Earlier identification could facilitate treatment individualisation to improve outcome in preterm newborns. AIM: Develop a clinical prediction rule at birth for HC and HC with fetal involvement (HCF in preterm newborns. METHODS: Clinical data and placental pathology were obtained from singleton preterm newborns (gestational age ≤ 32.0 weeks born at Erasmus UMC Rotterdam from 2001 to 2003 (derivation cohort; n = 216 or Máxima MC Veldhoven from 2009 to 2010 (validation cohort; n = 206. HC and HCF prediction rules were developed with preference for high sensitivity using clinical variables available at birth. RESULTS: HC and HCF were present in 39% and 24% in the derivation cohort and in 44% and 22% in the validation cohort, respectively. HC was predicted with 87% accuracy, yielding an area under ROC curve of 0.95 (95%CI = 0.92-0.98, a positive predictive value of 80% (95%CI = 74-84%, and a negative predictive value of 93% (95%CI = 88-96%. Corresponding figures for HCF were: accuracy 83%, area under ROC curve 0.92 (95%CI = 0.88-0.96, positive predictive value 59% (95%CI = 52-62%, and negative predictive value 97% (95%CI = 93-99%. External validation expectedly resulted in some loss of test performance, preferentially affecting positive predictive rather than negative predictive values. CONCLUSION: Using a clinical prediction rule composed of clinical variables available at birth, HC and HCF could be predicted with good test characteristics in preterm newborns. Further studies should evaluate the clinical value of these rules to guide early treatment individualisation.

  14. A proposal of parameter to predict biaxial fatigue life for CF8M cast stainless steels

    International Nuclear Information System (INIS)

    Park, Joong Cheul; Kwon, Jae Do

    2005-01-01

    Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified

  15. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  16. Parameter optimization of parenchymal texture analysis for prediction of false-positive recalls from screening mammography

    Science.gov (United States)

    Ray, Shonket; Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2016-03-01

    This work details a methodology to obtain optimal parameter values for a locally-adaptive texture analysis algorithm that extracts mammographic texture features representative of breast parenchymal complexity for predicting falsepositive (FP) recalls from breast cancer screening with digital mammography. The algorithm has two components: (1) adaptive selection of localized regions of interest (ROIs) and (2) Haralick texture feature extraction via Gray- Level Co-Occurrence Matrices (GLCM). The following parameters were systematically varied: mammographic views used, upper limit of the ROI window size used for adaptive ROI selection, GLCM distance offsets, and gray levels (binning) used for feature extraction. Each iteration per parameter set had logistic regression with stepwise feature selection performed on a clinical screening cohort of 474 non-recalled women and 68 FP recalled women; FP recall prediction was evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC) and associations between the extracted features and FP recall were assessed via odds ratios (OR). A default instance of mediolateral (MLO) view, upper ROI size limit of 143.36 mm (2048 pixels2), GLCM distance offset combination range of 0.07 to 0.84 mm (1 to 12 pixels) and 16 GLCM gray levels was set. The highest ROC performance value of AUC=0.77 [95% confidence intervals: 0.71-0.83] was obtained at three specific instances: the default instance, upper ROI window equal to 17.92 mm (256 pixels2), and gray levels set to 128. The texture feature of sum average was chosen as a statistically significant (p<0.05) predictor and associated with higher odds of FP recall for 12 out of 14 total instances.

  17. A practical approach to parameter estimation applied to model predicting heart rate regulation

    DEFF Research Database (Denmark)

    Olufsen, Mette; Ottesen, Johnny T.

    2013-01-01

    Mathematical models have long been used for prediction of dynamics in biological systems. Recently, several efforts have been made to render these models patient specific. One way to do so is to employ techniques to estimate parameters that enable model based prediction of observed quantities....... Knowledge of variation in parameters within and between groups of subjects have potential to provide insight into biological function. Often it is not possible to estimate all parameters in a given model, in particular if the model is complex and the data is sparse. However, it may be possible to estimate...... a subset of model parameters reducing the complexity of the problem. In this study, we compare three methods that allow identification of parameter subsets that can be estimated given a model and a set of data. These methods will be used to estimate patient specific parameters in a model predicting...

  18. Predicting in-patient falls in a geriatric clinic: a clinical study combining assessment data and simple sensory gait measurements.

    Science.gov (United States)

    Marschollek, M; Nemitz, G; Gietzelt, M; Wolf, K H; Meyer Zu Schwabedissen, H; Haux, R

    2009-08-01

    Falls are among the predominant causes for morbidity and mortality in elderly persons and occur most often in geriatric clinics. Despite several studies that have identified parameters associated with elderly patients' fall risk, prediction models -- e.g., based on geriatric assessment data -- are currently not used on a regular basis. Furthermore, technical aids to objectively assess mobility-associated parameters are currently not used. To assess group differences in clinical as well as common geriatric assessment data and sensory gait measurements between fallers and non-fallers in a geriatric sample, and to derive and compare two prediction models based on assessment data alone (model #1) and added sensory measurement data (model #2). For a sample of n=110 geriatric in-patients (81 women, 29 men) the following fall risk-associated assessments were performed: Timed 'Up & Go' (TUG) test, STRATIFY score and Barthel index. During the TUG test the subjects wore a triaxial accelerometer, and sensory gait parameters were extracted from the data recorded. Group differences between fallers (n=26) and non-fallers (n=84) were compared using Student's t-test. Two classification tree prediction models were computed and compared. Significant differences between the two groups were found for the following parameters: time to complete the TUG test, transfer item (Barthel), recent falls (STRATIFY), pelvic sway while walking and step length. Prediction model #1 (using common assessment data only) showed a sensitivity of 38.5% and a specificity of 97.6%, prediction model #2 (assessment data plus sensory gait parameters) performed with 57.7% and 100%, respectively. Significant differences between fallers and non-fallers among geriatric in-patients can be detected for several assessment subscores as well as parameters recorded by simple accelerometric measurements during a common mobility test. Existing geriatric assessment data may be used for falls prediction on a regular basis

  19. Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data

    OpenAIRE

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor, Maureen

    2014-01-01

    We discuss a cancer hallmark network framework for modelling genome-sequencing data to predict cancer clonal evolution and associated clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for a cancer patient, as well as cancer risks for a healthy individual are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial i...

  20. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration

    International Nuclear Information System (INIS)

    Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters

  1. Statistical model based gender prediction for targeted NGS clinical panels

    Directory of Open Access Journals (Sweden)

    Palani Kannan Kandavel

    2017-12-01

    The reference test dataset are being used to test the model. The sensitivity on predicting the gender has been increased from the current “genotype composition in ChrX” based approach. In addition, the prediction score given by the model can be used to evaluate the quality of clinical dataset. The higher prediction score towards its respective gender indicates the higher quality of sequenced data.

  2. Combining clinical variables to optimize prediction of antidepressant treatment outcomes.

    Science.gov (United States)

    Iniesta, Raquel; Malki, Karim; Maier, Wolfgang; Rietschel, Marcella; Mors, Ole; Hauser, Joanna; Henigsberg, Neven; Dernovsek, Mojca Zvezdana; Souery, Daniel; Stahl, Daniel; Dobson, Richard; Aitchison, Katherine J; Farmer, Anne; Lewis, Cathryn M; McGuffin, Peter; Uher, Rudolf

    2016-07-01

    The outcome of treatment with antidepressants varies markedly across people with the same diagnosis. A clinically significant prediction of outcomes could spare the frustration of trial and error approach and improve the outcomes of major depressive disorder through individualized treatment selection. It is likely that a combination of multiple predictors is needed to achieve such prediction. We used elastic net regularized regression to optimize prediction of symptom improvement and remission during treatment with escitalopram or nortriptyline and to identify contributing predictors from a range of demographic and clinical variables in 793 adults with major depressive disorder. A combination of demographic and clinical variables, with strong contributions from symptoms of depressed mood, reduced interest, decreased activity, indecisiveness, pessimism and anxiety significantly predicted treatment outcomes, explaining 5-10% of variance in symptom improvement with escitalopram. Similar combinations of variables predicted remission with area under the curve 0.72, explaining approximately 15% of variance (pseudo R(2)) in who achieves remission, with strong contributions from body mass index, appetite, interest-activity symptom dimension and anxious-somatizing depression subtype. Escitalopram-specific outcome prediction was more accurate than generic outcome prediction, and reached effect sizes that were near or above a previously established benchmark for clinical significance. Outcome prediction on the nortriptyline arm did not significantly differ from chance. These results suggest that easily obtained demographic and clinical variables can predict therapeutic response to escitalopram with clinically meaningful accuracy, suggesting a potential for individualized prescription of this antidepressant drug. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Hemorheological and Glycemic Parameters and HDL Cholesterol for the Prediction of Cardiovascular Events

    International Nuclear Information System (INIS)

    Cho, Sung Woo; Kim, Byung Gyu; Kim, Byung Ok; Byun, Young Sup; Goh, Choong Won; Rhee, Kun Joo; Kwon, Hyuck Moon; Lee, Byoung Kwon

    2016-01-01

    Hemorheological and glycemic parameters and high density lipoprotein (HDL) cholesterol are used as biomarkers of atherosclerosis and thrombosis. To investigate the association and clinical relevance of erythrocyte sedimentation rate (ESR), fibrinogen, fasting glucose, glycated hemoglobin (HbA1c), and HDL cholesterol in the prediction of major adverse cardiovascular events (MACE) and coronary heart disease (CHD) in an outpatient population. 708 stable patients who visited the outpatient department were enrolled and followed for a mean period of 28.5 months. Patients were divided into two groups, patients without MACE and patients with MACE, which included cardiac death, acute myocardial infarction, newly diagnosed CHD, and cerebral vascular accident. We compared hemorheological and glycemic parameters and lipid profiles between the groups. Patients with MACE had significantly higher ESR, fibrinogen, fasting glucose, and HbA1c, while lower HDL cholesterol compared with patients without MACE. High ESR and fibrinogen and low HDL cholesterol significantly increased the risk of MACE in multivariate regression analysis. In patients with MACE, high fibrinogen and HbA1c levels increased the risk of multivessel CHD. Furthermore, ESR and fibrinogen were significantly positively correlated with HbA1c and negatively correlated with HDL cholesterol, however not correlated with fasting glucose. Hemorheological abnormalities, poor glycemic control, and low HDL cholesterol are correlated with each other and could serve as simple and useful surrogate markers and predictors for MACE and CHD in outpatients

  4. Hemorheological and Glycemic Parameters and HDL Cholesterol for the Prediction of Cardiovascular Events

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Woo [Division of Cardiology - Department of Internal Medicine - Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Division of Cardiology - Department of Medicine - Samsung Medical Center, Seoul (Korea, Republic of); Kim, Byung Gyu; Kim, Byung Ok; Byun, Young Sup; Goh, Choong Won; Rhee, Kun Joo [Division of Cardiology - Department of Internal Medicine - Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Kwon, Hyuck Moon; Lee, Byoung Kwon, E-mail: cardiobk@yuhs.ac [Division of Cardiology - Department of Internal Medicine - Gangnam Severance Hospital - Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    Hemorheological and glycemic parameters and high density lipoprotein (HDL) cholesterol are used as biomarkers of atherosclerosis and thrombosis. To investigate the association and clinical relevance of erythrocyte sedimentation rate (ESR), fibrinogen, fasting glucose, glycated hemoglobin (HbA1c), and HDL cholesterol in the prediction of major adverse cardiovascular events (MACE) and coronary heart disease (CHD) in an outpatient population. 708 stable patients who visited the outpatient department were enrolled and followed for a mean period of 28.5 months. Patients were divided into two groups, patients without MACE and patients with MACE, which included cardiac death, acute myocardial infarction, newly diagnosed CHD, and cerebral vascular accident. We compared hemorheological and glycemic parameters and lipid profiles between the groups. Patients with MACE had significantly higher ESR, fibrinogen, fasting glucose, and HbA1c, while lower HDL cholesterol compared with patients without MACE. High ESR and fibrinogen and low HDL cholesterol significantly increased the risk of MACE in multivariate regression analysis. In patients with MACE, high fibrinogen and HbA1c levels increased the risk of multivessel CHD. Furthermore, ESR and fibrinogen were significantly positively correlated with HbA1c and negatively correlated with HDL cholesterol, however not correlated with fasting glucose. Hemorheological abnormalities, poor glycemic control, and low HDL cholesterol are correlated with each other and could serve as simple and useful surrogate markers and predictors for MACE and CHD in outpatients.

  5. Infection parameters in the sand fly vector that predict transmission of Leishmania major.

    Science.gov (United States)

    Stamper, Lisa W; Patrick, Rachel L; Fay, Michael P; Lawyer, Phillip G; Elnaiem, Dia-Eldin A; Secundino, Nagila; Debrabant, Alain; Sacks, David L; Peters, Nathan C

    2011-08-01

    To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic "cutoff" value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite.

  6. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels

    1998-01-01

    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...

  7. Histopathological Parameters predicting Occult Nodal Metastases in Tongue Carcinoma Cases: An Indian Perspective.

    Science.gov (United States)

    Jacob, Tina Elizabeth; Malathi, N; Rajan, Sharada T; Augustine, Dominic; Manish, N; Patil, Shankargouda

    2016-01-01

    It is a well-established fact that in squamous cell carcinoma cases, the presence of lymph node metastases decreased the 5-year survival rate by 50% and also caused the recurrence of the primary tumor with development of distant metastases. Till date, the predictive factors for occult cervical lymph nodes metastases in cases of tongue squamous cell carcinoma remain inconclusive. Therefore, it is imperative to identify patients who are at the greatest risk for occult cervical metastases. This study was thus performed with the aim to identify various histopathologic parameters of the primary tumor that predict occult nodal metastases. The clinicopathologic features of 56 cases of lateral tongue squamous cell carcinoma with cT1NoMo/cT2NoMo as the stage and without prior radiotherapy or chemotherapy were considered. The surgical excision of primary tumor was followed by elective neck dissection. The glossectomy specimen along with the neck nodes were fixed in formalin and 5 urn thick sections were obtained. The hematoxylin & eosin stained sections were then subjected to microscopic examination. The primary tumor characteristics that were analyzed include tumor grade, invading front, depth of tumor, lymphovascular invasion, perineural invasion and inflammatory response. The nodes were examined for possible metastases using hematoxylin & eosin followed by cytokeratin immunohistochemistry. A total of 12 cases were found with positive occult nodal metastases. On performing univariate analysis, the histopathologic parameters that were found to be statistically significant were lymphovascular invasion (p = 0.004) and perineural invasion (p = 0.003) along with a cut-off depth of infiltration more than 5 mm (p = 0.01). Histopathologic assessment of the primary tumor specimen therefore continues to provide information that is central to guide clinical management, particularly in cases of occult nodal metastases. Clinical significance The study highlights the importance of

  8. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future.

    Science.gov (United States)

    Pasipanodya, Jotam; Gumbo, Tawanda

    2011-01-01

    Antimicrobial pharmacokinetic-pharmacodynamic (PK/PD) science and clinical trial simulations have not been adequately applied to the design of doses and dose schedules of antituberculosis regimens because many researchers are skeptical about their clinical applicability. We compared findings of preclinical PK/PD studies of current first-line antituberculosis drugs to findings from several clinical publications that included microbiologic outcome and pharmacokinetic data or had a dose-scheduling design. Without exception, the antimicrobial PK/PD parameters linked to optimal effect were similar in preclinical models and in tuberculosis patients. Thus, exposure-effect relationships derived in the preclinical models can be used in the design of optimal antituberculosis doses, by incorporating population pharmacokinetics of the drugs and MIC distributions in Monte Carlo simulations. When this has been performed, doses and dose schedules of rifampin, isoniazid, pyrazinamide, and moxifloxacin with the potential to shorten antituberculosis therapy have been identified. In addition, different susceptibility breakpoints than those in current use have been identified. These steps outline a more rational approach than that of current methods for designing regimens and predicting outcome so that both new and older antituberculosis agents can shorten therapy duration.

  9. Meckel's Diverticulum in Children-Parameters Predicting the Presence of Gastric Heterotopia.

    Science.gov (United States)

    Slívová, Ivana; Vávrová, Zuzana; Tomášková, Hana; Okantey, Okaikor; Penka, Igor; Ihnát, Peter

    2018-05-10

    The presence of gastric ectopic mucosa in Meckel's diverticulum is associated with a higher risk of development of complications. The aim of the present study was to investigate which demographic/clinical parameters predict the presence of gastric heterotopia in Meckel's diverticulum. This was a retrospective cohort study conducted in a single institution (University Hospital Ostrava, Czech republic). All children who underwent laparoscopic/open resection of Meckel's diverticulum within a 20-year study period were included in the study. In total, 88 pediatric patients underwent analysis. The mean age of the children was 4.6 ± 4.73 years; the male-female ratio was approximately 2:1. There were 50 (56.8%) patients with asymptomatic Meckel's diverticulum in our study group. Laparoscopic resection was performed in 24 (27.3%) patients; segmental bowel resection through laparotomy was performed in 13 (14.8%) patients. Gastric heterotopia was found in 39 (44.3%) patients; resection margins of all patients were clear of gastric heterotopia. No correlation was found between the presence of gastric heterotopia and the following parameters: age, gender, maternal age, prematurity, low birth weight, perinatal asphyxia, distance from Bauhin's valve and length of Meckel's diverticulum. The width of the diverticulum base was significantly higher in patients with gastric heterotopia (2.1 ± 0.57 vs. 1.2 ± 0.41 cm; p < 0.001). According to the study outcomes, the width of the diverticulum base seems to be a significant predictive factor associated with the presence of gastric heterotopia in Meckel's diverticulum. The laparoscopic/open resection of asymptomatic MD with a wide base should therefore be recommended.

  10. The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory

    Science.gov (United States)

    Anil, Duygu

    2008-01-01

    In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…

  11. Evaluation of Neonatal Hemolytic Jaundice: Clinical and Laboratory Parameters

    Directory of Open Access Journals (Sweden)

    Anet Papazovska Cherepnalkovski

    2015-12-01

    CONCLUSIONS: The laboratory profile in ABO/Rh isoimmunisation cases depicts hemolytic mechanism of jaundice. These cases carry a significant risk for early and severe hyperbilirubinemia and are eligible for neurodevelopmental follow-up. Hematological parameters and blood grouping are simple diagnostic methods that assist the etiological diagnosis of neonatal hyperbilirubinemia.

  12. Prediction of earth rotation parameters based on improved weighted least squares and autoregressive model

    Directory of Open Access Journals (Sweden)

    Sun Zhangzhen

    2012-08-01

    Full Text Available In this paper, an improved weighted least squares (WLS, together with autoregressive (AR model, is proposed to improve prediction accuracy of earth rotation parameters(ERP. Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.

  13. Toward an Efficient Prediction of Solar Flares: Which Parameters, and How?

    Directory of Open Access Journals (Sweden)

    Manolis K. Georgoulis

    2013-11-01

    Full Text Available Solar flare prediction has become a forefront topic in contemporary solar physics, with numerous published methods relying on numerous predictive parameters, that can even be divided into parameter classes. Attempting further insight, we focus on two popular classes of flare-predictive parameters, namely multiscale (i.e., fractal and multifractal and proxy (i.e., morphological parameters, and we complement our analysis with a study of the predictive capability of fundamental physical parameters (i.e., magnetic free energy and relative magnetic helicity. Rather than applying the studied parameters to a comprehensive statistical sample of flaring and non-flaring active regions, that was the subject of our previous studies, the novelty of this work is their application to an exceptionally long and high-cadence time series of the intensely eruptive National Oceanic and Atmospheric Administration (NOAA active region (AR 11158, observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Aiming for a detailed study of the temporal evolution of each parameter, we seek distinctive patterns that could be associated with the four largest flares in the AR in the course of its five-day observing interval. We find that proxy parameters only tend to show preflare impulses that are practical enough to warrant subsequent investigation with sufficient statistics. Combining these findings with previous results, we conclude that: (i carefully constructed, physically intuitive proxy parameters may be our best asset toward an efficient future flare-forecasting; and (ii the time series of promising parameters may be as important as their instantaneous values. Value-based prediction is the only approach followed so far. Our results call for novel signal and/or image processing techniques to efficiently utilize combined amplitude and temporal-profile information to optimize the inferred solar-flare probabilities.

  14. Development of computer code for determining prediction parameters of radionuclide migration in soil layer

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Ohnuki, Toshihiko

    1986-07-01

    A computer code (MIGSTEM-FIT) has been developed to determine the prediction parameters, retardation factor, water flow velocity, dispersion coefficient, etc., of radionuclide migration in soil layer from the concentration distribution of radionuclide in soil layer or in effluent. In this code, the solution of the predicting equation for radionuclide migration is compared with the concentration distribution measured, and the most adequate values of parameter can be determined by the flexible tolerance method. The validity of finite differential method, which was one of the method to solve the predicting equation, was confirmed by comparison with the analytical solution, and also the validity of fitting method was confirmed by the fitting of the concentration distribution calculated from known parameters. From the examination about the error, it was found that the error of the parameter obtained by using this code was smaller than that of the concentration distribution measured. (author)

  15. Prediction of betavoltaic battery output parameters based on SEM measurements and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yakimov, Eugene B.

    2016-01-01

    An approach for a prediction of "6"3Ni-based betavoltaic battery output parameters is described. It consists of multilayer Monte Carlo simulation to obtain the depth dependence of excess carrier generation rate inside the semiconductor converter, a determination of collection probability based on the electron beam induced current measurements, a calculation of current induced in the semiconductor converter by beta-radiation, and SEM measurements of output parameters using the calculated induced current value. Such approach allows to predict the betavoltaic battery parameters and optimize the converter design for any real semiconductor structure and any thickness and specific activity of beta-radiation source. - Highlights: • New procedure for betavoltaic battery output parameters prediction is described. • A depth dependence of beta particle energy deposition for Si and SiC is calculated. • Electron trajectories are assumed isotropic and uniformly started under simulation.

  16. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Prediction of pork quality parameters by applying fractals and data mining on MRI

    DEFF Research Database (Denmark)

    Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés

    2017-01-01

    This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One...... Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear...... regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate...

  18. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.

    Science.gov (United States)

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.

  19. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    Full Text Available Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.

  20. Ultrasound for Appendicitis: Performance and Integration with Clinical Parameters

    Science.gov (United States)

    Löfvenberg, Fanny

    2016-01-01

    Objective. To evaluate the performance of ultrasound in pediatric appendicitis and the integration of US with the pediatric appendicitis score (PAS) and C-reactive protein (CRP). Method. An institution-based, retrospective study of children who underwent abdominal US for suspected appendicitis between 2012 and 2015 at a tertiary pediatric surgery center. US results were dichotomized, with a nonvisualized appendix considered as a negative examination. Results. In total, 438 children were included (mean 8.5 years, 54% boys), with an appendicitis rate of 29%. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for US were 82%, 97%, 92%, and 93%, respectively, without significant age or gender differences. Pediatric radiologists had significantly higher sensitivity compared to general radiologists, 88% and 71%, respectively (p appendicitis, regardless of age or gender, and should be the first choice of imaging modalities. Combining US with PAS and CRP may reduce several unnecessary admissions for in-hospital observation. PMID:28044133

  1. Reflow Process Parameters Analysis and Reliability Prediction Considering Multiple Characteristic Values

    Directory of Open Access Journals (Sweden)

    Guo Yu

    2016-01-01

    Full Text Available As a major step surface mount technology, reflow process is the key factor affecting the quality of the final product. The setting parameters and characteristic value of temperature curve shows a nonlinear relationship. So parameter impacts on characteristic values are analyzed and the parameters adjustment process based on orthogonal experiment is proposed in the paper. First, setting parameters are determined and the orthogonal test is designed according to production conditions. Then each characteristic value for temperature profile is calculated. Further, multi-index orthogonal experiment is analyzed for acquiring the setting parameters which impacts the PCBA product quality greater. Finally, reliability prediction is carried out considering the main influencing parameters for providing a theoretical basis of parameters adjustment and product quality evaluation in engineering process.

  2. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Clinical time series prediction: towards a hierarchical dynamical system framework

    Science.gov (United States)

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive

  4. Efficiency of Calatonia on clinical parameters in the immediate post-surgery period: a clinical study

    Directory of Open Access Journals (Sweden)

    Elaine Ferreira Lasaponari

    2013-09-01

    Full Text Available OBJECTIVE: to assess the efficiency of the Calatonia technique about clinical parameters and pain in the immediate post-surgical phase. METHOD: a randomised study was carried out with 116 patients subjected to a cholecystectomy, by laparoscopy, divided into an experimental group (58 patients and a placebo group (58 patients. The experimental group received the Calatonia technique, while the placebo was only subjected to non-intentional touches. RESULTS: The placebo group and the experimental group were considered homogeneous in terms of the variables: sex, age, physical status classification, duration of surgical procedures and also the time spent recovering in the Post-Anaesthetic Recovery Room. The only variable to show a statistically significant difference was the axillary temperature of the body. In relation to pain, the experimental group showed significant results, and hence it is possible to deduce that the relaxation caused by the Calatonia technique brought some relief of the general situation of pain. CONCLUSION: The application of Calatonia can take up the function of a resource complementary to assistance in the period immediately after surgery. Brazilian Register of Clinical Trials, UTN U1111-1129-9629.

  5. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  6. Clinical Implications of Changing Parameters on an Elliptical Trainer.

    Science.gov (United States)

    Kaplan, Yonatan; Nyska, Meir; Palmanovich, Ezequiel; Shanker, Rebecca

    2014-06-01

    Specific weightbearing instructions continue to be a part of routine orthopaedic clinical practice on an injured or postoperative extremity. Researchers and clinicians have struggled to define the best weightbearing strategies to maximize clinical outcomes. To investigate the average percentage body weight (APBW) values, weightbearing distribution percentages (WBDP), and cadence values on the entire foot, hindfoot, and forefoot during changing resistance and incline on an elliptical trainer, as well as to suggest clinical implications. Descriptive laboratory study. An original research study was performed consisting of 30 asymptomatic subjects (mean age, 29.54 ± 12.64 years; range, 21-69 years). The protocol included 3 consecutive tests of changing resistance and incline within a speed range of 70 to 95 steps/min. The SmartStep weightbearing gait analysis system was utilized to measure the values. The APBW values for the entire foot ranged between 70% and 81%, the hindfoot values were between 27% and 57%, and the forefoot values between 42% and 70%. With regard to WBDP, the forefoot remained planted on the pedal (stance phase) 2 to 3 times more as compared with the hindfoot raise in the swing phase. The study findings highlight the fact that elliptical training significantly reduces weightbearing in the hindfoot, forefoot, and entire foot even at higher levels of resistance and incline. Weightbearing on the hindfoot consistently displayed the lowest weightbearing values. Orthopaedic surgeons, now equipped with accurate weightbearing data, may recommend using the elliptical trainer as a weightbearing exercise early on following certain bony or soft tissue pathologies and lower limb surgical procedures.

  7. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  8. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  9. Are traditional cognitive tests useful in predicting clinical success?

    Science.gov (United States)

    Gray, Sarah A; Deem, Lisa P; Straja, Sorin R

    2002-11-01

    The purpose of this research was to determine the predictive value of the Dental Admission Test (DAT) for clinical success using Ackerman's theory of ability determinants of skilled performance. The Ackerman theory is a valid, reliable schema in the applied psychology literature used to predict complex skill acquisition. Inconsistent stimulus-response skill acquisition depends primarily on determinants of cognitive ability. Consistent information-processing tasks have been described as "automatic," in which stimuli and responses are mapped in a manner that allows for complete certainty once the relationships have been learned. It is theorized that the skills necessary for success in the clinical component of dental schools involve a significant amount of automatic processing demands and, as such, student performance in the clinics should begin to converge as task practice is realized and tasks become more consistent. Subtest scores of the DAT of four classes were correlated with final grades in nine clinical courses. Results showed that the DAT subtest scores played virtually no role with regard to the final clinical grades. Based on this information, the DAT scores were determined to be of no predictive value in clinical achievement.

  10. The relationships between preoperative urodynamic parameters and clinical outcomes in urinary stress incontinence

    Directory of Open Access Journals (Sweden)

    Yaşar Bozkurt

    2008-12-01

    Full Text Available The aim of present study was to evaluate the influence of urodynamic parameters on preoperative and postoperative clinical pictures in stress incontinence.Charts of patients, who were operated for stress incontinence using autologous rectus fascia sling between March 1999 and January 2005 in Tepecik Training and Research Hospital Urology Clinic, were evaluated retrospectively.A total of 41 patients were divided into two subgroups as, pure (10 patients and mixed stress incontinence (31 patients groups. Mean age of patients was 50.4 (33-70 years. Fifteen patients had intrinsic sphincter insufficiency (ISI. Mixed incontinence group had lower volume for first sensation and more detrusor overactivity than pure group. ISI did not alter the success of operation. Urodynamically no relationship was found between detrusor pressure and postoperative postvoiding residual urine (P>0.05.In conclusion, urodynamic evaluation before surgery was not related to preoperative and postoperative clinical picture of patients, but first sensation of bladder is only predictive for the success in fascial sling surgery.

  11. Echocardiography and risk prediction in advanced heart failure: incremental value over clinical markers.

    Science.gov (United States)

    Agha, Syed A; Kalogeropoulos, Andreas P; Shih, Jeffrey; Georgiopoulou, Vasiliki V; Giamouzis, Grigorios; Anarado, Perry; Mangalat, Deepa; Hussain, Imad; Book, Wendy; Laskar, Sonjoy; Smith, Andrew L; Martin, Randolph; Butler, Javed

    2009-09-01

    Incremental value of echocardiography over clinical parameters for outcome prediction in advanced heart failure (HF) is not well established. We evaluated 223 patients with advanced HF receiving optimal therapy (91.9% angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, 92.8% beta-blockers, 71.8% biventricular pacemaker, and/or defibrillator use). The Seattle Heart Failure Model (SHFM) was used as the reference clinical risk prediction scheme. The incremental value of echocardiographic parameters for event prediction (death or urgent heart transplantation) was measured by the improvement in fit and discrimination achieved by addition of standard echocardiographic parameters to the SHFM. After a median follow-up of 2.4 years, there were 38 (17.0%) events (35 deaths; 3 urgent transplants). The SHFM had likelihood ratio (LR) chi(2) 32.0 and C statistic 0.756 for event prediction. Left ventricular end-systolic volume, stroke volume, and severe tricuspid regurgitation were independent echocardiographic predictors of events. The addition of these parameters to SHFM improved LR chi(2) to 72.0 and C statistic to 0.866 (P advanced HF.

  12. Enhanced clinical pharmacy service targeting tools: risk-predictive algorithms.

    Science.gov (United States)

    El Hajji, Feras W D; Scullin, Claire; Scott, Michael G; McElnay, James C

    2015-04-01

    This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized. © 2014 John Wiley & Sons, Ltd.

  13. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  14. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  15. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Talawar, M.B.; Asthana, S.N.

    2004-01-01

    A new code viz., Linear Output Thermodynamic User-friendly Software for Energetic Systems (LOTUSES) developed during this work predicts the theoretical performance parameters such as density, detonation factor, velocity of detonation, detonation pressure and thermodynamic properties such as heat of detonation, heat of explosion, volume of explosion gaseous products. The same code also assists in the prediction of possible explosive decomposition products after explosion and power index. The developed code has been validated by calculating the parameters of standard explosives such as TNT, PETN, RDX, and HMX. Theoretically predicated parameters are accurate to the order of ±5% deviation. To the best of our knowledge, no such code is reported in literature which can predict a wide range of characteristics of known/unknown explosives with minimum input parameters. The code can be used to obtain thermochemical and performance parameters of high energy materials (HEMs) with reasonable accuracy. The code has been developed in Visual Basic having enhanced windows environment, and thereby advantages over the conventional codes, written in Fortran. The theoretically predicted HEMs performance can be directly printed as well as stored in text (.txt) or HTML (.htm) or Microsoft Word (.doc) or Adobe Acrobat (.pdf) format in the hard disk. The output can also be copied into the Random Access Memory as clipboard text which can be imported/pasted in other software as in the case of other codes

  16. Prediction of detonation and JWL eos parameters of energetic materials using EXPLO5 computer code

    CSIR Research Space (South Africa)

    Peter, Xolani

    2016-09-01

    Full Text Available Ballistic Organization Cape Town, South Africa 27-29 September 2016 1 PREDICTION OF DETONATION AND JWL EOS PARAMETERS OF ENERGETIC MATERIALS USING EXPLO5 COMPUTER CODE X. Peter*, Z. Jiba, M. Olivier, I.M. Snyman, F.J. Mostert and T.J. Sono.... Nowadays many numerical methods and programs are being used for carrying out thermodynamic calculations of the detonation parameters of condensed explosives, for example a BKW Fortran (Mader, 1967), Ruby (Cowperthwaite and Zwisler, 1974) TIGER...

  17. Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates

  18. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages

    OpenAIRE

    Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies ...

  19. Application of ann for predicting water quality parameters in the mediterranean sea along gaza-palestine

    International Nuclear Information System (INIS)

    Zaqoot, H.A.; Unar, M.A.

    2008-01-01

    Seawater pollution problems are gaining interest world wide because of their health impacts and other environmental issues. Intense human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. This paper is concerned with the use of ANNs (Artificial Neural Networks) MLP ( Multilayer Perceptron) model for the prediction of pH and EC (Electrical Conductivity) in water quality parameters along Gaza city coast. MLP neural networks are trained and developed with reference to three major oceanographic parameters (water temperature, wind speed and turbidity) to predict the values of pH and EC; these parameters are considered as inputs of the neural network. The data collected comprised of four years and collected from nine locations along Gaza coastline. Results show that the model has high capability and accuracy in predicting both parameters. The network performance has been validated with different data sets and the results show satisfactory performance. Results of the developed model have been compared with multiple regression statistical models and found that MLP predictions are slightly better than the conventional methods. Prediction results prove that the proposed approach is suitable for modeling the water quality in the Mediterranean Sea along Gaza. (author)

  20. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  1. Parameter estimation techniques and uncertainty in ground water flow model predictions

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Davis, P.A.

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs

  2. Imbalanced target prediction with pattern discovery on clinical data repositories.

    Science.gov (United States)

    Chan, Tak-Ming; Li, Yuxi; Chiau, Choo-Chiap; Zhu, Jane; Jiang, Jie; Huo, Yong

    2017-04-20

    Clinical data repositories (CDR) have great potential to improve outcome prediction and risk modeling. However, most clinical studies require careful study design, dedicated data collection efforts, and sophisticated modeling techniques before a hypothesis can be tested. We aim to bridge this gap, so that clinical domain users can perform first-hand prediction on existing repository data without complicated handling, and obtain insightful patterns of imbalanced targets for a formal study before it is conducted. We specifically target for interpretability for domain users where the model can be conveniently explained and applied in clinical practice. We propose an interpretable pattern model which is noise (missing) tolerant for practice data. To address the challenge of imbalanced targets of interest in clinical research, e.g., deaths less than a few percent, the geometric mean of sensitivity and specificity (G-mean) optimization criterion is employed, with which a simple but effective heuristic algorithm is developed. We compared pattern discovery to clinically interpretable methods on two retrospective clinical datasets. They contain 14.9% deaths in 1 year in the thoracic dataset and 9.1% deaths in the cardiac dataset, respectively. In spite of the imbalance challenge shown on other methods, pattern discovery consistently shows competitive cross-validated prediction performance. Compared to logistic regression, Naïve Bayes, and decision tree, pattern discovery achieves statistically significant (p-values repositories with imbalance and noise. The prediction results and interpretable patterns can provide insights in an agile and inexpensive way for the potential formal studies.

  3. Prediction Model of Interval Grey Numbers with a Real Parameter and Its Application

    Directory of Open Access Journals (Sweden)

    Bo Zeng

    2014-01-01

    Full Text Available Grey prediction models have become common methods which are widely employed to solve the problems with “small examples and poor information.” However, modeling objects of existing grey prediction models are limited to the homogenous data sequences which only contain the same data type. This paper studies the methodology of building prediction models of interval grey numbers that are grey heterogeneous data sequence, with a real parameter. Firstly, the position of the real parameter in an interval grey number sequence is discussed, and the real number is expanded into an interval grey number by adopting the method of grey generation. On this basis, a prediction model of interval grey number with a real parameter is deduced and built. Finally, this novel model is successfully applied to forecast the concentration of organic pollutant DDT in the atmosphere. The analysis and research results in this paper extend the object of grey prediction from homogenous data sequence to grey heterogeneous data sequence. Those research findings are of positive significance in terms of enriching and improving the theory system of grey prediction models.

  4. Identification and prediction of diabetic sensorimotor polyneuropathy using individual and simple combinations of nerve conduction study parameters.

    Directory of Open Access Journals (Sweden)

    Alanna Weisman

    Full Text Available OBJECTIVE: Evaluation of diabetic sensorimotor polyneuropathy (DSP is hindered by the need for complex nerve conduction study (NCS protocols and lack of predictive biomarkers. We aimed to determine the performance of single and simple combinations of NCS parameters for identification and future prediction of DSP. MATERIALS AND METHODS: 406 participants (61 with type 1 diabetes and 345 with type 2 diabetes with a broad spectrum of neuropathy, from none to severe, underwent NCS to determine presence or absence of DSP for cross-sectional (concurrent validity analysis. The 109 participants without baseline DSP were re-evaluated for its future onset (predictive validity. Performance of NCS parameters was compared by area under the receiver operating characteristic curve (AROC. RESULTS: At baseline there were 246 (60% Prevalent Cases. After 3.9 years mean follow-up, 25 (23% of the 109 Prevalent Controls that were followed became Incident DSP Cases. Threshold values for peroneal conduction velocity and sural amplitude potential best identified Prevalent Cases (AROC 0.90 and 0.83, sensitivity 80 and 83%, specificity 89 and 72%, respectively. Baseline tibial F-wave latency, peroneal conduction velocity and the sum of three lower limb nerve conduction velocities (sural, peroneal, and tibial best predicted 4-year incidence (AROC 0.79, 0.79, and 0.85; sensitivity 79, 70, and 81%; specificity 63, 74 and 77%, respectively. DISCUSSION: Individual NCS parameters or their simple combinations are valid measures for identification and future prediction of DSP. Further research into the predictive roles of tibial F-wave latencies, peroneal conduction velocity, and sum of conduction velocities as markers of incipient nerve injury is needed to risk-stratify individuals for clinical and research protocols.

  5. Connecting clinical and actuarial prediction with rule-based methods.

    Science.gov (United States)

    Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H

    2015-06-01

    Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).

  6. Using ANFIS for selection of more relevant parameters to predict dew point temperature

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Petković, Dalibor; Yee, Por Lip; Mansor, Zulkefli

    2016-01-01

    Highlights: • ANFIS is used to select the most relevant variables for dew point temperature prediction. • Two cities from the central and south central parts of Iran are selected as case studies. • Influence of 5 parameters on dew point temperature is evaluated. • Appropriate selection of input variables has a notable effect on prediction. • Considering the most relevant combination of 2 parameters would be more suitable. - Abstract: In this research work, for the first time, the adaptive neuro fuzzy inference system (ANFIS) is employed to propose an approach for identifying the most significant parameters for prediction of daily dew point temperature (T_d_e_w). The ANFIS process for variable selection is implemented, which includes a number of ways to recognize the parameters offering favorable predictions. According to the physical factors influencing the dew formation, 8 variables of daily minimum, maximum and average air temperatures (T_m_i_n, T_m_a_x and T_a_v_g), relative humidity (R_h), atmospheric pressure (P), water vapor pressure (V_P), sunshine hour (n) and horizontal global solar radiation (H) are considered to investigate their effects on T_d_e_w. The used data include 7 years daily measured data of two Iranian cities located in the central and south central parts of the country. The results indicate that despite climate difference between the considered case studies, for both stations, V_P is the most influential variable while R_h is the least relevant element. Furthermore, the combination of T_m_i_n and V_P is recognized as the most influential set to predict T_d_e_w. The conducted examinations show that there is a remarkable difference between the errors achieved for most and less relevant input parameters, which highlights the importance of appropriate selection of input parameters. The use of more than two inputs may not be advisable and appropriate; thus, considering the most relevant combination of 2 parameters would be more suitable

  7. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    Science.gov (United States)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  8. The Role of Lipidogram Parameters during Pregnancy in the Prediction of Preeclampsia Development

    Directory of Open Access Journals (Sweden)

    I.B. Ventskovskaya

    2016-08-01

    Full Text Available Aim of investigation. To study the correlation between lipid metabolism during pregnancy and the risk of preeclampsia (PE. Material and methods. We have studied parameters of lipid metabolism in the blood serum of 267 pregnant women with the help of diagnostic kits. Blood sampling was carried out in I and II gestation trimesters. Total cholesterol (TC and triglycerides (TG were determined by colorimetric, enzymatic methods; high density lipoproteins (HDL — with homogeneous method, low density lipoproteins (LDL — with the direct method. Very low density lipoproteins (VLDL concentration was calculated from the Friedwald equation: VLDL = TG / 2.2. Depending on the clinical picture of PE, 43 pregnant women were divided into groups with mild and moderate-to-severe courses of the disease. Results. Among women with PE, we observed significant changes of the lipid profile parameters in the II trimester. These women had elevated TG levels in the blood serum: I group — 1.73 ± 0.14 mM/l, II group — 1.86 ± 0.18 mM/l as compared to the group III (controls — 1.32 ± 0.29 mM/l; decreased HDL indices: I group — 0.79 ± 0.19 mM/l; group II — 0.64 ± 0.04 mM/l in comparison with the control group — 1.17 ± 0.12 mM/l and increased VLDL — 0.78 ± 0.09 mM/l for group I, 0.90 ± 0.06 mM/l in women of group II unlike group III — 0.60 ± 0.16 mM/l. TC and LDL levels among patients with PE did not differ from pregnant women in the control group. Conclusions. It was demonstrated the existence of an imbalance in the synthesis of lipoproteins in women, whose pregnancies were complicated by development of PE that manifested by hypertriglyceridemia with predominance of atherogenic fractions. It was found that the investigation of the parameters of lipid profile in the II trimester of pregnancy allows us to predict the risk of PE and its long-term cardiovascular and metabolic consequences.

  9. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    Science.gov (United States)

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  10. An improved robust model predictive control for linear parameter-varying input-output models

    NARCIS (Netherlands)

    Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.

    2018-01-01

    This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal

  11. Usefulness of Clinical Prediction Rules, D-dimer, and Arterial Blood Gas Analysis to Predict Pulmonary Embolism in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Shazia Awan

    2017-03-01

    Full Text Available Objectives: Pulmonary embolism (PE is seven times more common in cancer patients than non-cancer patients. Since the existing clinical prediction rules (CPRs were validated predominantly in a non-cancer population, we decided to look at the utility of arterial blood gas (ABG analysis and D-dimer in predicting PE in cancer patients. Methods: Electronic medical records were reviewed between December 2005 and November 2010. A total of 177 computed tomography pulmonary angiograms (CTPAs were performed. We selected 104 individuals based on completeness of laboratory and clinical data. Patients were divided into two groups, CTPA positive (patients with PE and CTPA negative (PE excluded. Wells score, Geneva score, and modified Geneva score were calculated for each patient. Primary outcomes of interest were the sensitivities, specificities, positive, and negative predictive values for all three CPRs. Results: Of the total of 104 individuals who had CTPAs, 33 (31.7% were positive for PE and 71 (68.3% were negative. There was no difference in basic demographics between the two groups. Laboratory parameters were compared and partial pressure of oxygen was significantly lower in patients with PE (68.1 mmHg vs. 71 mmHg, p = 0.030. Clinical prediction rules showed good sensitivities (88−100% and negative predictive values (93−100%. An alveolar-arterial (A-a gradient > 20 had 100% sensitivity and negative predictive values. Conclusions: CPRs and a low A-a gradient were useful in excluding PE in cancer patients. There is a need for prospective trials to validate these results.

