WorldWideScience

Sample records for climatology project regional

  1. International Satellite Cloud Climatology Project (ISCCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — International Satellite Cloud Climatology Project (ISCCP) focuses on the distribution and variation of cloud radiative properties to improve the understanding of the...

  2. Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3.5

    Science.gov (United States)

    Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent

    2017-01-01

    This work investigated projected future changes in seasonal mean air temperature (°C) and precipitation (mm/day) climatology for the three periods of 2011-2040, 2041-2070, and 2071-2100, with respect to the control period of 1971-2000 for the Central Asia domain via regional climate model simulations. In order to investigate the projected changes in near future climate conditions, the Regional Climate Model, RegCM4.3.5 of the International Centre for Theoretical Physics (ICTP) was driven by two different CMIP5 global climate models. The HadGEM2-ES global climate model of the Met Office Hadley Centre and the MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology were downscaled to 50 km for the Coordinated Regional Climate Downscaling Experiment (CORDEX) Region 8. We investigated the seasonal time-scale performance of RegCM4.3.5 in reproducing observed climatology over the domain of the Central Asia by using two different global climate model outputs. For the future climatology of the domain, the regional model projects relatively high warming in the warm season with a decrease in precipitation in almost all parts of the domain. A warming trend is notable, especially for the northern part of the domain during the cold season. The results of our study show that surface air temperatures in the region will increase between 3 °C and about 7 °C on average, according to the emission scenarios for the period of 2071-2100 with respect to past period of 1971-2000. Therefore, the projected warming and decrease in precipitation might adversely affect the ecological and socio-economic systems of this region, which is already a mostly arid and semi-arid environment.

  3. Northwest Atlantic Regional Climatology (NCEI Accession 0155889)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Northwest Atlantic Ocean, NCEI Regional Climatology Team...

  4. Gulf of Mexico Regional Climatology (NCEI Accession 0123320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Mexico Regional Climatology is a set of objectively analyzed climatological fields of temperature, salinity, oxygen, phosphate, silicate, and nitrate at...

  5. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    Science.gov (United States)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-05-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2° decade-1 in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7° decade-1 in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7° decade-1) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  6. Global Precipitation Climatology Project (GPCP) - Monthly, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products with the two primary products being the monthly satellite-gauge and associated...

  7. Global Precipitation Climatology Project (GPCP) - Pentad, Version 2.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 2.2 Pentad product covers the period January 1979 to the present,...

  8. Global Precipitation Climatology Project (GPCP) - Daily, Version 1.2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Precipitation Climatology Project (GPCP) comprises a total of 27 products. The Version 1.2 Daily product covers the period October 1998 to the present,...

  9. A climatological network for regional climate monitoring in Sardinia.

    Science.gov (United States)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  10. Sprite Climatology in the Eastern Mediterranean Region

    Science.gov (United States)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.

  11. East Asian Seas Regional Climatology Version 2.0 from 1804 to 2014 (NODC Accession 0123300)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The East Asian Seas Regional Climatology Version 2.0 is an update to the preliminary version released in May 2012. This update includes new temperature and salinity...

  12. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, Sao Francisco and the Parana River basins

    Energy Technology Data Exchange (ETDEWEB)

    Marengo, Jose A.; Chou, Sin Chan; Alves, Lincoln M.; Pesquero, Jose F.; Soares, Wagner R.; Santos, Daniel C.; Lyra, Andre A.; Sueiro, Gustavo; Chagas, Diego J.; Gomes, Jorge L.; Bustamante, Josiane F.; Tavares, Priscila [National Institute for Space Research (INPE) Cachoeira Paulista, Sao Paulo (Brazil); Kay, Gillian; Betts, Richard [UK Met Office Hadley Centre, Exeter, Devon (United Kingdom)

    2012-05-15

    The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961-1990 to represent baseline climate, and 2011-2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011-2040, 2041-2070 and 2071-2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4-6 C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation-Evaporation (P-E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and Sao Francisco Basin, making these regions susceptible to drier conditions and droughts in the future

  13. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project datasets

    Science.gov (United States)

    Sud, Y. C.; Zhou, Y.; Xu, K.; Betts, A. K.

    2012-12-01

    Among the greenhouse gases induced climate change projections, tropical hydrological cycle changes can be expected to cause significant deficit or excess of precipitation in many regions, and that in turn would impact all life on earth. We have examined decadal trends of the tropical hydrological cycle in the GPCP precipitation and ISCCP cloud and radiation datasets to determine if such trends can provide an observation-based benchmark for model predictions of the ongoing climate change. The observations data show (1) intensifications of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions - showcasing the "wet-getting-wetter, dry-getting-dryer" phenomena; (2) a discernible poleward shift of the subtropical dry zones (up to 2° decade-1 in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7° decade-1 in JJA and September-October-November (SON) in the Southern Hemisphere consistent with an overall broadening of the Hadley circulation; and (3) some poleward migration of cloud boundaries within Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone (ITCZ) region in some seasons. These trends indicate a strengthening of the tropical hydrological cycle with intensification of dry and wet extremes.

  14. Diva software, a tool for European regional seas and Ocean climatologies production

    Science.gov (United States)

    Ouberdous, M.; Troupin, C.; Barth, A.; Alvera-Azcàrate, A.; Beckers, J.-M.

    2012-04-01

    Diva (Data-Interpolating Variational Analysis) is a software based on a method designed to perform data-gridding (or analysis) tasks, with the assets of taking into account the intrinsic nature of oceanographic data, i.e., the uncertainty on the in situ measurements and the anisotropy due to advection and irregular coastlines and topography. The Variational Inverse Method (VIM, Brasseur et al., 1996) implemented in Diva consists in minimizing a variational principle which accounts for the differences between the observations and the reconstructed field, the influence of the gradients and variability of the reconstructed field. The resolution of the numerical problem is based on finite-element method, which allows a great numerical efficiency and the consideration of complicated contours. Along with the analysis, Diva provides also error fields (Brankart and Brasseur, 1998; Rixen et al., 2000) based on the data coverage and noise. Diva is used for the production of climatologies in the pan-European network SeaDataNet. SeaDataNet is connecting the existing marine data centres of more than 30 countries and set up a data management infrastructure consisting of a standardized distributed system. The consortium has elaborated integrated products, using common procedures and methods. Among these, it uses the Diva software as reference tool for climatologies computation for various European regional seas, the Atlantic and the global ocean. During the first phase of the SeaDataNet project, a number of additional tools were developed to make easier the climatologies production for the users. Among these tools: the advection constraint during the field reconstruction through the specification of a velocity field on a regular grid, forcing the analysis to align with the velocity vectors; the Generalized Cross Validation for the determination of analysis parameters (signal-to-noise ratio); the creation of contours at selected depths; the detection of possible outliers; the

  15. KLIMHIST: A Project on Historical Climatology in Portugal

    Science.gov (United States)

    Fragoso, Marcelo; João Alcoforado, Maria; Santos, João A.

    2013-04-01

    Climatic variability from the beginning of regular meteorological observations is now acknowledged. However, climate change prior to 1900 is far from being well known in Portugal, except for the 1675-1800 period in Southern Portugal. An interdisciplinary team is working in the frame of the KLIMHIST PROJECT ("Reconstruction and model simulations of past climate in Portugal using documentary and early instrumental sources, 17th-19th century)", since May 2012. The main objectives of the project are: (i) to contribute to the creation of a long-term history of climate in Portugal by producing databases of documentary evidence and of instrumental data since 1645, a period of natural climate variability that includes the Maunder Minimum and the Dalton Minimum; (ii) to search systematically for the first simultaneous documentary and instrumental data in order to calibrate the series; (iii) to analyse simulated multi-decadal trends over Portugal generated by climate models; (iv) to compare results with those obtained from dendroclimatology and from geothermal studies regarding Portugal and (v) to study extreme events of the past, their impacts and the vulnerability of societies to weather during the last 350 years, and compare them with current analogues. With these tasks, we expect to help completing the spatial coverage of past European climate, as the data gap over SW Europe is often mentioned. As the team members come from four different Universities in Portugal (Évora, Lisbon, Oporto and UTAD), we expect to obtain a good spatial representation of documentary evidence. Teams are now progressing in data search activities in archives. An Access database frame was constructed. Some 18th century extreme events have been and are being studied (Barbara storm, Dec.1739, among others). The first workshop took place in Lisbon (October 2012): Prof Brázdil and Dr. Domínguez-Castro (two of our consultants) were keynote speakers. Key-words: Climate reconstruction, Documentary

  16. Future changes in cyclone climatology over Europe as inferred from a regional climate simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, P. [University of Salento, Department of Material Science, Lecce (Italy); Boldrin, U. [University of Padua, Padua (Italy); Giorgi, F. [ICTP, Trieste (Italy)

    2008-05-15

    This study analyzes the cyclone climatology in regional climate model simulations of present day (1961-1990) and future (2071-2100, A2 and B2 emission scenarios) european climate conditions. The model domain covers the area from Scandinavia to Northern Africa and from the Eastern Atlantic to Russia at a horizontal grid spacing of 50 km. Compared to present day, in the A2 and B2 scenario conditions the annual average storm track intensity increases over the North-East Atlantic and decreases over Russia and the Eastern Mediterranean region. This overall change pattern is larger in the A2 than in the B2 simulations. However, the cyclone climatology change signal shows a large intermonthly variability and important differences across European regions. The largest changes are found over the North-East Atlantic, where the storm track intensity increases in winter and decreases in summer. A significant reduction of storm track intensity is found during late summer and autumn over the Mediterranean region, and from October to January over Russia. The number of cyclones decreases in future conditions throughout Europe, except over the Central Europe and Mediterranean regions in summer (where it increases). The frequency of intense cyclones and the depth of extreme cyclones increase over the North-East Atlantic, decrease over Russia and show an irregular response over the rest of the domain. (orig.)

  17. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions

    Directory of Open Access Journals (Sweden)

    Luca Spogli

    2013-06-01

    Full Text Available In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS, we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.

  18. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    Science.gov (United States)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  19. Transport of anthropogenic emissions during ARCTAS-A: a climatology and regional case studies

    Directory of Open Access Journals (Sweden)

    D. L. Harrigan

    2011-02-01

    Full Text Available The National Aeronautics and Space Administration (NASA conducted the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission during 2008 as a part of the International Polar Year (IPY. The purpose of ARCTAS was to study the factors responsible for changes in the Arctic's atmospheric composition and climate. A major emphasis was to investigate Arctic haze, which is most pronounced during winter and early spring. This study focuses on the spring phase of ARCTAS (ARCTAS-A that was based in Alaska during April 2008. Although anthropogenic emissions historically have been associated with Arctic haze, biomass burning dominated the ARCTAS-A period and has been the focus of many ARCTAS related studies.

    This study determines the common pathways for anthropogenic emissions during ARCTAS-A. Trajectories (air parcels are released each day from three historically significant regions of anthropogenic emissions (Asia, North America, and Europe. These fifteen day forward trajectories are calculated using data from the Weather Research and Forecasting (WRF model at 45 km horizontal resolution. The trajectories then are examined to determine: origins of emissions that reach the Arctic (defined as north of 70° N within fifteen days, pathways of the emissions reaching the Arctic, Arctic entry locations, and altitudes at which the trajectories enter the Arctic. These results serve as regional "climatologies" for the ARCTAS-A period.

    Three cases during the ARCTAS-A period (one for each of the regions above are examined using backward trajectories and chemical fingerprinting based on in situ data sampled from the NASA DC-8. The fingerprinting utilizes volatile organic compounds that represent pure anthropogenic tracers, Asian anthropogenic pollution, incomplete combustion, and natural gas emissions. We determine flight legs containing anthropogenic emissions and the pathways travelled by these emissions

  20. The Climatology of Neutral Winds in the MLT Region as Observed From Orbit

    Science.gov (United States)

    Niciejewski, R.; Skinner, W.; Gell, D.; Cooper, M.; Marsh, A.; Killeen, T.; Wu, Q.; Solomon, S.; Ortland, D.; Drob, D.; Emmert, J.

    2005-12-01

    Unique observations of the horizontal neutral winds in the altitude range 70 to 115 km have been performed from satellite platforms by HRDI and WINDII (UARS) and by TIDI (TIMED), the former since September 1991 and the latter since January 2002. All three experiments observed airglow on the terrestrial limb and derived vertical wind profiles of geophysical quantities by inverting altitude scans of Doppler shifted emission spectra. As a result, the global mesosphere / lower thermosphere region has been sampled for 14 years by a common technique resulting in an unparalleled neutral wind database. This database will be one of the key contributions to an improved Horizontal Wind Model (HWM). This paper will describe results from the first long term climatological study of the MLT region based on satellite wind measurements. The basic dynamic structure in the MLT is a tide, which also has long-term variation that has similar periods to the 27-month QBO (quasi-biennial oscillation) and the SAO (semi-annual oscillation). Signatures of ultra-long variability require analysis of the full wind database.

  1. Simulated Future Changes in Air Temperature and Precipitation Climatology in the Central Asia Cordex Region 8 BY Using RegCM 4.3.5

    Science.gov (United States)

    Ozturk, Tugba; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    In this study, projected future changes for the period of 2071-2100 in mean surface air temperature and precipitation climatology and variability over the large Central Asia region with respect to present climate (1971 to 2000) were simulated based on the RCP 4.5 and RCP 8.5 emission scenarios. Regional Climate Model (RegCM4.3) of the International Centre for Theoretical Physics (ICTP) was used for projections of future and present climate conditions. Hadley Global Environment Model 2 (HadGEM2) of the Met Office Hadley Centre was downscaled for the Cordex Region 8. We investigated the seasonal time-scale performance of RegCM4.3.5 in reproducing observed climatology over the domain of Central Asia by usingtwo different emission scenario datasets for three future periods. The regional model is capable of reproducing the observed climate with few exceptions, which are due to the meteorological and physical geographical complexities of the domain. For the future climatology of the domain, the regional model predicts relatively high warming in the warm season and northern part of the domain at cold season with a decrease in precipitation amounts almost all part of the domain. The results of our study showed that surface air temperatures in the region will increase from 3° C up to more than 7° C on average according to the emission scenarios for the period of 2070-2100 with respect to past period of 1970-2000. In the future, a decrease in the amount of precipitation is also predicted for the region. The projected warming and decrease in precipitation for the domain may strongly affect the ecological and socio-economic systems including agriculture, natural biomes, hydrology and water resources of this region, which is already a mostly arid and semi-arid environment. This work has been supported by Bogazici University BAP under project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  2. Regional Climate Model Intercomparison Project for Asia.

    Science.gov (United States)

    Fu, Congbin; Wang, Shuyu; Xiong, Zhe; Gutowski, William J.; Lee, Dong-Kyou; McGregor, John L.; Sato, Yasuo; Kato, Hisashi; Kim, Jeong-Woo; Suh, Myoung-Seok

    2005-02-01

    Improving the simulation of regional climate change is one of the high-priority areas of climate study because regional information is needed for climate change impact assessments. Such information is especially important for the region covered by the East Asian monsoon where there is high variability in both space and time. To this end, the Regional Climate Model Intercomparison Project (RMIP) for Asia has been established to evaluate and improve regional climate model (RCM) simulations of the monsoon climate. RMIP operates under joint support of the Asia-Pacific Network for Global Change Research (APN), the Global Change System for Analysis, Research and Training (START), the Chinese Academy of Sciences, and several projects of participating nations. The project currently involves 10 research groups from Australia, China, Japan, South Korea, and the United States, as well as scientists from India, Italy, Mongolia, North Korea, and Russia.RMIP has three simulation phases: March 1997-August 1998, which covers a full annual cycle and extremes in monsoon behavior; January 1989-December 1998, which examines simulated climatology; and a regional climate change scenario, involving nesting with a global model. This paper is a brief report of RMIP goals, implementation design, and some initial results from the first phase studies.

  3. Climatology of observed rainfall in Southeast France at the Regional Climate Model scales

    Science.gov (United States)

    Froidurot, Stéphanie; Molinié, Gilles; Diedhiou, Arona

    2016-04-01

    In order to provide convenient data to assess rainfall simulated by Regional Climate Models, a spatial database (hereafter called K-REF) has been designed. This database is used to examine climatological features of rainfall in Southeast France, a study region characterized by two mountain ranges of comparable altitude (the Cévennes and the Alps foothill) on both sides of the Rhône valley. Hourly records from 1993 to 2013 have been interpolated to a 0.1° × 0.1° latitude-longitude regular grid and accumulated over 3-h periods in K-REF. The assessment of K-REF relatively to the SAFRAN daily rainfall reanalysis indicates consistent patterns and magnitudes between the two datasets even though K-REF fields are smoother. A multi-scale analysis of the occurrence and non-zero intensity of rainfall is performed and shows that the maps of the 50th and 95th percentiles of 3- and 24-h rain intensity highlight different patterns. The maxima of the 50th and 95th percentiles are located over plain and mountainous areas respectively. Moreover, the location of these maxima is not the same for the 3- and 24-h intensities. To understand these differences between median and intense rainfall on the one hand and between the 3- and 24-h rainfall on the other hand, we analyze the statistical distributions and the space-time structure of occurrence and intensity of the 3-h rainfall in two classes of days, defined as median and intense. This analysis illustrates the influence of two factors on the triggering and the intensity of rain in the region: the solar cycle and the orography. The orographic forcing appears to be quite different for the two ranges of the domain and is much more pronounced over the Cévennes.

  4. A Study of Precipitation Climatology and Its Variability over Europe Using an Advanced Regional Model (WRF)

    KAUST Repository

    Dasari, Hari Prasad

    2015-03-06

    In recent years long-term precipitation trends on a regional scale have been given emphasis due to the impacts of global warming on regional hydrology. In this study, regional precipitation trends are simulated over the Europe continent for a 60-year period in 1950-2010 using an advanced regional model, WRF, to study extreme precipitation events over Europe. The model runs continuously for each year during the period at a horizontal resolution of 25 km with initial/ boundary conditions derived from the National Center for Environmental Prediction (NCEP) 2.5 degree reanalysis data sets. The E-OBS 0.25 degree rainfall observation analysis is used for model validation. Results indicate that the model could reproduce the spatial annual rainfall pattern over Europe with low amounts (250 - 750 mm) in Iberian Peninsula, moderate to large amounts (750 - 1500 mm) in central, eastern and northeastern parts of Europe and extremely heavy falls (1500 - 2000 mm) in hilly areas of Alps with a slight overestimation in Alps and underestimation in other parts of Europe. The regional model integrations showed increasing errors (mean absolute errors) and decreasing correlations with increasing time scale (daily to seasonal). Rainfall is simulated relatively better in Iberian Peninsula, northwest and central parts of Europe. A large spatial variability with the highest number of wet days over eastern, central Europe and Alps (~200 days/year) and less number of wet days over Iberian Peninsula (≤150 days/year) is also found in agreement with observations. The model could simulate the spatial rainfall climate variability reasonably well with low rainfall days (1 - 10 mm/days) in almost all zones, heavy rainfall events in western, northern, southeastern hilly and coastal zones and extremely heavy rainfall events in northern coastal zones. An increasing trend of heavy rainfall in central, southern and southeastern parts, a decreasing trend in Iberian Peninsula and a steady trend in other

  5. The nighttime F-region climatology during magnetically quiet periods seen from TIMED/GUVI and DMSP

    Science.gov (United States)

    Kil, H.; Paxton, L.; Zhang, Y.; Wolven, B.; Morrison, D.

    2004-12-01

    In this study, we investigate the drivers of the nighttime climatology in the low- and middle-latitude ionosphere during quiet periods using the TIMED/GUVI and DMSP data. The observation results show that the seasonal hemispheric asymmetry in plasma density is primary induced by the summer-to-winter wind circulations while the longitudinal variations of the F-region morphology is produced by the contribution of the zonal winds that depends on the magnetic declination. However, the F-region morphology observed at 625 km from TIMED/GUVI does not precisely conform the morphology observed at 840 km from DMSP. We will discuss the differential neutral wind effect on the F-region morphology depending on the magnetic declination, altitude, and the location of the geomagnetic equator relative to the geographic equator.

  6. Santa Ana Winds of Southern California: Their Climatology and Variability Spanning 6.5 Decades from Regional Dynamical Modelling

    Science.gov (United States)

    Guzman-Morales, J.; Gershunov, A.

    2015-12-01

    Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region. In spite of their tremendous episodic impacts on the health, economy and mood of the region, climate-scale behavior of SAW is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis product and construct an hourly SAW catalogue spanning 65 years. We describe the long-term SAW climatology at relevant time-space resolutions, i.e, we developed local and regional SAW indices and analyse their variability on hourly, daily, annual, and multi-decadal timescales. Local and regional SAW indices are validated with available anemometer observations. Characteristic behaviors are revealed, e.g. the SAW intensity-duration relationship. At interdecadal time scales, we find that seasonal SAW activity is sensitive to prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system that are also known to affect the hydroclimate of this region. Lastly, we do not find any long-term trend in SAW frequency and intensity as previously reported. Instead, we identify a significant long-term trend in SAW behavior whereby contribution of extreme SAW events to total seasonal SAW activity has been increasing at the expense of moderate events. These findings motivate further investigation on SAW evolution in future climate and its impact on wildfires.

  7. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    Science.gov (United States)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  8. Evaluation of a regional model climatology in Europe using dynamical downscaling from a seamless Earth prediction approach (EC-Earth)

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Montavez, Juan P.; Baldasano, Jose M.

    2010-05-01

    Climate and weather forecasting applications share a common ancestry and build on the same physical principles. Nevertheless, climate research and numerical weather prediction are commonly seen as different disciplines. The emerging concept of "seamless prediction" forges weather forecasting and climate change studies into a single framework (Palmer et al., 2008). In principle, as models develop towards higher resolution and more feedbacks are included, some aspects of model uncertainty should reduce. However, global models can only resolve processes down to 50-100 km at present. Moreover, users of climate information often require much higher detail and downscaling methods are needed to provide regional climate information consistent with global climate trajectories. Therefore, this work presents an evaluation of the ability of a regional climate model (RCM) to reproduce the present climatology over Europe using a high resolution (25 km). The RCM used in this study is a climate version of the MM5 model (Fernández et al., 2007). The analysis here focuses on the annual and seasonal biases and variability for temperature (mean, maximum and minimum) and precipitation. The statistical parameters are obtained by interpolating the simulated values on the E-OBS gridded dataset from the European Climate Assessment & Dataset (ECA&D) at a resolution of 0.5° for the period 1990-2000. The novel approach of this contribution is that the driving model is EC-Earth version 2 (Hazeleger et al., 2010), which follows the seamless prediction approach to provide climate forcings to the regional model. The atmospheric model of EC-Earth is based on ECMWF's Integrated Forecast System, cycle 31r1, corresponding to the current seasonal forecast system of ECMWF. The standard configuration runs at T159 horizontal spectral resolution with 62 vertical levels. The ocean component is based on version 2 of the NEMO model with a horizontal resolution of nominally 1 degree and 42 vertical levels

  9. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area.

    Directory of Open Access Journals (Sweden)

    Stephan Woodborne

    Full Text Available Carbon isotope analysis of four baobab (Adansonia digitata L. trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa.

  10. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area.

    Science.gov (United States)

    Woodborne, Stephan; Gandiwa, Patience; Hall, Grant; Patrut, Adrian; Finch, Jemma

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa.

  11. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  12. A multi-model analysis of the resolution influence on precipitation climatology in the Gulf Stream region

    Science.gov (United States)

    Feng, Xuelei; Huang, Bohua; Kirtman, Ben P.; Kinter, James L.; Chiu, Long S.

    2016-05-01

    Using climate simulations from coupled and uncoupled general circulation models, this study investigates the influence of horizontal resolution in both atmospheric and oceanic model components on the mean precipitation over the Gulf Stream (GS) region. For this purpose, three sets of model experiments are analyzed. The first two examine the effects of increasing horizontal resolution of an atmospheric general circulation model (AGCM) gradually from 100 to 10 km under fixed oceanic settings. Specifically, the AGCM is either forced with prescribed observed sea surface temperature (SST) (the first case) or coupled to a non-eddy-resolving ocean general circulation model (OGCM) at a fixed horizontal resolution near 100 km (the second case). The third set of experiments examines the effects of the oceanic resolution with a pair of long-term simulations by another coupled ocean-atmosphere general circulation model (CGCM), in which the OGCM is run respectively at non-eddy-resolving (100 km) and eddy-resolving (10 km) resolutions, while the AGCM resolution remains fixed at 50 km for both runs. In general, all simulations qualitatively reproduce the gross features of the mean GS precipitation and its annual cycle. At similar AGCM resolutions, the uncoupled models produce a GS rain band that is more realistic in both structure and strength compared to the coupled models with non-eddy-resolving oceans. This is because the prescribed observed SST better represents the gradient near the oceanic front than the non-eddy-resolving OGCMs simulate. An increase from the baseline AGCM resolution produces enhanced climatological GS precipitation, both large-scale and convective, with the latter more tightly confined to the oceanic front. The enhancement, however, is moderate and further increases in resolution achieves diminishing results. On the other hand, an increase in oceanic resolution from non-eddy-resolving to eddy resolving scheme results in more consistent simulations with

  13. Cloud-to-ground lightning over Mexico and adjacent oceanic regions. A preliminary climatology using the WWLLN dataset

    Energy Technology Data Exchange (ETDEWEB)

    Kucienska, B.; Raga, G.B. [Universidad Nacional Autonoma de Mexico (Mexico). Centro de Ciencias de la Atmosfera; Rodriguez, O. [Instituto Mexicano de Tecnologia del Agua, Morelos (Mexico)

    2010-07-01

    This work constitutes the first climatological study of lightning over Mexico and adjacent oceanic areas for the period 2005-2009. Spatial and temporal distributions of cloud to ground lightning are presented and the processes that contribute to the lightning variability are analysed. The data are retrieved from theWorldWide Lightning Location Network (WWLLN) dataset. The current WWLL network includes 40 stations which cover much of the globe and detect very low frequency radiation (''spherics'') associated with lightning. The spatial distribution of the average yearly lightning over the continental region of Mexico shows the influence of orographic forcing in producing convective clouds with high lightning activity. However, a very high number of strikes is also observed in the States of Tabasco and Campeche, which are low-lying areas. This maximum is related to the climatological maximum of precipitation for the country and it may be associated with a region of persistent low-level convergence and convection in the southern portion of the Gulf of Mexico. The maps of correlation between rainfall and lightning provide insight into the microphysical processes occurring within the clouds. The maritime clouds close to the coastline exhibit similar properties to continental clouds as they produce very high lightning activity. The seasonal cycle of lightning registered by WWLLN is consistent with the LIS/OTD dataset for the selected regions. In terms of the annual distribution of cloud-to-ground strikes, July, August and September exhibit the highest number of strikes over continental Mexico. The diurnal cycle indicates that the maximum number of strikes over the continent is observed between 6 and 9 p.m. LT. The surrounding oceanic regions were subdivided into four distinct sectors: Gulf of Mexico, Caribbean, Subtropical Pacific and Tropical Pacific. The Gulf of Mexico has the broadest seasonal distribution, since during winter lightning associated

  14. An Agro-Climatological Early Warning Tool Based on the Google Earth Engine to Support Regional Food Security Analysis

    Science.gov (United States)

    Landsfeld, M. F.; Daudert, B.; Friedrichs, M.; Morton, C.; Hegewisch, K.; Husak, G. J.; Funk, C. C.; Peterson, P.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.; Williams, E. L.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The Google Earth Engine (GEE) is a platform provided by Google Inc. to support scientific research and analysis of environmental data in their cloud environment. The intent is to allow scientists and independent researchers to mine massive collections of environmental data and leverage Google's vast computational resources to detect changes and monitor the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). The CHIRPS dataset is land based, quasi-global (latitude 50N-50S), 0.05 degree resolution, and has a relatively long term period of record (1981-present). CHIRPS is on a continuous monthly feed into the GEE as new data fields are generated each month. This precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. FEWS NET intends to leverage the GEE in order to provide analysts and scientists with flexible, interactive tools to aid in their monitoring and research efforts. These scientists often work in bandwidth limited regions, so lightweight Internet tools and services that bypass the need for downloading massive datasets to analyze them, are preferred for their work. The GEE provides just this type of service. We present a tool designed specifically for FEWS NET scientists to be utilized interactively for investigating and monitoring for agro-climatological issues. We are able to utilize the enormous GEE computing power to generate on-the-fly statistics to calculate precipitation anomalies, z-scores, percentiles and band ratios, and allow the user to interactively select custom areas for statistical time series comparisons and predictions.

  15. Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria

    Directory of Open Access Journals (Sweden)

    Piero Lionello

    2016-05-01

    Full Text Available The Mediterranean storm track constitutes a well-defined branch of the North Hemisphere storm track and is characterised by small but intense features and frequent cyclogenesis. The goal of this study is to assess the level of consensus among cyclone detection and tracking methods (CDTMs, to identify robust features and to explore sources of disagreement. A set of 14 CDTMs has been applied for computing the climatology of cyclones crossing the Mediterranean region using the ERA-Interim dataset for the period 1979–2008 as common testbed. Results show large differences in actual cyclone numbers identified by different methods, but a good level of consensus on the interpretation of results regarding location, annual cycle and trends of cyclone tracks. Cyclogenesis areas such as the north-western Mediterranean, North Africa, north shore of the Levantine basin, as well as the seasonality of their maxima are robust features on which methods show a substantial agreement. Differences among methods are greatly reduced if cyclone numbers are transformed to a dimensionless index, which, in spite of disagreement on mean values and interannual variances of cyclone numbers, reveals a consensus on variability, sign and significance of trends. Further, excluding ‘weak’ and ‘slow’ cyclones from the computation of cyclone statistics improves the agreement among CDTMs. Results show significant negative trends of cyclone frequency in spring and positive trends in summer, whose contrasting effects compensate each other at annual scale, so that there is no significant long-term trend in total cyclone numbers in the Mediterranean basin in the 1979–2008 period.

  16. Regional Transmission Projects: Finding Solutions

    Energy Technology Data Exchange (ETDEWEB)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  17. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Directory of Open Access Journals (Sweden)

    Igor V. Geogdzhayev

    2015-09-01

    Full Text Available A comprehensive set of monthly mean aerosol optical thickness (AOT data from coastal and island AErosol RObotic NETwork (AERONET stations is used to evaluate Global Aerosol Climatology Project (GACP retrievals for the period 1995–2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS Aqua level-2 data for 2003–2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81–0.85 for GACP and 0.74–0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%–27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%–25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the

  18. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  19. Regional projections of North Indian climate for adaptation studies.

    Science.gov (United States)

    Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T

    2013-12-01

    Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes.

  20. Assessment of an ensemble of ocean-atmosphere coupled and uncoupled regional climate models to reproduce the climatology of Mediterranean cyclones

    Science.gov (United States)

    Flaounas, Emmanouil; Kelemen, Fanni Dora; Wernli, Heini; Gaertner, Miguel Angel; Reale, Marco; Sanchez-Gomez, Emilia; Lionello, Piero; Calmanti, Sandro; Podrascanin, Zorica; Somot, Samuel; Akhtar, Naveed; Romera, Raquel; Conte, Dario

    2016-11-01

    This study aims to assess the skill of regional climate models (RCMs) at reproducing the climatology of Mediterranean cyclones. Seven RCMs are considered, five of which were also coupled with an oceanic model. All simulations were forced at the lateral boundaries by the ERA-Interim reanalysis for a common 20-year period (1989-2008). Six different cyclone tracking methods have been applied to all twelve RCM simulations and to the ERA-Interim reanalysis in order to assess the RCMs from the perspective of different cyclone definitions. All RCMs reproduce the main areas of high cyclone occurrence in the region south of the Alps, in the Adriatic, Ionian and Aegean Seas, as well as in the areas close to Cyprus and to Atlas mountains. The RCMs tend to underestimate intense cyclone occurrences over the Mediterranean Sea and reproduce 24-40 % of these systems, as identified in the reanalysis. The use of grid nudging in one of the RCMs is shown to be beneficial, reproducing about 60 % of the intense cyclones and keeping a better track of the seasonal cycle of intense cyclogenesis. Finally, the most intense cyclones tend to be similarly reproduced in coupled and uncoupled model simulations, suggesting that modeling atmosphere-ocean coupled processes has only a weak impact on the climatology and intensity of Mediterranean cyclones.

  1. Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea

    Science.gov (United States)

    Yang, Tae-Yong; Kwak, Young-Sil; Kil, Hyosub; Lee, Young-Sook; Lee, Woo Kyoung; Lee, Jae-jin

    2015-11-01

    A new 40.8 MHz coherent scatter radar was built in Daejeon, South Korea (36.18°N, 127.14°E, dip latitude: 26.7°N) on 29 December 2009 and has since been monitoring the occurrence of field-aligned irregularities (FAIs) in the northern middle latitudes. We report on the occurrence climatology of the F region FAIs as observed by the Daejeon radar between 2010 and 2014. The F region FAIs preferentially occur around 250-350 km at 18:00-21:00 local time (postsunset FAI), around 350-450 km near midnight (nighttime FAI), around 250-350 km before sunrise (presunrise FAI), and around 160-300 km after 05:00 local time (postsunrise FAI). The occurrence rates of nighttime and presunrise FAIs are maximal during summer, though the occurrence rates of postsunset and postsunrise FAIs are maximal during the equinoxes. FAIs rarely occur during local winter. The occurrence rate of F region FAIs increases in concert with increases in solar activity. Medium-scale traveling ionospheric disturbances (MSTIDs) are known as an important source of the F region FAIs in middle latitudes. The high occurrence rate of the nighttime FAIs in local summer is consistent with the high occurrence rate of MSTIDs in that season. However, the dependence of the FAI activity on the solar cycle is inconsistent with the MSTID activity. The source of the F region FAIs in middle latitudes is an open question. Our report of different types of FAIs and their occurrence climatology may provide a useful reference for the identification of the source of the middle latitude FAIs.

  2. Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach

    Directory of Open Access Journals (Sweden)

    B. Chen

    2012-02-01

    Full Text Available The Asian Summer Monsoon (ASM region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST, which can significantly impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL to tropopause layer (TL over this region, particularly from a climatological perspective, remains an issue of uncertainty. In this study, we present the climatological properties of BL-to-TL transport over the ASM region during boreal summer season (June-July-August from 2001 to 2009. A comprehensive tracking analysis is conducted based on a large ensemble of TST-trajectories departing from the atmospheric BL and arriving at TL. Driven by the winds fields from the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research Global Forecast System, all TST-trajectories are selected from the high resolution datasets generated by the Lagrangian particle transport model FLEXPART using a domain-filling technique. Three key atmospheric boundary layer sources for BL-to-TL transport are identified with their contributions: (i 38% from the region between tropical Western Pacific region and South China Seas (WP, (ii 21% from Bay of Bengal and South Asian subcontinent (BOB, and (iii 12% from the Tibetan Plateau, which includes the South Slope of the Himalayas (TIB. Controlled by the different patterns of atmospheric circulation, the air masses originating from these three source regions are transported along the different tracks into the TL. The spatial distributions of these three source regions remain similarly from year to year. The timescales of transport from BL to TL by the large-scale ascents range from 1 to 7 weeks, contributing up to 60–70% of the overall TST; whereas the transport governed by the deep convection overshooting becomes faster, with timescales of 1–2 days and contributions of 20–30%. These

  3. Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach

    Directory of Open Access Journals (Sweden)

    B. Chen

    2012-07-01

    Full Text Available The Asian Summer Monsoon (ASM region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST, which can significant impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL to tropopause layer (TL over these regions, particularly from a climatological perspective, remain an issue of uncertainty. In this study, we present the climatological properties of BL-to-TL transport over the ASM region during boreal summer season (June-July-August from 2001 to 2009. A comprehensive tracking analysis is conducted based on a large ensemble of TST-trajectories departing from the atmospheric BL and arriving at TL. Driven by the winds fields from NCEP/NCAR Global Forecast System, all the TST-trajectories are selected from the high resolution datasets generated by the Lagrangian particle transport model FLEXPART using a domain-filling technique. Three key atmospheric boundary layer sources for BL-to-TL transport are identified with their contributions: (i 38% from the region between tropical Western Pacific region and South China Seas (WP (ii 21% from Bay of Bengal and South Asian subcontinent (BOB, and (iii 12% from the Tibetan Plateau, which includes the South Slope of the Himalayas (TIB. Controlled by the different patterns of atmospheric circulation, the air masses originated from these three source regions are transported along the different tracks into the TL. The spatial distributions of three source regions keep similarly from year to year. The timescales of transport from BL to TL by the large-scale ascents r-range from 1 to 7 weeks contributing up to 60–70% of the overall TST, whereas the transport governed by the deep convection overshooting become faster on a timescales of 1–2 days with the contributions of 20–30%. These results provide clear policy implications for the control of very short lived substances

  4. An Assessment of the South Asian Summer Monsoon Variability for Present and Future Climatologies Using a High Resolution Regional Climate Model (RegCM4.3 under the AR5 Scenarios

    Directory of Open Access Journals (Sweden)

    Mujtaba Hassan

    2015-11-01

    Full Text Available We assessed the present and future climatologies of mean summer monsoon over South Asia using a high resolution regional climate model (RegCM4 with a 25 km horizontal resolution. In order to evaluate the performance of the RegCM4 for the reference period (1976–2005 and for the far future (2070–2099, climate change projections under two greenhouse gas representative concentration pathways (RCP4.5 and RCP8.5 were made, the lateral boundary conditions being provided by the geophysical fluid dynamic laboratory global model (GFDL-ESM2M. The regional climate model (RCM improves the simulation of seasonal mean temperature and precipitation patterns compared to driving global climate model (GCM during present-day climate conditions. The regional characteristic features of South Asian summer monsoon (SASM, like the low level jet stream and westerly flow over the northern the Arabian Sea, are well captured by the RegCM4. In spite of some discrepancies, the RegCM4 could simulate the Tibetan anticyclone and the direction of the tropical easterly jet reasonably well at 200 hPa. The projected temperature changes in 2070–2099 relative to 1976–2005 for GFDL-ESM2M show increased warming compared to RegCM4. The projected patterns at the end of 21st century shows an increase in precipitation over the Indian Peninsula and the Western Ghats. The possibilities of excessive precipitation include increased southwesterly flow in the wet period and the effect of model bias on climate change. However, the spatial patterns of precipitation are decreased in intensity and magnitude as the monsoon approaches the foothills of the Himalayas. The RegCM4-projected dry conditions over northeastern India are possibly related to the anomalous anticyclonic circulations in both scenarios.

  5. A novel tropopause-related climatology of ozone profiles

    NARCIS (Netherlands)

    Sofieva, V.F.; Tamminen, J.; Kyrola, E.; Mielonen, T.; Veefkind, J.P.; Hassler, B.; Bodeker, G.E.

    2014-01-01

    A new ozone climatology, based on ozonesonde and satellite measurements, spanning the altitude region between the earth's surface and ~60 km is presented (TpO3 climatology). This climatology is novel in that the ozone profiles are categorized according to calendar month, latitude and local tropopaus

  6. Initiation and planning of regional investment projects

    Directory of Open Access Journals (Sweden)

    Skopin Alex

    2012-05-01

    Full Text Available In this paper, the authors show that the initiation of individual investment projects and their subsequent selection of local authorities often rely on officially articulated priorities of socio-economic development of the municipality and evaluations of their effectiveness. Furthermore it is shown that it is advisable to initiate projects from the bottom of the enterprise and incorporate them into a system of regional projects.

  7. Study of seasonal climatology and interannual variability over India and its subregions using a regional climate model (RegCM3)

    Indian Academy of Sciences (India)

    P Maharana; A P Dimri

    2014-07-01

    The temporal and spatial variability of the various meteorological parameters over India and its different subregions is high. The Indian subcontinent is surrounded by the complex Himalayan topography in north and the vast oceans in the east, west and south. Such distributions have dominant influence over its climate and thus make the study more complex and challenging. In the present study, the climatology and interannual variability of basic meteorological fields over India and its six homogeneous monsoon subregions (as defined by Indian Institute of Tropical Meteorology (IITM) for all the four meteorological seasons) are analysed using the Regional Climate Model Version 3 (RegCM3). A 22-year (1980–2001) simulation with RegCM3 is carried out to develop such understanding. The National Centre for Environmental Prediction/National Centre for Atmospheric Research, US (NCEP-NCAR) reanalysis 2 (NNRP2) is used as the initial and lateral boundary conditions. The main seasonal features and their variability are represented in model simulation. The temporal variation of precipitation, i.e., the mean annual cycle, is captured over complete India and its homogenous monsoon subregions. The model captured the contribution of seasonal precipitation to the total annual precipitation over India. The model showed variation in the precipitation contribution for some subregions to the total and seasonal precipitation over India. The correlation coefficient (CC) and difference between the coefficient of variation between model fields and the corresponding observations in percentage (COV) is calculated and compared. In most of the cases, the model could represent the magnitude but not the variability. The model processes are found to be more important than in the corresponding observations defining the variability. The model performs quite well over India in capturing the climatology and the meteorological process. The model shows good skills over the relevant subregions during a

  8. Climatology of columnar aerosol properties and the influence of synoptic conditions: First-time results from the northeastern region of India

    Science.gov (United States)

    Gogoi, Mukunda M.; Krishna Moorthy, K.; Babu, S. Suresh; Bhuyan, Pradip K.

    2009-04-01

    Six years of spectral aerosol optical depths (AODs), from the northeastern part of India (Dibrugarh), are used to evolve a climatology for this region. The results indicate that the seasonal mean AODs at 500 nm go as high as 0.45 ± 0.05 during premonsoon season (March to May), decrease gradually through the monsoon (June to September) to reach the lowest value of 0.19 ± 0.06 during the retreating-monsoon season (October and November), and increase to 0.31 ± 0.04 in winter (December to February). The AOD spectra are generally flatter than those seen typically over continental sites of India (and elsewhere in the neighboring regions) with Ångström exponent α remaining below 1.0 during February through August, indicating a relatively low abundance of fine and accumulation mode aerosols. The columnar size distributions (CSD) retrieved from spectral AODs are, in general, bimodal with primary mode at ˜ 0.1 μm and secondary mode at ˜ 1.0 μm. High mass loading (˜309.5 ± 65.9 mg m-2) and effective radius (˜0.40 ± 0.09 μm) occur during premonsoon and are attributed to significant abundance of coarse (natural) aerosols. Cluster analysis of air mass back trajectories indicate significant transport of mineral dust from the arid regions of west Asia and northwest India across the Indo-Gangetic plains and marine aerosols advected from the Bay of Bengal contributing largely to the coarse mode aerosols during this season. On the other hand, the peculiar topography combined with the local conditions and the widespread rainfall lead to a more pristine environment during retreating-monsoon season with quite low AODs and columnar loading.

  9. Custom map projections for regional groundwater models

    Science.gov (United States)

    Kuniansky, Eve L.

    2017-01-01

    For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.

  10. The Region 4 collaborative virtual reference project.

    Science.gov (United States)

    Parker, Sandi K; Johnson, E Diane

    2003-01-01

    In May 2002, the Denison Memorial Library at the University of Colorado Health Sciences Center and the J. Otto Lottes Health Sciences Library at the University of Missouri-Columbia, with funding from the National Network of Libraries of Medicine-Midcontinental Region, embarked on a collaborative, real-time reference project using the 24/7 Reference, Inc., software package. This paper describes how the project was conceived, and includes details on the service hours, staffing, training, marketing, lessons learned, and future plans for the service.

  11. Historical Climatology Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Historical Climatology Series (HCS) is a set of climate-related publications published by NOAA's National Climatic Data Center beginning in 1978. HCS is...

  12. Climatological Data National Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDNS was published from 1950 - 1980. Monthly and annual editions contain summarized climatological information from the following publications: Local...

  13. Climatological Services Memorandums

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatological Services Memorandums were a series of memoranda issued by the Weather Bureau for the purpose of keeping all stations informed on the status and...

  14. Reference Climatological Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reference Climatological Stations (RCS) network represents the first effort by NOAA to create and maintain a nationwide network of stations located only in areas...

  15. OW Levitus Climatology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of global temperature and salinity climatologies with a spatial resolution of 1x1 degree, and consists of 19 levels (surface - 5000m). It was...

  16. Preliminary Monthly Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary Local Climatological Data, recorded since 1970 on Weather Burean Form 1030 and then National Weather Service Form F-6. The preliminary climate data pages...

  17. Global Synoptic Climatology Network

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global Synoptic Climatology Network is a digital data set archived at the National Climatic Data Center (NCDC). This record combines the various types of data that...

  18. Using the Variable-Resolution General Circulation Model CAM-SE to Simulate Regional Tropical Cyclone Climatology

    Science.gov (United States)

    Zarzycki, C. M.; Jablonowski, C.; Taylor, M. A.

    2012-12-01

    The ability of General Circulation Models (GCMs) to resolve tropical cyclones in the climate system has traditionally been difficult due to issues such as small storm size and the existence of key thermodynamic processes requiring significant parameterization. At traditional GCM grid resolutions of 50-300 km tropical cyclones are severely under-resolved, if not totally unresolved. Recent improvements in computational ability as well as advances in GCM model design now allow for simulations with grid spacings as small as 10-25 km. At these resolutions, models are able to more effectively capture key dynamical features of tropical cyclones. This paper explores a variable-resolution global model approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such GCM designs with multi-resolution meshes serve to bridge the gap between globally uniform grids and limited area models and have the potential to become a future tool for regional climate assessments. A statically-nested, variable-resolution option has recently been introduced into the National Center for Atmospheric Research (NCAR) Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. The SE dynamical core is also known as the 'High-Order Method Modeling Environment' (HOMME). We present aquaplanet climate experiments which showcase the ability of nested meshes to produce realistic tropical cyclones selectively in high resolution grids embedded within a global domain. We also evaluate model performance when coupled to an active land model and forced with historical sea surface temperatures by comparing multi-year results from variable-resolution CAM-SE to other globally-uniform high resolution tropical cyclone studies recently completed by the climate modeling community. Specific focus is paid to intensity profiles and track densities as well as the interannual variability in storm count in tropical regions of

  19. A climatological study of the relations among solar activity, galactic cosmic ray and precipitation on various regions over the globe

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2010-04-01

    We apply Fourier and wavelet analyses to the precipitation and sunspot numbers in the time series (1901–2000) over Australia (27°S, 133°E), Canada (60°N, 95°W), Ethiopia (8°N, 38°E), Greenland (72°N, 40°W), United Kingdom (54°N, 2°W), India (20°N, 77°E), Iceland (65°N, 18°W), Japan (36°N, 138°E), United States (38°N, 97°W), South Africa (29°S, 24°E) and Russia (60°N, 100°E). Correlation analyses were also performed to find any relation among precipitation, sunspot numbers, temperature, and cloud-cover at the same spatial and temporal scale. Further correlations were also performed between precipitation with electron and proton fluence at the time interval, 1987–2006. All these parameters were considered in annual and seasonal scales. Though correlation study between precipitation and other parameters do not hint any linear relation, still the Fourier and wavelet analyses give an idea of common periodicities. The 9–11 year periodicity of sunspot numbers calculated by Fourier transform is also confirmed by wavelet transform in annual scale. Similarly, wavelet analysis for precipitation also supports the short periods at 2–5 years which is verified by Fourier transform in discontinuous time over different geographic regions.

  20. Upper Limit for Regional Sea Level Projections

    Science.gov (United States)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  1. The NEWS Water Cycle Climatology

    Science.gov (United States)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  2. Regional projection of climate impact indices over the Mediterranean region

    Science.gov (United States)

    Casanueva, Ana; Frías, M.; Dolores; Herrera, Sixto; Bedia, Joaquín; San Martín, Daniel; Gutiérrez, José Manuel; Zaninovic, Ksenija

    2014-05-01

    Climate Impact Indices (CIIs) are being increasingly used in different socioeconomic sectors to transfer information about climate change impacts and risks to stakeholders. CIIs are typically based on different weather variables such as temperature, wind speed, precipitation or humidity and comprise, in a single index, the relevant meteorological information for the particular impact sector (in this study wildfires and tourism). This dependence on several climate variables poses important limitations to the application of statistical downscaling techniques, since physical consistency among variables is required in most cases to obtain reliable local projections. The present study assesses the suitability of the "direct" downscaling approach, in which the downscaling method is directly applied to the CII. In particular, for illustrative purposes, we consider two popular indices used in the wildfire and tourism sectors, the Fire Weather Index (FWI) and the Physiological Equivalent Temperature (PET), respectively. As an example, two case studies are analysed over two representative Mediterranean regions of interest for the EU CLIM-RUN project: continental Spain for the FWI and Croatia for the PET. Results obtained with this "direct" downscaling approach are similar to those found from the application of the statistical downscaling to the individual meteorological drivers prior to the index calculation ("component" downscaling) thus, a wider range of statistical downscaling methods could be used. As an illustration, future changes in both indices are projected by applying two direct statistical downscaling methods, analogs and linear regression, to the ECHAM5 model. Larger differences were found between the two direct statistical downscaling approaches than between the direct and the component approaches with a single downscaling method. While these examples focus on particular indices and Mediterranean regions of interest for CLIM-RUN stakeholders, the same study

  3. A global satellite-assisted precipitation climatology

    Science.gov (United States)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  4. A global satellite assisted precipitation climatology

    Directory of Open Access Journals (Sweden)

    C. Funk

    2015-05-01

    Full Text Available Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05° global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology

  5. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  6. Regional Assessment of Supplementation Project. Status report

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Fish and Wildlife Program of the Northwest Power Planning Council (NPPC) prescribes several approaches to achieve its goal of doubling the salmon and steelhead runs of the Columbia River. Among those approaches are habitat restoration, improvements in adult and juvenile passage at dams and artificial propagation. Supplementation will be a major part of the new hatchery programs. The purpose of the Regional Assessment of Supplementation Project (RASP) is to provide an overview of ongoing and planned supplementation activities, to construct a conceptual framework and model for evaluating the potential benefits and risks of supplementation and to develop a plan for better regional coordination of research and monitoring and evaluation of supplementation. RASP has completed its first year of work. Progress toward meeting the first year`s objectives and recommendations for future tasks are contained in this report.

  7. Local Climatological Data ACSII Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Comma-delimited text files used to create the Local Climatological Data PDF files found in the Local Climatological Data library. Period of record begins in 1998,...

  8. Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments

    Science.gov (United States)

    Brekke, L.D.; Dettinger, M.D.; Maurer, E.P.; Anderson, M.

    2008-01-01

    Ensembles of historical climate simulations and climate projections from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility affects apparent relative scenario likelihoods in regional risk assessments. Methods were developed and applied in a Northern California case study. An ensemble of 59 twentieth century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate relative model credibility associated with a 75-member projection ensemble from the same 17 models. Credibility was assessed based on how models realistically reproduced selected statistics of historical climate relevant to California climatology. Metrics of this credibility were used to derive relative model weights leading to weight-threshold culling of models contributing to the projection ensemble. Density functions were then estimated for two projected quantities (temperature and precipitation), with and without considering credibility-based ensemble reductions. An analysis for Northern California showed that, while some models seem more capable at recreating limited aspects twentieth century climate, the overall tendency is for comparable model performance when several credibility measures are combined. Use of these metrics to decide which models to include in density function development led to local adjustments to function shapes, but led to limited affect on breadth and central tendency, which were found to be more influenced by 'completeness' of the original ensemble in terms of models and emissions pathways. ?? 2007 Springer Science+Business Media B.V.