  12. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  13. A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment

    Science.gov (United States)

    Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.

    2015-11-01

    This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.

  14. Comparison of predictability for human pharmacokinetics parameters among monkeys, rats, and chimeric mice with humanised liver.

    Science.gov (United States)

    Miyamoto, Maki; Iwasaki, Shinji; Chisaki, Ikumi; Nakagawa, Sayaka; Amano, Nobuyuki; Hirabayashi, Hideki

    2017-12-01

    1. The aim of the present study was to evaluate the usefulness of chimeric mice with humanised liver (PXB mice) for the prediction of clearance (CL t ) and volume of distribution at steady state (Vd ss ), in comparison with monkeys, which have been reported as a reliable model for human pharmacokinetics (PK) prediction, and with rats, as a conventional PK model. 2. CL t and Vd ss values in PXB mice, monkeys and rats were determined following intravenous administration of 30 compounds known to be mainly eliminated in humans via the hepatic metabolism by various drug-metabolising enzymes. Using single-species allometric scaling, human CL t and Vd ss values were predicted from the three animal models. 3. Predicted CL t values from PXB mice exhibited the highest predictability: 25 for PXB mice, 21 for monkeys and 14 for rats were predicted within a three-fold range of actual values among 30 compounds. For predicted human Vd ss values, the number of compounds falling within a three-fold range was 23 for PXB mice, 24 for monkeys, and 16 for rats among 29 compounds. PXB mice indicated a higher predictability for CL t and Vd ss values than the other animal models. 4. These results demonstrate the utility of PXB mice in predicting human PK parameters.

  15. Nomogram including pretherapeutic parameters for prediction of survival after SIRT of hepatic metastases from colorectal cancer

    International Nuclear Information System (INIS)

    Fendler, Wolfgang Peter; Ilhan, Harun; Paprottka, Philipp M.; Jakobs, Tobias F.; Heinemann, Volker; Bartenstein, Peter; Haug, Alexander R.; Khalaf, Feras; Ezziddin, Samer; Hacker, Marcus

    2015-01-01

    Pre-therapeutic prediction of outcome is important for clinicians and patients in determining whether selective internal radiation therapy (SIRT) is indicated for hepatic metastases of colorectal cancer (CRC). Pre-therapeutic characteristics of 100 patients with colorectal liver metastases (CRLM) treated by radioembolization were analyzed to develop a nomogram for predicting survival. Prognostic factors were selected by univariate Cox regression analysis and subsequent tested by multivariate analysis for predicting patient survival. The nomogram was validated with reference to an external patient cohort (n = 25) from the Bonn University Department of Nuclear Medicine. Of the 13 parameters tested, four were independently associated with reduced patient survival in multivariate analysis. These parameters included no liver surgery before SIRT (HR:1.81, p = 0.014), CEA serum level ≥ 150 ng/ml (HR:2.08, p = 0.001), transaminase toxicity level ≥2.5 x upper limit of normal (HR:2.82, p = 0.001), and summed computed tomography (CT) size of the largest two liver lesions ≥10 cm (HR:2.31, p < 0.001). The area under the receiver-operating characteristic curve for our prediction model was 0.83 for the external patient cohort, indicating superior performance of our multivariate model compared to a model ignoring covariates. The nomogram developed in our study entailing four pre-therapeutic parameters gives good prediction of patient survival post SIRT. (orig.)

  16. Nomogram including pretherapeutic parameters for prediction of survival after SIRT of hepatic metastases from colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, Wolfgang Peter [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Klinik und Poliklinik fuer Nuklearmedizin, Munich (Germany); Ilhan, Harun [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Paprottka, Philipp M. [Ludwig-Maximilians-University of Munich, Department of Clinical Radiology, Munich (Germany); Jakobs, Tobias F. [Hospital Barmherzige Brueder, Department of Diagnostic and Interventional Radiology, Munich (Germany); Heinemann, Volker [Ludwig-Maximilians-University of Munich, Department of Internal Medicine III, Munich (Germany); Ludwig-Maximilians-University of Munich, Comprehensive Cancer Center, Munich (Germany); Bartenstein, Peter; Haug, Alexander R. [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Ludwig-Maximilians-University of Munich, Comprehensive Cancer Center, Munich (Germany); Khalaf, Feras [University Hospital Bonn, Department of Nuclear Medicine, Bonn (Germany); Ezziddin, Samer [Saarland University Medical Center, Department of Nuclear Medicine, Homburg (Germany); Hacker, Marcus [Vienna General Hospital, Department of Nuclear Medicine, Vienna (Austria)

    2015-09-15

    Pre-therapeutic prediction of outcome is important for clinicians and patients in determining whether selective internal radiation therapy (SIRT) is indicated for hepatic metastases of colorectal cancer (CRC). Pre-therapeutic characteristics of 100 patients with colorectal liver metastases (CRLM) treated by radioembolization were analyzed to develop a nomogram for predicting survival. Prognostic factors were selected by univariate Cox regression analysis and subsequent tested by multivariate analysis for predicting patient survival. The nomogram was validated with reference to an external patient cohort (n = 25) from the Bonn University Department of Nuclear Medicine. Of the 13 parameters tested, four were independently associated with reduced patient survival in multivariate analysis. These parameters included no liver surgery before SIRT (HR:1.81, p = 0.014), CEA serum level ≥ 150 ng/ml (HR:2.08, p = 0.001), transaminase toxicity level ≥2.5 x upper limit of normal (HR:2.82, p = 0.001), and summed computed tomography (CT) size of the largest two liver lesions ≥10 cm (HR:2.31, p < 0.001). The area under the receiver-operating characteristic curve for our prediction model was 0.83 for the external patient cohort, indicating superior performance of our multivariate model compared to a model ignoring covariates. The nomogram developed in our study entailing four pre-therapeutic parameters gives good prediction of patient survival post SIRT. (orig.)

  17. Reference values of clinical chemistry and hematology parameters in rhesus monkeys (Macaca mulatta).

    Science.gov (United States)

    Chen, Younan; Qin, Shengfang; Ding, Yang; Wei, Lingling; Zhang, Jie; Li, Hongxia; Bu, Hong; Lu, Yanrong; Cheng, Jingqiu

    2009-01-01

    Rhesus monkey models are valuable to the studies of human biology. Reference values for clinical chemistry and hematology parameters of rhesus monkeys are required for proper data interpretation. Whole blood was collected from 36 healthy Chinese rhesus monkeys (Macaca mulatta) of either sex, 3 to 5 yr old. Routine chemistry and hematology parameters, and some special coagulation parameters including thromboelastograph and activities of coagulation factors were tested. We presented here the baseline values of clinical chemistry and hematology parameters in normal Chinese rhesus monkeys. These data may provide valuable information for veterinarians and investigators using rhesus monkeys in experimental studies.

  18. Clinical gestalt and the prediction of massive transfusion after trauma.

    Science.gov (United States)

    Pommerening, Matthew J; Goodman, Michael D; Holcomb, John B; Wade, Charles E; Fox, Erin E; Del Junco, Deborah J; Brasel, Karen J; Bulger, Eileen M; Cohen, Mitch J; Alarcon, Louis H; Schreiber, Martin A; Myers, John G; Phelan, Herb A; Muskat, Peter; Rahbar, Mohammad; Cotton, Bryan A

    2015-05-01

    Early recognition and treatment of trauma patients requiring massive transfusion (MT) has been shown to reduce mortality. While many risk factors predicting MT have been demonstrated, there is no universally accepted method or algorithm to identify these patients. We hypothesised that even among experienced trauma surgeons, the clinical gestalt of identifying patients who will require MT is unreliable. Transfusion and mortality outcomes after trauma were observed at 10 U.S. Level-1 trauma centres in patients who survived ≥ 30 min after admission and received ≥ 1 unit of RBC within 6h of arrival. Subjects who received ≥ 10 units within 24h of admission were classified as MT patients. Trauma surgeons were asked the clinical gestalt question "Is the patient likely to be massively transfused?" 10 min after the patients arrival. The performance of clinical gestalt to predict MT was assessed using chi-square tests and ROC analysis to compare gestalt to previously described scoring systems. Of the 1245 patients enrolled, 966 met inclusion criteria and 221 (23%) patients received MT. 415 (43%) were predicted to have a MT and 551(57%) were predicted to not have MT. Patients predicted to have MT were younger, more often sustained penetrating trauma, had higher ISS scores, higher heart rates, and lower systolic blood pressures (all pGestalt sensitivity was 65.6% and specificity was 63.8%. PPV and NPV were 34.9% and 86.2% respectively. Data from this large multicenter trial demonstrates that predicting the need for MT continues to be a challenge. Because of the increased mortality associated with delayed therapy, a more reliable algorithm is needed to identify and treat these severely injured patients earlier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion.

    Science.gov (United States)

    Spiegelhalter, D J; Freedman, L S

    1986-01-01

    The 'textbook' approach to determining sample size in a clinical trial has some fundamental weaknesses which we discuss. We describe a new predictive method which takes account of prior clinical opinion about the treatment difference. The method adopts the point of clinical equivalence (determined by interviewing the clinical participants) as the null hypothesis. Decision rules at the end of the study are based on whether the interval estimate of the treatment difference (classical or Bayesian) includes the null hypothesis. The prior distribution is used to predict the probabilities of making the decisions to use one or other treatment or to reserve final judgement. It is recommended that sample size be chosen to control the predicted probability of the last of these decisions. An example is given from a multi-centre trial of superficial bladder cancer.

  20. Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters

    International Nuclear Information System (INIS)

    Jung, Jinhong; Choi, Eun Kyung; Kim, Jong Hoon; Yoon, Sang Min; Kim, So Yeon; Cho, Byungchul; Park, Jin-hong; Kim, Su Ssan; Song, Si Yeol; Lee, Sang-wook; Ahn, Seung Do

    2013-01-01

    To investigate the clinical and dose–volumetric parameters that predict the risk of radiation-induced liver disease (RILD) for patients with small, unresectable hepatocellular carcinoma (HCC) treated with stereotactic body radiotherapy (SBRT). Between March 2007 and December 2009, 92 patients with HCC treated with SBRT were reviewed for RILD within 3 months of completing treatment. RILD was evaluated according to the Common Terminology Criteria for Adverse Events, version 3.0. A dose of 10–20 Gy (median, 15 Gy) per fraction was given over 3–4 consecutive days for a total dose of 30–60 Gy (median, 45 Gy). The following clinical and dose–volumetric parameters were examined: age, gender, Child-Pugh class, presence of hepatitis B virus, gross tumor volume, normal liver volume, radiation dose, fraction size, mean dose to the normal liver, and normal liver volumes receiving from < 5 Gy to < 60 Gy (in increments of 5 Gy). Seventeen (18.5%) of the 92 patients developed grade 2 or worse RILD after SBRT (49 patients in grade 1, 11 in grade 2, and 6 in ≥ grade 3). On univariate analysis, Child-Pugh class was identified as a significant clinical parameter, while normal liver volume and normal liver volumes receiving from < 15 Gy to < 60 Gy were the significant dose–volumetric parameters. Upon multivariate analysis, only Child-Pugh class was a significant parameter for predicting grade 2 or worse RILD. The Child-Pugh B cirrhosis was found to have a significantly greater susceptibility to the development of grade 2 or worse RILD after SBRT in patients with small, unresectable HCC. Additional efforts aimed at testing other models to predict the risk of RILD in a large series of HCC patients treated with SBRT are needed

  1. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses.

    Science.gov (United States)

    Korem, Tal; Zeevi, David; Zmora, Niv; Weissbrod, Omer; Bar, Noam; Lotan-Pompan, Maya; Avnit-Sagi, Tali; Kosower, Noa; Malka, Gal; Rein, Michal; Suez, Jotham; Goldberg, Ben Z; Weinberger, Adina; Levy, Avraham A; Elinav, Eran; Segal, Eran

    2017-06-06

    Bread is consumed daily by billions of people, yet evidence regarding its clinical effects is contradicting. Here, we performed a randomized crossover trial of two 1-week-long dietary interventions comprising consumption of either traditionally made sourdough-leavened whole-grain bread or industrially made white bread. We found no significant differential effects of bread type on multiple clinical parameters. The gut microbiota composition remained person specific throughout this trial and was generally resilient to the intervention. We demonstrate statistically significant interpersonal variability in the glycemic response to different bread types, suggesting that the lack of phenotypic difference between the bread types stems from a person-specific effect. We further show that the type of bread that induces the lower glycemic response in each person can be predicted based solely on microbiome data prior to the intervention. Together, we present marked personalization in both bread metabolism and the gut microbiome, suggesting that understanding dietary effects requires integration of person-specific factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers.

    Science.gov (United States)

    Dhayat, Nasser A; Gradwell, Michael W; Pathare, Ganesh; Anderegg, Manuel; Schneider, Lisa; Luethi, David; Mattmann, Cedric; Moe, Orson W; Vogt, Bruno; Fuster, Daniel G

    2017-09-07

    Incomplete distal renal tubular acidosis is a well known cause of calcareous nephrolithiasis but the prevalence is unknown, mostly due to lack of accepted diagnostic tests and criteria. The ammonium chloride test is considered as gold standard for the diagnosis of incomplete distal renal tubular acidosis, but the furosemide/fludrocortisone test was recently proposed as an alternative. Because of the lack of rigorous comparative studies, the validity of the furosemide/fludrocortisone test in stone formers remains unknown. In addition, the performance of conventional, nonprovocative parameters in predicting incomplete distal renal tubular acidosis has not been studied. We conducted a prospective study in an unselected cohort of 170 stone formers that underwent sequential ammonium chloride and furosemide/fludrocortisone testing. Using the ammonium chloride test as gold standard, the prevalence of incomplete distal renal tubular acidosis was 8%. Sensitivity and specificity of the furosemide/fludrocortisone test were 77% and 85%, respectively, yielding a positive predictive value of 30% and a negative predictive value of 98%. Testing of several nonprovocative clinical parameters in the prediction of incomplete distal renal tubular acidosis revealed fasting morning urinary pH and plasma potassium as the most discriminative parameters. The combination of a fasting morning urinary threshold pH 3.8 mEq/L yielded a negative predictive value of 98% with a sensitivity of 85% and a specificity of 77% for the diagnosis of incomplete distal renal tubular acidosis. The furosemide/fludrocortisone test can be used for incomplete distal renal tubular acidosis screening in stone formers, but an abnormal furosemide/fludrocortisone test result needs confirmation by ammonium chloride testing. Our data furthermore indicate that incomplete distal renal tubular acidosis can reliably be excluded in stone formers by use of nonprovocative clinical parameters. Copyright © 2017 by the American

  3. Physiotherapy students' perceptions and experiences of clinical prediction rules.

    Science.gov (United States)

    Knox, Grahame M; Snodgrass, Suzanne J; Stanton, Tasha R; Kelly, David H; Vicenzino, Bill; Wand, Benedict M; Rivett, Darren A

    2017-09-01

    Clinical reasoning can be difficult to teach to pre-professional physiotherapy students due to their lack of clinical experience. It may be that tools such as clinical prediction rules (CPRs) could aid the process, but there has been little investigation into their use in physiotherapy clinical education. This study aimed to determine the perceptions and experiences of physiotherapy students regarding CPRs, and whether they are learning about CPRs on clinical placement. Cross-sectional survey using a paper-based questionnaire. Final year pre-professional physiotherapy students (n=371, response rate 77%) from five universities across five states of Australia. Sixty percent of respondents had not heard of CPRs, and a further 19% had not clinically used CPRs. Only 21% reported using CPRs, and of these nearly three-quarters were rarely, if ever, learning about CPRs in the clinical setting. However most of those who used CPRs (78%) believed CPRs assisted in the development of clinical reasoning skills and none (0%) was opposed to the teaching of CPRs to students. The CPRs most commonly recognised and used by students were those for determining the need for an X-ray following injuries to the ankle and foot (67%), and for identifying deep venous thrombosis (63%). The large majority of students in this sample knew little, if anything, about CPRs and few had learned about, experienced or practiced them on clinical placement. However, students who were aware of CPRs found them helpful for their clinical reasoning and were in favour of learning more about them. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  4. Clinical and functional criteria for predicting asthma in infants

    OpenAIRE

    Yu. L. Mizemitskiy; V. A. Pavlenko; I. M. Melnikova

    2015-01-01

    Objective: to determine clinical and functional criteria for predicting asthma in children who have sustained acute obstructive bronchitis in infancy. Subjects and methods. A total of 125 infants aged 2 to 36 months who had experienced 1 -2 episodes of acute obstructive bronchitis and treated at hospital were examined when bronchial obstruction syndrome was being relieved. In addition to physical examination, functional studies (computerized bronchophonography and heart rate variability asses...

  5. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  6. Clinical and functional criteria for predicting asthma in infants

    Directory of Open Access Journals (Sweden)

    Yu. L. Mizemitskiy

    2015-01-01

    Full Text Available Objective: to determine clinical and functional criteria for predicting asthma in children who have sustained acute obstructive bronchitis in infancy. Subjects and methods. A total of 125 infants aged 2 to 36 months who had experienced 1 -2 episodes of acute obstructive bronchitis and treated at hospital were examined when bronchial obstruction syndrome was being relieved. In addition to physical examination, functional studies (computerized bronchophonography and heart rate variability assessment were used. Immunological examination included determination of the serum levels of immunoglobulin E and interleuMn-17A. The infants who had sustained acute obstructive bronchitis were followed up for 12-36 months. Results. The infants who had sustained acute obstructive bronchitis in the presence of mild perinatal CNS damage caused by hypoxia were typified by high respiratory morbidity; early-onset bronchial obstruction; long-term bronchial obstruction relief; high incidence of grade 2 respiratory failure in acute obstructive bronchitis. These patients developed asthma more often than twice and repeated episodes of bronchial obstruction. ROC analysis was used to elaborate clinical and functional criteria for predicting the development of asthma in infants. Conclusion. The proposed additional clinical and functional criteria characterizing external respiratory dysfunction and autonomic homeostatic changes contribute to the early diagnosis of asthma and substantially increase the validity of prediction of its development in children younger than 3 years, which is of great importance for goal-oriented preventive measures.

  7. Predictive value of semen parameters and age of the couple in pregnancy outcome after Intrauterine insemination

    Directory of Open Access Journals (Sweden)

    Marjan Sabbaghian

    2013-11-01

    Full Text Available Background: Intrauterine insemination (IUI is one the most common methods in infertility treatment, but its efficiency in infertile couples with male factor is controversial. This study is a retrospective study about correlation between semen parameters and male and female age with successful rate of IUI in patients attending to Royan Institute.Methods: A total of 998 consecutive couples in a period of 6 months undergoing IUI were included. They were classified into two groups: couples with successful and unsuccessful pregnancy. Main outcome was clinical pregnancy. Data about male and female ages and semen analysis including concentration, total sperm motility, class A motility, class B motility, class A+B motility and normal morphology was extracted from patients’ records. Semen samples were collected by masturbation or coitus after 2 to 7 days of abstinence. Their female partners were reported to have no chronic medi-cal conditions and have normal menstrual cycles.Results: One hundred and fifty seven of total 998 cycles (15.7% achieved pregnancy. The average of female age in successful and unsuccessful group was 28.95±4.19 and 30.00±4.56 years, respectively. Mean of male age was 33.97±4.85 years in successful group and 34.44±4.62 years in unsuccessful group. In successful and unsuccessful groups, average of sperm concentration was 53.62±38.45 and 46.26±26.59 (million sperm/ml, normal morphology of sperm was 8.98±4.31 (% and 8.68±4.81 (%, sperm total motility was 47.24±18.92 (% and 43.70±20.22 (% and total motile sperm count was 80.10±63.61 million and 78.57±68.22 million, respectively.Conclusion: There was no significant difference in mean of females’ age and males’ age between successful and unsuccessful groups (P<0.05. In addition, there was no significant difference in semen parameters including concentration, total sperm motility, class A motility, class B motility, class A+B motility and normal morphology between two

  8. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  9. Good Models Gone Bad: Quantifying and Predicting Parameter-Induced Climate Model Simulation Failures

    Science.gov (United States)

    Lucas, D. D.; Klein, R.; Tannahill, J.; Brandon, S.; Covey, C. C.; Domyancic, D.; Ivanova, D. P.

    2012-12-01

    Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Statistical analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation failures of the Parallel Ocean Program (POP2). About 8.5% of our POP2 runs failed for numerical reasons at certain combinations of parameter values. We apply support vector machine (SVM) classification from the fields of pattern recognition and machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. The SVM classifiers readily predict POP2 failures in an independent validation ensemble, and are subsequently used to determine the causes of the failures via a global sensitivity analysis. Four parameters related to ocean mixing and viscosity are identified as the major sources of POP2 failures. Our method can be used to improve the robustness of complex scientific models to parameter perturbations and to better steer UQ ensembles. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).

  10. Adaptability and Prediction of Anticipatory Muscular Activity Parameters to Different Movements in the Sitting Position.

    Science.gov (United States)

    Chikh, Soufien; Watelain, Eric; Faupin, Arnaud; Pinti, Antonio; Jarraya, Mohamed; Garnier, Cyril

    2016-08-01

    Voluntary movement often causes postural perturbation that requires an anticipatory postural adjustment to minimize perturbation and increase the efficiency and coordination during execution. This systematic review focuses specifically on the relationship between the parameters of anticipatory muscular activities and movement finality in sitting position among adults, to study the adaptability and predictability of anticipatory muscular activities parameters to different movements and conditions in sitting position in adults. A systematic literature search was performed using PubMed, Science Direct, Web of Science, Springer-Link, Engineering Village, and EbscoHost. Inclusion and exclusion criteria were applied to retain the most rigorous and specific studies, yielding 76 articles, Seventeen articles were excluded at first reading, and after the application of inclusion and exclusion criteria, 23 were retained. In a sitting position, central nervous system activity precedes movement by diverse anticipatory muscular activities and shows the ability to adapt anticipatory muscular activity parameters to the movement direction, postural stability, or charge weight. In addition, these parameters could be adapted to the speed of execution, as found for the standing position. Parameters of anticipatory muscular activities (duration, order, and amplitude of muscle contractions constituting the anticipatory muscular activity) could be used as a predictive indicator of forthcoming movement. In addition, this systematic review may improve methodology in empirical studies and assistive technology for people with disabilities. © The Author(s) 2016.

  11. Predictive value of MR imaging-dependent and non-MR imaging-dependent parameters for recurrence of laryngeal cancer after radiation therapy

    NARCIS (Netherlands)

    Castelijns, J. A.; van den Brekel, M. W.; Smit, E. M.; Tobi, H.; van Wagtendonk, F. W.; Golding, R. P.; Venema, H. W.; van Schaik, C.; Snow, G. B.

    1995-01-01

    To determine the predictive value of several clinical and radiologic parameters for recurrence of laryngeal cancer. Eighty previously untreated patients underwent magnetic resonance (MR) imaging before radiation therapy with curative intent. Tumor volume was calculated from T1-weighted MR images.

  12. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  13. Genetic Learning of Fuzzy Parameters in Predictive and Decision Support Modelling

    Directory of Open Access Journals (Sweden)

    Nebot

    2012-04-01

    Full Text Available In this research a genetic fuzzy system (GFS is proposed that performs discretization parameter learning in the context of the Fuzzy Inductive Reasoning (FIR methodology and the Linguistic Rule FIR (LR-FIR algorithm. The main goal of the GFS is to take advantage of the potentialities of GAs to learn the fuzzification parameters of the FIR and LR-FIR approaches in order to obtain reliable and useful predictive (FIR models and decision support (LR-FIR models. The GFS is evaluated in an e-learning context.

  14. Predicting Collateral Status With Magnetic Resonance Perfusion Parameters: Probabilistic Approach With a Tmax-Derived Prediction Model.

    Science.gov (United States)

    Lee, Mi Ji; Son, Jeong Pyo; Kim, Suk Jae; Ryoo, Sookyung; Woo, Sook-Young; Cha, Jihoon; Kim, Gyeong-Moon; Chung, Chin-Sang; Lee, Kwang Ho; Bang, Oh Young

    2015-10-01

    Good collateral flow is an important predictor for favorable responses to recanalization therapy and successful outcomes after acute ischemic stroke. Magnetic resonance perfusion-weighted imaging (MRP) is widely used in patients with stroke. However, it is unclear whether the perfusion parameters and thresholds would predict collateral status. The present study evaluated the relationship between hypoperfusion severity and collateral status to develop a predictive model for good collaterals using MRP parameters. Patients who were eligible for recanalization therapy that underwent both serial diffusion-weighted imaging and serial MRP were enrolled into the study. A collateral flow map derived from MRP source data was generated through automatic postprocessing. Hypoperfusion severity, presented as proportions of every 2-s Tmax strata to the entire hypoperfusion volume (Tmax≥2 s), was compared between patients with good and poor collaterals. Prediction models for good collaterals were developed with each Tmax strata proportion and cerebral blood volumes. Among 66 patients, 53 showed good collaterals based on MRP-based collateral grading. Although no difference was noted in delays within 16 s, more severe Tmax delays (Tmax16-18 s, Tmax18-22 s, Tmax22-24 s, and Tmax>24 s) were associated with poor collaterals. The probability equation model using Tmax strata proportion demonstrated high predictive power in a receiver operating characteristic analysis (area under the curve=0.9303; 95% confidence interval, 0.8682-0.9924). The probability score was negatively correlated with the volume of infarct growth (P=0.030). Collateral status is associated with more severe Tmax delays than previously defined. The present Tmax severity-weighted model can determine good collaterals and subsequent infarct growth. © 2015 American Heart Association, Inc.

  15. Nonlinear Prediction As A Tool For Determining Parameters For Phase Space Reconstruction In Meteorology

    Science.gov (United States)

    Miksovsky, J.; Raidl, A.

    Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.

  16. Parameters Online Detection and Model Predictive Control during the Grain Drying Process

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2013-01-01

    Full Text Available In order to improve the grain drying quality and automation level, combined with the structural characteristics of the cross-flow circulation grain dryer designed and developed by us, the temperature, moisture, and other parameters measuring sensors were placed on the dryer, to achieve online automatic detection of process parameters during the grain drying process. A drying model predictive control system was set up. A grain dry predictive control model at constant velocity and variable temperature was established, in which the entire process was dried at constant velocity (i.e., precipitation rate per hour is a constant and variable temperature. Combining PC with PLC, and based on LabVIEW, a system control platform was designed.

  17. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...

  18. Clinical implementation of dose-volume histogram predictions for organs-at-risk in IMRT planning

    International Nuclear Information System (INIS)

    Moore, K L; Appenzoller, L M; Tan, J; Michalski, J M; Thorstad, W L; Mutic, S

    2014-01-01

    True quality control (QC) of the planning process requires quantitative assessments of treatment plan quality itself, and QC in IMRT has been stymied by intra-patient anatomical variability and inherently complex three-dimensional dose distributions. In this work we describe the development of an automated system to reduce clinical IMRT planning variability and improve plan quality using mathematical models that predict achievable OAR DVHs based on individual patient anatomy. These models rely on the correlation of expected dose to the minimum distance from a voxel to the PTV surface, whereby a three-parameter probability distribution function (PDF) was used to model iso-distance OAR subvolume dose distributions. DVH models were obtained by fitting the evolution of the PDF with distance. Initial validation on clinical cohorts of 40 prostate and 24 head-and-neck plans demonstrated highly accurate model-based predictions for achievable DVHs in rectum, bladder, and parotid glands. By quantifying the integrated difference between candidate DVHs and predicted DVHs, the models correctly identified plans with under-spared OARs, validated by replanning all cases and correlating any realized improvements against the predicted gains. Clinical implementation of these predictive models was demonstrated in the PINNACLE treatment planning system by use of existing margin expansion utilities and the scripting functionality inherent to the system. To maintain independence from specific planning software, a system was developed in MATLAB to directly process DICOM-RT data. Both model training and patient-specific analyses were demonstrated with significant computational accelerations from parallelization.

  19. Comparing 2 Whiplash Grading Systems to Predict Clinical Outcomes.

    Science.gov (United States)

    Croft, Arthur C; Bagherian, Alireza; Mickelsen, Patrick K; Wagner, Stephen

    2016-06-01

    Two whiplash severity grading systems have been developed: Quebec Task Force on Whiplash-Associated Disorders (QTF-WAD) and the Croft grading system. The majority of clinical studies to date have used the modified grading system published by the QTF-WAD in 1995 and have demonstrated some ability to predict outcome. But most studies include only injuries of lower severity (grades 1 and 2), preventing a broader interpretation. The purpose of this study was assess the ability of these grading systems to predict clinical outcome within the context of a broader injury spectrum. This study evaluated both grading systems for their ability to predict the bivalent outcome, recovery, within a sample of 118 whiplash patients who were part of a previous case-control designed study. Of these, 36% (controls) had recovered, and 64% (cases) had not recovered. The discrete bivariate distribution between recovery status and whiplash grade was analyzed using the 2-tailed cross-tabulation statistics. Applying the criteria of the original 1993 Croft grading system, the subset comprised 1 grade 1 injury, 32 grade 2 injuries, 53 grade 3 injuries, and 32 grade 4 injuries. Applying the criteria of the modified (QTF-WAD) grading system, there were 1 grade 1 injury, 89 grade 2 injuries, and 28 grade 3 injuries. Both whiplash grading systems correlated negatively with recovery; that is, higher severity grades predicted a lower probability of recovery, and statistically significant correlations were observed in both, but the Croft grading system substantially outperformed the QTF-WAD system on this measure. The Croft grading system for whiplash injury severity showed a better predictive measure for recovery status from whiplash injuries as compared with the QTF-WAD grading system.

  20. Pharmacokinetic parameters derived from dynamic contrast enhanced MRI of cervical cancers predict chemoradiotherapy outcome

    International Nuclear Information System (INIS)

    Andersen, Erlend K.F.; Hole, Knut Håkon; Lund, Kjersti V.; Sundfør, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2013-01-01

    Purpose: To assess the prognostic value of pharmacokinetic parameters derived from pre-chemoradiotherapy dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of cervical cancer patients. Materials and methods: Seventy-eight patients with locally advanced cervical cancer underwent DCE-MRI with Gd-DTPA before chemoradiotherapy. The pharmacokinetic Brix and Tofts models were fitted to contrast enhancement curves in all tumor voxels, providing histograms of several pharmacokinetic parameters (Brix: A Brix , k ep , k el , Tofts: K trans , ν e ). A percentile screening approach including log-rank survival tests was undertaken to identify the clinically most relevant part of the intratumoral parameter distribution. Clinical endpoints were progression-free survival (PFS) and locoregional control (LRC). Multivariate analysis including FIGO stage and tumor volume was used to assess the prognostic significance of the imaging parameters. Results: A Brix , k el , and K trans were significantly (P e was significantly positively correlated with PFS only. k ep showed no association with any endpoint. A Brix was positively correlated with K trans and ν e , and showed the strongest association with endpoint in the log-rank testing. k el and K trans were independent prognostic factors in multivariate analysis with LRC as endpoint. Conclusions: Parameters estimated by pharmacokinetic analysis of DCE-MR images obtained prior to chemoradiotherapy may be used for identifying patients at risk of treatment failure

  1. Safety analysis methodology with assessment of the impact of the prediction errors of relevant parameters

    International Nuclear Information System (INIS)

    Galia, A.V.

    2011-01-01

    The best estimate plus uncertainty approach (BEAU) requires the use of extensive resources and therefore it is usually applied for cases in which the available safety margin obtained with a conservative methodology can be questioned. Outside the BEAU methodology, there is not a clear approach on how to deal with the issue of considering the uncertainties resulting from prediction errors in the safety analyses performed for licensing submissions. However, the regulatory document RD-310 mentions that the analysis method shall account for uncertainties in the analysis data and models. A possible approach is presented, that is simple and reasonable, representing just the author's views, to take into account the impact of prediction errors and other uncertainties when performing safety analysis in line with regulatory requirements. The approach proposes taking into account the prediction error of relevant parameters. Relevant parameters would be those plant parameters that are surveyed and are used to initiate the action of a mitigating system or those that are representative of the most challenging phenomena for the integrity of a fission barrier. Examples of the application of the methodology are presented involving a comparison between the results with the new approach and a best estimate calculation during the blowdown phase for two small breaks in a generic CANDU 6 station. The calculations are performed with the CATHENA computer code. (author)

  2. Doppler Ultrasonographic Parameters for Predicting Cerebral Vascular Reserve in Patients with Acute Ischemic Stroke

    International Nuclear Information System (INIS)

    Jung, Han Young; Lee, Hui Joong; Kim, Hye Jung; Kim, Yong Sun; Kang, Duk Sik

    2006-01-01

    We investigated Doppler ultrasonographic (US) parameters of patients with acute stroke to predict the cerebral vascular reserve (CVR) measured by SPECT. We reviewed the flow velocity and cross-sectional area of the circular vessel at the common, external, and internal carotid arteries (ICA) and the vertebral arteries (VA) in 109 acute stroke patients who underwent SPECT. Flow volume (FV) of each artery was calculated as the product of the angle-corrected time averaged flow velocity and cross-sectional area of the circular vessel. Total cerebral FV (TCBFV) was determined as the sum of the FVs of the right and left ICA and VA. We compared the Doppler US parameters between 44 cases of preserved and 65 cases of impaired CVR. In the preserved CVR group, ICA FV, anterior circulating FV (ACFV) and TCBFV were higher than in the impaired CVR group (p < 0.05, independent t-test). In the impaired CVR group, the ROC curves showed ACFV and TCBFV were suitable parameters to predict CVR (p < 0.05). Doppler US was helpful for understanding the hemodynamic state of acute stroke. FV measurement by Doppler US was useful for predicting CVR

  3. An improved method for predicting the evolution of the characteristic parameters of an information system

    Science.gov (United States)

    Dushkin, A. V.; Kasatkina, T. I.; Novoseltsev, V. I.; Ivanov, S. V.

    2018-03-01

    The article proposes a forecasting method that allows, based on the given values of entropy and error level of the first and second kind, to determine the allowable time for forecasting the development of the characteristic parameters of a complex information system. The main feature of the method under consideration is the determination of changes in the characteristic parameters of the development of the information system in the form of the magnitude of the increment in the ratios of its entropy. When a predetermined value of the prediction error ratio is reached, that is, the entropy of the system, the characteristic parameters of the system and the depth of the prediction in time are estimated. The resulting values of the characteristics and will be optimal, since at that moment the system possessed the best ratio of entropy as a measure of the degree of organization and orderliness of the structure of the system. To construct a method for estimating the depth of prediction, it is expedient to use the maximum principle of the value of entropy.

  4. Clinical presentation and outcome prediction of clinical, serological, and histopathological classification schemes in ANCA-associated vasculitis with renal involvement.

    Science.gov (United States)

    Córdova-Sánchez, Bertha M; Mejía-Vilet, Juan M; Morales-Buenrostro, Luis E; Loyola-Rodríguez, Georgina; Uribe-Uribe, Norma O; Correa-Rotter, Ricardo

    2016-07-01

    Several classification schemes have been developed for anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), with actual debate focusing on their clinical and prognostic performance. Sixty-two patients with renal biopsy-proven AAV from a single center in Mexico City diagnosed between 2004 and 2013 were analyzed and classified under clinical (granulomatosis with polyangiitis [GPA], microscopic polyangiitis [MPA], renal limited vasculitis [RLV]), serological (proteinase 3 anti-neutrophil cytoplasmic antibodies [PR3-ANCA], myeloperoxidase anti-neutrophil cytoplasmic antibodies [MPO-ANCA], ANCA negative), and histopathological (focal, crescenteric, mixed-type, sclerosing) categories. Clinical presentation parameters were compared at baseline between classification groups, and the predictive value of different classification categories for disease and renal remission, relapse, renal, and patient survival was analyzed. Serological classification predicted relapse rate (PR3-ANCA hazard ratio for relapse 2.93, 1.20-7.17, p = 0.019). There were no differences in disease or renal remission, renal, or patient survival between clinical and serological categories. Histopathological classification predicted response to therapy, with a poorer renal remission rate for sclerosing group and those with less than 25 % normal glomeruli; in addition, it adequately delimited 24-month glomerular filtration rate (eGFR) evolution, but it did not predict renal nor patient survival. On multivariate models, renal replacement therapy (RRT) requirement (HR 8.07, CI 1.75-37.4, p = 0.008) and proteinuria (HR 1.49, CI 1.03-2.14, p = 0.034) at presentation predicted renal survival, while age (HR 1.10, CI 1.01-1.21, p = 0.041) and infective events during the induction phase (HR 4.72, 1.01-22.1, p = 0.049) negatively influenced patient survival. At present, ANCA-based serological classification may predict AAV relapses, but neither clinical nor serological

  5. Development of Health Parameter Model for Risk Prediction of CVD Using SVM

    Directory of Open Access Journals (Sweden)

    P. Unnikrishnan

    2016-01-01

    Full Text Available Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the local database. Support vector machine was used to determine the effectiveness of machine learning approach with the Framingham health parameters for risk assessment of cardiovascular disease (CVD. The result shows that while linear model trained using local database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of prediction of CVD. This indicates that using the health parameters identified using Framingham study, machine learning approach overcomes the low sensitivity and specificity of Framingham model.

  6. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice

    Science.gov (United States)

    Kaklamanos, James; Baise, Laurie G.; Boore, David M.

    2011-01-01

    The ground-motion prediction equations (GMPEs) developed as part of the Next Generation Attenuation of Ground Motions (NGA-West) project in 2008 are becoming widely used in seismic hazard analyses. However, these new models are considerably more complicated than previous GMPEs, and they require several more input parameters. When employing the NGA models, users routinely face situations in which some of the required input parameters are unknown. In this paper, we present a framework for estimating the unknown source, path, and site parameters when implementing the NGA models in engineering practice, and we derive geometrically-based equations relating the three distance measures found in the NGA models. Our intent is for the content of this paper not only to make the NGA models more accessible, but also to help with the implementation of other present or future GMPEs.

  7. An investigation of engine performance parameters and artificial intelligent emission prediction of hydrogen powered car

    International Nuclear Information System (INIS)

    Ho, Tien; Karri, Vishy; Lim, Daniel; Barret, Danny

    2008-01-01

    With the depletion of fossil fuel resources and the potential consequences of climate change due to fossil fuel use, much effort has been put into the search for alternative fuels for transportation. Although there are several potential alternative fuels, which have low impact on the environment, none of these fuels have the ability to be used as the sole 'fuel of the future'. One fuel which is likely to become a part of the over all solution to the transportation fuel dilemma is hydrogen. In this paper, The Toyota Corolla four cylinder, 1.8 l engine running on petrol is systematically converted to run on hydrogen. Several ancillary instruments for measuring various engine operating parameters and emissions are fitted to appraise the performance of the hydrogen car. The effect of hydrogen as a fuel compares with gasoline on engine operating parameters and effect of engine operating parameters on emission characteristics is discussed. Based on the experimental setup, a suite of neural network models were tested to accurately predict the effect of major engine operating conditions on the hydrogen car emissions. Predictions were found to be ±4% to the experimental values. This work provided better understanding of the effect of engine process parameters on emissions. (author)

  8. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    Science.gov (United States)

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  9. Improved time series prediction with a new method for selection of model parameters

    International Nuclear Information System (INIS)

    Jade, A M; Jayaraman, V K; Kulkarni, B D

    2006-01-01

    A new method for model selection in prediction of time series is proposed. Apart from the conventional criterion of minimizing RMS error, the method also minimizes the error on the distribution of singularities, evaluated through the local Hoelder estimates and its probability density spectrum. Predictions of two simulated and one real time series have been done using kernel principal component regression (KPCR) and model parameters of KPCR have been selected employing the proposed as well as the conventional method. Results obtained demonstrate that the proposed method takes into account the sharp changes in a time series and improves the generalization capability of the KPCR model for better prediction of the unseen test data. (letter to the editor)

  10. Readmission prediction via deep contextual embedding of clinical concepts.

    Science.gov (United States)

    Xiao, Cao; Ma, Tengfei; Dieng, Adji B; Blei, David M; Wang, Fei

    2018-01-01

    Hospital readmission costs a lot of money every year. Many hospital readmissions are avoidable, and excessive hospital readmissions could also be harmful to the patients. Accurate prediction of hospital readmission can effectively help reduce the readmission risk. However, the complex relationship between readmission and potential risk factors makes readmission prediction a difficult task. The main goal of this paper is to explore deep learning models to distill such complex relationships and make accurate predictions. We propose CONTENT, a deep model that predicts hospital readmissions via learning interpretable patient representations by capturing both local and global contexts from patient Electronic Health Records (EHR) through a hybrid Topic Recurrent Neural Network (TopicRNN) model. The experiment was conducted using the EHR of a real world Congestive Heart Failure (CHF) cohort of 5,393 patients. The proposed model outperforms state-of-the-art methods in readmission prediction (e.g. 0.6103 ± 0.0130 vs. second best 0.5998 ± 0.0124 in terms of ROC-AUC). The derived patient representations were further utilized for patient phenotyping. The learned phenotypes provide more precise understanding of readmission risks. Embedding both local and global context in patient representation not only improves prediction performance, but also brings interpretable insights of understanding readmission risks for heterogeneous chronic clinical conditions. This is the first of its kind model that integrates the power of both conventional deep neural network and the probabilistic generative models for highly interpretable deep patient representation learning. Experimental results and case studies demonstrate the improved performance and interpretability of the model.

  11. Clinical and atopic parameters and airway inflammatory markers in childhood asthma: a factor analysis

    Science.gov (United States)

    Leung, T; Wong, G; Ko, F; Lam, C; Fok, T

    2005-01-01

    Background: Recent studies have repeatedly shown weak correlations among lung function parameters, atopy, exhaled nitric oxide level (FeNO), and airway inflammatory markers, suggesting that they are non-overlapping characteristics of asthma in adults. A study was undertaken to determine, using factor analysis, whether the above features represent separate dimensions of childhood asthma. Methods: Clinically stable asthmatic patients aged 7–18 years underwent spirometric testing, methacholine bronchial challenge, blood sampling for atopy markers and chemokine levels (macrophage derived chemokine (MDC), thymus and activation regulated chemokine (TARC), and eotaxin), FeNO, and chemokines (MDC and eotaxin) and leukotriene B4 measurements in exhaled breath condensate (EBC). Results: The mean (SD) forced expiratory volume in 1 second (FEV1) and FeNO of 92 patients were 92.1 (15.9)% predicted and 87.3 (65.7) ppb, respectively. 59% of patients received inhaled corticosteroids. Factor analysis selected four different factors, explaining 55.5% of total variance. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.587. Plasma total and specific IgE levels, peripheral blood eosinophil percentage, and FeNO loaded on factor 1; plasma TARC and MDC concentrations on factor 2; MDC, eotaxin and leukotriene B4 concentrations in EBC on factor 3; and plasma eotaxin concentration together with clinical indices including body mass index and disease severity score loaded on factor 4. Post hoc factor analyses revealed similar results when outliers were excluded. Conclusions: The results suggest that atopy related indices and airway inflammation are separate dimensions in the assessment of childhood asthma, and inflammatory markers in peripheral blood and EBC are non-overlapping factors of asthma. PMID:16055623

  12. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    International Nuclear Information System (INIS)

    Andersen, Erlend K.F.; Hole, Knut Håkon; Lund, Kjersti V.; Sundfør, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-01-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile–time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile–time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile–time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile–time interval of nRSI was associated with progression-free survival. Conclusions: The percentile–time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  13. Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods.

    Science.gov (United States)

    Girela, Jose L; Gil, David; Johnsson, Magnus; Gomez-Torres, María José; De Juan, Joaquín

    2013-04-01

    Fertility rates have dramatically decreased in the last two decades, especially in men. It has been described that environmental factors as well as life habits may affect semen quality. In this paper we use artificial intelligence techniques in order to predict semen characteristics resulting from environmental factors, life habits, and health status, with these techniques constituting a possible decision support system that can help in the study of male fertility potential. A total of 123 young, healthy volunteers provided a semen sample that was analyzed according to the World Health Organization 2010 criteria. They also were asked to complete a validated questionnaire about life habits and health status. Sperm concentration and percentage of motile sperm were related to sociodemographic data, environmental factors, health status, and life habits in order to determine the predictive accuracy of a multilayer perceptron network, a type of artificial neural network. In conclusion, we have developed an artificial neural network that can predict the results of the semen analysis based on the data collected by the questionnaire. The semen parameter that is best predicted using this methodology is the sperm concentration. Although the accuracy for motility is slightly lower than that for concentration, it is possible to predict it with a significant degree of accuracy. This methodology can be a useful tool in early diagnosis of patients with seminal disorders or in the selection of candidates to become semen donors.

  14. Clinical chemistry in higher dimensions: Machine-learning and enhanced prediction from routine clinical chemistry data.

    Science.gov (United States)

    Richardson, Alice; Signor, Ben M; Lidbury, Brett A; Badrick, Tony

    2016-11-01

    Big Data is having an impact on many areas of research, not the least of which is biomedical science. In this review paper, big data and machine learning are defined in terms accessible to the clinical chemistry community. Seven myths associated with machine learning and big data are then presented, with the aim of managing expectation of machine learning amongst clinical chemists. The myths are illustrated with four examples investigating the relationship between biomarkers in liver function tests, enhanced laboratory prediction of hepatitis virus infection, the relationship between bilirubin and white cell count, and the relationship between red cell distribution width and laboratory prediction of anaemia. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Clinical implications in the use of the PBC algorithm versus the AAA by comparison of different NTCP models/parameters.

    Science.gov (United States)

    Bufacchi, Antonella; Nardiello, Barbara; Capparella, Roberto; Begnozzi, Luisa

    2013-07-04

    Retrospective analysis of 3D clinical treatment plans to investigate qualitative, possible, clinical consequences of the use of PBC versus AAA. The 3D dose distributions of 80 treatment plans at four different tumour sites, produced using PBC algorithm, were recalculated using AAA and the same number of monitor units provided by PBC and clinically delivered to each patient; the consequences of the difference on the dose-effect relations for normal tissue injury were studied by comparing different NTCP model/parameters extracted from a review of published studies. In this study the AAA dose calculation is considered as benchmark data. The paired Student t-test was used for statistical comparison of all results obtained from the use of the two algorithms. In the prostate plans, the AAA predicted lower NTCP value (NTCPAAA) for the risk of late rectal bleeding for each of the seven combinations of NTCP parameters, the maximum mean decrease was 2.2%. In the head-and-neck treatments, each combination of parameters used for the risk of xerostemia from irradiation of the parotid glands involved lower NTCPAAA, that varied from 12.8% (sd=3.0%) to 57.5% (sd=4.0%), while when the PBC algorithm was used the NTCPPBC's ranging was from 15.2% (sd=2.7%) to 63.8% (sd=3.8%), according the combination of parameters used; the differences were statistically significant. Also NTCPAAA regarding the risk of radiation pneumonitis in the lung treatments was found to be lower than NTCPPBC for each of the eight sets of NTCP parameters; the maximum mean decrease was 4.5%. A mean increase of 4.3% was found when the NTCPAAA was calculated by the parameters evaluated from dose distribution calculated by a convolution-superposition (CS) algorithm. A markedly different pattern was observed for the risk relating to the development of pneumonitis following breast treatments: the AAA predicted higher NTCP value. The mean NTCPAAA varied from 0.2% (sd = 0.1%) to 2.1% (sd = 0.3%), while the mean NTCPPBC

  16. Clinical implications in the use of the PBC algorithm versus the AAA by comparison of different NTCP models/parameters

    International Nuclear Information System (INIS)

    Bufacchi, Antonella; Nardiello, Barbara; Capparella, Roberto; Begnozzi, Luisa

    2013-01-01

    Retrospective analysis of 3D clinical treatment plans to investigate qualitative, possible, clinical consequences of the use of PBC versus AAA. The 3D dose distributions of 80 treatment plans at four different tumour sites, produced using PBC algorithm, were recalculated using AAA and the same number of monitor units provided by PBC and clinically delivered to each patient; the consequences of the difference on the dose-effect relations for normal tissue injury were studied by comparing different NTCP model/parameters extracted from a review of published studies. In this study the AAA dose calculation is considered as benchmark data. The paired Student t-test was used for statistical comparison of all results obtained from the use of the two algorithms. In the prostate plans, the AAA predicted lower NTCP value (NTCP AAA ) for the risk of late rectal bleeding for each of the seven combinations of NTCP parameters, the maximum mean decrease was 2.2%. In the head-and-neck treatments, each combination of parameters used for the risk of xerostemia from irradiation of the parotid glands involved lower NTCP AAA , that varied from 12.8% (sd=3.0%) to 57.5% (sd=4.0%), while when the PBC algorithm was used the NTCP PBC ’s ranging was from 15.2% (sd=2.7%) to 63.8% (sd=3.8%), according the combination of parameters used; the differences were statistically significant. Also NTCP AAA regarding the risk of radiation pneumonitis in the lung treatments was found to be lower than NTCP PBC for each of the eight sets of NTCP parameters; the maximum mean decrease was 4.5%. A mean increase of 4.3% was found when the NTCP AAA was calculated by the parameters evaluated from dose distribution calculated by a convolution-superposition (CS) algorithm. A markedly different pattern was observed for the risk relating to the development of pneumonitis following breast treatments: the AAA predicted higher NTCP value. The mean NTCP AAA varied from 0.2% (sd = 0.1%) to 2.1% (sd = 0.3%), while the

  17. Predictive significance of standardized uptake value parameters of FDG-PET in patients with non-small cell lung carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X-Y.; Wang, W.; Li, M.; Li, Y.; Guo, Y-M. [PET-CT Center, The First Affiliated Hospital of Xi' an, Jiaotong University, Xi' an, Shaanxi (China)

    2015-02-03

    {sup 18}F-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is widely used to diagnose and stage non-small cell lung cancer (NSCLC). The aim of this retrospective study was to evaluate the predictive ability of different FDG standardized uptake values (SUVs) in 74 patients with newly diagnosed NSCLC. {sup 18}F-FDG PET/CT scans were performed and different SUV parameters (SUV{sub max}, SUV{sub avg}, SUV{sub T/L}, and SUV{sub T/A}) obtained, and their relationship with clinical characteristics were investigated. Meanwhile, correlation and multiple stepwise regression analyses were performed to determine the primary predictor of SUVs for NSCLC. Age, gender, and tumor size significantly affected SUV parameters. The mean SUVs of squamous cell carcinoma were higher than those of adenocarcinoma. Poorly differentiated tumors exhibited higher SUVs than well-differentiated ones. Further analyses based on the pathologic type revealed that the SUV{sub max}, SUV{sub avg}, and SUV{sub T/L} of poorly differentiated adenocarcinoma tumors were higher than those of moderately or well-differentiated tumors. Among these four SUV parameters, SUV{sub T/L} was the primary predictor for tumor differentiation. However, in adenocarcinoma, SUV{sub max} was the determining factor for tumor differentiation. Our results showed that these four SUV parameters had predictive significance related to NSCLC tumor differentiation; SUV{sub T/L} appeared to be most useful overall, but SUV{sub max} was the best index for adenocarcinoma tumor differentiation.

  18. Guidelineness of the parameters using integrated test in down syndrome risk prediction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Won [Graduate School of Catholic University of Pusan, Busan (Korea, Republic of); Go, Sung Jin; Kang, Se Sik; Kim, Chang Soo [Dept. Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-12-15

    This study was an evaluation of the significance of each parameter through aimed at pregnant women subjected to screening test(integrated test) in predicting risk of Down syndrome. We retrospectively analysed the correlation of risk of Down's syndrome with Nuchal Translucency(NT) images measured by ultrasound, Pregnancy Associated Plasma Protein A(PAPP-A), alpha-fetoprotein(AFP), unconjugated estriol(uE3), human chorionic gonadotrophin(hCG) and Inhibin A by maternal serum. As a result, a significant correlation with NT, uE3, hCG, Inhibin A is revealed with Down's syndrome risk(P<.001). In ROC analysis, AUC of Inhibin A is analysed as the biggest predictor of Down's syndrome(0.859). And the criterion for cut-off was inhibin A 1.4 MoM(sensitivity 81.8%, specificity 75.9%). In conclusion, Inhibin A was the most useful in parameters to predict Down's syndrome in the integrated test. If we make up for the weakness based on the cut-off value of parameters they will be able to be used as an independent indicator in the risk of Down's syndrome screening.

  19. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    International Nuclear Information System (INIS)

    Higdon, Dave; McDonnell, Jordan D; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M

    2015-01-01

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model η(θ), where θ denotes the uncertain, best input setting. Hence the statistical model is of the form y=η(θ)+ϵ, where ϵ accounts for measurement, and possibly other, error sources. When nonlinearity is present in η(⋅), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model η(⋅). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory. (paper)

  20. Guidelineness of the parameters using integrated test in down syndrome risk prediction

    International Nuclear Information System (INIS)

    Lee, Jin Won; Go, Sung Jin; Kang, Se Sik; Kim, Chang Soo

    2016-01-01

    This study was an evaluation of the significance of each parameter through aimed at pregnant women subjected to screening test(integrated test) in predicting risk of Down syndrome. We retrospectively analysed the correlation of risk of Down's syndrome with Nuchal Translucency(NT) images measured by ultrasound, Pregnancy Associated Plasma Protein A(PAPP-A), alpha-fetoprotein(AFP), unconjugated estriol(uE3), human chorionic gonadotrophin(hCG) and Inhibin A by maternal serum. As a result, a significant correlation with NT, uE3, hCG, Inhibin A is revealed with Down's syndrome risk(P<.001). In ROC analysis, AUC of Inhibin A is analysed as the biggest predictor of Down's syndrome(0.859). And the criterion for cut-off was inhibin A 1.4 MoM(sensitivity 81.8%, specificity 75.9%). In conclusion, Inhibin A was the most useful in parameters to predict Down's syndrome in the integrated test. If we make up for the weakness based on the cut-off value of parameters they will be able to be used as an independent indicator in the risk of Down's syndrome screening

  1. A predictive thermal dynamic model for parameter generation in the laser assisted direct write process

    International Nuclear Information System (INIS)

    Shang Shuo; Fearon, Eamonn; Wellburn, Dan; Sato, Taku; Edwardson, Stuart; Dearden, G; Watkins, K G

    2011-01-01

    The laser assisted direct write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally by a laser. Laser curing has emerged over recent years as a novel yet efficient alternative to oven curing. This method can be used in situ, over complicated 3D contours of large parts (e.g. aircraft wings) and selectively cure over heat sensitive substrates, with little or no thermal damage. In previous studies, empirical methods have been used to generate processing windows for this technique, relating to the several interdependent processing parameters on which the curing quality and efficiency strongly depend. Incorrect parameters can result in a track that is cured in some areas and uncured in others, or in damaged substrates. This paper addresses the strong need for a quantitative model which can systematically output the processing conditions for a given combination of ink, substrate and laser source; transforming the LADW technique from a purely empirical approach, to a simple, repeatable, mathematically sound, efficient and predictable process. The method comprises a novel and generic finite element model (FEM) that for the first time predicts the evolution of the thermal profile of the ink track during laser curing and thus generates a parametric map which indicates the most suitable combination of parameters for process optimization. Experimental data are compared with simulation results to verify the accuracy of the model.

  2. Multiobjective design of aquifer monitoring networks for optimal spatial prediction and geostatistical parameter estimation

    Science.gov (United States)

    Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.

    2013-06-01

    Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that

  3. Dynamic interactions between hydrogeological and exposure parameters in daily dose prediction under uncertainty and temporal variability

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vikas, E-mail: vikas.kumar@urv.cat [Department of Chemical Engineering, Rovira i Virgili University, Tarragona 43007 (Spain); Barros, Felipe P.J. de [Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles 90089, CA (United States); Schuhmacher, Marta [Department of Chemical Engineering, Rovira i Virgili University, Tarragona 43007 (Spain); Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier [Hydrogeology Group, Department of Geotechnical Engineering and Geosciences, University Politècnica de Catalunya-BarcelonaTech, Barcelona 08034 (Spain)

    2013-12-15

    Highlights: • Dynamic parametric interaction in daily dose prediction under uncertainty. • Importance of temporal dynamics associated with the dose. • Different dose experienced by different population cohorts as a function of time. • Relevance of uncertainty reduction in the input parameters shows temporal dynamism. -- Abstract: We study the time dependent interaction between hydrogeological and exposure parameters in daily dose predictions due to exposure of humans to groundwater contamination. Dose predictions are treated stochastically to account for an incomplete hydrogeological and geochemical field characterization, and an incomplete knowledge of the physiological response. We used a nested Monte Carlo framework to account for uncertainty and variability arising from both hydrogeological and exposure variables. Our interest is in the temporal dynamics of the total dose and their effects on parametric uncertainty reduction. We illustrate the approach to a HCH (lindane) pollution problem at the Ebro River, Spain. The temporal distribution of lindane in the river water can have a strong impact in the evaluation of risk. The total dose displays a non-linear effect on different population cohorts, indicating the need to account for population variability. We then expand the concept of Comparative Information Yield Curves developed earlier (see de Barros et al. [29]) to evaluate parametric uncertainty reduction under temporally variable exposure dose. Results show that the importance of parametric uncertainty reduction varies according to the temporal dynamics of the lindane plume. The approach could be used for any chemical to aid decision makers to better allocate resources towards reducing uncertainty.

  4. Prediction of Marshall Parameters of Modified Bituminous Mixtures Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Sunil Khuntia

    2014-09-01

    Full Text Available This study presents the application of artificial neural networks (ANN and least square support vector machine (LS-SVM for prediction of Marshall parameters obtained from Marshall tests for waste polyethylene (PE modified bituminous mixtures. Waste polyethylene in the form of fibres processed from utilized milk packets has been used to modify the bituminous mixes in order to improve their engineering properties. Marshall tests were carried out on mix specimens with variations in polyethylene and bitumen contents. It has been observed that the addition of waste polyethylene results in the improvement of Marshall characteristics such as stability, flow value and air voids, used to evaluate a bituminous mix. The proposed neural network (NN model uses the quantities of ingredients used for preparation of Marshall specimens such as polyethylene, bitumen and aggregate in order to predict the Marshall stability, flow value and air voids obtained from the tests. Out of two techniques used, the NN based model is found to be compact, reliable and predictable when compared with LS-SVM model. A sensitivity analysis has been performed to identify the importance of the parameters considered.

  5. Derivation of cell population kinetic parameters from clinical statistical data (program RAD3)

    International Nuclear Information System (INIS)

    Cohen, L.

    1978-01-01

    Cellular lethality models generally require up to 6 parameters to simulate a clinical course of fractionated radiation therapy and to derive an estimate of the cellular surviving fraction for a given treatment scheme. These parameters are the mean cellular lethal dose, the extrapolation number, the ratio of sublethal to irreparable events, the regeneration rate, the repopulation limit (cell cycles), and a field-size or tumor-volume factor. A computer program (RAD3) was designed to derive best-fitting values for these parameters in relation to available clinical data based on the assumption that if a number of different fractionation schemes yield similar reactions, the cellular surviving fractions will be about equal in each instance. Parameters were derived for a variety of human tissues from which realistic iso-effect functions could be generated

  6. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.

    Science.gov (United States)

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen

    2015-02-01

    Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have

  7. Prediction of higher cost of antiretroviral therapy (ART) according to clinical complexity. A validated clinical index.

    Science.gov (United States)

    Velasco, Cesar; Pérez, Inaki; Podzamczer, Daniel; Llibre, Josep Maria; Domingo, Pere; González-García, Juan; Puig, Inma; Ayala, Pilar; Martín, Mayte; Trilla, Antoni; Lázaro, Pablo; Gatell, Josep Maria

    2016-03-01

    The financing of antiretroviral therapy (ART) is generally determined by the cost incurred in the previous year, the number of patients on treatment, and the evidence-based recommendations, but not the clinical characteristics of the population. To establish a score relating the cost of ART and patient clinical complexity in order to understand the costing differences between hospitals in the region that could be explained by the clinical complexity of their population. Retrospective analysis of patients receiving ART in a tertiary hospital between 2009 and 2011. Factors potentially associated with a higher cost of ART were assessed by bivariate and multivariate analysis. Two predictive models of "high-cost" were developed. The normalized estimated (adjusted for the complexity scores) costs were calculated and compared with the normalized real costs. In the Hospital Index, 631 (16.8%) of the 3758 patients receiving ART were responsible for a "high-cost" subgroup, defined as the highest 25% of spending on ART. Baseline variables that were significant predictors of high cost in the Clinic-B model in the multivariate analysis were: route of transmission of HIV, AIDS criteria, Spanish nationality, year of initiation of ART, CD4+ lymphocyte count nadir, and number of hospital admissions. The Clinic-B score ranged from 0 to 13, and the mean value (5.97) was lower than the overall mean value of the four hospitals (6.16). The clinical complexity of the HIV patient influences the cost of ART. The Clinic-B and Clinic-BF scores predicted patients with high cost of ART and could be used to compare and allocate costs corrected for the patient clinical complexity. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  8. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    Science.gov (United States)

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  9. Application of a simple parameter estimation method to predict effluent transport in the Savannah River

    International Nuclear Information System (INIS)

    Hensel, S.J.; Hayes, D.W.

    1993-01-01

    A simple parameter estimation method has been developed to determine the dispersion and velocity parameters associated with stream/river transport. The unsteady one dimensional Burgers' equation was chosen as the model equation, and the method has been applied to recent Savannah River dye tracer studies. The computed Savannah River transport coefficients compare favorably with documented values, and the time/concentration curves calculated from these coefficients compare well with the actual tracer data. The coefficients were used as a predictive capability and applied to Savannah River tritium concentration data obtained during the December 1991 accidental tritium discharge from the Savannah River Site. The peak tritium concentration at the intersection of Highway 301 and the Savannah River was underpredicted by only 5% using the coefficients computed from the dye data

  10. MODEL JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI PARAMETER KUALITAS TOMAT BERDASARKAN PARAMETER WARNA RGB (An artificial neural network model for predicting tomato quality parameters based on color

    Directory of Open Access Journals (Sweden)

    Rudiati Evi Masithoh

    2013-03-01

    Full Text Available Artificial neural networks (ANN was used to predict the quality parameters of tomato, i.e. Brix, citric acid, total carotene, and vitamin C. ANN was developed from Red Green Blue (RGB image data of tomatoes measured using a developed computer vision system (CVS. Qualitative analysis of tomato compositions were obtained from laboratory experiments. ANN model was based on a feedforward backpropagation network with different training functions, namely gradient descent (traingd, gradient descent with the resilient backpropagation (trainrp, Broyden, Fletcher, Goldfrab and Shanno (BFGS quasi-Newton (trainbfg, as well as Levenberg Marquardt (trainlm.  The network structure using logsig and linear (purelin activation function at the hidden and output layer, respectively, and using  the trainlm as a training function resulted in the best performance. Correlation coefficient (r of training and validation process were 0.97 - 0.99 and 0.92 - 0.99, whereas the MAE values ​​ranged from 0.01 to 0.23 and 0.03 to 0.59, respectively. Keywords: Artificial neural network, trainlm, tomato, RGB   Jaringan syaraf tiruan (JST digunakan untuk memprediksi parameter kualitas tomat, yaitu Brix, asam sitrat, karoten total, dan vitamin C. JST dikembangkan dari data Red Green Blue (RGB  citra tomat yang diukur menggunakan computer vision system. Data kualitas tomat diperoleh dari analisis di laboratorium. Struktur model JST didasarkan pada jaringan feedforward backpropagation dengan berbagai fungsi pelatihan, yaitu gradient descent (traingd, gradient descent dengan resilient backpropagation (trainrp, Broyden, Fletcher, Goldfrab dan Shanno (BFGS quasi-Newton (trainbfg, serta Levenberg Marquardt (trainlm. Fungsi pelatihan yang terbaik adalah menggunakan trainlm, serta pada struktur jaringan digunakan fungsi aktivasi logsig pada lapisan tersembunyi dan linier (purelin pada lapisan keluaran. dengan 1000 epoch. Nilai koefisien korelasi (r pada tahap pelatihan dan validasi

  11. Evolving chemometric models for predicting dynamic process parameters in viscose production

    Energy Technology Data Exchange (ETDEWEB)

    Cernuda, Carlos [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Lughofer, Edwin, E-mail: edwin.lughofer@jku.at [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Suppan, Lisbeth [Kompetenzzentrum Holz GmbH, St. Peter-Str. 25, 4021 Linz (Austria); Roeder, Thomas; Schmuck, Roman [Lenzing AG, 4860 Lenzing (Austria); Hintenaus, Peter [Software Research Center, Paris Lodron University Salzburg (Austria); Maerzinger, Wolfgang [i-RED Infrarot Systeme GmbH, Linz (Austria); Kasberger, Juergen [Recendt GmbH, Linz (Austria)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer Quality assurance of process parameters in viscose production. Black-Right-Pointing-Pointer Automatic prediction of spin-bath concentrations based on FTNIR spectra. Black-Right-Pointing-Pointer Evolving chemometric models for efficiently handling changing system dynamics over time (no time-intensive re-calibration needed). Black-Right-Pointing-Pointer Significant reduction of huge errors produced by statistical state-of-the-art calibration methods. Black-Right-Pointing-Pointer Sufficient flexibility achieved by gradual forgetting mechanisms. - Abstract: In viscose production, it is important to monitor three process parameters in order to assure a high quality of the final product: the concentrations of H{sub 2}SO{sub 4}, Na{sub 2}SO{sub 4} and Z{sub n}SO{sub 4}. During on-line production these process parameters usually show a quite high dynamics depending on the fiber type that is produced. Thus, conventional chemometric models, which are trained based on collected calibration spectra from Fourier transform near infrared (FT-NIR) measurements and kept fixed during the whole life-time of the on-line process, show a quite imprecise and unreliable behavior when predicting the concentrations of new on-line data. In this paper, we are demonstrating evolving chemometric models which are able to adapt automatically to varying process dynamics by updating their inner structures and parameters in a single-pass incremental manner. These models exploit the Takagi-Sugeno fuzzy model architecture, being able to model flexibly different degrees of non-linearities implicitly contained in the mapping between near infrared spectra (NIR) and reference values. Updating the inner structures is achieved by moving the position of already existing local regions and by evolving (increasing non-linearity) or merging (decreasing non-linearity) new local linear predictors on demand, which are guided by distance-based and similarity criteria. Gradual

  12. Evaluation of selected predictive models and parameters for the environmental transport and dosimetry of radionuclides

    International Nuclear Information System (INIS)

    Miller, C.W.; Dunning, D.E. Jr.; Etnier, E.L.; Hoffman, F.O.; Little, C.A.; Meyer, H.R.; Shaeffer, D.L.; Till, J.E.

    1979-07-01

    Evaluations of selected predictive models and parameters used in the assessment of the environmental transport and dosimetry of radionuclides are summarized. Mator sections of this report include a validation of the Gaussian plume disperson model, comparison of the output of a model for the transport of 131 I from vegetation to milk with field data, validation of a model for the fraction of aerosols intercepted by vegetation, an evaluation of dose conversion factors for 232 Th, an evaluation of considering the effect of age dependency on population dose estimates, and a summary of validation results for hydrologic transport models

  13. The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhang

    2012-01-01

    Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

  14. Short Sleep Times Predict Obesity in Internal Medicine Clinic Patients

    Science.gov (United States)

    Buscemi, Dolores; Kumar, Ashwani; Nugent, Rebecca; Nugent, Kenneth

    2007-01-01

    Study Objectives: Epidemiological studies have demonstrated an association between short sleep times and obesity as defined by body mass index (BMI). We wanted to determine whether this association occurs in patients with chronic medical diagnoses since the number of confounding factors is likely higher in patients than the general population. Methods: Two hundred patients attending internal medicine clinics completed a survey regarding sleep habits, lifestyle characteristics, and medical diagnoses. An independent surveyor collected the information on the questionnaires and reviewed the medical records. Height and weight were measured by clinic personnel. Data were analyzed with multivariate logistic regression. Results: Subjects with short sleep times (< 7 hours) had an increased likelihood of obesity as defined by a BMI ≥ 30 kg/m2 when compared to the reference group of (8, 9] hours (odds ratio 2.93; 95% confidence interval, 1.06–8.09). There was a U-shaped relationship between obesity and sleep time in women but not in men. Young age (18 to 49 years), not smoking, drinking alcohol, hypertension, diabetes, and sleep apnea were also associated with obesity in the overall model. Conclusions: This study demonstrates an association between short sleep times and obesity in undifferentiated patients attending an internal medicine clinic using models adjusting for age, lifestyle characteristics, and some medical diagnoses. The U-shaped relationship in women suggests that sleep patterns may have gender specific associations. These observations provide the background for therapeutic trials in weight loss in patients with established medical problems. Citation: Buscemi D; Kumar A; Nugent R; Nugent K. Short sleep times predict obesity in internal medicine clinic patients. J Clin Sleep Med 2007;3(7):681–688. PMID:18198800

  15. Clinical formulas, mother's opinion and ultrasound in predicting birth weight

    Directory of Open Access Journals (Sweden)

    Maria Regina Torloni

    Full Text Available CONTEXT AND OBJECTIVE: Accurate fetal weight estimation is important for labor and delivery management. So far, there has not been any conclusive evidence to indicate that any technique for fetal weight estimation is superior to any other. Clinical formulas for fetal weight estimation are easy to use but have not been extensively studied in the literature. This study aimed to evaluate the accuracy of clinical formulas for fetal weight estimation compared to maternal and ultrasound estimates. DESIGN AND SETTING: Prospective study involving 100 full-term, cephalic, singleton pregnancies delivered within three days of fetal weight estimation. The setting was a tertiary public teaching hospital in São Paulo, Brazil. METHODS: Upon admission, the mother's opinion about fetal weight was recorded. Symphyseal-fundal height and abdominal girth were measured and two formulas were used to calculate fetal weight. An ultrasound scan was then performed by a specialist to estimate fetal weight. The four estimates were compared with the birth weight. The accuracy of the estimates was assessed by calculating the percentage that was within 10% of actual birth weight for each method. The chi-squared test was used for comparisons and p < 0.05 was considered significant. RESULTS: The birth weight was correctly estimated (± 10% in 59%, 57%, 61%, and 65% of the cases using the mother's estimate, two clinical formulas, and ultrasound estimate, respectively. The accuracy of the four methods did not differ significantly. CONCLUSION: Clinical formulas for fetal weight prediction are as accurate as maternal and ultrasound estimates.

  16. Prediction of Radionuclide transfer based on soil parameters: application to vulnerability studies

    International Nuclear Information System (INIS)

    Roig, M.; Vidal, M.; Rauret, G.

    1998-01-01

    The multi factorial character of the radiocaesium and radiostrontium soil-to-plan transfer, which depends on the radionuclide level in the soil solution amplified by a plant factor, prevents from establishing univariate relationships between transfer factors and soil and/or plant parameters. The plant factor is inversely proportional to the level of competitive species in the soil solution (Ca and Mg, for radiostrontium, and K and NH 4 for radiocaesium). Radionuclide level in soil solution depends on the radionuclide available fraction and its distribution coefficient. For radiostrontium, this may be obtained from the Cationic Exchange Capacity (CEC), whereas for radiocaesium the Specific Interception Potential should be calculate, both corrected by the concentrations of the competitive species and selectivity coefficients. Therefore, the transfer factor eventually depends on soil solution composition, the available fraction and the number of sorption sites, as well as on the plant factor. For a given plant, a relative sequence of transfer can be set up based solely on soil parameters, since the plant factor is cancelled. This prediction model has been compared with transfer data from experiments with Mediterranean, mineral soils, contaminated with a thermo generated aerosol, and with podzolic and organic soils, contaminated by the Chernobyl fallout. These studies revealed that it was possible to predict a relative scale of transfer for any type of soil, also allowing a scale of soil vulnerability to radiostrontium and radiocaesium contamination to be set up. (Author)

  17. Chest X-rays and associated clinical parameters in pulmonary Tubercolosis cases from the National Tubercolosis Program, Mumbai, India

    Directory of Open Access Journals (Sweden)

    Yatin N. Dholakia

    2012-01-01

    Full Text Available The study was carried out in pulmonary tuberculosis (PTB patients from the local Tuberculosis control programme, Mumbai, India. It examined features of chest X-rays and their correlation with clinical parameters for possible application in suspected multidrug resistant TB (MDRTB and to predict outcome in new and treatment failure PTB cases. X-ray features (infiltrate, cavitation, miliary shadows, pleural effusion, mediastinal lymphadenopathy and extent of lesions were analyzed to identify associations with biological/clinical parameters through univariate and multivariate logistic regression. Failures demonstrated associations between extensive lesions and high glycosylated hemoglobin (GHb levels (P=0.028 and male gender (P=0.03. An association was also detected between cavitation and MDR (P=0.048. In new cases, bilateral cavities were associated with MDR (P=0.018 and male gender (P=0.01, low body mass index with infiltrates (P=0.008, and smoking with cavitation (P=0.0238. Strains belonging to the Manu1 spoligotype were associated with mild lesions (P=0.002. Poor outcome showed borderline significance with extensive lesions at onset (P=0.053. Furthermore, amongst new cases, smoking, the Central Asian Strain (CAS spoligotype and high GHb were associated with cavitation, whereas only CAS spoligotypes and high GHb were associated with extensive lesions. The study highlighted associations between certain clinical parameters and X-ray evidence which support the potential of X-rays to predict TB, MDRTB and poor outcome. The use of Xrays as an additional tool to shorten diagnostic delay and shortlist MDR suspects amongst nonresponders to TB treatment should be explored in a setting with limited resources coping with a high MDR case load such as Mumbai.

  18. A clinical tool for predicting survival in ALS.

    Science.gov (United States)

    Knibb, Jonathan A; Keren, Noa; Kulka, Anna; Leigh, P Nigel; Martin, Sarah; Shaw, Christopher E; Tsuda, Miho; Al-Chalabi, Ammar

    2016-12-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and usually fatal neurodegenerative disease. Survival from diagnosis varies considerably. Several prognostic factors are known, including site of onset (bulbar or limb), age at symptom onset, delay from onset to diagnosis and the use of riluzole and non-invasive ventilation (NIV). Clinicians and patients would benefit from a practical way of using these factors to provide an individualised prognosis. 575 consecutive patients with incident ALS from a population-based registry in South-East England register for ALS (SEALS) were studied. Their survival was modelled as a two-step process: the time from diagnosis to respiratory muscle involvement, followed by the time from respiratory involvement to death. The effects of predictor variables were assessed separately for each time interval. Younger age at symptom onset, longer delay from onset to diagnosis and riluzole use were associated with slower progression to respiratory involvement, and NIV use was associated with lower mortality after respiratory involvement, each with a clinically significant effect size. Riluzole may have a greater effect in younger patients and those with longer delay to diagnosis. A patient's survival time has a roughly 50% chance of falling between half and twice the predicted median. A simple and clinically applicable graphical method of predicting an individual patient's survival from diagnosis is presented. The model should be validated in an independent cohort, and extended to include other important prognostic factors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Analysis Of Clinical, Haematological And Biochemical Parameters In Patients With Infectious Mononucleosis

    Directory of Open Access Journals (Sweden)

    Canović Petar

    2015-12-01

    Full Text Available Primary infection with Epstein-Barr virus (EBV usually occurs in early childhood and often does not present clinical symptoms. More than 90% of adults are infected with this virus. A primary infection that occurs in adolescence or adulthood is usually clinically presented as infectious mononucleosis with a triad of symptoms: fever, lymphadenopathy and pharyngitis. Our retrospective study included 51 patients with a median age of 17 (9-23 years and serologically confirmed infectious mononucleosis. All patients with infectious mononucleosis were treated at the Clinic for Infectious Diseases at the Clinical Center in Kragujevac during 2013. We analysed the clinical, haematological and laboratory parameters of patients. The aspartate-aminotransferase levels were increased in 40 patients, with a mean value of 116.24 (±93.22; the alanine-aminotransferase levels were increased in 44 patients, with a mean value of 189.24 (±196.69. Lymphadenopathy was the most common clinical feature upon admission in 49 patients (96%; 38 patients (74.5% had splenomegaly, and 20 (39% had hepatomegaly. Twenty-six patients (51% had leukocytosis with lymphocytosis, while 15 (75% of the 20 who had a normal leukocyte count also had lymphocytosis. In the present study, we updated the clinical, haematological and laboratory parameters, which may lead to the establishment of an accurate diagnosis and promote further treatment of the patients.

  20. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review.

    Science.gov (United States)

    Heintze, Siegward D; Ilie, Nicoleta; Hickel, Reinhard; Reis, Alessandra; Loguercio, Alessandro; Rousson, Valentin

    2017-03-01

    To evaluate a range of mechanical parameters of composite resins and compare the data to the frequency of fractures and wear in clinical studies. Based on a search of PubMed and SCOPUS, clinical studies on posterior composite restorations were investigated with regard to bias by two independent reviewers using Cochrane Collaboration's tool for assessing risk of bias in randomized trials. The target variables were chipping and/or fracture, loss of anatomical form (wear) and a combination of both (summary clinical index). These outcomes were modelled by time and material in a linear mixed effect model including random study and experiment effects. The laboratory data from one test institute were used: flexural strength, flexural modulus, compressive strength, and fracture toughness (all after 24-h storage in distilled water). For some materials flexural strength data after aging in water/saliva/ethanol were available. Besides calculating correlations between clinical and laboratory outcomes, we explored whether a model including a laboratory predictor dichotomized at a cut-off value better predicted a clinical outcome than a linear model. A total of 74 clinical experiments from 45 studies were included involving 31 materials for which laboratory data were also available. A weak positive correlation between fracture toughness and clinical fractures was found (Spearman rho=0.34, p=0.11) in addition to a moderate and statistically significant correlation between flexural strength and clinical wear (Spearman rho=0.46, p=0.01). When excluding those studies with "high" risk of bias (n=18), the correlations were generally weaker with no statistically significant correlation. For aging in ethanol, a very strong correlation was found between flexural strength decrease and clinical index, but this finding was based on only 7 materials (Spearman rho=0.96, p=0.0001). Prediction was not consistently improved with cutoff values. Correlations between clinical and laboratory

  1. Prediction and optimization of friction welding parameters for super duplex stainless steel (UNS S32760) joints

    International Nuclear Information System (INIS)

    Udayakumar, T.; Raja, K.; Afsal Husain, T.M.; Sathiya, P.

    2014-01-01

    Highlights: • Corrosion resistance and impact strength – predicted by response surface methodology. • Burn off length has highest significance on corrosion resistance. • Friction force is a strong determinant in changing impact strength. • Pareto front points generated by genetic algorithm aid to fix input control variable. • Pareto front will be a trade-off between corrosion resistance and impact strength. - Abstract: Friction welding finds widespread industrial use as a mass production process for joining materials. Friction welding process allows welding of several materials that are extremely difficult to fusion weld. Friction welding process parameters play a significant role in making good quality joints. To produce a good quality joint it is important to set up proper welding process parameters. This can be done by employing optimization techniques. This paper presents a multi objective optimization method for optimizing the process parameters during friction welding process. The proposed method combines the response surface methodology (RSM) with an intelligent optimization algorithm, i.e. genetic algorithm (GA). Corrosion resistance and impact strength of friction welded super duplex stainless steel (SDSS) (UNS S32760) joints were investigated considering three process parameters: friction force (F), upset force (U) and burn off length (B). Mathematical models were developed and the responses were adequately predicted. Direct and interaction effects of process parameters on responses were studied by plotting graphs. Burn off length has high significance on corrosion current followed by upset force and friction force. In the case of impact strength, friction force has high significance followed by upset force and burn off length. Multi objective optimization for maximizing the impact strength and minimizing the corrosion current (maximizing corrosion resistance) was carried out using GA with the RSM model. The optimization procedure resulted in

  2. Predictive Models for Different Roughness Parameters During Machining Process of Peek Composites Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mata-Cabrera Francisco

    2013-10-01

    Full Text Available Polyetheretherketone (PEEK composite belongs to a group of high performance thermoplastic polymers and is widely used in structural components. To improve the mechanical and tribological properties, short fibers are added as reinforcement to the material. Due to its functional properties and potential applications, it’s impor- tant to investigate the machinability of non-reinforced PEEK (PEEK, PEEK rein- forced with 30% of carbon fibers (PEEK CF30, and reinforced PEEK with 30% glass fibers (PEEK GF30 to determine the optimal conditions for the manufacture of the parts. The present study establishes the relationship between the cutting con- ditions (cutting speed and feed rate and the roughness (Ra , Rt , Rq , Rp , by develop- ing second order mathematical models. The experiments were planned as per full factorial design of experiments and an analysis of variance has been performed to check the adequacy of the models. These state the adequacy of the derived models to obtain predictions for roughness parameters within ranges of parameters that have been investigated during the experiments. The experimental results show that the most influence of the cutting parameters is the feed rate, furthermore, proved that glass fiber reinforcements produce a worse machinability.

  3. Genetic Algorithms for Estimating Effective Parameters in a Lumped Reactor Model for Reactivity Predictions

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico

    2001-01-01

    The control system of a reactor should be able to predict, in real time, the amount of reactivity to be inserted (e.g., by control rod movements and boron injection and dilution) to respond to a given electrical load demand or to undesired, accidental transients. The real-time constraint renders impractical the use of a large, detailed dynamic reactor code. One has, then, to resort to simplified analytical models with lumped effective parameters suitably estimated from the reactor data.The simple and well-known Chernick model for describing the reactor power evolution in the presence of xenon is considered and the feasibility of using genetic algorithms for estimating the effective nuclear parameters involved and the initial nonmeasurable xenon and iodine conditions is investigated. This approach has the advantage of counterbalancing the inherent model simplicity with the periodic reestimation of the effective parameter values pertaining to each reactor on the basis of its recent history. By so doing, other effects, such as burnup, are automatically taken into account

  4. An Adaptive Medium Access Parameter Prediction Scheme for IEEE 802.11 Real-Time Applications

    Directory of Open Access Journals (Sweden)

    Estefanía Coronado

    2017-01-01

    Full Text Available Multimedia communications have experienced an unprecedented growth due mainly to the increase in the content quality and the emergence of smart devices. The demand for these contents is tending towards wireless technologies. However, these transmissions are quite sensitive to network delays. Therefore, ensuring an optimum QoS level becomes of great importance. The IEEE 802.11e amendment was released to address the lack of QoS capabilities in the original IEEE 802.11 standard. Accordingly, the Enhanced Distributed Channel Access (EDCA function was introduced, allowing it to differentiate traffic streams through a group of Medium Access Control (MAC parameters. Although EDCA recommends a default configuration for these parameters, it has been proved that it is not optimum in many scenarios. In this work a dynamic prediction scheme for these parameters is presented. This approach ensures an appropriate traffic differentiation while maintaining compatibility with the stations without QoS support. As the APs are the only devices that use this algorithm, no changes are required to current network cards. The results show improvements in both voice and video transmissions, as well as in the QoS level of the network that the proposal achieves with regard to EDCA.

  5. The Effect of Process and Model Parameters in Temperature Prediction for Hot Stamping of Boron Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2013-01-01

    Full Text Available Finite element models of the hot stamping and cold die quenching process for boron steel sheet were developed using either rigid or elastic tools. The effect of tool elasticity and process parameters on workpiece temperature was investigated. Heat transfer coefficient between blank and tools was modelled as a function of gap and contact pressure. Temperature distribution and thermal history in the blank were predicted, and thickness distribution of the blank was obtained. Tests were carried out and the test results are used for the validation of numerical predictions. The effect of holding load and the size of cooling ducts on temperature distribution during the forming and the cool die quenching process was also studied by using two models. The results show that higher accuracy predictions of blank thickness and temperature distribution during deformation were obtained using the elastic tool model. However, temperature results obtained using the rigid tool model were close to those using the elastic tool model for a range of holding load.

  6. Comparison of clinical and paraclinical parameters as tools for early diagnosis of classical swine fever

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Nielsen, Jens

    Comparison of clinical and paraclinical parameters as tools for early diagnosis of classical swine fever. Louise Lohse, Åse Uttenthal, Jens Nielsen. National Veterinary Institute, Division of Virology, Lindholm, Technical University of Denmark. Introduction: In order to limit the far-reaching socio......-economic as well as the animal welfare consequences of an outbreak of classical swine fever (CSF), early diagnosis is essential. However, host-virus interactions strongly influence the course of CSF disease, and the clinical feature is not clear, thus complicating the diagnostic perspective. At the National...... Veterinary Institute, in Denmark, we are conducting a series of animal experiments under standardized conditions in order to investigate new parameters of clinical as well as paraclinical nature that holds the potential as diagnostic tools to improve early detection of CSF. In three recent studies, weaned...

  7. Improving Clinical Prediction of Bipolar Spectrum Disorders in Youth

    Directory of Open Access Journals (Sweden)

    Thomas W. Frazier

    2014-03-01

    Full Text Available This report evaluates whether classification tree algorithms (CTA may improve the identification of individuals at risk for bipolar spectrum disorders (BPSD. Analyses used the Longitudinal Assessment of Manic Symptoms (LAMS cohort (629 youth, 148 with BPSD and 481 without BPSD. Parent ratings of mania symptoms, stressful life events, parenting stress, and parental history of mania were included as risk factors. Comparable overall accuracy was observed for CTA (75.4% relative to logistic regression (77.6%. However, CTA showed increased sensitivity (0.28 vs. 0.18 at the expense of slightly decreased specificity and positive predictive power. The advantage of CTA algorithms for clinical decision making is demonstrated by the combinations of predictors most useful for altering the probability of BPSD. The 24% sample probability of BPSD was substantially decreased in youth with low screening and baseline parent ratings of mania, negative parental history of mania, and low levels of stressful life events (2%. High screening plus high baseline parent-rated mania nearly doubled the BPSD probability (46%. Future work will benefit from examining additional, powerful predictors, such as alternative data sources (e.g., clinician ratings, neurocognitive test data; these may increase the clinical utility of CTA models further.

  8. Prediction of clinical course of glioblastomas by MRI during radiotherapy

    International Nuclear Information System (INIS)

    Leitzen, Christina; Schild, Hans H.; Bungart, Birgitta; Luetter, Christiana; Muedder, Thomas; Wilhelm-Buchstab, Timo; Schueller, Heinrich; Herrlinger, Ulrich

    2010-01-01

    Purpose: Determine the value of MR studies in patients undergoing radiotherapy for glioblastomas pre and during radiotherapy to predict the clinical course. Patients and Methods: MR follow-up studies were performed in 33 patients with glioblastomas before radiotherapy, after 30 Gy, after 60 Gy, and in the treatment follow-up. Findings on MR were categorized into: definite progress, questionable progress, status idem. Patients were followed clinically (median for 11 months). Results: After 30 Gy 23/33 (70%) of the MR examination showed status idem. 10/33 (30%) demonstrated definite (n = 6) or questionable (n = 4) progress. Further tumor progress was faster in these patients and patients succumb to their disease earlier (9 vs. 22 months). The 60 Gy study showed definite (n = 8) and questionable (n = 6) progress in 14/33 (42%) cases. All these tumors were progressing faster and were associated with a comparatively reduced life expectancy. Conclusion: MR follow-up studies after 30 Gy in patients undergoing radiotherapy for glioblastomas allow for prognostic appraisal, and potentially early modification of treatment. (orig.)