  9. Training programme for the dissemination of climatological and meteorological applications using GIS technology

    Directory of Open Access Journals (Sweden)

    T. De Filippis

    2006-01-01

    Full Text Available IBIMET-CNR is involved in making different research projects and in managing operational programmes on national and international level and has acquired a relevant training competence to sustain partner countries and improve their methodological and operational skills by using innovative tools, such as Geographical Information Systems focused on the development of meteorological and climatological applications. Training activities are mainly addressed to National Meteorological and Hydrological Services of Partner-Countries and/or to other Specialized Centers in the frame of Cooperation Programmes promoted by the Italian Ministry of Foreign Affairs mainly in favour of the Less Developing Countries (LDC of World Meteorological Organisation (WMO Regional Association I (Africa. The Institute, as a branch of the WMO-Regional Meteorological Training Centre for Region VI (Europe, organizes also international training courses of high-level in Meteorology, Climatology and Remote Sensing applied to environment and agriculture fields. Moreover, considering the increasing evolution of the GIS functions for meteorological information users, IBIMET has promoted in 2005 the EU COST Action 719 Summer School on "GIS applications in meteorology and climatology''. The paper offers an overview of the main institute training programmes organised to share the results of research activities and operational projects, through the exploitation of innovative technologies and tools like GIS.

  10. Pipeline and Regional Carbon Capture Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Chris; Wortman, David; Brown, Chris; Hassan, Syed; Humphreys, Ken; Willford, Mark

    2016-03-31

    The U.S. Department of Energy’s (DOE) FutureGen 2.0 Program involves two projects: (1) the Oxy-Combustion Power Plant Project and (2) the CO2 Pipeline and Storage Project. This Final Technical Report is focused on the CO2 Pipeline and Storage Project. The FutureGen 2.0 CO2 Pipeline and Storage Project evolved from an initial siting and project definition effort in Phase I, into the Phase II activity consisting permitting, design development, the acquisition of land rights, facility design, and licensing and regulatory approvals. Phase II also progressed into construction packaging, construction procurement, and targeted early preparatory activities in the field. The CO2 Pipeline and Storage Project accomplishments were significant, and in some cases unprecedented. The engineering, permitting, legal, stakeholder, and commercial learnings substantially advance the nation’s understanding of commercial-scale CO2 storage in deep saline aquifers. Voluminous and significant information was obtained from the drilling and the testing program of the subsurface, and sophisticated modeling was performed that held up to a wide range of scrutiny. All designs progressed to the point of securing construction contracts or comfort letters attesting to successful negotiation of all contract terms and willing execution at the appropriate time all major project elements – pipeline, surface facilities, and subsurface – as well as operations. While the physical installation of the planned facilities did not proceed in part due to insufficient time to complete the project prior to the expiration of federal funding, the project met significant objectives prior to DOE’s closeout decision. Had additional time been available, there were no known, insurmountable obstacles that would have precluded successful construction and operation of the project. Due to the suspension of the project, site restoration activities were developed and the work was accomplished. The site restoration

  11. Projecting twenty-first century regional sea-level changes

    NARCIS (Netherlands)

    Slangen, A.B.A.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D.

    2014-01-01

    We present regional sea-level projections and associated uncertainty estimates for the end of the 21 (st) century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined wi

  12. Projecting twenty-first century regional sea-level changes

    NARCIS (Netherlands)

    Slangen, A. B A; Carson, M.; Katsman, C. A.; van de Wal, R. S W; Köhl, A.; Vermeersen, L. L A; Stammer, D.

    2014-01-01

    We present regional sea-level projections and associated uncertainty estimates for the end of the 21st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with

  13. IA of bio-economic projects in Region Zealand, Denmark

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Kjær, Tyge; Palsberg, Aske

    Creating new pathways for sustainable ready-to-implement bio-economic projects within Region Zealand, Denmark, based on available biomass resources and existing and proven technology concepts.......Creating new pathways for sustainable ready-to-implement bio-economic projects within Region Zealand, Denmark, based on available biomass resources and existing and proven technology concepts....

  14. Advancing Climate Dynamics Toward Reliable Regional Climate Projections

    Institute of Scientific and Technical Information of China (English)

    XIE Shang-Ping

    2013-01-01

    With a scientific consensus reached regarding the anthropogenic effect on global mean temperature,developing reliable regional climate projections has emerged as a new challenge for climate science.A national project was launched in China in 2012 to study ocean's role in regional climate change.This paper starts with a review of recent advances in the study of regional climate response to global warming,followed by a description of the Chinese project including the rationale,objectives,and plan for field observations.The 15 research articles that follow in the special issue are highlighted,representing some of the initial results from the project.

  15. Recycling and composting demonstration projects for the Memphis region

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1992-05-01

    This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

  16. Recycling and composting demonstration projects for the Memphis region

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1992-05-01

    This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

  17. Estonian total ozone climatology

    Directory of Open Access Journals (Sweden)

    K. Eerme

    Full Text Available The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May and summer (June–August total ozone have the best correlation (coefficient 0.7 in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects – Meteorology and atmospheric dynamics (climatology

  18. VT Biodiversity Project - Biophysical Regions polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset divides Vermont into eight sub-regions on the basis of bedrock geology, gross physiography, climate, and broad-scale patterns of...

  19. INFORMATIONAL-ANALYTIC MODEL OF REGIONAL PROJECT PORTFOLIO FORMING

    Directory of Open Access Journals (Sweden)

    I. A. Osaulenko

    2016-01-01

    Full Text Available The article is devoted to the problem of regional project portfolio management in context of interaction of the regional development’s motive forces interaction. The features of innovation development on the regional level and their influence on the portfolio forming process considered. An existing approaches for portfolio modelling and formal criterion of the projects selection analyzed. At the same time the organization of key subjects of regional development interaction described. The aim of the article is investigation of informational aspects of project selection in process of the main development’s motive forces interaction and analytic model of portfolio filling validation. At that an inclination of stakeholders to reach a consensus taking into account. The Triple Helix conception using for concrete definition of the functions of the regional development’s motive forces. Asserted, that any component of innovation triad «science–business–government» can be an initiator of regional project, but it need to support two another components. Non-power interaction theory using for investigation of subjects interrelations in process of joint activity proposed. One of the key concept of the theory is information distance. It characterizes inclination of the parties to reach a consensus based on statistics. Projections of information distance onto directions of development axes using for more accurate definition of mutual positions in the all lines of development proposed. Another important parameter of the model which has an influence on the project support is awareness of stakeholders about it. Formalized description of project in the form of fast set of parameters proposes to use for determination of the awareness. The weighting coefficients for each parameter by expert way. Simultaneously the precision of the each parameter setting for all presented projects determines. On the base of appointed values of information distances and

  20. On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula

    Science.gov (United States)

    Yousef, L. A.; Temimi, M.

    2015-12-01

    This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.

  1. Regional energy projects in the Eurasian Area

    Directory of Open Access Journals (Sweden)

    Vesić Dobrica

    2012-03-01

    Full Text Available The Eurasian area has a very rich energy reserves, and is characterized by a complex network of relationships between major suppliers and consumers. The central place in this area has Russia as a country richest in energy resources in Eurasia. Beside her, the European Union is the largest economic and political grouping in the world, and a huge consumer of energy. The dynamic development of Chinese economy requires more energy imports by China. Dependence of the European Union and China on imported energy is high and will grow in the future. Russia is the world's dominant natural gas producer and one of the two largest oil producers in the world. Russia is the largest natural gas supplier of the EU and a significant oil and natural gas supplier of China. Energy projects in Eurasia are the result of the need to strengthen the stability of energy supplies, efforts to diversify sources of supply, and the geographic redistribution of Russian oil and gas exports. Although the interests of the main actors often do not agree, the reasons of energy security affect the development of joint energy projects.

  2. Advances in tourism climatology

    Energy Technology Data Exchange (ETDEWEB)

    Matzarakis, A.; Freitas, C.R. de; Scott, D. (eds.)

    2004-11-01

    This publication grew out of the Second International Workshop of the International Society of Biometeorology, Commission on Climate Tourism and Recreation (ISB-CCTR) that took place at the Orthodox Academy of Crete in Kolimbari, Greece, 8-11 June 2004. The aim of the meeting was to (a) bring together a selection of researchers and tourism experts to review the current state of knowledge of tourism and recreation climatology and (b) explore possibilities for future research and the role of the ISB-CCTR in this. A total of 40 delegates attended the June 2004 ISB-CCTR Workshop. Their fields of expertise included biometeorology, bioclimatology, thermal comfort and heat balance modelling, tourism marketing and planning, urban and landscape planning, architecture, climate change, emission reduction and climate change impact assessment. Participants came from universities and research institutions in Australia, Austria, Canada, Croatia, France, Germany, Greece, Hungary, Italy, the Netherlands, New Zealand, Portugal, Slovenia, United Kingdom and United States of America. Business conducted at the Workshop was divided between five sessions: assessment of climatic resources; climate change; health; weather, sports and risk forecasts; and behaviour and perception. However, the content of this publication is organised so that it reflects the new perspectives and methods that have evolved since the ISB-CCTR was established. (orig.)

  3. Local Climatological Data (LCD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Local Climatological Data (LCD) contains summaries from major airport weather stations that include a daily account of temperature extremes, degree days,...

  4. Southwest Alaska Regional Geothermal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  5. A 4-D climatology (1979–2009 of the monthly aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Directory of Open Access Journals (Sweden)

    P. Nabat

    2012-11-01

    Full Text Available Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multi-year database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, sea-salt, sulfate, black and organic carbon. We use 8 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS, TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical data sets: NIMBUS7/CZCS, NIMBUS7/TOMS and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997, the climate-chemistry models LMDz-OR-INCA and RegCM-4, and the reanalyses GEMS and MACC. Ground-based Level-2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer, and sulfate aerosols over continental Europe (summer. The comparison also shows limitations of certain data sets (especially MERIS and SeaWiFS standard products. Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences between dust aerosols which can be lifted up to 5000 m, and other continental and marine aerosols which are confined in the

  6. A 4-D Climatology (1979-2009) of the Monthly Tropospheric Aerosol Optical Depth Distribution over the Mediterranean Region from a Comparative Evaluation and Blending of Remote Sensing and Model Products

    Science.gov (United States)

    Nabat, P.; Somot, S.; Mallet, M.; Chiapello, I; Morcrette, J. J.; Solomon, F.; Szopa, S.; Dulac, F; Collins, W.; Ghan, S.; Horowitz, L. W.; Lamarque, J. F.; Lee, Y. H.; Naik, V.; Nagashima, T.; Shindell, D.; Skeie, R.

    2013-01-01

    Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD) over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multiyear database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, seasalt, sulfate, black and organic carbon). We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth- Probe) and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997), the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level- 2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA) has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer), and sulfate aerosols over continental Europe (summer). The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products). Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between dust

  7. A 4-D climatology (1979–2009 of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products

    Directory of Open Access Journals (Sweden)

    P. Nabat

    2013-05-01

    Full Text Available Since the 1980s several spaceborne sensors have been used to retrieve the aerosol optical depth (AOD over the Mediterranean region. In parallel, AOD climatologies coming from different numerical model simulations are now also available, permitting to distinguish the contribution of several aerosol types to the total AOD. In this work, we perform a comparative analysis of this unique multi-year database in terms of total AOD and of its apportionment by the five main aerosol types (soil dust, sea-salt, sulfate, black and organic carbon. We use 9 different satellite-derived monthly AOD products: NOAA/AVHRR, SeaWiFS (2 products, TERRA/MISR, TERRA/MODIS, AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER and MSG/SEVIRI, as well as 3 more historical datasets: NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth-Probe and METEOSAT/MVIRI. Monthly model datasets include the aerosol climatology from Tegen et al. (1997, the climate-chemistry models LMDz-OR-INCA and RegCM-4, the multi-model mean coming from the ACCMIP exercise, and the reanalyses GEMS and MACC. Ground-based Level-2 AERONET AOD observations from 47 stations around the basin are used here to evaluate the model and satellite data. The sensor MODIS (on AQUA and TERRA has the best average AOD scores over this region, showing a relevant spatio-temporal variability and highlighting high dust loads over Northern Africa and the sea (spring and summer, and sulfate aerosols over continental Europe (summer. The comparison also shows limitations of certain datasets (especially MERIS and SeaWiFS standard products. Models reproduce the main patterns of the AOD variability over the basin. The MACC reanalysis is the closest to AERONET data, but appears to underestimate dust over Northern Africa, where RegCM-4 is found closer to MODIS thanks to its interactive scheme for dust emissions. The vertical dimension is also investigated using the CALIOP instrument. This study confirms differences of vertical distribution between

  8. Megaprojects and regional development: Pathologies in project planning

    Energy Technology Data Exchange (ETDEWEB)

    Gunton, T. [Simon Fraser University, Burnaby, BC (Canada). School for Resource & Environmental Management

    2003-07-01

    This paper helps completes an evaluation that compares pre-project forecasts to post-project outcomes for one of the largest and most comprehensively planned megaprojects ever undertaken in Canada: the Northeast Coal Project (NECP). The evaluation shows that instead of achieving the expected net benefit of Can$0-9 billion (2000 Canadian $), the NECP incurred a net loss of Can$2.8 billion. The project also generated less than one-half of expected regional employment and failed to mitigate structural problems in the regional economy. Although project planners had all the information that should have led them to forecast this negative outcome, this information was either ignored or dismissed. The explanation for this seemingly irrational behaviour on the part of project planners is explained by a combination of errors in the evaluation methodology and interest group behaviour in regional resource development. Strategies to reduce the likelihood of these errors in future projects include improvements in evaluation methodology and changes in the institutional structure of project evaluation.

  9. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    Energy Technology Data Exchange (ETDEWEB)

    Geogdzhayev, Igor V. [Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025 (United States); NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Mishchenko, Michael I. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States)]. E-mail: crmim@giss.nasa.gov; Liu Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Department of Earth and Environmental Sciences, Columbia University, 2880 Broadway, New York, NY 10025 (United States); Remer, Lorraine [NASA Goddard Space Flight Center, Code 913, Greenbelt, MD 20771 (United States)

    2004-10-15

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis.

  10. CMIP5 permafrost degradation projection:A comparison among different regions

    Science.gov (United States)

    Guo, Donglin; Wang, Huijun

    2016-05-01

    The considerable impact of permafrost degradation on hydrology and water resources, ecosystems, human engineering facilities, and climate change requires us to carry out more in-depth studies, at finer spatial scales, to investigate the issue. In this study, regional differences of the future permafrost changes are explored with respect to the regions (high altitude and high latitude, and in four countries) based on the surface frost index (SFI) model and multimodel and multiscenario data from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Results show the following: (1) Compared with seven other sets of driving data, Climatic Research Unit air temperature combined with Climate Forecast System Reanalysis snow data (CRU_CFSR) yield a permafrost extent with the least absolute area bias and was thus used in the simulation. The SFI model, driven by CRU_CFSR data climatology plus multimodel mean anomalies, produces a present-day (1986-2005) permafrost area of 15.45 × 106 km2 decade-1, which compares reasonably with observations of 15.24 × 106 km2 decade-1. (2) The high-altitude (Tibetan Plateau) permafrost area shows a larger decreasing percentage trend than the high-latitude permafrost area. This indicates that, in terms of speed, high-altitude permafrost thaw is faster than high-latitude permafrost, mainly due to the larger percentage sensitivity to rising air temperature of the high-altitude permafrost compared to the high-latitude permafrost, which is likely related to their thermal conditions. (3) Permafrost in China shows the fastest thaw, which is reflected by the percentage trend in permafrost area, followed by the United States, Russia, and Canada. These discrepancies are mainly linked to different percentage sensitivities of permafrost areas in these four countries to air temperature change. (4) In terms of the ensemble mean, permafrost areas in all regions are projected to decrease by the period 2080-2099. Under representative

  11. Evaluating the Impact of Regional Marketing Projects on the Development of Regions from Different Stakeholder Perspectives

    Directory of Open Access Journals (Sweden)

    Kunze Kim-Kathrin

    2014-01-01

    Full Text Available In the competition for economically attractive stakeholders, regions have to implement strategies to gain and adhere those interest groups. Empirical studies concerning the migration motivations show that it is not only labor market but also soft locational factors of the social environment, nature and landscape that are of high importance: A majority of the population is willing to move or rather stay at a special place because of such soft locational factors. This study examines the impact of regional marketing projects on the development of regions from the perspectives of inhabitants and tourists as well as general attributes to measure a region’s attractiveness from the perspective of high potentials. We argue that those projects that fit to the region and its unique selling propositions contribute to positioning and building location brand value. We show that projects have a socio-economic effect on the attitude towards regions and contribute to building location brand value. An analysis of group differences shows that the project influence on the region and region attractiveness are perceived in significantly different manner depending on the knowledge level of the stakeholder group. Consequently, one should increase the awareness of marketing activities and regions and focus on soft locational factors while establishing and positioning a region brand.

  12. Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions

    Directory of Open Access Journals (Sweden)

    P. James

    2004-01-01

    Full Text Available During the first half of August 2002, a sequence of extreme precipitation episodes affected many regions of central and southern Europe, culminating in one of the most severe flooding events ever experienced along sections of the river Elbe and its tributaries. In this paper, the synoptic meteorological situation during the primary flooding event, 11-13 August 2002, and its recent background is illustrated and discussed. Then, backward trajectory modelling of water vapour transport is employed to determine the sources and transport pathways of the moisture which rained out during the event. The Lagrangian trajectory model FLEXTRA is used together with high resolution operational meteorological analyses from the ECMWF to track a very large number of trajectories, initialized in a dense three-dimensional grid array over the extreme rainfall region. Specific humidity changes along each trajectory are mapped out to yield source-receptor relationships between evaporation and subsequent precipitation for the event. Regions of significant surface evaporation of moisture which later rained out were determined to be parts of the Aegean and Ligurian Seas during the initial stages of the event, while strong evaporation from eastern European land surfaces and from the Black Sea became dominant later on. The method also provides precipitation estimates based solely on specific humidity changes along Lagrangian airmass trajectories, which can be compared to ECMWF model forecast precipitation estimates.

  13. Great Lakes Offshore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Loparo, Kenneth A.; Sajadi, Amir; D' Aquila, Robert; Clark, Kara; Waligorski, Joseph; Baker, Scott

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  14. U.S. Local Climatological Data (LCD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Local Climatological Data (LCD) are summaries of climatological conditions from airport and other prominent weather stations managed by NWS, FAA, and DOD. The...

  15. Future meteorological drought: projections of regional climate models for Europe

    Science.gov (United States)

    Stagge, James; Tallaksen, Lena; Rizzi, Jonathan

    2015-04-01

    In response to the major European drought events of the last decade, projecting future drought frequency and severity in a non-stationary climate is a major concern for Europe. Prior drought studies have identified regional hotspots in the Mediterranean and Eastern European regions, but have otherwise produced conflicting results with regard to future drought severity. Some of this disagreement is likely related to the relatively coarse resolution of Global Climate Models (GCMs) and regional averaging, which tends to smooth extremes. This study makes use of the most current Regional Climate Models (RCMs) forced with CMIP5 climate projections to quantify the projected change in meteorological drought for Europe during the next century at a fine, gridded scale. Meteorological drought is quantified using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), which normalize accumulated precipitation and climatic water balance anomaly, respectively, for a specific location and time of year. By comparing projections for these two indices, the importance of precipitation deficits can be contrasted with the importance of evapotranspiration increases related to temperature changes. Climate projections are based on output from CORDEX (the Coordinated Regional Climate Downscaling Experiment), which provides high resolution regional downscaled climate scenarios that have been extensively tested for numerous regions around the globe, including Europe. SPI and SPEI are then calculated on a gridded scale at a spatial resolution of either 0.44 degrees (~50 km) or 0.11 degrees (~12.5km) for the three projected emission pathways (rcp26, rcp45, rcp85). Analysis is divided into two major sections: first validating the models with respect to observed historical trends in meteorological drought from 1970-2005 and then comparing drought severity and frequency during three future time periods (2011-2040, 2041-2070, 2071-2100) to the

  16. Project work across borders in the arctic Barents region: practical challenges for project members.

    Science.gov (United States)

    Immonen, Ingrid; Anderssen, Norman; Lvova, Maria

    2008-10-01

    The aim of this article was to explore cross-border project cooperation in applied settings in health education as this emerges in the Barents region. Specifically, we wanted to identify the practical challenges for those who participate in the work. This is of direct and indirect relevance to nursing education due to the rapidly increasing student exchange rates, the teachers' increased impetus to take part in international collaboration, and the increased emphasis within nursing education to be culture sensitive and ethnically fair. The considerable differences between countries in the Barents region present clear challenges. Knowledge based on experience from everyday cross-cultural and multinational project work has not been communicated extensively, and each project will have to acquire its own knowledge. Based on participation in various cross-national collaboration projects, we organize the identified practical challenges into five interrelated, everyday challenges: (1) cultural differences: obvious and overlooked, (2) the continuous challenge of language, (3) organizational variations, (4) possibilities and obstacles related to technology, and (5) the important minutiae of project logistics. These exist in all stages of a project. In project applications, these challenges and corresponding realistic consequences for funding are vital. Nursing students and their teachers should be aware that practical cross-national project work poses important challenges that nevertheless might be overcome.

  17. Ensemble of regional climate model projections for Ireland

    Science.gov (United States)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season

  18. A hemispheric climatology of monsoon depressions

    Science.gov (United States)

    Hurley, J. V.; Boos, W.

    2012-12-01

    Monsoon depressions are large (1000-2000 km diameter) cyclonic low pressure systems having organized deep convection, best known for forming in the Bay of Bengal and migrating northwest over northern India in the monsoon trough. About 3 to 5 of these systems occur during each monsoon season, contributing about half of the Indian summer rainfall. Despite their importance as a precipitation source, their dynamics are poorly constrained. Furthermore, although they do occur elsewhere, such as around Australia and in the southern Indian Ocean, there does not exist a collective inventory of these systems outside of the Bay of Bengal region. Here we present a climatology of monsoon depressions produced from the ERA-Interim Reanalysis. Feature tracks are identified using an automated tracking algorithm (K. Hodges' TRACK code) applied to the 850 hPa relative vorticity field for local summer, 1989 to 2003. Using criteria based on relative vorticity and sea level pressure, cyclonic low pressure systems are separated into different intensity categories, one of which corresponds to the definition for monsoon depressions used by the India Meteorological Department. The resultant distribution of storms obtained for the Bay of Bengal region compares well with a previously compiled climatology of monsoon depressions that was limited to the region surrounding India. Having validated our ability to identify monsoon depressions in their classic genesis region near India, we then extend the methods to include the western Pacific, Australia, and the southern Indian Ocean. Track distributions and composite structures of monsoon depressions for these different regions will be presented.

  19. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    stimulate further research on this critical subject. The study of climate involves much more than understanding atmospheric processes. This subtlety is particularly appreciated for Earth, where chemical cycles, geology, ocean influences, and biology are considered in most climate models. In Part IV, Surface and Interior, we look at the role that geochemical cycles, volcanism, and interior mantle processes play in the stability and evolution of terrestrial planetary climates. There is one vital commonality between the climates of all the planets of the solar system: Regardless of the different processes that dominate each of the climates of Earth, Mars, Venus, and Titan, they are all ultimately forced by radiation from the same star, albeit at variable distances. In Part V, Solar Influences, we discuss how the Sun's early evolution affected the climates of the terrestrial planets, and how it continues to control the temperatures and compositions of planetary atmospheres. This will be of particular interest as models of exoplanets, and the influences of much different stellar types and distances, are advanced by further observations. Comparisons of atmospheric and climate processes between the planets in our solar system has been a focus of numerous conferences over the past decade, including the Exoclimes conference series. In particular, this book project was closely tied to a conference on Comparative Climatology of Terrestrial Planets that was held in Boulder, Colorado, on June 25-28, 2012. This book benefited from the opportunity for the author teams to interact and obtain feedback from the broader community, but the chapters do not in general tie directly to presentations at the conference. The conference, which was organized by a diverse group of atmospheric and climate scientists led by Mark Bullock and Lori Glaze, sought to build connections between the various communities, focusing on synergies and complementary capabilities. Discussion panels at the end of most

  20. A climatological description of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  1. NORSEWInD satellite wind climatology

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, Alexis

    is to provide new offshore wind climatology map for the entire area of interest based on satellite remote sensing. This has been based on Synthetic Aperture Radar (SAR) from Envisat ASAR using 9000 scenes re-processed with ECMWF wind direction and CMOD-IFR. The number of overlapping samples range from 450....... QuikSCAT ocean wind vector observations have been analysed for the same four parameters and ASCAT for mean wind speed. All satellite data has been compared to in-situ observations available in the Norsewind project. SSM/I passive microwave wind speed data from 24 years observed around 6 times per day...... are used to estimate trends in offshore winds and interestingly a shift in the seasonal pattern is notice. All satellite-based wind products are valid at 10 m, thus it is desirable to lift winds to higher levels for wind energy products. A method has been suggested to lift winds from 10 m to hub...

  2. Incorporating vegetation dynamics in regional climate change projections over the Mediterranean region

    Science.gov (United States)

    Alo, C. A.; Anagnostou, E. N.

    2009-09-01

    Recent projections of climate change over the Mediterranean region based on general circulation models (e.g. IPCC AR4 GCMs) and regional climate models (e.g. PRUDENCE RCMs) generally show strong warming and pronounced decrease in precipitation, especially in the summer. While the role of vegetation in modulating the regional climate is widely recognized, most, if not all, of these GCM and RCM climate change projections do not account for the response of the dynamic biosphere to potential climate changes. Here, we present preliminary results from ongoing 15-year simulations over the Mediterranean region with a regional climate model (RegCM3) asynchronously coupled to a dynamic vegetation model (CLM-DGVM). Three experiments are performed in order to explore the impact of vegetation feedback on simulated changes in mean climate, climate variability and extreme climatic events (i.e., flood-inducing storms, droughts, heat waves, and extreme winds). This includes 1) a present day climate run with dynamic vegetation, 2) a future climate run with dynamic vegetation, and 3) a future climate run with static vegetation (i.e. vegetation fixed at the present day state). RegCM3 and CLM-DGVM are both run at a horizontal grid spacing of 20 km over a region covering the Mediterranean basin and parts of Central Europe and Northern Africa. Results illustrate the importance of including vegetation feedback in predictions of climate change impacts on Mediterranean climate variability, extreme climatic events and storms.

  3. Los Alamos Climatology 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  4. Ozonesonde climatology between 1995 and 2009: description, evaluation and applications

    Directory of Open Access Journals (Sweden)

    S. Tilmes

    2011-10-01

    Full Text Available An ozone climatology based on ozone soundings for the last 15 years has been constructed for model evaluation and comparisons to other observations. Vertical ozone profiles for 41 stations around the globe have been compiled and averaged for the years 1980–1994 and 1995–2009. The climatology provides information about the median and the width of the ozone probability distribution function, as well as interannual variability of ozone between 1995 and 2009, in pressure and tropopause-referenced altitudes. In addition to single stations, regional aggregates are presented, combining stations with similar ozone characteristics. The Hellinger distance is introduced as a new diagnostic to compare the variability of ozone distributions within each region and used for model evaluation purposes. This measure compares not only the mean, but also the shape of distributions. The representativeness of regional aggregates is discussed using independent observations from surface stations and MOZAIC aircraft data. Ozone from all of these data sets show an excellent agreement within the range of the interannual variability, especially if a sufficient number of measurements are available, as is the case for West Europe. Within the climatology, a significant longitudinal variability of ozone in the troposphere and lower stratosphere in the northern mid- and high latitudes is found. The climatology is used to evaluate results from two model intercomparison activities, HTAP for the troposphere and CCMVal2 for the tropopause region and the stratosphere. HTAP ozone is in good agreement with observations in the troposphere within their range of uncertainty, but ozone peaks too early in the Northern Hemisphere spring. The strong gradients of ozone around the tropopause are less well captured by many models. Lower stratospheric ozone is overestimated for all regions by the multi-model mean of CCMVal2 models. Individual models also show major shortcomings in

  5. Lightning climatology in the Congo Basin

    Science.gov (United States)

    Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.

    2016-09-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide Lightning Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with Lightning Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).

  6. Importance of ensembles in projecting regional climate trends

    Science.gov (United States)

    Arritt, Raymond; Daniel, Ariele; Groisman, Pavel

    2016-04-01

    We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are

  7. Congenital heart disease in Mexico: advances of the regionalization project.

    Science.gov (United States)

    Calderón-Colmenero, Juan; Cervantes-Salazar, Jorge; Curi-Curi, Pedro; Ramírez-Marroquín, Samuel

    2013-04-01

    Consistent with the mission of the World Society for Pediatric and Congenital Heart Surgery to promote health care for children with congenital heart disease all around the world, a Mexican Association of Specialists in Congenital Heart Disease (abbreviated in Spanish as AMECC) was created in Mexico in 2008. Our efforts were coordinated with those of the National Health Secretary with the objective being implementation of a national plan for regionalization of care for patients with congenital heart disease. To improve our knowledge related to technologic and human resources for management of congenital heart disease, we developed a national survey. Finally, a national database was created for collecting all Mexican centers' information related to congenital heart disease care in order to quantify the advances related to the proposed plans. The database utilized international consensus nomenclature. The aim of this article is to show the sequence of our actions in relation to direct accomplishments and the current status of congenital heart disease care in Mexico. This article emphasizes the main aspects of these actions: regionalization project implementation, national survey results, and cardiovascular pediatric surgical database creation. Knowledge of outcomes related to successful actions would be useful for those countries that face similar challenges and may lead them to consider adoption of similar measures with the respective adjustments to their own reality.

  8. Regional hydrogen roadmap. Project development framework for the Sahara Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Benhamou, Khalid [Sahara Wind Inc., Rabat (Morocco); Arbaoui, Abdelaziz [Ecole National Superieure des Arts et Metiers ENSAM Meknes (Morocco); Loudiyi, Khalid [Al Akhawayn Univ. (Morocco); Ould Mustapha, Sidi Mohamed [Nouakchott Univ. (Mauritania). Faculte des Sciences et Techniques

    2010-07-01

    The trade winds that blow along the Atlantic coast from Morocco to Senegal represent one of the the largest and most productive wind potentials available on earth. Because of the erratic nature of winds however, wind electricity cannot be integrated locally on any significant scale, unless mechanisms are developed for storing these intermittent renewable energies. Developing distributed wind energy solutions feeding into smaller electricity markets are essential for solving energy access issues and enabling the development of a local, viable renewable energy industry. These may be critical to address the region's economic challenges currently under pressure from Sub-Saharan migrant populations. Windelectrolysis for the production of hydrogen can be used in grid stabilization, as power storage, fuel or chemical feedstock in specific industries. The objective of the NATO SfP 'Sahara Trade Winds to Hydrogen' project is to support the region's universities through an applied research framework in partnership with industries where electrolysis applications are relevant. By powering two university campuses in Morocco and Mauritania with small grid connected wind turbines and 30 kW electrolyzers generating hydrogen for power back-up as part of ''green campus concepts'' we demonstrated that wind-electrolysis for the production of hydrogen could absorb larger quantities of cheap generated wind electricity in order to maximize renewable energy uptakes within the regions weaker grid infrastructures. Creating synergies with local industries to tap into a widely available renewable energy source opens new possibilities for end users such as utilities or mining industries when processing raw minerals, whose exports generates key incomes in regions most exposed to desertification and climate change issue. Initiated by Sahara Wind Inc. a company from the private sector, along with the Al Akhawayn University, the Ecole Nationale Superieure

  9. Chemical climatology of the southeastern United States, 1999-2013

    Science.gov (United States)

    Hidy, G. M.; Blanchard, C. L.; Baumann, K.; Edgerton, E.; Tanenbaum, S.; Shaw, S.; Knipping, E.; Tombach, I.; Jansen, J.; Walters, J.

    2014-11-01

    A series of experiments (the Southern Oxidant and Aerosol Study - SOAS) took place in central Alabama in June-July, 2013 as part of the broader Southern Atmosphere Study (SAS). These projects were aimed at studying oxidant photochemistry and formation and impacts of aerosols at a detailed process level in a location where high biogenic organic vapor emissions interact with anthropogenic emissions, and the atmospheric chemistry occurs in a subtropical climate in North America. The majority of the ground-based experiments were located at the Southeastern Aerosol Research and Characterization (SEARCH) Centreville (CTR) site near Brent, Alabama, where extensive, unique aerometric measurements of trace gases and particles and meteorology were made beginning in the early 1990s through 2013. The SEARCH network data permits a characterization of the temporal and spatial context of the SOAS findings. Our earlier analyses of emissions and air quality trends are extended through 2013 to provide a perspective for continued decline in ambient concentrations, and the implications of these changes to regional sulfur oxide, nitrogen-ozone, and carbon chemistry. The narrative supports the SAS program in terms of long-term average chemistry (chemical climatology) and short-term comparisons of early summer average spatial variability across the southeastern US at high temporal (hourly) resolution. The long-term measurements show that the SOAS experiments took place during the second wettest and coolest year in the 2000-2013 period, with lower than average solar radiation. The pollution levels at CTR and other SEARCH sites were the lowest since full measurements began in 1999. Changes in anthropogenic gas and particle emissions between 1999 and 2013 account for the decline in pollutant concentrations at the monitoring sites in the region. The data provide an opportunity to contrast SOAS results with temporally and spatially variable conditions in support of the development of tests

  10. Interpreting the inter-model spread in regional precipitation projections in the tropics: role of surface evaporation and cloud radiative effects

    Science.gov (United States)

    Oueslati, Boutheina; Bony, Sandrine; Risi, Camille; Dufresne, Jean-Louis

    2016-11-01

    In this study, we investigate and quantify different contributors to inter-model differences in regional precipitation projections among CMIP5 climate models. Contributors to the spread are very contrasted between land and ocean. While circulation changes dominate the spread over oceans and continental coasts, thermodynamic changes associated with water vapor increase dominate over inland regions. The inter-model spread in the dynamic component is associated with the change in atmospheric radiative cooling with warming, which largely relates to atmospheric cloud radiative effects. Differences in the thermodynamic component result from the differences in the change in surface evaporation that is explained by decreases in surface humidity and limited surface water availability over land. Secondary contributions to the inter-model spread in thermodynamic and dynamic components result respectively from present-day climatology (owing to the Clausius-Clapeyron scaling) and from the shape of the vertical velocity profile associated with changes in surface temperature gradients. Advancing the physical understanding of the cloud-circulation and precipitation-evaporation couplings and improving their representation in climate models may stand the best chance to reduce uncertainty in regional precipitation projections.

  11. A Climatology of Central American Gyres

    Science.gov (United States)

    Papin, P. P.; Griffin, K. S.; Bosart, L. F.; Torn, R. D.

    2012-12-01

    Monsoon gyres, commonly found over the western Pacific Ocean, are characterized by broad low-level cyclonic circulations that occur at a variety of spatial scales ranging from 1500-3000 km. Low-level cyclonic gyre circulations, while less frequent and occupying a smaller scale, have also been observed over Central America during the tropical cyclone (TC) season. A noteworthy gyre observed during the 2010 PREDICT field project served as a "collector" of TC Matthew and a source for TC Nicole. During October 2011, devastating flooding occurred in Guatemala and El Salvador when TD 12-E, embedded in a gyre circulation, made landfall on the Pacific coast of Central America. These gyre occurrences, their apparent links to TC activity, and their association with high-impact weather motivates this presentation. A preliminary analysis of Central American gyres suggests that their spatial scales vary between 1000-2000 km. These gyres also tend to be co-located with reservoirs of deep moisture that are characterized by high precipitable water values (>50 mm) and embedded deep convection on their southern and eastern sides. Catastrophic flooding can occur when gyre cyclonic circulations interact with the topography of Central America. A Central American gyre climatology including gyre frequency over the TC season and individual gyre duration will be presented. This climatology is then used to craft a gyre composite using previous gyre cases from 1980-2010. Particular attention will be given to the common synoptic and sub-synoptic scale features that precede and take place during gyre formation. This includes the role that intraseasonal and interannual circulations such as the Madden-Julian Oscillation (MJO) and El Nino-Southern Oscillation (ENSO) might play in gyre development. TC genesis events within gyre circulations will also be highlighted and examined further. Finally, the results of a September 2010 case study will be used to illustrate the impact that Central American

  12. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Science.gov (United States)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  13. Global Daily Climatology Network: Kazakhstan subset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily meteorological observations for Kazakhstan within the framework of joint efforts to create Global Daily Climatology...

  14. U.S. Annual Climatological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Annual Climatological Summary contains historical monthly and annual summaries for over 8000 U.S. locations. Observing stations are located in the United States of...

  15. Quality Controlled Local Climatological Data (QCLCD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quality Controlled Local Climatological Data (QCLCD) contains summaries from major airport weather stations that include a daily account of temperature extremes,...

  16. Intensive survey methods in the framework of a regional project: the Serena Region study case

    Directory of Open Access Journals (Sweden)

    Mayoral Herrera, Victorino

    2009-06-01

    Full Text Available The aim of this paper is to show the survey methods developed in the framework of a research project carried out in the Serena region (Badajoz Province, Spain. We start from a critical use of the notion of archaeological site and an assessment of the meaning of intensive surface collection in the context of the study of the structure of preindustrial agrarian landscapes. We offer a detailed exposition of the survey planning, data capture and spatial analysis. In a first stage we make a global estimate of density of surface finds, locating possible areas of interest. In a second phase detected dispersions are qualified by systematic sampling. Its main purpose is to dismiss selective procedures leading to remarkable biases in surface record. We emphasize the balance achieved between data resolution and effort invested. This method has shown its effectiveness to characterize archaeological entities often not considered in Peninsular regional projects. Other factors affecting the recognition of sherd scatters are discussed, like the so-called “background noise”.

    El propósito de este trabajo es mostrar la metodología de prospección de superficie empleada en el marco de un proyecto regional sobre la evolución del paisaje en la comarca de La Serena (Badajoz. Se parte de una utilización crítica del concepto de sitio arqueológico y de una valoración del significado de estrategias intensivas de prospección de superficie en el contexto del estudio de la estructuración de los paisajes agrarios preindustriales. Se exponen los planteamientos, diseño y ejecución de los últimos trabajos efectuados. En una primera etapa se realiza una estimación global de la densidad de ítems y se determinan los posibles puntos de interés. Posteriormente se caracterizan cualitativamente las dispersiones detectadas mediante un muestreo aleatorio estratificado. Se pretende de este modo desterrar procedimientos selectivos y poco sistemáticos en la

  17. Chemical climatology of the southeastern United States, 1999–2013

    Directory of Open Access Journals (Sweden)

    G. M. Hidy

    2014-06-01

    Full Text Available A series of experiments (the Southern Oxidant and Aerosol Study-SOAS took place in central Alabama in June–July 2013 as part of the broader Southern Atmosphere Study (SAS. These projects were aimed at studying oxidant photochemistry and formation and impacts of aerosols at a detailed process level in a location where high biogenic organic vapor emissions interact with anthropogenic emissions, and the atmospheric chemistry occurs in a subtropical climate in North America. The majority of the ground-based experiments were located at the Southeastern Aerosol Research and Characterization (SEARCH Centreville (CTR site near Brent, Alabama, where extensive, unique aerometric measurements of meteorology, trace gases and particles have been made from the early 1990s through 2013. The SEARCH network data permits a characterization of temporal and spatial context of the SOAS findings. The long-term measurements show that the SOAS experiments took place during the second wettest and coolest year in the 2000–2013 period, with lower than average solar radiation. The pollution levels at CTR and other SEARCH sites were the lowest since full measurements began in 1999. This dataset provides a perspective for the SOAS program in terms of long-term average chemistry (chemical climatology and short-term comparisons of summer average spatial variability across the Southeast at high temporal (hourly resolution. Changes in anthropogenic gas and particle emissions between 1999 and 2013, account for the decline in pollutant concentrations at the monitoring sites in the region. The long-term and short-term data provide an opportunity to contrast SOAS results with temporally and spatially variable conditions in support for the development of tests for the robustness of SOAS findings.

  18. A seasonal air transport climatology for Kenya

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1999-06-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the Northern Hemisphere and from the Madagascan region of the Indian Ocean in the Southern Hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest Indian Ocean in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed but on a limited and often local scale and not to the extent reported in southern Africa.

  19. Atmospheric Rivers in the Southwestern US: Climatology and Possible Future Changes

    Science.gov (United States)

    Dominguez, F.; Rivera-fernandez, E. R.

    2014-12-01

    Atmospheric rivers (ARs) are important contributors to cool season precipitation in the Southwestern US, and in some cases can lead to extreme hydrometeorological events in the region. We performed a climatological analysis and identified two predominant types of ARs that affect the Southwest: Type 1 ARs originate in the tropics near Hawaii (central Pacific) and enhance their moisture in the midlatitudes, with maximum moisture transport over the ocean at low-levels of the troposphere. On the other hand, moisture in Type 2 ARs has a more direct tropical origin and meridional orientation with maximum moisture transfer at mid-levels. We then analyze future projections of Southwest ARs in a suite of global and regional climate models (from NARCCAP), to evaluate projected future changes in the frequency and intensity of ARs under warmer global climate conditions. We find a consistent and clear intensification of the water vapor transport associated with the ARs that impinge upon Arizona and adjacent regions, however, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no robust variations are projected either by the GCMs or the NARCCAP models. To evaluate the effect of horizontal resolution and improve our physical understanding of these results, we numerically simulated a historical AR event using the Weather Research and Forecasting (WRF) model at a 3km resolution. We then performed a pseudo-global warming experiment by modifying the lateral and lower boundary conditions to reflect possible changes in future ARs (as projected by the ensemble of GCM simulations used for NARCCAP). Interestingly we find that despite higher specific humidity, some regions still receive less rainfall in the warming climate experiments - partially due to changes in thermodynamics, but primarily due to AR dynamics. Therefore, we conclude from this analysis that overall future increase in atmospheric temperature and water

  20. Climatology of salt transitions and implications for stone weathering

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, C.M., E-mail: c.grossi-sampedro@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Brimblecombe, P. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Menendez, B. [Geosciences et Environnement Cergy, Universite de Cergy-Pontoise 95031 Cergy-Pontoise cedex (France); Benavente, D. [Lab. Petrologia Aplicada, Unidad Asociada UA-CSIC, Dpto. Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante 03080 (Spain); Harris, I. [Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Deque, M. [Meteo-France/CNRM, CNRS/GAME, 42 Avenue Coriolis, F-31057 Toulouse, Cedex 01 (France)

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Koeppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Koeppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). - Research highlights: {yields} We introduce the notion of salt climatology for heritage conservation. {yields} Climate affects salt thermodynamics on building materials. {yields} We associate Koeppen-Geiger climate types with potential salt weathering. {yields} We offer future projections of salt damage in Western Europe due to climate change. {yields} Humid

  1. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    Science.gov (United States)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  2. Southeast Region Headboat Survey-PPS Survey Design Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a record of trips selected during pilot procedures for the PPS design project designed to track the port agents ability to follow the PPS design and...

  3. The Influence of Nationalism in Mercosur and in South America - can the regional integration project survive?

    DEFF Research Database (Denmark)

    Christensen, Steen Fryba

    2007-01-01

    The article discusses if the tendency towards nationalism in Latin America seems to get in the way of the regional integration project in Mercosur and at the level of South America......The article discusses if the tendency towards nationalism in Latin America seems to get in the way of the regional integration project in Mercosur and at the level of South America...

  4. A comparison of dynamical and statistical downscaling methods for regional wave climate projections along French coastlines.

    Science.gov (United States)

    Laugel, Amélie; Menendez, Melisa; Benoit, Michel; Mattarolo, Giovanni; Mendez, Fernando

    2013-04-01

    Wave climate forecasting is a major issue for numerous marine and coastal related activities, such as offshore industries, flooding risks assessment and wave energy resource evaluation, among others. Generally, there are two main ways to predict the impacts of the climate change on the wave climate at regional scale: the dynamical and the statistical downscaling of GCM (Global Climate Model). In this study, both methods have been applied on the French coast (Atlantic , English Channel and North Sea shoreline) under three climate change scenarios (A1B, A2, B1) simulated with the GCM ARPEGE-CLIMAT, from Météo-France (AR4, IPCC). The aim of the work is to characterise the wave climatology of the 21st century and compare the statistical and dynamical methods pointing out advantages and disadvantages of each approach. The statistical downscaling method proposed by the Environmental Hydraulics Institute of Cantabria (Spain) has been applied (Menendez et al., 2011). At a particular location, the sea-state climate (Predictand Y) is defined as a function, Y=f(X), of several atmospheric circulation patterns (Predictor X). Assuming these climate associations between predictor and predictand are stationary, the statistical approach has been used to project the future wave conditions with reference to the GCM. The statistical relations between predictor and predictand have been established over 31 years, from 1979 to 2009. The predictor is built as the 3-days-averaged squared sea level pressure gradient from the hourly CFSR database (Climate Forecast System Reanalysis, http://cfs.ncep.noaa.gov/cfsr/). The predictand has been extracted from the 31-years hindcast sea-state database ANEMOC-2 performed with the 3G spectral wave model TOMAWAC (Benoit et al., 1996), developed at EDF R&D LNHE and Saint-Venant Laboratory for Hydraulics and forced by the CFSR 10m wind field. Significant wave height, peak period and mean wave direction have been extracted with an hourly-resolution at

  5. Sustainable manure management in the Baltic Sea Region - results, cases and project recommendations

    DEFF Research Database (Denmark)

    Tybirk, Knud; Luostarinen, S; Hamelin, Lorie;

    This magazine contains the major results, conclusions and recommendations of the project Baltic Forum for Innovative Technologies for Sustainable Manure Management (Baltic Manure) which via co-funding from Interreg Baltic Sea Region programme has been a Flagship project in the EU Strategy...... for the Baltic Sea Region from 2010-2013. The project has involved 18 partners from 8 countries with MTT Agrifood Research Finland as the Lead Partne...

  6. Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Yinger, Robert [Southern California Edison Company, Rosemead, CA (United States); Irwin, Mark [Southern California Edison Company, Rosemead, CA (United States)

    2015-12-29

    ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number of energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.

  7. Shared Value and Its Regional and Industrial Reflection in Corporate Projects

    Directory of Open Access Journals (Sweden)

    Zuzana Křečková Kroupová

    2015-09-01

    Full Text Available The article analyzes Shared Value (CSV implemented projects by regions, social issues, and industries that are involved in pursuing the CSV concept. Project preferences by region show South America, Central America and Caribbean, Global scope and Africa as key targets of CSV projects, followed by North America and Asia. Europe, both Western and Eastern, is at the edge of interest with only several projects implemented. Project preferences by industry clearly show that companies capitalize on their strengths and professional focus. Analyzed Shared Value projects proved simultaneous value to a wide range of corporate stakeholders by creating new products or services, redefining productivity in the value chain or enabling local cluster development. Given the strategic nature of CSV projects, top management initiative is necessary. Numerous world-wide proven Shared Value business cases could serve as inspiration for Central European leaders in creation of their future strategies. Successful CSV projects implemented in the Czech Republic are mentioned.

  8. UPPER MIDWEST REGIONAL EDUCATIONAL LABORATORY PROGRAM DEVELOPMENT PROJECT. REPORT.

    Science.gov (United States)

    KEGLER, STANLEY B.; AND OTHERS

    THIS REPORT DESCRIBES THE DEVELOPMENT, DIVISION, SERVICES, AND CORPORATE STRUCTURE OF THE UPPER MIDWEST REGIONAL EDUCATIONAL LABORATORY, A NON-PROFIT REGIONAL LABORATORY DEVOTED TO CURRICULUM IMPROVEMENT IN THE ELEMENTARY AND SECONDARY SCHOOLS. MEMBERS OF THE ADMINISTRATIVE STAFF, EXECUTIVE COMMITTEE, BOARD OF TRUSTEES, AND STATE COUNCILS OF THE…

  9. A soil moisture climatology of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, S.E.; Isard, S.A. (Illinois State Water Survey, Champaign, IL (United States) Univ. of Illinois, Urbana, IL (United States))

    1994-05-01

    Ten years of soil moisture measurements (biweekly from March through September and monthly during winter) within the top 1 m of soil at 17 grass-covered sites across Illinois are analyzed to provide a climatology of soil moisture for this important Midwest agricultural region. Soil moisture measurements were obtained with neutron probes that were calibrated for each site. Measurement errors are dependent upon the volumetric water content with errors less than 20 percent when soil moisture is above 0 percent of soil volume. Single point errors in moisture measurements from the top 1 m of soil range from 6 percent to 13 percent when volumetric soil moisture is 30 percent of soil volume. The average depletion in moisture between winter and summer over the 10-year period for the top 2 m of soil in Illinois was 72.3 mm. Three-quarters of this decrease occurred above 0.5 m and only 5 percent occurred between the 1.0-m and 2.0-m depths. The average moisture decrease between winter and summer during a wet year (1985) and a drought year (1988) in the top 2 m of soil was 64 percent and 204 percent of the average for the 10-year period, respectively. Seasonal means in soil moisture averaged for the state show the effects of different seasons and soil types on soil moisture. In the winter and spring a latitudinal gradient exists with the wetter soils in the southern part of the state. During summer and autumn there is a longitudinal gradient with the wetter soils in the eastern half of the state. The longitudinal gradient is closely associated with the depth of loess deposits.

  10. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  11. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  12. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  13. Regional Community Wind Conferences, Great Plains Windustry Project

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Lisa [Windustry

    2013-02-28

    Windustry organized and produced five regional Community Wind Across America (CWAA) conferences in 2010 and 2011 and held two CWAA webinars in 2011 and 2012. The five conferences were offered in regions throughout the United States: Denver, Colorado October 2010 St. Paul, Minnesota November 2010 State College, Pennsylvania February 2011 Ludington, Michigan (co-located with the Michigan Energy Fair) June 2011 Albany, New York October 2011

  14. 7 CFR 1486.103 - Are regional projects possible under the program?

    Science.gov (United States)

    2010-01-01

    ... consideration provided such projects target qualifying emerging markets in the specified region. CCC may consider activities which target qualified emerging markets in a specific region, but are conducted in a non-emerging market because of its importance as a central location and ease of access to that region....

  15. Dispersion climatology in a coastal zone

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Gryning, Sven-Erik

    1986-01-01

    system should be used to describe the dispersion. This dispersion classification scheme is used to organize 3 years of data from two meteorological masts, one placed directly at a shoreline and the other roughly 1 km inland. Differences in the dispersion climatology over land and water are studied...

  16. New dynamic NNORSY ozone profile climatology

    Directory of Open Access Journals (Sweden)

    A. K. Kaifel

    2012-01-01

    Full Text Available Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology.

    The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile. The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes and satellite based (SAGE II, HALOE, and POAM-III measurements over the years 1995–2007. In total, four different combinations (modes for input parameters (date, geolocation, total ozone column and temperature profile are available.

    The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS for individual and time series comparisons as well as for analysing the vertical and meridian

  17. Revitalisation of Orlík reservoir – case study of a regional restoration project

    Directory of Open Access Journals (Sweden)

    Ivana Očásková

    2014-06-01

    Full Text Available This case study describes the bottom-up formation of a regional project for restoring a reservoir. Land use changes in the upper Vltava river basin caused the eutrophication of Orlík reservoir, which resulted in water blooms, which in association with socio-economic changes caused a decline in tourism in this region and serious difficulties for local people. The study examines how public awareness helped in the establishment of a restoration project, its framework and strategy. Regional governance of the project management took into consideration both knowledge-based solutions and the interests of local people and municipalities. The project has the potential for resolving both environmental and socio-economic problems and providing a sustainable win-win strategy for the region, residents, tourists and stakeholders.