  9. Effect of Imaging Parameter Thresholds on MRI Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes.

    Directory of Open Access Journals (Sweden)

    Wei-Ching Lo

    Full Text Available The purpose of this study is to evaluate the predictive performance of magnetic resonance imaging (MRI markers in breast cancer patients by subtype. Sixty-four patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy were enrolled in this study. Each patient received a dynamic contrast-enhanced (DCE-MRI at baseline, after 1 cycle of chemotherapy and before surgery. Functional tumor volume (FTV, the imaging marker measured by DCE-MRI, was computed at various thresholds of percent enhancement (PEt and signal-enhancement ratio (SERt. Final FTV before surgery and percent changes of FTVs at the early and final treatment time points were used to predict patients' recurrence-free survival. The full cohort and each subtype defined by the status of hormone receptor and human epidermal growth factor receptor 2 (HR+/HER2-, HER2+, triple negative were analyzed. Predictions were evaluated using the Cox proportional hazard model when PEt changed from 30% to 200% in steps of 10% and SERt changed from 0 to 2 in steps of 0.2. Predictions with high hazard ratios and low p-values were considered as strong. Different profiles of FTV as predictors for recurrence-free survival were observed in each breast cancer subtype and strong associations with survival were observed at different PEt/SERt combinations that resulted in different FTVs. Findings from this retrospective study suggest that the predictive performance of imaging markers based on FTV may be improved with enhancement thresholds being optimized separately for clinically-relevant subtypes defined by HR and HER2 receptor expression.

  10. Urate predicts rate of clinical decline in Parkinson disease

    Science.gov (United States)

    Ascherio, Alberto; LeWitt, Peter A.; Xu, Kui; Eberly, Shirley; Watts, Arthur; Matson, Wayne R.; Marras, Connie; Kieburtz, Karl; Rudolph, Alice; Bogdanov, Mikhail B.; Schwid, Steven R.; Tennis, Marsha; Tanner, Caroline M.; Beal, M. Flint; Lang, Anthony E.; Oakes, David; Fahn, Stanley; Shoulson, Ira; Schwarzschild, Michael A.

    2009-01-01

    Context The risk of Parkinson disease (PD) and its rate of progression may decline with increasing blood urate, a major antioxidant. Objective To determine whether serum and cerebrospinal fluid (CSF) concentrations of urate predict clinical progression in patients with PD. Design, Setting, and Participants 800 subjects with early PD enrolled in the DATATOP trial. Pre-treatment urate was measured in serum for 774 subjects and in CSF for 713. Main Outcome Measures Treatment-, age- and sex-adjusted hazard ratios (HRs) for clinical disability requiring levodopa therapy, the pre-specified primary endpoint. Results The HR of progressing to endpoint decreased with increasing serum urate (HR for 1 standard deviation increase = 0.82; 95% CI = 0.73 to 0.93). In analyses stratified by α-tocopherol treatment (2,000 IU/day), a decrease in the HR for the primary endpoint was seen only among subjects not treated with α-tocopherol (HR = 0.75; 95% CI = 0.62 to 0.89, versus those treated HR = 0.90; 95% CI = 0.75 to 1.08). Results were similar for the rate of change in the United Parkinson Disease Rating Scale (UPDRS). CSF urate was also inversely related to both the primary endpoint (HR for highest versus lowest quintile = 0.65; 95% CI: 0.54 to 0.96) and to the rate of change in UPDRS. As with serum urate, these associations were present only among subjects not treated with α-tocopherol. Conclusion Higher serum and CSF urate at baseline were associated with slower rates of clinical decline. The findings strengthen the link between urate and PD and the rationale for considering CNS urate elevation as a potential strategy to slow PD progression. PMID:19822770

  11. Prediction uncertainty assessment of a systems biology model requires a sample of the full probability distribution of its parameters

    Directory of Open Access Journals (Sweden)

    Simon van Mourik

    2014-06-01

    Full Text Available Multi-parameter models in systems biology are typically ‘sloppy’: some parameters or combinations of parameters may be hard to estimate from data, whereas others are not. One might expect that parameter uncertainty automatically leads to uncertain predictions, but this is not the case. We illustrate this by showing that the prediction uncertainty of each of six sloppy models varies enormously among different predictions. Statistical approximations of parameter uncertainty may lead to dramatic errors in prediction uncertainty estimation. We argue that prediction uncertainty assessment must therefore be performed on a per-prediction basis using a full computational uncertainty analysis. In practice this is feasible by providing a model with a sample or ensemble representing the distribution of its parameters. Within a Bayesian framework, such a sample may be generated by a Markov Chain Monte Carlo (MCMC algorithm that infers the parameter distribution based on experimental data. Matlab code for generating the sample (with the Differential Evolution Markov Chain sampler and the subsequent uncertainty analysis using such a sample, is supplied as Supplemental Information.

  12. Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and predictive-uncertainty analysis

    Science.gov (United States)

    Doherty, John E.; Hunt, Randall J.; Tonkin, Matthew J.

    2010-01-01

    Analysis of the uncertainty associated with parameters used by a numerical model, and with predictions that depend on those parameters, is fundamental to the use of modeling in support of decisionmaking. Unfortunately, predictive uncertainty analysis with regard to models can be very computationally demanding, due in part to complex constraints on parameters that arise from expert knowledge of system properties on the one hand (knowledge constraints) and from the necessity for the model parameters to assume values that allow the model to reproduce historical system behavior on the other hand (calibration constraints). Enforcement of knowledge and calibration constraints on parameters used by a model does not eliminate the uncertainty in those parameters. In fact, in many cases, enforcement of calibration constraints simply reduces the uncertainties associated with a number of broad-scale combinations of model parameters that collectively describe spatially averaged system properties. The uncertainties associated with other combinations of parameters, especially those that pertain to small-scale parameter heterogeneity, may not be reduced through the calibration process. To the extent that a prediction depends on system-property detail, its postcalibration variability may be reduced very little, if at all, by applying calibration constraints; knowledge constraints remain the only limits on the variability of predictions that depend on such detail. Regrettably, in many common modeling applications, these constraints are weak. Though the PEST software suite was initially developed as a tool for model calibration, recent developments have focused on the evaluation of model-parameter and predictive uncertainty. As a complement to functionality that it provides for highly parameterized inversion (calibration) by means of formal mathematical regularization techniques, the PEST suite provides utilities for linear and nonlinear error-variance and uncertainty analysis in

  13. Critical reappraisal of embryo quality as a predictive parameter for pregnancy outcome: a pilot study.

    Science.gov (United States)

    Campo, R; Binda, M M; Van Kerkhoven, G; Frederickx, V; Serneels, A; Roziers, P; Lopes, A S; Gordts, S; Puttemans, P; Gordts, S

    2010-01-01

    Pilot study to analyse the efficacy and embryo morphology using a new human embryo culture medium (GM501) versus the conventional used medium (ISM1). Over a four-month period, all patients at the Leuven Institute of Fertility and Embryology (LIFE) were -randomly allocated to have their embryos cultured in either the standard sequential culture medium ISM1 (control) or in a new universal medium (GM501) (study group). Primary outcome parameters were clinical pregnancy and live birth rate. The secondary outcome parameter was the correlation of embryo fragmentation rate with pregnancy outcome. We did not observe any differences between the ISM1 control group and GM501 study group with regard to fertilization, pregnancy, implantation rates, ongoing pregnancy, and babies born. The number of embryos with a minimal fragmentation rate (less than 30%) was significantly higher in the GM501 study group. Although a significant higher embryo fragmentation rate was seen in In vitro culture of embryos in GM501, pregnancy outcome results were comparable to those of embryos cultured in ISM1. According to our results the value of embryo morphological criteria as a parameter for pregnancy outcome should be examined and discussed again.

  14. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    Science.gov (United States)

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9

  15. Incidence and clinical vital parameters in primary ketosis of Murrah buffaloes

    Science.gov (United States)

    Kumar, Ankit; Sindhu, Neelesh; Kumar, Parmod; Kumar, Tarun; Charaya, Gaurav; Surbhi; Jain, V. K.; Sridhar

    2015-01-01

    Aim: The present study was undertaken to ascertain the incidence and clinical vital parameters in cases of primary ketosis in Murrah buffaloes brought to teaching veterinary clinical complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar and from adjoining villages of the district Hisar, Haryana, India. Materials and Methods: The investigation was conducted on 24 clinical cases (out of total 145 screened) of primary ketosis. The diagnosis was confirmed on the basis of clinical signs and significantly positive two tests for ketone bodies in urine (Rothera’s and Keto-Diastix strip test). Data collected were statistically analyzed using independent Student’s t-test. Results: Overall incidence of disease in these areas was found to be 16.55% and all the animals were recently parturited (mean: 1.42±0.14 month), on an average in their third lactation (mean: 2.38±0.30) and exhibited clinical signs such as selective anorexia (refusal to feed on concentrate diet), drastic reduction in milk yield (mean: 64.4±5.35%), ketotic odor from urine, breath, and milk and rapid loss of body condition. All the clinical vital parameters in ketotic buffaloes (body temperature, heart rate, respiration rate, and rumen movements) were within normal range. Conclusion: Primary ketosis in Murrah buffaloes was the most common seen in the third lactation, within the first 2 months after parturition with characteristics clinical signs and no variability in vital parameters. The disease has severe effect on the production status of affected animal. PMID:27047203

  16. Incidence and clinical vital parameters in primary ketosis of Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    Ankit Kumar

    2015-09-01

    Full Text Available Aim: The present study was undertaken to ascertain the incidence and clinical vital parameters in cases of primary ketosis in Murrah buffaloes brought to teaching veterinary clinical complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar and from adjoining villages of the district Hisar, Haryana, India. Materials and Methods: The investigation was conducted on 24 clinical cases (out of total 145 screened of primary ketosis. The diagnosis was confirmed on the basis of clinical signs and significantly positive two tests for ketone bodies in urine (Rothera’s and Keto-Diastix strip test. Data collected were statistically analyzed using independent Student’s t-test. Results: Overall incidence of disease in these areas was found to be 16.55% and all the animals were recently parturited (mean: 1.42±0.14 month, on an average in their third lactation (mean: 2.38±0.30 and exhibited clinical signs such as selective anorexia (refusal to feed on concentrate diet, drastic reduction in milk yield (mean: 64.4±5.35%, ketotic odor from urine, breath, and milk and rapid loss of body condition. All the clinical vital parameters in ketotic buffaloes (body temperature, heart rate, respiration rate, and rumen movements were within normal range. Conclusion: Primary ketosis in Murrah buffaloes was the most common seen in the third lactation, within the first 2 months after parturition with characteristics clinical signs and no variability in vital parameters. The disease has severe effect on the production status of affected animal.

  17. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Science.gov (United States)

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  18. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  19. Prediction efficiency of the hydrographical parameters as related to distribution patterns of the Pleuromamma species in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmy, K.V.; Saraswathy, M.

    . Multiple regression model of P. indica abundance on the parameters: temperature, salinity, dissolved oxygen and phosphate-phosphorus could explain more than 85% of the variation in the predicted abundance, while those of 8 species obtained from...

  20. Prediction of moisture transfer parameters for convective drying of shrimp at different pretreatments

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius da COSTA

    2018-04-01

    Full Text Available Abstract By the analytical model proposed by Dincer and Dost, the mass transfer parameters (moisture transfer coefficient and moisture diffusivity of shrimp samples were determined. Three sets of drying experiments were performed with three samples of shrimp: without boiling (WB, boiled in salt solution (SB and boiled in salt solution and subjected to liquid smoking process (SBS. The experiments were performed under controlled conditions of drying air at temperature of 60°C and velocity of 1.5 m/s. Experimental dimensionless moisture content data were used to calculate the drying coefficients and lag factors, which were then incorporated into the analytical model for slab and cylinder shapes. The results showed an adequate fit between the experimental data and the values predicted from the correlation. The boiling is the most recommended pretreatment, because provided a shorter drying time, with high values of moisture transfer coefficient and moisture diffusivity.

  1. Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO

    Directory of Open Access Journals (Sweden)

    Adel Taieb

    2017-01-01

    Full Text Available This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO Fuzzy Optimal Model Predictive Control (FOMPC using the Adaptive Particle Swarm Optimization (APSO algorithm. The aim of this proposed control, called FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS fuzzy system whose parameters are identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, Continuous Stirred Tank Reactor (CSTR and Tank system, where the proposed approach provides better performances compared with other methods.

  2. Predicting future conflict between team-members with parameter-free models of social networks

    Science.gov (United States)

    Rovira-Asenjo, Núria; Gumí, Tània; Sales-Pardo, Marta; Guimerà, Roger

    2013-06-01

    Despite the well-documented benefits of working in teams, teamwork also results in communication, coordination and management costs, and may lead to personal conflict between team members. In a context where teams play an increasingly important role, it is of major importance to understand conflict and to develop diagnostic tools to avert it. Here, we investigate empirically whether it is possible to quantitatively predict future conflict in small teams using parameter-free models of social network structure. We analyze data of conflict appearance and resolution between 86 team members in 16 small teams, all working in a real project for nine consecutive months. We find that group-based models of complex networks successfully anticipate conflict in small teams whereas micro-based models of structural balance, which have been traditionally used to model conflict, do not.

  3. Dose-volumetric parameters for predicting hypothyroidism after radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Kim, Mi Young; Yu, Tosol; Wu, Hong-Gyun

    2014-01-01

    To investigate predictors affecting the development of hypothyroidism after radiotherapy for head and neck cancer, focusing on radiation dose-volumetric parameters, and to determine the appropriate radiation dose-volumetric threshold of radiation-induced hypothyroidism. A total of 114 patients with head and neck cancer whose radiotherapy fields included the thyroid gland were analysed. The purpose of the radiotherapy was either definitive (n=81) or post-operative (n=33). Thyroid function was monitored before starting radiotherapy and after completion of radiotherapy at 1 month, 6 months, 1 year and 2 years. A diagnosis of hypothyroidism was based on a thyroid stimulating hormone value greater than the maximum value of laboratory range, regardless of symptoms. In all patients, dose volumetric parameters were analysed. Median follow-up duration was 25 months (range; 6-38). Forty-six percent of the patients were diagnosed as hypothyroidism after a median time of 8 months (range; 1-24). There were no significant differences in the distribution of age, gender, surgery, radiotherapy technique and chemotherapy between the euthyroid group and the hypothyroid group. In univariate analysis, the mean dose and V35-V50 results were significantly associated with hypothyroidism. The V45 is the only variable that independently contributes to the prediction of hypothyroidism in multivariate analysis and V45 of 50% was a threshold value. If V45 was <50%, the cumulative incidence of hypothyroidism at 1 year was 22.8%, whereas the incidence was 56.1% if V45 was ≥50%. (P=0.034). The V45 may predict risk of developing hypothyroidism after radiotherapy for head and neck cancer, and a V45 of 50% can be a useful dose-volumetric threshold of radiation-induced hypothyroidism. (author)

  4. Comparison of clinical utility between diaphragm excursion and thickening change using ultrasonography to predict extubation success

    Science.gov (United States)

    Yoo, Jung-Wan; Lee, Seung Jun; Lee, Jong Deog; Kim, Ho Cheol

    2018-01-01

    Background/Aims Both diaphragmatic excursion and change in muscle thickening are measured using ultrasonography (US) to assess diaphragm function and mechanical ventilation weaning outcomes. However, which parameter can better predict successful extubation remains to be determined. The aim of this study was to compare the clinical utility of these two diaphragmatic parameters to predict extubation success. Methods This study included patients subjected to extubation trial in the medical or surgical intensive care unit of a university-affiliated hospital from May 2015 through February 2016. Diaphragm excursion and percent of thickening change (Δtdi%) were measured using US within 24 hours before extubation. Results Sixty patients were included, and 78.3% (47/60) of these patients were successfully extubated, whereas 21.7% (13/60) were not. The median degree of excursion was greater in patients with extubation success than in those with extubation failure (1.65 cm vs. 0.8 cm, p success had a greater Δtdi% than those with extubation failure (42.1% vs. 22.5%, p = 0.03). The areas under the receiver operating curve for excursion and Δtdi% were 0.836 (95% confidence interval [CI], 0.717 to 0.919) and 0.698 (95% CI, 0.566 to 0.810), respectively (p = 0.017). Conclusions Diaphragm excursion seems more accurate than a change in the diaphragm thickness to predict extubation success. PMID:29050461

  5. Economic Model Predictive Control of Bihormonal Artificial Pancreas System Based on Switching Control and Dynamic R-parameter.

    Science.gov (United States)

    Tang, Fengna; Wang, Youqing

    2017-11-01

    Blood glucose (BG) regulation is a long-term task for people with diabetes. In recent years, more and more researchers have attempted to achieve automated regulation of BG using automatic control algorithms, called the artificial pancreas (AP) system. In clinical practice, it is equally important to guarantee the treatment effect and reduce the treatment costs. The main motivation of this study is to reduce the cure burden. The dynamic R-parameter economic model predictive control (R-EMPC) is chosen to regulate the delivery rates of exogenous hormones (insulin and glucagon). It uses particle swarm optimization (PSO) to optimize the economic cost function and the switching logic between insulin delivery and glucagon delivery is designed based on switching control theory. The proposed method is first tested on the standard subject; the result is compared with the switching PID and the switching MPC. The effect of the dynamic R-parameter on improving the control performance is illustrated by comparing the results of the EMPC and the R-EMPC. Finally, the robustness tests on meal change (size and timing), hormone sensitivity (insulin and glucagon), and subject variability are performed. All results show that the proposed method can improve the control performance and reduce the economic costs. The simulation results verify the effectiveness of the proposed algorithm on improving the tracking performance, enhancing robustness, and reducing economic costs. The method proposed in this study owns great worth in practical application.

  6. Logic-based models in systems biology: a predictive and parameter-free network analysis method.

    Science.gov (United States)

    Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago

    2012-11-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.

  7. Logic-based models in systems biology: a predictive and parameter-free network analysis method†

    Science.gov (United States)

    Wynn, Michelle L.; Consul, Nikita; Merajver, Sofia D.

    2012-01-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network’s dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples. PMID:23072820

  8. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    Science.gov (United States)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  10. The Meta-Analysis of Clinical Judgment Project: Fifty-Six Years of Accumulated Research on Clinical Versus Statistical Prediction

    Science.gov (United States)

    Aegisdottir, Stefania; White, Michael J.; Spengler, Paul M.; Maugherman, Alan S.; Anderson, Linda A.; Cook, Robert S.; Nichols, Cassandra N.; Lampropoulos, Georgios K.; Walker, Blain S.; Cohen, Genna; Rush, Jeffrey D.

    2006-01-01

    Clinical predictions made by mental health practitioners are compared with those using statistical approaches. Sixty-seven studies were identified from a comprehensive search of 56 years of research; 92 effect sizes were derived from these studies. The overall effect of clinical versus statistical prediction showed a somewhat greater accuracy for…

  11. Prediction of ecotoxicity of hydrocarbon-contaminated soils using physicochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.C.L.; Chai, E.Y.; Chu, K.K.; Dorn, P.B.

    1999-11-01

    The physicochemical properties of eight hydrocarbon-contaminated soils were used to predict toxicity to earthworms (Eisenia fetida) and plants. The toxicity of these preremediated soils was assessed using earthworm avoidance, survival, and reproduction and seed germination and root growth in four plant species. No-observed-effect and 25% inhibitory concentrations were determined from the earthworm and plant assays. Physical property measurements and metals analyses of the soils were conducted. Hydrocarbon contamination was characterized by total petroleum hydrocarbons, oil and grease, and GC boiling-point distribution. Univariate and multivariate statistical methods were used to examine relationships between physical and chemical properties and biological endpoints. Soil groupings based on physicochemical properties and toxicity from cluster and principal component analyses were generally similar. Correlation analysis identified a number of significant relationships between soil parameters and toxicity that were used in univariate model development. Total petroleum hydrocarbons by gas chromatography and polars were identified as predictors of earthworm avoidance and survival and seed germination, explaining 65 to 75% of the variation in the data. Asphaltenes also explained 83% of the variation in seed germination. Gravimetric total petroleum hydrocarbons explained 40% of the variation in earthworm reproduction, whereas 43% of the variation in plant root growth was explained by asphaltenes. Multivariate one-component partial least squares models, which identified predictors similar to those identified by the univariate models, were also developed for worm avoidance and survival and seed germination and had predictive powers of 42 and 29%, respectively.

  12. Serum parameters predict the severity of ultrasonographicifndingsinnon-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Mohsen Razavizade; Raika Jamali; Abbas Arj; Hamidreza Talari

    2012-01-01

    BACKGROUND: Controversy exists about the correlation between liver ultrasonography and serum parameters for evaluating the severity of liver involvement in non-alcoholic fatty liver disease (NAFLD). This study was designed to determine the association between liver ultrasonography staging in NAFLD and serum parameters correlated with disease severity in previous studies; and set optimal cut-off points for those serum parameters correlated with NAFLD staging at ultrasonography, in order to differentiate ultrasonographic groups (USGs). METHODS: This cross-sectional study evaluated outpatients with evidence of NAFLD in ultrasonography referred to a general hospital. Those with positive viral markers, abnormal serum ceruloplasmin or gamma-globulin concentrations were excluded. A radiologist performed the ultrasonography staging and stratiifed the patients into mild, moderate, and severe groups. Fasting serum alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, triglyceride (TG), high and low density lipoprotein (HDL, LDL), and cholesterol were checked. RESULTS:Two hundred and forty-ifve patients with a mean age (±standard deviation) of 41.63(±11.46) years were included. There were no signiifcant differences when mean laboratory concentrations were compared between moderate and severe USGs. Therefore, these groups were combined to create revised USGs ("mild"versus"moderate or severe"). There were associations between the revised USGs, and ALT, TG, HDL levels, and diabetes mellitus [odds ratios=2.81 (95%conifdence interval (CI):1.37-5.76), 2.48 (95%CI:1.29-4.78), 0.36 (95%CI:0.18-0.74), and 5.65 (95%CI:2.86-11.16) respectively;all P values CONCLUSIONS: Serum ALT, TG, and HDL concentrations seem to be associated with the staging by liver ultrasonography in NAFLD. They might be used to predict the staging of liver ultrasonography in these patients.

  13. Self-care and clinical parameters in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    José Thiago de Sousa

    2015-09-01

    Full Text Available Objective: to verify characteristics related to self-care and clinical parameters in patients with type 2 diabetes mellitus. Methods: descriptive and exploratory, cross-sectional study, conducted with 173 patients assisted in 12 Family Health Units in the urban area of a city in the Northeast region of Brazil. Results: most participants (61.3% were female, aged less than 60 years old. There were significant differences in the lower glycemic control (p = 0.014, capillary glycemia (p = 0.018 and alcohol consumption (p = 0.015 for men as well as higher central obesity indexes for women (p = 0.000. It was observed high frequency of overweight, abdominal obesity, high blood pressure, elevated blood glucose levels and insufficient levels of physical activity. Conclusion: there is the need for nursing actions aimed at improving self-care and control of the clinical parameters in these patients.

  14. [Clinical value of angiogenin in predicting the prognosis of patients with idiopathic pulmonary fibrosis].

    Science.gov (United States)

    Bai, Yanling; Zhu, Haiyan; Sun, Qiyu; Gu, Guozhong; Zhang, Lingyu; Li, Ying; Yang, Baofeng

    2017-09-01

    To explore the relationship between angiogenin-1/2 (Ang-1/2) and clinical parameters of idiopathic pulmonary fibrosis (IPF), and to assess the value of Ang-1/2 in predicting the prognosis of patients with IPF. A retrospective analysis was conducted. Ninety-one patients diagnosed as IPF by high resolution CT (HRCT) and lung biopsy admitted to Daqing Oil Field General Hospital from March 2014 to January 2015 were enrolled. The general data, serum parameters and pulmonary function parameters of all patients were collected. After treatment, all of the 91 patients were followed-up to 2 years. The patients were divided into favorable prognosis group and unfavorable prognosis group according to follow-up results. The differences in all parameters between the two groups were compared. The relationship between Ang-1, Ang-2 and lung function parameters was analyzed by Pearson correlation analysis. Cox proportional hazard regression model was used to evaluate the effect of clinical parameters on the prognosis of patients with IPF. The effect of Ang-2 in predicting prognosis of patients with IPF was analyzed by receiver operating characteristic (ROC) curve. During the 2-year follow-up period, 30 of 91 patients showed a favorable prognosis, and 55 showed an unfavorable prognosis with a poor prognosis rate of 64.71%, and 6 patients withdrew from the study due to loss of follow-up and death. Compared with the favorable prognosis group, Ang-2 level in the unfavorable prognosis group was significantly increased (μg/L: 2.88±1.63 vs. 1.89±1.22, t = 2.909, P = 0.005), but Ang-1 only showed a slight increase (μg/L: 28.70±14.26 vs. 25.62±11.95, t = 1.005, P = 0.318). The results of Pearson correlation analysis showed that Ang-2 level was negatively correlated with forced expiratory volume in 1 second (FVC1) and the percentage of carbon monoxide diffusing capacity accounting for the expected value (DLCO%: r value was -0.227 and -0.206, and P value was 0.147 and 0.253, respectively

  15. Predicting the wheel rolling resistance regarding important motion parameters using the artificial neural network

    Directory of Open Access Journals (Sweden)

    F Gheshlaghi

    2016-04-01

    the analytical and statistical methods. It is expected that the neural network can more accurately predict the rolling resistance. In this study, the neural network for experimental data was trained and the relationship among some parameters of velocity, dynamic load and tire pressure and rolling resistance were evaluated. Materials and Methods: The soil bin and single wheel tester of Biosystem Engineering Mechanics Department of Urmia University was used in this study. This soil bin has 24 m length, 2 m width and 1 m depth including a single-wheel tester and the carrier. Tester consists of four horizontal arms and a vertical arm to vertical load. The S-shaped load cells were employed in horizontal arms with a load capacity of 200 kg and another 500 kg in the vertical arm was embedded. The tire used in this study was a general pneumatic tire (Good year 9.5L-14, 6 ply In this study, artificial neural networks were used for optimizing the rolling resistance by 35 neurons, 6 inputs and 1 output choices. Comparison of neural network models according to the mean square error and correlation coefficient was used. In addition, 60% of the data on training, 20% on test and finally 20% of the credits was allocated to the validation and Output parameter of the neural network model has determined the tire rolling resistance. Finally, this study predicts the effects of changing parameters of tire pressure, vertical load and velocity on rolling resistance using a trained neural network. Results and Discussion: Based on obtained error of Levenberg- Marquardt algorithm, neural network with 35 neurons in the hidden layer with sigmoid tangent function and one neuron in the output layer with linear actuator function were selected. The regression coefficient of tested network is 0.92 which seems acceptable, considering the complexity of the studied process. Some of the input parameters to the network are speed, pressure and vertical load which their relationship with the rolling

  16. Predictive value of some hematological parameters for non-invasive and invasive mole pregnancies.

    Science.gov (United States)

    Abide Yayla, Cigdem; Özkaya, Enis; Yenidede, Ilter; Eser, Ahmet; Ergen, Evrim Bostancı; Tayyar, Ahter Tanay; Şentürk, Mehmet Baki; Karateke, Ates

    2018-02-01

    The aim of this study was to discriminate mole pregnancies and invasive forms among cases with first trimester vaginal bleeding by the utilization of some complete blood count parameters conjunct to sonographic findings and beta human chorionic gonadotropin concentration. Consecutive 257 cases with histopathologically confirmed mole pregnancies and 199 women without mole pregnancy presented with first trimester vaginal bleeding who admitted to Zeynep Kamil Women and Children's Health Training Hospital between January 2012 and January 2016 were included in this cross-sectional study. The serum beta HCG level at presentation, and beta hCG levels at 1st, 2nd and 3rd weeks of postevacuation with some parameters of complete blood count were utilized to discriminate cases with molar pregnancy and cases with invasive mole among first trimester pregnants presented with vaginal bleeding and abnormal sonographic findings. Levels of beta hCG at baseline (AUC = 0.700, p < 0.05) and 1st (AUC = 0.704, p < 0.05), 2nd (AUC = 0.870, p < 0.001) and 3rd (AUC = 0.916, p < 0.001) weeks of postevacuation period were significant predictors for the cases with persistent disease. While area under curve for mean platelet volume is 0.715, it means that mean platelet volume has 21.5% additional diagnostic value for predicting persistency in molar patients. For 8.55 cut-off point for mean platelet volume, sensitivity is 84.6% and specificity is 51.6%. Area under curve for platelet/lymphocyte ratio is 0.683 means that platelet/lymphocyte ratio has additional 18.3% diagnostic value. For 102.25 cut-off point sensitivity is 86.6% and specificity is 46.2. Simple, widely available complete blood count parameters may be used as an adjunct to other risk factors to diagnose molar pregnancies and predict postevacuation trophoblastic disease.

  17. A clinical tool to predict Plasmodium vivax recurrence in Malaysia.

    Science.gov (United States)

    Mat Ariffin, Norliza; Islahudin, Farida; Kumolosasi, Endang; Makmor-Bakry, Mohd

    2017-12-08

    Recurrence rates of Plasmodium vivax infections differ across various geographic regions. Interestingly, South-East Asia and the Asia-Pacific region are documented to exhibit the most frequent recurrence incidences. Identifying patients at a higher risk for recurrences gives valuable information in strengthening the efforts to control P. vivax infections. The aim of the study was to develop a tool to identify P. vivax- infected patients that are at a higher risk of recurrence in Malaysia. Patient data was obtained retrospectively through the Ministry of Health, Malaysia, from 2011 to 2016. Patients with incomplete data were excluded. A total of 2044 clinical P. vivax malaria cases treated with primaquine were included. Data collected were patient, disease, and treatment characteristics. Two-thirds of the cases (n = 1362) were used to develop a clinical risk score, while the remaining third (n = 682) was used for validation. Using multivariate analysis, age (p = 0.03), gametocyte sexual count (p = 0.04), indigenous transmission (p = 0.04), type of treatment (p = 0.12), and incomplete primaquine treatment (p = 0.14) were found to be predictors of recurrence after controlling for other confounding factors; these predictors were then used in developing the final model. The beta-coefficient values were used to develop a clinical scoring tool to predict possible recurrence. The total scores ranged between 0 and 8. A higher score indicated a higher risk for recurrence (odds ratio [OR]: 1.971; 95% confidence interval [CI]: 1.562-2.487; p ≤ 0.001). The area under the receiver operating characteristic (ROC) curve of the developed (n = 1362) and validated model (n = 682) was of good accuracy (ROC: 0.728, 95% CI: 0.670-0.785, p value useful tool in targeting patients at a higher risk for recurrence for closer monitoring during follow-up, after treatment with primaquine.

  18. Genetic parameters for the prediction of abdominal fat traits using blood biochemical indicators in broilers.

    Science.gov (United States)

    Zhang, H L; Xu, Z Q; Yang, L L; Wang, Y X; Li, Y M; Dong, J Q; Zhang, X Y; Jiang, X Y; Jiang, X F; Li, H; Zhang, D X; Zhang, H

    2018-02-01

    1. Excessive deposition of body fat, especially abdominal fat, is detrimental in chickens and the prevention of excessive fat accumulation is an important problem. The aim of this study was to identify blood biochemical indicators that could be used as criteria to select lean Yellow-feathered chicken lines. 2. Levels of blood biochemical indicators in the fed and fasted states and the abdominal fat traits were measured in 332 Guangxi Yellow chickens. In the fed state, the genetic correlations (r g ) of triglycerides and very low density lipoprotein levels were positive for the abdominal fat traits (0.47 ≤ r g  ≤ 0.67), whereas total cholesterol, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) showed higher negative correlations with abdominal fat traits (-0.59 ≤ r g  ≤ -0.33). Heritabilities of these blood biochemical parameters were high, varying from 0.26 to 0.60. 3. In the fasted state, HDL-C:LDL-C level was positively correlated with abdominal fat traits (0.35 ≤ r g  ≤ 0.38), but triglycerides, total cholesterol, HDL-C, LDL-C, total protein, albumin, aspartate transaminase, uric acid and creatinine levels were negatively correlated with abdominal fat traits (-0.79 ≤ r g  ≤ -0.35). The heritabilities of these 10 blood biochemical parameters were high (0.22 ≤ h 2  ≤ 0.59). 4. In the fed state, optimal multiple regression models were constructed to predict abdominal fat traits by using triglycerides and LDL-C. In the fasted state, triglycerides, total cholesterol, HDL-C, LDL-C, total protein, albumin and uric acid could be used to predict abdominal fat content. 5. It was concluded that these models in both nutritional states could be used to predict abdominal fat content in Guangxi Yellow broiler chickens.

  19. Predictive Performance of Echocardiographic Parameters for Cardiovascular Events Among Elderly Treated Hypertensive Patients.

    Science.gov (United States)

    Chowdhury, Enayet K; Jennings, Garry L R; Dewar, Elizabeth; Wing, Lindon M H; Reid, Christopher M

    2016-07-01

    Hypertension leads to cardiac structural and functional changes, commonly assessed by echocardiography. In this study, we assessed the predictive performance of different echocardiographic parameters including left ventricular hypertrophy (LVH) on future cardiovascular outcomes in elderly hypertensive patients without heart failure. Data from LVH substudy of the Second Australian National Blood Pressure trial were used. Echocardiograms were performed at entry into the study. Cardiovascular outcomes were identified over short term (median 4.2 years) and long term (median 10.9 years). LVH was defined using threshold values of LV mass (LVM) indexed to either body surface area (BSA) or height(2.7): >115/95g/m(2) (LVH-BSA(115/95)) or ≥49/45g/m(2.7) (LVH-ht(49/45)) in males/females, respectively, and ≥125g/m(2) (LVH-BSA(125)) or ≥51g/m(2.7) (LVH-ht(51)) for both sexes. In the 666 participants aged ≥65 years in this analysis, LVH prevalence at baseline was 33%-70% depending on definition; and after adjusting for potential risk factors, only LVH-BSA(115/95) predicted both short- and long-term cardiovascular outcomes. Participants having LVH-BSA(115/95) (69%) at baseline had twice the risk of having any first cardiovascular event over the short term (hazard ratio, 95% confidence interval: 2.00, 1.12-3.57, P = 0.02) and any fatal cardiovascular events (2.11, 1.21-3.68, P = 0.01) over the longer term. Among other echocardiographic parameters, LVM and LVM indexed to either BSA or height(2.7) predicted cardiovascular events over both short and longer term. In elderly treated hypertensive patients without heart failure, determining LVH by echocardiography is highly dependent on the methodology adopted. LVH-BSA(115/95) is a reliable predictor of future cardiovascular outcomes in the elderly. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Quantitative predictions from competition theory with incomplete information on model parameters tested against experiments across diverse taxa

    OpenAIRE

    Fort, Hugo

    2017-01-01

    We derive an analytical approximation for making quantitative predictions for ecological communities as a function of the mean intensity of the inter-specific competition and the species richness. This method, with only a fraction of the model parameters (carrying capacities and competition coefficients), is able to predict accurately empirical measurements covering a wide variety of taxa (algae, plants, protozoa).

  1. Can we Predict Disease Course with Clinical Factors?

    Science.gov (United States)

    Vegh, Zsuzsanna; Kurti, Zsuzsanna; Golovics, Petra A; Lakatos, Peter L

    2018-01-01

    The disease phenotype at diagnosis and the disease course of Crohn's disease (CD) and ulcerative colitis (UC) show remarkable heterogeneity across patients. This review aims to summarize the currently available evidence on clinical and some environmental predictive factors, which clinicians should evaluate in the everyday practice together with other laboratory and imaging data to prevent disease progression, enable a more personalized therapy, and avoid negative disease outcomes. In recent population-based epidemiological and referral cohort studies, the evolution of disease phenotype of CD and UC varied significantly. Most CD and severe UC patients still require hospitalization or surgery/colectomy during follow-up. A change in the natural history of inflammatory bowel diseases (IBD) with improved outcomes in parallel with tailored positioning of aggressive immunomodulator and biological therapy has been suspected. According to the currently available literature, it is of major importance to refer IBD cases at risk for adverse disease outcomes as early during the disease course as possible. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Predictive event modelling in multicenter clinical trials with waiting time to response.

    Science.gov (United States)

    Anisimov, Vladimir V

    2011-01-01

    A new analytic statistical technique for predictive event modeling in ongoing multicenter clinical trials with waiting time to response is developed. It allows for the predictive mean and predictive bounds for the number of events to be constructed over time, accounting for the newly recruited patients and patients already at risk in the trial, and for different recruitment scenarios. For modeling patient recruitment, an advanced Poisson-gamma model is used, which accounts for the variation in recruitment over time, the variation in recruitment rates between different centers and the opening or closing of some centers in the future. A few models for event appearance allowing for 'recurrence', 'death' and 'lost-to-follow-up' events and using finite Markov chains in continuous time are considered. To predict the number of future events over time for an ongoing trial at some interim time, the parameters of the recruitment and event models are estimated using current data and then the predictive recruitment rates in each center are adjusted using individual data and Bayesian re-estimation. For a typical scenario (continue to recruit during some time interval, then stop recruitment and wait until a particular number of events happens), the closed-form expressions for the predictive mean and predictive bounds of the number of events at any future time point are derived under the assumptions of Markovian behavior of the event progression. The technique is efficiently applied to modeling different scenarios for some ongoing oncology trials. Case studies are considered. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands.

    Science.gov (United States)

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2016-01-01

    Improving the functionality of prosthetic hands with noninvasive techniques is still a challenge. Surface electromyography (sEMG) currently gives limited control capabilities; however, the application of machine learning to the analysis of sEMG signals is promising and has recently been applied in practice, but many questions still remain. In this study, we recorded the sEMG activity of the forearm of 11 male subjects with transradial amputation who were mentally performing 40 hand and wrist movements. The classification performance and the number of independent movements (defined as the subset of movements that could be distinguished with >90% accuracy) were studied in relationship to clinical parameters related to the amputation. The analysis showed that classification accuracy and the number of independent movements increased significantly with phantom limb sensation intensity, remaining forearm percentage, and temporal distance to the amputation. The classification results suggest the possibility of naturally controlling up to 11 movements of a robotic prosthetic hand with almost no training. Knowledge of the relationship between classification accuracy and clinical parameters adds new information regarding the nature of phantom limb pain as well as other clinical parameters, and it can lay the foundations for future "functional amputation" procedures in surgery.

  4. Medical and Periodontal Clinical Parameters in Patients at Different Levels of Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Caroline Perozini

    2017-01-01

    Full Text Available Aim. To assess the clinical periodontal and medical parameters in patients with chronic renal failure (CRF at different levels of renal disease. Background. CRF is a progressive and irreversible loss of renal function associated with a decline in the glomerular filtration rate. Periodontal disease is a destructive inflammatory disease affecting periodontal tissues that shows high prevalence in patients with CRF. Materials and Methods. 102 CRF patients were included and divided into an early stage group (EG, predialysis group (PDG, and hemodialysis group (HDG. The medical parameters were taken from the patients’ records. Results. Periodontal clinical condition differed among the CRF groups. Clinical attachment loss was greater in the HDG and PDG group compared to the EG (p=0.0364; the same was observed in the Plaque Index (p=0.0296; the others periodontal parameters did not show any differences. Ferritin levels were significantly higher in the HDG when compared to the EG and PGD (p<0.0001, and fibrinogen was higher in PDG compared with the others (p<0.0001; the triglycerides also showed higher values in the HDG compared with the other groups (p<0.0001. Conclusion. The patients with renal involvement should have a multidisciplinary approach to an improvement in their oral and systemic health.

  5. Predictive Factors of Clinical Response of Infliximab Therapy in Active Nonradiographic Axial Spondyloarthritis Patients

    Directory of Open Access Journals (Sweden)

    Zhiming Lin

    2015-01-01

    Full Text Available Objectives. To evaluate the efficiency and the predictive factors of clinical response of infliximab in active nonradiographic axial spondyloarthritis patients. Methods. Active nonradiographic patients fulfilling ESSG criteria for SpA but not fulfilling modified New York criteria were included. All patients received infliximab treatment for 24 weeks. The primary endpoint was ASAS20 response at weeks 12 and 24. The abilities of baseline parameters and response at week 2 to predict ASAS20 response at weeks 12 and 24 were assessed using ROC curve and logistic regression analysis, respectively. Results. Of 70 axial SpA patients included, the proportions of patients achieving an ASAS20 response at weeks 2, 6, 12, and 24 were 85.7%, 88.6%, 87.1%, and 84.3%, respectively. Baseline MRI sacroiliitis score (AUC = 0.791; P=0.005, CRP (AUC = 0.75; P=0.017, and ASDAS (AUC = 0.778, P=0.007 significantly predicted ASAS20 response at week 12. However, only ASDAS (AUC = 0.696, P=0.040 significantly predicted ASAS20 response at week 24. Achievement of ASAS20 response after the first infliximab infusion was a significant predictor of subsequent ASAS20 response at weeks 12 and 24 (wald χ2=6.87, P=0.009, and wald χ2=5.171, P=0.023. Conclusions. Infliximab shows efficiency in active nonradiographic axial spondyloarthritis patients. ASDAS score and first-dose response could help predicting clinical efficacy of infliximab therapy in these patients.

  6. Induction of labour: clinical predictive factors for success and failure.

    Science.gov (United States)

    Batinelli, Laura; Serafini, Andrea; Nante, Nicola; Petraglia, Felice; Severi, Filiberto Maria; Messina, Gabriele

    2018-04-01

    literature that 'multiparity' and 'Bishop score' are linked with the success of IOL and adds that 'maternal age' and 'foetal birth weight' are significant risk factors for the population of uncomplicated post term pregnancies induced with prostaglandins. What the implications are of these findings for clinical practice and/or further research: Our results agreed with the existing literature regarding parity and Bishop score but not for maternal age and birth weight. This adds new precious data to the literature which could be used for systematic reviews and for implementing IOL guidelines and protocols, nationally and internationally. Our findings could be also used for guiding future research in this field. It will be interesting to investigate the existence of not just specific factors but also any combination of variables which could predict the success of the procedure. At the moment these information cannot be used in terms of decision making for healthcare professionals as no variable is 100% predictive but once further research will be added, we may be able to know when is best time to start the IOL, how to facilitate the success of the procedure and how to best support the woman throughout the whole experience.

  7. Histologic parameters predictive of disease outcome in women with advanced stage ovarian carcinoma treated with neoadjuvant chemotherapy.

    Science.gov (United States)

    Samrao, Damanzoopinder; Wang, Dan; Ough, Faith; Lin, Yvonne G; Liu, Song; Menesses, Teodulo; Yessaian, Annie; Turner, Nicole; Pejovic, Tanja; Mhawech-Fauceglia, Paulette

    2012-12-01

    The use of neoadjuvant chemotherapy followed by tumor reduction surgery, also called interval debulking surgery (IDS), is considered an alternative therapeutic regimen for selected patients with advanced stage epithelial ovarian cancer (EOC). Although minimal residual disease has been proven to be a prognostic factor in traditional cytoreduction for advanced stage EOC, predictive factors after IDS still remain unexplored. The aim of this study was to determine the prognostic value of post-neoadjuvant histologic changes with clinical outcome. Three pathologists evaluated 67 cases for the following parameters: fibrosis, necrosis, residual tumor, and inflammation. The Cohen's kappa statistic was used to measure agreement among pathologists. Univariate and multivariate Cox proportional hazards models were used to determine the association between histologic parameters and recurrence-free survival (RFS) and overall survival (OS). There was substantial to almost perfect agreement among the three pathologists in all four histologic parameters (k ranged from 0.65 to 0.97). Fibrosis was associated with longer RFS (P = 0.0257) with a median of 20 months for tumors with fibrosis (3+) versus 12 months for tumors with fibrosis (1+, 2+) and longer OS (P = 0.0249) with a median of 51 months for tumors with fibrosis (3+) versus 32 months for tumors with fibrosis (1+, 2+). Our results revealed that patients with tumors exhibiting fibrosis (1+, 2+), as well as necrosis (0, 1+), had significant shorter RFS and OS (P = 0.059 and P = 0.0234, respectively). We suggest that the assessment of fibrosis and necrosis should be implemented in pathologic evaluation and prospectively validated in future studies.

  8. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    Science.gov (United States)

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    There is consensus in the scientific community about the great need of spatial soil information. Conventional mapping methods are time consuming and involve high costs. Digital soil mapping has emerged as an area in which the soil mapping is optimized by the application of mathematical and statistical approaches, as well as the application of expert knowledge in pedology. In this sense, the objective of the study was to develop a methodology for the spatial prediction of soil classes by using soil spectroscopy methodologies related with fieldwork, spectral data from satellite image and terrain attributes in simultaneous. The studied area is located in São Paulo State, and comprised an area of 473 ha, which was covered by a regular grid (100 x 100 m). In each grid node was collected soil samples at two depths (layers A and B). There were extracted 206 samples from transect sections and submitted to soil analysis (clay, Al2O3, Fe2O3, SiO2 TiO2, and weathering index). The first analog soil class map (ASC-N) contains only soil information regarding from orders to subgroups of the USDA Soil Taxonomy System. The second (ASC-H) map contains some additional information related to some soil attributes like color, ferric levels and base sum. For the elaboration of the digital soil maps the data was divided into three groups: i) Predicted soil attributes of the layer B (related to the soil weathering) which were obtained by using a local soil spectral library; ii) Spectral bands data extracted from a Landsat image; and iii) Terrain parameters. This information was summarized by a principal component analysis (PCA) in each group. Digital soil maps were generated by supervised classification using a maximum likelihood method. The trainee information for this classification was extracted from five toposequences based on the analog soil class maps. The spectral models of weathering soil attributes shown a high predictive performance with low error (R2 0.71 to 0.90). The spatial

  9. What predicts inattention in adolescents? An experience-sampling study comparing chronotype, subjective, and objective sleep parameters.

    Science.gov (United States)

    Hennig, Timo; Krkovic, Katarina; Lincoln, Tania M

    2017-10-01

    Many adolescents sleep insufficiently, which may negatively affect their functioning during the day. To improve sleep interventions, we need a better understanding of the specific sleep-related parameters that predict poor functioning. We investigated to which extent subjective and objective parameters of sleep in the preceding night (state parameters) and the trait variable chronotype predict daytime inattention as an indicator of poor functioning. We conducted an experience-sampling study over one week with 61 adolescents (30 girls, 31 boys; mean age = 15.5 years, standard deviation = 1.1 years). Participants rated their inattention two times each day (morning, afternoon) on a smartphone. Subjective sleep parameters (feeling rested, positive affect upon awakening) were assessed each morning on the smartphone. Objective sleep parameters (total sleep time, sleep efficiency, wake after sleep onset) were assessed with a permanently worn actigraph. Chronotype was assessed with a self-rated questionnaire at baseline. We tested the effect of subjective and objective state parameters of sleep on daytime inattention, using multilevel multiple regressions. Then, we tested whether the putative effect of the trait parameter chronotype on inattention is mediated through state sleep parameters, again using multilevel regressions. We found that short sleep time, but no other state sleep parameter, predicted inattention to a small effect. As expected, the trait parameter chronotype also predicted inattention: morningness was associated with less inattention. However, this association was not mediated by state sleep parameters. Our results indicate that short sleep time causes inattention in adolescents. Extended sleep time might thus alleviate inattention to some extent. However, it cannot alleviate the effect of being an 'owl'. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. How Sensitive Are Transdermal Transport Predictions by Microscopic Stratum Corneum Models to Geometric and Transport Parameter Input?

    Science.gov (United States)

    Wen, Jessica; Koo, Soh Myoung; Lape, Nancy

    2018-02-01

    While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    Science.gov (United States)

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  12. Optimization of Process Parameters During End Milling and Prediction of Work Piece Temperature Rise

    Directory of Open Access Journals (Sweden)

    Bhirud N.L.

    2017-09-01

    Full Text Available During the machining processes, heat gets generated as a result of plastic deformation of metal and friction along the tool–chip and tool–work piece interface. In materials having high thermal conductivity, like aluminium alloys, large amount of this heat is absorbed by the work piece. This results in the rise in the temperature of the work piece, which may lead to dimensional inaccuracies, surface damage and deformation. So, it is needed to control rise in the temperature of the work piece. This paper focuses on the measurement, analysis and prediction of work piece temperature rise during the dry end milling operation of Al 6063. The control factors used for experimentation were number of flutes, spindle speed, depth of cut and feed rate. The Taguchi method was employed for the planning of experimentation and L18 orthogonal array was selected. The temperature rise of the work piece was measured with the help of K-type thermocouple embedded in the work piece. Signal to noise (S/N ratio analysis was carried out using the lower-the-better quality characteristics. Depth of cut was identified as the most significant factor affecting the work piece temperature rise, followed by spindle speed. Analysis of variance (ANOVA was employed to find out the significant parameters affecting the work piece temperature rise. ANOVA results were found to be in line with the S/N ratio analysis. Regression analysis was used for developing empirical equation of temperature rise. The temperature rise of the work piece was calculated using the regression equation and was found to be in good agreement with the measured values. Finally, confirmation tests were carried out to verify the results obtained. From the confirmation test it was found that the Taguchi method is an effective method to determine optimised parameters for minimization of work piece temperature.

  13. Agrometeorological parameters for prediction of the maturation period of Arabica coffee cultivars

    Science.gov (United States)

    Pezzopane, José Ricardo Macedo; Salva, Terezinha de Jesus Garcia; de Lima, Valéria Bittencourt; Fazuoli, Luiz Carlos

    2012-09-01

    The objective of this study was to determine the harvest period of coffee fruits based on the relationship between agrometeorological parameters and sucrose accumulation in the seeds. Over the crop years 2004/2005 and 2006/2007, from 150 days after flowering (DAF) onwards, samples of 50 fruits of cultivars Mundo Novo IAC 376-4, Obatã IAC 1669-20 and Catuaí Vermelho IAC 144 were collected from coffee trees located in Campinas, Brazil. The endosperm of the fruits was freeze-dried, ground and analyzed for sucrose content by high-performance liquid chromatography. A weather station provided data to calculate the accumulated growing degree-day (GDD) units, and the reference (ETo) and actual (ETr) evapotranspiration rates. The results showed that the highest rates of sucrose accumulation occurred at the transition from the cane-green to the cherry phenological stage. Models for the estimation of sucrose content during maturation based on meteorological variables exhibited similar or better performance than the DAF variable, with better results for the variables GDD and ETo. The Mundo Novo cultivar reached the highest sucrose level in the endosperm after 2,790 GDD, while cultivar Catuaí attained its maximum sucrose concentration after the accumulated evapotranspiration rate has reached a value of 870 mm. As for cultivar Obatã, the maximum sucrose concentration was predicted with the same degree of accuracy using any of the parameters investigated. For the Obatã cultivar, the values of the variables calculated for the maximum sucrose concentration to be reached were 249 DAF, 3,090 GDD, 1,020 ETo and 900 ETr.

  14. Prediction of the area affected by earthquake-induced landsliding based on seismological parameters

    Science.gov (United States)

    Marc, Odin; Meunier, Patrick; Hovius, Niels

    2017-07-01

    We present an analytical, seismologically consistent expression for the surface area of the region within which most landslides triggered by an earthquake are located (landslide distribution area). This expression is based on scaling laws relating seismic moment, source depth, and focal mechanism with ground shaking and fault rupture length and assumes a globally constant threshold of acceleration for onset of systematic mass wasting. The seismological assumptions are identical to those recently used to propose a seismologically consistent expression for the total volume and area of landslides triggered by an earthquake. To test the accuracy of the model we gathered geophysical information and estimates of the landslide distribution area for 83 earthquakes. To reduce uncertainties and inconsistencies in the estimation of the landslide distribution area, we propose an objective definition based on the shortest distance from the seismic wave emission line containing 95 % of the total landslide area. Without any empirical calibration the model explains 56 % of the variance in our dataset, and predicts 35 to 49 out of 83 cases within a factor of 2, depending on how we account for uncertainties on the seismic source depth. For most cases with comprehensive landslide inventories we show that our prediction compares well with the smallest region around the fault containing 95 % of the total landslide area. Aspects ignored by the model that could explain the residuals include local variations of the threshold of acceleration and processes modulating the surface ground shaking, such as the distribution of seismic energy release on the fault plane, the dynamic stress drop, and rupture directivity. Nevertheless, its simplicity and first-order accuracy suggest that the model can yield plausible and useful estimates of the landslide distribution area in near-real time, with earthquake parameters issued by standard detection routines.

  15. Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics.

    Science.gov (United States)

    Severini, Giacomo; Manca, Mario; Ferraresi, Giovanni; Caniatti, Luisa Maria; Cosma, Michela; Baldasso, Francesco; Straudi, Sofia; Morelli, Monica; Basaglia, Nino

    2017-06-01

    Clinical Gait Analysis is commonly used to evaluate specific gait characteristics of patients affected by Multiple Sclerosis. The aim of this report is to present a retrospective cross-sectional analysis of the changes in Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis. In this study a sample of 51 patients with different levels of disability (Expanded Disability Status Scale 2-6.5) was analyzed. We extracted a set of 52 parameters from the Clinical Gait Analysis of each patient and used statistical analysis and linear regression to assess differences among several groups of subjects stratified according to the Expanded Disability Status Scale and 6-Minutes Walking Test. The impact of assistive devices (e.g. canes and crutches) on the kinematics was also assessed in a subsample of patients. Subjects showed decreased range of motion at hip, knee and ankle that translated in increased pelvic tilt and hiking. Comparison between the two stratifications showed that gait speed during 6-Minutes Walking Test is better at discriminating patients' kinematics with respect to Expanded Disability Status Scale. Assistive devices were shown not to significantly impact gait kinematics and the Clinical Gait Analysis parameters analyzed. We were able to characterize disability-related trends in gait kinematics. The results presented in this report provide a small atlas of the changes in gait characteristics associated with different disability levels in the Multiple Sclerosis population. This information could be used to effectively track the progression of MS and the effect of different therapies. Copyright © 2017. Published by Elsevier Ltd.

  16. [Clinical parameters for molecular testing of Maturity Onset Diabetes of the Young (MODY)].

    Science.gov (United States)

    Datz, N; Nestoris, C; von Schütz, W; Danne, T; Driesel, A J; Maringa, M; Kordonouri, O

    2011-05-01

    Monogenic forms of diabetes are often diagnosed by chance, due to the variety of clinical presentation and limited experience of the diabetologists with this kind of diabetes. Aim of this study was to evaluate clinical parameters for an efficient screening. Clinical parameters were: negative diabetes-specific antibodies at onset of diabetes, positive family history of diabetes, and low to moderate insulin requirements after one year of diabetes treatment. Molecular testing was performed through sequencing of the programming regions of HNF-4alpha (MODY 1), glucokinase (MODY 2) and HNF-1alpha/TCF1 (MODY 3) and in one patient the HNF-1beta/TCF2 region (MODY 5). 39 of 292 patients treated with insulin were negative for GADA and IA2A, and 8 (20.5%) patients fulfilled both other criteria. Positive molecular results were found in five (63%) patients (two with MODY 2, two with MODY 3, one with MODY 5). At diabetes onset, the mean age of the 5 patients with MODY was 10.6 ± 5.3 yrs (range 2.6-15 yrs), HbA(1c) was 8.4 ± 3.1 % (6.5-13.9%), mean diabetes duration until diagnosis of MODY was 3.3 ± 3.6 yrs (0.8-9.6 yrs) with insulin requirements of 0.44 ± 0.17 U/kg/d (0.2-0.6 U/kg/d). Patients with MODY 3 were changed from insulin to repaglinide, those with MODY 2 were recommended discontinuing insulin treatment. In patients with negative diabetes-specific antibodies at onset of diabetes, with a positive family history, and low to moderate insulin needs a genetic screening for MODY is indicated. Watchful consideration of these clinical parameters may lead to an early genetic testing, and to an adequate treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Comprehensive reference ranges for hematology and clinical chemistry laboratory parameters derived from normal Nigerian adults.

    Science.gov (United States)

    Miri-Dashe, Timzing; Osawe, Sophia; Tokdung, Monday; Daniel, Monday Tokdung Nenbammun; Daniel, Nenbammun; Choji, Rahila Pam; Mamman, Ille; Deme, Kurt; Damulak, Dapus; Abimiku, Alash'le

    2014-01-01

    Interpretation of laboratory test results with appropriate diagnostic accuracy requires reference or cutoff values. This study is a comprehensive determination of reference values for hematology and clinical chemistry in apparently healthy voluntary non-remunerated blood donors and pregnant women. Consented clients were clinically screened and counseled before testing for HIV, Hepatitis B, Hepatitis C and Syphilis. Standard national blood donors' questionnaire was administered to consented blood donors. Blood from qualified volunteers was used for measurement of complete hematology and chemistry parameters. Blood samples were analyzed from a total of 383 participants, 124 (32.4%) males, 125 (32.6%) non-pregnant females and 134 pregnant females (35.2%) with a mean age of 31 years. Our results showed that the red blood cells count (RBC), Hemoglobin (HB) and Hematocrit (HCT) had significant gender difference (p = 0.000) but not for total white blood count (p>0.05) which was only significantly higher in pregnant verses non-pregnant women (p = 0.000). Hemoglobin and Hematocrit values were lower in pregnancy (P = 0.000). Platelets were significantly higher in females than men (p = 0.001) but lower in pregnant women (p =  .001) with marked difference in gestational period. For clinical chemistry parameters, there was no significant difference for sodium, potassium and chloride (p>0.05) but gender difference exists for Bicarbonate (HCO3), Urea nitrogen, Creatinine as well as the lipids (pchemistry parameters between pregnant and non-pregnant women in this study (p0.05). Hematological and Clinical Chemistry reference ranges established in this study showed significant gender differences. Pregnant women also differed from non-pregnant females and during pregnancy. This is the first of such comprehensive study to establish reference values among adult Nigerians and difference observed underscore the need to establish reference values for different populations.

  18. Prevalence of herpesviruses in gingivitis and chronic periodontitis: relationship to clinical parameters and effect of treatment

    Directory of Open Access Journals (Sweden)

    Rucha Shah

    2016-01-01

    Full Text Available Background: Assess the prevalence of herpesviruses in healthy subjects, gingivitis, and chronic periodontitis patients, to assess the relationship between the prevalence of herpesviruses and periodontal clinical parameters, and to evaluate the effect of phase-I therapy on the level of viral detection. Materials and Methods: Hundred patients consisting of 20 healthy subjects, 40 gingivitis, and 40 chronic periodontitis were included in the study. Clinical parameters recorded included plaque index, gingival index, sulcus bleeding index, probing depth, and clinical attachment level. The gingivitis and chronic periodontitis patients received phase-I periodontal therapy including oral hygiene instructions, full mouth scaling for gingivitis patients and scaling and root planing for chronic periodontitis patients. Gingival crevicular fluid (GCF was collected, and the presence of herpes simplex virus-1 (HSV-1, HSV-2, cytomegalovirus, and Epstein–Barr virus (EBV was analyzed using polymerase chain reaction (PCR. Recording of periodontal parameters as well as GCF collection was performed at baseline and 6 weeks postphase-I therapy. Results: At baseline, the levels of HSV-1 and EBV detection were lower in healthy controls as compared to gingivitis (P < 0.05 and chronic periodontitis cases (P < 0.001. Phase-I therapy led to reduction in the amount of HSV-1 and EBV in gingivitis patients (P < 0.05 and for HSV-1, human cytomegalovirus and EBV in chronic periodontitis patients (P < 0.05 in comparison to baseline. The prevalence of EBV in chronic periodontitis patients was positively associated with increased gingival index, probing depth and loss of clinical attachment (P < 0.05. Conclusions: Higher prevalence of HSV-1 and EBV viruses in GCF of gingivitis and chronic periodontitis suggests a strong association between these viruses and periodontal diseases and periodontal therapy can lead to a reduction in herpesviruses at infected sites.

  19. ECG dispersion mapping predicts clinical deterioration, measured by increase in the Simple Clinical Score.

    LENUS (Irish Health Repository)

    Kellett, J

    2012-01-01

    Objective: ECG dispersion mapping (ECG-DM) is a novel technique that reports abnormal ECG microalternations. We report the ability of ECG-DM to predict clinical deterioration of acutely ill medical patients, as measured by an increase in the Simple Clinical Score (SCS) the day after admission to hospital. Methods: 453 acutely ill medical patients (mean age 69.7 +\\/- 14.0 years) had the SCS recorded and ECGDM performed immediately after admission to hospital. Results: 46 patients had an SCS increase 20.8 +\\/- 7.6 hours after admission. Abnormal micro-alternations during left ventricular re-polarization had the highest association with SCS increase (p=0.0005). Logistic regression showed that only nursing home residence and abnormal micro-alternations during re-polarization of the left ventricle were independent predictors of SCS increase with an odds ratio of 2.84 and 3.01, respectively. Conclusion: ECG-DM changes during left ventricular re-polarization are independent predictors of clinical deterioration the day after hospital admission.

  20. Effect of tamsulosin versus prazosin on clinical and urodynamic parameters in women with voiding difficulty: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Sakineh Hajebrahimi

    2011-01-01

    Full Text Available Sakineh Hajebrahimi1, Yadollah Ahmadi Asrbadr1, Arash Azaripour1, Homayoun Sadeghi-Bazargani2,31Urology Department, Imam Reza University Hospital, Tabriz, Iran; 2Neuroscience Research Center and RDCC, Tabriz University of Medical Sciences, Tabriz, Iran; 3Karolinska Institute, Stockholm, SwedenObjective: To compare the effects of tamsulosin and prazosin on clinical and urodynamic parameters in women with voiding dysfunction.Methods: Forty women aged 20–65 years with a clinical diagnosis of voiding dysfunction were blindly randomized to two equal groups for treatment with tamsulosin 0.4 mg or 1–2 mg of prazosin daily. Symptom assessment with the American Urological Association Symptom Score (AUASS and urodynamic evaluation was performed initially and after three months of treatment. Patient satisfaction was evaluated and severe adverse drug effects recorded. Statistical analysis was carried out using the Student’s t-test and Mann–Whitney U test.Results: Although AUASS improved in both groups, the rate of improvement was larger in the tamsulosin group. Urodynamic parameters improved but did not normalize in both groups. Adverse side effects from medication in the prazosin group were more common than in the tamsulosin group. Most of the patients in the tamsulosin group (80% were satisfied with their treatment compared with those in the prazosin group (45%.Conclusion: Tamsulosin and prazosin are both effective in palliating symptoms of women with voiding dysfunction and improving their urodynamic parameters. Tamsulosin may be the preferred drug to prescribe because of its more amenable side effect profile and greater patient satisfaction.Keywords: tamsulosin, prazosin, voiding dysfunction 

  1. Dynamics of Clinical and Biochemical Parameters in Patients with Liver Cirrhosis Under the Influence of Complex Therapy with Ursodeoxycholic Acid

    Directory of Open Access Journals (Sweden)

    M.I. Shved

    2013-11-01

    Full Text Available It was studied dynamics of clinical and biochemical parameters in patients with liver cirrhosis under the influence of complex treatment using ursosan. It is found that the inclusion of ursosan in complex treatment improves clinical and laboratory parameters, significantly reduces the manifestations of general inflammatory liver syndrome, which prevents the progression of the disease.

  2. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen.

    Science.gov (United States)

    Gliozzi, T M; Turri, F; Manes, S; Cassinelli, C; Pizzi, F

    2017-11-01

    Within recent years, there has been growing interest in the prediction of bull fertility through in vitro assessment of semen quality. A model for fertility prediction based on early evaluation of semen quality parameters, to exclude sires with potentially low fertility from breeding programs, would therefore be useful. The aim of the present study was to identify the most suitable parameters that would provide reliable prediction of fertility. Frozen semen from 18 Italian Holstein-Friesian proven bulls was analyzed using computer-assisted semen analysis (CASA) (motility and kinetic parameters) and flow cytometry (FCM) (viability, acrosomal integrity, mitochondrial function, lipid peroxidation, plasma membrane stability and DNA integrity). Bulls were divided into two groups (low and high fertility) based on the estimated relative conception rate (ERCR). Significant differences were found between fertility groups for total motility, active cells, straightness, linearity, viability and percentage of DNA fragmented sperm. Correlations were observed between ERCR and some kinetic parameters, and membrane instability and some DNA integrity indicators. In order to define a model with high relation between semen quality parameters and ERCR, backward stepwise multiple regression analysis was applied. Thus, we obtained a prediction model that explained almost half (R 2=0.47, P<0.05) of the variation in the conception rate and included nine variables: five kinetic parameters measured by CASA (total motility, active cells, beat cross frequency, curvilinear velocity and amplitude of lateral head displacement) and four parameters related to DNA integrity evaluated by FCM (degree of chromatin structure abnormality Alpha-T, extent of chromatin structure abnormality (Alpha-T standard deviation), percentage of DNA fragmented sperm and percentage of sperm with high green fluorescence representative of immature cells). A significant relationship (R 2=0.84, P<0.05) was observed between

  3. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    KAUST Repository

    Karam, Ayman M.

    2016-10-03

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  4. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    KAUST Repository

    Karam, Ayman M.; Alsaadi, Ahmad Salem; Ghaffour, NorEddine; Laleg-Kirati, Taous-Meriem

    2016-01-01

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  5. Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters.

    Directory of Open Access Journals (Sweden)

    Oliver F Brandenberg

    2017-05-01

    Full Text Available The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.

  6. Study on the Influence of the Work Hardening Models Constitutive Parameters Identification in the Springback Prediction

    International Nuclear Information System (INIS)

    Oliveira, M.C.; Menezes, L. F.; Alves, J.L.; Chaparro, B.M.

    2005-01-01

    The main goal of this work is to determine the influence of the work hardening model in the numerical prediction of springback. This study will be performed according with the specifications of the first phase of the 'Benchmark 3' of the Numisheet'2005 Conference: the 'Channel Draw'. Several work hardening constitutive models are used in order to allow a better description of the different material mechanical behavior. Two are classical pure isotropic hardening models described by a power law (Swift) or a Voce type saturation equation. Those two models were also combined with a non-linear (Lemaitre and Chaboche) kinematic hardening rule. The final one is the Teodosiu microstructural hardening model. The study is performed for two commonly used steels of the automotive industry: mild (DC06) and dual phase (DP600) steels. The mechanical characterization, as well as the constitutive parameters identification of each work hardening models, was performed by LPMTM, based on an appropriate set of experimental data such as uniaxial tensile tests, monotonic and Bauschinger simple shear tests and orthogonal strain path tests, all at various orientations with respect to the rolling direction. All the simulations were carried out with the CEMUC's home code DD3IMP (contraction of 'Deep Drawing 3-D IMPlicit code')

  7. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus)

    Science.gov (United States)

    Chapman, Robert W.; Somerville, Stephen E.; Guillette, Matthew P.; Botha, Hannes; Hoffman, Andre; Luus-Powell, Wilmien J.; Smit, Willem J.; Lebepe, Jeffrey; Myburgh, Jan; Govender, Danny; Tucker, Jonathan; Boggs, Ashley S. P.

    2016-01-01

    One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various “outbreaks” of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus) collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin), in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight) were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River. PMID:27115488

  8. Toward Structure Prediction for Short Peptides Using the Improved SAAP Force Field Parameters

    Directory of Open Access Journals (Sweden)

    Kenichi Dedachi

    2013-01-01

    Full Text Available Based on the observation that Ramachandran-type potential energy surfaces of single amino acid units in water are in good agreement with statistical structures of the corresponding amino acid residues in proteins, we recently developed a new all-atom force field called SAAP, in which the total energy function for a polypeptide is expressed basically as a sum of single amino acid potentials and electrostatic and Lennard-Jones potentials between the amino acid units. In this study, the SAAP force field (SAAPFF parameters were improved, and classical canonical Monte Carlo (MC simulation was carried out for short peptide models, that is, Met-enkephalin and chignolin, at 300 K in an implicit water model. Diverse structures were reasonably obtained for Met-enkephalin, while three folded structures, one of which corresponds to a native-like structure with three native hydrogen bonds, were obtained for chignolin. The results suggested that the SAAP-MC method is useful for conformational sampling for the short peptides. A protocol of SAAP-MC simulation followed by structural clustering and examination of the obtained structures by ab initio calculation or simply by the number of the hydrogen bonds (or the hardness was demonstrated to be an effective strategy toward structure prediction for short peptide molecules.

  9. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus.

    Directory of Open Access Journals (Sweden)

    John A Bowden

    Full Text Available One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various "outbreaks" of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin, in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River.

  10. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis.

    Science.gov (United States)

    Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela

    2018-01-19

    OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

  11. Influence of occlusal loading on peri-implant clinical parameters. A pilot study.

    Science.gov (United States)

    Pellicer-Chover, Hilario; Viña-Almunia, José; Romero-Millán, Javier; Peñarrocha-Oltra, David; García-Mira, Berta; Peñarrocha-Diago, María

    2014-05-01

    To investigate the relation between occlusal loading and peri-implant clinical parameters (probing depth, bleeding on probing, gingival retraction, width of keratinized mucosa, and crevicular fluid volume) in patients with implant-supported complete fixed prostheses in both arches. This clinical study took place at the University of Valencia (Spain) dental clinic. It included patients attending the clinic for regular check-ups during at least 12 months after rehabilitation of both arches with implant-supported complete fixed ceramo-metallic prostheses. One study implant and one control implant were established for each patient using the T-Scan®III computerized system (Tesco, South Boston, USA). The maxillary implant closest to the point of maximum occlusal loading was taken as the study implant and the farthest (with least loading) as the control. Occlusal forces were registered with the T-Scan® III and then occlusal adjustment was performed to distribute occlusal forces correctly. Peri-implant clinical parameters were analyzed in both implants before and two and twelve months after occlusal adjustment. Before occlusal adjustment, study group implants presented a higher mean volume of crevicular fluid (51.3 ± 7.4 UP) than the control group (25.8 ± 5.5 UP), with statistically significant difference. Two months after occlusal adjustment, there were no significant differences between groups (24.6 ± 3.8 UP and 26 ± 4.5 UP respectively) (p=0.977). After twelve months, no significant differences were found between groups (24.4 ± 11.1 UP and 22.5 ± 8.9 UP respectively) (p=0.323). For the other clinical parameters, no significant differences were identified between study and control implants at any of the study times (p>0.05). Study group implants receiving higher occlusal loading presented significantly higher volumes of crevicular fluid than control implants. Crevicular fluid volumes were similar in both groups two and twelve months after occlusal adjustment.

  12. Predicting surgical outcome in cases of cervical myelopathy with magnetic resonance imaging. Critical parameters

    International Nuclear Information System (INIS)

    Akiyama, Takashi

    1997-01-01

    In this study, the author attempted to correlate clinical factors significant in cases of cervical myelopathy with postoperative recovery. It is hoped that the results will aid in the preoperative prediction of surgical outcomes. The factors considered were the transverse area of the spinal cord, the cord compression rate, the presence of a high intensity area in T2-weighted MRI, the duration of symptoms before surgery, and age at surgery. Because there are variations in the transverse area of the spinal cord, 100 normal individuals were selected and the standard transverse area was calculated. The transverse area of the spinal cord and the cord constriction rate in the myelopathy cases was then measured and compared to the standard. The data indicated that the constriction rate was most relevant to recovery rate. Clinical thresholds found to correlate with a better than average rate of recovery in cases of cervical spondylotic myelopathy (CSM) were: a cord constriction rate; under 28.7%, cord compression rate; over 0.38, duration of symptoms before surgery; less than 9.2 months, and age at surgery; under 59.2 yrs. In patients with ossification of the longitudinal ligament (OPLL), cord constriction rate; under 36.2%, cord compression rate; over 0.30, duration of symptoms before surgery; less than 14.2 months, and age at surgery; under 57.6 yrs., all correlated with superior recovery, as did cord constriction rate; under 22.3%, and duration of symptoms before surgery; less than 3.7 months with patients suffering from cervical disc herniation (CDH). Furthermore, the absence of a T2-weighted high intensity area in CSM and OPLL patients also correlated with improved recovery. These results suggest that a favorable postoperative recovery rate can be expected in cases of cervical myelopathy that conform to the above criteria. (author)

  13. Predicting the activity coefficients of free-solvent for concentrated globular protein solutions using independently determined physical parameters.

    Directory of Open Access Journals (Sweden)

    Devin W McBride

    Full Text Available The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations.

  14. Clinical prediction of 5-year survival in systemic sclerosis

    DEFF Research Database (Denmark)

    Fransen, Julie Munk; Popa-Diaconu, D; Hesselstrand, R

    2011-01-01

    Systemic sclerosis (SSc) is associated with a significant reduction in life expectancy. A simple prognostic model to predict 5-year survival in SSc was developed in 1999 in 280 patients, but it has not been validated in other patients. The predictions of a prognostic model are usually less accura...

  15. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    field monitoring. Vibration prediction diminishes the importance of trial-and-error procedures such as drill-off tests, which are valid only for short sections. It also solves an existing lapse in Mechanical Specific Energy (MSE) real-time drilling control programs applying the theory of Teale, which states that a drilling system is perfectly efficient when it spends the exact energy to overcome the in situ rock strength. Using the proprietary software tool this paper will examine the resonant vibration modes that may be initiated while drilling with different BHA's and drill string designs, showing that the combination of a proper BHA design along with the correct selection of input parameters results in an overall improvement to drilling efficiency. Also, being the BHA predictively analyzed, it will be reduced the potential for vibration or stress fatigue in the drill string components, leading to a safer operation. In the recent years there has been an increased focus on vibration detection, analysis, and mitigation techniques, where new technologies, like the Drilling Dynamics Data Recorders (DDDR), may provide the capability to capture high frequency dynamics data at multiple points along the drilling system. These tools allow the achievement of drilling performance improvements not possible before, opening a whole new array of opportunities for optimization and for verification of predictions calculated by the drill string dynamics modeling software tool. The results of this study will identify how the dynamics from the drilling system, interacting with formation, directly relate to inefficiencies and to the possible solutions to mitigate drilling vibrations in order to improve drilling performance. Software vibration prediction and downhole measurements can be used for non-drilling operations like drilling out casing or reaming, where extremely high vibration levels - devastating to the cutting structure of the bit before it has even touched bottom - have

  16. Can clinical prediction tools predict the need for computed tomography in blunt abdominal? A systematic review.

    Science.gov (United States)

    Sharples, Alistair; Brohi, Karim

    2016-08-01

    Blunt abdominal trauma is a common reason for admission to the Emergency Department. Early detection of injuries is an important goal but is often not straightforward as physical examination alone is not a good predictor of serious injury. Computed tomography (CT) has become the primary method for assessing the stable trauma patient. It has high sensitivity and specificity but there remains concern regarding the long term consequences of high doses of radiation. Therefore an accurate and reliable method of assessing which patients are at higher risk of injury and hence require a CT would be clinically useful. We perform a systematic review to investigate the use of clinical prediction tools (CPTs) for the identification of abdominal injuries in patients suffering blunt trauma. A literature search was performed using Medline, Embase, The Cochrane Library and NHS Evidence up to August 2014. English language, prospective and retrospective studies were included if they derived, validated or assessed a CPT, aimed at identifying intra-abdominal injuries or the need for intervention to treat an intra-abdominal after blunt trauma. Methodological quality was assessed using a 14 point scale. Performance was assessed predominantly by sensitivity. Seven relevant studies were identified. All studies were derivative studies and no CPT was validated in a separate study. There were large differences in the study design, composition of the CPTs, the outcomes analysed and the methodological quality of the included studies. Sensitivities ranged from 86 to 100%. The highest performing CPT had a lower limit of the 95% CI of 95.8% and was of high methodological quality (11 of 14). Had this rule been applied to the population then 25.1% of patients would have avoided a CT scan. Seven CPTs were identified of varying designs and methodological quality. All demonstrate relatively high sensitivity with some achieving very high sensitivity whilst still managing to reduce the number of CTs

  17. Comprehensive reference ranges for hematology and clinical chemistry laboratory parameters derived from normal Nigerian adults.

    Directory of Open Access Journals (Sweden)

    Timzing Miri-Dashe

    Full Text Available Interpretation of laboratory test results with appropriate diagnostic accuracy requires reference or cutoff values. This study is a comprehensive determination of reference values for hematology and clinical chemistry in apparently healthy voluntary non-remunerated blood donors and pregnant women.Consented clients were clinically screened and counseled before testing for HIV, Hepatitis B, Hepatitis C and Syphilis. Standard national blood donors' questionnaire was administered to consented blood donors. Blood from qualified volunteers was used for measurement of complete hematology and chemistry parameters. Blood samples were analyzed from a total of 383 participants, 124 (32.4% males, 125 (32.6% non-pregnant females and 134 pregnant females (35.2% with a mean age of 31 years. Our results showed that the red blood cells count (RBC, Hemoglobin (HB and Hematocrit (HCT had significant gender difference (p = 0.000 but not for total white blood count (p>0.05 which was only significantly higher in pregnant verses non-pregnant women (p = 0.000. Hemoglobin and Hematocrit values were lower in pregnancy (P = 0.000. Platelets were significantly higher in females than men (p = 0.001 but lower in pregnant women (p =  .001 with marked difference in gestational period. For clinical chemistry parameters, there was no significant difference for sodium, potassium and chloride (p>0.05 but gender difference exists for Bicarbonate (HCO3, Urea nitrogen, Creatinine as well as the lipids (p0.05.Hematological and Clinical Chemistry reference ranges established in this study showed significant gender differences. Pregnant women also differed from non-pregnant females and during pregnancy. This is the first of such comprehensive study to establish reference values among adult Nigerians and difference observed underscore the need to establish reference values for different populations.

  18. Four hundred or more participants needed for stable contingency table estimates of clinical prediction rule performance

    DEFF Research Database (Denmark)

    Kent, Peter; Boyle, Eleanor; Keating, Jennifer L

    2017-01-01

    OBJECTIVE: To quantify variability in the results of statistical analyses based on contingency tables and discuss the implications for the choice of sample size for studies that derive clinical prediction rules. STUDY DESIGN AND SETTING: An analysis of three pre-existing sets of large cohort data......, odds ratios and risk/prevalence ratios, for each sample size was calculated. RESULTS: There were very wide, and statistically significant, differences in estimates derived from contingency tables from the same dataset when calculated in sample sizes below 400 people, and typically this variability...... stabilized in samples of 400 to 600 people. Although estimates of prevalence also varied significantly in samples below 600 people, that relationship only explains a small component of the variability in these statistical parameters. CONCLUSION: To reduce sample-specific variability, contingency tables...

  19. Debris-flows scale predictions based on basin spatial parameters calculated from Remote Sensing images in Wenchuan earthquake area

    International Nuclear Information System (INIS)

    Zhang, Huaizhen; Chi, Tianhe; Liu, Tianyue; Wang, Wei; Yang, Lina; Zhao, Yuan; Shao, Jing; Yao, Xiaojing; Fan, Jianrong

    2014-01-01

    Debris flow is a common hazard in the Wenchuan earthquake area. Collapse and Landslide Regions (CLR), caused by earthquakes, could be located from Remote Sensing images. CLR are the direct material source regions for debris flow. The Spatial Distribution of Collapse and Landslide Regions (SDCLR) strongly impact debris-flow formation. In order to depict SDCLR, we referred to Strahler's Hypsometric analysis method and developed 3 functional models to depict SDCLR quantitatively. These models mainly depict SDCLR relative to altitude, basin mouth and main gullies of debris flow. We used the integral of functions as the spatial parameters of SDCLR and these parameters were employed during the process of debris-flows scale predictions. Grouping-occurring debris-flows triggered by the rainstorm, which occurred on September 24th 2008 in Beichuan County, Sichuan province China, were selected to build the empirical equations for debris-flows scale predictions. Given the existing data, only debris-flows runout zone parameters (Max. runout distance L and Lateral width B) were estimated in this paper. The results indicate that the predicted results were more accurate when the spatial parameters were used. Accordingly, we suggest spatial parameters of SDCLR should be considered in the process of debris-flows scale prediction and proposed several strategies to prevent debris flow in the future

  20. On the Effect of Unit-Cell Parameters in Predicting the Elastic Response of Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Fatemeh Alavi

    2013-01-01

    Full Text Available This paper presents a study on the effect of unit-cell geometrical parameters in predicting elastic properties of a typical wood plastic composite (WPC. The ultimate goal was obtaining the optimal values of representative volume element (RVE parameters to accurately predict the mechanical behavior of the WPC. For each unit cell, defined by a given combination of the above geometrical parameters, finite element simulation in ABAQUS was carried out, and the corresponding stress-strain curve was obtained. A uniaxial test according to ASTM D638-02a type V was performed on the composite specimen. Modulus of elasticity was determined using hyperbolic tangent function, and the results were compared to the sets of finite element analyses. Main effects of RVE parameters and their interactions were demonstrated and discussed, specially regarding the inclusion of two adjacent wood particles within one unit cell of the material. Regression analysis was performed to mathematically model the RVE parameter effects and their interactions over the modulus of elasticity response. The model was finally employed in an optimization analysis to arrive at an optimal set of RVE parameters that minimizes the difference between the predicted and experimental moduli of elasticity.

  1. [Analysis of correlation between trabecular microstructure and clinical imaging parameters in fracture region of osteoporotic hip].

    Science.gov (United States)

    Peng, Jing; Zhou, Yong; Min, Li; Zhang, Wenli; Luo, Yi; Zhang, Xuelei; Zou, Chang; Shi, Rui; Tu, Chongqi

    2014-05-01

    To analyze the correlation between the trabecular microstructure and the clinical imaging parameters in the fracture region of osteoporotic hip so as to provide a simple method to evaluate the trabecular microstructure by a non-invasive way. Between June 2012 and January 2013, 16 elderly patients with femoral neck fracture underwent hip arthroplasty were selected as the trial group; 5 young patients with pelvic fracture were selected as the control group. The hip CT examination was done, and cancellous bone volume/marrow cavity volume (CV/MV) was analyzed with Mimics 10.01 software in the control group. The CT scan and bone mineral density (BMD) measurement were performed on normal hips of the trial group, and cuboid specimens were gained from the femoral necks at the place of the tensional trabeculae to evaluate the trabecular microstructure parameters by Micro-CT, including bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), connect density (Conn.D), and structure model index (SMI). The correlation between imaging parameters and microstructure parameters was analyzed. In the trial group, the BMD value was 0.491-0.698 g/cm2 (mean, 0.601 g/cm2); according to World Health Organization (WHO) standard, 10 cases were diagnosed as having osteoporosis, and 6 cases as having osteopenia. The CV/MV of the trial group (0.670 1 +/- 0.102 0) was significantly lower than that of the control group (0.885 0 +/- 0.089 1) (t = -4.567, P = 0.000). In the trial group, CV/MV had correlation with BV/TV, Tb.Th, and SMI (P 0.05). BV/TV had correlation with Tb.Th, Tb.N, Tb.Sp, and SMI (P microstructure parameters (P > 0.05). CV/MV obviously decreases in the osteoporotic hip, and there is a correlation between CV/MV and the microstructure parameters of BV/TV, Tb.Th, and SMI, to some extent, which can reflect the variety of the microstructure of the trabeculae. There is no correlation between BMD of femoral neck and

  2. Clinical, psychological and demographic parameters of body pain in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Ghasem Salehpoor

    2017-02-01

    Full Text Available Background: Body pain in multiple sclerosis (MS is a common phenomenon that can create or exacerbate by different parameters of clinical, psychological and demographic. The aim of this study was to investigate the relationship between parameters of clinical (fatigue, clinical course, body mass index and duration, psychological (depression, anxiety and stress and demographic (age, gender, marital status and education characters with multiple sclerosis patient’s body pain. Methods: This cross-sectional study has been performed in the Multiple Sclerosis Society of Guilan Province and Imam Reza Specialized and Sub-specialized Clinic, Rasht City, Iran during June to February 2010. In this study 162 patients with MS were selected by consecutive sampling. We used the clinical and demographic variables inventory, body pain subscale of the health survey questionnaire, depression, anxiety and stress scale and fatigue severity scale along with identical analog-spring balance. The data were analyzed by Pearson correlation coefficient and point bi-serial, one-way analysis of variance, Gabriel test and stepwise multiple regression. Results: The findings showed that patients who scored 3 or higher in relapses experienced significantly more body pain than patients who scored 1-2 times of relapses (P= 0.031. In the meantime, significant differences were not found between the two groups of patients with a score of 3 or higher in relapses and non-relapse and between non-relapse patients and with a score 1-2 times of relapses in terms of body pain. Also, significant differences were not found in different groups of hospitalization in terms of body pain. However, anxiety and fatigue together could explain significantly 25% of the shared variance of body pain (F= 26.29, P≤ 0.0009. Conclusion: This study showed the effect of psychological and clinical factors on body pain exacerbation in MS patients. Therefore, it is necessary for clinicians to consider

  3. Clinical predictive factors for endometriosis in a Portuguese infertile population

    NARCIS (Netherlands)

    Calhaz-Jorge, C.; Mol, Ben W.; Nunes, J.; Costa, A. P.

    2004-01-01

    BACKGROUND: Endometriosis is an important clinical situation associated with subfertility. It would be very useful to identify patients at increased risk for endometriosis prior to laparoscopy. In the present study, we evaluate the demographic and clinical characteristics in a cohort of Portuguese

  4. Clinical significance of sleep bruxism on several occlusal and functional parameters.

    Science.gov (United States)

    Ommerborn, Michelle A; Giraki, Maria; Schneider, Christine; Fuck, Lars Michael; Zimmer, Stefan; Franz, Matthias; Raab, Wolfgang Hans-michael; Schaefer, Ralf

    2010-10-01

    The aim of this study was to evaluate the association between various functional and occlusal parameters and sleep bruxism. Thirty-nine (39) sleep bruxism patients and 30 controls participated in this investigation. The assessment of sleep bruxism was performed using the Bruxcore Bruxism-Monitoring Device (BBMD) combined with a new computer-based analyzing method. Sixteen functional and/or occlusal parameters were recorded. With a mean slide of 0.95 mm in the sleep bruxism group and a mean slide of 0.42 mm in the control group (Mann Whitney U test; p<0.003), results solely demonstrated a significant group difference regarding the length of a slide from centric occlusion to maximum intercuspation. The results suggest that the slightly pronounced slide could be of clinical importance in the development of increased wear facets in patients with current sleep bruxism activity. Following further evaluation including polysomnographic recordings, the BBMD combined with this new analyzing technique seems to be a clinically feasible instrument that allows the practitioner to quantify abrasion over a short period.