  18. Moisture and heat budgets of the south American monsoon system: climatological aspects

    Science.gov (United States)

    Garcia, Sâmia R.; Kayano, Mary T.; Calheiros, Alan J. P.; Andreoli, Rita Valéria; de Souza, Rodrigo Augusto Ferreira

    2016-08-01

    The climatology of the moisture and heat budget equation terms for subareas within the South American Monsoon System (SAMS) region is investigated for the 1958-2014 period considering the distinct phases of the Pacific Decadal Oscillation (PDO). These budget equations are applied to the data from the National Centers for Environmental Prediction (NCEP) Reanalysis project. Sources or sinks of moisture and heat are equation residues, referred to as residue and diabatic terms, respectively. Analyses are done for the Central Amazon Basin (CAM) and Western-Central Brazil (WCB) for three distinct periods, 1958-1976, 1977-1995, and 1996-2014, that correspond to the cold, warm, and undefined PDO phases. The differences among the PDO phases for each term are discussed. The CAM region acts dominantly as a moisture sink and heat source in all months during the three phases. On the other hand, in the WCB region, the monsoon characteristics are better defined, with a moisture sink (source) and a heat source (sink) during the wet (dry) season. The main result of the present analysis is the persistence of SAMS intensification signs in both CAM and WCB areas up to the last analyzed period (1996-2014), which is consistent with intense flooding in the Amazon Basin in 2008/2009, 2012, and 2014.

  19. 78 FR 64909 - Southwestern Region: Invasive Plant Control Project, Carson and Santa Fe National Forests, New...

    Science.gov (United States)

    2013-10-30

    ... Forest Service Southwestern Region: Invasive Plant Control Project, Carson and Santa Fe National Forests... prepare an environmental impact statement (EIS) for controlling invasive plants in the Carson and Santa Fe.../landmanagement Santa Fe National Forest: http://www.fs.usda.gov/projects/santafe/landmanagement A limited...

  20. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    Science.gov (United States)

    2015-08-01

    ER D C/ CH L TR -1 5- 11 Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic...Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic Michael F. Forte Field Research Facility...of the extreme offshore wind, wave, and water level climate in the mid-Atlantic region has been conducted for the U.S. Bureau of Safety and

  1. Estimation of increased regional income that emanates from economically justified road construction projects

    Directory of Open Access Journals (Sweden)

    W. J. Pienaar

    2005-09-01

    Full Text Available This article identifies the possible development benefits than can emanate from economically justified road construction projects. It shows how the once-off increase in regional income resulting from investment in road construction projects, and the recurring additional regional income resulting from the use of new or improved roads can be estimated. The difference is shown that exists between a cost-benefit analysis (to determine how economically justified a project is and a regional economic income analysis (to estimate the general economic benefits that will be developed by investment in and usage of a road. Procedures are proposed through which the once-off and recurring increases in regional income can be estimated by using multiplier and accelerator analyses respectively. Finally guidelines are supplied on the appropriate usage of input variables in the calculation of the regional income multiplier.

  2. Projecting overwintering regions of the beet armyworm, Spodoptera exigua in China using the CLIMEX model.

    Science.gov (United States)

    Zheng, Xia-Lin; Wang, Pan; Cheng, Wen-Jie; Wang, Xiao-Ping; Lei, Chao-Liang

    2012-01-01

    The beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) is a serious agricultural pest worldwide. However, population sources of S. exigua in outbreak regions are still vague due to the lack of understanding the distribution of overwintering regions, especially in China. In the present study, the potential overwintering regions of S. exigua in China are projected using the method of Compare Location in the CLIMEX model in order to understand the population sources in outbreak regions and establish an accurate forecasting system. The results showed the southern and northern overwintering boundaries near the Tropic of Cancer (about 23.5 (°)N) and the Yangtze River valley (about 30 (°)N), respectively. Meanwhile, the projection was supported by the data of fieldwork in 14 countries/cities during winter from 2008-2010. In conclusion, results of this study indicated that the overwintering regions of S. exigua were accurately projected by the CLIMEX model.

  3. A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales

    Science.gov (United States)

    Slangen, A. B. A.; Adloff, F.; Jevrejeva, S.; Leclercq, P. W.; Marzeion, B.; Wada, Y.; Winkelmann, R.

    2017-01-01

    Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7-17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.

  4. A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales

    Science.gov (United States)

    Slangen, A. B. A.; Adloff, F.; Jevrejeva, S.; Leclercq, P. W.; Marzeion, B.; Wada, Y.; Winkelmann, R.

    2016-06-01

    Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7-17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.

  5. Project REACH. Regional Education to Achieve with Company Help. Performance Report.

    Science.gov (United States)

    Parkway School District, Chesterfield, MO.

    Project REACH (Regional Education to Achieve with Company) was a regional workplace literacy (WL) program designed to increase the levels of literacy, job performance/satisfaction/retention, productivity, and self-esteem of the work force of six businesses in the Saint Louis area and to foster the development of business-education partnerships for…

  6. Employment in leading and lagging rural regions of the EU; Summary report of the RUREMPLO project.

    NARCIS (Netherlands)

    Terluin, I.J.; Post, J.H.

    1999-01-01

    In the RUREMPLO project an analysis is made of the development of employment in the rural regions of the EU against the background of a downward trend in the agricultural labour force. For this purpose a quantitative analysis of socio-economic characteristics in all EU regions during the 1980s and 1

  7. Guangxi Shanglin Aluminum Plant cross-regional technical upgrade project(phase 1)put into operation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The project(Phase 1)of cross-regional techni- cal upgrade of the aluminum plant of Guangxi Shanglin Nannan Industrial Co.was completed and put into operation on June 8,2007.The plant is a cross-regional technical upgrade pro- ject of Nanning Aluminum Plant,featuring the integration of coal,electricity and aluminum.

  8. Road project opportunity costs subject to a regional constraint on greenhouse gas emissions.

    Science.gov (United States)

    Martin, Jean-Christophe; Point, Patrick

    2012-12-15

    France has constrained the Aquitaine region to set up a climate plan to avoid an emission of 2883 ktCO(2)eq for the period 2007-2013. In parallel, the region has decided to carry out the construction of road infrastructures in order to avoid very high congestion costs. Those road projects will involve an increase in greenhouse gas (GHG) emissions during that period. In the present context of strong sustainability, all emissions (direct and indirect) generated by those projects should be offset. At the regional level, the offsetting of GHG emissions is usually carried out by implementing carbon sequestration projects or projects that reduce energy demand. This paper aims at determining the maximum budget for financing GHG emissions offsetting projects, with computation being based on the opportunity costs of projects, the minimum cost of economic activity reduction required to offset emissions from those projects. The maximum budget devoted to GHG emissions offsetting projects should not exceed €(2001) 1920 M to €(2001) 3592 M, according to low/high traffic growth assumptions.

  9. Climatology of local flow patterns around Basel

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Recently a method has been developed to classify local-scale flow patterns from the wind measurements at a dense network of stations. It was found that in the MISTRAL area around Basel a dozen characteristic flow patterns occur. However, as the dense network of stations ran only during one year, no reliable climatology can be inferred from these data, especially the annual cycle of the flow patterns is not well determined from a single year of observations. As there exist several routinely operated stations in and near the MISTRAL area, a method was searched to identify the local flow patterns from the observations at the few routine stations. A linear discriminant analysis turned out to be the best method. Based of data from 11 stations which were simultaneously operated during 1990-1995 a six-year climatology of the flow patterns could be obtained. (author) 1 fig., 1 tab., 3 refs.

  10. Topographic organization of orbitofrontal projections to the parahippocampal region in rats.

    Science.gov (United States)

    Kondo, Hideki; Witter, Menno P

    2014-03-01

    The parahippocampal region, which comprises the perirhinal, postrhinal, and entorhinal cortices, as well as the pre- and parasubiculum, receives inputs from several association cortices and provides the major cortical input to the hippocampus. This study examined the topographic organization of projections from the orbitofrontal cortex (OFC) to the parahippocampal region in rats by injecting anterograde tracers, biotinylated dextran amine (BDA) and Phaseolus vulgaris-leucoagglutinin (PHA-L), into four subdivisions of OFC. The rostral portion of the perirhinal cortex receives strong projections from the medial (MO), ventral (VO), and ventrolateral (VLO) orbitofrontal areas and the caudal portion of lateral orbitofrontal area (LO). These projections terminate in the dorsal bank and fundus of the rhinal sulcus. In contrast, the postrhinal cortex receives a strong projection specifically from VO. All four subdivisions of OFC give rise to projections to the dorsolateral parts of the lateral entorhinal cortex (LEC), preferentially distributing to more caudal levels of LEC. The medial entorhinal cortex (MEC) receives moderate input from VO and weak projections from MO, VLO, and LO. The presubiculum receives strong projections from caudal VO but only weak projections from other OFC regions. As for the laminar distribution of projections, axons originating from OFC terminate more densely in upper layers (layers I-III) than in deep layers in the parahippocampal region. These results thus show a striking topographic organization of OFC-to-parahippocampal connectivity. Whereas LO, VLO, VO, and MO interact with perirhinal-LEC circuits, the interactions with postrhinal cortex, presubiculum, and MEC are mediated predominantly through the projections of VO.

  11. Scheme major international and regional cooperative projects and double-bases projects for overseas scholars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ In 2005, 34 major international cooperative projects involved in multiple disciplines as Mathematical and Physical Sciences, Life Sciences, Engineering and Materials Sciences, Information Sciences, Earth Sciences,Chemical Sciences, and Management Sciences etc., were ratified with a total funding of 32.03 million RMB.

  12. Results of large scale wind climatologically estimations

    Directory of Open Access Journals (Sweden)

    Andrea Kircsi

    2008-05-01

    Full Text Available The aim of this article is to describe theparticular field of climatology which analyzes airmovement characteristics regarding utilization of windfor energy generation. The article describes features ofwind energy potential available in Hungary compared towind conditions in other areas of the northern quartersphere in order to assist the wind energy use developmentin Hungary. Information on wind climate gives a solidbasis for financial and economic decisions ofstakeholders in the field of wind energy utilization.

  13. Potential Regional Sediment Management (RSM) Projects in the Haleiwa Region, Oahu, Hawaii

    Science.gov (United States)

    2014-05-01

    entering the HSBH is just one of the potential RSM projects considered as part of the present studies . Ultimately, shoreline change analysis, coastal ...Region’s shoreline to reduce wave inundation.  Provide public outreach on coastal processes and beach nourishment . ERDC/CHL CHETN-XIV-37 May 2014...tracer study for the HBP prior to construction of new coastal structures to determine where the sand is going.  Grade the profile along the

  14. Project of Carbon Capture in Small and Medium Farms in the Brunca Region, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gilmar Navarrete

    2013-12-01

    Full Text Available The Clean Development Mechanism (CDM of the Kyoto Protocol, allows the non Annex 1 countries to receive projects that contribute to reducing greenhouse gas emissions and sustainable development in developing countries. The CDM, since its inception, has issued credits equivalent to 1.434.737.562 tons of CO2, distributed across 7.450 projects around the world, from 15 different sectors. Sectors 14 that allow forestry projects (such as reforestation and afforestation have registered 53 projects to date; 19 of which are in Latin America. Nevertheless, the contribution of this sector currently represents less than 1% of CDM Certificates of Emissions Reduction (CERs issued. In September 2013, through their National Forestry Financing Fund (FONAFIFO, Costa Rica registered their first CDM project with the United Nations Framework Convention on Climate Change (UNFCCC, after having complied with all the project cycle processes. The project, known as "Carbon Sequestration in Small and Medium Farms, Brunca Region, Costa Rica" was a project executed by FONAFIFO under their Environmental Services Payment Program. This project was developed in Pérez Zeledón, San José, Costa Rica in partnership with the Cooperative Corporation CoopeAgri RL. The total goal of the project is to reduce the greenhouse gas emission by 176,050 ton of CO2-e, in a period of 20 years and commercialize the CERs in the regulated carbon market.

  15. A methodological critique on using temperature-conditioned resampling for climate projections as in the paper of Gerstengarbe et al. (2013) winter storm- and summer thunderstorm-related loss events in Theoretical and Applied Climatology (TAC)

    Science.gov (United States)

    Wechsung, Frank; Wechsung, Maximilian

    2016-11-01

    The STatistical Analogue Resampling Scheme (STARS) statistical approach was recently used to project changes of climate variables in Germany corresponding to a supposed degree of warming. We show by theoretical and empirical analysis that STARS simply transforms interannual gradients between warmer and cooler seasons into climate trends. According to STARS projections, summers in Germany will inevitably become dryer and winters wetter under global warming. Due to the dominance of negative interannual correlations between precipitation and temperature during the year, STARS has a tendency to generate a net annual decrease in precipitation under mean German conditions. Furthermore, according to STARS, the annual level of global radiation would increase in Germany. STARS can be still used, e.g., for generating scenarios in vulnerability and uncertainty studies. However, it is not suitable as a climate downscaling tool to access risks following from changing climate for a finer than general circulation model (GCM) spatial scale.

  16. Lightning climatology in the Congo Basin: detailed analysis

    Science.gov (United States)

    Soula, Serge; Kigotsi, Jean; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analyzed in detail for the first time. It is based on World Wide Lightning Location Network (WWLLN) data for the period from 2005 to 2013. A comparison of these data with the Lightning Imaging Sensor (LIS) data for the same period shows the WWLLN detection efficiency (DE) in the region increases from about 1.70 % in the beginning of the period to 5.90 % in 2013, relative to LIS data, but not uniformly over the whole 2750 km × 2750 km area. Both the annual flash density and the number of stormy days show sharp maximum values localized in eastern of Democratic Republic of Congo (DRC) and west of Kivu Lake, regardless of the reference year and the period of the year. These maxima reach 12.86 fl km-2 and 189 days, respectively, in 2013, and correspond with a very active region located at the rear of the Virunga mountain range characterised with summits that can reach 3000 m. The presence of this range plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003) and other authors. Thus, a mean maximum value of about 157 fl km-2 y-1 is found for the annual lightning density. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56 % of the flashes located below the equator in the 10°S - 10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year, in agreement with previous works in other regions of the world.

  17. 7 CFR Guide 1 to Subpart G of... - Project Management Agreement Between the ____ Regional Commission and the Farmers Home...

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Project Management Agreement Between the ____ Regional... Guide 1 to Subpart G of Part 1942—Project Management Agreement Between the ____ Regional Commission and... successor agency under Public Law 103-354, in concurring to this Project Management Agreement,...

  18. The weather@home regional climate modelling project for Australia and New Zealand

    Science.gov (United States)

    Black, Mitchell T.; Karoly, David J.; Rosier, Suzanne M.; Dean, Sam M.; King, Andrew D.; Massey, Neil R.; Sparrow, Sarah N.; Bowery, Andy; Wallom, David; Jones, Richard G.; Otto, Friederike E. L.; Allen, Myles R.

    2016-09-01

    A new climate modelling project has been developed for regional climate simulation and the attribution of weather and climate extremes over Australia and New Zealand. The project, known as weather@home Australia-New Zealand, uses public volunteers' home computers to run a moderate-resolution global atmospheric model with a nested regional model over the Australasian region. By harnessing the aggregated computing power of home computers, weather@home is able to generate an unprecedented number of simulations of possible weather under various climate scenarios. This combination of large ensemble sizes with high spatial resolution allows extreme events to be examined with well-constrained estimates of sampling uncertainty. This paper provides an overview of the weather@home Australia-New Zealand project, including initial evaluation of the regional model performance. The model is seen to be capable of resolving many climate features that are important for the Australian and New Zealand regions, including the influence of El Niño-Southern Oscillation on driving natural climate variability. To date, 75 model simulations of the historical climate have been successfully integrated over the period 1985-2014 in a time-slice manner. In addition, multi-thousand member ensembles have also been generated for the years 2013, 2014 and 2015 under climate scenarios with and without the effect of human influences. All data generated by the project are freely available to the broader research community.

  19. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    Directory of Open Access Journals (Sweden)

    Oriana Ovalle-Rivera

    Full Text Available Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  20. Global projections of 21st century land-use changes in regions adjacent to Protected Areas.

    Directory of Open Access Journals (Sweden)

    Linda J Beaumont

    Full Text Available The conservation efficiency of Protected Areas (PA is influenced by the health and characteristics of the surrounding landscape matrix. Fragmentation of adjacent lands interrupts ecological flows within PAs and will decrease the ability of species to shift their distribution as climate changes. For five periods across the 21(st century, we assessed changes to the extent of primary land, secondary land, pasture and crop land projected to occur within 50 km buffers surrounding IUCN-designated PAs. Four scenarios of land-use were obtained from the Land-Use Harmonization Project, developed for the Intergovernmental Panel on Climate Change's Fifth Assessment Report (AR5. The scenarios project the continued decline of primary lands within buffers surrounding PAs. Substantial losses are projected to occur across buffer regions in the tropical forest biomes of Indo-Malayan and the Temperate Broadleaf forests of the Nearctic. A number of buffer regions are projected to have negligible primary land remaining by 2100, including those in the Afrotropic's Tropical/Subtropical Grassland/Savanna/Shrubland. From 2010-2050, secondary land is projected to increase within most buffer regions, although, as with pasture and crops within tropical and temperate forests, projections from the four land-use scenarios may diverge substantially in magnitude and direction of change. These scenarios demonstrate a range of alternate futures, and show that although effective mitigation strategies may reduce pressure on land surrounding PAs, these areas will contain an increasingly heterogeneous matrix of primary and human-modified landscapes. Successful management of buffer regions will be imperative to ensure effectiveness of PAs and to facilitate climate-induced shifts in species ranges.

  1. Global projections of 21st century land-use changes in regions adjacent to Protected Areas.

    Science.gov (United States)

    Beaumont, Linda J; Duursma, Daisy

    2012-01-01

    The conservation efficiency of Protected Areas (PA) is influenced by the health and characteristics of the surrounding landscape matrix. Fragmentation of adjacent lands interrupts ecological flows within PAs and will decrease the ability of species to shift their distribution as climate changes. For five periods across the 21(st) century, we assessed changes to the extent of primary land, secondary land, pasture and crop land projected to occur within 50 km buffers surrounding IUCN-designated PAs. Four scenarios of land-use were obtained from the Land-Use Harmonization Project, developed for the Intergovernmental Panel on Climate Change's Fifth Assessment Report (AR5). The scenarios project the continued decline of primary lands within buffers surrounding PAs. Substantial losses are projected to occur across buffer regions in the tropical forest biomes of Indo-Malayan and the Temperate Broadleaf forests of the Nearctic. A number of buffer regions are projected to have negligible primary land remaining by 2100, including those in the Afrotropic's Tropical/Subtropical Grassland/Savanna/Shrubland. From 2010-2050, secondary land is projected to increase within most buffer regions, although, as with pasture and crops within tropical and temperate forests, projections from the four land-use scenarios may diverge substantially in magnitude and direction of change. These scenarios demonstrate a range of alternate futures, and show that although effective mitigation strategies may reduce pressure on land surrounding PAs, these areas will contain an increasingly heterogeneous matrix of primary and human-modified landscapes. Successful management of buffer regions will be imperative to ensure effectiveness of PAs and to facilitate climate-induced shifts in species ranges.

  2. Revisiting the Climatology of Atmospheric Blocking in the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    Ho Nam CHEUNG; ZHOU Wen; Hing Yim MOK; Man Chi WU; Yaping SHAO

    2013-01-01

    In addition to the occurrence of atmospheric blocking,the climatology of the characteristics of blocking events,including duration,intensity,and extension,in four seasons over the Northern Hemisphere was analyzed for the period 1950-2009.The seasonality and spatial variations of these characteristics were studied according to their longitudinal distributions.In general,there were sharp discrepancies in the blocking characteristics between winter and summer,and these differences were more prominent over the Atlantic and Pacific Oceans.The blocking not only occurred more frequently but also underwent stronger amplification in winter; likewise,the blocking occurred less frequently and underwent weaker amplification in summer.There are very strong interrelationships among different blocking characteristics,suggesting that they are supported by similar physical factors.In addition,the relationship between blocking over different regions and East Asian circulation was examined.Ural-Siberia is a major blocking formation region in all seasons that may exert a downstream impact on East Asia.The impact is generally weak in summer,which is due to its lower intensity and smaller duration.However,the extratropical circulation over East Asia in summer can be disturbed persistently by the frequent occurrence of blocking over the Asian continent or the Western Pacific.In particular,the blocking frequency over the Western Pacific significantly increased during the study period.This climatological information provides a background for studying the impact of blocking on East Asian circulation under both present and future climate conditions.

  3. Projected changes in regional climate extremes arising from Arctic sea ice loss

    Science.gov (United States)

    Screen, James A.; Deser, Clara; Sun, Lantao

    2015-08-01

    The decline in Arctic sea ice cover has been widely documented and it is clear that this change is having profound impacts locally. An emerging and highly uncertain area of scientific research, however, is whether such Arctic change has a tangible effect on weather and climate at lower latitudes. Of particular societal relevance is the open question: will continued Arctic sea ice loss make mid-latitude weather more extreme? Here we analyse idealized atmospheric general circulation model simulations, using two independent models, both forced by projected Arctic sea ice loss in the late twenty-first century. We identify robust projected changes in regional temperature and precipitation extremes arising solely due to Arctic sea ice loss. The likelihood and duration of cold extremes are projected to decrease over high latitudes and over central and eastern North America, but to increase over central Asia. Hot extremes are projected to increase in frequency and duration over high latitudes. The likelihood and severity of wet extremes are projected to increase over high latitudes, the Mediterranean and central Asia; and their intensity is projected to increase over high latitudes and central and eastern Asia. The number of dry days over mid-latitude Eurasia and dry spell duration over high latitudes are both projected to decrease. There is closer model agreement for projected changes in temperature extremes than for precipitation extremes. Overall, we find that extreme weather over central and eastern North America is more sensitive to Arctic sea ice loss than over other mid-latitude regions. Our results are useful for constraining the role of Arctic sea ice loss in shifting the odds of extreme weather, but must not be viewed as deterministic projections, as they do not account for drivers other than Arctic sea ice loss.

  4. Downscaling and projection of precipitation from general circulation model predictors in an equatorial climate region by the automated regression-based statistical method

    Science.gov (United States)

    Amin, Mohd Zaki M.; Islam, Tanvir; Ishak, Asnor M.

    2014-10-01

    The authors have applied an automated regression-based statistical method, namely, the automated statistical downscaling (ASD) model, to downscale and project the precipitation climatology in an equatorial climate region (Peninsular Malaysia). Five precipitation indices are, principally, downscaled and projected: mean monthly values of precipitation (Mean), standard deviation (STD), 90th percentile of rain day amount, percentage of wet days (Wet-day), and maximum number of consecutive dry days (CDD). The predictors, National Centers for Environmental Prediction (NCEP) products, are taken from the daily series reanalysis data, while the global climate model (GCM) outputs are from the Hadley Centre Coupled Model, version 3 (HadCM3) in A2/B2 emission scenarios and Third-Generation Coupled Global Climate Model (CGCM3) in A2 emission scenario. Meanwhile, the predictand data are taken from the arithmetically averaged rain gauge information and used as a baseline data for the evaluation. The results reveal, from the calibration and validation periods spanning a period of 40 years (1961-2000), the ASD model is capable to downscale the precipitation with reasonable accuracy. Overall, during the validation period, the model simulations with the NCEP predictors produce mean monthly precipitation of 6.18-6.20 mm/day (root mean squared error 0.78 and 0.82 mm/day), interpolated, respectively, on HadCM3 and CGCM3 grids, in contrast to 6.00 mm/day as observation. Nevertheless, the model suffers to perform reasonably well at the time of extreme precipitation and summer time, more specifically to generate the CDD and STD indices. The future projections of precipitation (2011-2099) exhibit that there would be an increase in the precipitation amount and frequency in most of the months. Taking the 1961-2000 timeline as the base period, overall, the annual mean precipitation would indicate a surplus projection by nearly 14~18 % under both GCM output cases (HadCM3 A2/B2 scenarios and

  5. Regional climate model data used within the SWURVE project – 1: projected changes in seasonal patterns and estimation of PET

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Climate data for studies within the SWURVE (Sustainable Water: Uncertainty, Risk and Vulnerability in Europe project, assessing the risk posed by future climatic change to various hydrological and hydraulic systems were obtained from the regional climate model HadRM3H, developed at the Hadley Centre of the UK Met Office. This paper gives some background to HadRM3H; it also presents anomaly maps of the projected future changes in European temperature, rainfall and potential evapotranspiration (PET, estimated using a variant of the Penman formula. The future simulations of temperature and rainfall, following the SRES A2 emissions scenario, suggest that most of Europe will experience warming in all seasons, with heavier precipitation in winter in much of western Europe (except for central and northern parts of the Scandinavian mountains and drier summers in most parts of western and central Europe (except for the north-west and the eastern part of the Baltic Sea. Particularly large temperature anomalies (>6°C are projected for north-east Europe in winter and for southern Europe, Asia Minor and parts of Russia in summer. The projected PET displayed very large increases in summer for a region extending from southern France to Russia. The unrealistically large values could be the result of an enhanced hydrological cycle in HadRM3H, affecting several of the input parameters to the PET calculation. To avoid problems with hydrological modelling schemes, PET was re-calculated, using empirical relationships derived from observational values of temperature and PET.

  6. The Cyberspace Regionalization Project: Simultaneously Bridging the Digital and Racial Divide.

    Science.gov (United States)

    Becker, Jonathan

    The Cyberspace Regionalization Project uses advanced audio-visual telecommunications to bridge gaps of geography and socioeconomic status between two New Jersey high schools, one white and affluent and one black and low income. Using audio-visual links provided by Intel ProShare software and equipment, students and teachers from the two schools…

  7. USDA/Regional Dairy Quality Management Alliance (RDQM) Project-2008 Report

    Science.gov (United States)

    The Regional Dairy Quality Management Alliance (RDQMA) research project has been underway for four years. We have so far been able to study best management practices on three dairy farms in the Northeast. ON these farms very precise data are collected with regard to the health status of the animals ...

  8. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    NARCIS (Netherlands)

    Rae, J.G.L.; Aðalgeirsdóttir, G.; Edwards, T.L.; Fettweis, X.; Gregory, J.M.; Hewitt, H.T.; Lowe, J.A.; Lucas-Picher, P.; Mottram, R.H.; Payne, A.J.; Ridley, J.K.; Shannon, S.R.; van de Berg, W.J.; van de Wal, R.S.W.; van den Broeke, M.R.

    2012-01-01

    Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution gener

  9. Uncertainties in climate change projections and regional downscaling: implications for water resources management

    NARCIS (Netherlands)

    Buytaert, W.; Vuille, M.; Dewulf, A.; Urrutia, R.; Karmalkar, A.; Célleri, R.

    2010-01-01

    Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate

  10. Assessing reliability of regional climate projections: the case of Indian monsoon.

    Science.gov (United States)

    Ramesh, K V; Goswami, Prashant

    2014-02-12

    Projections of climate change are emerging to play major roles in many applications. However, assessing reliability of climate change projections, especially at regional scales, remains a major challenge. An important question is the degree of progress made since the earlier IPCC simulations (CMIP3) to the latest, recently completed CMIP5. We consider the continental Indian monsoon as an example and apply a hierarchical approach for assessing reliability, using the accuracy in simulating the historical trend as the primary criterion. While the scope has increased in CMIP5, there is essentially no improvement in skill in projections since CMIP3 in terms of reliability (confidence). Thus, it may be necessary to consider acceptable models for specific assessment rather than simple ensemble. Analysis of climate indices shows that in both CMIP5 and CMIP3 certain common processes at large and regional scales as well as slow timescales are associated with successful simulation of trend and mean.

  11. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Case Western Reserve Univ., Cleveland, OH (United States); Loparo, Kenneth A. [Case Western Reserve Univ., Cleveland, OH (United States); D' Aquila, Robert [General Electric (GE), Albany, NY (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waligorski, Joseph G. [FirstEnergy, Akron, OH (United States); Baker, Scott [PJM Interconnection, Audubon, PA (United States)

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  12. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  13. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  14. A climatology of visible surface reflectance spectra

    Science.gov (United States)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  15. Projects from Federal Region IX: Department of Energy Appropriate Energy Technology Program. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Case, C.W.; Clark, H.R.; Kay, J.; Lucarelli, F.B.; Rizer, S.

    1980-01-01

    Details and progress of appropriate energy technology programs in Region IX are presented. In Arizona, the projects are Solar Hot Water for the Prescott Adult Center and Solar Prototype House for a Residential Community. In California, the projects are Solar AquaDome Demonstration Project; Solar Powered Liquid Circulating Pump; Appropriate Energy Technology Resource Center; Digester for Wastewater Grown Aquatic Plants; Performance Characteristics of an Anaerobic Wastewater Lagoon Primary Treatment System; Appropriate Energy/Energy Conservation Demonstration Project; Solar Energy for Composting Toilets; Dry Creek Rancheria Solar Demonstration Projects; Demonstration for Energy Retrofit Analysis and Implementation; and Active Solar Space Heating System for the Integral Urban House. In Hawaii, the projects are: Java Plum Electric; Low-Cost Pond Digesters for Hawaiian Pig Farm Energy Needs; Solar Beeswax Melter; Methane Gas Plant for Operating Boilers and Generating Steam; and Solar Water Heating in Sugarcane Seed-Treatment Plants. A Wind-Powered Lighted Navigation Buoys Project for Guam is also described. A revised description of the Biogas Energy for Hawaiian Small Farms and Homesteads is given in an appendix.

  16. Inventory of current environmental monitoring projects in the US-Canadian transboundary region

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Ballinger, M.Y.; Chapman, E.G.

    1986-05-01

    This document presents the results of a study commissioned to survey and summarize major environmental monitoring projects in the US-Canadian transboundary region. Projects with field sites located within 400 km (250 mi) of the border and active after 1980 were reviewed. The types of projects included: ambient air-quality monitoring, ambient water-quality monitoring, deposition monitoring, forest/vegetation monitoring and research, soil studies, and ecosystem studies. Ecosystem studies included projects involving the measurement of parameters from more than one monitoring category (e.g., studies that measured both water and soil chemistry). Individual descriptions were formulated for 184 projects meeting the spatial and temporal criteria. Descriptions included the official title for the project, its common abbreviation, program emphasis, monitoring site locations, time period conducted, parameters measured, protocols employed, frequency of sample collection, data storage information, and the principal contact for the project. A summary inventory subdivided according to the six monitoring categories was prepared using a computerized data management system. Information on major centralized data bases in the field of environmental monitoring was also obtained, and summary descriptions were prepared. The inventory and data base descriptions are presented in appendices to this document.

  17. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    Science.gov (United States)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and

  18. Projections of Suitable Wine Growing Regions and Varieties: Adaptation in Space or Place?

    Science.gov (United States)

    Forrestel, E. J.; Cook, B.; Garcia de Cortazar-Atauri, I.; Nicholas, K. A.; Parker, A.; van Leeuwen, C.; Wolkovich, E. M.

    2015-12-01

    Winegrapes (Vitis vinifera L) are the most valuable horticultural crop in the world with nearly eight million hectares of vineyards in cultivation. Different varieties of winegrapes (e.g., Grenache or Syrah) exhibit an unprecedented amount of phenological and genetic diversity for a cultivated species, which is an important resource to buffer against climate change. Matching phenological strategies of the different winegrape varieties to a particular climate is a fundamental aim for every vineyard manager, especially in the face of significant climatic shifts in many winegrape growing regions. Yet current projections of suitable winegrape growing regions based on future climate scenarios are limited in their utility, as they do not consider the possibility that other varieties better suited to a future climate could be planted within an existing region. For our projections, we built phenological models for the nine most-planted winegrapes globally, which constitutes over 40% of all planted hectares, using a global dataset of budburst, flowering, veraison and maturity. These models were then used to characterize the growing range of 1300 globally planted winegrape varieties. Combing these models with climate projection models under RCP 4.5 and 8.5 emission scenarios we examined future distributions of suitable wine growing regions, as well as the turnover of suitable varieties within existing regions. In some regions of the world, predicted climate change will not significantly alter the varieties that are able to grow, while in others there will need to be shifts in the region itself or in the varieties that are currently planted. Some regions will also see a significant increase in the number and diversity of varieties that can be grown. Our results suggest the need to utilize the full range of winegrape diversity available when considering adaptive strategies in response to changing climates.

  19. Do dynamic regional models add value to the global model projections of Indian monsoon?

    Science.gov (United States)

    Singh, Swati; Ghosh, Subimal; Sahana, A. S.; Vittal, H.; Karmakar, Subhankar

    2017-02-01

    Dynamic Regional Climate Models (RCMs) work at fine resolution for a limited region and hence they are presumed to simulate regional climate better than General Circulation Models (GCMs). Simulations by RCMs are used for impacts assessment, often without any evaluation. There is a growing debate on the added value made by the regional models to the projections of GCMs specifically for the regions like, United States and Europe. Evaluation of RCMs for Indian Summer Monsoon Rainfall (ISMR) has been overlooked in literature, though there are few disjoint studies on Indian monsoon extremes and biases. Here we present a comprehensive study on the evaluations of RCMs for the ISMR with all its important characteristics such as northward and eastward propagation, onset, seasonal rainfall patterns, intra-seasonal oscillations, spatial variability and patterns of extremes. We evaluate nine regional simulations from Coordinated Regional Climate Downscaling Experiment and compare them with their host Coupled Model Intercomparison Project-5 GCM projections. We do not find any consistent improvement in the RCM simulations with respect to their host GCMs for any of the characteristics of Indian monsoon except the spatial variation. We also find that the simulations of the ISMR characteristics by a good number of RCMs, are worse than those of their host GCMs. No consistent added value is observed in the RCM simulations of changes in ISMR characteristics over recent periods, compared to past; though there are few exceptions. These results highlight the need for proper evaluation before utilizing regional models for impacts assessment and subsequent policy making for sustainable climate change adaptation.

  20. Campi Flegrei Deep Drilling Project and geothermal activities in Campania Region (Southern Italy)

    Science.gov (United States)

    De Natale, Giuseppe; Troise, Claudia; Troiano, Antonio; Giulia Di Giuseppe, Maria; Mormone, Angela; Carlino, Stefano; Somma, Renato; Tramelli, Anna; Vertechi, Enrico; Sangianantoni, Agata; Piochi, Monica

    2013-04-01

    The Campanian volcanic area has a huge geothermal potential (Carlino et al., 2012), similar to the Larderello-Radicondoli-Amiata region, in Tuscany (Italy), which has been the first site in the World exploited for electric production. Recently, the Campi Flegrei Deep Drilling Project (CFDDP), sponsored by ICDP and devoted to understand and mitigate the extreme volcanic risk in the area, has also risen new interest for geothermal exploration in several areas of Italy. Following the new Italian regulations which favour and incentivise innovative pilot power plants with zero emission, several geothermal projects have started in the Campania Region, characterized by strict cooperation among large to small industries, Universities and public Research Centers. INGV department of Naples (Osservatorio Vesuviano) has the technical/scientific leadership of such initiatives. Most of such projects are coordinated in the framework of the Regional District for Energy, in which a large part is represented by geothermal resource. Leading geothermal projects in the area include 'FORIO' pilot plant project, aimed to build two small (5 MWe each one) power plants in the Ischia island and two projects aimed to build pilot power plants in the Agnano-Fuorigrotta area in the city of Naples, at the easternmost part of Campi Flegrei caldera. One of the Campi Flegrei projects, 'SCARFOGLIO', is aimed to build a 5 MWe geothermal power plant in the Agnano area, whereas the 'START' project has the goal to build a tri-generation power plant in the Fuorigrotta area, fed mainly by geothermal source improved by solar termodynamic and bio-mass. Meanwhile such projects enter the field work operational phase, the pilot hole drilling of the CFDDP project, recently completed, represents an important experience for several operational aspects, which should contitute an example to be followed by the next geothermal activities in the area. It has been furthermore a source of valuable data for geothermal

  1. Precipitation variability, extremes and uncertainties over southeastern Brazil projected by the Eta regional model

    Science.gov (United States)

    Cavalcanti, Iracema; Silveira, Virginia; Chan, Chou; Marengo, Jose Antonio

    2014-05-01

    Southeastern Brazil is an area affected by extreme precipitation, mainly in the austral summer, associated with frontal systems or the South Atlantic Convergence Zone (SACZ). Flooding and landslides have occurred in the region with serious impact on society and economy. The region has many vulnerable areas, therefore, projections of precipitation and extremes in the future for the region are important to provide information that can be used in adaptations and management decisions. Results of regional models in South America have been analyzed to assess the future climate changes with higher resolution than global models. In this study the Regional Eta model is used with resolution of 40 and 20 Km to analyze the projections of precipitation changes and extremes over Brazil and mainly over the southeastern region. Simulations and projections obtained from four integrations of the Regional Eta model are analyzed to investigate the model behavior during the period of 1961-1990 and the projections in the near (2011 to 2040) and more distant future (2041 to 2100). Results from four integrations with resolution of 40 km with different lateral boundary conditions from the HadCM3 Global Model and one integration with resolution of 20 km are used to give a confidence interval and the related uncertainty. The first analysis was to verify changes in the main mode of precipitation variability in the future projections, compared to the base period. There is a change in the main centers of extremes variability over South America, which was comparable to changes projected in CMIP5 models. The second analysis was related to changes in the position and intensity of the SACZ. Specific locations in southeastern Brazil were analyzed regarding indices of extremes, such as SDII (mean precipitation of rainy days), SDII_10 (mean precipitation of rainy days >=10 mm/day), R10mm (number of days with precipitation >= 10 mm/day), CDD (maximum number of consecutive dry days), CWD (maximum number

  2. Climatological/meteorological and hydrological disasters and the insurance sector

    Directory of Open Access Journals (Sweden)

    Murat Türkeş

    2010-11-01

    Full Text Available Climate change is a continual fact during the Earth’s history. There had been many significant changes in the Earth’s climate during its evolutionary history and a lot of ecosystems had been affected by these changes. Especially the industrialization process showing rapid movement after industrial revolution has put serious pressure on the present and future climate. Human activities such as increased fossil fuel usage with the industrialization process, land-use changes, industrial processes and deforestation have increased atmospheric accumulation up of the various greenhouse gases such as carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O. On the other hand, increase in frequency and severity of natural disasters can be explained mostly by the increase of the probability of extreme events due to the climate change. Increased numbers of people have been affected by climatological and meteorological catastrophes in every year. Various actions and activities such as disaster preparedness, mitigation, reduction and prevention of the impacts and early warnings are considerable with respect to the insurance sector. These activities and actions should be implemented in the frame of contemporary and comprehensive disaster management planes. Scope of the natural disaster should be expanded particularly in the countries and regions that are vulnerable to the impacts of the climate change and variability including drought events and/or natural disasters. Moreover, drought events should also be accepted as one of the severe natural disasters, and sustainable and applicable drought management plans should be developed in order to mitigate these disasters. In this context, main purpose of the study is to classify and shortly assess the climatological and meteorological disasters, and to attract attention necessity of a new disaster insurance system containing these disasters.

  3. A Precipitation Climatology of the Snowy Mountains, Australia

    Science.gov (United States)

    Theobald, Alison; McGowan, Hamish; Speirs, Johanna

    2014-05-01

    The precipitation that falls in the Snowy Mountains region of southeastern Australia provides critical water resources for hydroelectric power generation. Water storages in this region are also a major source of agricultural irrigation, environmental flows, and offer a degree of flood protection for some of the major river systems in Australia. Despite this importance, there remains a knowledge gap regarding the long-term, historic variability of the synoptic weather systems that deliver precipitation to the region. This research aims to increase the understanding of long-term variations in precipitation-bearing weather systems resulting in runoff into the Snowy Mountains catchments and reservoirs, and the way in which these are influenced by large-scale climate drivers. Here we present initial results on the development of a climatology of precipitation-bearing synoptic weather systems (synoptic typology), spanning a period of over 100 years. The synoptic typology is developed from the numerical weather model re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), in conjunction with regional precipitation and temperature data from a network of private gauges. Given the importance of surface, mid- and upper-air patterns on seasonal precipitation, the synoptic typing will be based on a range of meteorological variables throughout the depth of the troposphere, highlighting the importance of different atmospheric levels on the development and steering of synoptic precipitation bearing systems. The temporal and spatial variability of these synoptic systems, their response to teleconnection forcings and their contribution to inflow generation in the headwater catchments of the Snowy Mountains will be investigated. The resulting climatology will provide new understanding of the drivers of regional-scale precipitation variability at inter- and intra-annual timescales. It will enable greater understanding of how variability in synoptic scale

  4. NODC Standard Product: C-CAP Coastal Change Analysis Project - St. Croix estuary region (1985 - 1992) (NODC Accession 0090142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Change Analysis Project St. Croix Estuary Region CD-ROM data set uses Landsat Thematic Mapper (TM) imagery from 1985 to 1992 to provide a regional change...

  5. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    Science.gov (United States)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and

  6. Projected changes in rainfall and temperature over homogeneous regions of India

    Science.gov (United States)

    Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara

    2016-11-01

    The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.

  7. THE MAIN RESULTS OF THE PRIORITY NATIONAL PROJECTS IN THE URAL FEDERAL REGION

    Directory of Open Access Journals (Sweden)

    S.V. Loginov

    2008-06-01

    Full Text Available The results of the national projects realization in the Ural federal district are considered in the article. Implementation of these projects at the first stage subject to specificity of the regions of the Ural federal district is analyzed, disadvantages and problems revealed in the process of their realization, influence of national priorities policy on economy and social sphere are shown. Shown conclusions are based on the data of state authority of the subjects of the Russian Federation, executive powers, including federal statistics data.

  8. Bias-corrected regional climate projections of extreme rainfall in south-east Australia

    Science.gov (United States)

    Evans, Jason P.; Argueso, D.; Olson, R.; Di Luca, A.

    2016-09-01

    This study presents future changes in extreme precipitation as projected within the New South Wales and Australian Capital Territory Regional Climate Modelling (NARCliM) project's regional climate ensemble for south-east Australia. Model performance, independence and projected future changes were considered when designing the ensemble. We applied a quantile mapping bias correction to the climate model outputs based on theoretical distribution functions, and the implications of this for the projected precipitation extremes is investigated. Precipitation extremes are quantified using several indices from the Expert Team on Climate Change Detection and Indices set of indices. The bias correction was successful in removing most of the magnitude bias in extreme precipitation but does not correct biases in the length of maximum wet and dry spells. The bias correction also had a relatively small effect on the projected future changes. Across a range of metrics, robust increases in the magnitude of precipitation extreme indices are found. While these increases are often in-line with a continuation of the trends present over the last century, they are not found to be statistically significant within the ensemble as a whole. The length of the maximum consecutive wet spell is projected to remain at present-day levels, while the length of the maximum dry spell is projected to increase into the future. The combination of longer dry spells and increases in extreme precipitation magnitude indicate an important change in the character of the precipitation time series. This could have considerable hydrological implications since changes in the sequencing of events can be just as important as changes in event magnitude for hydrological impacts.

  9. On reconstruction of time series in climatology

    Directory of Open Access Journals (Sweden)

    V. Privalsky

    2015-10-01

    Full Text Available The approach to time series reconstruction in climatology based upon cross-correlation coefficients and regression equations is mathematically incorrect because it ignores the dependence of time series upon their past. The proper method described here for the bivariate case requires the autoregressive time- and frequency domains modeling of the time series which contains simultaneous observations of both scalar series with subsequent application of the model to restore the shorter one into the past. The method presents further development of previous efforts taken by a number of authors starting from A. Douglass who introduced some concepts of time series analysis into paleoclimatology. The method is applied to the monthly data of total solar irradiance (TSI, 1979–2014, and sunspot numbers (SSN, 1749–2014, to restore the TSI data over 1749–1978. The results of the reconstruction are in statistical agreement with observations.

  10. Constructing an AIRS Climatology for Data Visualization and Analysis to Serve the Climate Science and Application Communities

    Science.gov (United States)

    Ding, Feng; Keim, Elaine; Hearty, Thomas J.; Wei, Jennifer; Savtchenko, Andrey; Theobald, Michael; Vollmer, Bruce

    2016-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding SNPP CrIS mission. The AIRS mission is entering its 15th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released product from the version 6 algorithm in early 2013. Giovanni, a Web-based application developed by the GES DISC, provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. Most important variables from version 6 AIRS product are available in Giovanni. We are developing a climatology product using 14-year AIRS retrievals. The study can be a good start for the long term climatology from NASA sounders: the AIRS and the succeeding CrIS. This presentation will show the impacts to the climatology product from different aggregation methods. The climatology can serve climate science and application communities in data visualization and analysis, which will be demonstrated using a variety of functions in version 4 Giovanni. The highlights of these functions include user-defined monthly and seasonal climatology, inter annual seasonal time series, anomaly analysis.

  11. Biomass gasification technology nationalization and human resources formation in North region: GASEIBRAS Project

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia Maria Stortini Gonzalez; Santos, Sandra Maria Apolinario dos; Lora, Beatriz Acquaro [Centro Nacional de Referencia em Biomassa (CENBIO), Sao Paulo, SP (Brazil)], e-mail: suani@iee.usp.br, e-mail: sgvelaz@iee.usp.br, e-mail: sandra@iee.usp.br, e-mail: blora@iee.usp.br

    2008-07-01

    Gasification systems already developed in Brazil are not adjusted to the electricity production at isolated communities, because this models that supply a gas with satisfactory properties to this end, are projected to operate with coal and not with biomass in natura, what implies in the biomass transformation in coal with all the environmental impacts and loss of thermodynamic income associates to this practical. These problems had been surpassed with the GASEIFAMAZ Project development realized by CENBIO in the last two years. The project, that it aimed to make possible the electricity supply expansion in communities without energy access in the country north region, consisted of two gasification systems importation from the Indian Institute of Science, tests accomplishment and its transference to an isolated community. (author)

  12. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  13. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    Science.gov (United States)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  14. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    Science.gov (United States)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    Climate projections produced with CMIP5 and applied by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report indicate that changes in precipitation and temperature are expected to occur throughout Europe in the 21th century, with a likely decrease of water availability in many regions. Besides, water demand is also expected to increase, in link with these expected climate modifications, but also due to socio-economic and demographic changes. In this respect, the use of future freshwater resources may not be sustainable from the current water management perspective. Therefore adaptation strategies will most likely be needed to cope with these evolutions. In this context, the main objective of the ClimAware project (2010-2013 - www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/, a project implemented within the IWRM-NET Funding Initiative) was to analyse the impacts of climate change (CC) on freshwater resources at the continental and regional scales and to identify efficient adaptation strategies to improve water management for various socio-economic sectors. This should contribute to a more effective implementation of the Water Framework Directive (WFD) and its instruments (river basin management plans, programmes of measures). The project developed integrated measures for improved freshwater management under CC constraints. More specifically, the objectives of the ClimAware project were to: • elaborate quantitative projections of changes in river flows and consequences such as flood frequency, drought occurrence and sectorial water uses. • analyse the effect of CC on the hydromorphological reference conditions of rivers and therefore the definition of "good status". • define management rules/strategies concerning dam management and irrigation practices on different time perspectives. • investigate uncertainties in climate model - scenario combinations. The research approach considered both European and regional perspectives, to get

  15. eHealth for Remote Regions: Findings from Central Asia Health Systems Strengthening Project.

    Science.gov (United States)

    Sajwani, Afroz; Qureshi, Kiran; Shaikh, Tehniat; Sayani, Saleem

    2015-01-01

    Isolated communities in remote regions of Afghanistan, Kyrgyz Republic, Pakistan and Tajikistan lack access to high-quality, low-cost health care services, forcing them to travel to distant parts of the country, bearing an unnecessary financial burden. The eHealth Programme under Central Asia Health Systems Strengthening (CAHSS) Project, a joint initiative between the Aga Khan Foundation, Canada and the Government of Canada, was initiated in 2013 with the aim to utilize Information and Communication Technologies to link health care institutions and providers with rural communities to provide comprehensive and coordinated care, helping minimize the barriers of distance and time. Under the CAHSS Project, access to low-cost, quality health care is provided through a regional hub and spoke teleconsultation network of government and non-government health facilities. In addition, capacity building initiatives are offered to health professionals. By 2017, the network is expected to connect seven Tier 1 tertiary care facilities with 14 Tier 2 secondary care facilities for teleconsultation and eLearning. From April 2013 to September 2014, 6140 teleconsultations have been provided across the project sites. Additionally, 52 new eLearning sessions have been developed and 2020 staff members have benefitted from eLearning sessions. Ethics and patient rights are respected during project implementation.

  16. Arctic Ocean Regional Climatology Online Atlas (NODC Accession 0115771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Arctic Ocean, NODC developed a new set of high-resolution...

  17. Greenland-Iceland-Norwegian Seas Regional Climatology (NODC Accession 0112824)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Greenland-Iceland-Norwegian Seas (GINS), NODC developed a new set...

  18. Wildlife survey protocols for wind energy projects : dealing with regional and national issues

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, M.; Ebner, D. [Jacques Whitford AXYS Ltd., Burnaby, BC (Canada)

    2008-07-01

    Wildlife surveys in Canada vary according to jurisdictional influences, regional species, and the location of potential wind power projects. This presentation discussed environmental assessment (EA) approaches to wind energy used by Jacques Whitford, a Canadian environmental engineering consultancy firm. EA legislation in Canada has both federal and provincial components. Environmental impacts that must be considered by wind power proponents include mortality risk; habitat availability; effects on breeding and migration; and risks to other wildlife. Measuring the effects of wind energy projects on wildlife is often difficult. Baseline surveys are used to support environmental assessments. Constraints analysis is used to assist with project siting and planning as well as to provide information needed for decision-making. Issues identified in the scoping phases of environmental assessments are then used to assess the amount of information needed. It was concluded that national and regional reviews can be used to build a knowledge base of regional ecosystems, as federal wildlife protocol requirements are applied differently across the country. Best practice and environmental assessment strategies for each province in Canada were included, and wildlife protocols were reviewed. tabs., figs.

  19. International Satellite Cloud Climatology Project, D-Series (Superseded)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ISCCP D-Series has been superseded by a newer version. Users should not use ISCCP D-Series except in rare cases (e.g., when reproducing previous studies that used...

  20. On the fall 2010 Enhancements of the Global Precipitation Climatology Centre's Data Sets

    Science.gov (United States)

    Becker, A. W.; Schneider, U.; Meyer-Christoffer, A.; Ziese, M.; Finger, P.; Rudolf, B.

    2010-12-01

    Precipitation is meanwhile a top listed parameter on the WMO GCOS list of 44 essential climate variables (ECV). This is easily justified by its crucial role to sustain any form of life on earth as major source of fresh water, its major impact on weather, climate, climate change and related issues of society’s adaption to the latter. Finally its occurrence is highly variable in space and time thus bearing the potential to trigger major flood and draught related disasters. Since its start in 1989 the Global precipitation Climatology Centre (GPCC) performs global analyses of monthly precipitation for the earth’s land-surface on the basis of in-situ measurements. The effort was inaugurated as part of the Global Precipitation Climatology Project of the WMO World Climate Research Program (WCRP). Meanwhile, the data set has continuously grown both in temporal coverage (original start of the evaluation period was 1986), as well as extent and quality of the underlying data base. The number of stations involved in the related data base has approximately doubled in the past 8 years by trespassing the 40, 60 and 80k thresholds in 2002, 2006 and 2010. Core data source of the GPCC analyses are the data from station networks operated by the National Meteorological Services worldwide; data deliveries have been received from ca. 190 countries. The GPCC integrates also other global precipitation data collections (i.e. FAO, CRU and GHCN), as well as regional data sets. Currently the Africa data set from S. Nicholson (Univ. Tallahassee) is integrated. As a result of these efforts the GPCC holds the worldwide largest and most comprehensive collection of precipitation data, which is continuously updated and extended. Due to the high spatial-temporal variability of precipitation, even its global analysis requires this high number of stations to provide for a sufficient density of measurement data on almost any place on the globe. The acquired data sets are pre-checked, reformatted

  1. Design and Implementation of Digitisation Projects in the Central Slovenian Region

    Directory of Open Access Journals (Sweden)

    Anja Frković

    2013-09-01

    Full Text Available EXTENDED ABSTRACT: The Ljubljana City Library has been cooperating in the KAMRA project since its very beginning. KAMRA is a Slovenian cross regional portal joining central regional public libraries as defined in the Regulations on Central Regional Libraries. It was established in order to digitise local studies collections, to promote the collections and the cooperation among different local institutions. The paper outlines the problems related to the collection and selection of relevant library materials to be incorporated in the KAMRA portal. It deals with copyright regulations for web publications and outlines the importance of obtaining the copyright permission for the use of library materials which were digitised after they were exhibited in the physical form. The Ljubljana City Library often decides to digitise hard copies of important items of local studies collection exhibited in the Slovanska Library – a branch library of the Ljubljana City Library. For the needs of the KAMRA portal the Ljubljana City Library created the project My Street (Moja ulica joining public libraries in the central Slovenian region. They research the history, development, culture and life of people living in particular streets and areas and publish their stories on the KAMRA portal. The City Library of Ljubljana tries to cooperate with other regional cultural institutions, associations and individuals thus enabling access to local information sources which would otherwise be hard to access. The paper also deals with the mission and concepts of the Digital Library of Slovenia (dLib.si and the KAMRA portal as well as with the digitisation of local studies. At the end it points to the problem of lack of financial means for digitisation projects.

  2. Simulated Future Air Temperature and Precipitation Climatology and Variability in the Mediterranean Basin by Using Downscaled Global Climate Model Outputs

    Science.gov (United States)

    Ozturk, Tugba; Pelin Ceber, Zeynep; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    The Mediterranean Basin is one of the regions that shall be affected most by the impacts of the future climate changes on temperature regime including changes in heat waves intensity and frequency, seasonal and interannual precipitation variability including changes in summer dryness and drought events, and hydrology and water resources. In this study, projected future changes in mean air temperature and precipitation climatology and inter-annual variability over the Mediterranean region were simulated. For performing this aim, the future changes in annual and seasonal averages for the future period of 2070-2100 with respect to the period from 1970 to 2000 were investigated. Global climate model outputs of the World Climate Research Program's (WCRP's) Coupled Model Intercomparison Project Phase 3 (CMIP3) multi-model dataset were used. SRES A2, A1B and B1 emission scenarios' outputs of the Intergovernmental Panel on Climate Change (IPCC) were used in future climate model projections. Future surface mean air temperatures of the larger Mediterranean basin increase mostly in summer and least in winter, and precipitation amounts decreases in all seasons at almost all parts of the basin. Future climate signals for surface air temperatures and precipitation totals will be much larger than the inter-model standard deviation. Inter-annual temperature variability increases evidently in summer season and decreases in the northern part of the domain in the winter season, while precipitation variability increases in almost all parts of domain. Probability distribution functions are found to be shifted and flattened for future period compared to reference period. This indicates that occurrence frequency and intensity of extreme weather conditions will increase in the future period. This work has been supported by Bogazici University BAP under project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  3. The Sea Stacks Project: Enhancing the Use of Regional Literature in Atlantic Canadian Schools

    Directory of Open Access Journals (Sweden)

    Vivian Howard

    2012-06-01

    Full Text Available Research over the past two decades has amply demonstrated the importance of literature to the formation of both regional and national cultural identity, particularly in the face of mass market globalization of children’s book publishing in the 21st century as well as the predominance of non-Canadian content from television, movies, books, magazines and internet media. However, Canadian children appear to have only very limited exposure to Canadian authors and illustrators. In Atlantic Canada, regional Atlantic Canadian authors and illustrators for children receive very limited critical attention, and resources for the study and teaching of Atlantic Canadian children’s literature are few. Print and digital information sources on regional children’s books, publishing, authors and illustrators are scattered and inconsistent in quality and currency. This research project directly addresses these key concerns by summarizing the findings of a survey of Atlantic Canadian teachers on their use of regional books. In response to survey findings, the paper concludes by describing the creation of the Sea Stacks Project an authoritative web-delivered information resource devoted to contemporary Atlantic Canadian literature for children and teens.

  4. Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model

    Directory of Open Access Journals (Sweden)

    B. Scherllin-Pirscher

    2011-05-01

    Full Text Available Due to the measurement principle of the radio occultation (RO technique, RO data are highly suitable for climate studies. Single RO profiles can be used to build climatological fields of different atmospheric parameters like bending angle, refractivity, density, pressure, geopotential height, and temperature. RO climatologies are affected by random (statistical errors, sampling errors, and systematic errors, yielding a total climatological error. Based on empirical error estimates, we provide a simple analytical error model for these error components, which accounts for vertical, latitudinal, and seasonal variations. The vertical structure of each error component is modeled constant around the tropopause region. Above this region the error increases exponentially, below the increase follows an inverse height power-law. The statistical error strongly depends on the number of measurements. It is found to be the smallest error component for monthly mean 10° zonal mean climatologies with more than 600 measurements per bin. Due to smallest atmospheric variability, the sampling error is found to be smallest at low latitudes equatorwards of 40°. Beyond 40°, this error increases roughly linearly, with a stronger increase in hemispheric winter than in hemispheric summer. The sampling error model accounts for this hemispheric asymmetry. However, we recommend to subtract the sampling error when using RO climatologies for climate research since the residual sampling error remaining after such subtraction is estimated to be 50 % of the sampling error for bending angle and 30 % or less for the other atmospheric parameters. The systematic error accounts for potential residual biases in the measurements as well as in the retrieval process and generally dominates the total climatological error. Overall the total error in monthly means is estimated to be smaller than 0.07 % in refractivity and 0.15 K in temperature at low to mid latitudes, increasing towards

  5. Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections

    Science.gov (United States)

    Im, Eun-Soon; Choi, Yeon-Woo; Ahn, Joong-Bae

    2016-06-01

    This study assesses the hydroclimatic response to global warming over East Asia from multi-model ensemble regional projections. Four different regional climate models (RCMs), namely, WRF, HadGEM3-RA, RegCM4, and GRIMs, are used for dynamical downscaling of the Hadley Centre Global Environmental Model version 2-Atmosphere and Ocean (HadGEM2-AO) global projections forced by the representative concentration pathway (RCP4.5 and RCP8.5) scenarios. Annual mean precipitation, hydroclimatic intensity index (HY-INT), and wet and dry extreme indices are analyzed to identify the robust behavior of hydroclimatic change in response to enhanced emission scenarios using high-resolution (12.5 km) and long-term (1981-2100) daily precipitation. Ensemble projections exhibit increased hydroclimatic intensity across the entire domain and under both the RCP scenarios. However, a geographical pattern with predominantly intensified HY-INT does not fully emerge in the mean precipitation change because HY-INT is tied to the changes in the precipitation characteristics rather than to those in the precipitation amount. All projections show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation, which lead to a possible shift in hydroclimatic regime prone to an increase of both wet and dry extremes. In general, projections forced by the RCP8.5 scenario tend to produce a much stronger response than do those by the RCP4.5 scenario. However, the temperature increase under the RCP4.5 scenario is sufficiently large to induce significant changes in hydroclimatic intensity, despite the relatively uncertain change in mean precipitation. Likewise, the forced responses of HY-INT and the two extreme indices are more robust than that of mean precipitation, in terms of the statistical significance and model agreement.

  6. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models

    Science.gov (United States)

    Dosio, Alessandro

    2016-09-01

    The most severe effects of global warning will be related to the frequency and severity of extreme events. We provide an analysis of projections of temperature and related extreme events for Africa based on a large ensemble of Regional Climate Models from the COordinated Regional climate Downscaling EXperiment (CORDEX). Results are presented not only by means of widely used indices but also with a recently developed Heat Wave Magnitude Index-daily (HWMId), which takes into account both heat wave duration and intensity. Results show that under RCP8.5, warming of more than 3.5 °C is projected in JFM over most of the continent, whereas in JAS temperatures over large part of Northern Africa, the Sahara and the Arabian peninsula are projected to increase up to 6 °C. Large increase in in the number of warm days (Tx90p) is found over sub equatorial Africa, with values up to more than 90 % in JAS, and more than 80 % in JFM over e.g., the gulf of Guinea, Central African Republic, South Sudan and Ethiopia. Changes in Tn90p (warm nights) are usually larger, with some models projecting Tn90p reaching 95 % starting from around 2060 even under RCP4.5 over the Gulf of Guinea and the Sahel. Results also show that the total length of heat spells projected to occur normally (i.e. once every 2 years) under RCP8.5 may be longer than those occurring once every 30 years under the lower emission scenario. By employing the recently developed HWMId index, it is possible to investigate the relationship between heat wave length ad intensity; in particular it is shown that very intense heat waves such as that occurring over the Horn of Africa may have values of HWMId larger than that of longer, but relatively weak, heat waves over West Africa.

  7. Uncertainties in climate change projections and regional downscaling: implications for water resources management

    Directory of Open Access Journals (Sweden)

    W. Buytaert

    2010-03-01

    Full Text Available Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate models (RCMs are often used for the spatial disaggregation of the outputs of global circulation models. However, RCMs are time-intensive to run and typically only a small number of model runs is available for a certain region of interest. This paper investigates the value of the improved representation of local climate processes by a regional climate model for water resources management in the tropical Andes of Ecuador. This region has a complex hydrology and its water resources are under pressure. Compared to the IPCC AR4 model ensemble, the regional climate model PRECIS does indeed capture local gradients better than global models, but locally the model is prone to large discrepancies between observed and modelled precipitation. It is concluded that a further increase in resolution is necessary to represent local gradients properly. Furthermore, to assess the uncertainty in downscaling, an ensemble of regional climate models should be implemented. Finally, translating the climate variables to streamflow using a hydrological model constitutes a smaller but not negligible source of uncertainty.

  8. The climatology of dust aerosol over the arabian peninsula

    Directory of Open Access Journals (Sweden)

    A. Shalaby

    2015-01-01

    Full Text Available Dust storms are considered to be a natural hazard over the Arabian Peninsula, since they occur all year round with maximum intensity and frequency in Spring and Summer. The Regional Climate Model version 4 (RegCM4 has been used to study the climatology of atmospheric dust over the Arabian Peninsula from 1999 to 2012. This relatively long simulation period samples the meteorological conditions that determine the climatology of mineral dust aerosols over the Arabian Peninsula. The modeled Aerosol Optical Depth (AOD has been compared against ground-based observations of three Aerosol Robotic Network (AERONET stations that are distributed over the Arabian Peninsula and daily space based observations from the Multi-angle Imaging SpectroRadiometer (MISR, the Moderate resolution Imaging SpectroRadimeter (MODIS and Ozone Monitoring Instrument (OMI. The large scale atmospheric circulation and the land surface response that lead to dust uplifting have been analyzed. While the modeled AOD shows that the dust season extends from March to August with two pronounced maxima, one over the northern Arabian Peninsula in March with AOD equal to 0.4 and one over the southern Arabian Peninsula in July with AOD equal to 0.7, the observations show that the dust season extends from April to August with two pronounced maxima, one over the northern Arabian Peninsula in April with AOD equal to 0.5 and one over the southern Arabian Peninsula in July with AOD equal to 0.5. In spring a high pressure dominates the Arabian Peninsula and is responsible for advecting dust from southern and western part of the Arabian Peninsula to northern and eastern part of the Peninsula. Also, fast developed cyclones in northern Arabian Peninsula are responsible for producing strong dust storms over Iraq and Kuwait. However, in summer the main driver of the surface dust emission is the strong northerly wind ("Shamal" that transport dust from the northern Arabian Peninsula toward south parallel

  9. The WASCAL regional climate simulations for West Africa - how to add value to existing climate projections

    Science.gov (United States)

    Arnault, J.; Heinzeller, D.; Klein, C.; Dieng, D.; Smiatek, G.; Bliefernicht, J.; Sylla, M. B.; Kunstmann, H.

    2015-12-01

    With climate change being one of the most severe challenges to rural Africa in the 21st century, West Africa is facing an urgent need to develop effective adaptation and mitigation measures to protect its constantly growing population. WASCAL (West African Science Service Center on Climate Change and Adapted Land Use) is a large-scale research-focused program designed to enhance the resilience of human and environmental systems to climate change and increased variability. An integral part of its climate services is the provisioning of a new set of high resolution, ensemble-based regional climate change scenarios for the region of West Africa. In this contribution, we present the overall concept of the WASCAL regional climate projections and provide information on the dissemination of the data. We discuss the model performance over the validation period for two of the three regional climate models employed, the Weather Research & Forecasting Tool (WRF) and the Consortium for Small-scale Modeling Model COSMO in Climate Mode (COSMO-CLM), and give details about a novel precipitation database used to verify the models. Particular attention is paid to the representation of the dynamics of the West African Summer Monsoon and to the added value of our high resolution models over existing data sets. We further present results on the climate change signal obtained from the WRF model runs for the periods 2020-2050 and 2070-2100 and compare them to current state-of-the-art projections from the CORDEX project. As an example, the figure shows the different climate change signals obtained for the total annual rainfall with respect to the 1980-2010 mean (WRF-E: WASCAL 12km high-resolution run MPI-ESM + WRFV3.5.1, CORDEX-E: 50km medium-resolution run MPI-ESM + RCA4, CORDEX-G: 50km medium-resolution run GFDL-ESM + RCA4).

  10. Digitisation Project Planning in the Maribor City Library as a Form of Regional Cross Institutional Cooperation

    Directory of Open Access Journals (Sweden)

    Nina Hriberšek Vuk

    2013-09-01

    Full Text Available EXTENDED ABSTRACT:More and more Slovenian public libraries have been facing the question of selection criteria for digitisation of library materials as well as the issue of financial resources, copyright permission and the promotion of digitised materials. Libraries having long tradition of collecting valuable local history resources are more convinced about the selection criteria. Digitisation is, in spite of being expensive, time consuming and labour intensive, an easy method to enable quick access to library materials, to promote and preserve library collections. The mission of the central regional public library (cofinanced by the Ministry of Culture is not only to coordinate the collection, cataloguing and storage of local history resources but also to coordinate local history digital projects. Due to historical circumstances, the local history resources were first collected by the Maribor University Library. It is only in the recent past that the Maribor City Library has started to systematically collect these materials. Due to this fact, the Maribor City Library does not hold an extensive collection of rare and valuable local history items. It was initially faced with the problem of selection criteria for digitisation. However, it soon succeeded to establish the strategy to promote the local history collections in the region, regardless of their location. Thus the library started to cooperate with different regional institutions and the first partner projects were designed. In the year 2007 the library collaborated with the elementary school at Lovrenc na Pohorju and decided to digitise research papers of ex-pupils of the school. The first part of the project was accomplished in 2007 when 72 research papers were digitised, in the next two years their number was increased as the second part of the project was concluded. The papers were published on the KAMRA portal and the project was promoted at the summer annual meeting at Lovrenc na

  11. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  12. Uncertainty of runoff projections under changing climate in Wami River sub-basin

    Directory of Open Access Journals (Sweden)

    Frank Joseph Wambura

    2015-09-01

    New Hydrological Insights for the Region: The results of projected streamflow shows that the baseline annual climatology flow (ACF is 98 m3/s and for the future, the median ACF is projected to be 81 m3/s. At 100% uncertainty of skilled projections, the ACF from the sub-basin is projected to range between −47% and +36% from the baseline ACF. However, the midstream of the sub-basin shows reliable water availability for foreseen water uses expansion up to the year 2039.

  13. Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology

    Science.gov (United States)

    Kao, S. C.; Naz, B. S.; Gangrade, S.

    2015-12-01

    Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.

  14. A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: Climatology, anomalies and trends

    KAUST Repository

    El Kenawy, Ahmed M.

    2015-05-15

    Many arid and semi-arid regions have sparse precipitation observing networks, which limits the capacity for detailed hydrological modelling, water resources management and flood forecasting efforts. The objective of this work is to evaluate the utility of relatively high-spatial resolution rainfall products to reproduce observed multi-decadal rainfall characteristics such as climatologies, anomalies and trends over Saudi Arabia. Our study compares the statistical characteristics of rainfall from 53 observatories over the reference period 1965-2005, with rainfall data from six widely used gauge-based products, including APHRODITE, GPCC, PRINCETON, UDEL, CRU and PREC/L. In addition, the performance of three global climate models (GCMs), including CCSM4, EC-EARTH and MRI-I-CGCM3, integrated as part of the Fifth Coupled Model Intercomparison Project (CMIP5), was also evaluated. Results indicate that the gauge-based products were generally skillful in reproducing rainfall characteristics in Saudi Arabia. In most cases, the gauge-based products were also able to capture the annual cycle, anomalies and climatologies of observed data, although significant inter-product variability was observed, depending on the assessment metric being used. In comparison, the GCM-based products generally exhibited poor performance, with larger biases and very weak correlations, particularly during the summertime. Importantly, all products generally failed to reproduce the observed long-term seasonal and annual trends in the region, particularly during the dry seasons (summer and autumn). Overall, this work suggests that selected gauge-based products with daily (APHRODITE and PRINCETON) and monthly (GPCC and CRU) resolutions show superior performance relative to other products, implying that they may be the most appropriate data source from which multi-decadal variations of rainfall can be investigated at the regional scale over Saudi Arabia. Discriminating these skillful products is

  15. A LOCAL DEVELOPMENT PROJECT IN THE FRAMEWORK OF PUBLIC POLICIES FOCUSED ON REGIONAL DEVELOPMENT STRATEGIES

    Directory of Open Access Journals (Sweden)

    George Schin

    2013-12-01

    Full Text Available This paper aims at outlining a successful implementation of a project within LEADER framework, which is a local development method which allows local actors to develop an area by using its endogenous development potential. After a brief presentation of the characteristics of regional development strategies in Romania, there were emphasized the objectives and activities encompassed in a local development plan, managed by the leaders of the local action group called ‘Vrancea County’. In order to reinforce the strengths of Vrancea County and implicitly to assure a sustainable development of this area from the South-East part of Romania, a LAG constituted through a partnership between public and private actors settled a set of priorities to be exploited by means of specific actions. The goal of this paper is to highlight these priorities, by integrating them in a project management approach. The paper concludes with specifications about how Microsoft Project software could support project management initiatives that will be developed by the LAG Vrancea County in the next period.

  16. Region-to-area screening methodology for the Crystalline Repository Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1985-04-01

    The purpose of this document is to describe the Crystalline Repository Project's (CRP) process for region-to-area screening of exposed and near-surface crystalline rock bodies in the three regions of the conterminous United States where crystalline rock is being evaluated as a potential host for the second nuclear waste repository (i.e., in the North Central, Northeastern, and Southeastern Regions). This document indicates how the US Department of Energy's (DOE) General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories (10 CFR 960) were used to select and apply factors and variables for the region-to-area screening, explains how these factors and variable are to be applied in the region-to-area screening, and indicates how this methodology relates to the decision process leading to the selection of candidate areas. A brief general discussion of the screening process from the national survey through area screening and site recommendation is presented. This discussion sets the scene for detailed discussions which follow concerning the region-to-area screening process, the guidance provided by the DOE Siting Guidelines for establishing disqualifying factors and variables for screening, and application of the disqualifying factors and variables in the screening process. This document is complementary to the regional geologic and environmental characterization reports to be issued in the summer of 1985 as final documents. These reports will contain the geologic and environmental data base that will be used in conjunction with the methodology to conduct region-to-area screening.

  17. Merged dust climatology in Phoenix, Arizona based on satellite and station data

    Science.gov (United States)

    Lei, Hang; Wang, Julian X. L.; Tong, Daniel Q.; Lee, Pius

    2016-11-01

    In order to construct climate quality long-term dust storm dataset, merged dust storm climatology in Phoenix is developed based on three data sources: regular meteorological records, in situ air quality measurements, and satellite remote sensing observations. The result presented in this paper takes into account the advantages of each dataset and integrates individual analyses demonstrated and presented in previous studies that laid foundation to reconstruct a consistent and continuous time series of dust frequency. A key for the merging procedure is to determine analysis criteria suitable for each individual data source. A practical application to historic records of dust storm activities over the Phoenix area is presented to illustrate detailed steps, advantages, and limitations of the newly developed process. Three datasets are meteorological records from the Sky Harbor station, satellite observed aerosol optical depth data from moderate resolution imaging spectroradiometer, and the U.S. Environmental Protection Agency Air Quality System particulate matter data of eight sites surrounding Phoenix. Our purpose is to construct dust climatology over the Phoenix region for the period 1948-2012. Data qualities of the reconstructed dust climatology are assessed based on the availability and quality of the input data. The period during 2000-2012 has the best quality since all datasets are well archived. The reconstructed climatology shows that dust storm activities over the Phoenix region have large interannual variability. However, seasonal variations show a skewed distribution with higher frequency of dust storm activities in July and August and relatively quiet during the rest of months. Combining advantages of all the available datasets, this study presents a merged product that provides a consistent and continuous time series of dust storm activities suitable for climate studies.

  18. THE IMPACT OF LARGE INVESTMENT PROJECTS ON THE LEVEL OF SOCIAL AND ECONOMIC SAFETY OF REGIONS

    Directory of Open Access Journals (Sweden)

    Mishulina S. I.

    2015-11-01

    Full Text Available Recently, our country has become the venue for a number of large-scale worldwide events, the so-called megaprojects (e.g. APEC Summit in Vladivostok in 2012, the World summer Universiade in Kazan-2013, 2014 Winter Olympics of Sochi, the FIFA World Cup in 2018, the preparation and conduct of which include implementation of projects for the establishment of appropriate facilities and infrastructure. The impact of the preparation and holding of such large investment projects is diverse and multifaceted on all spheres of life of the host region. This article is devoted to the analysis of influence of the XXII Olympic Games on the level of social and economic security of the city of Sochi and Krasnodar region. In addition to traditional in national and foreign scientific literature analysis of dynamics of basic macroeconomic indicators as the important characteristics of the efficiency and competitiveness of the regional economy, in the article are studied the indicators and causes of changes in the investment climate and business activity. Special attention is paid to small business in connection with the place and the role in the local economies recreation and tourism specialization

  19. Eastern regions of Russia: latest gas projects; Russie orientale: les derniers projets gaziers

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrievsky, A.N. [Oil and Gas Research Institute of Russian Academy of Sciences (Russian Federation)

    2000-07-01

    Convenient geographical position of the Russian Federation, immense reserves of natural gas, abundant experience in super-long reliable gas transportation trunk pipeline construction make it possible for Russia in the 21. century to supply natural gas both to traditional partners in Europe and to new buyers in the Asian-Pacific region. Gas reserves of the northern regions in West Siberia, gas fields in East Siberia, Sakha Republic and the Sakhalin shelf can be regarded as the raw material base for the implementation of these projects. The explored gas reserves of the fields in Yamal Peninsula are over 10.2 TCM, of East Siberia - over 4.2 TCM, of the Sakhalin shelf- over 850 10{sup 9} m{sup 3}. While implementing eastern projects, it is intended to use gas reserves both to settle energy problems confronting the eastern regions in Russia and to supply significant volumes of gas for export. Experts consider possibilities for supply of gas to China - from the Tambei group of fields in Yamal Peninsula and from the Kovykta field, to China and Korea - from the gas fields of the Sakha Republic, to Japan and other ATR countries - from gas fields of the Sakhalin Island shelf. (author)

  20. CanWEA regional issues and wind energy project siting : mountainous areas

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, M. [Jacques Whitford Ltd., Vancouver, BC (Canada)]|[Axys Environmental Consulting Ltd., Vancouver, BC (Canada)

    2008-07-01

    Planning and permitting considerations for wind energy project siting in mountainous areas were discussed. Mountainous regions have a specific set of environmental and socio-economic concerns. Potential disruptions to wildlife, noise, and visual impacts are a primary concern in the assessment of potential wind farm projects. Alpine habitats are unique and often contain fragile and endangered species. Reclamation techniques for mountainous habitats have not been extensively tested, and the sites are not as resilient as sites located in other ecosystems. In addition, alpine habitats are often migratory corridors and breeding grounds for threatened or endangered birds. In the winter months, alpine habitats are used by caribou, grizzly bears, and wolverine dens. Bats are also present at high elevations. It is often difficult to conduct baseline and monitoring studies in mountainous areas since alpine habitat is subject to rapid weather changes, and has a very short construction period. tabs., figs.

  1. Water quality in hydroelectric projects: considerations for planning in tropical forest regions. Technical paper

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, C.E.

    1984-01-01

    This paper identifies and describes the studies necessary to predict water-quality changes, at an early state of planning, in large tropical reservoirs with long retention times. Emphasis is placed on both the reservoir area and the region downstream. The need for defining the baseline environment is presented as a requirement for conducting studies associated with the flooding and operating stages. These studies are classified according to the stage of project development. In the reservoir area, aspects such as biomass quantification, reservoir thermal stratification, water circulation, dissolved oxygen consumption, and reservoir recovery are of major importance. Downstream from the project, the stress is placed on river recovery capacity, water uses and conflicts, and flow requirements.

  2. AFSC/ABL: Auke Bay Climatology 1959-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set includes available climatological and related physical environmental records for Auke Bay, Auke Creek and Auke Lake beginning in 1959. Daily high and low...

  3. Global Historical Climatology Network - Monthly (GHCN-M), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since the early 1990s the Global Historical Climatology Network-Monthly (GHCN-M) dataset has been an internationally recognized source of data for the study of...

  4. Hanford Site Climatological Summary 2004 with Historical Data

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.; Shaw, William J.

    2005-06-03

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation.

  5. Historical Climatology In Europe. The State Of The Art

    Energy Technology Data Exchange (ETDEWEB)

    Brazdil, R. [Institute of Geography, Masaryk University, Kotlarska 2, CZ-611 37 Brno (Czech Republic); Pfister, C. [Institute of History/NCCR Climate, University of Bern, Unitobler, CH-3000 Bern 9 (Switzerland); Wanner, H.; Luterbacher, J. [NCCR Climate, University of Bern, Hallerstrasse 12, CH-3012 Bern (Switzerland); Von Storch, H. [GKSS-Research-Center, Max Planck Strasse 1, D-21502 Geesthacht (Germany)

    2005-06-01

    This paper discusses the state of European research in historical climatology. This field of science and an overview of its development are described in detail. Special attention is given to the documentary evidence used for data sources, including its drawbacks and advantages. Further, methods and significant results of historical-climatological research, mainly achieved since 1990, are presented. The main focus concentrates on data, methods, definitions of the 'Medieval Warm Period' and the 'Little Ice Age', synoptic interpretation of past climates, climatic anomalies and natural disasters, and the vulnerability of economies and societies to climate as well as images and social representations of past weather and climate. The potential of historical climatology for climate modelling research is discussed briefly. Research perspectives in historical climatology are formulated with reference to data, methods, interdisciplinarity and impacts.

  6. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Climatology Network - Daily (GHCN-Daily) dataset integrates daily climate observations from approximately 30 different data sources. Version 3...

  7. Projections of Wind Changes for 21st Century in China by Three Regional Climate Models

    Institute of Scientific and Technical Information of China (English)

    JIANG Ying; LUO Yong; ZHAO Zongci; SHI Ying; XU Yinlong; ZHU Jinhong

    2010-01-01

    This paper examines the capability of three regional climate models(RCMs),i.e.,RegCM3(the International Centre for Theoretical Physics Regional Climate Model),PRECIS(Providing Regional Climates for Impacts Studies)and CMM5(the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA,NCAR Mesoscale Model)to simulate the near-surface-layer winds(10 m above surface)all over China in the late 20th century.Results suggest that like global climate models(GCMs),these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country.However,RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed.In view of their merits,these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century.The results show that 1)summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2)annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3)the changes of summer mean wind speed for 2081-2100 are uncertain.As a result,although climate models are absolutely necessary for projecting climate change to come,there are great uncertainties in projections,especially for wind speed,and these issues need to be further explored.

  8. A scaling approach to project regional sea level rise and its uncertainties

    Directory of Open Access Journals (Sweden)

    M. Perrette

    2013-01-01

    Full Text Available Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR remains very challenging to model, and comprehensive regional sea level projections, which include appropriate gravitational adjustments, are still a nascent field (Katsman et al., 2011; Slangen et al., 2011. Here, we present an alternative approach to derive regional sea level changes for a range of emission and land ice melt scenarios, combining probabilistic forecasts of a simple climate model (MAGICC6 with the new CMIP5 general circulation models. The contribution from ice sheets varies considerably depending on the assumptions for the ice sheet projections, and thus represents sizeable uncertainties for future sea level rise. However, several consistent and robust patterns emerge from our analysis: at low latitudes, especially in the Indian Ocean and Western Pacific, sea level will likely rise more than the global mean (mostly by 10–20%. Around the northeastern Atlantic and the northeastern Pacific coasts, sea level will rise less than the global average or, in some rare cases, even fall. In the northwestern Atlantic, along the American coast, a strong dynamic sea level rise is counteracted by gravitational depression due to Greenland ice melt; whether sea level will be above- or below-average will depend on the relative contribution of these two factors. Our regional sea level projections and the diagnosed uncertainties provide an improved basis for coastal impact analysis and infrastructure planning for adaptation to climate change.

  9. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    Science.gov (United States)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed

  10. MAC-v1: A new global aerosol climatology for climate studies

    Science.gov (United States)

    Kinne, Stefan; O'Donnel, Declan; Stier, Philip; Kloster, Silvia; Zhang, Kai; Schmidt, Hauke; Rast, Sebastian; Giorgetta, Marco; Eck, Tom F.; Stevens, Bjorn

    2013-12-01

    an uncertainty of ±0.2 W/m2) is attributed to anthropogenic activities. Based on past and projected aerosol emission data, the global anthropogenic direct aerosol impact (i.e., ToA cooling) is currently near the maximum and is projected to drop by 2100 to about -0.3 W/m2. The reported global averages are driven by considerable spatial and temporal variability. To better convey this diversity, regional and seasonal distributions of aerosol optical properties and their radiative effects are presented. On regional scales, the anthropogenic direct aerosol forcing can be an order of magnitude stronger than the global average and it can be of either sign. It is also shown that maximum anthropogenic impacts have shifted during the last 30 years from the U.S. and Europe to eastern and southern Asia.

  11. Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change

    Science.gov (United States)

    Lehtonen, Ilari; Kämäräinen, Matti; Gregow, Hilppa; Venäläinen, Ari; Peltola, Heli

    2016-10-01

    This study examined the impacts of projected climate change on heavy snow loads on Finnish forests, where snow-induced forest damage occurs frequently. For snow-load calculations, we used daily data from five global climate models under representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, statistically downscaled onto a high-resolution grid using a quantile-mapping method. Our results suggest that projected climate warming results in regionally asymmetric response on heavy snow loads in Finnish forests. In eastern and northern Finland, the annual maximum snow loads on tree crowns were projected to increase during the present century, as opposed to southern and western parts of the country. The change was rather similar both for heavy rime loads and wet snow loads, as well as for frozen snow loads. Only the heaviest dry snow loads were projected to decrease over almost the whole of Finland. Our results are aligned with previous snowfall projections, typically indicating increasing heavy snowfalls over the areas with mean temperature below -8 °C. In spite of some uncertainties related to our results, we conclude that the risk for snow-induced forest damage is likely to increase in the future in the eastern and northern parts of Finland, i.e. in the areas experiencing the coldest winters in the country. The increase is partly due to the increase in wet snow hazards but also due to more favourable conditions for rime accumulation in a future climate that is more humid but still cold enough.

  12. Climatological context for large-scale coral bleaching

    Science.gov (United States)

    Barton, A. D.; Casey, K. S.

    2005-12-01

    Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will

  13. Climatology and trends of summer high temperature days in India during 1969–2013

    Indian Academy of Sciences (India)

    A K Jaswal; P C S Rao; Virendra Singh

    2015-02-01

    Based on the daily maximum air temperature data from 176 stations in India from 1969 to 2013, the climatological distribution of the number of days with high temperature (HT) defined as days with maximum temperature higher than 37°C during summer season (March–June) are studied. With a focus on the regional variability and long-term trends, the impacts of HT days are examined by dividing the country into six geographical regions (North, West, North-central, East, South-central and South). Although the long-term (1969–2013) climatological numbers of HT days display well-defined spatial patterns, there is clear change in climatological mean and coefficient of variation of HT days in a recent period (1991–2013). The long period trends indicate increase in summer HT days by 3%, 5%, and 18% in north, west, and south regions, respectively and decrease by 4% and 9% in north-central and east regions respectively. However, spatial variations in HT days exist across different regions in the country. The data analysis shows that 2010 was the warmest summer year and 2013 was the coolest summer year in India. Comparison of spatial distributions of trends in HT days for 1969–1990 and 1991–2013 periods reveal that there is an abrupt increase in the number of HT days over north, west and north-central regions of India probably from mid 1990s. A steep increase in summer HT days in highly populated cities of Mumbai, New Delhi, Chennai, Jaipur, and Visakhapatnam is noticed during the recent period of 1991–2013. The summer HT days over southern India indicate significant positive correlation with Nino 3.4 index for three months’ running mean (December–January–February, January–March, February–April, March–May and April–June).

  14. Climatology characterization of equatorial plasma bubbles using GPS data

    Science.gov (United States)

    Magdaleno, Sergio; Herraiz, Miguel; Altadill, David; de la Morena, Benito A.

    2017-01-01

    The climatology of equatorial plasma bubbles (EPBs) for the period 1998-2008 was studied using slant total electron content (sTEC) derived from global positioning system (GPS) data. The sTEC values were calculated from data measured at 67 International GNSS Service (IGS) stations distributed worldwide around the geomagnetic equator and embracing the region of the ionospheric equatorial anomaly (IEA). EPBs and their characteristics were obtained using the Ionospheric Bubble Seeker (IBS) application, which detects and distinguishes sTEC depletions associated with EPBs. This technique bases its analysis on the time variation of the sTEC and on the population variance of this time variation. IBS finds an EPB by default when an sTEC depletion is greater than 5 TEC units (TECu). The analysis of the spatial behavior shows that the largest rate of EPB takes place at the equator and in the South America-Africa sector, while their occurrence decreases as the distance from the magnetic equator increases. The depth and duration of the sTEC depletions also maximize at the equator and in the South America-Africa sector and weaken departing from the equator. The results of the temporal analysis for the data of the IGS stations located in AREQ, NKLG, IISC, and GUAM indicate that the greatest rate of EPB occurrence is observed for high solar activity.

  15. Climatology characterization of equatorial plasma bubbles using GPS data

    Directory of Open Access Journals (Sweden)

    Magdaleno Sergio

    2017-01-01

    Full Text Available The climatology of equatorial plasma bubbles (EPBs for the period 1998–2008 was studied using slant total electron content (sTEC derived from global positioning system (GPS data. The sTEC values were calculated from data measured at 67 International GNSS Service (IGS stations distributed worldwide around the geomagnetic equator and embracing the region of the ionospheric equatorial anomaly (IEA. EPBs and their characteristics were obtained using the Ionospheric Bubble Seeker (IBS application, which detects and distinguishes sTEC depletions associated with EPBs. This technique bases its analysis on the time variation of the sTEC and on the population variance of this time variation. IBS finds an EPB by default when an sTEC depletion is greater than 5 TEC units (TECu. The analysis of the spatial behavior shows that the largest rate of EPB takes place at the equator and in the South America-Africa sector, while their occurrence decreases as the distance from the magnetic equator increases. The depth and duration of the sTEC depletions also maximize at the equator and in the South America-Africa sector and weaken departing from the equator. The results of the temporal analysis for the data of the IGS stations located in AREQ, NKLG, IISC, and GUAM indicate that the greatest rate of EPB occurrence is observed for high solar activity.

  16. Future extreme events in European climate: An exploration of regional climate model projections

    DEFF Research Database (Denmark)

    Beniston, M.; Stephenson, D.B.; Christensen, O.B.

    2007-01-01

    This paper presents an overview of changes in the extreme events that are most likely to affect Europe in forthcoming decades. A variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961......-90) and future (2071-2 100) climate on the basis of regional climate model simulations produced by the PRUDENCE project. A summary of the main results follows. Heat waves - Regional surface warming causes the frequency, intensity and duration of heat waves to increase over Europe. By the end of the twenty first...... century, countries in central Europe will experience the same number of hot days as are currently experienced in southern Europe. The intensity of extreme temperatures increases more rapidly than the intensity of more moderate temperatures over the continental interior due to increases in temperature...

  17. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  18. Lightning climatology in the Congo Basin: methodology and first results

    Science.gov (United States)

    Kigotsi, Jean; Soula, Serge; Georgis, Jean-François; Barthe, Christelle

    2016-04-01

    The global climatology of lightning issued from space observations (OTD and LIS) clearly showed the maximum of the thunderstorm activity is located in a large area of the Congo Basin, especially in the Democratic Republic of Congo (DRC). The first goal of the present study is to compare observations from the World Wide Lightning Location Network (WWLLN) from the Lightning Imaging Sensor (LIS) over a 9-year period (2005-2013) in this 2750 km × 2750 km area. The second goal is to analyse the lightning activity in terms of time and space variability. The detection efficiency (DE) of the WWLLN relative to LIS has increased between 2005 and 2013, typically from about 1.70 % to 5.90 %, in agreement with previous results for other regions of the world. The mean monthly flash rate describes an annual cycle with a maximum between November and March and a minimum between June and August, associated with the ICTZ migration but not exactly symmetrical on both sides of the equator. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, depending on the reference year, in agreement with previous works in other regions of the world. The annual flash density shows a sharp maximum localized in eastern DRC regardless of the reference year and the period of the year. This annual maximum systematically located west of Kivu Lake corresponds to that previously identified by many authors as the worldwide maximum which Christian et al. (2013) falsely attributed to Rwanda. Another more extended region within the Congo Basin exhibits moderately large values, especially during the beginning of the period analyzed. A comparison of both patterns of lightning density from the WWLLN and from LIS allows to validate the representativeness of this world network and to restitute the total lightning activity in terms of lightning density and rate.

  19. Odin stratospheric proxy NOy measurements and climatology

    Directory of Open Access Journals (Sweden)

    D. Murtagh

    2008-10-01

    Full Text Available Five years of OSIRIS (Optical Spectrograph and InfraRed Imager System NO2 and SMR (Sub-millimetre and Millimetre Radiometer HNO3 observations from the Odin satellite, combined with data from a photochemical box model, have been used to construct a stratospheric proxy NOy data set including the gases: NO, NO2, HNO3, 2×N2O5 and ClONO2. This Odin NOy climatology is based on all daytime measurements and contains monthly mean and standard deviation, expressed as mixing ratio or number density, as function of latitude or equivalent latitude (5° bins on 17 vertical layers (altitude, pressure or potential temperature between 14 and 46 km. Comparisons with coincident NOy profiles from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS instrument were used to evaluate several methods to combine Odin observations with model data. This comparison indicates that the most appropriate merging technique uses OSIRIS measurements of NO2, scaled with model NO/NO2 ratios, to estimate NO. The sum of 2×N2O5 and ClONO2 is estimated from uncertainty-based weighted averages of scaled observations of SMR HNO3 and OSIRIS NO2. Comparisons with ACE-FTS suggest the precision (random error and accuracy (systematic error of Odin NOy profiles are about 15% and 20%, respectively. Further comparisons between Odin and the Canadian Middle Atmosphere Model (CMAM show agreement to within 20% and 2 ppb throughout most of the stratosphere except in the polar vortices. The combination of good temporal and spatial coverage, a relatively long data record, and good accuracy and precision make this a valuable NOy product for various atmospheric studies and model assessments.

  20. Odin stratospheric proxy NOy measurements and climatology

    Directory of Open Access Journals (Sweden)

    D. Murtagh

    2008-03-01

    Full Text Available Five years of OSIRIS (Optical Spectrograph and InfraRed Imager System NO2 and SMR (Sub-Millimetre Radiometer HNO3 observations from the Odin satellite, combined with data from a photochemical box model, have been used to construct a stratospheric proxy NOy data set including the gases: NO, NO2, HNO3, 2×N2O5 and CIONO2. This Odin NOy climatology is based on all daytime measurements and contains monthly mean and standard deviation, expressed as mixing ratio or number density, as function of latitude or equivalent latitude (5° bins on 17 vertical layers (altitude, pressure or potential temperature between 14 and 46 km. Comparisons with coincident NOy profiles from the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-FTS instrument were used to evaluate several methods to combine Odin observations with model data. This comparison indicates that the most appropriate merging technique uses OSIRIS measurements of NO2, scaled with model NO/NO2 ratios, to estimate NO. The sum of 2×N2O5 and CIONO2 is estimated from uncertainty-based weighted averages of scaled observations of SMR HNO3 and OSIRIS NO2. Comparisons with ACE-FTS suggest the precision (random error and accuracy (systematic error of Odin NOy profiles are about 15% and 20%, respectively. Further comparisons between Odin and the Canadian Middle Atmosphere Model (CMAM show agreement to within 20% and 2 ppb throughout most of the stratosphere except in the polar vortices. A particularly large disagreement within the Antarctic vortex in the upper stratosphere during spring indicates too strong descent of air in CMAM. The combination of good temporal and spatial coverage, a relatively long data record, and good accuracy and precision make this a valuable NOy product for various atmospheric studies and model assessments.

  1. Dynamic Adjustment of Climatological Ozone Boundary Conditions for Air-Quality Forecasts

    Directory of Open Access Journals (Sweden)

    P. A. Makar

    2010-06-01

    Full Text Available Ten different approaches for applying lateral and top climatological boundary conditions for ozone have been evaluated using the off-line regional air-quality model AURAMS. All ten approaches employ the same climatological ozone profiles, but differ in the manner in which they are applied, via the inclusion or exclusion of (i a dynamic adjustment of the climatological ozone profile in response to the model-predicted tropopause height, (ii a sponge zone for ozone on the model top, (iii upward extrapolation of the climatological ozone profile, and (iv different mass consistency corrections. The model performance for each approach was evaluated against North American surface ozone and ozonesonde observations from the BAQS-Met field study period in the summer of 2007. The original daily one-hour maximum surface ozone biases of about +15 ppbv were greatly reduced (halved in some simulations using alternative methodologies. However, comparisons to ozonesonde observations showed that the reduction in surface ozone bias sometimes came at the cost of significant positive biases in ozone concentrations in the free troposphere and upper troposphere. The best overall performance throughout the troposphere was achieved using a methodology that included dynamic tropopause height adjustment, no sponge zone at the model top, extrapolation of ozone when required above the limit of the climatology, and no mass consistency corrections (global mass conservation was still enforced. The simulation using this model version had a one-hour daily maximum surface ozone bias of +8.6 ppbv, with small reductions in model correlation, and the best comparison to ozonesonde profiles. This recommended and original methodologies were compared for two further case studies: a high-resolution simulation of the BAQS-Met measurement intensive, and a study of the downwind region of the Canadian Rockies. Significant improvements were noted for the high resolution simulations during the

  2. 30-year Dynamics of Terrestrial Vegetation Activity and the Relationship with Climatologies

    Science.gov (United States)

    de Jong, R.; Schaepman, M. E.; Furrer, R.; de Bruin, S.; Verburg, P. H.

    2013-12-01

    The climate governs the seasonal activity of terrestrial vegetation while humankind influences it. The relative role of these drivers in changing vegetation activity is crucial information for accurate modeling of vegetation and climate dynamics and for adaptation and mitigation strategies. Disentangling the two, however, is an ongoing scientific challenge, because of limited data availability, mainly regarding non-climatic drivers, and complex biosphere-atmosphere feedback mechanisms. Here, we contribute to this quest by modeling the spatial relationship between climatologies and changes in global vegetation activity (de Jong et al., 2013a). Vegetation activity is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature, including the detection of shifts (de Jong et al., 2013b), which may be related to climate (e.g. Zhao & Running, 2010). However, little remains known about the exact processes underlying vegetation change at large spatial scales. Depending on eco-region, three climatologies potentially constrain plant growth (Churkina and Running, 1998). In the humid mid-latitudes, for example, temperature is the largest influencing factor; in (semi) arid regions it is the availability of water and in the tropics incident solar radiation. Based on this logic, we developed a mixed-effect model to relate changes in these climatologies to changes in vegetation activity and to quantify the spatial process underlying the other drivers, including human land use. Little over 50% of the spatial variation in vegetation change could be attributed to changes in climatologies; conspicuously, many of the global ';greening' trends and the ';browning' hotspots in Argentina and Australia. Browning hotspots in the non-climatic component were especially located in subequatorial Africa (e.g. parts of Zimbabwe and Tanzania), where human drivers may be

  3. ARTISTIC INTERVENTION PROJECTS AND CULTURAL MEMORY: EXPERIENCES FROM PORTUGAL’S CENTRE REGION

    Directory of Open Access Journals (Sweden)

    Claudia Pato Carvalho

    2015-03-01

    Full Text Available In July and August 2013, O Teatrão, a Coimbra-based theatre company, presented the project Arruin-ados, comprising three theatre performances in three abandoned spaces (‘ruins’, one in each of three cities in the Centre region of Portugal located along the Mondego River: Coimbra, Montemor-o-Velho, and Figueira da Foz. Developed through a community the atre approach, the artistic presentations were based on the collection of local memories, including local testimonies and other types of local materials from local, social, and economic history. The objectives of the project were to bring un-der reflection how different types of urban and rural ruins, understood as scars and tattoos of a country, may speak about the history of that country and, at the same time, may inspire the possible future transformations and possibilities of change. In parallel with this reflec-tion, the artistic production embodies a strong commit-ment to build collective projects; a sense of a shared, common territory; and a network of people and things to explore and articulate, in a localized, concrete way, the history of Portugal between 1890 and 2020. The paper assesses the role and significance of Arruinados in the context of collective memory, community-based artistic interventions in public space, and the potential for local mobilization through the arts.

  4. Projected changes in atmospheric river events in Arizona as simulated by global and regional climate models

    Science.gov (United States)

    Rivera, Erick R.; Dominguez, Francina

    2016-09-01

    Inland-penetrating atmospheric rivers (ARs) affect the United States Southwest and significantly contribute to cool season precipitation. In this study, we examine the results from an ensemble of dynamically downscaled simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and their driving general circulation models (GCMs) in order to determine statistically significant changes in the intensity of the cool season ARs impacting Arizona and the associated precipitation. Future greenhouse gas emissions follow the A2 emission scenario from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations. We find that there is a consistent and clear intensification of the AR-related water vapor transport in both the global and regional simulations which reflects the increase in water vapor content due to warmer atmospheric temperatures, according to the Clausius-Clapeyron relationship. However, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no significant changes are projected either by the GCMs or the NARCCAP models. This lack of robust precipitation variations can be explained in part by the absence of meaningful changes in both the large-scale water vapor flux convergence and the maximum positive relative vorticity in the GCMs. Additionally, some global models show a robust decrease in relative humidity which may also be responsible for the projected precipitation patterns.

  5. RandAgiamo™, a Pilot Project Increasing Adoptability of Shelter Dogs in the Umbria Region (Italy

    Directory of Open Access Journals (Sweden)

    Laura Menchetti

    2015-08-01

    Full Text Available Current Italian legislation does not permit euthanasia of dogs, unless they are ill or dangerous. Despite good intentions and ethical benefits, this ‘no-kill policy’ has caused a progressive overpopulation of dogs in shelters, due to abandonment rates being higher than adoption rates. Shelter overcrowding has negative implications for dog welfare and increases public costs. The aim of this paper is to describe the pilot project “RandAgiamo” implemented in a rescue shelter in the Umbria Region and to evaluate its effectiveness on the rate of dog adoption using official data. RandAgiamo aimed to increase adult shelter dogs’ adoptability by a standard training and socialization programme. It also promoted dogs’ visibility by publicizing them through social media and participation in events. We analysed the official data of the Umbria regional health authorities regarding dog shelters of the Perugia province of the year 2014. In the RandAgiamo shelter, the dog adoption rate was 27.5% higher than that of dogs housed in other shelters located in the same geographical area (P < 0.001. The RandAgiamo project could be beneficial for the dogs’ welfare, owner satisfaction, shelter management, and public perception of shelter dogs. However, staff were required to provide dog training and related activities.

  6. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Science.gov (United States)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  7. 76 FR 37350 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Science.gov (United States)

    2011-06-27

    .../air conditioning systems (HVAC Systems) in Columbia, Missouri. This HVAC system consists of three (3... for the HVAC systems, a list of potential manufacturers and project schedule submitted by the City and... HVAC systems available to meet the City's project specifications. The Regional Administrator is...

  8. Analyzing and Projecting U.S. Wildfire Potential Based on NARCCAP Regional Climate Simulations

    Science.gov (United States)

    Liu, Y.; Mearns, L. O.

    2012-12-01

    Wildfires usually ignite and spread under hot, dry, and windy conditions. Wildfires, especially catastrophic mega-fires, have increased in recent decades in the United States and other parts of the world. Among the converging factors were extreme weather event such as extended drought. Furthermore, climate has been projected to become warmer worldwide and drier with more frequent droughts in many subtropical and mid-latitude regions including parts of the U.S. due to the greenhouse effect. As a result, wildfires are expected to increase in the future. This study analyzes current features and project future trends of wildfire potential in the continental United States. Fire potential is measured by fire indices including the Keetch-Byram Drought Index and Fosberg Fire Weather Index. The meteorological data used to calculate the fire indices are the dynamical downscaling produced by the North American Regional Climate Change Assessment Program (NARCCAP). Current fire potential generally increases from the eastern to western coast and from cool to warm season. Fire potential has large seasonal and inter-annual variability and spatial connections. Fire potential has shown overall increasing trends in recent decades. The trends are projected to continue this century due to the greenhouse effect. Future fire potential will increase significantly in the Rocky Mountains all seasons and in the Southeast during summer and autumn. Future climate change will also reduce the windows of prescribed burning, which is one of the forest management tools for reducing wildfire risks. The research results are expected to provide useful information for assessing the ecological, environmental, and social impacts of future wildfires and developing mitigation strategies.

  9. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    Science.gov (United States)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  10. Higher precision estimates of regional polar warming by ensemble regression of climate model projections

    Energy Technology Data Exchange (ETDEWEB)

    Bracegirdle, Thomas J. [British Antarctic Survey, Cambridge (United Kingdom); Stephenson, David B. [University of Exeter, Mathematics Research Institute, Exeter (United Kingdom); NCAS-Climate, Reading (United Kingdom)

    2012-12-15

    This study presents projections of twenty-first century wintertime surface temperature changes over the high-latitude regions based on the third Coupled Model Inter-comparison Project (CMIP3) multi-model ensemble. The state-dependence of the climate change response on the present day mean state is captured using a simple yet robust ensemble linear regression model. The ensemble regression approach gives different and more precise estimated mean responses compared to the ensemble mean approach. Over the Arctic in January, ensemble regression gives less warming than the ensemble mean along the boundary between sea ice and open ocean (sea ice edge). Most notably, the results show 3 C less warming over the Barents Sea ({proportional_to} 7 C compared to {proportional_to} 10 C). In addition, the ensemble regression method gives projections that are 30 % more precise over the Sea of Okhostk, Bering Sea and Labrador Sea. For the Antarctic in winter (July) the ensemble regression method gives 2 C more warming over the Southern Ocean close to the Greenwich Meridian ({proportional_to} 7 C compared to {proportional_to} 5 C). Projection uncertainty was almost half that of the ensemble mean uncertainty over the Southern Ocean between 30 W to 90 E and 30 % less over the northern Antarctic Peninsula. The ensemble regression model avoids the need for explicit ad hoc weighting of models and exploits the whole ensemble to objectively identify overly influential outlier models. Bootstrap resampling shows that maximum precision over the Southern Ocean can be obtained with ensembles having as few as only six climate models. (orig.)