  5. Augmented chaos-multiple linear regression approach for prediction of wave parameters

    Directory of Open Access Journals (Sweden)

    M.A. Ghorbani

    2017-06-01

    The inter-comparisons demonstrated that the Chaos-MLR and pure MLR models yield almost the same accuracy in predicting the significant wave heights and the zero-up-crossing wave periods. Whereas, the augmented Chaos-MLR model is performed better results in term of the prediction accuracy vis-a-vis the previous prediction applications of the same case study.

  6. Evaluation of clinical and cytogenetic parameters in rheumatoid arthritis patients for effective diagnosis.

    Science.gov (United States)

    Chandirasekar, R; Kumar, B Lakshman; Jayakumar, R; Uthayakumar, V; Jacob, Raichel; Sasikala, K

    2015-01-15

    Rheumatoid arthritis is the commonest inflammatory joint disease, affecting nearly 1% of the adult population worldwide. Early and accurate diagnosis and prognosis of rheumatoid arthritis (RA) have become increasingly important. In the present study, we aimed to elucidate the relationships between hematological, biochemical, immunological and cytogenetic parameters in rheumatoid arthritis patients and healthy normal controls. The study group comprised of 126 RA patients and equal number of healthy normal control subjects. The blood was collected and analyzed for biochemical, immunological, enzymatic and cytogenetic parameters. Results of the present study indicated that 20% of RA patient's hematological, 31% of biochemical and 70% immunological parameters had a significant difference from the controls and reference range. The RF and anti-CCP antibody levels were also positive in 70% of RA patients. A significant increase in minor chromosomal abnormalities was also observed in patients as compared to controls. The knowledge about autoimmune diseases is very low among the South Indian population. The present study has thus helped in understanding the RA disease in a better way based on a pattern of various clinical markers of the disease condition which might help in planning therapeutic intervention strategies and create awareness about the disease management among RA patients of the population studied. Copyright © 2014. Published by Elsevier B.V.

  7. Multi-parametric MRI in cervical cancer. Early prediction of response to concurrent chemoradiotherapy in combination with clinical prognostic factors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei; Chen, Bing; Wang, Ai Jun; Zhao, Jian Guo [The General Hospital of Ningxia Medical University, Department of Radiology, Yinchuan (China); Qiang, Jin Wei [Fudan University, Department of Radiology, Jinshan Hospital, Shanghai (China); Tian, Hai Ping [The General Hospital of Ningxia Medical University, Department of Pathology, Yinchuan (China)

    2018-01-15

    To investigate the prediction of response to concurrent chemoradiotherapy (CCRT) through a combination of pretreatment multi-parametric magnetic resonance imaging (MRI) with clinical prognostic factors (CPF) in cervical cancer patients. Sixty-five patients underwent conventional MRI, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI (DCE-MRI) before CCRT. The patients were divided into non- and residual tumour groups according to post-treatment MRI. Pretreatment MRI parameters and CPF between the two groups were compared and prognostic factors, optimal thresholds, and predictive performance for post-treatment residual tumour occurrence were estimated. The residual group showed a lower maximum slope of increase (MSI{sub L}) and signal enhancement ratio (SER{sub L}) in low-perfusion subregions, a higher apparent diffusion coefficient (ADC) value, and a higher stage than the non-residual tumour group (p < 0.001, p = 0.003, p < 0.001, and p < 0.001, respectively). MSI{sub L} and ADC were independent prognostic factors. The combination of both measures improved the diagnostic performance compared with individual MRI parameters. A further combination of these two factors with CPF exhibited the highest predictive performance. Pretreatment MSI{sub L} and ADC were independent prognostic factors for cervical cancer. The predictive capacity of multi-parametric MRI was superior to individual MRI parameters. The combination of multi-parametric MRI with CPF further improved the predictive performance. (orig.)

  8. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer

    International Nuclear Information System (INIS)

    Hatt, Mathieu; Visvikis, Dimitris; Cheze-le Rest, Catherine; Pradier, Olivier

    2011-01-01

    The objectives of this study were to investigate the predictive value of tumour measurements on 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG) positron emission tomography (PET) pretreatment scan regarding therapy response in oesophageal cancer and to evaluate the impact of tumour delineation strategies. Fifty patients with oesophageal cancer treated with concomitant radiochemotherapy between 2004 and 2008 were retrospectively considered and classified as complete, partial or non-responders (including stable and progressive disease) according to Response Evaluation Criteria in Solid Tumors (RECIST). The classification of partial and complete responders was confirmed by biopsy. Tumours were delineated on the 18 F-FDG pretreatment scan using an adaptive threshold and the automatic fuzzy locally adaptive Bayesian (FLAB) methodologies. Several parameters were then extracted: maximum and peak standardized uptake value (SUV), tumour longitudinal length (TL) and volume (TV), SUV mean , and total lesion glycolysis (TLG = TV x SUV mean ). The correlation between each parameter and response was investigated using Kruskal-Wallis tests, and receiver-operating characteristic methodology was used to assess performance of the parameters to differentiate patients. Whereas commonly used parameters such as SUV measurements were not significant predictive factors of the response, parameters related to tumour functional spatial extent (TL, TV, TLG) allowed significant differentiation of all three groups of patients, independently of the delineation strategy, and could identify complete and non-responders with sensitivity above 75% and specificity above 85%. A systematic although not statistically significant trend was observed regarding the hierarchy of the delineation methodologies and the parameters considered, with slightly higher predictive value obtained with FLAB over adaptive thresholding, and TLG over TV and TL. TLG is a promising predictive factor of concomitant

  9. Baseline {sup 18}F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, Mathieu; Visvikis, Dimitris; Cheze-le Rest, Catherine [CHU Morvan, LaTIM, INSERM U650, Brest (France); Pradier, Olivier [CHU Morvan, LaTIM, INSERM U650, Brest (France); CHU Morvan, Department of Radiotherapy, Brest (France)

    2011-09-15

    The objectives of this study were to investigate the predictive value of tumour measurements on 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ({sup 18}F-FDG) positron emission tomography (PET) pretreatment scan regarding therapy response in oesophageal cancer and to evaluate the impact of tumour delineation strategies. Fifty patients with oesophageal cancer treated with concomitant radiochemotherapy between 2004 and 2008 were retrospectively considered and classified as complete, partial or non-responders (including stable and progressive disease) according to Response Evaluation Criteria in Solid Tumors (RECIST). The classification of partial and complete responders was confirmed by biopsy. Tumours were delineated on the {sup 18}F-FDG pretreatment scan using an adaptive threshold and the automatic fuzzy locally adaptive Bayesian (FLAB) methodologies. Several parameters were then extracted: maximum and peak standardized uptake value (SUV), tumour longitudinal length (TL) and volume (TV), SUV{sub mean}, and total lesion glycolysis (TLG = TV x SUV{sub mean}). The correlation between each parameter and response was investigated using Kruskal-Wallis tests, and receiver-operating characteristic methodology was used to assess performance of the parameters to differentiate patients. Whereas commonly used parameters such as SUV measurements were not significant predictive factors of the response, parameters related to tumour functional spatial extent (TL, TV, TLG) allowed significant differentiation of all three groups of patients, independently of the delineation strategy, and could identify complete and non-responders with sensitivity above 75% and specificity above 85%. A systematic although not statistically significant trend was observed regarding the hierarchy of the delineation methodologies and the parameters considered, with slightly higher predictive value obtained with FLAB over adaptive thresholding, and TLG over TV and TL. TLG is a promising predictive factor of

  10. Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters

    International Nuclear Information System (INIS)

    Rau, B.; Wust, P.; Tilly, W.; Gellermann, J.; Harder, C.; Riess, H.; Budach, V.; Felix, R.; Schlag, P.M.

    2000-01-01

    Purpose: Preoperative radiochemotherapy (RCT) is a widely used means of treatment for patients suffering from primary, locally advanced, or recurrent rectal cancer. We evaluated the efficacy of treatment due to additional application of regional hyperthermia (HRCT) to this conventional therapy regime in a Phase II study, employing the annular phased-array system BSD-2000 (SIGMA-60 applicator). The clinical results of the trial were encouraging. We investigated the relationship between a variety of thermal and clinical parameters in order to assess the adequacy of thermometry, the effectiveness of hyperthermia therapy, and its potential contribution to clinical endpoints. Methods and Materials: A preoperative combination of radiotherapy (1.8 Gy for 5 days a week, total dose 45 Gy applied over 5 weeks) and chemotherapy (low-dose 5-fluorouracil [5-FU] plus leucovorin in the first and fourth week) was administered to 37 patients with primary rectal cancer (PRC) and 18 patients with recurrent rectal cancer (RRC). Regional hyperthermia (RHT) was applied once a week prior to the daily irradiation fraction of 1.8 Gy. Temperatures were registered along rectal catheters using Bowman thermistors. Measurement points related to the tumor were specified after estimating the section of the catheter in near contact with the tumor. Three patients with local recurrence after abdominoperineal resection, had their catheters positioned transgluteally under CT guidance, where the section of the catheter related to the tumor was estimated from the CT scans. Index temperatures (especially T max , T 90 ) averaged over time, cumulative minutes (cum min) (here for T 90 > reference temperature 40.5 deg. C), and equivalent minutes (equ min) (with respect to 43 deg. C) were derived from repetitive temperature-position scans (5- to 10-min intervals) utilizing software specially developed for this purpose on a PC platform. Using the statistical software package SPSS a careful analysis was

  11. Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research

    Science.gov (United States)

    Dietrich, Johannes W.; Landgrafe-Mende, Gabi; Wiora, Evelin; Chatzitomaris, Apostolos; Klein, Harald H.; Midgley, John E. M.; Hoermann, Rudolf

    2016-01-01

    Although technical problems of thyroid testing have largely been resolved by modern assay technology, biological variation remains a challenge. This applies to subclinical thyroid disease, non-thyroidal illness syndrome, and those 10% of hypothyroid patients, who report impaired quality of life, despite normal thyrotropin (TSH) concentrations under levothyroxine (L-T4) replacement. Among multiple explanations for this condition, inadequate treatment dosage and monotherapy with L-T4 in subjects with impaired deiodination have received major attention. Translation to clinical practice is difficult, however, since univariate reference ranges for TSH and thyroid hormones fail to deliver robust decision algorithms for therapeutic interventions in patients with more subtle thyroid dysfunctions. Advances in mathematical and simulative modeling of pituitary–thyroid feedback control have improved our understanding of physiological mechanisms governing the homeostatic behavior. From multiple cybernetic models developed since 1956, four examples have also been translated to applications in medical decision-making and clinical trials. Structure parameters representing fundamental properties of the processing structure include the calculated secretory capacity of the thyroid gland (SPINA-GT), sum activity of peripheral deiodinases (SPINA-GD) and Jostel’s TSH index for assessment of thyrotropic pituitary function, supplemented by a recently published algorithm for reconstructing the personal set point of thyroid homeostasis. In addition, a family of integrated models (University of California-Los Angeles platform) provides advanced methods for bioequivalence studies. This perspective article delivers an overview of current clinical research on the basis of mathematical thyroid models. In addition to a summary of large clinical trials, it provides previously unpublished results of validation studies based on simulation and clinical samples. PMID:27375554

  12. Association of baseline vitamin D levels with clinical parameters and treatment outcomes in chronic hepatitis B.

    Science.gov (United States)

    Chan, Henry Lik-Yuen; Elkhashab, Magdy; Trinh, Huy; Tak, Won Young; Ma, Xiaoli; Chuang, Wan-Long; Kim, Yoon Jun; Martins, Eduardo B; Lin, Lanjia; Dinh, Phillip; Charuworn, Prista; Foster, Graham R; Marcellin, Patrick

    2015-11-01

    The relationship between vitamin D levels and chronic hepatitis B (CHB) infection and treatment outcomes are poorly elucidated. We measured pre-treatment serum vitamin D (25-hydroxyvitamin D3; 25[OH]D3) levels and determined their association with clinical parameters and treatment outcomes in active CHB patients without advanced liver disease enrolled in a global clinical trial. Patients were randomly assigned to either 48 weeks of tenofovir disoproxil fumarate (TDF) plus peginterferon alfa-2a (PegIFN), TDF plus PegIFN for 16 weeks followed by TDF for 32 weeks, PegIFN for 48 weeks, or TDF for 120 weeks. Univariate and multivariate analyses were conducted to determine associations between vitamin D, baseline factors, and week 48 clinical outcome. Of 737 patients, 35% had insufficient (⩾20 but vitamin D levels. In univariate analysis, lower vitamin D levels were significantly associated with the following baseline parameters: younger age, lower uric acid levels, HBeAg-positive status, lower calcium levels, blood draw in winter or autumn, and HBV genotype D. On multivariate analysis, only HBV genotype, season of blood draw, calcium level, and age retained their association. High baseline level of vitamin D was associated with low HBV DNA, normal ALT and HBsAg at week 48 independent of treatment groups, but the association, with the exception of ALT, became statistically insignificant after adjusting for age, gender, HBeAg and HBV genotype. Abnormally low vitamin D levels are highly prevalent among untreated, active CHB patients. Baseline vitamin D levels are not associated with treatment outcomes, but were associated with normal ALT. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Lungscape: resected non-small-cell lung cancer outcome by clinical and pathological parameters.

    Science.gov (United States)

    Peters, Solange; Weder, Walter; Dafni, Urania; Kerr, Keith M; Bubendorf, Lukas; Meldgaard, Peter; O'Byrne, Kenneth J; Wrona, Anna; Vansteenkiste, Johan; Felip, Enriqueta; Marchetti, Antonio; Savic, Spasenija; Lu, Shun; Smit, Egbert; Dingemans, Anne-Marie; Blackhall, Fiona H; Baas, Paul; Camps, Carlos; Rosell, Rafael; Stahel, Rolf A

    2014-11-01

    The Lungscape project was designed to address the impact of clinical, pathological, and molecular characteristics on outcome in resected non-small- cell lung cancer (NSCLC). A decentralized biobank with fully annotated tissue samples was established. Selection criteria for participating centers included sufficient number of cases, tissue microarray building capability, and documented ethical approval. Patient selection was based on availability of comprehensive clinical data, radical resection between 2003 and 2009 with adequate follow-up, and adequate quantity and quality of formalin-fixed tissue. Fifteen centers contributed 2449 cases. The 5-year overall survival (OS) was 69.6% and 63.6% for stages IA and IB, 51.6% and 47.7% for stages IIA and IIB, and 29.0% and 13.0% for stages IIIA and IIIB, respectively (p < 0.001). Median and 5-year relapse-free survival (RFS) were 52.8 months and 47.3%, respectively. Distant relapse was recorded for 44.4%, local for 26.0%, and both for 16.9% of patients. Based on multivariate analysis for the OS, RFS, and time to relapse, the factors significantly associated with all of them are performance status and pathological stage. The aim of this report is to present the results from Lungscape, the first large series reporting on NSCLC surgical outcome measured not only by OS but also by RFS and time to relapse and including multivariate analysis by significant clinical and pathological prognostic parameters. As tissue from all patients is preserved locally and is available for detailed molecular investigations, Lungscape provides an excellent basis to evaluate the influence of molecular parameters on the disease outcome after radical resection, besides providing an overview of the molecular landscape of stage I to III NSCLC.

  14. Rationalization and prediction of in vivo metabolite exposures: The role of metabolite kinetics, clearance predictions and in vitro parameters

    Science.gov (United States)

    Lutz, Justin D.; Fujioka, Yasushi; Isoherranen, Nina

    2010-01-01

    Importance of the field Due to growing concerns over toxic or active metabolites, significant efforts have been focused on qualitative identification of potential in vivo metabolites from in vitro data. However, limited tools are available to quantitatively predict their human exposures. Areas covered in this review Theory of clearance predictions and metabolite kinetics is reviewed together with supporting experimental data. In vitro and in vivo data of known circulating metabolites and their parent drugs was collected and the predictions of in vivo exposures of the metabolites were evaluated. What the reader will gain The theory and data reviewed will be useful in early identification of human metabolites that will circulate at significant levels in vivo and help in designing in vivo studies that focus on characterization of metabolites. It will also assist in rationalization of metabolite-to-parent ratios used as markers of specific enzyme activity. Take home message The relative importance of a metabolite in comparison to the parent compound as well as other metabolites in vivo can only be predicted using the metabolites in vitro formation and elimination clearances, and the in vivo disposition of a metabolite can only be rationalized when the elimination pathways of that metabolite are known. PMID:20557268

  15. Outcome prediction in pneumonia induced ALI/ARDS by clinical features and peptide patterns of BALF determined by mass spectrometry.

    Science.gov (United States)

    Frenzel, Jochen; Gessner, Christian; Sandvoss, Torsten; Hammerschmidt, Stefan; Schellenberger, Wolfgang; Sack, Ulrich; Eschrich, Klaus; Wirtz, Hubert

    2011-01-01

    Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction. A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray's lung injury severity score (Murray's LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray's LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray's LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity. MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced

  16. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque.

    Science.gov (United States)

    Fujinaka, Hidetake; Takeshita, Toru; Sato, Hirayuki; Yamamoto, Tetsuji; Nakamura, Junji; Hase, Tadashi; Yamashita, Yoshihisa

    2013-06-01

    More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.

  17. Analysis of clinical drug-drug interaction data to predict uncharacterized interaction magnitudes between antiretroviral drugs and co-medications.

    Science.gov (United States)

    Stader, Felix; Kinvig, Hannah; Battegay, Manuel; Khoo, Saye; Owen, Andrew; Siccardi, Marco; Marzolini, Catia

    2018-04-23

    Despite their high potential for drug-drug-interactions (DDI), clinical DDI studies of antiretroviral drugs (ARVs) are often lacking, because the full range of potential interactions cannot feasibly or pragmatically be studied, with some high-risk DDI studies also ethically difficult to undertake. Thus, a robust method to screen and to predict the likelihood of DDIs is required.We developed a method to predict DDIs based on two parameters: the degree of metabolism by specific enzymes such as CYP3A and the strength of an inhibitor or inducer. These parameters were derived from existing studies utilizing paradigm substrates, inducers and inhibitors of CYP3A, to assess the predictive performance of this method by verifying predicted magnitudes of changes in drug exposure against clinical DDI studies involving ARVs.The derived parameters were consistent with the FDA classification of sensitive CYP3A substrates and the strength of CYP3A inhibitors and inducers. Characterized DDI magnitudes (n = 68) between ARVs and co-medications were successfully quantified meaning 53%, 85% and 98% of the predictions were within 1.25-fold (0.80 - 1.25), 1.5-fold (0.66 - 1.48) and 2-fold (0.66 - 1.94) of the observed clinical data. In addition, the method identifies CYP3A substrates likely to be highly or conversely minimally impacted by CYP3A inhibitors or inducers, thus categorizing the magnitude of DDIs.The developed effective and robust method has the potential to support a more rational identification of dose adjustment to overcome DDIs being particularly relevant in a HIV-setting giving the treatments complexity, high DDI risk and limited guidance on the management of DDIs. Copyright © 2018 American Society for Microbiology.

  18. Identification of clinical and paraclinical findings predictive for headache occurrence during spontaneous subarachnoid hemorrhage.

    Science.gov (United States)

    Ljubisavljevic, Srdjan; Milosevic, Vuk; Stojanov, Aleksandar; Ljubisavljevic, Marina; Dunjic, Olivera; Zivkovic, Miroslava

    2017-07-01

    Headache is recognized as the main but unwarranted symptom of subarachnoid hemorrhage (SAH). There are no enough findings identified as predictive for headache occurrence in SAH. We evaluated the clinical and paraclinical factors predictive for headache occurrence in SAH. We retrospectively analyzed medical records of 431 consecutive non traumatic SAH patients (264 females and 167 males), ages from 19 to 91 years, presenting with headache (70.3%) and without headache (29.7%) during period of 11years. Among all tested parameters, as negative predictors for headache occurrence were recognized: patients' ages (OR 0.97 [95%CI: 0.96-0.99], p=0.025), persistence of coagulation abnormality (OR 0.23 [95%CI: 0.08-0.67], p=0.006), atrial fibrilation (OR 0.23 [95%CI: 0.09-0.59], p=0.002), chronic renal failure (OR 0.26 [95%CI: 0.09-0.76], p=0.014) and more diseases (OR 0.11 [95%CI: 0.04-0.32], p<0.0001), as higher clinical score (OR 0.94 [95%CI: 0.90-0.99], p=0.018) including positive neurological findings (OR 0.34 [95%CI: 0.21-0.55], p<0.001) and loss of consciousness (OR 0.22 [95%CI: 0.12-0.39], p<0.001) at the SAH onset, while the complaint of neck stiffness was identified as its positive predictor (OR 1.93 [95%CI: 1.19-3.10], p=0.007). Although diagnosis based solely on clinical presentation is not reliable and speculative, our findings could provide physicians with evidence to consider SAH not only in conditions of its headache occurrence but also in those with headache absence. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L.

    Directory of Open Access Journals (Sweden)

    J. Prakash Maran

    2013-09-01

    Full Text Available In this study, a comparative approach was made between artificial neural network (ANN and response surface methodology (RSM to predict the mass transfer parameters of osmotic dehydration of papaya. The effects of process variables such as temperature, osmotic solution concentration and agitation speed on water loss, weight reduction, and solid gain during osmotic dehydration were investigated using a three-level three-factor Box-Behnken experimental design. Same design was utilized to train a feed-forward multilayered perceptron (MLP ANN with back-propagation algorithm. The predictive capabilities of the two methodologies were compared in terms of root mean square error (RMSE, mean absolute error (MAE, standard error of prediction (SEP, model predictive error (MPE, chi square statistic (χ2, and coefficient of determination (R2 based on the validation data set. The results showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.

  20. Combining Physical and Biologic Parameters to Predict Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer Treated With Definitive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Matthew H. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Cai Xuwei [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Radiation Oncology, Shanghai Cancer Hospital, Fudan University, Shanghai (China); Shedden, Kerby [Department of Biostatistics, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Hayman, James A. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Yuan Shuanghu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Radiation Oncology, Shangdong Cancer Hospital, Jinan (China); Ritter, Timothy [Veterans Affairs Medical Center, Ann Arbor, Michigan (United States); Ten Haken, Randall K.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Kong Fengming, E-mail: fengkong@med.umich.edu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Veterans Affairs Medical Center, Ann Arbor, Michigan (United States)

    2012-10-01

    Purpose: To investigate the plasma dynamics of 5 proinflammatory/fibrogenic cytokines, including interleukin-1beta (IL-1{beta}), IL-6, IL-8, tumor necrosis factor alpha (TNF-{alpha}), and transforming growth factor beta1 (TGF-{beta}1) to ascertain their value in predicting radiation-induced lung toxicity (RILT), both individually and in combination with physical dosimetric parameters. Methods and Materials: Treatments of patients receiving definitive conventionally fractionated radiation therapy (RT) on clinical trial for inoperable stages I-III lung cancer were prospectively evaluated. Circulating cytokine levels were measured prior to and at weeks 2 and 4 during RT. The primary endpoint was symptomatic RILT, defined as grade 2 and higher radiation pneumonitis or symptomatic pulmonary fibrosis. Minimum follow-up was 18 months. Results: Of 58 eligible patients, 10 (17.2%) patients developed RILT. Lower pretreatment IL-8 levels were significantly correlated with development of RILT, while radiation-induced elevations of TGF-ss1 were weakly correlated with RILT. Significant correlations were not found for any of the remaining 3 cytokines or for any clinical or dosimetric parameters. Using receiver operator characteristic curves for predictive risk assessment modeling, we found both individual cytokines and dosimetric parameters were poor independent predictors of RILT. However, combining IL-8, TGF-ss1, and mean lung dose into a single model yielded an improved predictive ability (P<.001) compared to either variable alone. Conclusions: Combining inflammatory cytokines with physical dosimetric factors may provide a more accurate model for RILT prediction. Future study with a larger number of cases and events is needed to validate such findings.

  1. Comparison of statistical and clinical predictions of functional outcome after ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Douglas D Thompson

    Full Text Available To determine whether the predictions of functional outcome after ischemic stroke made at the bedside using a doctor's clinical experience were more or less accurate than the predictions made by clinical prediction models (CPMs.A prospective cohort study of nine hundred and thirty one ischemic stroke patients recruited consecutively at the outpatient, inpatient and emergency departments of the Western General Hospital, Edinburgh between 2002 and 2005. Doctors made informal predictions of six month functional outcome on the Oxford Handicap Scale (OHS. Patients were followed up at six months with a validated postal questionnaire. For each patient we calculated the absolute predicted risk of death or dependence (OHS≥3 using five previously described CPMs. The specificity of a doctor's informal predictions of OHS≥3 at six months was good 0.96 (95% CI: 0.94 to 0.97 and similar to CPMs (range 0.94 to 0.96; however the sensitivity of both informal clinical predictions 0.44 (95% CI: 0.39 to 0.49 and clinical prediction models (range 0.38 to 0.45 was poor. The prediction of the level of disability after stroke was similar for informal clinical predictions (ordinal c-statistic 0.74 with 95% CI 0.72 to 0.76 and CPMs (range 0.69 to 0.75. No patient or clinician characteristic affected the accuracy of informal predictions, though predictions were more accurate in outpatients.CPMs are at least as good as informal clinical predictions in discriminating between good and bad functional outcome after ischemic stroke. The place of these models in clinical practice has yet to be determined.

  2. PREDICTIVE ACCURACY OF TRANSCEREBELLAR DIAMETER IN COMPARISON WITH OTHER FOETAL BIOMETRIC PARAMETERS FOR GESTATIONAL AGE ESTIMATION AMONG PREGNANT NIGERIAN WOMEN.

    Science.gov (United States)

    Adeyekun, A A; Orji, M O

    2014-04-01

    To compare the predictive accuracy of foetal trans-cerebellar diameter (TCD) with those of other biometric parameters in the estimation of gestational age (GA). A cross-sectional study. The University of Benin Teaching Hospital, Nigeria. Four hundred and fifty healthy singleton pregnant women, between 14-42 weeks gestation. Trans-cerebellar diameter (TCD), biparietal diameter (BPD), femur length (FL), abdominal circumference (AC) values across the gestational age range studied. Correlation and predictive values of TCD compared to those of other biometric parameters. The range of values for TCD was 11.9 - 59.7mm (mean = 34.2 ± 14.1mm). TCD correlated more significantly with menstrual age compared with other biometric parameters (r = 0.984, p = 0.000). TCD had a higher predictive accuracy of 96.9% ± 12 days), BPD (93.8% ± 14.1 days). AC (92.7% ± 15.3 days). TCD has a stronger predictive accuracy for gestational age compared to other routinely used foetal biometric parameters among Nigerian Africans.

  3. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors

    NARCIS (Netherlands)

    Schoups, G.; Vrugt, J.A.

    2010-01-01

    Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance.

  4. Theoretical prediction of Grüneisen parameter for SiO_2.TiO_2 bulk metallic glasses

    International Nuclear Information System (INIS)

    Singh, Chandra K.; Pandey, Brijesh K.; Pandey, Anjani K.

    2016-01-01

    The Grüneisen parameter (γ) is very important to decide the limitations for the prediction of thermoelastic properties of bulk metallic glasses. It can be defined in terms of microscopic and macroscopic parameters of the material in which former is based on vibrational frequencies of atoms in the material while later is closely related to its thermodynamic properties. Different formulation and equation of states are used by the pioneer researchers of this field to predict the true sense of Gruneisen parameter for BMG but for SiO_2.TiO_2 very few and insufficient information is available till now. In the present work we have tested the validity of two different isothermal EOS viz. Poirrior-Tarantola EOS and Usual-Tait EOS to predict the true value of Gruneisen parameter for SiO_2.TiO_2 as a function of compression. Using different thermodynamic limitations related to the material constraints and analyzing obtained result it is concluded that the Poirrior-Tarantola EOS gives better numeric values of Grüneisen parameter (γ) for SiO_2.TiO_2 BMG.

  5. Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie

    2013-01-01

    Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (∼2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ∼2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the

  6. Analysis of Factors that Predict Clinical Performance in Medical School

    Science.gov (United States)

    White, Casey B.; Dey, Eric L.; Fantone, Joseph C.

    2009-01-01

    Academic achievement indices including GPAs and MCAT scores are used to predict the spectrum of medical student academic performance types. However, use of these measures ignores two changes influencing medical school admissions: student diversity and affirmative action, and an increased focus on communication skills. To determine if GPA and MCAT…

  7. Predicting activities after stroke : what is clinically relevant?

    NARCIS (Netherlands)

    Kwakkel, G.; Kollen, B. J.

    Knowledge about factors that determine the final outcome after stroke is important for early stroke management, rehabilitation goals, and discharge planning. This narrative review provides an overview of current knowledge about the prediction of activities after stroke. We reviewed the pattern of

  8. predicted peak expiratory flow in human and the clinical implication ...

    African Journals Online (AJOL)

    DR. AMINU

    predicted PEF varied widely across formulae and choice of a particular formula may alter guideline- base care. This work has therefore accepted a recently published population-base equation proposed as the reference standard for future asthma guidelines. Keywords: Peak expiratory flow, Asthma, Practice guidelines, ...

  9. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    Directory of Open Access Journals (Sweden)

    Daan Nieboer

    Full Text Available External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting.We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1 the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2 the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury.The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples and heterogeneous in scenario 2 (in 17%-39% of simulated samples. Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2.The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  10. Correlation between olfactory dysfunction and various clinical parameters in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kostić Jelena

    2009-01-01

    Full Text Available Background/Aim. Multiple sclerosis (MS is a chronic inflammatory disease of the central nervous system (CNS characterized by myelin destruction and axon loss. Among various clinical manifestations of MS cognitive disorders are frequent. Olfactory disorders are also noticed but they are rarely considered in clinical practice. The aim of the present study was to examine frequency of olfactory dysfunction in patients with MS and its relationship to clinical parameters. Methods. Our study comprised 61 consecutive patients with definite MS who were hospitalized at the Department for Multiple Sclerosis and Other Immune- Mediated Disorders of CNS, Institute of Neurology, Clinical Center of Serbia, Belgrade, and 45 gender-, age- and education-matched healthy voluntaries. The Pocket Smell Test (PST was used for examination of olfactory function. Cognitive functions were analyzed using the tests from the Brief Battery of Neuropsychological Tests: Paced Auditory Serial Addition Test 3-minute Version (PASAT 3', Word List Generation (WLG and Symbol Digit Modalities Test (SDMT. Results. Olfactory dysfunction was found in 26 (43% MS patients and 5 (11% controls (p = 0.001. Statistically significant positive correlation was found only between PST score and WLG scores (r = 0.297, p = 0.030. In comparison with the previously published normative values, our subjects with MS had decrease in the mean indices of the PASAT 3' in 28%, SDMT in 51% and WLG in 90% of the subjects. Conclusion. Olfactory dysfunction is frequent in our population of patients with MS. This disturbance correlates with the impairment of cognitive functions in these patients.

  11. Correlation of clinical predictions and surgical results in maxillary superior repositioning.

    Science.gov (United States)

    Tabrizi, Reza; Zamiri, Barbad; Kazemi, Hamidreza

    2014-05-01

    This is a prospective study to evaluate the accuracy of clinical predictions related to surgical results in subjects who underwent maxillary superior repositioning without anterior-posterior movement. Surgeons' predictions according to clinical (tooth show at rest and at the maximum smile) and cephalometric evaluation were documented for the amount of maxillary superior repositioning. Overcorrection or undercorrection was documented for every subject 1 year after the operations. Receiver operating characteristic curve test was used to find a cutoff point in prediction errors and to determine positive predictive value (PPV) and negative predictive value. Forty subjects (14 males and 26 females) were studied. Results showed a significant difference between changes in the tooth show at rest and at the maximum smile line before and after surgery. Analysis of the data demonstrated no correlation between the predictive data and the surgical results. The incidence of undercorrection (25%) was more common than overcorrection (7.5%). The cutoff point for errors in predictions was 5 mm for tooth show at rest and 15 mm at the maximum smile. When the amount of the presurgical tooth show at rest was more than 5 mm, 50.5% of clinical predictions did not match the clinical results (PPV), and 75% of clinical predictions showed the same results when the tooth show was less than 5 mm (negative predictive value). When the amount of presurgical tooth shown in the maximum smile line was more than 15 mm, 75% of clinical predictions did not match with clinical results (PPV), and 25% of the predictions had the same results because the tooth show at the maximum smile was lower than 15 mm. Clinical predictions according to the tooth show at rest and at the maximum smile have a poor correlation with clinical results in maxillary superior repositioning for vertical maxillary excess. The risk of errors in predictions increased when the amount of superior repositioning of the maxilla increased

  12. Accuracy of various iron parameters in the prediction of iron deficiency in an acute care hospital

    NARCIS (Netherlands)

    Ong, K. H.; Tan, H. L.; Lai, H. C.; Kuperan, P.

    2005-01-01

    INTRODUCTION: Iron parameters like serum ferritin and iron saturation are routinely used in diagnosing iron deficiency. However, these tests are influenced by many factors. We aimed to review the accuracy of iron parameters among inpatients in an acute care hospital. MATERIALS AND METHODS: From

  13. Parameter Estimation and Prediction of a Nonlinear Storage Model: an algebraic approach

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    Generally, parameters that are nonlinear in system models are estimated by nonlinear least-squares optimization algorithms. In this paper, if a nonlinear discrete-time model with a polynomial quotient structure in input, output, and parameters, a method is proposed to re-parameterize the model such

  14. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    Science.gov (United States)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50

  15. Impact of Endogenous and Exogenous Interferences on Clinical Chemistry Parameters Measured on Blood Gas Analyzers.

    Science.gov (United States)

    Grieme, Caleb V; Voss, Dena R; Davis, Scott R; Krasowski, Matthew D

    2017-03-01

    The prevalence of hemolysis, icterus, and lipemia (HIL) was determined for residual whole blood specimens analyzed for clinical chemistry parameters on blood gas analyzers. The frequency and potential impact of exogenous interference from iodide, salicylate, and thiocyanate (metabolite of sodium nitroprusside) on analysis of whole blood chloride was also assessed. Over an approximately two month period at an academic medical center, indices for HIL were determined on Roche cobas c502 analyzers for 1,986 residual whole blood specimens that had been previously analyzed for clinical chemistry parameters on Radiometer ABL90 FLEX blood gas analyzers. To examine exogenous interferences, retrospective analysis was performed over multiple years to ascertain whether patient samples analyzed for whole blood chloride were potentially affected by interference from iodide, salicylate, or thiocyanate. Some degree of hemolysis (defined as hemolysis index of greater than 60) was present in 9.7% of the whole blood specimens. Increasing rates of hemolysis were associated with higher whole blood potassium concentrations. Nearly 60% of specimens with potassium concentrations between 6.0 and 6.9 mEq/L had hemolysis indices of 100 or greater, and 75% of specimens with a potassium concentration of 7.0 mEq/L or greater were severely hemolyzed (hemolysis index of 300 or greater). In contrast to the hemolysis results, icterus and lipemia were determined to have minimal impact on patient results. For the exogenous interferences, we did not identify any patient samples where elevated salicylate levels or pharmaceutical iodide administration overlapped with whole blood chloride analysis (out of 75,887 and 169,229 total chloride measurements, respectively). We did, however, find that for patients receiving nitroprusside therapy in the inpatient setting, whole blood chloride concentrations were significantly higher during nitroprusside therapy [106.7 +/- 6.2 mEq/L (mean, SD)] compared to before

  16. Clinical and laboratory parameters in adult diabetics with and without calcific shoulder periarthritis.

    Science.gov (United States)

    Mavrikakis, M E; Sfikakis, P P; Kontoyannis, S A; Antoniades, L G; Kontoyannis, D A; Moulopoulou, D S

    1991-10-01

    The clinical and laboratory parameters of calcific shoulder periarthritis (CSP) were examined in 900 patients with type II diabetes mellitus as well as in 350 age- and sex-matched control subjects. A threefold increased prevalence of CSP in diabetics compared with the control group was associated with the presence of longstanding and poorly controlled diabetes, hypercholesterolemia, and hypertriglyceridemia suggesting pronounced diabetic angiopathy, as well as with minor trauma and hypomagnesemia. Aging and serum calcium concentrations were not related to the presence of CSP. Thirty-two percent of diabetics with CSP were symptomatic; 15% of them presented with severe pain and restriction of shoulder movement. These findings confirm a close pathogenetic interrelation between CSP and diabetes mellitus.

  17. Predicting the disease of Alzheimer with SNP biomarkers and clinical data using data mining classification approach: decision tree.

    Science.gov (United States)

    Erdoğan, Onur; Aydin Son, Yeşim

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.

  18. Prediction of renal mass aggressiveness using clinical and radiographic features: a global, multicentre prospective study

    NARCIS (Netherlands)

    Golan, Shay; Eggener, Scott; Subotic, Svetozar; Barret, Eric; Cormio, Luigi; Naito, Seiji; Tefekli, Ahmet; Pilar Laguna Pes, M.

    2016-01-01

    To examine the ability of preoperative clinical characteristics to predict histological features of renal masses (RMs). Data from consecutive patients with clinical stage I RMs treated surgically between 2010 and 2011 in the Clinical Research Office of Endourology Society (CROES) Renal Mass Registry

  19. Pressure Ulcers in Adults: Prediction and Prevention. Clinical Practice Guideline Number 3.

    Science.gov (United States)

    Agency for Health Care Policy and Research (DHHS/PHS), Rockville, MD.

    This package includes a clinical practice guideline, quick reference guide for clinicians, and patient's guide to predicting and preventing pressure ulcers in adults. The clinical practice guideline includes the following: overview of the incidence and prevalence of pressure ulcers; clinical practice guideline (introduction, risk assessment tools…

  20. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Cobaugh Christian W

    2004-08-01

    Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.

  1. Prediction of Permeation Resistance of Protective Gloves, etc. from Solubility Parameters

    DEFF Research Database (Denmark)

    Henriksen, H. Risvig; Madsen, Jørgen Øgaard

    1997-01-01

    ). A starting point was the authoritative conclusion (Coletta et al., 1978), that permeation in protective clothing could not be predicted. As a spin off, the predictive concept indicated that new types of polymers sometimes should be incorporated to reach a reasonable (long) breakthrough time and (low...

  2. Correlation between serum adiponectin and clinical characteristics, biochemical parameters in Indian women with polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Sunita J Ramanand

    2014-01-01

    Full Text Available Background: Polycystic ovary syndrome (PCOS is a common disorder. PCOS women are at a high risk for insulin resistance and metabolic syndrome (MS. Adiponectin is positively related to insulin sensitivity. It has a preventive role in atherogenesis and MS. The present work was conducted to study the correlation between serum adiponectin levels and clinical characteristics and biochemical parameters in PCOS patients. Materials and Methods: A prospective study in 49 newly diagnosed (as per Rotterdam criteria Indian PCOS women was conducted. PCOS women were clinically examined and investigated for biochemical parameters. Results : The mean serum adiponectin was 12 ± 9.4 μg/mL (range 0.47-45. Hypoadiponectinemia (serum adiponectin <4 μg/mL was present in 22% patients. Age and adiponectin correlated significantly and inversely (r = −0.42, P = 0.027. Overweight/obese patients had lower mean adiponectin levels than normal weight (11.62 ± 9.5 vs 13.58 ± 9.5, P = 0.56. It was significantly lower in patients with acanthosis nigricans (AN as compared with those without AN (8.4 ± 5.9 vs 15 ± 11, P = 0.038. Hirsute patients showed lower mean adiponectin levels than nonhirsute (10 ± 7.3 vs 13 ± 10, P = 0.57. A positive, insignificant correlation was observed between serum adiponectin and cholesterol, low-density lipoprotein, follicle stimulating hormone (FSH, thyroid stimulating hormone, levels. A negative insignificant correlation existed between serum adiponectin and luteinizing hormone (LH, LH: FSH ratio, prolactin, dehydroepiandrosterone, testosterone, triglyceride, high-density lipoprotein, fasting blood glucose, fasting insulin, and Homeostasis Model Assessment. Conclusion: Hypoadiponectinemia is present in one-fifth of women with PCOS. Adiponectin levels decrease as age advances. Low levels of adiponectin possibly contributes to the development of dermal manifestation (AN of insulin resistance.

  3. The Relationship between Serum Zonulin Level and Clinical and Laboratory Parameters of Childhood Obesity.

    Science.gov (United States)

    Küme, Tuncay; Acar, Sezer; Tuhan, Hale; Çatlı, Gönül; Anık, Ahmet; Gürsoy Çalan, Özlem; Böber, Ece; Abacı, Ayhan

    2017-03-01

    To investigate the relationship between zonulin levels and clinical and laboratory parameters of childhood obesity. The study included obese children with a body mass index (BMI) >95 th percentile and healthy children who were of similar age and gender distribution. Clinical (BMI, waist circumferences, mid-arm circumference, triceps skinfold, percentage of body fat, systolic blood pressure, diastolic blood pressure) and biochemical (glucose, insulin, lipid levels, thyroid function tests, cortisol, zonulin and leptin levels) parameters were measured. A total of 43 obese subjects (23 males, mean age: 11.1±3.1 years) and 37 healthy subjects (18 males, mean age: 11.5±3.5 years) were included in this study. Obese children had significantly higher insulin, homeostasis model assessment of insulin resistance, triglyceride, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), zonulin and leptin levels than healthy children (p0.05). Comparison of the obese children with and without insulin resistance showed no statistically significant differences for zonulin levels (p>0.05). Zonulin levels were found to negatively correlate with HDL-C and positively correlate with leptin levels, after adjusting for age and BMI. To the best of our knowledge, this is the first study investigating the relationship between circulating zonulin level (as a marker of intestinal permeability) and insulin resistance and leptin (as markers of metabolic disturbances associated with obesity) in childhood obesity. The results showed that zonulin was significantly higher in obese children when compared to healthy children, a finding indicating a potential role of zonulin in the etiopathogenesis of obesity and related disturbances.

  4. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  5. Ruptured corpus luteal cyst: Prediction of clinical outcomes with CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Seok; Moon, Min Hoan; Woo, Hyun Sik; Sung, Chang Kyu; Jeon, Hye Won; Lee, Taek Sang [SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    To evaluate the determinant pretreatment CT findings that can predict surgical intervention for patients suffering from corpus luteal cyst rupture with hemoperitoneum. From January 2009 to December 2014, a total of 106 female patients (mean age, 26.1 years; range, 17–44 years) who visited the emergency room of our institute for acute abdominal pain and were subsequently diagnosed with ruptured corpus luteal cyst with hemoperitoneum were included in the retrospective study. The analysis of CT findings included cyst size, cyst shape, sentinel clot sign, ring of fire sign, hemoperitoneum depth, active bleeding in portal phase and attenuation of hemoperitoneum. The comparison of CT findings between the surgery and conservative management groups was performed with the Mann-Whitney U test or chi-square test. Logistic regression analysis was used to determine significant CT findings in predicting surgical intervention for a ruptured cyst. Comparative analysis revealed that the presence of active bleeding and the hemoperitoneum depth were significantly different between the surgery and conservative management groups and were confirmed as significant CT findings for predicting surgery, with adjusted odds ratio (ORs) of 3.773 and 1.318, respectively (p < 0.01). On the receiver-operating characteristic curve analysis for hemoperitoneum depth, the optimal cut-off value was 5.8 cm with 73.7% sensitivity and 58.6% specificity (Az = 0.711, p = 0.004). In cases with a hemoperitoneum depth > 5.8 cm and concurrent active bleeding, the OR for surgery increased to 5.786. The presence of active bleeding and the hemoperitoneum depth on a pretreatment CT scan can be predictive warning signs of surgery for a patient with a ruptured corpus luteal cyst with hemoperitoneum.