  11. Nuclear knowledge management initiatives of the Regional Cooperative Agreement undertaken by the Electronic Networking and Outreach project

    Energy Technology Data Exchange (ETDEWEB)

    Alawiah Musa [Information and Technology Centre, Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Kajang 43000 (Malaysia)]. E-mail: alawiah@mint.gov.my; Ainul Hayati Daud; Mohamad Safuan Sulaiman [Information and Technology Centre, Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Kajang 43000 (Malaysia)

    2005-07-01

    The Regional Cooperative Agreement (RCA) in the Asia Pacific region is one of the cooperative agreements under the aegis of the International Atomic Energy Agency and currently consists of 17 member states. Since the region covered by the RCA is undergoing a rapid expansion in nuclear power development, many activities have been carried out under the RCA. The Electronic Networking and Outreach (ENO) Project under the RCA was used as a vehicle for the RCA programme for the dissemination of valuable information to end-users. This paper will describe the initiatives undertaken by the ENO project to initially establish an information and knowledge-sharing environment as an initiative towards a nuclear knowledge management system within the RCA community. It will also discuss the challenges and issues peculiar to the region that have been encountered during the project cycle. Then it will try to offer a conceptual framework of a nuclear knowledge management system for the RCA region. (author)

  12. A spectral climatology for atmospheric compensation of hyperspectral imagery

    Science.gov (United States)

    Powell, John H.; Resmini, Ronald G.

    2016-05-01

    Most Earth observation hyperspectral imagery (HSI) detection and identification algorithms depend critically upon a robust atmospheric compensation capability to correct for the effects of the atmosphere on the radiance signal. Atmospheric compensation methods typically perform optimally when ancillary ground truth data are available, e.g., high fidelity in situ radiometric observations or atmospheric profile measurements. When ground truth is incomplete or not available, additional assumptions must be made to perform the compensation. Meteorological climatologies are available to provide climatological norms for input into the radiative transfer models; however no such climatologies exist for empirical methods. The success of atmospheric compensation methods such as the empirical line method suggests that remotely sensed HSI scenes contain comprehensive sets of atmospheric state information within the spectral data itself. It is argued that large collections of empirically-derived atmospheric coefficients collected over a range of climatic and atmospheric conditions comprise a resource that can be applied to prospective atmospheric compensation problems. A previous study introduced a new climatological approach to atmospheric compensation in which empirically derived spectral information, rather than sensible atmospheric state variables, is the fundamental datum. The current work expands the approach across an experimental archive of 127 airborne HSI datasets spanning nine physical sites to represent varying climatological conditions. The representative atmospheric compensation coefficients are assembled in a scientific database of spectral observations and modeled data. Improvements to the modeling methods used to standardize the coefficients across varying collection and illumination geometries and the resulting comparisons of adjusted coefficients are presented. The climatological database is analyzed to show that common spectral similarity metrics can be used

  13. ANALYSIS OF PROJECTED FREQUENCY AND INTENSITY CHANGES OF PRECIPITATION IN THE CARPATHIAN REGION

    Directory of Open Access Journals (Sweden)

    KIS ANNA

    2015-03-01

    Full Text Available Precipitation is the major atmospheric source of surface water, thus, in order to build appropriate adaptation strategies for various economic sections related to water resources it is essential to provide projections for precipitation tendencies as exact as possible. Extreme precipitation events are especially important from this point of view since they may result in different environmental, economical, and/or even human health damages. Excessive precipitation for instance may induce floods, flash-floods, landslides, traffic accidents. On the other hand, lack of precipitation is not favorable either: long dry periods affect agricultural production quite negatively, and hence, food safety can be threatened. Several precipitation-related indices (i.e., describing drought or intensity, exceeding different percentile-based or absolute threshold values are analyzed for the Carpathian region for 1961–2100. For this purpose 11 completed regional climate model simulations are used from the ENSEMBLES database. Before the thorough analysis, a percentile-based bias correction method was applied to the raw data, for which the homogenized daily gridded CarpatClim database (1961–2010 served as a reference. Absolute and relative seasonal mean changes of climate indices are calculated for two future time periods (2021–2050 and 2071–2100 and for three subregions within the entire Carpathian region, namely, for Slovakia, Hungary and Romania. According to our results, longer dry periods are estimated for the summer season, mainly in the southern parts of the domain, while precipitation intensity is likely to increase. Heavy precipitation days and high percentile values are projected to increase, especially, in winter and autumn.

  14. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    Science.gov (United States)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological

  15. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    Science.gov (United States)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  16. An evaluation of the influence of natural science in regional-scale restoration projects.

    Science.gov (United States)

    Van Cleve, F Brie; Leschine, Thomas; Klinger, Terrie; Simenstad, Charles

    2006-03-01

    Regional-scale restoration is a tool of growing importance in environmental management, and the number, scope, and complexity of restoration programs is increasing. Although the importance of natural science to the success of such projects generally is recognized, the actual use of natural science in these programs rarely has been evaluated. We used techniques of program evaluation to examine the use of natural science in six American and three Western European regional-scale restoration programs. Our results suggest that ensuring the technical rigor and directed application of the science is important to program development and delivery. However, the influence of science may be constrained if strategies for its integration into the broader program are lacking. Consequently, the influence of natural science in restoration programs is greatest when formal mechanisms exist for incorporating science into programs, for example, via a framework for integration of science and policy. Our evaluation proposes a model that can be used to enhance the influence of natural science in regional-scale restoration programs in the United States and elsewhere.

  17. 76 FR 142 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Science.gov (United States)

    2011-01-03

    ... media, manufactured in Brazil, for six pressure filters. This is a project specific waiver and only... determination based on the review and recommendations of the EPA Region III, Water Protection Division, Office..., U.S. EPA Region III, 1650 Arch Street, Philadelphia, PA 19103-2029. SUPPLEMENTARY INFORMATION:...

  18. Projected changes to high temperature events for Canada based on a regional climate model ensemble

    Science.gov (United States)

    Jeong, Dae Il; Sushama, Laxmi; Diro, Gulilat Tefera; Khaliq, M. Naveed; Beltrami, Hugo; Caya, Daniel

    2016-05-01

    Extreme hot spells can have significant impacts on human society and ecosystems, and therefore it is important to assess how these extreme events will evolve in a changing climate. In this study, the impact of climate change on hot days, hot spells, and heat waves, over 10 climatic regions covering Canada, based on 11 regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program for the June to August summer period is presented. These simulations were produced with six RCMs driven by four Atmosphere-Ocean General Circulation Models (AOGCM), for the A2 emission scenario, for the current 1970-1999 and future 2040-2069 periods. Two types of hot days, namely HD-1 and HD-2, defined respectively as days with only daily maximum temperature (Tmax) and both Tmax and daily minimum temperature (Tmin) exceeding their respective thresholds (i.e., period-of-record 90th percentile of Tmax and Tmin values), are considered in the study. Analogous to these hot days, two types of hot spells, namely HS-1 and HS-2, are identified as spells of consecutive HD-1 and HD-2 type hot days. In the study, heat waves are defined as periods of three or more consecutive days, with Tmax above 32 °C threshold. Results suggest future increases in the number of both types of hot days and hot spell events for the 10 climatic regions considered. However, the projected changes show high spatial variability and are highly dependent on the RCM and driving AOGCM combination. Extreme hot spell events such as HS-2 type hot spells of longer duration are expected to experience relatively larger increases compared to hot spells of moderate duration, implying considerable heat related environmental and health risks. Regionally, the Great Lakes, West Coast, Northern Plains, and Maritimes regions are found to be more affected due to increases in the frequency and severity of hot spells and/or heat wave characteristics, requiring more in depth studies for these regions

  19. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  20. A Climatological Investigation of the Activity of Summer Subtropical Vortices

    Institute of Scientific and Technical Information of China (English)

    LUO Zhexian; DAI Kan

    2008-01-01

    By applying a new vortex detection method to the ECMWF 40-yr reanalysis (ERA40) data from 1985 to 2002, the climatology of summer vortices has been investigated in five subtropical regions, i.e., the northwestern Pacific, northeastern Pacific, northwestern Atlantic, northeastern Atlantic, and Australia-South Pacific, followed by validation with NCEP/NCAR reanalysis data. Results are as follows: (1) The spatial distributions of ERA40 vortex activities (VAC) were well consistent with those of NCEP/NCAR reanalysis (NRA) results in all regions, especially in northwestern Pacific. (2) Because of different model resolutions, both the number and intensity of vortices obtained from NRA were significantly weaker thanERA40's. (3) Vortices mainly cruised in coasts and the adjacent seas, from where to the land or the open sea vortex activities were gradually decreased. (4) There were two active centers in the northwestern Pacific:one was located in South China Sea and the other, as the largest center of the five regions, spread from the east side of the Philippines to Japan. (5) Over the northwestern Atlantic, most vortices occurred in Panama and its west-side offshore. (6) The spatial distributions of vortices were alike between the northeastern Pacific and northeastern Atlantic, both spreading from coasts to the west-side sea at 5°-20°N. (7) In the Anstralia-South Pacific, vortices were not as active as those in the other four regions, and mostly took place in the equator-side of near ocean areas. (8) Except the northwestern Pacific and northwestern Atlantic, the VAC interannual variations in the other three regions were different between ERA40 and NRA data. (9)In the northwestern Pacific and northwestern Atlantic, the VAC interannual variation could be separated to several distinct stages. (10) Since the mid 1980s, mean vortex intensity was getting increased in the northwestern Pacific, which was most significant in the subtropical areas on a global basis. In the western

  1. Aggregating Hydrometeorological Data from International Monitoring Networks Across Earth's Largest Lake System to Quantify Uncertainty in Historical Water Budget Records, Improve Regional Water Budget Projections, and Differentiate Drivers Behind a Recent Record-Setting Surge in Water Levels

    Science.gov (United States)

    Gronewold, A.; Bruxer, J.; Smith, J.; Hunter, T.; Fortin, V.; Clites, A. H.; Durnford, D.; Qian, S.; Seglenieks, F.

    2015-12-01

    Resolving and projecting the water budget of the North American Great Lakes basin (Earth's largest lake system) requires aggregation of data from a complex array of in situ monitoring and remote sensing products that cross an international border (leading to potential sources of bias and other inconsistencies), and are relatively sparse over the surfaces of the lakes themselves. Data scarcity over the surfaces of the lakes is a particularly significant problem because, unlike Earth's other large freshwater basins, the Great Lakes basin water budget is (on annual scales) comprised of relatively equal contributions from runoff, over-lake precipitation, and over-lake evaporation. Consequently, understanding drivers behind changes in regional water storage and water levels requires a data management framework that can reconcile uncertainties associated with data scarcity and bias, and propagate those uncertainties into regional water budget projections and historical records. Here, we assess the development of a historical hydrometeorological database for the entire Great Lakes basin with records dating back to the late 1800s, and describe improvements that are specifically intended to differentiate hydrological, climatological, and anthropogenic drivers behind recent extreme changes in Great Lakes water levels. Our assessment includes a detailed analysis of the extent to which extreme cold winters in central North America in 2013-2014 (caused by the anomalous meridional upper air flow - commonly referred to in the public media as the "polar vortex" phenomenon) altered the thermal and hydrologic regimes of the Great Lakes and led to a record setting surge in water levels between January 2014 and December 2015.

  2. Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2007-09-01

    Full Text Available The MILAGRO field campaign was a multi-agency international collaborative project to evaluate the regional impacts of the Mexico City air pollution plume as a means of understanding urban impacts on the global climate. Mexico City lies on an elevated plateau with mountains on three sides and has complex mountain and surface-driven wind flows. This paper asks what the wind transport was in the basin during the field campaign and how representative it was of the climatology. Surface meteorology and air quality data, radiosoundings and radar wind profiler data were collected at sites in the basin and its vicinity. Cluster analysis is used to identify the dominant wind patterns both during the campaign and within the past 10 years of operational data from the warm dry season. Our analysis shows that March 2006 was representative of typical flow patterns experienced in the basin. Six episode types were identified for the basin scale circulation providing a way of interpreting atmospheric chemistry and particulate data collected during the campaign. Decoupling between surface winds and those aloft had a strong influence in leading to convection and poor air quality episodes. Hourly characterisation of wind circulation during the MILAGRO, MCMA-2003 and IMADA field campaigns will enable the comparisons of similar air pollution episodes and the evaluation of the impact of wind transport on measurements of the atmospheric chemistry taking place in the basin.

  3. Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2008-03-01

    Full Text Available The MILAGRO field campaign was a multi-agency international collaborative project to evaluate the regional impacts of the Mexico City air pollution plume as a means of understanding urban impacts on the global climate. Mexico City lies on an elevated plateau with mountains on three sides and has complex mountain and surface-driven wind flows. This paper asks what the wind transport was in the basin during the field campaign and how representative it was of the climatology. Surface meteorology and air quality data, radiosondes and radar wind profiler data were collected at sites in the basin and its vicinity. Cluster analysis was used to identify the dominant wind patterns both during the campaign and within the past 10 years of operational data from the warm dry season. Our analysis shows that March 2006 was representative of typical flow patterns experienced in the basin. Six episode types were identified for the basin-scale circulation providing a way of interpreting atmospheric chemistry and particulate data collected during the campaign. Decoupling between surface winds and those aloft had a strong influence in leading to convection and poor air quality episodes. Hourly characterisation of wind circulation during the MILAGRO, MCMA-2003 and IMADA field campaigns enables the comparisons of similar air pollution episodes and the evaluation of the impact of wind transport on measurements of the atmospheric chemistry taking place in the basin.

  4. Development of the business area construction and energy of EnergieRegion Nuernberg. Transfer from project management to a regional network; Entwicklung des Geschaeftsfeldes Bau und Energie der EnergieRegion Nuernberg. Umsetzung von Projektmanagement in einem regionalen Netzwerk

    Energy Technology Data Exchange (ETDEWEB)

    Seiverth, A.

    2006-07-01

    The association EnergieRegion Nuernberg is a regional authority network, which is employed with the promotion of sustainable handling of the factor energy in the region Nuernberg and with the proliferation of this region as internationally recognized location for energy engineering, energy industry and energy science. The intention is to use the important industrial, service-oriented and scientific potential optimally. For this reason a functional co-ordination and communication platform had to be created for the cross-linking of the appropriate participants from economics, research and public administration. Therefore, the author of the contribution under consideration accompanies the development process of the business field construction and energy of this association in the background of the current trends in the construction and energy sector in the region Nuernberg. Under this aspect, the author reports on the following aspects: (a) Success factors of the project management in a regional network; (b) Operationalisation of the success of the project by means of a model; (c) Analysis of the different aspects of energetic measures; (d) Determination of chances and risks of the range building and energy in the region Nuernberg; (e) Comparison of the success of the model projects with the model for the determination of project success; (f) Determination of strengths and weaknesses of the project management in the business field construction and energy of the energy region Nuernberg.

  5. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schmoyer, R.L. [Oak Ridge National Lab., TN (United States); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. [National Climatic Data Center, Asheville, NC (United States); Eischeid, J.K. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the ``best`` data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  6. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Vose, R.S. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center); Schmoyer, R.L. (Oak Ridge National Lab., TN (United States)); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. (National Climatic Data Center, Asheville, NC (United States)); Eischeid, J.K. (Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences)

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the best'' data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  7. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  8. NEOLITHIC PLANT USE IN THE WESTERN MEDITERRANEAN REGION: PRELIMINARY RESULTS FROM THE AGRIWESTMED PROJECT

    Directory of Open Access Journals (Sweden)

    L. Peña-Chocarro

    2013-04-01

    Full Text Available This contribution focuses on the preliminary results of the AGRIWESTMED project which focuses on the archaeobotanical analyses of early Neolithic sites in the western Mediterranean region (both in Iberia and in northern Morocco. A large number of sites has been studied producing an interesting dataset of plant remains which places the earliest examples of domesticated plants in the second half of the 6th millennium cal BC. Plant diversity is high as it is shown by the large number of species represented: hulled and naked wheats, barley, peas, fava beans, vetches, lentils and grass peas. To more crops, poppy and flax, are also part of the first agricultural crops of the area. Although agriculture seems to occupy a first place in the production of food, gathering is well represented in the Moroccan sites where a large number of species has been identified. 

  9. Probabilistic projections of regional climatic changes over the Great Lakes Basin

    Science.gov (United States)

    Wang, Xiuquan; Huang, Guohe; Baetz, Brian W.; Zhao, Shan

    2016-11-01

    As the largest surface fresh water system on earth, the Great Lakes is facing the threat of climate change. Understanding how the hydrologic cycle in the Great Lakes region would be affected by human-induced global warming is important for developing informed adaptation strategies. In this study, high-resolution regional climate ensemble simulations based upon the PRECIS modeling system are conducted to project future climatic changes over the Great Lakes Basin. The results show that the Great Lakes Basin is very likely to experience a continuous warming-up throughout the 21st century. Particularly, mean air temperatures will rise by 2.6 °C in the forthcoming decades (i.e., 2030s), 3.8 °C in the middle of the century (i.e., 2050s), and 5.6 °C to the end of the century (i.e., 2080s), respectively. The warming air temperatures are very likely to result in more precipitation over the entire basin. The annual total precipitation over the Great Lakes Basin is projected to increase by 8.9% in the 2030s and 12.2% in the 2050s, while the magnitude of precipitation increase would decline to 7.1% in the 2080s. The slow-down of the precipitation increase from the 2050s to the 2080s indicates a shift from the aggressive increase of precipitation before and in the middle of this century to the eventual decrease by the end of this century, suggesting that a nonlinear response relationship between precipitation and temperature may exist in the Great Lakes Basin and such a relationship is also likely to vary in response to global warming.

  10. Production and use of regional climate model projections - A Swedish perspective on building climate services.

    Science.gov (United States)

    Kjellström, Erik; Bärring, Lars; Nikulin, Grigory; Nilsson, Carin; Persson, Gunn; Strandberg, Gustav

    2016-09-01

    We describe the process of building a climate service centred on regional climate model results from the Rossby Centre regional climate model RCA4. The climate service has as its central facility a web service provided by the Swedish Meteorological and Hydrological Institute where users can get an idea of various aspects of climate change from a suite of maps, diagrams, explaining texts and user guides. Here we present the contents of the web service and how this has been designed and developed in collaboration with users of the service in a dialogue reaching over more than a decade. We also present the ensemble of climate projections with RCA4 that provides the fundamental climate information presented at the web service. In this context, RCA4 has been used to downscale nine different coupled atmosphere-ocean general circulation models (AOGCMs) from the 5th Coupled Model Intercomparison Project (CMIP5) to 0.44° (c. 50 km) horizontal resolution over Europe. Further, we investigate how this ensemble relates to the CMIP5 ensemble. We find that the iterative approach involving the users of the climate service has been successful as the service is widely used and is an important source of information for work on climate adaptation in Sweden. The RCA4 ensemble samples a large degree of the spread in the CMIP5 ensemble implying that it can be used to illustrate uncertainties and robustness in future climate change in Sweden. The results also show that RCA4 changes results compared to the underlying AOGCMs, sometimes in a systematic way.

  11. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system

    Science.gov (United States)

    Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál

    2016-11-01

    In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.

  12. Spinal projections from the presumptive midbrain locomotor region in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2012-04-01

    The mesencephalic locomotor region (MLR) plays an important role in the control of locomotion, but there is ongoing debate about the anatomy of its connections with the spinal cord. In this study, we have examined the spinal projections of the mouse precuneiform nucleus (PrCnF), which lies within the boundaries of the presumptive MLR. We used both retrograde and anterograde labeling techniques. Small clusters of labeled neurons were seen in the medial portion of the PrCnF following fluoro-gold injections in the upper cervical spinal cord. Fewer labeled neurons were seen in the PrCnF after upper thoracic injections. Following the injection of anterograde tracer (biotinylated dextran amine) into the PrCnF, labeled fibers were clearly observed in the spinal cord. These fibers traveled in the ventral and lateral funiculi, and terminated mainly in the medial portions of laminae 7, 8, and 9, as well as area 10, with an ipsilateral predominance. Our observations indicate that projections from the PrCnF to the spinal cord may provide an anatomical substrate for the role of the MLR in locomotion.

  13. GridStat – Cyber Security and Regional Deployment Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Clements, Samuel L.

    2009-02-18

    GridStat is a developing communication technology to provide real-time data delivery services to the electric power grid. It is being developed in a collaborative effort between the Electrical Power Engineering and Distributed Computing Science Departments at Washington State University. Improving the cyber security of GridStat was the principle focus of this project. A regional network was established to test GridStat’s cyber security mechanisms in a realistic environment. The network consists of nodes at Pacific Northwest National Laboratory, Idaho National Laboratory, and Washington State University. Idaho National Laboratory (INL) was tasked with performing the security assessment, the results of which detailed a number or easily resolvable and previously unknown issues, as well as a number of difficult and previously known issues. Going forward we recommend additional development prior to commercialization of GridStat. The development plan is structured into three domains: Core Development, Cyber Security and Pilot Projects. Each domain contains a number of phased subtasks that build upon each other to increase the robustness and maturity of GridStat.

  14. Technical Note: Ozonesonde climatology between 1995 and 2011: description, evaluation and applications

    Directory of Open Access Journals (Sweden)

    S. Tilmes

    2012-08-01

    Full Text Available An ozone climatology based on ozonesonde measurements taken over the last 17 yr has been constructed for model evaluation and comparisons to other observations. Vertical ozone profiles for 42 stations around the globe have been compiled for the period 1995–2011, in pressure and tropopause-referenced altitudes. For each profile, the mean, standard deviation, median, the half-width are provided, as well as information about interannual variability. Regional aggregates are formed in combining stations with similar ozone characteristics. The Hellinger distance is introduced as a new diagnostic to identify stations that describe similar shapes of ozone probability distribution functions (PDFs. In this way, 12 regions were selected covering at least 2 stations and the variability among those stations is discussed. Significant variability with longitude of ozone distributions in the troposphere and lower stratosphere in the northern mid- and high latitudes is found. The representativeness of regional aggregates is discussed for high northern latitudes, Western Europe, Eastern US, and Japan, using independent observations from surface stations and MOZAIC aircraft data. Good agreement exists between ozonesondes and aircraft observations in the mid-troposphere and between ozonesondes and surface observations for Western Europe. For Eastern US and high northern latitudes, surface ozone values from ozonesondes are biased 10 ppb high compared to independent measurements. An application of the climatology is presented using the NCAR CAM-Chem model. The climatology allows evaluation of the model performance regarding ozone averages, seasonality, interannual variability, and the shape of ozone distributions. The new assessment of the key features of ozone distributions gives deeper insights into the performance of models.

  15. A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2010-10-01

    Full Text Available This paper presents a climatology of the mesospheric sodium layer built from the processing of 7 years of GOMOS data. With respect to preliminary results already published for the year 2003, a more careful analysis was applied to the averaging of occultations inside the climatological bins (10° in latitude-1 month. Also, the slant path absorption lines of the Na doublet around 589 nm shows evidence of partial saturation that was responsible for an underestimation of the Na concentration in our previous results. The sodium climatology has been validated with respect to the Fort Collins lidar measurements and, to a lesser extent, to the OSIRIS 2003–2004 data. Despite the important natural sodium variability, we have shown that the Na vertical column has a marked semi-annual oscillation at low latitudes that merges into an annual oscillation in the polar regions,a spatial distribution pattern that was unreported so far. The sodium layer seems to be clearly influenced by the mesospheric global circulation and the altitude of the layer shows clear signs of subsidence during polar winter. The climatology has been parameterized by time-latitude robust fits to allow for easy use. Taking into account the non-linearity of the transmittance due to partial saturation, an experimental approach is proposed to derive mesospheric temperatures from limb remote sounding measurements.

  16. A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2010-03-01

    Full Text Available This paper presents a climatology of the mesospheric sodium layer built from the processing of 7 years of GOMOS data. With respect to preliminary results already published for the year 2003, a more careful analysis was applied to the averaging of occultations inside the climatological bins (10° in latitude-1 month. Also, the slant path absorption lines of the Na doublet around 589 nm shows evidence of partial saturation that was responsible for an underestimation of the Na concentration in our previous results. The sodium climatology has been validated with respect to the Fort Collins lidar measurements and, to a lesser extent, to the OSIRIS 2003–2004 data. Despite the important natural sodium variability, we have shown that the Na vertical column has a marked semi-annual oscillation at low latitudes that merges into an annual oscillation in the polar regions, a spatial distribution pattern that was unreported so far. The sodium layer seems to be clearly influenced by the mesospheric global circulation and the altitude of the layer shows clear signs of subsidence during polar winter. The climatology has been parameterized by time-latitude robust fits to allow for easy use. Taking into account the non-linearity of the transmittance due to partial saturation, an experimental approach is proposed to derive mesospheric temperatures from limb remote sounding measurements.

  17. Summary Report, Southwest Regional Geothermal Operations Research Program: First project year, June 1977-August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Richard T.; Davidson, Ray

    1978-12-01

    The overall objectives of the first year project were as follows: (1) to develop realistic but aggressive scenarios with certainty factors for the development of each identified geothermal resource area in Arizona, Colorado, Nevada, New Mexico, and Utah; (2) to delineate the public actions, together with their schedules, required for the scenarios to materialize; and (3) to develop a computer-based data storage and retrieval system (i.e. a Regional Program Progress Monitor) of the level of a preliminary working model, which is capable of displaying program approach but is not loaded with all available data. In addition, each sponsor had supplementary objectives aligned to its own programmatic goals. DOE sought to develop expertise and programs within the appropriate state agencies upon which future DOE development and commercialization activities could be structured. FCRC sought to promote the utilization of geothermal energy throughout the five-state region for purposes of expanded economic development, increased employment, and higher citizen incomes. The goals of the five states varied from state to state, but generally included the following: development of alternative energy sources to replace dwindling supplies of oil and natural gas; economic and industrial development in rural areas; encouragement of industry and utility development of geothermal energy for electrical power generation; demonstration of the practical applications of energy research and development; and close interaction with business and industry for the commercialization of both electric and direct thermal applications.

  18. Understanding the Rainfall Daily Climatology of Northwestern Mexico

    Science.gov (United States)

    Brito-Castillo, L.

    2007-05-01

    Maximum monthly precipitation (MMP) over northwestern Mexico is not concurrent because it occurs in different months from July through September. However, instead of occurring progressively from one month to the next as latitude increases, as it might be logic since rains move progressively from south to north as monsoon develops, MMP occurs in July in latitudes of Jalisco state, then MMP shifts to August more to the north in latitudes of Nayarit state and along the eastern coast of the Gulf of California, then it occurs in July in higher latitudes through the main axis of the Sierra Madre Occidental (SMO), and finally MMP shifts to September to the west in the California Peninsula. The maximum monthly streamflow occurs in a similar pattern as MMP does but one month later. When daily rainfall climatology of the region is calculated, i.e. the long-term mean per day from stations with more than 20 years of data between 1940 and 2004, it is possible to understand why the behavior of MMP occurs in a July-August-July pattern from south to north. Preliminary results indicate that at latitudes of Nayarit state normal frequent storms with abundant rains develop at the end of July and through the August. These rains sum to the rains that move from the south to the north, as monsoon develops increasing the volume of precipitations at those latitudes in August. To the east crossing the SMO through northwestern Zacatecas state maximum volume of precipitations also is observed in August. However, in higher latitudes it is not observed any increment of rains in August and consequently maximum volume of precipitations occurs in July. To understand the dynamics of the rains at the latitudes of Nayarit state it results necessary to investigate the source of these local rains and explain why the increase of precipitations in August is limited at those latitudes.

  19. Climatological analysis of precipitation patterns over Mount Baldo (Southern Alps)

    Science.gov (United States)

    Poletti, G.; Zardi, D.; de Franceschi, M.

    2010-09-01

    The mountain range of Mount Baldo is an elongated chain in the southern Prealps. Bounded on the western side by Lake Garda, and on the eastern side by the parallel-running deep furrow of the River Adige Valley, the whole Mount Baldo range stretches in the direction southwest-northeast for about 40 km, from the southern highlands of Caprino Veronese up to the elevated saddle joining the surroundings of Rovereto (in the Adige Valley) to the plain of Nago-Torbole (northern shore of Lake Garda). Mount Baldo displays for most of its length a sharp and uninterrupted crest ridge, mostly running over 2000 m MSL. Its surface covers a variety of altitudinal ranges, from 65 m MSL at the mountain feet, along the Lake Garda shores, to 2,218 m MSL at its highest peak (Cima Valdritta). Furthermore the particular layout of being the southernmost alpine headland, projecting as a balcony over the Po Plain, makes it exposed to the climatic influence of the larger Mediterranean basin. All of these factors concurred to develop a remarkable variety of local microclimates, geographical characters and ecosystems. In particular Mount Baldo is well known for its varied flora, whence it has been named, since 16th century, Hortus Europae (Europe Garden). Precipitation is one of the key factors characterising the peculiar local climates of Mount Baldo. Various precipitation features can be produced by a variety of processes, including both orographic uplift of moist air advected by synoptic systems, and evaporation and up-slope advection of moist air from Lake Garda or from the Po Plain. Furthermore these effects may variously develop, and even combine, under different meteorological scenarios. In the present contribution the preliminary results are shown from a research work aiming at retrieving, collecting in a homogeneous dataset and analysing data from 18 weather stations disseminated on Mount Baldo, in order to produce a climatological analysis of precipitation in the area. The whole

  20. Future trends of snowfall days in northern Spain from ENSEMBLES regional climate projections

    Science.gov (United States)

    Pons, M. R.; Herrera, S.; Gutiérrez, J. M.

    2016-06-01

    In a previous study Pons et al. (Clim Res 54(3):197-207, 2010. doi: 10.3354/cr01117g) reported a significant decreasing trend of snowfall occurrence in the Northern Iberian Peninsula since the mid 70s. The study was based on observations of annual snowfall frequency (measured as the annual number of snowfall days NSD) from a network of 33 stations ranging from 60 to 1350 m. In the present work we analyze the skill of Regional Climate Models (RCMs) to reproduce this trend for the period 1961-2000 (using both reanalysis- and historical GCM-driven boundary conditions) and the trend and the associated uncertainty of the regional future projections obtained under the A1B scenario for the first half of the twenty-first century. In particular, we consider the regional simulation dataset from the EU-funded ENSEMBLES project, consisting of thirteen state-of-the-art RCMs run at 25 km resolution over Europe. While ERA40 severely underestimates both the mean NSD and its observed trend (-2.2 days/decade), the corresponding RCM simulations driven by the reanalysis appropriately capture the interannual variability and trends of the observed NSD (trends ranging from -3.4 to -0.7, -2.1 days/decade for the ensemble mean). The results driven by the GCM historical runs are quite variable, with trends ranging from -8.5 to 0.2 days/decade (-1.5 days/decade for the ensemble mean), and the greatest uncertainty by far being associated with the particular GCM used. Finally, the trends for the future 2011-2050 A1B runs are more consistent and significant, ranging in this case from -3.7 to -0.5 days/decade (-2.0 days/decade for the ensemble mean), indicating a future significant decreasing trend. These trends are mainly determined by the increasing temperatures, as indicated by the interannual correlation between temperature and NSD (-0.63 in the observations), which is preserved in both ERA40- and GCM-driven simulations.

  1. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Matrosov, S.Y. [Univ. of Colorado, Boulder, CO (United States)]|[National Oceanic and Atmospheric Administration Environmental Technology Lab., Boulder, CO (United States); Heymsfield, A.J. [National Center for Atmospheric Research, Boulder, CO (United States); Kropfli, R.A.; Snider, J.B. [National Oceanic and Atmospheric Administration Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  2. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution

    Science.gov (United States)

    Lyra, Andre; Tavares, Priscila; Chou, Sin Chan; Sueiro, Gustavo; Dereczynski, Claudine; Sondermann, Marcely; Silva, Adan; Marengo, José; Giarolla, Angélica

    2017-02-01

    The objective of this work is to assess changes in three metropolitan regions of Southeast Brazil (Rio de Janeiro, São Paulo, and Santos) based on the projections produced by the Eta Regional Climate Model (RCM) at very high spatial resolution, 5 km. The region, which is densely populated and extremely active economically, is frequently affected by intense rainfall events that trigger floods and landslides during the austral summer. The analyses are carried out for the period between 1961 and 2100. The 5-km simulations are results from a second downscaling nesting in the HadGEM2-ES RCP4.5 and RCP8.5 simulations. Prior to the assessment of the projections, the higher resolution simulations were evaluated for the historical period (1961-1990). The comparison between the 5-km and the coarser driver model simulations shows that the spatial patterns of precipitation and temperature of the 5-km Eta simulations are in good agreement with the observations. The simulated frequency distribution of the precipitation and temperature extremes from the 5-km Eta RCM is consistent with the observed structure and extreme values. Projections of future climate change using the 5-km Eta runs show stronger warming in the region, primarily during the summer season, while precipitation is strongly reduced. Projected temperature extremes show widespread heating with maximum temperatures increasing by approximately 9 °C in the three metropolitan regions by the end of the century in the RCP8.5 scenario. A trend of drier climate is also projected using indices based on daily precipitation, which reaches annual rainfall reductions of more than 50 % in the state of Rio de Janeiro and between 40 and 45 % in São Paulo and Santos. The magnitude of these changes has negative implications to the population health conditions, energy security, and economy.

  3. Regional migration pathways and associated well risk for the IEAGHG Weyburn-Midale CO2 Project

    Science.gov (United States)

    Cavanagh, A.; Rostron, B. J.

    2010-12-01

    The Weyburn-Midale CO2 storage site is an industrial-scale monitoring and storage project associated with enhanced oil recovery (EOR) at the Weyburn field, Saskatchewan. To date, over 17 Mt of CO2 has been stored at 1.4 km depth. The storage site and four overlying aquitards are penetrated by a large number of oil wells. The Weyburn-Midale region has more than 4,000 wells within a risk assessment area of 2,000 km2 (40x50 km). This well density is typical of prospective storage areas in the USA and Canada. The average well separation is 275 m (with about 5% of the population less than 20 m apart). About one third of the population are old vertical wells drilled before 1975. Another third are horizontal wells drilled after 1989. These two well categories are considered to have an elevated risk potential for leakage above the primary containment unit of the Weyburn-Midale storage site. The high well density and regional scale of the risk assessment area presents a major challenge for flow modeling. Conventional simulation methods use a range of finite-difference or finite-element numerical schemes to represent multiphase flow. Solving these numerical schemes requires relatively coarse grids, which leads to a loss of geological detail (via averaging or upscaling). We use a fine grid model (2 billion cells) and an invasion percolation approach, assuming capillary limit conditions, to simulate the CO2 migration process throughout the region at a high resolution (cell dimensions: 20x20x5 meters). The resolution is sufficient to identify wells that lie within migration pathways and trap structures where leakage may occur. This provides a subset of 62 wells within the regional area that are marked for further risk assessment and possible monitoring. The modeled column heights and storage volumes for traps associated with the identified subset of wells is also analyzed. Our analysis indicates that the overburden is able to provide a secondary containment capacity that is

  4. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation

    Science.gov (United States)

    Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.

    2017-01-01

    A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.

  5. How Does a Regional Climate Model Modify the Projected Climate Change Signal of the Driving GCM: A Study over Different CORDEX Regions Using REMO

    Directory of Open Access Journals (Sweden)

    Claas Teichmann

    2013-06-01

    Full Text Available Global and regional climate model simulations are frequently used for regional climate change assessments and in climate impact modeling studies. To reflect the inherent and methodological uncertainties in climate modeling, the assessment of regional climate change requires ensemble simulations from different global and regional climate model combinations. To interpret the spread of simulated results, it is useful to understand how the climate change signal is modified in the GCM-RCM modelmodelgeneral circulation model-regional climate model (GCM-RCM chain. This kind of information can also be useful for impact modelers; for the process of experiment design and when interpreting model results. In this study, we investigate how the simulated historical and future climate of the Max-Planck-Institute earth system model (MPI-ESM is modified by dynamic downscaling with the regional model REMO in different world regions. The historical climate simulations for 1950–2005 are driven by observed anthropogenic forcing. The climate projections are driven by projected anthropogenic forcing according to different Representative Concentration Pathways (RCPs. The global simulations are downscaled with REMO over the Coordinated Regional Climate Downscaling Experiment (CORDEX domains Africa, Europe, South America and West Asia from 2006–2100. This unique set of simulations allows for climate type specific analysis across multiple world regions and for multi-scenarios. We used a classification of climate types by Köppen-Trewartha to define evaluation regions with certain climate conditions. A systematic comparison of near-surface temperature and precipitation simulated by the regional and the global model is done. In general, the historical time period is well represented by the GCM and the RCM. Some different biases occur in the RCM compared to the GCM as in the Amazon Basin, northern Africa and the West Asian domain. Both models project similar warming

  6. 基于CMIP5资料的云南及周边地区未来50年气候预估%Climate Projection over Yunnan Province and the Surrounding Regions Based on CMIP5 Data

    Institute of Scientific and Technical Information of China (English)

    周秀华; 肖子牛

    2014-01-01

    Based on high-resolution CRU (Climatic Research Unit) data and observations at 124 stations in Yunnan Province, the performance of seven global coupled ocean-atmosphere models (Coupled Model Intercomparison Program 5, CMIP5) from the IPCC AR5 (Intergovernmental Panel on Climate Change 5th Assessment Report) in simulating the climatology over Yunnan Province and the surrounding regions was evaluated. The projected change in climate over these regions under different greenhouse gas emissions scenarios from 2006-2055 was also studied. Results show that global coupled ocean-atmosphere models can simulate the spatial structure of temperature and precipitation climatology, the linear temperature rising trend, and the decadal oscillation characteristics of spring and summer precipitation. The multi-model ensemble (MME) shows better skill than the single model, and the temperature simulation results are better than the precipitation results. Spring and summer precipitation results are superior to those in other seasons, making the total annual mean precipitation simulation results better than those for autumn and winter. Future scenario projections indicate that the temperature over the study regions will show a significant linear rising trend. Precipitation will maintain its decadal oscillation characteristics, and increase over the next 50 years. A few regions, including Yunnan Province and its southern regions, will undergo a drought period before 2020.%利用CRU(Climatic Research Unit)高分辨率观测数据及云南省124站资料,检验了参与IPCC AR5(政府间气候变化专门委员会第5次评估报告)的7个全球海气耦合模式(Coupled Model Intercomparison Program 5, CMIP5)及模式集合平均对云南及周边地区气温和降水的模拟性能,同时进行该区域不同温室气体排放量情景下2006~2055年的气候预估。结果表明:全球海气耦合模式对该区域气温和降水气候场空间分布、气温的

  7. Climate-proofing spatial planning and water management projects: an analysis of 100 local and regional projects in the Netherlands

    NARCIS (Netherlands)

    Sedee, A.G.J.; Swart, R.J.; Pater, de F.; Goosen, H.; Pijnappels, M.H.J.; Vellinga, P.

    2014-01-01

    Since the turn of the century, an increasing number of local and regional authorities in Europe started making their city or region resilient to climate change, or ‘climate-proof’. Publications about the actual experiences with implementing these adaptation policies are as yet anecdotal, determined

  8. Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions

    Science.gov (United States)

    Gelfgat, Alexander Yu.

    2016-08-01

    A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin-Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented.

  9. Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions

    Science.gov (United States)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Mpelasoka, Freddie; Gibberd, Mark; Bates, Bryson

    2014-08-01

    More than a century of observations has established that climate influences grape berry composition. Accordingly, the projected global climate change is expected to impact on grape berry composition although the magnitude and direction of impact at regional and subregional scales are not fully known. The aim of this study was to assess potential impacts of climate change on levels of berry anthocyanin and titratable acidity (TA) of the major grapevine varieties grown across all of the Western Australian (WA) wine regions. Grape berry anthocyanin and TA responses across all WA wine regions were projected for 2030, 2050 and 2070 by utilising empirical models that link these berry attributes and climate data downscaled (to ˜5 km resolution) from the csiro_mk3_5 and miroc3_2_medres global climate model outputs under IPCC SRES A2 emissions scenario. Due to the dependence of berry composition on maturity, climate impacts on anthocyanin and TA levels were assessed at a common maturity of 22 °Brix total soluble solids (TSS), which necessitated the determination of when this maturity will be reached for each variety, region and warming scenario, and future period. The results indicate that both anthocyanin and TA levels will be affected negatively by a warming climate, but the magnitude of the impacts will differ between varieties and wine regions. Compared to 1990 levels, median anthocyanins concentrations are projected to decrease, depending on global climate model, by up to 3-12 % and 9-33 % for the northern wine regions by 2030 and 2070, respectively while 2-18 % reductions are projected in the southern wine regions for the same time periods. Patterns of reductions in the median Shiraz berry anthocyanin concentrations are similar to that of Cabernet Sauvignon; however, the magnitude is lower (up to 9-18 % in southern and northern wine regions respectively by 2070). Similarly, uneven declines in TA levels are projected across the study regions. The largest reductions

  10. The Maine electronic document delivery project: a cooperative project of Maine hospital libraries and the NN/LM New England Region.

    Science.gov (United States)

    Goldstein, Mark; Sibley, Debbie

    2003-01-01

    The article discusses an Ariel document delivery project with seven Maine hospital libraries, the University of Massachusetts Medical School Library (UMass), and the New England Regional office of the National Network of Libraries of Medicine. Funding was awarded to six network members to purchase equipment or Ariel software. UMass served as a document provider. During the test, libraries received documents from UMass via Ariel or via the Web as a PDF document. This form of document delivery was faster than standard service with better quality of delivered articles. The column describes the project and outlines possible future steps.

  11. Assessment of impact of water diversion projects on ecological water uses in arid region

    Institute of Scientific and Technical Information of China (English)

    Song-hao SHANG; Hui-jie WANG

    2013-01-01

    In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.

  12. Warming patterns in regional climate change projections over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Navarro, J.J.; Montavez, J.P.; Jimenez-Guerrero, P.; Jerez, S. [Murcia Univ. (Spain). Dept. de Fisica; Garcia-Valero, J.A. [Murcia Univ. (Spain). Dept. de Fisica; Delegacion Territorial en Murcia (ES). Agencia Estatal de Meteorologia (AEMET); Gonzalez-Rouco, J.F. [Univ. Complutense, Madrid (Spain). Dept. de Astrofisica y CC. de la Atmosfera

    2010-06-15

    A set of four regional climate change projections over the Iberian Peninsula has been performed. Simulations were driven by two General Circulation Models (consisting of two versions of the same atmospheric model coupled to two different ocean models) under two different SRES scenario. The XXI century has been simulated following a full-transient approach with a climate version of the mesoscale model MM5. An Empirical Orthogonal Function analysis (EOF) is applied to the monthly mean series of daily maximum and minimum 2-metre temperature to extract the warming signal. The first EOF is able to capture the spatial structure of the warming. The obtained warming patterns are fairly dependent on the month, but hardly change with the tested scenarios and GCM versions. Their shapes are related to geographical parameters, such as distance to the sea and orography. The main differences among simulations mostly concern the temporal evolution of the warming. The temperature trend is stronger for maximum temperatures and depends on the scenario and the driving GCM. This asymmetry, as well as the different warming rates in summer and winter, leads to a continentalization of the climate over the IP. (orig.)

  13. Postnatal development of retrosplenial projections to the parahippocampal region of the rat.

    Science.gov (United States)

    Sugar, Jørgen; Witter, Menno P

    2016-01-01

    The rat parahippocampal region (PHR) and retrosplenial cortex (RSC) are cortical areas important for spatial cognition. In PHR, head-direction cells are present before eye-opening, earliest detected in postnatal day (P)11 animals. Border cells have been recorded around eye-opening (P16), while grid cells do not obtain adult-like features until the fourth postnatal week. In view of these developmental time-lines, we aimed to explore when afferents originating in RSC arrive in PHR. To this end, we injected rats aged P0-P28 with anterograde tracers into RSC. First, we characterized the organization of RSC-PHR projections in postnatal rats and compared these results with data obtained in the adult. Second, we described the morphological development of axonal plexus in PHR. We conclude that the first arriving RSC-axons in PHR, present from P1 onwards, already show a topographical organization similar to that seen in adults, although the labeled plexus does not obtain adult-like densities until P12.

  14. Water Resources Impacts on Tribal Irrigation Projects

    Science.gov (United States)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  15. REGIONAL COMPETITIVENESS VERSUS TERRITORIAL COMPETITIVENESS: PROJECT TAONABA CASE STUDY - TOWN OF ABYMES, GUADELOUPE

    Directory of Open Access Journals (Sweden)

    Neffati Houda

    2013-12-01

    Full Text Available Territorial intelligence can be defined as the ability of a territory to anticipate socio-economic changes and the resulting knowledge management as well as to generate policies, know-how and innovations that will ultimately create a polycentric area of expertise and service capabilities to enhance the competitiveness of companies located there. It is created by setting up a sustainable development process to review business competitiveness with all the inherent consequences in managing, making, planning and implementing decisions. Territorial competitiveness is an integrated and proactive approach to shaping the future of territories, regions and larger geographies – . to some degree it can also be referred to as spatial planning. It goes beyond traditional regional policy as it brings together economic, social and environment opportunities and in addition to other factors which influence where activities takes place, concerns how different places function and are connected, and what social and business conditions are available Territorial competitiveness strategies can help in exploring the potential for economic growth and job creation and at the same time support an enhanced quality of life by helping to meet the challenge of sustainable development. The article reports on an action research to support the urban community of Cap Excellence in Guadeloupe in its local sustainable development project. After summarizing the terms of the debate surrounding sustainable development and presenting the region, the research is placed back in the context of a more general approach of territorial intelligence.. The limits of developing a local Agenda 21 in the form of a "programmed action plan" give the opportunity to improve territorial intelligence with the concept of agency arising from Foucault's 'dispositif' or apparatus, Deleuze's theory of agency and the actor-network. A discussion on this ontology social will be initiated. We will give

  16. A global climatology of stratospheric OClO derived from GOMOS measurement

    Directory of Open Access Journals (Sweden)

    C. Tétard

    2013-04-01

    Full Text Available The Global Ozone Monitoring by Occultation of Stars (GOMOS instrument on board the European platform ENVISAT was dedicated to the study of the atmosphere of the Earth using the stellar occultation technique. The spectral range of the GOMOS spectrometer extends from the UV to the near infrared, allowing for the retrieval of species such as O3, NO2, NO3, H2O, O2, air density, aerosol extinction and OClO. Nevertheless, OClO can not be retrieved using a single GOMOS measurement because of the weak signal-to-noise ratio and the small optical thickness associated with this molecule. We present here the method used to detect this molecule by using several GOMOS measurements. It is based on a two-step approach. First, several co-located measurements are combined in a statistical way to build an averaged measurement with a higher signal-to-noise ratio. Then, a Differential Optical Absorption Spectroscopy (DOAS method is applied to retrieve OClO slant column densities. The statistics of the sets of GOMOS measurements used to build the averaged measurement and the spectral window selection are analyzed. The obtained retrievals are compared to results from two balloon-borne instruments. It appears that the inter-comparisons of OClO are generally satisfying. Then, two nighttime climatologies of OClO slant column densities based on GOMOS averaged measurements are presented. The first depicts annual global pictures of OClO from 2003 to 2011. From this climatology, the presence of an OClO layer in the equatorial region at about 35 km is confirmed and strong concentrations of OClO in both polar regions are observed, a sign of chlorine activation. The second climatology is a monthly time series. It clearly shows the chlorine activation of the lower stratosphere during winter. Moreover the equatorial OClO layer is observed during all the years without any significant variations. Finally, the anti-correlation between OClO and NO2 is highlighted. This very promising

  17. A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios

    Science.gov (United States)

    Jackson, Luke P.; Jevrejeva, Svetlana

    2016-11-01

    Sea-level change is an integrated climate system response due to changes in radiative forcing, anthropogenic land-water use and land-motion. Projecting sea-level at a global and regional scale requires a subset of projections - one for each sea-level component given a particular climate-change scenario. We construct relative sea-level projections through the 21st century for RCP 4.5, RCP 8.5 and High-end (RCP 8.5 with increased ice-sheet contribution) scenarios by aggregating spatial projections of individual sea-level components in a probabilistic manner. Most of the global oceans adhere to the projected global average sea level change within 5 cm throughout the century for all scenarios; however coastal regions experience localised effects due to the non-uniform spatial patterns of individual components. This can result in local projections that are 10‧s of centimetres different from the global average by 2100. Early in the century, RSL projections are consistent across all scenarios, however from the middle of the century the patterns of RSL for RCP scenarios deviate from the High-end where the contribution from Antarctica dominates. Similarly, the uncertainty in projected sea-level is dominated by an uncertain Antarctic fate. We also explore the effect upon projections of, treating CMIP5 model ensembles as normally distributed when they might not be, correcting CMIP5 model output for internal variability using different polynomials and using different unloading patterns of ice for the Greenland and Antarctic ice sheets.

  18. Dynamical Tropopause Variability and Potential Vorticity Streamers in the Northern Hemisphere——A Climatological Analysis

    Institute of Scientific and Technical Information of China (English)

    Olivia MARTIUS; Cornelia SCHWIERZ; Michael SPRENGER

    2008-01-01

    This study presents a 44-year climatology of potential vorticity (PV) streamers in the Northern Hemi sphere based upon analyses of the ERA-40 reanalysis data set. A comparison to an existing 15-year clima tology yields very good agreement in the locations of PV streamer frequency maxima, but some differences are found in the amplitude of frequencies. The climatology is assessed with the focus on links between PV streamer frequencies and the synoptic- and planetary-scale variability of the dynamical tropopause. A comprehensive overview is provided on where (zonally) and when (seasonally) short-term variability throughout the extra-tropical and sub-tropical tropopause is enhanced or reduced. Several key processes that influence this variability are discussed. Baroclinic processes, for example, determine the variability in the storm-track areas in winter, whereas the Asian summer monsoon significantly influences the variability over Asia. The paper also describes links between the frequency of PV streamers in the extra-tropical and sub tropical tropopause and three major northern hemisphere teleconnection patterns. The observed changes in the PV streamer frequencies are closely related to concomitant variations of PV and its gradient within the tropopause region. During opposite phases of the North Atlantic Oscillation the location of the streamer frequency maxima shifts significantly in the Atlantic and European region in both the extra-tropics and subtropics. The influence of ENSO on the streamer frequencies is most pronounced in the subtropical Pacific.

  19. A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments

    Science.gov (United States)

    Swan, Chantal M.; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte

    2016-03-01

    Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°×1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32±5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. The results are publically accessible via

  20. Projections of changes of areal evapotranspiration for different land-use units in the Wielkopolska Region (Poland)

    Science.gov (United States)

    Szwed, Małgorzata

    2016-08-01

    Strong global warming has been observed in the last three decades. Central Europe, including Poland, is not an exception. Moreover, climate projections for Poland foresee further warming as well as changes in the quantity as well as spatial and seasonal distribution of precipitation. This will result in changes in all elements of the water balance, including the areal evapotranspiration. For estimating the areal evapotranspiration, the heat balance method (HBM) is used in this paper for the growing season (March-October), whereas for the remaining months (November-February), evaporation is calculated according to the Ivanov equation. Values of areal evapotranspiration from selected land units are examined and compared for the average conditions in two time horizons, i.e. 1961-1990 (control period) and 2061-2090 (projection horizon) over the Wielkopolska Region in Poland, based on multi-model ensemble climate projections. Projections for the future, based on the MPI-M-REMO model, indicate that the regional average increases of the annual sum of areal evapotranspiration (connected mainly with an increase of air temperature) is equal to 45 mm, with the biggest changes during winter. In the growing season, the highest increases are expected to appear in July and June. As regards the spatial distribution, the highest increases are projected for the areas with presently highest evapotranspiration, e.g. the southwestern parts of the region.

  1. Downscaling global land-use/land-cover projections for use in region-level state-and-transition simulation modeling

    Directory of Open Access Journals (Sweden)

    Jason T. Sherba

    2015-06-01

    Full Text Available Global land-use/land-cover (LULC change projections and historical datasets are typically available at coarse grid resolutions and are often incompatible with modeling applications at local to regional scales. The difficulty of downscaling and reapportioning global gridded LULC change projections to regional boundaries is a barrier to the use of these datasets in a state-and-transition simulation model (STSM framework. Here we compare three downscaling techniques to transform gridded LULC transitions into spatial scales and thematic LULC classes appropriate for use in a regional STSM. For each downscaling approach, Intergovernmental Panel on Climate Change (IPCC Representative Concentration Pathway (RCP LULC projections, at the 0.5 × 0.5 cell resolution, were downscaled to seven Level III ecoregions in the Pacific Northwest, United States. RCP transition values at each cell were downscaled based on the proportional distribution between ecoregions of (1 cell area, (2 land-cover composition derived from remotely-sensed imagery, and (3 historic LULC transition values from a LULC history database. Resulting downscaled LULC transition values were aggregated according to their bounding ecoregion and “cross-walked” to relevant LULC classes. Ecoregion-level LULC transition values were applied in a STSM projecting LULC change between 2005 and 2100. While each downscaling methods had advantages and disadvantages, downscaling using the historical land-use history dataset consistently apportioned RCP LULC transitions in agreement with historical observations. Regardless of the downscaling method, some LULC projections remain improbable and require further investigation.

  2. Meteorological Factors Affecting Evaporation Duct Height Climatologies.

    Science.gov (United States)

    1980-07-01

    this present study’s central tendency statistics (monthly means, modes, and medians). The exceptions are OWS ALFA and BRAVO, and to some degree CHARLIE...Seattle 98762 Commanding Officer Superintendent Office of Naval Research U.S. Naval Academy Eastern/ Central Regional Office Library Acquisitions Bldg. 114...Italy Maritime Meteorology Division Japan Meteorological Agency Ote-Machi 1-3-4 Chiyoda-Ku Tokyo, Japan Instituto De Geofisica U.N.A.M. Biblioteca

  3. A climatological analysis of high-precipitation events in Dronning Maud Land, Antarctica, and associated large-scale atmospheric conditions

    Science.gov (United States)

    Welker, Christoph; Martius, Olivia; Froidevaux, Paul; Reijmer, Carleen H.; Fischer, Hubertus

    2015-04-01

    Dronning Maud Land (DML), located in the Atlantic sector of East Antarctica, has become an area of intensive ice core research in recent years. Ice cores are used to study past climatic changes among others. To correctly interpret the ice core information, a profound understanding of the glaciological processes that lead to ice sheet formation as well as of the atmospheric conditions under which snow accumulation occurs is indispensable. Earlier studies showed that in DML especially high-precipitation events complicate the interpretation of ice core data. The atmospheric conditions leading to high precipitation in DML have been widely investigated, however these investigations tended to focus on individual case studies. Our main objective in this study is to analyse the link between high precipitation in DML and the large-scale atmospheric conditions from a climatological perspective. High-precipitation events are analysed at Halvfarryggen ice dome (71.2°S, 6.7°W), a potential ice core drilling site situated in the relatively wet, low-altitude coastal region of DML, and at Kohnen Station (75°S, 0.1°E), a deep ice core drilling site located in DML's dry, high-altitude interior. For our climatological analysis, we primarily make use of atmospheric reanalysis data from the ERA-Interim project for 1979-2009; complemented by precipitation data from the Antarctic Mesoscale Prediction System and snow accumulation measurements from automatic weather stations located near Halvfarryggen and Kohnen Station. To describe the large-scale atmospheric conditions, we focus on vertically integrated water vapour transport (IVT), upper level potential vorticity, surface cyclone frequency, and atmospheric blocking frequency. In line with earlier studies, we find that high-precipitation events in DML are typically associated with amplified upper level waves. This large-scale atmospheric flow pattern is preceded by the downstream development of a Rossby wave train from the eastern

  4. 75 FR 58379 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Science.gov (United States)

    2010-09-24

    ... construction schedule. The Regional Administrator is making this determination based on the review and... manufacturer to meet the project construction schedule. Section 1605 of the ARRA requires that none of the... specifications, or in this situation significantly alter its construction schedule. The imposition of ARRA...

  5. An integrated assessment of regional air pollution and climate change in Europe: findings of the AIR-CLIM project

    NARCIS (Netherlands)

    Alcamo, J.; Mayerhofer, P.; Guardans, R.; Harmelen, T. van; Minnen, J. van; Onigkeit, J.; Posch, M.; Vries, B. de

    2002-01-01

    This paper presents results of an assessment of the linkages between regional air pollution and climate change in Europe (the AIR-CLIM Project). The main research tool was an integrated modeling framework and the main product was a consistent set of long-term scenarios covering Europe between 1995 a

  6. Aspects of Remote Sensing in the GEOid and Sea level Of the North Atlantic Region (GEOSONAR) Project

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Nielsen, Allan Aasbjerg; Knudsen, Per

    1999-01-01

    The general objectives of the GEOid and Sea level Of the North Atlantic Region (GEOSONAR) project are presented. These include analyses of the dynamics of the ocean and its characteristics. The analyses are mainly based on remote sensing. As an example a data set obtained by the multi-channel Sea...

  7. Public-private or private-private energy partnerships? Toward good energy governance in regional and local green gas projects

    NARCIS (Netherlands)

    Heldeweg, M.A.; Sanders, M.P.T.; Harmsen, M.

    2015-01-01

    Background An important avenue toward a proper ‘energy transition’ through regional and local projects is for government to collaborate with private sector organizations. In the energy sector, these latter organizations are often already involved in private-private partnerships for collaboration tow

  8. Toward successful joint knowledge production for climate change adaptation: lessons from six regional projects in the Netherlands

    NARCIS (Netherlands)

    Hegger, D.L.T.; Dieperink, C.

    2014-01-01

    In the domain of climate change adaptation, joint knowledge production (JKP) through intensive cooperation between scientists, policy-makers, and other actors is often proposed as a means to reconcile supply and demand for knowledge. Regional adaptation projects in the Netherlands form prominent exa

  9. Where the twain meet again : New results of the Dutch-Russian project on regional development 1750-1917

    NARCIS (Netherlands)

    Paping, R.F.J.; Kooij, P.

    2004-01-01

    This volume is a sequel to Historia Agriculturae 28. Both volumes publish the results of the Dutch-Russian project on regional development in a comparative perspective, sponsored by the Netherlands Organization for Scientific Research NWO. The main pivot is once again demographic development in four

  10. Comparison of five gridded precipitation products at climatological scales over West Africa

    Science.gov (United States)

    Akinsanola, A. A.; Ogunjobi, K. O.; Ajayi, V. O.; Adefisan, E. A.; Omotosho, J. A.; Sanogo, S.

    2016-12-01

    The paper aimed at assessing the capabilities and limitations of five different precipitation products to describe rainfall over West Africa. Five gridded precipitation datasets of the Tropical Rainfall Measurement Mission (TRMM) Multi-Platform Analysis (TMPA 3B43v7); University of Delaware (UDEL version 3.01); Climatic Research Unit (CRU version 3.1); Global Precipitation Climatology Centre (GPCC version 7) and African Rainfall Climatology (ARC version 2) were compared and validated with reference ground observation data from 81 stations spanning a 19-year period, from January 1990 to December 2008. Spatial investigation of the precipitation datasets was performed, and their capability to replicate the inter-annual and intra-seasonal variability was also assessed. The ability of the products to capture the El Nino and La Nina events were also assessed. Results show that all the five datasets depicted similar spatial distribution of mean rainfall climatology, although differences exist in the total rainfall amount for each precipitation dataset. Further analysis shows that the three distinct phases of the mean annual cycle of the West Africa Monsoon precipitation were well captured by the datasets. However, CRU, GPCC and UDEL failed to capture the little dry season in the month of August while UDEL and GPCC underestimated rainfall amount in the Sahel region. Results of the inter-annual precipitation anomalies shows that ARC2 fail to capture about 46% of the observed variability while the other four datasets exhibits a greater performance (r > 0.9). All the precipitation dataset except ARC2 were consistent with the ground observation in capturing the dry and wet conditions associated with El Nino and La Nina events, respectively. ARC2 tends to overestimate the El Nino event and failed to capture the La Nina event in all the years considered. In general GPCC, CRU and TRMM were found to be the most outstanding datasets and can, therefore, be used for precipitation

  11. Building a flood climatology and rethinking flood risk at continental scales

    Science.gov (United States)

    Andreadis, Konstantinos; Schumann, Guy; Stampoulis, Dimitrios; Smith, Andrew; Neal, Jeffrey; Bates, Paul; Sampson, Christopher; Brakenridge, Robert; Kettner, Albert

    2016-04-01

    Floods are one of the costliest natural disasters and the ability to understand their characteristics and their interactions with population, land cover and climate changes is of paramount importance. In order to accurately reproduce flood characteristics such as water inundation and heights both in the river channels and floodplains, hydrodynamic models are required. Most of these models operate at very high resolutions and are computationally very expensive, making their application over large areas very difficult. However, a need exists for such models to be applied at regional to global scales so that the effects of climate change with regards to flood risk can be examined. We use the a modeling framework that includes the VIC hydrologic and the LISFLOOD-FP hydrodynamic model to simulate a 40-year history of flood characteristics at the continental scale, particularly Australia. In order to extend the simulated flood climatology to 50-100 years in a consistent manner, reanalysis datasets have to be used as meteorological forcings to the models. The objective of this study is the evaluation of multiple atmospheric reanalysis datasets (ERA, NCEP, MERRA, JRA) as inputs to the VIC/LISFLOOD-FP model. Comparisons of the simulated flood characteristics are made with both satellite observations of inundation and a benchmark simulation of LISFLOOD-FP being forced by observed flows. The implications of having a climatology of flood characteristics are discussed, and in particular We found the magnitude and timing of floodplain water storage to significantly differ from streamflow in terms of their distribution. Furthermore, floodplain volume gave a much sharper discrimination of high hazard and low hazard periods than discharge, and using the latter can lead to significant overestimation. These results demonstrate that global streamflow statistics or precipitation should not be used to infer flood hazard and risk, but instead a flood inundation climatology is necessary.

  12. Implementing Climate Services in Peru: CLIMANDES Project

    Science.gov (United States)

    Lavado-Casimiro, Waldo; Mauchle, Fabian; Diaz, Amelia; Seiz, Gabriela; Rubli, Alex; Rossa, Andrea; Rosas, Gabriela; Ita, Niceforo; Calle, Victoria; Villegas, Esequiel; Ambrosetti, Paolo; Brönnimann, Stefan; Hunziker, Stefan; Jacques, Martin; Croci-Maspoli, Mischa; Konzelmann, Thomas; Gubler, Stefanie; Rohrer, Mario

    2014-05-01

    The climate variability and change will have increasing influence on the economic and social development of all countries and regions, such as the Andes in Latin America. The CLIMANDES project (Climate services to support decision-making in the Andean Region) will address these issues in Peru. CLIMANDES supports the WMO Regional Training Centre (RTC) in Lima, which is responsible for the training of specialized human resources in meteorology and climatology in the South American Andes (Module 1). Furthermore, CLIMANDES will provide high-quality climate services to inform policy makers in the Andean region (Module 2). It is coordinated by the World Meteorological Organization (WMO) and constitutes a pilot project under the umbrella of the WMO-led Global Framework for Climate Services (GFCS). The project is funded by the Swiss Agency for Development and Cooperation (SDC) and runs from August 2012 - July 2015. Module 1 focuses on restructuring the curricula of Meteorology at the La Molina Agraria University (UNALM) and applied training of meteorologists of the Peruvian National Service of Meteorology and Hydrology (SENAMHI). In Module 2, the skills will be shared and developed in the production and delivery of high-quality climate products and services tailored to the needs of the decision makers in the pilot regions Cusco and Junín. Such services will benefit numerous sectors including agriculture, education, health, tourism, energy, transport and others. The goals of the modules 1 and 2 will be achieved through the collaboration of the UNALM, SENAMHI and the Federal Office of Meteorology and Climatology MeteoSwiss, with the support of the University of Bern (UNIBE), Meteodat and WMO.

  13. Regional projection of Temperature for the 21st Century over the Eastern India

    Science.gov (United States)

    Dhage, Pradnya; Singh Raghuwanshi, Narendra; Singh, Rajendra

    2016-04-01

    Global as well as regional climate has changed due to human activities like land use changes, production of industrial effluents and other developmental activities of the society. The consequences of these changes have a massive impact on atmospheric events like precipitation, temperature etc. The rainfall and temperature are intrinsic parameters of hydrologic cycle. Consequently, these are also the major driving factors of change in hydrologic response due to climate change. Future temperature information is required at regional and basin scales for climate change studies. Therefore, in present study, daily maximum (Tmax) and minimum (Tmin) temperatures scenarios were developed from Multi-GCM ensemble (CanESM2, IPSL-CM5A-LR, MPI-ESM-LR, and CNRM-CM5 GCMs) using bias correction and spatial downscaling (BCSD) method at station scale for Kangsabati reservoir catchment and command, West Bengal, India. Subsequently, temperature intensity and frequency indices like extremes of maximum and minimum temperatures, consecutive hot days, consecutive cold days, and warming nights were analyzed. The GCM data for all the requisite variables corresponding to historic run (1971-2005) and future climate (2006-2100) were used under Representative Concentration Pathway (RCP4.5 and RCP8.5) emission scenarios. The results indicate significant increase in maximum and minimum temperatures in all seasons (pre-monsoon, monsoon, and post-monsoon), with the most significant increase occurring in pre-monsoon season, and for all the stations of the study area. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area are projected as 0.20 and 0.22 °C/decade under RCP4.5, and 0.54 and 0.59 °C/decade under RCP8.5 for 2011-2100 period, respectively. Further, it is found that the temperature intensity and frequency indices will increase (maximum value of Tmax and Tmin, and minimum value of Tmax and Tmin, consecutive hot days, and warming nights) while

  14. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2012-06-01

    Full Text Available Four high-resolution regional climate models (RCMs have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB, and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs. This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2, with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual-mean near-surface air temperature increase over Greenland of ~2 C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice-sheet would eventually be eliminated.

  15. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2012-11-01

    Full Text Available Four high-resolution regional climate models (RCMs have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB, and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs. This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2, with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.

  16. Toward successful joint knowledge production for climate change adaptation: lessons from six regional projects in the Netherlands

    Directory of Open Access Journals (Sweden)

    Dries Hegger

    2014-06-01

    Full Text Available In the domain of climate change adaptation, joint knowledge production (JKP through intensive cooperation between scientists, policy-makers, and other actors is often proposed as a means to reconcile supply and demand for knowledge. Regional adaptation projects in the Netherlands form prominent examples of this. However, there is a lack of systematic empirical studies on how JKP can be done successfully. Here, we take the next step toward generating design principles for JKP. We do so by carrying out a comparative analysis of six Dutch adaptation projects using a previously developed assessment framework. Project documents were studied, and 30 semi-structured interviews were held with researchers, policy-makers, and financiers in the projects. Based on project comparisons, we derive and elaborate on two design principles for JKP. First, the most successful projects managed to create what we term a protected space for knowledge development while establishing connections with ongoing policy processes. Successful JKP seems to be more likely in cases in which actors make a conscious decision for the institutional location of the project on the research–policy nexus, whereby the coordinating entity has some characteristics of a boundary organization. Second, specific resources, including facilities, boundary objects, and specific competencies increase the chance for success.

  17. Alaska Regional Energy Resources Planning Project, Phase 2: coal, hydroelectric, and energy alternatives. Volume III. Alaska's alternative energies and regional assessment inventory update

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Alaska Regional Energy Resources Planning Project is presented in three volumes. This volume, Vol. III, considers alternative energies and the regional assessment inventory update. The introductory chapter, Chapter 12, examines the historical background, current technological status, environmental impact, applicability to Alaska, and siting considerations for a number of alternative systems. All of the systems considered use or could use renewable energy resources. The chapters that follow are entitled: Very Small Hydropower (about 12 kW or less for rural and remote villages); Low-Temperature Geothermal Space Heating; Wind; Fuel Cells; Siting Criteria and Preliminary Screening of Communities for Alternate Energy Use; Wood Residues; Waste Heat; and Regional Assessment Invntory Update. (MCW)

  18. Regional Issue Identification and Assessment (RIIA): an analysis of the Mid-Range Projection Series C Scenario. Executive summary for Federal Region IV

    Energy Technology Data Exchange (ETDEWEB)

    Honea, B.; Hillsman, E.

    1979-10-01

    The Department of Energy (DOE) has hypothesized a number of alternate energy futures as part of its energy planning and analysis programs. In this report, which is part of DOE's Regional Issue Identification and Assessment (RIIA) Program, Oak Ridge National Laboratory examines how a proposed energy future called the Mid-Range Projection Series C Scenario would affect Federal Region IV (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). This scenario, to be called the Series C Scenario, assumes a medium supply and a medium demand for fuel through 1990, and it incorporates the fuel switching provisions of the Energy Supply and Environmental Coordination Act. The report portrays the major regional environmental, human health and safety, socioeconomic, and institutional effects that might result from the implementation of the Series C Scenario.

  19. Problem zone and pioneer region. The Baltic region between controversies of energy policy and cooperative projects; Problemzone und Vorreiterregion. Der Ostseeraum im Spannungsfeld energiepolitischer Kontroversen und Kooperationsvorhaben

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Kai-Olaf

    2010-10-15

    This publication describes how for the EU states bordering on the Baltic coast energy policy and energy economy have become crucial fields of bilateral and regional cooperation. On the one side this is attributable to the controversial Nord Stream Pipeline, growing concerns over the security of supply, vulnerabilities in energy policy - be they real or imagined - and to competing energy economic interests. On the other side, what has drawn numerous players' attention to the greater Baltic region as an attractive area in terms of energy policy are the prospects for multilateral cooperation projects and associated hopes for greater regional solidarity in issues of energy policy. In this sense the Baltic region is not only an energy political problem zone but also a potential pioneer region, namely when it comes to energy economic and energy political integration within the EU. This ambivalence should continue to characterise the region for the foreseeable future. The extent to which energy economic integration will in future prevail over particular national interests of energy and security policy will greatly depend on the initiatives which the EU Baltic states succeed in launching cooperatively at EU level.

  20. Projections from a single NUCB2/nesfatin-1 neuron in the paraventricular nucleus to different brain regions involved in feeding.

    Science.gov (United States)

    Maejima, Yuko; Kumamoto, Kensuke; Takenoshita, Seiichi; Shimomura, Kenju

    2016-12-01

    The anorexigenic neuropeptide NEFA/nucleobindin 2 (NUCB2)/nesfatin-1-containing neurons are distributed in the brain regions involved in feeding regulation, including the hypothalamic paraventricular nucleus (PVN). Functionally, NUCB2/nesfatin-1 neurons in the PVN regulate feeding through the hypothalamus and brain stem. However, the neural network of PVN NUCB2/nesfatin-1 neurons has yet to be elucidated. Axon collateral branches allow individual neurons to target multiple neurons. In some cases, each target neuron can be located in different nuclei. Here we show that a single neuron in the PVN projects axonal collaterals to both the dorsal vagal complex (DVC) and the arcuate nucleus (ARC), which are important brain regions for feeding regulation. In this study, after injection of different retrograde tracers into the DVC and ARC, both tracer-labeled neurons were detected in the identical PVN neuron, indicating the axon collateral projections from the single PVN neuron to the DVC and ARC. Furthermore, immunohistochemical analysis revealed that approximately 50 % of the neurons with axon collateral projections from the PVN to the DVC and ARC were found to be NUCB2/nesfatin-1 neurons. Our data suggest that a single NUCB2/nesfatin-1 neuron in the PVN projects to both the ARC and the DVC with axon collateral projection. Although the physiological significance remains to be elucidated, our data offer new perspectives on NUCB2/nesfatin-1 function at the neural network level and food intake regulation.

  1. Clear sky atmosphere at cm-wavelengths from climatology data

    CERN Document Server

    Lew, Bartosz

    2015-01-01

    We utilise ground-based, balloon-born and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to numerically solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature ($T_{\\rm atm}$) and optical depth ($\\tau$) at the centimetre wavelengths. We validate the reconstruction by comparing the model column PWV, with photometric measurements of PWV, performed in the clear sky conditions towards the Sun. Based on the measurements, we devise a selection criteria to filter the climatology data to match the PWV levels to the expectations of the clear sky conditions. We apply the reconstruction to the location of the Polish 32-metre radio telescope, and characterise $T_{\\rm atm}$ and $\\tau$ year-round, at selected frequencies. We also derive the zenith distance dependence for these parameters, and discuss shortcomings of using planar, single-layer, and optically thin atmospheric model approxima...

  2. Climatologies at high resolution for the Earth land surface areas

    CERN Document Server

    Karger, Dirk Nikolaus; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus; Linder, H Peter; Kessler, Michael

    2016-01-01

    High resolution information of climatic conditions is essential to many application in environmental sciences. Here we present the CHELSA algorithm to downscale temperature and precipitation estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) climatic reanalysis interim (ERA-Interim) to a high resolution of 30 arc sec. The algorithm for temperature is based on a statistical downscaling of atmospheric temperature from the ERA-Interim climatic reanalysis. The precipitation algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, and a bias correction using Global Precipitation Climatology Center (GPCC) gridded and Global Historical Climate Network (GHCN) station data. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We present a comparison of data derived from the CHELSA algorithm with two other high resolution gridded products with overlapping temporal resolution (Tropical R...

  3. RADAR CLIMATOLOGY OF HAIL IN THE APUSENI MOUNTAINS

    Directory of Open Access Journals (Sweden)

    N. MAIER

    2011-03-01

    Full Text Available Radar Climatology of hail in the Apuseni Mountains A newmethod for the assessment of large areas with frequent occurrence of hail in a finespatial resolution and its application for the Apuseni Mountains and their adjacentareas is presented. Due to the fine tempo-spatial resolution of the radar detection,the creation of radar climatology of the areas where the hail production conditionsare determined is imposed. With the help of two Doppler radars at Oradea andBobohalma, the area of interest is examined and spatial maps of the relativefrequency of hail contained in the clouds are made. Composite maps are made (bysuperimposing the two Doppler radar images from Oradea and Bobohalma of theareas in which clouds with hail of different sizes occur.

  4. Climatology of surface ultraviolet-radiation in Valparaiso, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Raul R. [Universidad Tecnica Federico Santa Maria, Ave. Espana 1680, Valparaiso (Chile) and Escuela Superior Politecnica del Litoral, Km. 30, 5 Via Perimetral, Guayaquil (Ecuador)]. E-mail: raul.cordero@usm.cl; Roth, Pedro [Universidad Tecnica Federico Santa Maria, Ave. Espana 1680, Valparaiso (Chile); Georgiev, Aleksandar [Technical University of Sofia, 4023 Plovdiv (Bulgaria); Silva, Luis da [Universidad Tecnica Federico Santa Maria, Ave. Espana 1680, Valparaiso (Chile)

    2005-11-15

    Despite the lack of long-term records, it is possible to describe many of the short term characteristics, dependencies and climatology of surface UV irradiance. This paper describes the climatology of on ground UV irradiance at Valparaiso (33.05 deg. S, 71.63 deg. W, sea level), Chile. The dependence of UV-B irradiance on ozone and on other climate variables is discussed with reference to our observations conducted during the last four years. Special attention was paid to detect 'ozone events' by surface UV irradiance measurements. By analyzing time series of the UV-B/UV-A ratio, we suppressed the cloud variability effect and detected events that implied ozone column changes of about 15%. According to our measurements, during the last four years, the ozone column over Valparaiso was not affected negatively by the Antarctic ozone hole phenomenon.

  5. Seasonal streamflow forecasting by conditioning climatology with precipitation indices

    Science.gov (United States)

    Crochemore, Louise; Ramos, Maria-Helena; Pappenberger, Florian; Perrin, Charles

    2017-03-01

    Many fields, such as drought-risk assessment or reservoir management, can benefit from long-range streamflow forecasts. Climatology has long been used in long-range streamflow forecasting. Conditioning methods have been proposed to select or weight relevant historical time series from climatology. They are often based on general circulation model (GCM) outputs that are specific to the forecast date due to the initialisation of GCMs on current conditions. This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. Four conditioning statistics based on seasonal forecasts of cumulative precipitation and the standardised precipitation index were used to select relevant traces within historical streamflows and precipitation respectively. This resulted in eight conditioned streamflow forecast scenarios. These scenarios were compared to the climatology of historical streamflows, the ensemble streamflow prediction approach and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. The impact of conditioning was assessed in terms of forecast sharpness (spread), reliability, overall performance and low-flow event detection. Results showed that conditioning past observations on seasonal precipitation indices generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Conversely, conditioned ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitation. Forecast attributes from conditioned and unconditioned ensembles are illustrated for a case of drought-risk forecasting: the 2003 drought in France. In the case of low-flow forecasting, conditioning results in ensembles that can better assess weekly deficit volumes and durations over a wider range of lead times.

  6. Evaluations of SST Climatologies in the Tropical Pacific Ocean

    Science.gov (United States)

    2009-02-27

    boundaries Casey and Cornillon, 1999]. An observation-based clima - r 1 -ru 1 r.u- • . .r e...along with SSTs from AVHRR satellite retrievals. The NOAA SST product was built from two intermediate climatologies: a 2° SST clima - tology developed...2D-Var data sets, depending on the period considered. Thus, ECMWF clima - tologies examined here are the analyses of SST observations prescribed as

  7. A Process Towards Societal Value within a Community-Based Regional Development Project

    Directory of Open Access Journals (Sweden)

    Anna Åslund

    2012-12-01

    Full Text Available Processes, activities and tasks of a community-based area development project are described. The main process has been used three times and a model is presented. An earlier developed process map has been verified. The description of the project can help other communities to plan development projects. The illustration can be valuable for entrepreneurs who are planning a societal value initiative and for decision-makers and stakeholders who can contribute to, are concerned with, or may be affected by societal entrepreneurship. Observation, participating studies, dokumentations and an interview with the project leader has been carried out. Data have been analyzed and compared with the previously developed process map to achieve a deeper understanding of the processes within societal entrepreneurship. The purpose was to study and describe the processes of a community-based area development project and to compare it with a previously developed process map and to verify the process map.

  8. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  9. Climatology of destructive hailstorms in Brazil

    Science.gov (United States)

    Martins, Jorge A.; Brand, Veronika S.; Capucim, Mauricio N.; Felix, Rafael R.; Martins, Leila D.; Freitas, Edmilson D.; Gonçalves, Fabio L. T.; Hallak, Ricardo; Dias, Maria A. F. Silva; Cecil, Daniel J.

    2017-02-01

    Hail is considered to be among the most complex extreme weather phenomena of the atmosphere. Every year, notably in the southern Brazilian States, destructive hailstorms result in serious economic losses and cause a great social impact destroying crops, homes, medical facilities and schools. The aim of this study is to document the spatial, annual, and diurnal variation in destructive hailstorm frequency during a 22 year period from 1991 to 2012 in Brazil. The analysis is based on a collection of reports released by the Brazilian National Civil Protection Secretariat - SEDEC. Based on reports of emergency assistance given to the population affected by a disaster, the information discussed in this work is assumed as representative only of destructive hailstorms. The analysis reveals a large spatial variability, with the majority of hailstorm occurrences distributed in the three southernmost Brazilian States. Within those states, the number of hail reports was observed to increase with increasing population density in rural areas. Hailstorms were reported most often in the late afternoon and evening of the winter/spring transition, in agreement with a few other areas in the subtropics with available studies, but different from the majority of studies for temperate zones, which suggest spring/summer as the hail season. Although the results show some discrepancies compared to satellite hail signatures, the findings of this work confirm that southern Brazil is a region prone to the development of strong convective storms, with high annual numbers of destructive hail events.

  10. A Sterile Insect Technique (S.I.T.) Study Project to control Medfly in a Southern region of Italy

    Energy Technology Data Exchange (ETDEWEB)

    Tata, A.; Cirio, U.; Balducci, R. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1997-12-01

    Since 1967 the National Agency for New Technology, Energy and the Environment (ENEA) namely the main Italian governmental technological research organization, is carrying out R and D programmes and demonstrative projects aimed to set up S.I.T. (Sterile Insect Technique) processes. In the framework of a world-wide growing interest concerning pest control technology, the National Agency for New Technology, Energy and the Environment (ENEA) developed a very large industrial project aimed to control Medfly (Ceratitis capitata Wied.) with reference to fruit crops situation in Sicily region (Southern of Italy) through the production and spreading of over 250 million sterile flies per week.

  11. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China

    Science.gov (United States)

    Tong, Xiaowei; Wang, Kelin; Yue, Yuemin; Brandt, Martin; Liu, Bo; Zhang, Chunhua; Liao, Chujie; Fensholt, Rasmus

    2017-02-01

    To alleviate the severe rocky desertification and improve the ecological degradation conditions in Southwest China, the national and local Chinese governments have implemented a series of Ecological Restoration Projects (ERPs) since the late 1990s. This study proposed a remote sensing based approach to evaluate the long-term efforts of the ERPs started in 2000. The method applies a time-series trend analysis of satellite based vegetation data corrected for climatic influences to reveal human induced vegetation changes. The improved residual method is combined with statistics on the invested project funds to derive an index, Project Effectiveness Index (PEI), measuring the project effectiveness at county scale. High effectiveness is detected in the Guangxi Province, moderate effectiveness in the Guizhou Province, and low and no effectiveness in the Yunnan Province. Successful implementations are closely related to the combined influences from climatic conditions and human management. The landforms of Peak Forest Plain and Peak Cluster Depression regions in the Guangxi Province are characterized by temperate climate with sufficient rainfall generally leading to a high effectiveness. For the karst regions of the Yunnan and Guizhou Provinces with rough terrain and lower rainfall combined with poor management practices (unsuitable species selection, low compensation rate for peasants), only low or even no effect of project implementations can be observed. However, the effectiveness distribution is not homogeneous and counties with high project effectiveness in spite of complex natural conditions were identified, while counties with negative vegetation trends despite relatively favorable conditions and high investments were also distinguished. The proposed framework is expected to be of high relevance in general monitoring of the successfulness of ecological conservation projects in relation to invested funds.

  12. Twenty-first century probabilistic projections of precipitation over Ontario, Canada through a regional climate model ensemble

    Science.gov (United States)

    Wang, Xiuquan; Huang, Guohe; Liu, Jinliang

    2016-06-01

    In this study, probabilistic projections of precipitation for the Province of Ontario are developed through a regional climate model ensemble to help investigate how global warming would affect its local climate. The PRECIS regional climate modeling system is employed to perform ensemble simulations, driven by a set of boundary conditions from a HadCM3-based perturbed-physics ensemble. The PRECIS ensemble simulations are fed into a Bayesian hierarchical model to quantify uncertain factors affecting the resulting projections of precipitation and thus generate probabilistic precipitation changes at grid point scales. Following that, reliable precipitation projections throughout the twenty-first century are developed for the entire province by applying the probabilistic changes to the observed precipitation. The results show that the vast majority of cities in Ontario are likely to suffer positive changes in annual precipitation in 2030, 2050, and 2080 s in comparison to the baseline observations. This may suggest that the whole province is likely to gain more precipitation throughout the twenty-first century in response to global warming. The analyses on the projections of seasonal precipitation further demonstrate that the entire province is likely to receive more precipitation in winter, spring, and autumn throughout this century while summer precipitation is only likely to increase slightly in 2030 s and would decrease gradually afterwards. However, because the magnitude of projected decrease in summer precipitation is relatively small in comparison with the anticipated increases in other three seasons, the annual precipitation over Ontario is likely to suffer a progressive increase throughout the twenty-first century (by 7.0 % in 2030 s, 9.5 % in 2050 s, and 12.6 % in 2080 s). Besides, the degree of uncertainty for precipitation projections is analyzed. The results suggest that future changes in spring precipitation show higher degree of uncertainty than other

  13. Climatology of the 500-hPa mediterranean storms associated with Saudi Arabia wet season precipitation

    Science.gov (United States)

    Almazroui, Mansour; Kamil, S.; Ammar, K.; Keay, Kevin; Alamoudi, A. O.

    2016-11-01

    The relationship between the Mediterranean 500-hPa storm tracks and wet season (November-April) rainfall over Saudi Arabia is investigated. The analysis is based on the application of an objective tracking scheme to the 6-hourly 500-hPa geopotential height ERA-Interim dataset (0.75° × 0.75°) for the period 1979-2012. The resulting tracks are then associated with the ERA-Interim rainfall events over Saudi Arabia. The association procedure showed that 34 % of the tracks are related to about 70 % of the rainfall. These associated tracks are used to construct climatology. A climatology of these storm tracks revealed that the eastern Mediterranean region is the preferred location for cyclogenesis with a maximum in the southwest parts of the Black Sea. The study also examined the mean radius, average intensity and average depth of the storms. The number of tracks in winter (December-February) is about 60 % of the total number which confirms the major contribution of the Mediterranean storms to rainfall over Saudi Arabia. A significant negative trend was found for storm cyclogenesis over the central Mediterranean, and the Black sea. A significant trend decrease in track density is observed over most of the northern parts of Saudi Arabia. The peaks of storm activities are observed in December and January in 1996, 1997 and 2009. Storm activity generally declines after 2000, especially in the second half of the wet season months (February-April).

  14. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    Science.gov (United States)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  15. Hanford Site climatological data summary 1995 with historical data

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, D.J.; Burk, K.W.

    1996-05-01

    This document presents the climatological data measured at the US Department of Energy`s Hanford Site for calendar year 1995. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995); however, Appendix B--Wind Climatology (1994) is excluded. 1995 was warmer than normal, averaging 54.7 F, 1.4 F above normal (53.3 F). For the 12-month period, 8 months were warmer than normal, and 4 were cooler than normal. 1995 was the wettest year on record. Precipitation totaled 12.31 in., 197% of normal (6.26 in.); snowfall totaled 7.7 in., compared to the normal of 13.8 in. The average wind speed during 1995 was 7.8 mph, 0.1 mph above normal (7.7 mph). The peak gust during the year was 61 mph from the south-southwest on December 12. There were 27 days with peak gusts {ge} 40 mph, compared to a yearly average of 26.

  16. Landslide hazard assessment : LIFE+IMAGINE project methodology and Liguria region use case

    Science.gov (United States)

    Spizzichino, Daniele; Campo, Valentina; Congi, Maria Pia; Cipolloni, Carlo; Delmonaco, Giuseppe; Guerrieri, Luca; Iadanza, Carla; Leoni, Gabriele; Trigila, Alessandro

    2015-04-01

    Scope of the work is to present a methodology developed for analysis of potential impacts in areas prone to landslide hazard in the framework of the EC project LIFE+IMAGINE. The project aims to implement a web services-based infrastructure addressed to environmental analysis, that integrates, in its own architecture, specifications and results from INSPIRE, SEIS and GMES. Existing web services has been customized to provide functionalities for supporting environmental integrated management. The implemented infrastructure has been applied to landslide risk scenarios, developed in selected pilot areas, aiming at: i) application of standard procedures to implement a landslide risk analysis; ii) definition of a procedure for assessment of potential environmental impacts, based on a set of indicators to estimate the different exposed elements with their specific vulnerability in the pilot area. The landslide pilot and related scenario are focused at providing a simplified Landslide Risk Assessment (LRA) through: 1) a landslide inventory derived from available historical and recent databases and maps; 2) landslide susceptibility and hazard maps; 3) assessment of exposure and vulnerability on selected typologies of elements at risk; 4) implementation of a landslide risk scenario for different sets of exposed elements 5) development of a use case; 6) definition of guidelines, best practices and production of thematic maps. The LRA has been implemented in Liguria region, Italy, in two different catchment areas located in the Cinque Terre National Park, characterized by a high landslide susceptibility and low resilience. The landslide risk impact analysis has been calibrated taking into account the socio-economic damage caused by landslides triggered by the October 2011 meteorological event. During this event, over 600 landslides were triggered in the selected pilot area. Most of landslides affected the diffuse system of anthropogenic terraces and caused the direct

  17. FutureGen 2.0 Pipeline and Regional Carbon Capture Storage Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Chris [Patrick Engineering Inc., Lisle, IL (United States); Wortman, David [Patrick Engineering Inc., Lisle, IL (United States); Brown, Chris [Battelle Memorial Inst., Richland, WA (United States); Hassan, Syed [Gulf Interstate Engineering, Houston, TX (United States); Humphreys, Ken [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States); Willford, Mark [Futuregen Industrial Alliance, Inc., Washington, D.C. (United States)

    2016-03-31

    The U.S. Department of Energy’s (DOE) FutureGen 2.0 Program involves two projects: (1) the Oxy-Combustion Power Plant Project and (2) the CO2 Pipeline and Storage Project. This Final Technical Report is focused on the CO2 Pipeline and Storage Project. The FutureGen 2.0 CO2 Pipeline and Storage Project evolved from an initial siting and project definition effort in Phase I, into the Phase II activity consisting permitting, design development, the acquisition of land rights, facility design, and licensing and regulatory approvals. Phase II also progressed into construction packaging, construction procurement, and targeted early preparatory activities in the field. The CO2 Pipeline and Storage Project accomplishments were significant, and in some cases unprecedented. The engineering, permitting, legal, stakeholder, and commercial learnings substantially advance the nation’s understanding of commercial-scale CO2 storage in deep saline aquifers. Voluminous and significant information was obtained from the drilling and the testing program of the subsurface, and sophisticated modeling was performed that held up to a wide range of scrutiny. All designs progressed to the point of securing construction contracts or comfort letters attesting to successful negotiation of all contract terms and willing execution at the appropriate time all major project elements – pipeline, surface facilities, and subsurface – as well as operations. While the physical installation of the planned facilities did not proceed in part due to insufficient time to complete the project prior to the expiration of federal funding, the project met significant objectives prior to DOE’s closeout decision. Had additional time been available, there were no known, insurmountable obstacles that would have precluded successful construction and operation of the project. Due to the suspension of the project, site restoration activities were developed and the work was accomplished. The site restoration

  18. Climatology of the winter Red Sea Trough

    Science.gov (United States)

    Awad, Adel M.; Almazroui, Mansour

    2016-12-01

    In this study, a new and objective method for detecting the Red Sea Trough (RST) was developed using mean sea level pressure (SLP) data from NCEP/NCAR reanalysis dataset from the winters of 1956 to 2015 to identify the Sudan Low and its trough. Approximately 96% of the winter RSTs were generated near two main sources, South Sudan and southeastern Sudan, and approximately 85% of these troughs were in four of the most outer areas surrounding the northern Red Sea. Moreover, from west to east of the Red Sea, the RST was affected by the relationships between the Siberian High and Azores High. The RST was oriented to the west when the strength of the Siberian High increased and to the east when the strength of the Azores High increased. Furthermore, the synoptic features of the upper level of the RST emphasize the impacts of subtropical anticyclones at 850 hPa on the orientation of the RST, the impacts of the northern cyclone trough and the maximum wind at a pressure level of 250 hPa. The average static stability between 1000 hPa and 500 hPa demonstrated that the RST followed the northern areas of low static stability. The results from previous studies were confirmed by a detailed case study of the RST that extended to its central outermost area. The results of a detailed case study of the short RST indicated that the trough becomes shorter with increasing static stability and that the Azores and Siberian high-pressure systems influence the northern region of the trough while the maximum upper wind shifts south of the climate position.

  19. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    L. Ammoura

    2012-10-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is challenging, but essential in order to utilize CO2 measurements in an atmospheric inverse framework to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration, during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town-Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 between the surface and the atmosphere. Statistical scores show a good representation of the Urban Heat Island (UHI and urban-rural contrasts. Boundary layer heights (BLH at urban, sub-urban and rural sites are well captured, especially the onset time of the BLH increase and its growth rate in the morning, that are essential for tall tower CO2 observatories. Only nocturnal BLH at sub-urban sites are slightly underestimated a few nights, with a bias less than 50 m. At Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the Atmospheric Boundary Layer (ABL growth reaches the measurement height. The timing of the CO2 cycle is well captured by the model, with only small biases on CO2 concentrations, mainly linked to the misrepresentation of anthropogenic emissions, as the Eiffel site is at the heart of trafic emission sources. At sub-urban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a very strong spatio-temporal variability. The CO2 cycle at these sites is generally well reproduced by the model, even if some biases on the nocturnal maxima appear in the Paris plume parly due to small errors on the vertical

  20. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  1. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    Directory of Open Access Journals (Sweden)

    J. Xing

    2011-04-01

    Full Text Available Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status, PC[0] (improvement of energy efficiencies and current environmental legislation, PC[1] (improvement of energy efficiencies and better implementation of environmental legislation, and PC[2] (improvement of energy efficiencies and strict environmental legislation. Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM10 emissions will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ. Under REF[0] emissions, compared to 2005, the surface concentrations of SO2, NO2, hourly

  2. The Washington Connected Landscapes Project: Providing Analysis Tools for Regional Connectivity and Climate Adaptation Planning

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project builds on existing work by the Washington Habitat Connectivity Working Group to provide scientific analyses and tools necessary to conserve wildlife...

  3. Region 9 Tribal Grant Program - Project Officer and Tribal Contact Information Map Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This compilation of geospatial data is for the purpose of managing and communicating information about current EPA project officers, tribal contacts, and tribal...

  4. Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) Maps of the Permanently Shaded Regions (PSR) at the Lunar Poles

    Science.gov (United States)

    Rojas, Paul; Retherford, Kurt; Gladstone, Randall; Stern, Alan; Egan, Anthony; Miles, Paul; Parker, Joel; Kaufmann, David; Horvath, David; Greathouse, Thomas; Versteeg, Maartem; Steffl, Andrew; Mukherjee, Joey; Davis, Michael; Slater, David; Bayless, Amanda; Feldmann, Paul; Hurley, Dana; Pryor, Wayne; Hendrix, Amanda

    2013-04-01

    The Lyman Alpha Mapping Project (LAMP) instrument on-board LRO is a UV spectrograph covering the spectral range of 57-196 nm. We present Lyman-alpha and far-UV albedo maps of the north and south poles. These maps indicate that the coldest, permanently shadowed regions (PSR) in deep polar craters have significantly lower Lyman-alpha albedo than the surrounding regions, which is best explained by a high surface porosity there - possibly related to the accumulation of volatile frosts.

  5. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2011-03-01

    Full Text Available A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm. To date, a relatively coarse resolution (1° × 1° surface reflectance dataset from GOME (Global Ozone Monitoring Experiment Lambert-equivalent reflectivity (LER is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80 and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006 of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric

  6. Economic Evaluation of Small Hydroelectric Generation Project which aims to both Global Warming Adaptation and Regional Economic Revitalization

    OpenAIRE

    Ohno, Eiji; Mori, Ryuta; Morisugi, Masafumi; Sao, Hiroshi

    2014-01-01

    Based on the international agreements after the Kyoto Protocol, some projects to reduce the greenhouse gas emission have been promoted even in Japan. Therefore, policies such as various regulations and introduction of the environmental tax have been discussed, so people will be asked for big burden. However, in many local cities, problems such as falling birth rate, aging, and stagnation of regional economy are important subjects, so it is hard to give the priority to the global warming preve...

  7. Approximate particle number projection with density dependent forces Superdeformed bands in the A=150 and A=190 regions

    CERN Document Server

    Valor, A; Robledo, L M

    2000-01-01

    We derive the equations for approximate particle number projection based on mean field wave functions with finite range density dependent forces. As an application ground bands of even-A superdeformed nuclei in the A=150 and A=190 regions are calculated with the Gogny force. We discuss nuclear properties such as quadrupole moments, moments of inertia and quasiparticle spectra, among others, as a function of the angular momentum. We obtain a good overall description.

  8. Towards a radar- and observation-based hail climatology for Germany

    Directory of Open Access Journals (Sweden)

    Thomas Junghänel

    2016-09-01

    Full Text Available In the German Strategy for Adaptation to Climate Change hail is identified as one of the major subjects of concern regarding transport infrastructure. Moreover hailstorms are a major threat to e.g. agriculture and the automobile industry causing significant economical damages and losses. Despite these significant hail-related meteorological risks no comprehensive observation-based hail climatology for Germany exists. In this study we present a new approach to this task, combining radar data with different kinds of hail reports, such as ground observation and agricultural insurance data. Preprocessing ensures the applicability of the radar data for the presented climatological analysis. In this sense a number of detection methods are applied to filter artefacts, especially clutter pixels and spokes that disrupt radar measurements. To construct a reliable hail climatology for Germany we process all information into a 10‑year based annual average number of hail days on a 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$ grid using a two-path hail criterion. While the first path combines a threshold of 50 dBZ with a hail report, the second path is based on a 55 dBZ threshold only. By adding radar data we increase the spatial representativity of the ground based hail reports and gain additional information in regions which lack observational data. Overall, the results are mainly determined by events derived from the first path (68 %. A validation of our dataset at 65 stations of Deutscher Wetterdienst shows that the method slightly underestimates the number of hail days, especially for mountainous regions. This results in a better adaption of the hail criterion to lowlands. The resulting hail frequency map shows an increase in the average number of hail days per year from north to south. In particular, hailstorms occur less frequently in the Central North German Plain and the Mecklenburg Coastal Lowland, whereas the highest number of hail days

  9. Southeast Regional Assessment Project for the National Climate Change and Wildlife Science Center, U.S. Geological Survey

    Science.gov (United States)

    Dalton, Melinda S.; Jones, Sonya A.

    2010-01-01

    expanded to address climate change-related impacts on all Department of the Interior (DOI) resources. The NCCWSC will establish a network of eight DOI Regional Climate Science Centers (RCSCs) that will work with a variety of partners to provide natural resource managers with tools and information that will help them anticipate and adapt conservation planning and design for projected climate change. The forecasting products produced by the RCSCs will aid fish, wildlife, and land managers in designing suitable adaptive management approaches for their programs. The DOI also is developing Landscape Conservation Cooperatives (LCCs) as science and conservation action partnerships at subregional scales. The USGS is working with the Southeast Region of the U.S. Fish and Wildlife Service (FWS) to develop science collaboration between the future Southeast RCSC and future LCCs. The NCCWSC Southeast Regional Assessment Project (SERAP) will begin to develop regional downscaled climate models, land cover change models, regional ecological models, regional watershed models, and other science tools. Models and data produced by SERAP will be used in a collaborative process between the USGS, the FWS (LCCs), State and federal partners, nongovernmental organizations, and academia to produce science at appropriate scales to answer resource management questions. The SERAP will produce an assessment of climate change, and impacts on land cover, ecosystems, and priority species in the region. The predictive tools developed by the SERAP project team will allow end users to better understand potential impacts of climate change and sea level rise on terrestrial and aquatic populations in the Southeastern United States. The SERAP capitalizes on the integration of five existing projects: (1) the Multi-State Conservation Grants Program project "Designing Sustainable Landscapes," (2) the USGS multidisciplinary Science Thrust project "Water Availability for Ecological Needs," (3) the USGS Southeast Pilot

  10. [Logic model of the Franche-Comté Regional Health Project: advantages and limitations for the evaluation process].

    Science.gov (United States)

    Michaud, Claude; Sannino, Nadine; Duboudin, Cédric; Baudier, François; Guillin, Caroline; Billondeau, Christine; Mansion, Sylvie

    2014-01-01

    The French "Hospitals, patients, health and territories" law of July 2009 created the Regional Health Project (PRS) to support regional health policy, and requires evaluation of these projects. The construction of these projects, which includes prevention planning, care planning, and medical and social welfare planning, presents an unprecedented complexity in France, where evaluation programmes are still in their infancy. To support future evaluations, the Franche-Comté Regional Health Agency (ARS FC), assisted by the expertise of EFECT Consultants, decided to reconstruct the PRS logic model. This article analyzes the advantages and limitations of this approach. The resulting logic model allows visualization of the strategy adopted to achieve the Franche-Comté PRS ambitions and expected results. The model highlights four main aspects of structural change to the health system, often poorly visible in PRS presentation documents. This model also establishes links with the usual public policy evaluation issues and facilitates their prioritization. This approach also provides a better understanding of the importance of analysis of the programme construction in order to be effective rather than direct analysis of the effects, which constitutes the natural tendency of current practice. The main controversial limit concerns the retrospective design of the PRS framework, both in terms of the reliability of interpretation and adoption by actors not directly involved in this initiative.

  11. Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland—climatological approach

    Science.gov (United States)

    Walawender, Ewelina; Kielar, Rafał; Ustrnul, Zbigniew

    2017-01-01

    The paper analyzes equivalent data for a low density meteorological station network (spatially discontinuous data) and poor temporal homogeneity of thunderstorm observational data. Due to that, a Regional Climate Model (RegCM) dataset was tested. The Most Unstable Convective Available Potential Energy index value (MUCAPE) above the 200 J kg-1 threshold was selected as a predictor describing favorable conditions for the occurrence of thunderstorms. The quality of the dataset was examined through a comparison between model results and soundings from several aerological stations in Central Europe. Good, statistically significant (0.05 significance level) results were obtained through correlation analysis; the value of Pearson's correlation coefficient was above 0.8 in every single case. Then, using methods associated with gridded climatology, data series for 44 weather stations were derived and an analysis of correlation between RegCM modeled data and in situ thunderstorm observations was conducted with coefficients in the range of 0.75-0.90. The possibility of employing the dataset in thunderstorm climatology analysis was checked via a few examples by mapping monthly, seasonal, and annual means. Moreover, long-term variability and trend analysis along with modeled MUCAPE data were tested. As a result, the RegCM modeled MUCAPE gridded dataset was proposed as an easily available, suitable, and valuable predictor for thunderstorm climatology analysis and mapping. Finally, some limitations are discussed and recommendations for further improvements are given.

  12. Understanding the Climatology of Thermodynamic Signatures and their Role in Modification of Extreme Precipitation around Artificial Reservoirs

    Science.gov (United States)

    Degu, A. M.; Hossain, F.

    2010-12-01

    Very little is known about how dams and reservoirs modify rainfall and flood frequency in their vicinity. This is because conventional dam design and reservoir planning over the last century have been “one-way,” without acknowledging the possible feedback mechanisms on precipitation recycling due to local evaporation and systematic change in land use and land cover. In this study, using the North American Regional Reanalysis (NARR) database, the climatology of important thermodynamic signatures, such as CAPE (Convective Available Potential Energy), Convective Inhibition, Temperature, Latent Heat, Humidity, Precipitation and Wind are analyzed as a function of proximity to large artificial reservoirs in the United States. The analysis is cast in the context of the chronology of extreme precipitation trends around dams for the pre-dam and post-dam period. To understand how storms may have been intensified by reservoirs, the climatology was analyzed for a set of about 100 large dams for three specific scenarios: 1) right over the reservoir 2) right over land adjacent to the reservoir and 3) over land far away from the reservoir by at least 100 km. Precipitation records from the Global Historical Climate Network (GHCN) were used to correlate the temporal and spatial trends in extreme precipitation to the climatology of the thermodynamic signatures. Several hypotheses on the physical mechanism of storm intensification are proposed and tested using the analysis presented herein. Location of large dams with their climatic classification

  13. Customization of regional climate model (RegCM4) over Indian region

    Science.gov (United States)

    Nayak, S.; Mandal, M.; Maity, S.

    2017-01-01

    The regional climate model (RegCM4) is customized for 10-year climate simulation over Indian region through sensitivity studies on cumulus convection and land surface parameterization schemes. The model is configured over 30° E-120° E and 15° S-45° N at 30-km horizontal resolution with 23 vertical levels. Six 10-year (1991-2000) simulations are conducted with the combinations of two land surface schemes (BATS, CLM3.5) and three cumulus convection schemes (Kuo, Grell, MIT). The simulated annual and seasonal climatology of surface temperature and precipitation are compared with CRU observations. The interannual variability of these two parameters is also analyzed. The results indicate that the model simulated climatology is sensitive to the convection as well as land surface parameterization. The analysis of surface temperature (precipitation) climatology indicates that the model with CLM produces warmer (dryer) climatology, particularly over India. The warmer (dryer) climatology is due to the higher sensible heat flux (lower evapotranspiration) in CLM. The model with MIT convection scheme simulated wetter and warmer climatology (higher precipitation and temperature) with smaller Bowen ratio over southern India compared to that with the Grell and Kuo schemes. This indicates that a land surface scheme produces warmer but drier climatology with sensible heating contributing to warming where as a convection scheme warmer but wetter climatology with latent heat contributing to warming. The climatology of surface temperature over India is better simulated by the model with BATS land surface model in combination with MIT convection scheme while the precipitation climatology is better simulated with BATS land surface model in combination with Grell convection scheme. Overall, the modeling system with the combination of Grell convection and BATS land surface scheme provides better climate simulation over the Indian region.