  6. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n =

  7. Predicting malaria in an highly endemic country using clinical and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Kate Zinszer

    evaluate statistical models that integrate environmental and clinical data to .... was to identify and assess forecasting methods used to forecast malaria, and ...... 3Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and ...... Sachs J, Malaney P. The economic and social burden of malaria.

  8. Effect of blood collection technique in mice on clinical pathology parameters.

    Science.gov (United States)

    Schnell, Michael A; Hardy, Christine; Hawley, Melanie; Propert, Kathleen Joy; Wilson, James M

    2002-01-01

    A study was conducted in normal healthy C57BL/6 mice to determine the effect of method of blood collection on clinical pathology parameters and to provide value ranges for these parameters. Males and females were used and were randomly assigned to treatment groups based upon phlebotomy method. The blood was collected using one of four methods: intracardiac (IC), a single attempt at collection from the caudal vena cava (VC), collection from the caudal vena cava with collection of any extravasated blood from the peritoneum (MC), or retroorbital phlebotomy (RO). Evaluation of blood and serum samples was conducted for a number of serum biochemistries including liver function tests and complete blood count with differentials and platelet counts. Female mice demonstrated higher values for red blood cell number, hemoglobin (p values for platelet counts, specific white blood cell numbers (total, neutrophil, lymphocyte, and eosinophil counts), globulin, amylase, and the BUN/creatinine ratio. Overall, the VC method was associated with the least variation in both sexes and appeared slightly better than the IC method for the parameters evaluated. The largest difference between groups was noted for the transaminase levels. While alanine aminotransferase (ALT) values were similar between the IC and VC groups, aspartate aminotransferase (AST) values were associated with less variation for the VC method. Transaminase levels for the MC and RO groups were associated with relatively large ranges and variation. ALT results from the RO method, the only method amenable to repetitive sample collection used in this evaluation, indicate that this is an acceptable method. The results demonstrate the substantial impact that phlebotomy method has on the assay results and that the VC or IC methods provide the most consistent results. The ranges by collection method and sex provided here can be used to select the preferred method of collection when designing a study and for comparison of data

  9. Comparison of clinical parameters in captive Cracidae fed traditional and extruded diets.

    Science.gov (United States)

    Candido, Marcus Vinicius; Silva, Louise C C; Moura, Joelma; Bona, Tania D M M; Montiani-Ferreira, Fabiano; Santin, Elizabeth

    2011-09-01

    The Cracidae family of neotropical birds is regarded as one of the most severely threatened in the world. They traditionally have been extensively hunted, and, thus, ex situ efforts for their conservation are recommended and involve the optimization of their care in captivity. Nutrition is a fundamental aspect of husbandry, which influences survival and reproduction in captivity. In this study, a total of 29 animals, including 3 species (Penelope obscura, Penelope superciliaris, and Aburria jacutinga), were subjected to monthly physical examination and blood sampling before and after dietary conversion from the traditional diet of broiler feed, fruits, and vegetables to a nutritionally balanced commercial diet specifically designed for wild Galliformes. The diet change produced differences in several parameters tested, including an increase (P < 0.05) in hemoglobin concentration for all species. Increases (P < 0.05) in erythrocyte count, packed cell volume, and body weight were observed in P. obscura, with a concomitant decrease in the standard deviation for such parameters that show improved uniformity. Globulins and lipase also were reduced (P < 0.05) in P. obscura. Although leukocyte count was lowered and eosinophils were increased in all 3 species after dietary conversion, only these 2 changes were significant (P < 0.05) in P. superciliaris. A. jacutinga had higher (P < 0.05) blood glucose concentrations than the other species, but diet had no effect on this parameter. Blood uric acid concentrations were higher (P < 0.05) after conversion to the commercial diet in P superciliaris. The provision of a commercial extruded diet as a single food source was beneficial, which led to a general improvement in clinical aspects and group uniformity in these 3 species of Cracidae.

  10. Prediction of pharmacokinetic and toxicological parameters of a 4-phenylcoumarin isolated from geopropolis: In silico and in vitro approaches.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Franco, Gilson César Nobre; Franchin, Marcelo; Beutler, John A; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2016-11-30

    In silico and in vitro methodologies have been used as important tools in the drug discovery process, including from natural sources. The aim of this study was to predict pharmacokinetic and toxicity (ADME/Tox) properties of a coumarin isolated from geopropolis using in silico and in vitro approaches. Cinnamoyloxy-mammeisin (CNM) isolated from Brazilian M. scutellaris geopropolis was evaluated for its pharmacokinetic parameters by in silico models (ACD/Percepta™ and MetaDrug™ software). Genotoxicity was assessed by in vitro DNA damage signaling PCR array. CNM did not pass all parameters of Lipinski's rule of five, with a predicted low oral bioavailability and high plasma protein binding, but with good predicted blood brain barrier penetration. CNM was predicted to show low affinity to cytochrome P450 family members. Furthermore, the predicted Ames test indicated potential mutagenicity of CNM. Also, the probability of toxicity for organs and tissues was classified as moderate and high for liver and kidney, and moderate and low for skin and eye irritation, respectively. The PCR array analysis showed that CNM significantly upregulated about 7% of all DNA damage-related genes. By exploring the biological function of these genes, it was found that the predicted CNM genotoxicity is likely to be mediated by apoptosis. The predicted ADME/Tox profile suggests that external use of CNM may be preferable to systemic exposure, while its genotoxicity was characterized by the upregulation of apoptosis-related genes after treatment. The combined use of in silico and in vitro approaches to evaluate these parameters generated useful hypotheses to guide further preclinical studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Predicting reattendance at a high-risk breast cancer clinic.

    Science.gov (United States)

    Ormseth, Sarah R; Wellisch, David K; Aréchiga, Adam E; Draper, Taylor L

    2015-10-01

    The research about follow-up patterns of women attending high-risk breast-cancer clinics is sparse. This study sought to profile daughters of breast-cancer patients who are likely to return versus those unlikely to return for follow-up care in a high-risk clinic. Our investigation included 131 patients attending the UCLA Revlon Breast Center High Risk Clinic. Predictor variables included age, computed breast-cancer risk, participants' perceived personal risk, clinically significant depressive symptomatology (CES-D score ≥ 16), current level of anxiety (State-Trait Anxiety Inventory), and survival status of participants' mothers (survived or passed away from breast cancer). A greater likelihood of reattendance was associated with older age (adjusted odds ratio [AOR] = 1.07, p = 0.004), computed breast-cancer risk (AOR = 1.10, p = 0.017), absence of depressive symptomatology (AOR = 0.25, p = 0.009), past psychiatric diagnosis (AOR = 3.14, p = 0.029), and maternal loss to breast cancer (AOR = 2.59, p = 0.034). Also, an interaction was found between mother's survival and perceived risk (p = 0.019), such that reattendance was associated with higher perceived risk among participants whose mothers survived (AOR = 1.04, p = 0.002), but not those whose mothers died (AOR = 0.99, p = 0.685). Furthermore, a nonlinear inverted "U" relationship was observed between state anxiety and reattendance (p = 0.037); participants with moderate anxiety were more likely to reattend than those with low or high anxiety levels. Demographic, medical, and psychosocial factors were found to be independently associated with reattendance to a high-risk breast-cancer clinic. Explication of the profiles of women who may or may not reattend may serve to inform the development and implementation of interventions to increase the likelihood of follow-up care.

  12. Parameter uncertainty and model predictions: a review of Monte Carlo results

    International Nuclear Information System (INIS)

    Gardner, R.H.; O'Neill, R.V.

    1979-01-01

    Studies of parameter variability by Monte Carlo analysis are reviewed using repeated simulations of the model with randomly selected parameter values. At the beginning of each simulation, parameter values are chosen from specific frequency distributions. This process is continued for a number of iterations sufficient to converge on an estimate of the frequency distribution of the output variables. The purpose was to explore the general properties of error propagaton in models. Testing the implicit assumptions of analytical methods and pointing out counter-intuitive results produced by the Monte Carlo approach are additional points covered

  13. Corelations between radiological score with clinical and laboratory parameters in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Mihaela Chicu

    2016-12-01

    Full Text Available Staging in rheumatoid arthritis (RA and evaluating the effectiveness of drug treatment involves the determination of radiological scores (for narrowing and erosions, this being the most specific changes and most commonly found in RA.Matherials and methods: Our study was condacted over a period of 12 months in Medical Rehabilitation Clinic of „Sf. Spiridon” Iasi Hospital, on a group of 40 women patients with RA in various stages of evolution. X-ray examination was done on hands and feet at the beginning and the end of the study period. There were computed radiographic Sharp scores for narrowing and erosions and the total score. Erosions were examined for 16 joints in each hand. For narrowing five joints were evaluated. For accuracy, radiological examination was done on mammography film. Rezults:After calculating Sharp scores - Van der Heide version - I compared them with the levels of clinical (HAQ, NAT, NAD, DAS28, bone densitometry and laboratory (ESR, CRP, rheumatoid factor, IL-1β parameters.Conclusions: The values of radiological scores for narrowing and erosions are directly correlate with DAS28, HAQ, rheumatoid factors levels and IgG values, and indirectly correlated with IL-1β levels.

  14. Cross-talk between Clinical and Host Response Parameters of Periodontitis in Smokers

    Science.gov (United States)

    Nagarajan, R.; Miller, C.S.; Dawson, D.; Al-Sabbagh, M.; Ebersole, J.L.

    2016-01-01

    Periodontal diseases are a major public health concern leading to tooth loss and also shown to be associated with several chronic systemic diseases. Smoking is a major risk factor for developing numerous systemic diseases, as well as periodontitis. While it is clear that smokers have a significantly enhanced risk for developing periodontitis leading to tooth loss, the population varies with regards to susceptibility to disease associated with smoking. This investigation focuses on identifying differences in four broad sets of variables consisting of: (a) host response molecules, (b) periodontal clinical parameters, (c) antibody measures for periodontal pathogens and oral commensal bacteria challenge, and (d) other variables of interest in a smoking population with (n = 171) and without periodontitis (n = 117). Subsequently, Bayesian network structured learning techniques (BNSL) techniques were used to investigate potential associations and cross-talk between the four broad sets of variables. BNSL revealed two broad communities with markedly different topology between the non-periodontitis and periodontitis smoking population. Confidence of the edges in the resulting network also showed marked variations within and between the periodontitis and non-periodontitis groups. The results presented validated known associations, as well as discovered new ones with minimal precedence that may warrant further investigation and novel hypothesis generation. Cross-talk between the clinical variables and antibody profiles of bacteria were especially pronounced in the case of periodontitis and mediated by the antibody response profile to P. gingivalis. PMID:27431617

  15. A search for covert precipitating clinical parameters in frequent exacerbators of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Ankit Bhatia

    2016-01-01

    Full Text Available Introduction: Acute exacerbations are a significant source of morbidity and mortality associated with chronic obstructive pulmonary disease (COPD. Some patients suffer an inordinate number of exacerbations while others remain relatively protected. The aim of this study was to evaluate the potentially modifiable precipitating parameters of frequent severe exacerbations requiring hospital admission in COPD. Materials and Methods: Consecutive patients admitted with acute exacerbation of COPD for a period of one year in a tertiary care hospital were evaluated prospectively. Data regarding the number of exacerbations in the previous year, current comorbidities, medications, and clinical and functional status of COPD patients were evaluated. Results: We included 98 COPD patients (81.63% men admitted consecutively with exacerbations in our department. The mean number of severe exacerbations was (2.42 per patient/per year, and 65% of the patients had frequent severe exacerbations. Multivariate analysis indicated that serum uric acid, serum total IgE, depression and anxiety, gastroesophageal reflux disease symptoms, air pollution, poor adherence to inhaled therapy, and irregular outpatient followup visits were independent predictors of frequent severe exacerbations. Conclusion: COPD patients with frequent exacerbations should be carefully assessed for modifiable confounding risk factors regardless of poor lung function to decrease exacerbation frequency and related poor prognosis. Raised serum total IgE levels may point towards atopy as an additional comorbidity in COPD while uric acid can have a clinically useful role in risk stratification in a primary care setting.

  16. Stochastic rainfall-runoff forecasting: parameter estimation, multi-step prediction, and evaluation of overflow risk

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Madsen, Henrik

    2014-01-01

    Probabilistic runoff forecasts generated by stochastic greybox models can be notably useful for the improvement of the decision-making process in real-time control setups for urban drainage systems because the prediction risk relationships in these systems are often highly nonlinear. To date...... the identification of models for cases with noisy in-sewer observations. For the prediction of the overflow risk, no improvement was demonstrated through the application of stochastic forecasts instead of point predictions, although this result is thought to be caused by the notably simplified setup used...

  17. Real Time Predictive Flutter Analysis and Continuous Parameter Identification of Accelerating Aircraft

    National Research Council Canada - National Science Library

    Farhat, Charles

    1998-01-01

    ... Parameter Identification of Accelerating Aircraft. Flutter clearance, which is part of any new aircraft or fighter weapon system development, is a lengthy and tedious process from both computational and flight testing viewpoint...

  18. A Well-Designed Parameter Estimation Method for Lifetime Prediction of Deteriorating Systems with Both Smooth Degradation and Abrupt Damage

    Directory of Open Access Journals (Sweden)

    Chuanqiang Yu

    2015-01-01

    Full Text Available Deteriorating systems, which are subject to both continuous smooth degradation and additional abrupt damages due to a shock process, can be often encountered in engineering. Modeling the degradation evolution and predicting the lifetime of this kind of systems are both interesting and challenging in practice. In this paper, we model the degradation trajectory of the deteriorating system by a random coefficient regression (RCR model with positive jumps, where the RCR part is used to model the continuous smooth degradation of the system and the jump part is used to characterize the abrupt damages due to random shocks. Based on a specified threshold level, the probability density function (PDF and cumulative distribution function (CDF of the lifetime can be derived analytically. The unknown parameters associated with the derived lifetime distributions can be estimated via a well-designed parameter estimation procedure on the basis of the available degradation recordings of the deteriorating systems. An illustrative example is finally provided to demonstrate the implementation and superiority of the newly proposed lifetime prediction method. The experimental results reveal that our proposed lifetime prediction method with the dedicated parameter estimation strategy can get more accurate lifetime predictions than the rival model in literature.

  19. QSPR studies for predicting polarity parameter of organic compounds in methanol using support vector machine and enhanced replacement method.

    Science.gov (United States)

    Golmohammadi, H; Dashtbozorgi, Z

    2016-12-01

    In the present work, enhanced replacement method (ERM) and support vector machine (SVM) were used for quantitative structure-property relationship (QSPR) studies of polarity parameter (p) of various organic compounds in methanol in reversed phase liquid chromatography based on molecular descriptors calculated from the optimized structures. Diverse kinds of molecular descriptors were calculated to encode the molecular structures of compounds, such as geometric, thermodynamic, electrostatic and quantum mechanical descriptors. The variable selection method of ERM was employed to select an optimum subset of descriptors. The five descriptors selected using ERM were used as inputs of SVM to predict the polarity parameter of organic compounds in methanol. The coefficient of determination, r 2 , between experimental and predicted polarity parameters for the prediction set by ERM and SVM were 0.952 and 0.982, respectively. Acceptable results specified that the ERM approach is a very effective method for variable selection and the predictive aptitude of the SVM model is superior to those obtained by ERM. The obtained results demonstrate that SVM can be used as a substitute influential modeling tool for QSPR studies.

  20. Genetic parameters of subclinical macromineral disorders and major clinical diseases in postparturient Holstein cows.

    Science.gov (United States)

    Tsiamadis, V; Banos, G; Panousis, N; Kritsepi-Konstantinou, M; Arsenos, G; Valergakis, G E

    2016-11-01

    The main objective of this study was to assess the genetic parameters of subclinical disorders associated with subclinical hypocalcemia, hypophosphatemia, subclinical hypomagnesemia, hypokalemia, and hyperphosphatemia, as well as major clinical diseases after calving in Holstein cows. The secondary objective was to estimate the associated genetic and phenotypic correlations among these subclinical and clinical conditions after calving in Holstein cows. The study was conducted in 9dairy herds located in Northern Greece. None of the herds used any kind of preventive measures for milk fever (MF). A total of 1,021 Holstein cows with pedigree information were examined from November 2010 until November 2012. The distribution across parities was 466 (parity 1), 242 (parity 2), 165 (parity 3), and 148 (parity 4 and above) cows. All cows were subjected to a detailed clinical examination and blood was sampled on d 1, 2, 4, and 8 after calving. Serum concentrations of Ca, P, Mg, and K were measured in all samples, whereas β-hydroxybutyrate (BHB) was measured only for d 8. The final data set included 4,064 clinical and 16,848 biochemical records (4,020 Ca, 4,019 P, 4,020Mg, 3,792K, and 997 BHB). Data of 1,988 observations of body condition score at d 1 and 8 were also available. All health traits were analyzed with a univariate random regression model. The genetic analysis for macromineral-related disorders included 986 cows with no obvious signs of MF (35 cows with MF were excluded). Analysis for other health traits included all 1,021 cows. A similar single record model was used for the analysis of BHB. Genetic correlations among traits were estimated with a series of bivariate analyses. Statistically significant daily heritabilities of subclinical hypocalcemia (0.13-0.25), hypophosphatemia (0.18-0.33), subclinical hypomagnesemia (0.11-0.38), and hyperphosphatemia (0.14-0.22) were low to moderate, whereas that of hypokalemia was low (0.08-0.10). The heritability of body

  1. Application of decomposition method and inverse prediction of parameters in a moving fin

    International Nuclear Information System (INIS)

    Singla, Rohit K.; Das, Ranjan

    2014-01-01

    Highlights: • Adomian decomposition is used to study a moving fin. • Effects of different parameters on the temperature and efficiency are studied. • Binary-coded GA is used to solve an inverse problem. • Sensitivity analyses of important parameters are carried out. • Measurement error up to 8% is found to be tolerable. - Abstract: The application of the Adomian decomposition method (ADM) is extended to study a conductive–convective and radiating moving fin having variable thermal conductivity. Next, through an inverse approach, ADM in conjunction with a binary-coded genetic algorithm (GA) is also applied for estimation of unknown properties in order to satisfy a given temperature distribution. ADM being one of the widely-used numerical methods for solving non-linear equations, the required temperature field has been obtained using a forward method involving ADM. In the forward problem, the temperature field and efficiency are investigated for various parameters such as convection–conduction parameter, radiation–conduction parameter, Peclet number, convection sink temperature, radiation sink temperature, and dimensionless thermal conductivity. Additionally, in the inverse problem, the effect of random measurement errors, iterative variation of parameters, sensitivity coefficients of unknown parameters are investigated. The performance of GA is compared with few other optimization methods as well as with different temperature measurement points. It is found from the present study that the results obtained from ADM are in good agreement with the results of the differential transformation method available in the literature. It is also observed that for satisfactory reconstruction of the temperature field, the measurement error should be within 8% and the temperature field is strongly dependent on the speed than thermal parameters of the moving fin

  2. Clinical, Toxicological, Biochemical, and Hematologic Parameters in Lead Exposed Workers of a Car Battery Industry

    Directory of Open Access Journals (Sweden)

    Sina Kianoush

    2013-03-01

    Full Text Available Background: Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Methods: Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000 and hematologic (using Cell Counter Sysmex; Model KX21N parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA was used to determine lead concentration in blood and urine by heated graphite atomization technique. Results: A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR 22.3%, and decreased DTR (18.7%. Blood lead concentration (BLC was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044 but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r2=0.711; P<0.001, mean corpuscular hemoglobin (r=-0.280; P=0.011, mean corpuscular hemoglobin concentration (r=-0.304; P=0.006 and fasting blood sugar or FBS (r=-0.258; P=0.010. Conclusion: Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS.

  3. Clinical, Toxicological, Biochemical, and Hematologic Parameters in Lead Exposed Workers of a Car Battery Industry

    Science.gov (United States)

    Kianoush, Sina; Balali-Mood, Mahdi; Mousavi, Seyed Reza; Shakeri, Mohammad Taghi; Dadpour, Bita; Moradi, Valiollah; Sadeghi, Mahmoud

    2013-01-01

    Background: Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Methods: Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000) and hematologic (using Cell Counter Sysmex; Model KX21N) parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA) was used to determine lead concentration in blood and urine by heated graphite atomization technique. Results: A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR) 22.3%, and decreased DTR (18.7%). Blood lead concentration (BLC) was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044) but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r2=0.711; Psugar or FBS (r=-0.258; P=0.010). Conclusion: Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS. PMID:23645955

  4. Clinical, toxicological, biochemical, and hematologic parameters in lead exposed workers of a car battery industry.

    Science.gov (United States)

    Kianoush, Sina; Balali-Mood, Mahdi; Mousavi, Seyed Reza; Shakeri, Mohammad Taghi; Dadpour, Bita; Moradi, Valiollah; Sadeghi, Mahmoud

    2013-03-01

    Lead is a toxic element which causes acute, subacute or chronic poisoning through environmental and occupational exposure. The aim of this study was to investigate clinical and laboratory abnormalities of chronic lead poisoning among workers of a car battery industry. Questionnaires and forms were designed and used to record demographic data, past medical histories and clinical manifestations of lead poisoning. Blood samples were taken to determine biochemical (using Auto Analyzer; Model BT3000) and hematologic (using Cell Counter Sysmex; Model KX21N) parameters. An atomic absorption spectrometer (Perkin-Elmer, Model 3030, USA) was used to determine lead concentration in blood and urine by heated graphite atomization technique. A total of 112 men mean age 28.78±5.17 years, who worked in a car battery industry were recruited in the present study. The most common signs/symptoms of lead poisoning included increased excitability 41.9%, arthralgia 41.0%, fatigue 40.1%, dental grey discoloration 44.6%, lead line 24.1%, increased deep tendon reflexes (DTR) 22.3%, and decreased DTR (18.7%). Blood lead concentration (BLC) was 398.95 µg/L±177.40, which was significantly correlated with duration of work (P=0.044) but not with the clinical manifestations of lead poisoning. However, BLC was significantly correlated with urine lead concentration (83.67 µg/L±49.78; r(2)=0.711; Psugar or FBS (r=-0.258; P=0.010). Neuropsychiatric and skeletal findings were common manifestations of chronic occupational lead poisoning. BLC was significantly correlated with duration of work, urine lead concentration, two hemoglobin indices and FBS.

  5. Volumetric PET/CT parameters predict local response of head and neck squamous cell carcinoma to chemoradiotherapy

    International Nuclear Information System (INIS)

    Hanamoto, Atsushi; Tatsumi, Mitsuaki; Takenaka, Yukinori; Hamasaki, Toshimitsu; Yasui, Toshimichi; Nakahara, Susumu; Yamamoto, Yoshifumi; Seo, Yuji; Isohashi, Fumiaki; Ogawa, Kazuhiko; Hatazawa, Jun; Inohara, Hidenori

    2014-01-01

    It is not well established whether pretreatment 18 F-FDG PET/CT can predict local response of head and neck squamous cell carcinoma (HNSCC) to chemoradiotherapy (CRT). We examined 118 patients: 11 with nasopharyngeal cancer (NPC), 30 with oropharyngeal cancer (OPC), and 77 with laryngohypopharyngeal cancer (LHC) who had completed CRT. PET/CT parameters of primary tumor, including metabolic tumor volume (MTV), total lesion glycolysis (TLG), and maximum and mean standardized uptake value (SUV max and SUV mean ), were correlated with local response, according to primary site and human papillomavirus (HPV) status. Receiver-operating characteristic analyses were made to access predictive values of the PET/CT parameters, while logistic regression analyses were used to identify independent predictors. Area under the curve (AUC) of the PET/CT parameters ranged from 0.53 to 0.63 in NPC and from 0.50 to 0.54 in OPC. HPV-negative OPC showed AUC ranging from 0.51 to 0.58, while all of HPV-positive OPCs showed complete response. In contrast, AUC ranged from 0.71 to 0.90 in LHC. Moreover, AUCs of MTV and TLG were significantly higher than those of SUV max and SUV mean (P < 0.01). After multivariate analysis, high MTV >25.0 mL and high TLG >144.8 g remained as independent, significant predictors of incomplete response compared with low MTV (odds ratio [OR], 13.4; 95% confidence interval [CI], 2.5–72.9; P = 0.003) and low TLG (OR, 12.8; 95% CI, 2.4–67.9; P = 0.003), respectively. In conclusion, predictive efficacy of pretreatment 18 F-FDG PET/CT varies with different primary sites and chosen parameters. Local response of LHC is highly predictable by volume-based PET/CT parameters

  6. Functional parameter screening for predicting durability of rolling sliding contacts with different surface finishes

    Science.gov (United States)

    Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.

    2018-06-01

    The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.

  7. THE EFFICACY OF ANGLE-MATCHED ISOKINETIC KNEE FLEXOR AND EXTENSOR STRENGTH PARAMETERS IN PREDICTING AGILITY TEST PERFORMANCE.

    Science.gov (United States)

    Greig, Matt; Naylor, James

    2017-10-01

    Agility is a fundamental performance element in many sports, but poses a high risk of injury. Hierarchical modelling has shown that eccentric hamstring strength is the primary determinant of agility performance. The purpose of this study was to investigate the relationship between knee flexor and extensor strength parameters and a battery of agility tests. Controlled laboratory study. Nineteen recreational intermittent games players completed an agility battery and isokinetic testing of the eccentric knee flexors (eccH) and concentric knee extensors (conQ) at 60, 180 and 300°·s -1 . Peak torque and the angle at which peak torque occurred were calculated for eccH and conQ at each speed. Dynamic control ratios (eccH:conQ) and fast:slow ratios (300:60) were calculated using peak torque values, and again using angle-matched data, for eccH and conQ. The agility test battery differentiated linear vs directional changes and prescriptive vs reactive tasks. Linear regression showed that eccH parameters were generally a better predictor of agility performance than conQ parameters. Stepwise regression showed that only angle-matched strength ratios contributed to the prediction of each agility test. Trdaitionally calculated strength ratios using peak torque values failed to predict performance. Angle-matched strength parameters were able to account for 80% of the variation in T-test performance, 70% of deceleration distance, 55% of 10m sprint performance, and 44% of reactive change of direction speed. Traditionally calculated strength ratios failed to predict agility performance, whereas angle-matched strength ratios had better predictive ability and featured in a predictive stepwise model for each agility task. 2c.

  8. Violence risk prediction. Clinical and actuarial measures and the role of the Psychopathy Checklist.

    Science.gov (United States)

    Dolan, M; Doyle, M

    2000-10-01

    Violence risk prediction is a priority issue for clinicians working with mentally disordered offenders. To review the current status of violence risk prediction research. Literature search (Medline). Key words: violence, risk prediction, mental disorder. Systematic/structured risk assessment approaches may enhance the accuracy of clinical prediction of violent outcomes. Data on the predictive validity of available clinical risk assessment tools are based largely on American and North American studies and further validation is required in British samples. The Psychopathy Checklist appears to be a key predictor of violent recidivism in a variety of settings. Violence risk prediction is an inexact science and as such will continue to provoke debate. Clinicians clearly need to be able to demonstrate the rationale behind their decisions on violence risk and much can be learned from recent developments in research on violence risk prediction.

  9. Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration

    Science.gov (United States)

    Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja

    2018-04-01

    Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.

  10. Predicting deformation and stress as a function of additive manufacturing process parameters for Europa drill

    Data.gov (United States)

    National Aeronautics and Space Administration — We will combine part-level FEM model of residual stresses with phase-field transformation model to predict deformation and cracking due to thermal stresses from the...

  11. Prediction of thermal hydraulic parameters in the loss of coolant accident by using artificial neural networks

    International Nuclear Information System (INIS)

    Vaziri, N.; Erfani, A.; Monsefi, M.; Hajabri, A.

    2008-01-01

    In a reactor accident like loss of coolant accident , one or more signals may not be monitored by control panel for some reasons such as interruptions and so on. Therefore a fast alternative method could guarantee the safe and reliable exploration of nuclear power planets. In this study, we used artificial neural network with Elman recurrent structure to predict six thermal hydraulic signals in a loss of coolant accident after upper plenum break. In the prediction procedure, a few previous samples are fed to the artificial neural network and the output value or next time step is estimated by the network output. The Elman recurrent network is trained with the data obtained from the benchmark simulation of loss of coolant accident in VVER. The results reveal that the predicted values follow the real trends well and artificial neural network can be used as a fast alternative prediction tool in loss of coolant accident

  12. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2015-01-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is

  13. A clinical prediction rule for detecting major depressive disorder in primary care : the PREDICT-NL study

    NARCIS (Netherlands)

    Zuithoff, Nicolaas P A; Vergouwe, Yvonne; King, Michael; Nazareth, Irwin; Hak, Eelko; Moons, Karel G M; Geerlings, Mirjam I

    BACKGROUND: Major depressive disorder often remains unrecognized in primary care. OBJECTIVE: Development of a clinical prediction rule using easily obtainable predictors for major depressive disorder in primary care patients. METHODS: A total of 1046 subjects, aged 18-65 years, were included from

  14. Usefulness Of Nutritional Parameters Based On Creatinine Kinetic Model In Predicting Prognosis In Severe Aki Patients Requring Crrt

    Directory of Open Access Journals (Sweden)

    Joon Ho Song

    2012-06-01

    In conclusion, nutritional state and chronic comorbidities were major factors predicting the clinical outcome of severe AKI patients requiring CRRT. CKM was a simple and useful method in the assessment of nutritional state during CRRT treatment. Low creatinine production reflecting poor nutrition and protein reserve was associated with poor prognosis in severely ill ARF patients.

  15. Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis.

    Science.gov (United States)

    Pinter, Daniela; Khalil, Michael; Pichler, Alexander; Langkammer, Christian; Ropele, Stefan; Marschik, Peter B; Fuchs, Siegrid; Fazekas, Franz; Enzinger, Christian

    2015-01-01

    While many studies correlated cognitive function with changes in brain morphology in multiple sclerosis (MS), few of them used a multi-parametric approach in a single dataset so far. We thus here assessed the predictive value of different conventional and quantitative MRI-parameters both for overall and domain-specific cognitive performance in MS patients from a single center. 69 patients (17 clinically isolated syndrome, 47 relapsing-remitting MS, 5 secondary-progressive MS) underwent the "Brief Repeatable Battery of Neuropsychological Tests" assessing overall cognition, cognitive efficiency and memory function as well as MRI at 3 Tesla to obtain T2-lesion load (T2-LL), normalized brain volume (global brain volume loss), normalized cortical volume (NCV), normalized thalamic volume (NTV), normalized hippocampal volume (NHV), normalized caudate nuclei volume (NCNV), basal ganglia R2* values (iron deposition) and magnetization transfer ratios (MTRs) for cortex and normal appearing brain tissue (NABT). Regression models including clinical, demographic variables and MRI-parameters explained 22-27% of variance of overall cognition, 17-26% of cognitive efficiency and 22-23% of memory. NCV, T2-LL and MTR of NABT were the strongest predictors of overall cognitive function. Cognitive efficiency was best predicted by NCV, T2-LL and iron deposition in the basal ganglia. NTV was the strongest predictor for memory function and NHV was particularly related to memory function. The predictive value of distinct MRI-parameters differs for specific domains of cognitive function, with a greater impact of cortical volume, focal and diffuse white matter abnormalities on overall cognitive function, an additional role of basal ganglia iron deposition on cognitive efficiency, and thalamic and hippocampal volume on memory function. This suggests the usefulness of using multiparametric MRI to assess (micro)structural correlates of different cognitive constructs.

  16. Automated interpretable computational biology in the clinic: a framework to predict disease severity and stratify patients from clinical data

    Directory of Open Access Journals (Sweden)

    Soumya Banerjee

    2017-10-01

    Full Text Available We outline an automated computational and machine learning framework that predicts disease severity and stratifies patients. We apply our framework to available clinical data. Our algorithm automatically generates insights and predicts disease severity with minimal operator intervention. The computational framework presented here can be used to stratify patients, predict disease severity and propose novel biomarkers for disease. Insights from machine learning algorithms coupled with clinical data may help guide therapy, personalize treatment and help clinicians understand the change in disease over time. Computational techniques like these can be used in translational medicine in close collaboration with clinicians and healthcare providers. Our models are also interpretable, allowing clinicians with minimal machine learning experience to engage in model building. This work is a step towards automated machine learning in the clinic.

  17. Spatial extrapolation of light use efficiency model parameters to predict gross primary production

    Directory of Open Access Journals (Sweden)

    Karsten Schulz

    2011-12-01

    Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.

  18. Prediction of extraprostatic extension by prostate specific antigen velocity, endorectal MRI, and biopsy Gleason score in clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Nishimoto, Koshiro; Nakashima, Jun; Hashiguchi, Akinori; Kikuchi, Eiji; Miyajima, Akira; Nakagawa, Ken; Ohigashi, Takashi; Oya, Mototsugu; Murai, Masaru

    2008-01-01

    The objective of this study was to investigate the clinical value of prostate specific antigen velocity (PSAV) in predicting the extraprostatic extension of clinically localized prostate cancer. One hundred and three patients who underwent radical prostatectomy for clinically localized prostate cancer were included in the analysis. The correlation between preoperative parameters, including PSA-based parameters, clinical stage, and histological biopsy findings, and the pathological findings were analyzed. Logistic regression analysis was performed to identify a significant set of independent predictors for the local extent of the disease. Sixty-four (60.2%) patients had organ confined prostate cancer and 39 (39.8%) patients had extraprostatic cancer. The biopsy Gleason score, PSA, PSA density, PSA density of the transition zone, and PSAV were significantly higher in the patients with extraprostatic cancer than in those with organ confined cancer. Multivariate logistic regression analysis indicated that the biopsy Gleason score, endorectal magnetic resonance imaging findings, and PSAV were significant predictors of extraprostatic cancer (P<0.01). Probability curves for extraprostatic cancer were generated using these three preoperative parameters. The combination of PSAV, endorectal magnetic resonance imaging findings, and biopsy Gleason score can provide additional information for selecting appropriate candidates for radical prostatectomy. (author)

  19. Locus heterogeneity for Waardenburg syndrome is predictive of clinical subtypes.

    Science.gov (United States)

    Farrer, L A; Arnos, K S; Asher, J H; Baldwin, C T; Diehl, S R; Friedman, T B; Greenberg, J; Grundfast, K M; Hoth, C; Lalwani, A K

    1994-10-01

    Waardenburg syndrome (WS) is a dominantly inherited and clinically variable syndrome of deafness, pigmentary changes, and distinctive facial features. Clinically, WS type I (WS1) is differentiated from WS type II (WS2) by the high frequency of dystopia canthorum in the family. In some families, WS is caused by mutations in the PAX3 gene on chromosome 2q. We have typed microsatellite markers within and flanking PAX3 in 41 WS1 kindreds and 26 WS2 kindreds in order to estimate the proportion of families with probable mutations in PAX3 and to study the relationship between phenotypic and genotypic heterogeneity. Evaluation of heterogeneity in location scores obtained by multilocus analysis indicated that WS is linked to PAX3 in 60% of all WS families and in 100% of WS1 families. None of the WS2 families were linked. In those families in which equivocal lod scores (between -2 and +1) were found, PAX3 mutations have been identified in 5 of the 15 WS1 families but in none of the 4 WS2 families. Although preliminary studies do not suggest any association between the phenotype and the molecular pathology in 20 families with known PAX3 mutations and in four patients with chromosomal abnormalities in the vicinity of PAX3, the presence of dystopia in multiple family members is a reliable indicator for identifying families likely to have a defect in PAX3.

  20. Handbook of parameter values for the prediction of radionuclide transfer to wildlife

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This handbook provides generic parameter values for estimating the transfer of radionuclides from environmental media to wildlife for the purpose of assessing potential radiation exposure under equilibrium conditions. These data are intended for use where site specific data are either not available or not required, and to parameterize generic assessment models. They are based on a comprehensive review of the available literature, including many Russian language publications that have not previously been available in English. The publication addresses the limitations of the parameter values and the applicability of data. Some general background information on the assessment of potential impacts of radioactive releases on wildlife is also included. It complements the existing handbook in the same IAEA series with parameter to assess the radiological impact to humans.

  1. A New Uncertain Analysis Method for the Prediction of Acoustic Field with Random and Interval Parameters

    Directory of Open Access Journals (Sweden)

    Mingjie Wang

    2016-01-01

    Full Text Available For the frequency response analysis of acoustic field with random and interval parameters, a nonintrusive uncertain analysis method named Polynomial Chaos Response Surface (PCRS method is proposed. In the proposed method, the polynomial chaos expansion method is employed to deal with the random parameters, and the response surface method is used to handle the interval parameters. The PCRS method does not require efforts to modify model equations due to its nonintrusive characteristic. By means of the PCRS combined with the existing interval analysis method, the lower and upper bounds of expectation, variance, and probability density function of the frequency response can be efficiently evaluated. Two numerical examples are conducted to validate the accuracy and efficiency of the approach. The results show that the PCRS method is more efficient compared to the direct Monte Carlo simulation (MCS method based on the original numerical model without causing significant loss of accuracy.

  2. Handbook of parameter values for the prediction of radionuclide transfer in temperate environments

    International Nuclear Information System (INIS)

    1994-01-01

    This Handbook has been prepared in response to a widely expressed interest in having a convenient and authoritative reference for radionuclide transfer parameter values used in biospheric assessment models. It draws on data from North America and Europe, much of which was collected through projects of the International Union of Radioecologists (IUR) and the Commission of European Communities (CEC) over the last decade. It is intended to supplement existing IAEA publications on environmental assessment methodology, primarily Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, IAEA Safety Series No. 57 (1982). 219 refs, 3 figs, 32 tabs

  3. Correlations between IL6 and the main clinical and biological parameters in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Mihaela Chicu

    2016-09-01

    Full Text Available Introduction: Cytokines are a family of complex peptide with hormone-like activity. They are soluble proteins without enzymatic activity and serves as the main intracellular mediators. Many cytokines achieves its effects by binding to special receptors membrane, and their adjustment is via soluble receptors. Cytokines are characterized by pleiotropism, overlapping and mutual adjustment. Proinflammatory cytokine involved in major rheumatoid arthritis are TNF, IL1α, IL1β, IL8.The biological effects of IL6 overlap in large part over those of TNF. If TNF is involved in induction of apoptosis or programmed cell death, IL6 is specifically associated with angiogenic factors activation and the occurrence of neovascularity to the synovium; favors articular cartilage degradation by increasing the release of MMP, decreasing PG, recruit osteoclasts, apoptosis of osteoblasts, release of degradative enzymes and the inflammatory mediators - iNOS, COX2 - TNF, IL6, IL8.Material and methods: Based on these data we proposed and realized – for the first time in Romania – the measurement of IL6 levels and the correlation with values of DAS28 score, HAQ, ESR, CRP, Hb and the immunological parameters too. The study was conducted on a group of 80 sick diagnosed with RA in various stages of evolution, under treatment with disease-modifying medication , type Methotrexate, Arava.Conclusions: Levels of IL-6 correlate a direct manner with those of acute phase reactants ,ESR, CRP and indirect values of Hb, IgG; the clinical parameters (number of tender and swollen joints, DAS28, HAQ are not influenced by values IL6.

  4. Harmonising Reference Intervals for Three Calculated Parameters used in Clinical Chemistry.

    Science.gov (United States)

    Hughes, David; Koerbin, Gus; Potter, Julia M; Glasgow, Nicholas; West, Nic; Abhayaratna, Walter P; Cavanaugh, Juleen; Armbruster, David; Hickman, Peter E

    2016-08-01

    For more than a decade there has been a global effort to harmonise all phases of the testing process, with particular emphasis on the most frequently utilised measurands. In addition, it is recognised that calculated parameters derived from these measurands should also be a target for harmonisation. Using data from the Aussie Normals study we report reference intervals for three calculated parameters: serum osmolality, serum anion gap and albumin-adjusted serum calcium. The Aussie Normals study was an a priori study that analysed samples from 1856 healthy volunteers. The nine analytes used for the calculations in this study were measured on Abbott Architect analysers. The data demonstrated normal (Gaussian) distributions for the albumin-adjusted serum calcium, the anion gap (using potassium in the calculation) and the calculated serum osmolality (using both the Bhagat et al. and Smithline and Gardner formulae). To assess the suitability of these reference intervals for use as harmonised reference intervals, we reviewed data from the Royal College of Pathologists of Australasia/Australasian Association of Clinical Biochemists (RCPA/AACB) bias survey. We conclude that the reference intervals for the calculated serum osmolality (using the Smithline and Gardner formulae) may be suitable for use as a common reference interval. Although a common reference interval for albumin-adjusted serum calcium may be possible, further investigations (including a greater range of albumin concentrations) are needed. This is due to the bias between the Bromocresol Green (BCG) and Bromocresol Purple (BCP) methods at lower serum albumin concentrations. Problems with the measurement of Total CO 2 in the bias survey meant that we could not use the data for assessing the suitability of a common reference interval for the anion gap. Further study is required.

  5. Educational intervention on cardiovascular parameters in perimenopausal women with a cardiovascular risk factor. Randomised clinical trial.

    Science.gov (United States)

    Soto Rodríguez, Anxela; García Soidán, José Luís; Arias Gómez, María Jesús; Del Álamo Alonso, Alberto; Leirós Rodríguez, Raquel; Pérez Fernández, María Reyes

    2018-03-09

    Randomised clinical trial performed in two urban health centres in Spain. To evaluate if educational intervention in women of perimenopausal age with hypertension, diabetes mellitus and/or dyslipidaemia could achieve significant changes in the reduction of biochemical and haemodynamic risk parameters. The study included 320 women aged between 45 and 60 years old who were diagnosed with hypertension, diabetes mellitus and/or dyslipidaemia. They were randomly assigned to the experimental group (n=160) and the control group (n=160). The intervention group received three educational sessions and the control group received an informative leaflet sent by mail. Haemodynamic and biochemical variables were evaluated at baseline and one year later in both groups. Women in the intervention group showed a decrease in low density lipoprotein (P=.034), (-5.89±29.8; 95% CI: -13.1/0.27) and an increase in high density lipoprotein (P=.013), (2.71±10.6; 95% CI: -1.36/6.20), as well as improvements in systolic blood pressure (P=.016), (-2.16±11.8; 95% CI: -4.4/0.01) and frequency (P=.003), (-1.46±10.3; 95% CI: -3.34/0.42) compared to women in the control group. Women in the control group significantly increased glucose (P=.04), (4.84±15.5; 95% CI: -0.75/31.3) and gamma-glutamyltranspeptidase (P=.031), (3.61±14.7; 95% CI: 0.87/6.36) levels more than those in the experimental group. An educational intervention can be an effective method of reducing the parameters associated with an increased likelihood of cardiovascular disease in women at perimenopausal age with hypertension, diabetes mellitus and/or dyslipidaemia. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  6. A proposal of parameter determination method in the residual strength degradation model for the prediction of fatigue life (I)

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Jang, Seong Soo

    2001-01-01

    The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique

  7. A two-parameter model to predict fracture in the transition

    International Nuclear Information System (INIS)

    DeAquino, C.T.; Landes, J.D.; McCabe, D.E.

    1995-01-01

    A model is proposed that uses a numerical characterization of the crack tip stress field modified by the J - Q constraint theory and a weak link assumption to predict fracture behavior in the transition for reactor vessel steels. This model predicts the toughness scatter band for a component model from a toughness scatter band measured on a test specimen geometry. The model has been applied previously to two-dimensional through cracks. Many applications to actual components structures involve three-dimensional surface flaws. These cases require a more difficult level of analysis and need additional information. In this paper, both the current model for two-dimensional cracks and an approach needed to extend the model for the prediction of transition fracture behavior in three-dimensional surface flaws are discussed. Examples are presented to show how the model can be applied and in some cases to compare with other test results. (author). 13 refs., 7 figs

  8. Ethics and epistemology of accurate prediction in clinical research.

    Science.gov (United States)

    Hey, Spencer Phillips

    2015-07-01

    All major research ethics policies assert that the ethical review of clinical trial protocols should include a systematic assessment of risks and benefits. But despite this policy, protocols do not typically contain explicit probability statements about the likely risks or benefits involved in the proposed research. In this essay, I articulate a range of ethical and epistemic advantages that explicit forecasting would offer to the health research enterprise. I then consider how some particular confidence levels may come into conflict with the principles of ethical research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Developing a computational tool for predicting physical parameters of a typical VVER-1000 core based on artificial neural network

    International Nuclear Information System (INIS)

    Mirvakili, S.M.; Faghihi, F.; Khalafi, H.

    2012-01-01

    Highlights: ► Thermal–hydraulics parameters of a VVER-1000 core based on neural network (ANN), are carried out. ► Required data for ANN training are found based on modified COBRA-EN code and then linked each other using MATLAB software. ► Based on ANN method, average and maximum temperature of fuel and clad as well as MDNBR of each FA are predicted. -- Abstract: The main goal of the present article is to design a computational tool to predict physical parameters of the VVER-1000 nuclear reactor core based on artificial neural network (ANN), taking into account a detailed physical model of the fuel rods and coolant channels in a fuel assembly. Predictions of thermal characteristics of fuel, clad and coolant are performed using cascade feed forward ANN based on linear fission power distribution and power peaking factors of FAs and hot channels factors (which are found based on our previous neutronic calculations). A software package has been developed to prepare the required data for ANN training which applies a modified COBRA-EN code for sub-channel analysis and links the codes using the MATLAB software. Based on the current estimation system, five main core TH parameters are predicted, which include the average and maximum temperatures of fuel and clad as well as the minimum departure from nucleate boiling ratio (MDNBR) for each FA. To get the best conditions for the considered ANNs training, a comprehensive sensitivity study has been performed to examine the effects of variation of hidden neurons, hidden layers, transfer functions, and the learning algorithms on the training and simulation results. Performance evaluation results show that the developed ANN can be trained to estimate the core TH parameters of a typical VVER-1000 reactor quickly without loss of accuracy.

  10. Discrepancy in clinical versus radiological parameters describing deformity due to brace treatment for moderate idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Szulc Andrzej

    2007-12-01

    Full Text Available Abstract Background The shape of the torso in patients with idiopathic scoliosis is considered to reflect the shape of the vertebral column, however the direct correlation between parameters describing clinical deformity and those characterizing radiological curvature was reported to be weak. It is not clear if the management proposed for scoliosis (physiotherapy, brace, surgery affects equally the shape of the axial skeleton and the surface of the body. The aim of the study was to compare clinical deformity of (1 idiopathic scoliosis girls being under brace treatment for radiological curves of 25 to 40 degrees and (2 non treated scoliotic girls matched for age and Cobb angle. Methods Cross-sectional study of 24 girls wearing the brace versus 26 girls without brace treatment, matched for age and Cobb angle. Hypothesis: Patients wearing the brace for more than 6 months, when comparing to patients without brace, may present different external morphology of the trunk, in spite of having similar Cobb angle. Material. Inclusion criteria: girls, idiopathic scoliosis, growing age (10–16 years, Cobb angle minimum 25°, maximum 40°. The braced group consisted of girls wearing a TLSO brace (Cheneau for more than 6 months with minimum of 16 hours per day. The non-braced group consisted of girls first seen for their spinal deformity, previously not treated. The groups presented similar curve pattern. Methods. Scoliometer exam: angle of trunk rotation at three levels of the spine: upper thoracic, main thoracic, lumbar or thoracolumbar. The maximal angle was noted at each level and the sum of three levels was calculated. Posterior trunk symmetry index (POTSI and Hump Sum were measured using surface topography. Results Cobb angle was 34.9° ± 4.8° in braced and 32.7° ± 4.9° in un-braced patients (difference not significant. The age was 14.1 ± 1.6 years in braced patients and 13.1 ± 1.9 years in un-braced group (p = 0.046. The value of angle of trunk

  11. Dose-Volume Histogram Parameters and Clinical Factors Associated With Pleural Effusion After Chemoradiotherapy in Esophageal Cancer Patients

    International Nuclear Information System (INIS)

    Shirai, Katsuyuki; Tamaki, Yoshio; Kitamoto, Yoshizumi; Murata, Kazutoshi; Satoh, Yumi; Higuchi, Keiko; Nonaka, Tetsuo; Ishikawa, Hitoshi; Katoh, Hiroyuki; Takahashi, Takeo; Nakano, Takashi

    2011-01-01

    Purpose: To investigate the dose-volume histogram parameters and clinical factors as predictors of pleural effusion in esophageal cancer patients treated with concurrent chemoradiotherapy (CRT). Methods and Materials: Forty-three esophageal cancer patients treated with definitive CRT from January 2001 to March 2007 were reviewed retrospectively on the basis of the following criteria: pathologically confirmed esophageal cancer, available computed tomography scan for treatment planning, 6-month follow-up after CRT, and radiation dose ≥50 Gy. Exclusion criteria were lung metastasis, malignant pleural effusion, and surgery. Mean heart dose, mean total lung dose, and percentages of heart or total lung volume receiving ≥10-60 Gy (Heart-V 10 to V 60 and Lung-V 10 to V 60 , respectively) were analyzed in relation to pleural effusion. Results: The median follow-up time was 26.9 months (range, 6.7-70.2) after CRT. Of the 43 patients, 15 (35%) developed pleural effusion. By univariate analysis, mean heart dose, Heart-V 10 to V 60 , and Lung-V 50 to V 60 were significantly associated with pleural effusion. Poor performance status, primary tumor of the distal esophagus, and age ≥65 years were significantly related with pleural effusion. Multivariate analysis identified Heart-V 50 as the strongest predictive factor for pleural effusion (p = 0.01). Patients with Heart-V 50 50 50 ≥40% had 6%, 44%, and 64% of pleural effusion, respectively (p 50 is a useful parameter for assessing the risk of pleural effusion and should be reduced to avoid pleural effusion.

  12. Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    Pei, Lei; Zhu, Chunbo; Wang, Tiansi; Lu, Rengui; Chan, C.C.

    2014-01-01

    The goal of this study is to realize real-time predictions of the peak power/state of power (SOP) for lithium-ion batteries in electric vehicles (EVs). To allow the proposed method to be applicable to different temperature and aging conditions, a training-free battery parameter/state estimator is presented based on an equivalent circuit model using a dual extended Kalman filter (DEKF). In this estimator, the model parameters are no longer taken as functions of factors such as SOC (state of charge), temperature, and aging; instead, all parameters will be directly estimated under the present conditions, and the impact of the temperature and aging on the battery model will be included in the parameter identification results. Then, the peak power/SOP will be calculated using the estimated results under the given limits. As an improvement to the calculation method, a combined limit of current and voltage is proposed to obtain results that are more reasonable. Additionally, novel verification experiments are designed to provide the true values of the cells' peak power under various operating conditions. The proposed methods are implemented in experiments with LiFePO 4 /graphite cells. The validating results demonstrate that the proposed methods have good accuracy and high adaptability. - Highlights: • A real-time peak power/SOP prediction method for lithium-ion batteries is proposed. • A training-free method based on DEKF is presented for parameter identification. • The proposed method can be applied to different temperature and aging conditions. • The calculation of peak power under the current and voltage limits is improved. • Validation experiments are designed to verify the accuracy of prediction results

  13. Analysis and prediction of the alpha-function parameters used in cubic equations of state

    DEFF Research Database (Denmark)

    Privata, Romain; Viscontea, Maxime; Zazoua-Khames, Anis

    2015-01-01

    and compared regarding their ability to reproduce vapor pressure, heat of vaporization, liquid heat capacity, liquid density and second virial coefficient data. To reach this objective, extensive databanks of alpha function parameters were created. In particular, pitfalls of Twu-type alpha functions were...

  14. Using machine learning to predict soil bulk density on the basis of visual parameters

    NARCIS (Netherlands)

    Bondi, Giulia; Creamer, Rachel; Ferrari, Alessio; Fenton, Owen; Wall, David

    2018-01-01

    Soil structure is a key factor that supports all soil functions. Extracting intact soil cores and horizon specific samples for determination of soil physical parameters (e.g. bulk density (Bd) or particle size distribution) is a common practice for assessing indicators of soil structure. However,

  15. House thermal model parameter estimation method for Model Predictive Control applications

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    In this paper we investigate thermal network models with different model orders applied to various Dutch low-energy house types with high and low interior thermal mass and containing floor heating. Parameter estimations are performed by using data from TRNSYS simulations. The paper discusses results

  16. Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time

    DEFF Research Database (Denmark)

    He, X.; Sonneborg, T.O.; Jørgensen, F.

    2013-01-01

    in three scenarios involving simulation of groundwater head distribution and travel time. The first scenario implied 100 stochastic geological models all assigning the same hydraulic parameters for the same geological units. In the second scenario the same 100 geological models were subjected to model...

  17. The Prognostic Influence of BRAF Mutation and other Molecular, Clinical and Laboratory Parameters in Stage IV Colorectal Cancer.

    Science.gov (United States)

    Karadima, Maria L; Saetta, Angelica A; Chatziandreou, Ilenia; Lazaris, Andreas C; Patsouris, Efstratios; Tsavaris, Nikolaos

    2016-10-01

    Our aim was to evaluate the predictive and prognostic influence of BRAF mutation and other molecular, clinical and laboratory parameters in stage IV colorectal cancer (CRC). 60 patients were included in this retrospective analysis, and 17 variables were examined for their relation with treatment response and survival. KRAS mutation was identified in 40.3 % of cases, BRAF and PIK3CA in 8.8 % and 10.5 % respectively. 29.8 % of patients responded to treatment. Median survival time was 14.3 months. Weight loss, fever, abdominal metastases, blood transfusion, hypoalbuminaimia, BRAF and PIK3CA mutations, CRP and DNA Index were associated with survival. In multivariate analysis, male patients had 3.8 times higher probability of response, increased DNA Index was inversely correlated with response and one unit raise of DNA Index augmented 6 times the probability of death. Our findings potentiate the prognostic role of BRAF, PIK3CA mutations and ploidy in advanced CRC.

  18. Comparative prediction of nonepileptic events using MMPI-2 clinical scales, Harris Lingoes subscales, and restructured clinical scales.

    Science.gov (United States)

    Yamout, Karim Z; Heinrichs, Robin J; Baade, Lyle E; Soetaert, Dana K; Liow, Kore K

    2017-03-01

    The Minnesota Multiphasic Personality Inventory-2 (MMPI-2) is a psychological testing tool used to measure psychological and personality constructs. The MMPI-2 has proven helpful in identifying individuals with nonepileptic events/nonepileptic seizures. However, the MMPI-2 has had some updates that enhanced its original scales. The aim of this article was to test the utility of updated MMPI-2 scales in predicting the likelihood of non-epileptic seizures in individuals admitted to an EEG video monitoring unit. We compared sensitivity, specificity, and likelihood ratios of traditional MMPI-2 Clinical Scales against more homogenous MMPI-2 Harris-Lingoes subscales and the newer Restructured Clinical (RC) scales. Our results showed that the Restructured Scales did not show significant improvement over the original Clinical scales. However, one Harris-Lingoes subscale (HL4 of Clinical Scale 3) did show improved predictive utility over the original Clinical scales as well as over the newer Restructured Clinical scales. Our study suggests that the predictive utility of the MMPI-2 can be improved using already existing scales. This is particularly useful for those practitioners who are not invested in switching over to the newly developed MMPI-2 Restructured Form (MMPI-2 RF). Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model

    Directory of Open Access Journals (Sweden)

    Mereu Paolo

    2009-11-01

    Full Text Available Abstract Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus aged 2 years (A, B and C. In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0

  20. Crack under biaxial loading: Two-parameter description and prediction of crack growth direction

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav

    2014-01-01

    Roč. 31, APR (2014), s. 44-49 ISSN 0213-3725 R&D Projects: GA MŠk(CZ) 7AMB14AT012 Institutional support: RVO:68081723 Keywords : Concrete * T-stress * cracks growth prediction * numerical calculation * biaxial loading Subject RIV: JL - Materials Fatigue, Friction Mechanics

  1. Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS

    NARCIS (Netherlands)

    Schröder, B.; Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Oliveira, M.B.; Marrucho, I.M.; Coutinho, J.A.P.

    2010-01-01

    The methodology for the prediction of properties of environmental relevance of polycyclic aromatic hydrocarbons based on the conductor-like screening model for real solvents (COSMO-RS/COSMOtherm) is presented and evaluated, with a special focus on the aqueous solubility of polycyclic aromatic

  2. Prediction of the saturated hydraulic conductivity from Brooks and Corey’s water retention parameters

    NARCIS (Netherlands)

    Nasta, P.; Vrugt, J.A.; Romano, N.

    2013-01-01

    Prediction of flow through variably saturated porous media requires accurate knowledge of the soil hydraulic properties, namely the water retention function (WRF) and the hydraulic conductivity function (HCF). Unfortunately, direct measurement of the HCF is time consuming and expensive. In this

  3. Validation of Occupants’ Behaviour Models for Indoor Quality Parameter and Energy Consumption Prediction

    DEFF Research Database (Denmark)

    Fabi, Valentina; Sugliano, Martina; Andersen, Rune Korsholm

    2015-01-01

    Occupants’ behaviour related to building control system plays a significant role to achieve thermal comfort and air quality in naturally-ventilated buildings. Generally, the published models of occupant's behavior are not validated, meaning that the predictive power has not yet been tested. For t...

  4. [Usefulness of clinical prediction rules for ruling out deep vein thrombosis in a hospital emergency department].

    Science.gov (United States)

    Rosa-Jiménez, Francisco; Rosa-Jiménez, Ascensión; Lozano-Rodríguez, Aquiles; Santoro-Martínez, María Del Carmen; Duro-López, María Del Carmen; Carreras-Álvarez de Cienfuegos, Amelia

    2015-01-01

    To compare the efficacy of the most familiar clinical prediction rules in combination with D-dimer testing to rule out a diagnosis of deep vein thrombosis (DVT) in a hospital emergency department. Retrospective cross-sectional analysis of the case records of all patients attending a hospital emergency department with suspected lower-limb DVT between 1998 and 2002. Ten clinical prediction scores were calculated and D-dimer levels were available for all patients. The gold standard was ultrasound diagnosis of DVT by an independent radiologist who was blinded to clinical records. For each prediction rule, we analyzed the effectiveness of the prediction strategy defined by "low clinical probability and negative D-dimer level" against the ultrasound diagnosis. A total of 861 case records were reviewed and 577 cases were selected; the mean (SD) age was 66.7 (14.2) years. DVT was diagnosed in 145 patients (25.1%). Only the Wells clinical prediction rule and 4 other models had a false negative rate under 2%. The Wells criteria and the score published by Johanning and colleagues identified higher percentages of cases (15.6% and 11.6%, respectively). This study shows that several clinical prediction rules can be safely used in the emergency department, although none of them have proven more effective than the Wells criteria.

  5. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  6. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    Science.gov (United States)

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Application of Time-series Model to Predict Groundwater Quality Parameters for Agriculture: (Plain Mehran Case Study)

    Science.gov (United States)

    Mehrdad Mirsanjari, Mir; Mohammadyari, Fatemeh

    2018-03-01

    Underground water is regarded as considerable water source which is mainly available in arid and semi arid with deficient surface water source. Forecasting of hydrological variables are suitable tools in water resources management. On the other hand, time series concepts is considered efficient means in forecasting process of water management. In this study the data including qualitative parameters (electrical conductivity and sodium adsorption ratio) of 17 underground water wells in Mehran Plain has been used to model the trend of parameters change over time. Using determined model, the qualitative parameters of groundwater is predicted for the next seven years. Data from 2003 to 2016 has been collected and were fitted by AR, MA, ARMA, ARIMA and SARIMA models. Afterward, the best model is determined using information criterion or Akaike (AIC) and correlation coefficient. After modeling parameters, the map of agricultural land use in 2016 and 2023 were generated and the changes between these years were studied. Based on the results, the average of predicted SAR (Sodium Adsorption Rate) in all wells in the year 2023 will increase compared to 2016. EC (Electrical Conductivity) average in the ninth and fifteenth holes and decreases in other wells will be increased. The results indicate that the quality of groundwater for Agriculture Plain Mehran will decline in seven years.

  8. Immunohistochemical expression of Fascin-1 in colorectal cancer in relation to clinical and pathological parameters.

    Science.gov (United States)

    Piskor, Barbara M; Pryczynicz, Anna; Lubowicka, Emilia; Miniewska, Katarzyna; Zinczuk, Justyna; Zareba, Konrad; Guzinska-Ustymowicz, Katarzyna

    2018-06-11

    Fascins are a group of proteins taking part in the maintenance of a proper structure of the cellular cytoskeleton. Fascin-1 is an actin-bundling protein present in neurons, fibroblasts, endothelial, smooth muscle, dendritic and mesenchymal cells whereas lack of its expression is characteristic of epithelial cells. Fascin-1 overexpression can be observed in neoplastic cells. Therefore, the aim of this study was to assess the expression of Fascin-1 protein in patients with colorectal cancer (CRC) and to analyze associations between Fascin-1 expression and clinical-pathological parameters. The study material included postoperative samples (tumor and unchanged colon tissue) obtained from 51 CRC patients. Fascin-1 expression was assessed in the paraffin sections by immunohistochemistry. A statistically significant correlation was found between the histological type of cancer and the expression of Fascin-1 (p = 0.012). Increased expression of Fascin-1 in CRC was more frequent in adenocarcinoma type without the mucosal component with a better prognosis and decreased expression of this protein correlated with infiltration of cancer cells to blood and lymphatic vessels (p = 0.038). Our findings indicate a potential role of Fascin-1 in the pathogenesis of colon cancer; however, further studies will show whether this protein plays a role in the infiltration of colorectal cancer cells.

  9. Clinical implications in laboratory parameter values in acute Kawasaki disease for early diagnosis and proper treatment.

    Science.gov (United States)

    Seo, Yu-Mi; Kang, Hyun-Mi; Lee, Sung-Churl; Yu, Jae-Won; Kil, Hong-Ryang; Rhim, Jung-Woo; Han, Ji-Whan; Lee, Kyung-Yil

    2018-05-01

    This study aimed to analyse laboratory values according to fever duration, and evaluate the relationship across these values during the acute phase of Kawasaki disease (KD) to aid in the early diagnosis for early-presenting KD and incomplete KD patients. Clinical and laboratory data of patients with KD (n=615) were evaluated according to duration of fever at presentation, and were compared between patients with and without coronary artery lesions (CALs). For evaluation of the relationships across laboratory indices, patients with a fever duration of 5 days or 6 days were used (n=204). The mean fever duration was 6.6±2.3 days, and the proportions of patients with CALs was 19.3% (n=114). C-reactive proteins (CRPs) and neutrophil differential values were highest and hemoglobin, albumin, and lymphocyte differential values were lowest in the 6-day group. Patients with CALs had longer total fever duration, higher CRP and neutrophil differential values and lower hemoglobin and albumin values compared to patients without CALs. CRP, albumin, neutrophil differential, and hemoglobin values at the peak inflammation stage of KD showed positive or negative correlations each other. The severity of systemic inflammation in KD was reflected in the laboratory values including CRP, neutrophil differential, albumin, and hemoglobin. Observing changes in these laboratory parameters by repeated examinations prior to the peak of inflammation in acute KD may aid in diagnosis of early-presenting KD patients.

  10. Clinical evaluation of an ionic tooth brush on oral hygiene status, gingival status, and microbial parameter

    Directory of Open Access Journals (Sweden)

    Deshmukh J

    2006-01-01

    Full Text Available It has long been recognised that the presence of dental plaque leads to gingivitis and periodontal disease, as well as dental caries. Today tooth brushing is the most widely accepted method of removing plaque. Hence this present clinical study was undertaken to evaluate the effectiveness of an ionic toothbrush on oral hygiene status. For this study, 20 dental students in the age group of 18-20 years were included. All the subjects after undergoing dental prophylaxis were then provided with ionic toothbrushes, either active (equipped with lithium battery or inactive (without lithium battery. Plaque index and gingival bleeding index were examined at 7th, 14th, and 21st day. Microbial assessment was done for detection of colony forming units (CFU from the plaque samples which were collected on 0 day and 21st day, both before brushing and after brushing. Results shown a significant reduction in all the parameters and the reduction was more significant in active and inactive ionic toothbrush users. It was concluded that both active and inactive ionic toothbrushes reduced the plaque index and gingival bleeding index scores significantly and active ionic tooth brushes were more effective as compared to inactive ionic toothbrushes. There was no soft tissue trauma following the use of both type of toothbrushes, which showed that ionic toothbrushes were equally safe for regular long-term use.

  11. Periodontal parameters following orthodontic treatment in patients with aggressive periodontitis: A before-after clinical study

    Science.gov (United States)

    Khorsand, Afshin; Paknejad, Mojgan; Yaghobee, Siamak; Ghahroudi, Amir Alireza Rasouli; Bashizadefakhar, Hourieh; Khatami, Masoomeh; Shirazi, Mohsen

    2013-01-01

    Background: The success of combined periodontal and orthodontic approach in the treatment of aggressive periodontitis patients with the pathologic extruded anterior teeth is a main concern and stability of the treatment results is an important factor to evaluate the treatment. The present study investigated the periodontal parameters at the end of the orthodontic treatment in patients with the aggressive periodontitis. Materials and Methods: Eight patients with an aggressive periodontal disease, extruded maxillary incisors, infrabony defects and probing depth of ≥5 mm were enrolled in this clinical trial (before, after). After periodontal therapy, orthodontic treatment was carried out for intrusion and alignment of teeth. Plaque index (PI), probing pocket depth (PPD), distance between incisal edge and interdental papilla, root length (RL), and defect dimensions (depth and width) were examined at the end of treatment and three as well as 6 months afterward. The data were subjected to repeated measure ANOVA test. P orthodontic approach would be a successful treatment with acceptable stability in the case of regular follow-up visits and controlled oral hygiene habits. PMID:24379862

  12. Generation and mid-IR measurement of a gas-phase to predict security parameters of aviation jet fuel.

    Science.gov (United States)

    Gómez-Carracedo, M P; Andrade, J M; Calviño, M A; Prada, D; Fernández, E; Muniategui, S

    2003-07-27

    The worldwide use of kerosene as aviation jet fuel makes its safety considerations of most importance not only for aircraft security but for the workers' health (chronic and/or acute exposure). As most kerosene risks come from its vapours, this work focuses on predicting seven characteristics (flash point, freezing point, % of aromatics and four distillation points) which assess its potential hazards. Two experimental devices were implemented in order to, first, generate a kerosene vapour phase and, then, to measure its mid-IR spectrum. All the working conditions required to generate the gas phase were optimised either in a univariate or a multivariate (SIMPLEX) approach. Next, multivariate prediction models were deployed using partial least squares regression and it was found that both the average prediction errors and precision parameters were satisfactory, almost always well below the reference figures.

  13. Prediction of geomagnetic storm using neural networks: Comparison of the efficiency of the Satellite and ground-based input parameters

    International Nuclear Information System (INIS)

    Stepanova, Marina; Antonova, Elizavieta; Munos-Uribe, F A; Gordo, S L Gomez; Torres-Sanchez, M V

    2008-01-01

    Different kinds of neural networks have established themselves as an effective tool in the prediction of different geomagnetic indices, including the Dst being the most important constituent for determination of the impact of Space Weather on the human life. Feed-forward networks with one hidden layer are used to forecast the Dst variation, using separately the solar wind paramenters, polar cap index, and auroral electrojet index as input parameters. It was found that in all three cases the storm-time intervals were predicted much more precisely as quite time intervals. The majority of cross-correlation coefficients between predicted and observed Dst of strong geomagnetic storms are situated between 0.8 and 0.9. Changes in the neural network architecture, including the number of nodes in the input and hidden layers and the transfer functions between them lead to an improvement of a network performance up to 10%.

  14. Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach

    Science.gov (United States)

    Rojas Sánchez, Patricia; Cobos, Alberto; Navaro, Marisa; Ramos, José Tomas; Pagán, Israel

    2017-01-01

    Abstract Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences (from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic diversity (d), nonsynonymous and synonymous mutations (dN, dS) and DRM presence. Most of the 24 HIV-1B infected pediatric patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for dN and the year of HIV-1 diagnosis for ds. The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric patients. PMID:29044435

  15. Clinical and microbiological parameters in patients with self-ligating and conventional brackets during early phase of orthodontic treatment.

    Science.gov (United States)

    Pejda, Slavica; Varga, Marina Lapter; Milosevic, Sandra Anic; Mestrovic, Senka; Slaj, Martina; Repic, Dario; Bosnjak, Andrija

    2013-01-01

    To determine the effect of different bracket designs (conventional brackets and self-ligating brackets) on periodontal clinical parameters and periodontal pathogens in subgingival plaque. The following inclusion criteria were used: requirement of orthodontic treatment plan starting with alignment and leveling, good general health, healthy periodontium, no antibiotic therapy in the previous 6 months before the beginning of the study, and no smoking. The study sample totaled 38 patients (13 male, 25 female; mean age, 14.6 ± 2.0 years). Patients were divided into two groups with random distribution of brackets. Recording of clinical parameters was done before the placement of the orthodontic appliance (T0) and at 6 weeks (T1), 12 weeks (T2), and 18 weeks (T3) after full bonding of orthodontic appliances. Periodontal pathogens of subgingival microflora were detected at T3 using a commercially available polymerase chain reaction test (micro-Dent test) that contains probes for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Treponema denticola. There was a statistically significant higher prevalence of A actinomycetemcomitans in patients with conventional brackets than in patients with self-ligating brackets, but there was no statistically significant difference for other putative periodontal pathogens. The two different types of brackets did not show statistically significant differences in periodontal clinical parameters. Bracket design does not seem to have a strong influence on periodontal clinical parameters and periodontal pathogens in subgingival plaque. The correlation between some periodontal pathogens and clinical periodontal parameters was weak.

  16. Better estimation of protein-DNA interaction parameters improve prediction of functional sites

    Directory of Open Access Journals (Sweden)

    O'Flanagan Ruadhan A

    2008-12-01

    Full Text Available Abstract Background Characterizing transcription factor binding motifs is a common bioinformatics task. For transcription factors with variable binding sites, we need to get many suboptimal binding sites in our training dataset to get accurate estimates of free energy penalties for deviating from the consensus DNA sequence. One procedure to do that involves a modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment method designed to produce many such sequences. Results We analyzed low stringency SELEX data for E. coli Catabolic Activator Protein (CAP, and we show here that appropriate quantitative analysis improves our ability to predict in vitro affinity. To obtain large number of sequences required for this analysis we used a SELEX SAGE protocol developed by Roulet et al. The sequences obtained from here were subjected to bioinformatic analysis. The resulting bioinformatic model characterizes the sequence specificity of the protein more accurately than those sequence specificities predicted from previous analysis just by using a few known binding sites available in the literature. The consequences of this increase in accuracy for prediction of in vivo binding sites (and especially functional ones in the E. coli genome are also discussed. We measured the dissociation constants of several putative CAP binding sites by EMSA (Electrophoretic Mobility Shift Assay and compared the affinities to the bioinformatics scores provided by methods like the weight matrix method and QPMEME (Quadratic Programming Method of Energy Matrix Estimation trained on known binding sites as well as on the new sites from SELEX SAGE data. We also checked predicted genome sites for conservation in the related species S. typhimurium. We found that bioinformatics scores based on SELEX SAGE data does better in terms of prediction of physical binding energies as well as in detecting functional sites. Conclusion We think that training binding site detection

  17. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    International Nuclear Information System (INIS)

    Pauget, B.; Gimbert, F.; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-01-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO 4 , EDTA, CaCl 2 , NH 4 NO 3 , NaNO 3 , free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r² adj = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r² adj = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: ► New approach to identify chemical methods able to predict metal bioavailability to snails. ► Bioavailability of cadmium, lead and zinc to snails was determined by

  18. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    Although soil characteristics modulate metal mobility and bioavailability to organisms, they are often ignored in the risk assessment of metal transfer. This paper aims to determine the ability of chemical methods to assess and predict cadmium (Cd), lead (Pb) and zinc (Zn) environmental bioavailability to the land snail Cantareus aspersus. Snails were exposed in the laboratory for 28 days to 17 soils from around a former smelter. The soils were selected for their range of pH, organic matter, clay content, and Cd, Pb and Zn concentrations. The influence of soil properties on environmental availability (estimated using HF-HClO{sub 4}, EDTA, CaCl{sub 2}, NH{sub 4}NO{sub 3}, NaNO{sub 3}, free ion activity and total dissolved metal concentration in soil solution) and on environmental bioavailability (modelled using accumulation kinetics) was identified. Among the seven chemical methods, only the EDTA and the total soil concentration can be used to assess Cd and Pb environmental bioavailability to snails (r Superscript-Two {sub adj} = 0.67 and 0.77, respectively). For Zn, none of the chemical methods were suitable. Taking into account the influence of the soil characteristics (pH and CEC) allows a better prediction of Cd and Pb environmental bioavailability (r Superscript-Two {sub adj} = 0.82 and 0.83, respectively). Even though alone none of the chemical methods tested could assess Zn environmental bioavailability to snails, the addition of pH, iron and aluminium oxides allowed the variation of assimilation fluxes to be predicted. A conceptual and practical method to use soil characteristics for risk assessment is proposed based on these results. We conclude that as yet there is no universal chemical method to predict metal environmental bioavailability to snails, and that the soil factors having the greatest impact depend on the metal considered. - Highlights: Black-Right-Pointing-Pointer New approach to identify chemical methods able to predict metal bioavailability

  19. Prediction of the Dynamic Yield Strength of Metals Using Two Structural-Temporal Parameters

    Science.gov (United States)

    Selyutina, N. S.; Petrov, Yu. V.

    2018-02-01

    The behavior of the yield strength of steel and a number of aluminum alloys is investigated in a wide range of strain rates, based on the incubation time criterion of yield and the empirical models of Johnson-Cook and Cowper-Symonds. In this paper, expressions for the parameters of the empirical models are derived through the characteristics of the incubation time criterion; a satisfactory agreement of these data and experimental results is obtained. The parameters of the empirical models can depend on some strain rate. The independence of the characteristics of the incubation time criterion of yield from the loading history and their connection with the structural and temporal features of the plastic deformation process give advantage of the approach based on the concept of incubation time with respect to empirical models and an effective and convenient equation for determining the yield strength in a wider range of strain rates.

  20. [Multicenter clinical study on umbilical cord arterial blood gas parameters for diagnosis of neonatal asphyxia].

    Science.gov (United States)

    2010-09-01

    To obtain the normal range of statistics of umbilical artery blood gas parameters of the newborns for diagnosis of neonatal asphyxia. From March 2008 through September 2009, 17 978 singleton term appropriate for gestational age (AGA) or larger than gestational age (LGA) newborns in six hospitals of five provinces/autonomous regions were consecutively enrolled in this prospective study. The normal ranges of umbilical artery blood gas parameters were obtained from 17 645 newborns with 1 min Apgar score ≥ 8. The correlations between umbilical artery blood pH, BE and prenatal high-risk factors, Apgar scores, and organ damage were analyzed. The diagnostic criteria for asphyxia included the following: (1) Having high-risk factors that might cause asphyxia; (2) 1 min Apgar score ≤ 7 (the respiratory depression must be present); (3) At least one organ showed evidence of hypoxic damage; (4) Other causes of low Apgar score were excluded. The study focused on the distributive characteristics of umbilical artery blood pH (clinically corrected by Eisenberg formula) and BE values of the asphyxiated and non-asphyxiated cases in low Apgar score group, as well as the sensitivity and specificity of different selected pH and BE threshold spots within their distributing ranges. Among the 17 978 singleton term AGA or LGA newborns, the statistically normal range of umbilical artery blood pH, BE for the 17 645 cases with 1 min Apgar scores ≥ 8 were 7.20 ± 0.20 (x(-) ± 1.96 s) and -7.64 ± 10.02 (x(-) ± 1.96 s), respectively. The pH well correlated positively with BE (r = 0.734, P blood pH and BE values correlated positively with the Apgar scores. The umbilical artery blood pH and BE values correlated negatively with organ damage (r = 1, the P values = 0.000 for both). Among the 333 low Apgar score cases, the umbilical artery blood pH corrected values and BE values of the asphyxiated group (163 cases) were 7.011 ± 0.09 (x(-) ± s) and -14.98 ± 2.99 (x(-) ± s), being lower than

  1. Prediction of the Voltage Quality in an Overhead Transmission Line with Distributed Parameters

    OpenAIRE

    Bulyga Leonid L.; Tarasov Evgeniy V.; Ushakov Vasily Ya.; Kharlov Nikolay N.

    2015-01-01

    The present work is devoted to investigation of an electrical transmission line with allowance for distributed parameters. From the results of voltage measurements at terminals of an actual transmission line, effective values of the voltage are calculated for every line section. Special attention is given to higher harmonics and asymmetry. Spectral composition of the voltage is presented and changes in values of harmonic components are analyzed. The effect of higher harmonics on the equipment...

  2. Prediction of the Voltage Quality in an Overhead Transmission Line with Distributed Parameters

    Directory of Open Access Journals (Sweden)

    Bulyga Leonid L.

    2015-01-01

    Full Text Available The present work is devoted to investigation of an electrical transmission line with allowance for distributed parameters. From the results of voltage measurements at terminals of an actual transmission line, effective values of the voltage are calculated for every line section. Special attention is given to higher harmonics and asymmetry. Spectral composition of the voltage is presented and changes in values of harmonic components are analyzed. The effect of higher harmonics on the equipment operation is analyzed.

  3. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

    Science.gov (United States)

    Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias

    2015-06-25

    Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.

  4. Interrelated Dimensional Chains in Predicting Accuracy of Turbine Wheel Assembly Parameters

    Science.gov (United States)

    Yanyukina, M. V.; Bolotov, M. A.; Ruzanov, N. V.

    2018-03-01

    The working capacity of any device primarily depends on the assembly accuracy which, in its turn, is determined by the quality of each part manufactured, i.e., the degree of conformity between final geometrical parameters and the set ones. However, the assembly accuracy depends not only on a qualitative manufacturing process but also on the assembly process correctness. In this connection, there were preliminary calculations of assembly stages in terms of conformity to real geometrical parameters with their permissible values. This task is performed by means of the calculation of dimensional chains. The calculation of interrelated dimensional chains in the aircraft industry requires particular attention. The article considers the issues of dimensional chain calculation modelling by the example of the turbine wheel assembly process. The authors described the solution algorithm in terms of mathematical statistics implemented in Matlab. The paper demonstrated the results of a dimensional chain calculation for a turbine wheel in relation to the draw of turbine blades to the shroud ring diameter. Besides, the article provides the information on the influence of a geometrical parameter tolerance for the dimensional chain link elements on a closing one.

  5. Parameter estimations in predictive microbiology: Statistically sound modelling of the microbial growth rate.

    Science.gov (United States)

    Akkermans, Simen; Logist, Filip; Van Impe, Jan F

    2018-04-01

    When building models to describe the effect of environmental conditions on the microbial growth rate, parameter estimations can be performed either with a one-step method, i.e., directly on the cell density measurements, or in a two-step method, i.e., via the estimated growth rates. The two-step method is often preferred due to its simplicity. The current research demonstrates that the two-step method is, however, only valid if the correct data transformation is applied and a strict experimental protocol is followed for all experiments. Based on a simulation study and a mathematical derivation, it was demonstrated that the logarithm of the growth rate should be used as a variance stabilizing transformation. Moreover, the one-step method leads to a more accurate estimation of the model parameters and a better approximation of the confidence intervals on the estimated parameters. Therefore, the one-step method is preferred and the two-step method should be avoided. Copyright © 2017. Published by Elsevier Ltd.

  6. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity

    International Nuclear Information System (INIS)

    Sreenivasa, Geetha; Gellermann, Johanna; Rau, Beate; Nadobny, Jacek; Schlag, Peter; Deuflhard, Peter; Felix, Roland; Wust, Peter

    2003-01-01

    Purpose: The main aim is to prove the clinical practicability of the hyperthermia treatment planning system HyperPlan on a β-test level. Data and observations obtained from clinical hyperthermia are compared with the numeric methods FE (finite element) and FDTD (finite difference time domain), respectively. Methods and Materials: The planning system HyperPlan is built on top of the modular, object-oriented platform for visualization and model generation AMIRA. This system already contains powerful algorithms for image processing, geometric modeling, and three-dimensional graphics display. A number of hyperthermia-specific modules are provided, enabling the creation of three-dimensional tetrahedral patient models suitable for treatment planning. Two numeric methods, FE and FDTD, are implemented in HyperPlan for solving Maxwell's equations. Both methods base their calculations on segmented (contour based) CT or MR image data. A tetrahedral grid is generated from the segmented tissue boundaries, consisting of approximately 80,000 tetrahedrons per patient. The FE method necessitates, primarily, this tetrahedral grid for the calculation of the E-field. The FDTD method, on the other hand, calculates the E-field on a cubical grid, but also requires a tetrahedral grid for correction at electrical interfaces. In both methods, temperature distributions are calculated on the tetrahedral grid by solving the bioheat transfer equation with the FE method. Segmentation, grid generation, E-field, and temperature calculation can be carried out in clinical practice at an acceptable time expenditure of about 1-2 days. Results: All 30 patients we analyzed with cervical, rectal, and prostate carcinoma exhibit a good correlation between the model calculations and the attained clinical data regarding acute toxicity (hot spots), prediction of easy-to-heat or difficult-to-heat patients, and the dependency on various other individual parameters. We could show sufficient agreement between

  7. Can cell kinetic parameters predict the response of tumours to radiotherapy?

    Science.gov (United States)

    McNally, N J

    1989-11-01

    Three potential predictive assays of the repopulation component in tumour response to therapy are considered. (1) The DNA index can easily be measured. It is of prognostic value for cancers of certain sites, aneuploidy being a bad prognostic indicator. It is not strictly an indicator of cell proliferation. (2) The in vitro labelling index is of predictive value in early stage operable breast cancer and in head and neck cancer. In the former a high pretreatment labelling index can identify patients who could benefit from adjuvant chemotherapy. (3) The tumour potential doubling time (Tpot) can be measured rapidly following in vivo labelling with bromodeoxyuridine or iododeoxyuridine. We have measured Tpot in over 100 solid tumours with a success rate of about 75 per cent. Nearly 50 per cent of the tumours have a pre-treatment potential doubling time of 5 days or less. These would be suitable candidates for accelerated fractionation.

  8. Can cell kinetic parameters predict the response of tumours to radiotherapy?

    International Nuclear Information System (INIS)

    McNally, N.J.

    1989-01-01

    Three potential predictive assays of the repopulation component in tumour response to therapy are considered. (1) The DNA index can easily be measured. It is of prognostic value for cancers of certain sites, aneuploidy being a bad prognostic indicator. It is not strictly an indicator of cell proliferation. (2) The in vitro labelling index is of predictive value in early stage operable breast cancer and in head and neck cancer. In the former a high pretreatment labelling index can identify patients who could benefit from adjuvant chemotherapy. (3) The tumour potential doubling time can be measured rapidly following in vivo labelling with bromodeoxyuridine or iododeoxyuridine. The authors measured T pot in over 100 solid tumours with a success rate of about 75%. Nearly 50% of the tumours have a pre-treatment potential doubling time of 5 days or less. These would be suitable candidates for accelerated fractionation. (author)

  9. Parameter importance and uncertainty in predicting runoff pesticide reduction with filter strips.

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Fox, Garey A; Sabbagh, George J

    2010-01-01

    Vegetative filter strips (VFS) are an environmental management tool used to reduce sediment and pesticide transport from surface runoff. Numerical models of VFS such as the Vegetative Filter Strip Modeling System (VFSMOD-W) are capable of predicting runoff, sediment, and pesticide reduction and can be useful tools to understand the effectiveness of VFS and environmental conditions under which they may be ineffective. However, as part of the modeling process, it is critical to identify input factor importance and quantify uncertainty in predicted runoff, sediment, and pesticide reductions. This research used state-of-the-art global sensitivity and uncertainty analysis tools, a screening method (Morris) and a variance-based method (extended Fourier Analysis Sensitivity Test), to evaluate VFSMOD-W under a range of field scenarios. The three VFS studies analyzed were conducted on silty clay loam and silt loam soils under uniform, sheet flow conditions and included atrazine, chlorpyrifos, cyanazine, metolachlor, pendimethalin, and terbuthylazine data. Saturated hydraulic conductivity was the most important input factor for predicting infiltration and runoff, explaining >75% of the total output variance for studies with smaller hydraulic loading rates ( approximately 100-150 mm equivalent depths) and approximately 50% for the higher loading rate ( approximately 280-mm equivalent depth). Important input factors for predicting sedimentation included hydraulic conductivity, average particle size, and the filter's Manning's roughness coefficient. Input factor importance for pesticide trapping was controlled by infiltration and, therefore, hydraulic conductivity. Global uncertainty analyses suggested a wide range of reductions for runoff (95% confidence intervals of 7-93%), sediment (84-100%), and pesticide (43-100%) . Pesticide trapping probability distributions fell between runoff and sediment reduction distributions as a function of the pesticides' sorption. Seemingly

  10. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma

    DEFF Research Database (Denmark)

    Lauss, Martin; Donia, Marco; Harbst, Katja

    2017-01-01

    Adoptive T-cell therapy (ACT) is a highly intensive immunotherapy regime that has yielded remarkable response rates and many durable responses in clinical trials in melanoma; however, 50-60% of the patients have no clinical benefit. Here, we searched for predictive biomarkers to ACT in melanoma. ...

  11. Analysis of Orbital Lifetime Prediction Parameters in Preparation for Post-Mission Disposal

    Directory of Open Access Journals (Sweden)

    Ha–Yeon Choi

    2015-12-01

    Full Text Available Atmospheric drag force is an important source of perturbation of Low Earth Orbit (LEO orbit satellites, and solar activity is a major factor for changes in atmospheric density. In particular, the orbital lifetime of a satellite varies with changes in solar activity, so care must be taken in predicting the remaining orbital lifetime during preparation for post-mission disposal. In this paper, the System Tool Kit (STK® Long-term Orbit Propagator is used to analyze the changes in orbital lifetime predictions with respect to solar activity. In addition, the STK® Lifetime tool is used to analyze the change in orbital lifetime with respect to solar flux data generation, which is needed for the orbital lifetime calculation, and its control on the drag coefficient control. Analysis showed that the application of the most recent solar flux file within the Lifetime tool gives a predicted trend that is closest to the actual orbit. We also examine the effect of the drag coefficient, by performing a comparative analysis between varying and constant coefficients in terms of solar activity intensities.

  12. Computational prediction of the spectroscopic parameters of methanediol, an elusive molecule for interstellar detection

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos, Carmen; Redondo, Pilar; Largo, Antonio [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 7, E-47011 Valladolid (Spain); Martínez, Henar, E-mail: alargo@qf.uva.es [Departamento de Química O