  14. Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruosteenoja, K.; Carter, T.R.; Jylhae, K.; Tuomenvirta, H.

    2003-07-01

    Projections of changes in seasonal surface air temperature and precipitation for three 30-year periods during the 21st century in 32 sub-continental scale regions are presented. This information may offer useful guidance on the selection of climate scenarios for regional impact studies. The climate changes have been simulated by seven coupled atmosphere-ocean general circulation models (AOGCMs), the greenhouse gas and aerosol forcing being inferred from the SRES emission scenarios A1F1, A2, B1 and B2. For a majority of the AOGCMs, simulations have only been conducted for scenarios A2 and B2. Projections for other scenarios were then extrapolated from the available runs applying a pattern-scaling technique. In tests, this method proved to be fairly accurate, the correlation between the AOGCM-simulated and the corresponding pattern-scaled response to the A2 scenario for the end of the 21st century being generally {approx} 0.97 - 0.99 for temperature and {approx} 0.9 or higher for precipitation. Projected changes of temperature and precipitation are presented in the form of 384 scatter diagrams. The model-simulated temperature changes were almost invariably statistically significant, i.e., they fell clearly outside the natural multi-decadal variability derived from 1000-year unforced coupled AOGCM simulations. For precipitation, fewer modelled changes were statistically significant, especially in the earliest projection period 2010-2039. Differences in the projections given by various models were substantial, of the same order of magnitude by the end of the century as differences among the responses to separate forcing scenarios. Nevertheless, the surface air temperature increased in all regions and seasons. For precipitation, changes with both sign occurred, but an increase of regional precipitation was more common than a decrease. All models simulate higher precipitation at high latitudes and enhanced summer monsoon precipitation for Southern and Eastern Asia. There

  15. Soft tissue assessment in midface advancement: the use of regional flaps to enhance facial projection.

    Science.gov (United States)

    Chavanne, Juan Martin; Steinberg, Diego; Houssay, Alfredo; Margaride, Luis A

    2009-09-01

    Classically, soft tissue repair when indicated is done before or after the skeletal mobilization especially in those cases that present midface deficiency with severe midline soft tissue restriction by scars or congenital affectation. The distraction osteogenesis method has contributed to improve substantially this problem elongating bones, muscles, and ligaments, but some situations need specific and more precise reconstruction of the subunits to gain in aesthetics. The labial-columella junction, the tip of the nose, and the more projecting point of the cheeks are one of these exigent anatomic areas, where only sophisticated reconstruction by flaps can improve facial proportions and projections.

  16. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (< 10%) and small sampling frequency (< 0.1% of the time fly over tropics) by satellites. Therefore, we firstly examine in situ lightning data based on SYNOP observed by the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) because lightning is quite local and sporadic phenomena. We've started to analyze lightning characteristics over Jakarta region based on SYNOP as the ground truth data and GSMaP. Variability of lightning frequency around Jakarta was affected much by local conditions, e.g., topography (elevation) and proximity to the coastline. We confirmed the lightning frequency and its diurnal variation around Jakarta were much

  17. Past and projected rural land conversion in the US at state, regional, and national levels

    Science.gov (United States)

    The developed land area of the US increased by 14.2 million hectares between 1982 and 2003. Along with a projected US population increase to more than 360 million individuals by 2030 is an expected continuation of expanding rural land development. Related to population growth, ru...

  18. A simplified approach for generating GNSS radio occultation refractivity climatologies

    Directory of Open Access Journals (Sweden)

    H. Gleisner

    2012-07-01

    Full Text Available The possibility of simplifying the retrieval scheme required to produce GNSS radio occultation refractivity climatologies is investigated. In a new, simplified retrieval approach, the main statistical analysis is performed in bending angle space and an estimate of the average bending angle profile is then propagated through an Abel transform. The average is composed of means and medians of ionospheric corrected bending angles up to 80 km. Above that, the observed profile is exponentially extrapolated to infinity using a fixed a priori scale height. The new approach circumvents the need to introduce a "statistical optimization" processing step in which individual bending-angle profiles are merged with a priori data, often taken from a climatology. This processing step can be complex, difficult to interpret, and is generally recognized as a potential source of structural uncertainty. The new scheme is compared with the more conventional approach of averaging individual refractivity profiles, produced with the implementation of statistical optimization used in the EUMETSAT Radio Occultation Meteorology Satellite Application Facility (ROM SAF operational processing. It is shown that the two GNSS radio occultation climatologies agree to within 0.1% from 5 km up to 35–40 km, for the three months January, February, and March 2011. During this time period, the new approach also produces slightly better agreement with ECMWF analyses between 40–50 km, which is encouraging. The possible limitations of the new approach caused by mean residual ionospheric errors and low observation numbers are discussed briefly, and areas for future work are suggested.

  19. Hanford Site climatological data summary 1999 with historical data

    Energy Technology Data Exchange (ETDEWEB)

    DJ Hoitink; KW Burk; JV Ramsdell

    2000-05-11

    This document presents the climatological data measured at the US Department of Energy's Hanford Site for calendar year 1999. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink et al. (1999), and Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, Appendix B-Wind Climatology (1994) is excluded. 1999 was warmer than normal at the Hanford Meteorology Station with an average temperature of 54.4 F, 1.1 F above normal (53.3 F). The hottest temperature was 105 F on July 28, while the coldest was 18 F on January 3. The maximum temperature of 64 F on August 30 was the lowest maximum temperature ever recorded in August, while the maximum temperature of 76 F on November 13 was the highest maximum temperature ever recorded in November. For the 12-month period, 6 months were warmer than normal and 6 were cooler than normal. 1999 was the fourth driest year on record. Precipitation totaled 3.75 inches, 60% of normal (6.26 inches); snowfall totaled 0.6 inch, the least calendar year snowfall on record (compared to the normal of 13.8 inches). 1999 was the windiest year on record with an average wind speed of 8.8 mph, 1.1 mph above normal (7.7 mph). There were 48 days with peak gust {ge} 40 mph, compared to a yearly average of 26 mph. The peak gust during the year was 65 mph on February 6. The heating-degree days for 1998--1999 were 4,802 (8% below the 5,231 normal). Cooling-degree days for 1999 were 891 (10% below the 994 normal).

  20. Measuring Progress on the Control of Porcine Reproductive and Respiratory Syndrome (PRRS) at a Regional Level: The Minnesota N212 Regional Control Project (Rcp) as a Working Example.

    Science.gov (United States)

    Valdes-Donoso, Pablo; Jarvis, Lovell S; Wright, Dave; Alvarez, Julio; Perez, Andres M

    2016-01-01

    Due to the highly transmissible nature of porcine reproductive and respiratory syndrome (PRRS), implementation of regional programs to control the disease may be critical. Because PRRS is not reported in the US, numerous voluntary regional control projects (RCPs) have been established. However, the effect of RCPs on PRRS control has not been assessed yet. This study aims to quantify the extent to which RCPs contribute to PRRS control by proposing a methodological framework to evaluate the progress of RCPs. Information collected between July 2012 and June 2015 from the Minnesota Voluntary Regional PRRS Elimination Project (RCP-N212) was used. Demography of premises (e.g. composition of farms with sows = SS and without sows = NSS) was assessed by a repeated analysis of variance. By using general linear mixed-effects models, active participation of farms enrolled in the RCP-N212, defined as the decision to share (or not to share) PRRS status, was evaluated and used as a predictor, along with other variables, to assess the PRRS trend over time. Additionally, spatial and temporal patterns of farmers' participation and the disease dynamics were investigated. The number of farms enrolled in RCP-N212 and its geographical coverage increased, but the proportion of SS and NSS did not vary significantly over time. A significant increasing (pRCP-N212, active participation is not ensured. By evaluating the effect of participation on the occurrence of PRRS, the value of sharing information among producers may be demonstrated, in turn justifying the existence of RCPs.

  1. CLIMATOLOGICAL DIAGNOSIS OF WINTER TEMPERATURE VARIATIONS IN GUANGDONG

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using the monthly mean and minimum temperature data of the 36 observation stations in Guangdong, the climatological features of the temperatures have been analyzed, including characteristics of trends, abrupt changes and periods. And the possible affecting factors on the winter warming in Guangdong have been discussed. The results show that the winter temperatures, particularly the monthly mean minimum temperatures in Guangdong, have a warming trend. The rise of the winter minimum temperatures in Guangdong began in the second half of 1960's and the warming was more evident since the 1980's.

  2. The ORCA West Coast Regional Project - Atmospheric Top-Down Modeling to constrain Regional Carbon Budgets at high Temporal and Spatial Resolution

    Science.gov (United States)

    Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.

    2008-12-01

    The ORCA project aims at determining the regional carbon balance of Oregon, California and Washington, with a special focus on the effect of disturbance history and climate variability on carbon sources and sinks. ORCA provides a regional test of the overall NACP strategy by demonstrating bottom-up and top-down modeling approaches to derive carbon balances at subregional to regional scales. The ORCA top-down modeling component has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. High-precision atmospheric CO2 concentrations are monitored as continuous time series in hourly timesteps at 5 locations within the model domain, west to east from the Pacific Coast to the Great Basin, and include two flux sites for evaluation of computed fluxes. Terrestrial biosphere carbon fluxes are simulated at an effective spatial resolution of smaller than 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Flux computation assimilates high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present results on regional carbon budgets for the ORCA modeling domain that have been optimized using Bayesian inversion and the information provided by the network of high-precision CO2 observations. We address the influence of spatial and temporal resolution in the general modeling setup on the findings, and test the level of detail that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model

  3. Successes and challenges of north–south partnerships – key lessons from the African/Asian Regional Capacity Development projects

    Directory of Open Access Journals (Sweden)

    Rosanna Färnman

    2016-10-01

    Full Text Available Introduction: Increasing efforts are being made globally on capacity building. North–south research partnerships have contributed significantly to enhancing the research capacity in low- and middle-income countries (LMICs over the past few decades; however, a lack of skilled researchers to inform health policy development persists, particularly in LMICs. The EU FP7 funded African/Asian Regional Capacity Development (ARCADE projects were multi-partner consortia aimed to develop a new generation of highly trained researchers from universities across the globe, focusing on global health-related subjects: health systems and services research and research on social determinants of health. This article aims to outline the successes, challenges and lessons learned from the life course of the projects, focusing on the key outputs and experiences of developing and implementing these two projects together with sub-Saharan African, Asian and European institution partners. Design: Sixteen participants from 12 partner institutions were interviewed. The data were analysed using thematic content analysis, which resulted in four themes and three sub-categories. These data were complemented by a review of project reports. Results: The results indicated that the ARCADE projects have been successful in developing and delivering courses, and have reached over 920 postgraduate students. Some partners thought the north–south and south–south partnerships that evolved during the project were the main achievement. However, others found there to be a ‘north–south divide’ in certain aspects. Challenges included technical constraints and quality assurance. Additionally, adapting new teaching and learning methods into current university systems was challenging, combined with not being able to award students with credits for their degrees. Conclusion: The ARCADE projects were introduced as an innovative and ambitious project idea, although not designed

  4. Allowable CO2 emissions based on projected changes in regional extremes and related impacts

    Science.gov (United States)

    Seneviratne, Sonia I.; Donat, Markus; Pitman, Andy; Knutti, Reto; Wilby, Robert

    2016-04-01

    Global temperature targets, such as the widely accepted 2°C and 1.5° limits, may fail to communicate the urgency of reducing CO2 emissions. Translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because they resonate better with national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean. Linking cumulative CO2 emission targets to regional consequences, such as changing climate extremes, would be of particular benefit for political decision making, both in the context of climate negotiations and adaptation.

  5. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes

    Science.gov (United States)

    Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Lavado, Waldo; Willems, Bram; Robles, Luis Alberto; Rodríguez-Sánchez, Juan-Pablo

    2016-02-01

    Satellite precipitation products are becoming increasingly useful to complement rain gauge networks in regions where these are too sparse to capture spatial precipitation patterns, such as in the Tropical Andes. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TPR) was active for 17 years (1998-2014) and has generated one of the longest single-sensor, high-resolution, and high-accuracy rainfall records. In this study, high-resolution (5 km) gridded mean monthly climatological precipitation is derived from the raw orbital TPR data (TRMM 2A25) and merged with 723 rain gauges using multiple satellite-gauge (S-G) merging approaches. The resulting precipitation products are evaluated by cross validation and catchment water balances (runoff ratios) for 50 catchments across the Tropical Andes. Results show that the TPR captures major synoptic and seasonal precipitation patterns and also accurately defines orographic gradients but underestimates absolute monthly rainfall rates. The S-G merged products presented in this study constitute an improved source of climatological rainfall data, outperforming the gridded TPR product as well as a rain gauge-only product based on ordinary Kriging. Among the S-G merging methods, performance of inverse distance interpolation of satellite-gauge residuals was similar to that of geostatistical methods, which were more sensitive to gauge network density. High uncertainty and low performance of the merged precipitation products predominantly affected regions with low and intermittent precipitation regimes (e.g., Peruvian Pacific coast) and is likely linked to the low TPR sampling frequency. All S-G merged products presented in this study are available in the public domain.

  6. Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Rangwala, Imtiaz [NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, CO (United States); Rutgers University, Department of Marine and Coastal Sciences, New Brunswick, NJ (United States); Barsugli, Joseph [NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, CO (United States); Cozzetto, Karen; Neff, Jason [University of Colorado, Geological Sciences Department and Environmental Studies Program, Boulder, CO (United States); Prairie, James [University of Colorado, Bureau of Reclamation, Boulder, CO (United States)

    2012-10-15

    This study analyzes mid-21st century projections of daily surface air minimum (T{sub min}) and maximum (T{sub max}) temperatures, by season and elevation, over the southern range of the Colorado Rocky Mountains. The projections are from four regional climate models (RCMs) that are part of the North American Regional Climate Change Assessment Program (NARCCAP). All four RCMs project 2 C or higher increases in T{sub min} and T{sub max} for all seasons. However, there are much greater (>3 C) increases in T{sub max} during summer at higher elevations and in T{sub min} during winter at lower elevations. T{sub max} increases during summer are associated with drying conditions. The models simulate large reductions in latent heat fluxes and increases in sensible heat fluxes that are, in part, caused by decreases in precipitation and soil moisture. T{sub min} increases during winter are found to be associated with decreases in surface snow cover, and increases in soil moisture and atmospheric water vapor. The increased moistening of the soil and atmosphere facilitates a greater diurnal retention of the daytime solar energy in the land surface and amplifies the longwave heating of the land surface at night. We hypothesize that the presence of significant surface moisture fluxes can modify the effects of snow-albedo feedback and results in greater wintertime warming at night than during the day. (orig.)

  7. Future of water resources in the Aral Sea Region, Central Asia - Reality-checked climate model projections

    Science.gov (United States)

    Asokan, Shilpa M.; Destouni, Georgia

    2014-05-01

    The future of water resources in a region invariably depends on its historic as well as present water use management policy. In order to understand the past hydro-climatic conditions and changes, one needs to analyze observation data and their implications for climate and hydrology, such as Temperature, Precipitation, Runoff and Evapotranspiration in the region. In addition to the changes in climate, human re-distribution of water through land- and water­use changes is found to significantly alter the water transfer from land to atmosphere through an increase or decrease in evapotranspiration. The Aral region in Central Asia, comprising the Aral Sea Drainage Basin and the Aral Sea, is an example case where the human induced changes in water-use have led to one of the worst environmental disasters of our time, the desiccation of the Aral Sea. Identification of the historical hydro-climatic changes that have happened in this region and their drivers is required before one can project future changes to water and its availability in the landscape. Knowledge of the future of water resources in the Aral region is needed for planning to meet increasing water and food demands of the growing population in conjunction with ecosystem sustainability. In order to project future scenarios of water on land, the Global Climate Model (GCM) ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) was analyzed for their performance against hydrologically important, basin-scale observational climate and hydrological datasets. We found that the ensemble mean of 22 GCMs over-estimated the observed temperature by about 1°C for the historic period of 1961-1990. For the future extreme climate scenario RCP8.5 the increase in temperature was projected to be about 5°C by 2070-2099, the accuracy of which is questionable from identified biases of GCMs and their ensemble results compared with observations for the period 1961-1990. In particular, the water balance components

  8. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning

    Science.gov (United States)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.

    2012-12-01

    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  9. Results of a project on development of agro-forestry systems for food security in Carrefour region, Republic of Haiti

    Directory of Open Access Journals (Sweden)

    Furio Massolino

    2011-11-01

    Full Text Available Haity has a notable problem of food security, 48% of people have not sufficient food availability, food prices has doubled from 1980 and 1990 and further increased 5 times between 1991 and 2000. Water availability and quality is another problems to be added to food insufficiency. Food deficiency is mitigated by natural food resources in rural areas where many different species are cultivated together but it can be extreme in the towns. Agricultural systems are not efficient and, at the same time, enhance soil and genetic erosion. A development project has been implemented to increase food security over the long term in the geographical area of Carrefour rural area, this comprises a research aimed to increase national food production introducing complex agro-forestry systems. The project has investigated problems and solutions, actions have been started to increase food production, including agronomic training of local farmers, organization of small farmers including legal protection on land tenure, introduction of low input modern agroforestry systems that can diversify food production through the year and reduce soil and genetic erosion. After these results, an intervention project has been approved and funded by EU, then delayed due to the recent civil war, finally it is giving positive results now. The same approach used for this project can be spread in the rest of the Republic of Haiti and, hopefully, to other world regions that have similar problems.

  10. Mitigation and Compensation under EU Nature Conservation Law in the Flemish Region: Beyond the Deadlock for Development Projects?

    Directory of Open Access Journals (Sweden)

    Hendrik Schoukens

    2014-05-01

    Full Text Available For years, the predicament of many of the European protected habitats and species in the Flemish Region, as in many other Member States, passed relatively unnoticed. The lack of proper rules and clear implementation rules fuelled the impression amongst project developers and planning authorities that the impacts of project developments on biodiversity did not really warrant closer assessment. However, in the past ten years, strict national case law has significantly altered this view. Faced with tighter judicial scrutiny, the Habitats and Birds Directives were seen as an important obstacle to project development. Hence mitigation and compensation have now come up as novel approaches to better align spatial aspirations with the conservation of nature. In reality, mitigation was often used as a cover-up for projects that would not fit the strict requirements enshrined in the derogatory clauses. Interestingly, the Belgian Council of State showed itself quite cautious in reasserting the lax view of some planning authorities on mitigation and compensation. In reviewing the legality of several new approaches to mitigation and compensation, the Belgian Council of State, which was initially very cautious in quashing decisions that would actually jeopardise major infrastructure developments, has rendered some compelling rulings on the specific application of mitigation and compensatory measures in a spatial planning context. By letting the objectives of EU nature conservation law prevail in the face of economic interests, the recent case law of the Belgian Council of State can be seen as a remarkable example of judicial environmental activism.

  11. Airborne observations of trace gases over boreal Canada during BORTAS: campaign climatology, airmass analysis and enhancement ratios

    Directory of Open Access Journals (Sweden)

    S. J. O'Shea

    2013-05-01

    Full Text Available In situ airborne measurements were made over Eastern Canada in summer 2011 as part of the BORTAS experiment (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and~Satellites. In this paper we present observations of greenhouse gases (CO2 and CH4 and other biomass burning tracers and related trace gases, both climatologically and through case studies, as recorded on board the FAAM BAe-146 research aircraft. Vertical profiles of CO2 were generally characterised by depleted boundary layer concentrations relative to the free troposphere, consistent with terrestrial biospheric uptake. In contrast, CH4 concentrations were found to rise with decreasing altitude due to strong local and regional surface sources. We use coincident tracer-tracer correlations and a Lagrangian trajectory model to characterise and differentiate air mass history of intercepted plumes. In particular, CO, HCN and CH3CN were used to identify air masses that have been recently influenced by biomass burning. Concentrations of CO2 were found to have a mean tropospheric, campaign-average concentration of 384.8 ppm (ranging between 371.5 and 397.1 ppm, whilst CH4 concentrations had a mean value of 1859 ppb (ranging between 1797 and 1968 ppb, representing the episodic sampling of local fire plumes. CH4 and CO2 concentrations during BORTAS were found to be broadly comparable to previous measurements in the region during the regional burning season and with reanalysed composition fields from the EU Monitoring Atmospheric Composition and Change (MACC project. By examining individual case studies we were able to quantify emissions from biomass burning. Using both near-field (1 day sampling, boreal forest fire plumes were identified throughout the troposphere. Fresh plumes from fires in Northwest Ontario yield emission factors for CH4 and CO2 of 8.5 ± 0.9 g (kg dry matter−1 and 1512 g ± 185 g (kg dry matter−1, respectively. We have

  12. A New Global Climatology of Annual Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Benjamin Bechtel

    2015-03-01

    Full Text Available Land surface temperature (LST is an important parameter in various fields including hydrology, climatology, and geophysics. Its derivation by thermal infrared remote sensing has long tradition but despite substantial progress there remain limited data availability and challenges like emissivity estimation, atmospheric correction, and cloud contamination. The annual temperature cycle (ATC is a promising approach to ease some of them. The basic idea to fit a model to the ATC and derive annual cycle parameters (ACP has been proposed before but so far not been tested on larger scale. In this study, a new global climatology of annual LST based on daily 1 km MODIS/Terra observations was processed and evaluated. The derived global parameters were robust and free of missing data due to clouds. They allow estimating LST patterns under largely cloud-free conditions at different scales for every day of year and further deliver a measure for its accuracy respectively variability. The parameters generally showed low redundancy and mostly reflected real surface conditions. Important influencing factors included climate, land cover, vegetation phenology, anthropogenic effects, and geology which enable numerous potential applications. The datasets will be available at the CliSAP Integrated Climate Data Center pending additional processing.

  13. Characteristics of cyclone climatology and variability in the Southern Ocean

    Institute of Scientific and Technical Information of China (English)

    WEI Lixin; QIN Ting

    2016-01-01

    A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high-resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979–2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55°–67°S, and cyclone density has generally increased in north of this band for 1979–2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979–2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45°–55°S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.

  14. Evaluating synoptic systems in the CMIP5 climate models over the Australian region

    Science.gov (United States)

    Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.

    2016-10-01

    Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.

  15. Future agricultural water demand under climate change: regional variability and uncertainties arising from CMIP5 climate projections

    Science.gov (United States)

    Schewe, J.; Wada, Y.; Wisser, D.

    2012-12-01

    The agricultural sector (irrigation and livestock) uses by far the largest amount of water among all sectors and is responsible for 70% of the global water withdrawal. At a country scale, irrigation water withdrawal often exceeds 90% of the total water used in many of emerging and developing countries such as India, Pakistan, Iran and Mexico, sustaining much of food production and the livelihood of millions of people. The livestock sector generally accounts less than 1-2% of total water withdrawal, yet exceeds 10-30% of the total water used in many of the African countries. Future agricultural water demand is, however, subject to large uncertainties due to anticipated climate change, i.e. warming temperature and changing precipitation variability, in various regions of the world. Here, we use a global hydrological and water resources model to quantify the impact of climate change on regional irrigation and livestock water demand, and the resulting uncertainties arsing from newly available CMIP5 climate projections obtained through Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; http://www.isi-mip.org/). Irrigation water requirement per unit crop area is estimated by simulating daily soil water balance with crop-related data. Livestock water demand is calculated by combining livestock densities with their drinking water requirements that is a function of air temperature. The results of the ensemble mean show that global irrigation and livestock water demand increased by ~6% and ~12% by 2050 respectively primarily due to higher evaporative demand as a result of increased temperature. At a regional scale, agricultural water demand decreased over some parts of Europe (e.g., Italy, Germany) and Southeast Asia (e.g., the Philippines, Malaysia), but increased over South Asia, the U.S., the Middle East and Africa. However, the projections are highly uncertain over many parts of the world. The results of the ensemble projections in agricultural water demand

  16. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    , atmospheric and oceanic modelling, bio-chemical processes and oceanic CO2 studies. The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, is currently not properly understood. Atmospheric, oceanic and climate models are currently not adequately resolving...... present the final project findings regarding the analysis of hourly SEVIRI SSTs from SEVIRI over the Atlantic Ocean and the European Seas, revealing the regional extend of diurnal warming. As satellite SSTs are representative of the upper centimetre of the water column, they do not provide information...

  17. Building Regional Capacity for Sustainable Development through an ESD Project Inventory in RCE Saskatchewan, Canada

    Science.gov (United States)

    White, Peta; Petry, Roger

    2011-01-01

    The Regional Centre of Expertise on Education for Sustainable Development in Saskatchewan (RCE Saskatchewan, Canada) is part of the United Nations University RCE Initiative in support of the UN Decade of Education for Sustainable Development (2005-14). With funding from the Government of Saskatchewan's Go Green Fund, RCE Saskatchewan carried out…

  18. Moving beyond paralysis: how states and regions are creating innovative transmission policies for renewable energy projects

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Allison; Fink, Sari; Porter, Kevin

    2009-08-15

    Experience from state and regional transmission siting initiatives aimed at expanding renewable energy development might offer lessons on how to circumvent traditional barriers to new transmission. Absent a national approach or federal transmission plan, these early models will provide a framework for increasing interstate cooperation. (author)

  19. Chinalco Signed Agreement with Guangxi Autonomous Region to Drive Forward Cooperation in Investment Project

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Recently,the Aluminum Corporation of China Limited and the People’s Government of Guangxi Zhuang Autonomous Region held signing ceremony for investment cooperation agreement in Nanning City.Luo Jianchuan,member of the CPC Party Leadership Group of Chinalco and President of Chinalco,and Chen Gang,Vice Chairman of the People’s Government of Guangxi Zhuang Autonomous

  20. PROJECTED LIFETIME CANCER RISKS FROM EXPOSURE TO REGIONAL RADIOACTIVE FALLOUT IN THE MARSHALL ISLANDS

    Science.gov (United States)

    Land, Charles E.; Bouville, Andre; Apostoaei, Iulian; Simon, Steven L.

    2013-01-01

    Radioactive fallout from nuclear test detonations during 1946–1958 at Bikini and Enewetak atolls in the Marshall Islands (MI) exposed populations living elsewhere in the archipelago. A comprehensive analysis, presented in seven companion papers, has produced estimates of tissue-specific radiation absorbed dose to MI residents at all historically inhabited atolls from internal (ingested) and external radioactive components of fallout, by calendar year, and by age of the population at time of exposure. The present report deals, for the first time, with the implications of these doses on cancer risk among exposed members of the MI population. Radiation doses differed by geographic location and year of birth, and radiation-related cancer risk depends upon age at exposure and age at observation for risk. Using dose-response models based on committee reports published by the National Research Council and the National Institutes of Health, we project that, during the lifetimes of members of the MI population potentially exposed to ionizing radiation from weapons test fallout deposited during the testing period (1948–1958) and from residual radioactive sources during the subsequent 12 years (1959–1970), perhaps 1.6% (with 90% uncertainty range 0.4% and 3.4%) of all cancers might be attributable to fallout-related radiation exposures. The projected proportion of cancers attributable to radiation from fallout from all nuclear tests conducted in the Marshall Islands is 55% (28%–69%) among 82 persons exposed in 1954 on Rongelap and Ailinginae, 10% (2%–22%) for 157 persons exposed on Utrik, and 2% (0.5%–5%) and 1% (0.2%–2%), respectively, for the much larger populations exposed in mid-latitude locations including Kwajalein and in southern locations including Majuro. By cancer type, point estimates of attributable risk varied by location, between 12% and 95% for thyroid cancer, between 2% and 78% for leukemia, and between 1% and 55% for all cancers combined. The

  1. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  2. The MORENA Project: Shelf-ocean exchanges and transport processes along the continental margin in the European coastal upwelling region

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, A.F.G. [Univ. de Lisboa (Portugal). Inst. de Oceanografia; Perez, F. [Inst. Investigaciones Marinas, Vigo (Spain); Johnson, J. [Univ. East Anglia (United Kingdom)] [and others

    1994-12-31

    The MORENA Project (Multidisciplinary Oceanographic Research in the Eastern Boundary of the North Atlantic) is sponsored by the CEC MAST-2 Programme and has as general objective to measure, understand and model shelf-ocean exchange in a typical coastal upwelling region of the eastern boundary layer of the subtropical ocean. This is being attained through a multidisciplinary approach aimed at the quantitative understanding of the physical, chemical and biological processes involved in the transfer of matter (including salt, particulates, nutrients, organic compounds, biomass), momentum and energy across and along the shelf, the shelf break and the slope, in the Iberian region of the European Atlantic. MORENA has the following components: Observations, Modelling and Combined Analysis.

  3. A Comprehensive Modeling Study on Regional Climate Model (RCM Application — Regional Warming Projections in Monthly Resolutions under IPCC A1B Scenario

    Directory of Open Access Journals (Sweden)

    Md. Mujibur Rahman

    2012-10-01

    Full Text Available Some of the major dimensions of climate change include increase in surface temperature, longer spells of droughts in significant portions of the world, associated higher evapotranspiration rates, and so on. It is therefore essential to comprehend the future possible scenario of climate change in terms of global warming. A high resolution limited area Regional Climate Model (RCM can produce reasonably appropriate projections to be used for climate-scenario generation in country-scale. This paper features the development of future surface temperature projections for Bangladesh on monthly resolution for each year from 2011 to 2100 applying Providing Regional Climates for Impacts Studies (PRECIS, and it explains in detail the modeling processes including the model features, domain size selection, bias identification as well as construction of change field for the concerned climatic variable, in this case, surface temperature. PRECIS was run on a 50 km horizontal grid-spacing under the Intergovernmental Panel on Climate Change (IPCC A1B scenario and it was found to perform reasonably well in simulating future surface temperature of Bangladesh. The linear regression between observed and model simulated results of monthly average temperatures, within the 30-year period from 1971 to 2000, gives a high correlation of 0.93. The applied change field in average annual temperature shows only 0.5 °C–1 °C deviation from the observed values over the period from 2005 to 2008. Eventually, from the projected average temperature change during the years 1971–2000, it is apparent that warming in Bangladesh prevails invariably every month, which might eventually result in an average annual increase of 4 °C by the year 2100. Calculated anomalies in country-average annual temperature mostly remain on the positive side throughout the period of 2071–2100 indicating an overall up-shift. Apart from these quantitative analyses of temporal changes of temperature

  4. Global climatology of the wind vector rotation - implications for the orographic gravity waves propagation

    Science.gov (United States)

    Pisoft, Petr; Sacha, Petr; Kuchar, Ales

    2015-04-01

    The gravity waves spectrum is shaped not only by different sources but it also reflects tropospheric background conditions contributing to filtering of various gravity waves. This could be most easily illustrated for the propagation of the orographic gravity waves that are critically filtered when the wind speed is zero. This condition is ensured in case of the directional shear exceeding 180°. Above regions where it is fulfilled, one can rule out the possibility of orographic GW modes contributing to the observed GW activity and vice versa regions of small wind rotation in the lower levels are often precursors of enhanced GW activity higher. In this study, we have performed a global analysis of the background conditions with a focus on the rotation of the ground level winds. We have analyzed MERRA and JRA-55 time series. The results provided climatology of atmospheric regions with the conditions favorable for the upward propagation of the orographic gravity waves from the troposphere into the stratosphere. The regions are detected mainly over areas where tropospheric and stratospheric jets coincide. The study is supplemented by a global analysis of the fields of potential energy of disturbances as a proxy for gravity waves activity using COSMIC GPS RO data.

  5. Alpine cloud climatology using long-term NOAA-AVHRR satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, M.; Kriebel, K.T.

    2000-07-01

    Three different climates have been identified by our evaluation of AVHRR (advanced very high resolution radiometer) data using APOLLO (AVHRR processing scheme over land, clouds and ocean) for a five-years cloud climatology of the Alpine region. The cloud cover data from four layers were spatially averaged in boxes of 15 km by 14 km. The study area only comprises 540 km by 560 km, but contains regions with moderate, Alpine and Mediterranean climate. Data from the period July 1989 until December 1996 have been considered. The temporal resolution is one scene per day, the early afternoon pass, yielding monthly means of satellite derived cloud coverages 5% to 10% above the daily mean compared to conventional surface observation. At nonvegetated sites the cloudiness is sometimes significantly overestimated. Averaging high resolution cloud data seems to be superior to low resolution measurements of cloud properties and averaging is favourable in topographical homogeneous regions only. The annual course of cloud cover reveals typical regional features as foehn or temporal singularities as the so-called Christmas thaw. The cloud cover maps in spatially high resolution show local luff/lee features which outline the orography. Less cloud cover is found over the Alps than over the forelands in winter, an accumulation of thick cirrus is found over the High Alps and an accumulation of thin cirrus north of the Alps. (orig.)

  6. A new methodology for the development of high-latitude ionospheric climatologies and empirical models

    Science.gov (United States)

    Chisham, G.

    2017-01-01

    Many empirical models and climatologies of high-latitude ionospheric processes, such as convection, have been developed over the last 40 years. One common feature in the development of these models is that measurements from different times are combined and averaged on fixed coordinate grids. This methodology ignores the reality that high-latitude ionospheric features are organized relative to the location of the ionospheric footprint of the boundary between open and closed geomagnetic field lines (OCB). This boundary is in continual motion, and the polar cap that it encloses is continually expanding and contracting in response to changes in the rates of magnetic reconnection at the Earth's magnetopause and in the magnetotail. As a consequence, models that are developed by combining and averaging data in fixed coordinate grids heavily smooth the variations that occur near the boundary location. Here we propose that the development of future models should consider the location of the OCB in order to more accurately model the variations in this region. We present a methodology which involves identifying the OCB from spacecraft auroral images and then organizing measurements in a grid where the bins are placed relative to the OCB location. We demonstrate the plausibility of this methodology using ionospheric vorticity measurements made by the Super Dual Auroral Radar Network radars and OCB measurements from the IMAGE spacecraft FUV auroral imagers. This demonstration shows that this new methodology results in sharpening and clarifying features of climatological maps near the OCB location. We discuss the potential impact of this methodology on space weather applications.

  7. The interaction between warm conveyor belts and breaking Rossby waves: a climatological perspective.

    Science.gov (United States)

    Madonna, Erica; Joos, Hanna; Martius, Olivia; Aebi, Christine; Limbach, Sebastian

    2014-05-01

    Warm conveyor belts (WCBs) are moist ascending airstreams in extratropical cyclones. Climatologically, they are key for the meridional and vertical transport of water vapour and heat. The rapid ascent of WCBs from the boundary layer to the upper troposphere in about 1-2 days leads to cloud formation, (intense) precipitation and the release of latent heat, which modifies their potential vorticity (PV) value in a significant way. Typically WCBs reach the tropopause level with low PV values (~0.5 pvu) and therefore the cross-isentropic transport of low-PV air in WCBs can amplify upper-level Rossby waves and contribute to the formation of PV streamers downstream. Here, filamentary PV streamers are regarded as clear signs of breaking Rossby waves. They in turn can act as precursors of extreme weather events and/or trigger the genesis of another cyclone, potentially generating a new WCB. The aim of this study is to quantify the interaction of WCBs and PV-streamers from a climatological point of view for the ERA-Interim data set for the period 1989-2010. WCBs are identified from comprehensive trajectory calculations that select air parcels in the vicinity of cyclones with a minimum ascent of 600 hPa in 48 hours. From these WCB trajectories, coherent features of WCB outflows are derived and checked for overlapping with PV streamers, which are identified using a contour searching algorithm. Both, WCBs and PV-streamers are then tracked using a novel feature tracking technique, which is based upon a modified region growing approach. With this technique, the interaction of WCBs and PV-streamers is analysed for a 22-years period leading to novel insight about the role of WCBs for triggering the breaking of Rossby waves, as well as, vice versa, about the importance of PV-streamers for the formation of new WCBs.

  8. Ungulate Reproductive Parameters Track Satellite Observations of Plant Phenology across Latitude and Climatological Regimes.

    Science.gov (United States)

    Stoner, David C; Sexton, Joseph O; Nagol, Jyoteshwar; Bernales, Heather H; Edwards, Thomas C

    2016-01-01

    The effect of climatically-driven plant phenology on mammalian reproduction is one key to predicting species-specific demographic responses to climate change. Large ungulates face their greatest energetic demands from the later stages of pregnancy through weaning, and so in seasonal environments parturition dates should match periods of high primary productivity. Interannual variation in weather influences the quality and timing of forage availability, which can influence neonatal survival. Here, we evaluated macro-scale patterns in reproductive performance of a widely distributed ungulate (mule deer, Odocoileus hemionus) across contrasting climatological regimes using satellite-derived indices of primary productivity and plant phenology over eight degrees of latitude (890 km) in the American Southwest. The dataset comprised > 180,000 animal observations taken from 54 populations over eight years (2004-2011). Regionally, both the start and peak of growing season ("Start" and "Peak", respectively) are negatively and significantly correlated with latitude, an unusual pattern stemming from a change in the dominance of spring snowmelt in the north to the influence of the North American Monsoon in the south. Corresponding to the timing and variation in both the Start and Peak, mule deer reproduction was latest, lowest, and most variable at lower latitudes where plant phenology is timed to the onset of monsoonal moisture. Parturition dates closely tracked the growing season across space, lagging behind the Start and preceding the Peak by 27 and 23 days, respectively. Mean juvenile production increased, and variation decreased, with increasing latitude. Temporally, juvenile production was best predicted by primary productivity during summer, which encompassed late pregnancy, parturition, and early lactation. Our findings offer a parsimonious explanation of two key reproductive parameters in ungulate demography, timing of parturition and mean annual production, across

  9. A scaling approach to project regional sea level rise and its uncertainties

    OpenAIRE

    Perrette, M.; F. Landerer; Riva, R.; Frieler, K.; Meinshausen, M.

    2013-01-01

    Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR) remains very challenging to model, and comprehensive region...

  10. Moving Beyond Paralysis: How States and Regions Are Creating Innovative Transmission Projects

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, A. [Schumacher & Associates, Arlington, VA (United States); Fink, S. [ExeterAssociates, Inc., Columbia, MD (United States); Porter, K. [ExeterAssociates, Inc., Columbia, MD (United States)

    2009-10-01

    This report profiles certain state and regional transmission policy initiatives aimed at promoting transmission development, mainly to access renewable resources – including renewable energy zones, location-constrained tariffs, open seasons, and balanced portfolio plans. In particular, this article focuses on transmission initiatives intended to plan and build transmission in advance of new generation, instead of waiting for enough planned new generation to justify the development of a new transmission line of sufficient capability.

  11. Potential Bias in Projecting Future Regional Megadrought Risk: Insights From A Global Data-Model Framework

    Science.gov (United States)

    Overpeck, J. T.; Ault, T.; Cole, J. E.; Fasullo, J.; Loope, G. R.; Parsons, L. A.; Stevenson, S.

    2015-12-01

    Megadrought is one of the most significant and costly climate extremes, and one that stakeholders (e.g., water and other resource managers) the world over wish to understand better; in particular, they need estimates of the risk of severe droughts as a function of drought frequency, severity, duration, and atmospheric greenhouse gas concentration. In many dry-climate regions of the globe, megadrought is synonymous with multi-decadal drought. However, in other regions, megadrought can be defined as extended drought, mostly not seen in the period of instrumental observations, and that would have large impacts if it were to occur in the future. New and published paleoclimatic observations allow us to understand the spectrum of drought in many regions of the globe; droughts exceeding 50 years have occurred in recent Earth history in southwestern North America, sub-Saharan Africa, the Mediterranean and Australia, whereas shorter megadroughts have occurred in Monsoon Asia, Amazonia and elsewhere. Data-model comparisons for regions with sufficiently long (e.g., 1000-2000 years) records of observed hydroclimatic variability suggest that state-of-the-art models can provide realistic estimates of interannual to decadal drought risk, but underestimate the risk of megadrought. Likely reasons for this shortcoming are the lack of sufficient multi-decadal variability in simulations of the past and future, plus an underappreciated understanding about how temperature variability and land-surface feedbacks interact with hydrological and ecological drought, as well as the roles played by unusually wet hydroclimatic extremes (e.g., ENSO related) in ending droughts of long duration. Paleoclimatic records also provide the opportunity to estimate how much models underestimate megadrought risk as a function of locale, frequency, severity, duration, and atmospheric greenhouse gas concentration; they also aid in providing stakeholders with bias-corrected estimates of megadrought risk.

  12. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    Energy Technology Data Exchange (ETDEWEB)

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  13. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-02-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere is based on observations and modeling studies using low resolution oceanic emission scenarios derived from top down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1° × 1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol I yr−1 for CH3I (Robust Fit/Ordinary Least Square regression technique. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic region. "Hot spots" for global

  14. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    Directory of Open Access Journals (Sweden)

    F. Ziska

    2013-09-01

    Full Text Available Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3, dibromomethane (CH2Br2 and methyl iodide (CH3I. The input of marine halogens to the stratosphere has been estimated from observations and modelling studies using low-resolution oceanic emission scenarios derived from top-down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt (Halocarbons in the Ocean and Atmosphere database (https://halocat.geomar.de/. Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1°×1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global sea-to-air concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol Br yr−1 for CH3I (robust fit/ordinary least squares regression techniques. Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic regions. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the

  15. Applying IPCC Representative Concentration Pathway (RCP) land-use projections in a regional assessment of land-use change in the conterminous United States.

    Science.gov (United States)

    Sherba, J.; Sleeter, B. M.

    2015-12-01

    The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) include global land-use change projections for four global emissions scenarios. These projections are potentially useful for driving regional-scale models needed for informing land-use and management interactions. Here, we applied global gridded RCP land-use projections within a regional-scale state-and-transition simulation model (STSM) projecting land-use change in the conterminous United States. First, we cross-walked RCP land-use transition classes to land-use classes more relevant for modeling at the regional scale. Coarse grid RCP land-use transition values were then downscaled to EPA Level III ecoregion boundaries using historical land-use transition data from the USGS Land Cover Trends (LCT) dataset. Downscaled transitions were aggregated to the ecoregion level. Ecoregions were chosen because they represent areas with consistent land-use patterns that have proven useful for studying land-use and management interactions. Ecoregion-level RCP projections were applied in a state-and-transition simulation model (STSM) projecting land-use change between 2005 and 2100 at the 1-km scale. Resulting RCP-based STSM projections were compared to STSM projections created using scenario projections from the Special Report on Emissions Scenarios (SRES) and the USGS LCT dataset. While most land-use trajectories appear plausible, some transitions such as forest harvest are unreasonable in the context of historical land-use patterns and the socio-economic drivers of change outlined for each scenario. This effort provides a method for using the RCP land-use projections in a wide range of regional scale models. However, further investigation is needed into the performance of RCP land-use projections at the regional scale.

  16. Future Changes in Surface Runoff over Korea Projected by a Regional Climate Model under A1B Scenario

    Directory of Open Access Journals (Sweden)

    Ji-Woo Lee

    2014-01-01

    Full Text Available This study assesses future change of surface runoff due to climate change over Korea using a regional climate model (RCM, namely, the Global/Regional Integrated Model System (GRIMs, Regional Model Program (RMP. The RMP is forced by future climate scenario, namely, A1B of Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report (AR4. The RMP satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation. The distribution of monsoonal precipitation-related runoff is adequately captured by the RMP. In the future (2040–2070 simulation, it is shown that the increasing trend of temperature has significant impacts on the intra-annual runoff variation. The variability of runoff is increased in summer; moreover, the strengthened possibility of extreme occurrence is detected in the future climate. This study indicates that future climate projection, including surface runoff and its variability over Korea, can be adequately addressed on the RMP testbed. Furthermore, this study reflects that global warming affects local hydrological cycle by changing major water budget components. This study adduces that the importance of runoff should not be overlooked in regional climate studies, and more elaborate presentation of fresh-water cycle is needed to close hydrological circulation in RCMs.

  17. Measuring Progress on the Control of Porcine Reproductive and Respiratory Syndrome (PRRS at a Regional Level: The Minnesota N212 Regional Control Project (Rcp as a Working Example.

    Directory of Open Access Journals (Sweden)

    Pablo Valdes-Donoso

    Full Text Available Due to the highly transmissible nature of porcine reproductive and respiratory syndrome (PRRS, implementation of regional programs to control the disease may be critical. Because PRRS is not reported in the US, numerous voluntary regional control projects (RCPs have been established. However, the effect of RCPs on PRRS control has not been assessed yet. This study aims to quantify the extent to which RCPs contribute to PRRS control by proposing a methodological framework to evaluate the progress of RCPs. Information collected between July 2012 and June 2015 from the Minnesota Voluntary Regional PRRS Elimination Project (RCP-N212 was used. Demography of premises (e.g. composition of farms with sows = SS and without sows = NSS was assessed by a repeated analysis of variance. By using general linear mixed-effects models, active participation of farms enrolled in the RCP-N212, defined as the decision to share (or not to share PRRS status, was evaluated and used as a predictor, along with other variables, to assess the PRRS trend over time. Additionally, spatial and temporal patterns of farmers' participation and the disease dynamics were investigated. The number of farms enrolled in RCP-N212 and its geographical coverage increased, but the proportion of SS and NSS did not vary significantly over time. A significant increasing (p<0.001 trend in farmers' decision to share PRRS status was observed, but with NSS producers less willing to report and a large variability between counties. The incidence of PRRS significantly (p<0.001 decreased, showing a negative correlation between degree of participation and occurrence of PRRS (p<0.001 and a positive correlation with farm density at the county level (p = 0.02. Despite a noted decrease in PRRS, significant spatio-temporal patterns of incidence of the disease over 3-weeks and 3-kms during the entire study period were identified. This study established a systematic approach to quantify the effect of RCPs on

  18. Projection of regional demand for labour force under the terms of industry modernization

    Directory of Open Access Journals (Sweden)

    Igor Aleksandrovich Bayev

    2011-06-01

    Full Text Available The article represents the results of research devoted to the problem of demand for labour force projection. The two main priorities of Russian economic development — modernization and innovation — are declared as the factors influencing labour market in a rather intrinsic and specific way. The research of dependence between GDP growth rate per occupied in the most developed countries is conducted and shows the positive influence the innovation process imposes on the demand for labour force. The particular problem is proved to be semi-structured. The selforganisation approach to this problem is proposed and helps to detect that the main shaping process of labour market dynamics is industry modernization. The trend of modernization influence on demand for labour force is revealed and taken under consideration while developing the mathematical model, enabling to predict the demand for labour force with not more than 2% mean absolute percentage error.

  19. The GLOBE/Madagascar Malaria Project: Creating Student/Educator/Scientist Partnerships With Regional Impact

    Science.gov (United States)

    Brooks, D.; Boger, R.; Rafalimanana, A.

    2006-05-01

    Malaria is a parasitic disease spread by mosquitoes in the genus Anopheles. It causes more than 300,000,000 acute illnesses and more than one million deaths annually, including the death of one African child every 30 seconds. Recent epidemiological trends include increases in malaria mortality and the emergence of drug-resistant parasites. Some experts believe that predicted climate changes during the 21st century will bring malaria to areas where it is not now common. The GLOBE Program is currently collaborating with students, educators, scientists, health department officials, and government officials in Madagascar to develop a program that combines existing GLOBE protocols for measuring atmospheric and water quality parameters with a new protocol for collecting and identifying mosquito larvae at the genus (Anopheles and non-Anopheles) level. There are dozens of Anopheles species and sub-species that are adapted to a wide range of micro-environmental conditions encountered in Madagascar's variable climate. Local data collection is essential because mosquitoes typically spend their entire lives within a few kilometers of their breeding sites. The GLOBE Program provides an ideal framework for such a project because it offers a highly structured system for defining experiment protocols that ensure consistent procedures, a widely dispersed network of observing sites, and a centralized data collection and reporting system. Following a series of training activities in 2005, students in Madagascar are now beginning to collect data. Basic environmental parameters and first attempts at larvae collection and identification are presented. Results from this project can be used to increase public awareness of malaria, to provide new scientific data concerning environmental impacts on mosquito breeding, and to provide better information for guiding effective mitigation strategies. Problems encountered include difficulties in visiting and communicating with remote school sites

  20. Abstraction the public from scientific - applied meteorological-climatologic data

    Science.gov (United States)

    Trajanoska, L.

    2010-09-01

    Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific

  1. Annual Climatology of the Diurnal Cycle on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2016-01-01

    Full Text Available We show the annual climatology of the diurnal cycle, stratified by opaque cloud, using the full hourly resolution of the Canadian Prairie data. The opaque cloud field itself has distinct cold and warm season diurnal climatologies; with a near-sunrise peak of cloud in the cold season and an early afternoon peak in the warm season. There are two primary climate states on the Canadian Prairies, separated by the freezing point of water, because a reflective surface snow cover acts as a climate switch. Both cold and warm season climatologies can be seen in the transition months of November, March and April with a large difference in mean temperature. In the cold season with snow, the diurnal ranges of temperature and relative humidity increase quasi-linearly with decreasing cloud, and increase from December to March with increased solar forcing. The warm season months, April to September, show a homogeneous coupling to the cloud cover, and a diurnal cycle of temperature and humidity that depends only on net longwave. Our improved representation of the diurnal cycle shows that the warm season coupling between diurnal temperature range and net longwave is weakly quadratic through the origin, rather than the linear coupling shown in earlier papers. We calculate the conceptually important 24-h imbalances of temperature and relative humidity (and other thermodynamic variables as a function of opaque cloud cover. In the warm season under nearly clear skies, there is a warming of +2oC and a drying of -6% over the 24-h cycle, which is about 12% of their diurnal ranges. We summarize results on conserved variable diagrams and explore the impact of surface windspeed on the diurnal cycle in the cold and warm seasons. In all months, the fall in minimum temperature is reduced with increasing windspeed, which reduces the diurnal temperature range. In July and August, there is an increase of afternoon maximum temperature and humidity at low windspeeds, and a

  2. The Implementation of Project and Research Activities in Working with Gifted Children in Terms of School-University Network Cooperation (Regional Aspect)

    Science.gov (United States)

    Abdrafikova, Albina R.; Akhmadullina, Rimma M.; Singatullova, Aliya A.

    2014-01-01

    The article deals with regional experience in using modern strategies in teaching gifted children. The value of project and research activity is actualized as one of the most effective educational technologies in work with gifted children. The article shows examples of organization of combined project and research activities of student-teachers…

  3. The Regional Marine Science Project of the Carteret County, North Carolina, Public Schools. Experiments in the Use of Field Ecology as an Approach to Understanding Coastal Environments.

    Science.gov (United States)

    Hon, Will

    The development of the Regional Marine Science Project in Carteret County, North Carolina, is portrayed in this booklet. Established with Elementary and Secondary Education Act (ESEA) Title III funds in 1966, the project has evolved from one high school course in marine ecology to numerous courses and activities at all levels, primary through…

  4. Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS)

    Science.gov (United States)

    Rajbhandari, R.; Shrestha, A. B.; Kulkarni, A.; Patwardhan, S. K.; Bajracharya, S. R.

    2015-01-01

    A regional climate modelling system, the Providing REgional Climates for Impacts Studies developed by the Hadley Centre for Climate Prediction and Research, has been used to study future climate change scenarios over Indus basin for the impact assessment. In this paper we have examined the three Quantifying Uncertainty in Model Predictions simulations selected from 17-member perturbed physics ensemble generated using Hadley Centre Coupled Module. The climate projections based on IPCC SRES A1B scenario are analysed over three time slices, near future (2011-2040), middle of the twenty first century (2041-2070), and distant future (2071-2098). The baseline simulation (1961-1990) was evaluated with observed data for seasonal and spatial patterns and biases. The model was able to resolve features on finer spatial scales and depict seasonal variations reasonably well, although there were quantitative biases. The model simulations suggest a non-uniform change in precipitation overall, with an increase in precipitation over the upper Indus basin and decrease over the lower Indus basin, and little change in the border area between the upper and lower Indus basins. A decrease in winter precipitation is projected, particularly over the southern part of the basin. Projections indicate greater warming in the upper than the lower Indus, and greater warming in winter than in the other seasons. The simulations suggest an overall increase in the number of rainy days over the basin, but a decrease in the number of rainy days accompanied by an increase in rainfall intensity in the border area between the upper and lower basins, where the rainfall amount is highest.

  5. Extended regional climate model projections for Europe until the mid-twentyfirst century: combining ENSEMBLES and CMIP3

    Science.gov (United States)

    Heinrich, Georg; Gobiet, Andreas; Mendlik, Thomas

    2014-01-01

    This study aims at sharpening the existing knowledge of expected seasonal mean climate change and its uncertainty over Europe for the two key climate variables air temperature and precipitation amount until the mid-twentyfirst century. For this purpose, we assess and compensate the global climate model (GCM) sampling bias of the ENSEMBLES regional climate model (RCM) projections by combining them with the full set of the CMIP3 GCM ensemble. We first apply a cross-validation in order to assess the skill of different statistical data reconstruction methods in reproducing ensemble mean and standard deviation. We then select the most appropriate reconstruction method in order to fill the missing values of the ENSEMBLES simulation matrix and further extend the matrix by all available CMIP3 GCM simulations forced by the A1B emission scenario. Cross-validation identifies a randomized scaling approach as superior in reconstructing the ensemble spread. Errors in ensemble mean and standard deviation are mostly less than 0.1 K and 1.0 % for air temperature and precipitation amount, respectively. Reconstruction of the missing values reveals that expected seasonal mean climate change of the ENSEMBLES RCM projections is not significantly biased and that the associated uncertainty is not underestimated due to sampling of only a few driving GCMs. In contrast, the spread of the extended simulation matrix is partly significantly lower, sharpening our knowledge about future climate change over Europe by reducing uncertainty in some regions. Furthermore, this study gives substantial weight to recent climate change impact studies based on the ENSEMBLES projections, since it confirms the robustness of the climate forcing of these studies concerning GCM sampling.

  6. RESEARCH ON PROBLEMS WITH PROJECTS AND PARTNERSHIPS THAT PUBLIC INSTITUTIONS IN THE CENTRE REGION FACED IN ACCESSING EUROPEAN FUNDS

    Directory of Open Access Journals (Sweden)

    DUMITRASCU DANUT

    2012-12-01

    Full Text Available European project management is the main filed of the article. Assuming a connection between the degree of absorption of European funds and the degree of maturity of the Romanian society in terms of project management, the article seeks to identify the negative factors on accessing and carrying out European projects. The identified problem is a low degree of absorption of European funds in Romania, and the main objective of the research is to identify the problems faced by the public institutions in the Centre Region in accessing European funds and also the causes that led to the low absorption of European funds. This article’s research is based on a preliminary analysis performed by the authors on the rate of accessing of European funds published in the article called “The current state of European funds absorption through funding programmes – measure of the Romanian performances in the project management practice”. The conclusion of this article was a low rate of absorption of European funds in Romania, a fact that reveals a poor practice of the theory on project management. This article identifies part of the causes of this situation by identifying a part of the problems that stood in the way of beneficiaries of European funds The qualitative and quantitative research methods are used in combination in the research. The investigation has however a highly quantitative character, the purpose of the qualitative research being to provide the prerequisites for achieving the quantitative research. The interview-based qualitative research enabled the researcher to get acquainted with the subjects’ problems related to the theme of investigation, the causes that have generated these problems. This preliminary investigation to the questionnaire-based research aims to provide information that would help the researcher prepare the questionnaire, so that the questions allow getting the most comprehensive information to

  7. The Lick AGN Monitoring Project: Alternate Routes to a Broad-line Region Radius

    CERN Document Server

    Greene, Jenny E; Barth, Aaron J; Bennert, Vardha N; Bentz, Misty C; Filippenko, Alexei V; Gates, Elinor; Malkan, Matthew A; Treu, Tommaso; Walsh, Jonelle L; Woo, Jong-Hak

    2010-01-01

    It is now possible to estimate black hole masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central black holes coevolve. Unfortunately, there are many outstanding uncertainties associated with these "virial" mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region. Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the broad-line region scales as the square root of the X-ray and Hbeta luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total lum...

  8. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  9. Eight-year Climatology of Dust Optical Depth on Mars

    CERN Document Server

    Montabone, L; Millour, E; Wilson, R J; Lewis, S R; Cantor, B A; Kass, D; Kleinboehl, A; Lemmon, M; Smith, M D; Wolff, M J

    2014-01-01

    We have produced a multiannual climatology of airborne dust from Martian year 24 to 31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the Martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced, but possibly incomplete, spatio-temporal grid, using an iterative procedure weighted in space, time, and retrieval uncertainty. In order to evaluate strengths and weaknesses of the resulting gridded maps, we validat...

  10. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-06-01

    Full Text Available This study introduces an observation-based dust identification approach and applies it to reconstruct long-term dust climatology in the western United States. Long-term dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24

  11. Supporting a Regional Agricultural Sector with Geo & Mainstream ICT – the Case Study of Space4Agri Project

    Directory of Open Access Journals (Sweden)

    T. Kliment

    2014-12-01

    Full Text Available Agriculture is a global issue nowadays. At the European level, it is a sector, in which we are investing many resources. In particular, the Agri-Food sector plays a central role in the policies of the European Commission and the Horizon 2020 research and innovation program, as well as being the main theme of Expo 2015 that will be held in Milan, Lombardy. In the Lombardy region, the farmers represent 2% of the entire population, cultivating about 80% of the agricultural land. Increasing needs to develop a common body of knowledge shared at the regional and national level so as to make it possible to effectively monitor cropping systems, water stress and impacts of climate changes affecting more frequently the territory, are becoming more and more urgent. In this context, the project Space4Agri (S4A intends to support the regional and local needs in terms of management of the agriculture sector, by designing and developing an information and knowledge based platform for managing geospatial and mainstream information by making it accessible over the Internet by standard communication technologies (Geo&Mainstream ICT. This platform has been designed to allow data workflows integrating i spatial data and observations, ii non-spatial information available from existing agronomic databases, iii data collected in the field by farmers, agronomists and volunteers using mobile applications, iv data collected by unmanned aerial sensors, and/or data produced by researchers as a result of applying scientific analysis on high quality remote sensing data. Foreseen results of the Space4Agri project and from other similar ongoing research activities may significantly spur the socio-economic development of Europe and create new growth opportunities for companies, public administrations, students and citizens.

  12. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Jamison M Gove

    Full Text Available Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km from 85% of our study locations

  13. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Science.gov (United States)

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  14. Eight-year climatology of dust optical depth on Mars

    Science.gov (United States)

    Montabone, L.; Forget, F.; Millour, E.; Wilson, R. J.; Lewis, S. R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M. T.; Smith, M. D.; Wolff, M. J.

    2015-05-01

    We have produced a multiannual climatology of airborne dust from martian year 24-31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced spatio-temporal grid, using an iterative procedure that is weighted in space, time, and retrieval quality. The lack of observations at certain times and locations introduces missing grid points in the maps, which therefore may result in irregularly gridded (i.e. incomplete) fields. In order to evaluate the strengths and weaknesses of the resulting gridded maps, we compare with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability, in addition to provide a basis for instrument intercomparison. Finally, we have produced regularly gridded maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modeling

  15. Comparison of pure and hybrid iterative reconstruction techniques with conventional filtered back projection: Image quality assessment in the cervicothoracic region

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Masaki, E-mail: mkatsura-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sato, Jiro; Akahane, Masaaki; Matsuda, Izuru; Ishida, Masanori; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2013-02-15

    Objectives: To evaluate the impact on image quality of three different image reconstruction techniques in the cervicothoracic region: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP). Methods: Forty-four patients underwent unenhanced standard-of-care clinical computed tomography (CT) examinations which included the cervicothoracic region with a 64-row multidetector CT scanner. Images were reconstructed with FBP, 50% ASIR-FBP blending (ASIR50), and MBIR. Two radiologists assessed the cervicothoracic region in a blinded manner for streak artifacts, pixilated blotchy appearances, critical reproduction of visually sharp anatomical structures (thyroid gland, common carotid artery, and esophagus), and overall diagnostic acceptability. Objective image noise was measured in the internal jugular vein. Data were analyzed using the sign test and pair-wise Student's t-test. Results: MBIR images had significant lower quantitative image noise (8.88 ± 1.32) compared to ASIR images (18.63 ± 4.19, P < 0.01) and FBP images (26.52 ± 5.8, P < 0.01). Significant improvements in streak artifacts of the cervicothoracic region were observed with the use of MBIR (P < 0.001 each for MBIR vs. the other two image data sets for both readers), while no significant difference was observed between ASIR and FBP (P > 0.9 for ASIR vs. FBP for both readers). MBIR images were all diagnostically acceptable. Unique features of MBIR images included pixilated blotchy appearances, which did not adversely affect diagnostic acceptability. Conclusions: MBIR significantly improves image noise and streak artifacts of the cervicothoracic region over ASIR and FBP. MBIR is expected to enhance the value of CT examinations for areas where image noise and streak artifacts are problematic.

  16. [Consultation per video-conferencing with regional hospitals: the MEDKOM project of the Hannover Medical University].

    Science.gov (United States)

    Link, H; Poliwoda, H

    1999-01-01

    Consultations between doctors are necessary tools for decisions in diagnosis and treatment of patients. The mainstay is a sound communication between the participants, using verbal and audio-visual means. Usually clinical findings and imaging results are included. Using video technology with ISDN (integrated services digital network), such consulting can be performed across any distance. The department of hematology and oncology of the Medical School Hanover has introduced such a system in 1989 for conferencing with 12 regional hospitals and two private practices. It is now a well recognized and established system being applied for 270 sessions and for 1100 Patients per year. It is an integrated part of the co-operation, also allows medical education and quality improvement.

  17. The Energy Community of Southeast Europe: A neo-functionalist project of regional integration

    Directory of Open Access Journals (Sweden)

    Stephan Renner

    2009-02-01

    Full Text Available This paper explains the emergence of the Energy Community of Southeast Europe with (1 the European Union’s external energy policy, (2 the specific regional approach of the EU at the Western Balkans and (3 the neo-functionalist ideas of those European Commission officials that were crucially involved in the process. The guiding ideas of the Commission officials involved were directly drawn from a 'popular version' of neo-functionalism: the idea that peace can be established with integration starting in a highly technical area and with creating the institutional capacity for a possible spill-over into other areas. Through this export of the EU’s rules and institutions in the energy sector the Energy Community represents an innovative new mode of governance in Southeast Europe.

  18. Application of remote sensing in regional scale estimates of vegetation carbon budgets: The Belfix project

    Science.gov (United States)

    Veroustraete, Frank; Patyn, Johan; Myneni, R. B.

    1994-01-01

    A concept for coupling the remote sensing derived fraction of the absorbed photosynthetic active radiation (FAPAR) with a functional ecosystem model was developed. The study was named the Belfix procedure. The quantification of changes in carbon dynamics at the ecosystem level is a key issue in studies of global climatic change effects at the vegetation atmosphere interface. An operational procedure, for the determination of carbon fluxes at the regional scale (Belgian territory), is presented. The approach allows for the determination of the sink function of vegetation for carbon (dioxide). The phyto- and litter mass, photosynthetic assimilation, autotroph and heterotroph carbon fluxes and net ecosystem exchange (NEE) of carbon, were evaluated. The results suggest that a single solution can be obtained for ecosystem rates and states, applying an iterative procedure, based on minimizing the change in maximal seasonal green phytomass in function of yearly FAPAR temporal profiles. Total phytomass values obtained are in close range with those obtained by ground sampling.

  19. Evaluating the effect of climate change on areal reduction factors using regional climate model projections

    Science.gov (United States)

    Li, Jingwan; Sharma, Ashish; Johnson, Fiona; Evans, Jason

    2015-09-01

    Areal reduction factors (ARFs) are commonly used to transform point design rainfall to represent the average design rainfall for a catchment area. While there has been considerable attention paid in the research and engineering communities to the likely changes in rainfall intensity in future climates, the issue of changes to design areal rainfall has been largely ignored. This paper investigates the impact of climate change on ARFs. A new methodology for estimating changes in ARFs is presented. This method is used to assess changes in ARFs in the greater Sydney region using a high-resolution regional climate model (RCM). ARFs under present (1990-2009) and future (2040-2059) climate conditions were derived and compared for annual exceedance probabilities (AEPs) from 50% to 5% for durations ranging from 1 h to 120 h. The analysis shows two main trends in the future changes in ARFs. For the shortest duration events (1-h) the ARFs are found to increase which implies that these events will tend to have a larger spatial structure in the future than the current climate. In contrast, storms with durations between 6 and 72 h are likely to have decreased ARFs in the future, suggesting a more restricted spatial coverage of storms under a warming climate. The extent of the decrease varies with event frequency and catchment size. The largest decreases are found for large catchments and rare events. Although the results here are based on a single RCM and need to be confirmed in future work with multiple models, the framework that is proposed will be useful for future studies considering changes in the areal extent of rainfall extremes.

  20. Hubble Tarantula Treasury Project. II. The Star-formation History of the Starburst Region NGC 2070 in 30 Doradus

    Science.gov (United States)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Tosi, M.; Zaritsky, D.; Anderson, J.; Lennon, D. J.; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Grebel, E. K.; Smith, L. J.; Zeidler, P.

    2015-10-01

    We present a study of the recent star formation (SF) of 30 Doradus in the Large Magellanic Cloud (LMC) using the panchromatic imaging survey Hubble Tarantula Treasury Project. In this paper we focus on the stars within 20 pc of the center of 30 Doradus, the starburst region NGC 2070. We recovered the SF history by comparing deep optical and near-infrared color-magnitude diagrams (CMDs) with state-of-the-art synthetic CMDs generated with the latest PAdova and TRieste Stellar Evolution Code (PARSEC) models, which include all stellar phases from pre-main-sequence to post-main-sequence. For the first time in this region we are able to measure the SF using intermediate- and low-mass stars simultaneously. Our results suggest that NGC 2070 experienced prolonged activity. In particular, we find that the SF in the region (1) exceeded the average LMC rate ≈ 20 Myr ago, (2) accelerated dramatically ≈ 7 Myr ago, and (3) reached a peak value 1-3 Myr ago. We did not find significant deviations from a Kroupa initial mass function down to 0.5 {M}⊙ . The average internal reddening E(B-V) is found to be between 0.3 and 0.4 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  1. Wood chips procurement and research project at the Mikkeli region; Puuhakkeen hankinta- ja tutkimusprojekti Mikkelin seudulla

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, T. [Finnish Forest Research Inst., Suonenjoki (Finland). Suonenjoki Research Station; Auvinen, P. [Mikkeli city (Finland). Dept. of Agriculture and Forestry

    1996-12-31

    In 1993-94, a large-scale energywood production chain started as a co-operation project by the Mikkeli city forest office and local forestry societies. In 1995 over 115 000 m{sup 3} (about 85 000 MWh of energy) of wood chips were delivered to Pursiala heat and power plant in Mikkeli. About 75 % of these chips was forest processed chips. About 70 % of the forest processed chips was whole tree chips from improvement cuttings of young forest stands and the rest was logging waste chips from regeneration cutting areas. The average total delivery costs of forest processed chips after reduction of energywood and other subsidies were approximately 45 FIM/m{sup 3} (60 FIM/MWh) for the whole tree chips and 38 FIM/m{sup 3} (50 FIM/MWh) for logging waste chips. The delivery costs of forest processed chips could meet the target of Bioenergy Research Programme (45 FIM/MWh) only in the most favourable cases. In an average the delivery costs were about 9 FIM/MWh more than the price obtained when sold to the heat and power plant. However the wood chip production created 27 new jobs and the increase of income to the local economy was about 2.2 milj. FIM /year. The local communities got new tax revenue about 3 FIM/MWh. The gain for the forestry was approximated to be 5 - 6 FIM/MWh. The resources of forest processed chips were studied on the basis of stand measurements. According to the study the most remarkable energywood resources were in young thinning stands on Oxalis-Myrtillus and Myrtillus forest site types. On Oxalis-Myrtillus type almost every and on Myrtillus type every second stand included energywood more than 40 m{sup 3}/ha

  2. Final Technical Report for "Collaborative Research. Regional climate-change projections through next-generation empirical and dynamical models"

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, S. [Univ. of Wisconsin, Milwaukee, WI (United States); Robertson, Andrew W. [Columbia Univ., New York, NY (United States); Ghil, Michael [Univ. of California, Los Angeles, CA (United States); Smyth, Padhraic J. [Univ. of California, Irvine, CA (United States)

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to

  3. Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.W.; Ghil, M.; Kravtsov, K.; Smyth, P.J.

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to

  4. Osnovy formirovanija sistemy upravlenija riskami proektov innovacionnogo razvitija akvakul'tury v regione (Na primere Kaliningradskoj oblasti [The formation of a risk management system for projects in the field of aquaculture innovative development in the Kaliningrad region: a case study

    Directory of Open Access Journals (Sweden)

    Serbulov Alexey

    2012-01-01

    Full Text Available This article sets out to develop the concept and the principal scheme of the formation of a risk management system for innovative economic development projects in the field of aquaculture. The research carried out by the authors helps identify the main problems and characteristics of risk management projects for the development of aquaculture in presentday Russia. The authors outline the status and features of aquaculture development projects in the North-western federal district and the Kaliningrad region. The article formulates and justifies the concept of “risk management projects in innovative development of aquaculture in the region” focusing on the classification of aquaculture risks in relation to innovative development projects, which expands the conceptual framework of risk management in view of the specific risks relating to economic development projects in the field of aquaculture. The authors characterize modern methods and approaches to risk management projects and organizations in the context of their application in the framework of aquaculture development projects and offer mechanisms for risk management of aquaculture development projects, which make it possible to include risk management activity in the general context of activities of parent project organizations. The authors develop the concept and principal scheme of the formation of risk management system for innovative development projects in aquaculture.

  5. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    Science.gov (United States)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  6. Problems and countermeasures in construction of transmission line projects in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    GuoShang Wang; QiHao Yu; YanHui You; Ze Zhang; Lei Guo; ShiJun Wang; Yong Yu

    2014-01-01

    Construction of power transmission lines is becoming an important part of permafrost engineering in China. This paper reviews the construction status and problems of transmission lines in different countries, as well as corresponding solutions that would be of practical significance for sustainable engineering practices. Russia has the longest history of transmission line construction in permafrost areas, with transmission lines (mainly 220 kV and 500 kV) spanning approximately 100,000 km. However, all countries suffer from permafrost-related tower foundation stability problems caused by freez-ing-thawing hazards such as frost heave and thaw settlement, frost lifting, and harmful cryogenic phenomena. As point-line transmission line constructions, the lines, poles and towers should be reasonably selected and installed with a comprehensive consideration of frozen soil characteristics to effectively reduce the occurrence of freezing-thawing dis-asters. Reinforced concrete pile foundations are widely used in the permafrost regions, and construction in winter is also a universal practice. Moreover, facilitating engineering measures like thermosyphons are an effective way to reduce freez-ing-thawing hazards and to maintain the stability of tower foundations.

  7. The California Hotspots Project: identifying regions of rapid diversification of mammals.

    Science.gov (United States)

    Davis, Edward Byrd; Koo, Michelle S; Conroy, Chris; Patton, James L; Moritz, Craig

    2008-01-01

    The high rate of anthropogenic impact on natural systems mandates protection of the evolutionary processes that generate and sustain biological diversity. Environmental drivers of diversification include spatial heterogeneity of abiotic and biotic agents of divergent selection, features that suppress gene flow, and climatic or geological processes that open new niche space. To explore how well such proxies perform as surrogates for conservation planning, we need first to map areas with rapid diversification -'evolutionary hotspots'. Here we combine estimates of range size and divergence time to map spatial patterns of neo-endemism for mammals of California, a global biodiversity hotspot. Neo-endemism is explored at two scales: (i) endemic species, weighted by the inverse of range size and mtDNA sequence divergence from sisters; and (ii) as a surrogate for spatial patterns of phenotypic divergence, endemic subspecies, again using inverse-weighting of range size. The species-level analysis revealed foci of narrowly endemic, young taxa in the central Sierra Nevada, northern and central coast, and Tehachapi and Peninsular Ranges. The subspecies endemism-richness analysis supported the last four areas as hotspots for diversification, but also highlighted additional coastal areas (Monterey to north of San Francisco Bay) and the Inyo Valley to the east. We suggest these hotspots reflect the major processes shaping mammal neo-endemism: steep environmental gradients, biotic admixture areas, and areas with recent geological/climate change. Anthropogenic changes to both environment and land use will have direct impacts on regions of rapid divergence. However, despite widespread changes to land cover in California, the majority of the hotspots identified here occur in areas with relatively intact ecological landscapes. The geographical scope of conserving evolutionary process is beyond the scale of any single agency or nongovernmental organization. Choosing which land to

  8. Physical Environmental Correlates of Domain-Specific Sedentary Behaviours across Five European Regions (the SPOTLIGHT Project)

    Science.gov (United States)

    De Cocker, Katrien; Roda, Célina; Oppert, Jean-Michel; Mackenbach, Joreintje D.; Lakerveld, Jeroen; Glonti, Ketevan; Bardos, Helga; Rutter, Harry; Cardon, Greet; De Bourdeaudhuij, Ilse

    2016-01-01

    Background The relation between neighbourhood environmental factors and domain-specific sedentary behaviours among adults remains unclear. This study firstly aims to examine the association of perceived and objectively measured neighbourhood safety, aesthetics, destinations and functionality with transport-related, work-related and leisure-time sedentary behaviour. Secondly, the study aims to assess whether these associations are moderated by age, gender or educational level. Methods In 60 randomly sampled neighbourhoods from 5 urban regions in Europe (Ghent and suburbs, Paris and inner suburbs, Budapest and suburbs, the Randstad, and Greater London), a virtual audit with Google Street View was performed to assess environmental characteristics. A total of 5,205 adult inhabitants of these neighbourhoods reported socio-demographic characteristics, sedentary behaviours, and neighbourhood perceptions in an online survey. Generalized linear mixed models were conducted to examine associations between physical environmental neighbourhood factors and sedentary behaviours. Interaction terms were added to test the moderating role of individual-level socio-demographic variables. Results Lower levels of leisure-time sedentary behaviour (i.e. all leisure activities except television viewing and computer use) were observed among adults who perceived greater numbers of destinations such as supermarkets, recreational facilities, or restaurants in their neighbourhood, and among adults who lived in a neighbourhood with more objectively measured aesthetic features, such as trees, water areas or public parks. Lower levels of work-related sedentary behaviour were observed among adults who perceived less aesthetic features in their neighbourhood, and among adults who lived in a neighbourhood with less objectively measured destinations. Both age, gender and educational level moderated the associations between neighbourhood environmental factors and sedentary behaviours. Conclusion

  9. Patterns of active and passive smoking, and associated factors, in the South-east Anatolian Project (SEAP region in Turkey

    Directory of Open Access Journals (Sweden)

    Ceylan Ali

    2006-01-01

    Full Text Available Abstract Background Smoking is an important health threat in Turkey. This study aimed to determine the frequency of and main factors associated with smoking in persons of 15 years and over, and the frequency of passive smoking in homes in the South-east Anatolian Project (SEAP Region in Turkey. Methods A cross sectional design was employed. The sample waschosen by the State Institute of Statistics using a stratified cluster probability sampling method. 1126 houses representing the SEAP Region were visited. Questionnaires about tobacco smoking and related factors were applied to 2166 women and 1906 men (of 15 years old and above in their homes. Face-to-face interview methods were employed. Participants were classified as current, ex, and non-smokers. The presence of a regular daily smoker in a house was used as an indication of passive smoking. The chi-square andlogistic regressionanalysis methods were used for the statistical analysis. Results The prevalence of smoking, in those of 15 years and over, was 11.8% in women and 49.7% in men. The prevalence of current smokers was higher in urban (34.5 % than in rural (22.8 % regions. The mean of total cigarette consumption was 6.5 packs/year in women and 17.9 packs/year in men. There was at least one current smoker in 70.1% of the houses. Conclusion Smoking is a serious problem in the South-eastern Anatolian Region. Male gender, middle age, a high level of education and urban residency were most strongly associated with smoking.

  10. Project GeoPower: Basic subsurface information for the utilization of geothermal energy in the Danish-German border region

    Science.gov (United States)

    Kirsch, Reinhard; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Hese, Fabian; Mathiesen, Anders; Møller Nielsen, Carsten; Nielsen, Lars Henrik; Offermann, Petra; Poulsen, Niels Erik; Rabbel, Wolfgang; Thomsen, Claudia

    2016-04-01

    Information on both hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. This is paramount in particular for densely populated international border regions, where different subsurface applications may introduce conflicts of use and require reliable cross-border management and planning tools. In the framework of the Interreg4a GeoPower project, fundamental geological and geophysical information of importance for the planning of geothermal energy utilization in the Danish-German border region was compiled and analyzed. A 3D geological model was developed and used as structural basis for the set-up of a regional temperature model. In that frame, new reflection seismic data were obtained to close local data gaps in the border region. The analyses and reinterpretation of available relevant data (old and new seismic profiles, core and well-log data, borehole data, literature data) and a new time-depth conversion (new velocity model) allowed correlation of seismic profiles across the border. On this basis, new topologically consistent depth and thickness maps for 12 geological/lithological units were drawn, with special emphasis on potential geothermal reservoirs, and a new 3D structural geological model was developed. The interpretation of petrophysical data (core data and well logs) allows to evaluate the hydraulic and thermal rock properties of geothermal formations and to develop a parameterized 3D thermal conductive subsurface temperature model. New local surface heat-flow values (range: 72-84 mW/m²) were determined and predicted temperature were calibrated and validated by borehole temperature observations. Finally, new temperature maps for major geological sections (e.g. Rhaetian/Gassum, Middle Buntsandstein) and selected constant depth intervals (1 km, 2 km, etc.) were compiled. As an example, modelled temperatures for the Middle Buntsandstein geothermal reservoir are shown with temperatures ranging

  11. Examination of groundwater flow scales and results of water balance observation in the regional hydrogeological study project field.

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Tomoya; Inaba, Kaoru; Saegusa, Hiromitsu; Takeuchi, Shinji [Japan Nuclear Cycle Development Inst., Tono Geoscience Center, Toki, Gifu (Japan)

    2002-09-01

    The Tono Geoscience center has been continuing water balance observation since fiscal 1998, and examining groundwater recharge into the basement rock. This report analyzes water balance at seven catchments in the regional hydrogeological study project field, and the applicability of area precipitation, an important item of water balance analysis, is examined. The result of the examination is shown below. Values of groundwater recharge in the small-scale catchments, such as upstream and downstream of the Shobagawa, are influence by the local groundwater flow system. But, those in the Shobagawa catchment are influenced by the larger groundwater flow system. The plane distribution of groundwater recharge matches the result of the distribution of groundwater flow analysis. (author)

  12. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Sierra Nevada Regional (SNR) study unit was investigated as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment Program Priority Basin Project. The study was designed to provide statistically unbiased assessments of the quality of untreated groundwater within the primary aquifer system of the Sierra Nevada. The primary aquifer system for the SNR study unit was delineated by the depth intervals over which wells in the State of California’s database of public drinking-water supply wells are open or screened. Two types of assessments were made: (1) a status assessment that described the current quality of the groundwater resource, and (2) an evaluation of relations between groundwater quality and potential explanatory factors that represent characteristics of the primary aquifer system. The assessments characterize untreated groundwater quality, rather than the quality of treated drinking water delivered to consumers by water distributors.

  13. Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region

    Energy Technology Data Exchange (ETDEWEB)

    Blade, Ileana; Fortuny, Didac [Universitat de Barcelona, Facultat de Fisica, Departament d' Astronomia i Meteorologia, Barcelona (Spain); Liebmann, Brant [CIRES Climate Diagnostics Center, NOAA/Earth System Research Laboratory, Boulder, CO (United States); Oldenborgh, Geert Jan van [Royal Dutch Meteorological Institute, De Bilt (Netherlands)

    2012-08-15

    Climate models predict substantial summer precipitation reductions in Europe and the Mediterranean region in the twenty-first century, but the extent to which these models correctly represent the mechanisms of summertime precipitation in this region is uncertain. Here an analysis is conducted to compare the observed and simulated impacts of the dominant large-scale driver of summer rainfall variability in Europe and the Mediterranean, the summer North Atlantic Oscillation (SNAO). The SNAO is defined as the leading mode of July-August sea level pressure variability in the North Atlantic sector. Although the SNAO is weaker and confined to northern latitudes compared to its winter counterpart, with a southern lobe located over the UK, it significantly affects precipitation in the Mediterranean, particularly Italy and the Balkans (correlations of up to 0.6). During high SNAO summers, when strong anticyclonic conditions and suppressed precipitation prevail over the UK, the Mediterranean region instead is anomalously wet. This enhanced precipitation is related to the presence of a strong upper-level trough over the Balkans - part of a hemispheric pattern of anomalies that develops in association with the SNAO - that leads to mid-level cooling and increased potential instability. Neither this downstream extension nor the surface influence of the SNAO is captured in the two CMIP3 models examined (HadCM3 and GFDL-CM2.1), with weak or non-existent correlations between the SNAO and Mediterranean precipitation. Because these models also predict a strong upward SNAO trend in the future, the error in their representation of the SNAO surface signature impacts the projected precipitation trends. In particular, the attendant increase in precipitation that, based on observations, should occur in the Mediterranean and offset some of the non-SNAO related drying does not occur. Furthermore, the fact that neither the observed SNAO nor summer precipitation in Europe/Mediterranean region

  14. Climate change and projections for the Barents region: what is expected to change and what will stay the same?

    Science.gov (United States)

    Benestad, Rasmus E.; Parding, Kajsa M.; Isaksen, Ketil; Mezghani, Abdelkader

    2016-05-01

    We present an outlook for a number of climate parameters for temperature, precipitation, and storm statistics in the Barents region. Projected temperatures exhibited strongest increase over northern Fennoscandia and the high Arctic, exceeding 7 °C by 2099 for a typical ‘warm winter’ under the RCP4.5 scenario. More extreme temperatures may be expected with the RCP8.5, with an increase exceeding 18 °C in some places. The magnitude of the day-to-day variability in temperature is likely to decrease with higher temperatures. The skill of the downscaling models was moderate for the wet-day frequency for which the projections indicated both increases and decreases within the range of -5-+10% by 2099. The downscaled results for the wet-day mean precipitation was poor, but for the warming associated with RCP 4.5, it could result in wet-day mean precipitation being intensified by as much as 70% in 2099. The number of synoptic storms over the Barents Sea was found to increase with a warming in the Arctic, however, other climate parameters may not change much, such as the persistence of the temperature and precipitation. These climate change projections were derived using a new strategy for empirical-statistical downscaling, making use of principal component analysis to represent the local climate parameters and large ensembles of global climate model (GCM) simulations to provide information about the large scales. The method and analysis were validated on three different levels: (a) the representativeness of the GCMs, (b) traditional validation of the downscaling method, and (c) assessment of the ensembles of downscaled results in terms of past trends and interannual variability.

  15. Future projections of the Greenland ice sheet energy balance driving the surface melt, developed using the regional climate MAR model

    Directory of Open Access Journals (Sweden)

    B. Franco

    2012-07-01

    Full Text Available In this study, 25 km-simulations are performed over the Greenland ice sheet (GrIS throughout the 20th and 21st centuries, using the regional climate model MAR forced by four RCP scenarios from two CMIP5 global circulation models, in order to investigate the projected changes of the surface energy balance (SEB components driving the surface melt. Analysis of 2000–2100 melt anomalies compared to melt results over 1980–1999 reveals an exponential relationship of the GrIS surface melt rate simulated by MAR to the near-surface temperature (TAS anomalies, mainly due to the surface albedo positive feedback associated with the extension of bare ice areas in summer. On the GrIS margins, the future melt anomalies are rather driven by stronger sensible heat fluxes, induced by enhanced warm air advections over the ice sheet. Over the central dry snow zone, the increase of melt surpasses the negative feedback from heavier snowfall inducing therefore a decrease of the summer surface albedo even at the top of the ice sheet. In addition to the incoming longwave flux increase associated to the atmosphere warming, MAR projects an increase of the cloud cover decreasing the ratio of the incoming shortwave versus longwave radiation and dampening the albedo feedback. However, it should be noted that this trend in the cloud cover is contrary to that simulated by ERA-INTERIM-forced MAR over current climate, where the observed melt increase since the 1990's seems rather to be a consequence of more anticyclonic atmospheric conditions. Finally, no significant change is projected in the length of the melt season. This timing highlights the importance of solar radiation in the melt SEB.

  16. Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar

    Directory of Open Access Journals (Sweden)

    Sulin Tao

    2016-02-01

    Full Text Available A sensitivity analysis of the responses of crops to the chosen production adaptation options under regional climate change was conducted in this study. Projections of winter wheat production for different sowing dates and cultivars were estimated for a major economic and agricultural province of China from 2021 to 2080 using the World Food Study model (WOFOST under representative concentration pathways (RCPs scenarios. A modeling chain was established and a correction method was proposed to reduce the bias of the resulting model-simulated climate data. The results indicated that adjusting the sowing dates and cultivars could mitigate the influences of climate change on winter wheat production in Jinagsu. The yield gains were projected from the chosen sowing date and cultivar. The following actions are recommended to ensure high and stable yields under future climate changes: (i advance the latest sowing date in some areas of northern Jiangsu; and (ii use heat-tolerant or heat-tolerant and drought-resistant varieties in most areas of Jiangsu rather than the currently used cultivar. Fewer of the common negative effects of using a single climate model occurred when using the sensitivity analysis because our bias correction method was effective for scenario data and because the WOFOST performed well for Jiangsu after calibration.

  17. Mechanism of early-summer low-temperature extremes in Japan projected by a nonhydrostatic regional climate model

    Directory of Open Access Journals (Sweden)

    Akihiko Murata

    2014-08-01

    Full Text Available We investigated the mechanisms associated with projected early-summer low-temperature extremes in Japan at the end of the 21st century by means of a well-developed nonhydrostatic regional climate model under the A1B scenario provided by the Intergovernmental Panel on Climate Change-Special Report on Emission Scenario. The projected surface air temperature reveals that even in a climate warmer than that at present, extremely low daily minimum temperatures in early summer are comparable to those in the present climate at several locations. At locations where future low temperatures are remarkable, the temperature drop at night is larger in the future than at present. This temperature drop results from mainly two heat fluxes: upward longwave radiation and latent heat flux. In the future climate, upward longwave radiation increases owing to high temperature at the surface around the time of the sunset. In addition, the upward flux of latent heat increases owing to low relative humidity just above the surface. These dryer conditions are associated with lower relative humidity at 850 hPa, suggesting the effects of synoptic systems. These two fluxes act to reduce the surface temperature, and hence surface air temperature.

  18. National and Regional Scale Rice Crop Monitoring in Asia with the RIICE and PRISM Projects: From Research to Operation

    Science.gov (United States)

    Nelson, A.; Quicho, E. D.; Maunahan, A. A.; Setiyono, T. D.; Raviz, J. V.; Rala, A. B.; Laborte, A. G.; Holecz, F.; Collivignarelli, F.; Gatti, L.; Barbieri, M.; Mabalay, M. R. O.; De Dios, J. L.; Quilang, E. J. P.

    2015-12-01

    In recent years, remote sensing based mapping and monitoring of the rice crop have been demonstrated in many pilot studies and research sites - mainly in Asia - using both optical and SAR sensors and ground based observations. These efforts have been partly driven by the high demand for more timely, more detailed and more accurate information on the rice crop for applications in both public and private sector, such as food security policy, crop and land management, infrastructure investment and crop insurance. The basic premise being that better access to better information leads to eventual benefits for both producers and consumers through better investment and management at all levels. To realise these benefits means scaling up this work to national and regional levels. This presentation summarises the progress of two related projects in Asia: RIICE (Remote Sensing-based Information and Insurance in emerging Economies) and PRISM (Philippine Rice Information SysteM) that are making the transition from research to operation with the support of national governments and international donors. The presentation focuses on the technology, the partnerships, the achievements and the challenges in embedding both the capacity and the technology for remote sensing based monitoring of rice in countries in South and South East Asia. We highlight several aspects which are essential for a successful transition to a sustainable operational status and lessons learned in each country where the two projects have been operating.

  19. Spatially adaptive probabilistic computation of a sub-kilometre resolution lightning climatology for New Zealand

    Science.gov (United States)

    Etherington, Thomas R.; Perry, George L. W.

    2017-01-01

    Lightning is a key component of the Earth's atmosphere and climate systems, and there is a potential positive feedback between a warming climate and increased lightning activity. In the biosphere, lightning is important as the main natural ignition source for wildfires and because of its contribution to the nitrogen cycle. Therefore, it is important to develop lightning climatologies to characterise and monitor lightning activity. While traditional methods for constructing lightning climatologies are suitable for examining lightning's influence on atmospheric processes, they are less well suited for examining questions about biosphere-lightning interactions. For example, examining the interaction between lightning and wildfires requires linking atmospheric processes to finer scale terrestrial processes and patterns. Most wildfires ignited by lightning are less than one hectare in size, and so require lightning climatologies at a comparable spatial resolution. However, such high resolution lightning climatologies cannot be derived using the traditional cell-count methodology. Here we present a novel geocomputational approach for analysing lightning data at high spatial resolutions. Our approach is based on probabilistic computational methods and is capable of producing a sub-kilometre lightning climatology that honours the spatial accuracy of the strike locations and is adaptive to underlying spatial patterns. We demonstrate our methods by applying them to the mid-latitude oceanic landmass of New Zealand, an area with geographic conditions that are under-represented in existing lightning climatologies. Our resulting lightning climatology has unparalleled spatial resolution, and the spatial and temporal patterns we observe in it are consistent with other continental and tropical lightning climatologies. To encourage further use and development of our probabilistic approach, we provide Python scripts that demonstrate the method alongside our resulting New Zealand

  20. The application of low-rank and sparse decomposition method in the field of climatology

    Science.gov (United States)

    Gupta, Nitika; Bhaskaran, Prasad K.

    2017-03-01

    The present study reports a low-rank and sparse decomposition method that separates the mean and the variability of a climate data field. Until now, the application of this technique was limited only in areas such as image processing, web data ranking, and bioinformatics data analysis. In climate science, this method exactly separates the original data into a set of low-rank and sparse components, wherein the low-rank components depict the linearly correlated dataset (expected or mean behavior), and the sparse component represents the variation or perturbation in the dataset from its mean behavior. The study attempts to verify the efficacy of this proposed technique in the field of climatology with two examples of real world. The first example attempts this technique on the maximum wind-speed (MWS) data for the Indian Ocean (IO) region. The study brings to light a decadal reversal pattern in the MWS for the North Indian Ocean (NIO) during the months of June, July, and August (JJA). The second example deals with the sea surface temperature (SST) data for the Bay of Bengal region that exhibits a distinct pattern in the sparse component. The study highlights the importance of the proposed technique used for interpretation and visualization of climate data.

  1. Climatological characteristics of the tropics in China: climate classification schemes between German scientists and Huang Bingwei

    Institute of Scientific and Technical Information of China (English)

    ManfredDomroes

    2003-01-01

    Reviewing some important German scientists who have developed climatic regionalization schemes either on a global or Chinese scale, their various definitions of the tropical climate characteristics in China are discussed and compared with Huang Bingwei's climate classification scheme and the identification of the tropical climate therein. It can be seen that, due to different methodological approaches of the climatic regionalization schemes, the definitions of the tropics vary and hence also their spatial distribution in China. However, it is found that the tropical climate type occupies only a peripheral part of southern China, though it firmly represents a distinctive type of climate that is subsequently associated with a great economic importance for China. As such, the tropical climate type was mostly identified with its agro-climatological significance, that is by giving favourable growing conditions all-year round for perennial crops with a great heat demand. Tropical climate is, hence, conventionally regarded to be governed by all-year round summer conditions "where winter never comes".

  2. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    Directory of Open Access Journals (Sweden)

    N. Forsythe

    2014-09-01

    Full Text Available A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal components analysis (PCA of those variables and k means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight sub-regional climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential both for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded datasets, both meteorological reanalyses and climate models, for reproducing sub-regional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range, climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  3. Analysis of freshwater flux climatology over the Indian Ocean using the HOAPS data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Schulz, J.

    that the evaporation is the lowest over AS in the OB88 climatology as compared to the SOC and HOAPS clima- tologies; whereas, in the case of BB, they are lowest in the HOAPS climatology, while it is highest in the SOC cli- matology. In the case of the SIO, the SOC..., whereas SOC shows small convergence and the OB climatology shows divergence. All the three clima- tologies show divergence for the IO as a whole, with the HOAPS data set showing the largest divergence and the Fig. 5. (a) The mean annual cycle...

  4. Available climatological and oceanographical data for site investigation program

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, S.; Ambjoern, C.; Juhlin, B.; Larsson-McCann, S.; Lindquist, K. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    2000-03-15

    Information on available data, measurements and models for climate, meteorology, hydrology and oceanography for six communities have been analysed and studied. The six communities are Nykoeping, Oesthammar, Oskarshamn, Tierp, Hultsfred and Aelvkarleby all of them selected by Svensk Kaernbraenslehantering AB, SKB, for a pre-study on possibilities for deep disposal of used nuclear fuel. For each of them a thorough and detailed register of available climatological data together with appropriate statistical properties are listed. The purpose is to compare the six communities concerning climatological and oceanographical data available and analyse the extent of new measurements or model applications needed for all of the selected sites. Statistical information on precipitation, temperature and runoff has good coverage in all of the six communities. If new information concerning any of these variables is needed in sites where no data collection exist today new installation can be made. Data on precipitation in form of snow and days with snow coverage is also available but to a lesser extent. This concerns also days with ground frost and average ground frost level where there is no fully representation of data. If more information is wanted concerning these variables new measurements or model calculations must be initiated. Data on freeze and break-up of ice on lakes is also insufficient but this variable can be calculated with good result by use of one-dimensional models. Data describing air pressure tendency and wind velocity and direction is available for all communities and this information should be sufficient for the purpose of SKB. This is also valid for the variables global radiation and duration of sunshine where no new data should be needed. Measured data on evaporation is normally not available in Sweden more than in special research basins. Actual evaporation is though a variable that easily can be calculated by use of models. There are many lakes in the six

  5. Modeling drought impact occurrence based on climatological drought indices for four European countries

    Science.gov (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin

    2014-05-01

    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information (www.geo.uio.no/edc/droughtdb/). The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  6. Projected Precipitation Changes within the Great Lakes Region: A Multi-scale Analysis of Precipitation Intensity and Seasonality

    Science.gov (United States)

    Basile, S.; Steiner, A. L.; Brown, D.; Bryan, A. M.

    2014-12-01

    The Great Lakes region supports a diverse network of agriculture, transportation and tourism centered on some of the largest freshwater bodies of water in the world. Precipitation affects these sectors as concerns about precipitation timing and intensity can affect the agricultural growing season, runoff, and subsequent water quality. Here, we examine precipitation projections for mid-century (2041-2065) within the Great Lakes basin (GLB) and two sub-regions using three climate model ensembles of varying resolutions to constrain and compare associated precipitation uncertainties. These include: 1. atmosphere-ocean models from the CMIP5 global simulations with the RCP 8.5 scenario (12 members, resolution ranging from ~1 to ~3 degrees), 2. dynamically downscaled regional climate models from NARCCAP with the SRES A2 scenario (4 members at ~0.5 degree resolution (50 km)), and 3. high resolution (~0.25 degree resolution (25 km)) regional climate model simulations with the RCP 8.5 scenario (RegCM (hereafter RCM3(HiRes)), 2 members). For the entire GLB, all three ensembles captured the intensity of historical events well, but with a bias in the high intensity precipitation events as compared to observed intensity, with fewer overprediction events by the NARCCAP and RCM3(HiRes) ensembles. Daily probability density functions from three model ensembles reveal consistent increases in high precipitation event probabilities for all seasons, even after accounting for wet model biases during the observation period (1980-1999). Comparing all three ensembles to the historical period for the GLB, both CMIP5 and NARCCAP ensembles capture the annual seasonal cycle with a wet bias in the winter and spring, while the RCM3(HiRes) ensemble shows a dry bias for all seasons except winter. For the Lake Michigan and Western Lake Erie basin sub-regions, the spring and winter biases remain present across ensembles, however the RCM3(HiRes) summer dry bias is reduced. Overall, the three climate

  7. What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?

    Energy Technology Data Exchange (ETDEWEB)

    Di Vittorio, Alan V.; Kyle, Page; Collins, William D.

    2016-11-01

    Understanding the potential impacts of climate change is complicated by mismatched spatial representations between gridded Earth System Models (ESMs) and Integrated Assessment Models (IAMs), whose regions are typically larger and defined by geopolitical and biophysical criteria. In this study we address uncertainty stemming from the construction of land use regions in an IAM, the Global Change Assessment Model (GCAM), whose regions are currently based on historical climatic conditions (1961-1990). We re-define GCAM’s regions according to projected climatic conditions (2070-2099), and investigate how this changes model outcomes for land use, agriculture, and forestry. By 2100, we find potentially large differences in projected global and regional area of biomass energy crops, fodder crops, harvested forest, and intensive pasture. These land area differences correspond with changes in agricultural commodity prices and production. These results have broader implications for understanding policy scenarios and potential impacts, and for evaluating and comparing IAM and ESM simulations.

  8. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    Directory of Open Access Journals (Sweden)

    M. Osman

    2015-11-01

    agrees with the MOPITT CO total column within ±5 %, which is consistent with previous reports. The maps clearly show major regional CO sources such as biomass burning in the central and southern Africa and anthropogenic emissions in eastern China. The dataset shows the seasonal CO cycle over different latitude bands and altitude ranges that are representative of the regions as well as long-term trends over latitude bands. We observe a decline in CO over the Northern Hemisphere extratropics and the tropics consistent with that reported by previous studies. Similar maps have been made using the concurrent O3 measurements by MOZAIC-IAGOS, as the global variation of O3–CO correlations can be a useful tool for the evaluation of ozone sources and transport in chemical transport models. We anticipate use of the trajectory-mapped MOZAIC-IAGOS CO dataset as an a priori climatology for satellite retrieval, and for air quality model validation and initialization.

  9. Temporal and Spatial Changes in Northern Hemisphere Floating Climatological Seasons

    Science.gov (United States)

    Choi, G.; Robinson, D. A.

    2007-12-01

    Floating climatological seasons, for which onsets and durations vary temporally and spatially, are examined over Northern Hemisphere continents and oceans. Among the variables evaluated are surface air temperature, snow extent, vegetation greenness, and atmospheric carbon dioxide concentrations. Seasonal thresholds are defined for each variable (e.g. daily mean temperature exceeding 5°C (20°C) to mark the beginning of spring (summer)). The dates on which these thresholds are reached at a given location are determined for each year over the past three decades. These seasonal onsets and offsets "float" temporally and spatially from year to another. An analysis of floating dates finds that winter duration has shortened in Europe, eastern Asia, and western North America, primarily due to an earlier spring onset. The spatial pattern of this earlier onset is associated with a positive Arctic Oscillation (AO) regime in the previous winter months. The positive winter AO finds anomalously high pressure sitting in the middle latitudes in locations where spring arrives early. This is likely due to a combination of advective fluxes of warmth and moisture and the local enhancement of solar radiation reaching the surface under clear skies. This, in turn, promotes earlier snow melt that further enhances warming and an earlier green-up. Extended summer duration is observed over continents and oceans (except the Arctic Ocean, where summer does not exist). The oceanic zone along 30°N has experienced a particularly large increase in duration, suggesting Hadley cell expansion.

  10. Utah Southwest Regional Geothermal Development Operations Research Project. Appendix 10 of regional operations research program for development of geothermal energy in the Southeast United States. Final technical report, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Green, Stanley; Wagstaff, Lyle W.

    1979-01-01

    The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states, conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.

  11. Five-day back trajectory climatology for Rukomechi (Zambezi valley, Zimbabwe)

    Science.gov (United States)

    Nyanganyura, D.; Makarau, A.; Milford, J. R.; Mathuthu, M.; Helas, G.; Meixner, F. X.

    2003-04-01

    A five-year (1994-1999) back trajectory climatology has been established for Rukomechi Research Station/Zimbabwe (Zambezi Valley, 16^o 09' S, 29^o 26'E). Mixed layer air trajectories passing over Rukomechi are described in terms of directions of origin, wind speed, and inter- and intra annual periods of predominant flow. Trajectories show four possible source regions of air mass transport to Rukomechi: (1) northern Madagascar and Mozambique (with high winds during October/ November and low winds during December/January), (2) the Indian ocean south of Madagascar (with high and low winds during March and August/September, respectively), (3) the southern Atlantic and the tip of South Africa regions (with high winds during the middle of austral winter (June/July)), and (4) Zambia and Angola (bringing in mid-wet season air masses, which might carry the influence of the ITCZ). We also observed recirculating air masses which seem not to portray any season characteristics and which change year-by-year. The slow component of corridor (2) shows prevailing tendency, it is the main contributor of airflow to Rukomechi and it is dominant in the dry period (October to December). The year-to-year temporal variations show that 1997 was an abnormal year for the airflow over the research site. This has to be studied together with the variation in the meteorological parameters like rainfall during this period to find the influence of northern Zimbabwe air masses flows on the regional weather patterns. The importance of the presented classification is to narrow potential source regions of trace constituents and their most likely times of influence at Rukomechi througout the year on a monthly basis.

  12. On the semi-diagnostic computation of climatological circulation in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Rao, A.D.; Dube, S.K.; Bahulayan, N.

    data were found to be fully smoothed during the adaptation stages. Semi-di- agnostic technique is an effective tool to study the clima- tological circulation and also for the smoothing of climatological temperature and salinity data. References...

  13. Monthly Summaries of the Global Historical Climatology Network - Daily (GHCN-D)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly Summaries of Global Historical Climatology Network (GHCN)-Daily is a dataset derived from GHCN-Daily. The data are produced by computing simple averages or...

  14. SST Anomaly, NOAA POES AVHRR, Casey and Cornillon Climatology, 0.1 degrees, Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes SST anomaly data using a combination of the POES AVHRR Global Area Coverage data, and data from a climatological database by Casey and...

  15. Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

    Science.gov (United States)

    Feistel, R.; Wielgosz, R.; Bell, S. A.; Camões, M. F.; Cooper, J. R.; Dexter, P.; Dickson, A. G.; Fisicaro, P.; Harvey, A. H.; Heinonen, M.; Hellmuth, O.; Kretzschmar, H.-J.; Lovell-Smith, J. W.; McDougall, T. J.; Pawlowicz, R.; Ridout, P.; Seitz, S.; Spitzer, P.; Stoica, D.; Wolf, H.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  16. The Moli-Sani Project, a randomized, prospective cohort study in the Molise region in Italy; design, rationale and objectives

    Directory of Open Access Journals (Sweden)

    Licia Iacoviello

    2007-06-01

    Full Text Available

    Background: Cardiovascular disease and malignancies account for more than 70% of all causes of mortality and morbidity in Italy. There is a subtle balance between genetic determinants and lifestyle, that often defines the line between health and sickness. So far studies aiming at identifying risk factors have mainly come from Northern Europe and the USA. It was to understand this balance between genetics and environmental determinants better, and to tailor appropriate preventive strategies for Italian and other Southern European populations, that theMoli-sani project was launched, transforming a small Italian region into a large scientific laboratory: the “Molise lab”.

    Methods: Each participant receives a thorough medical check-up at no cost to either him/her or the national health service, resulting in thousands of hours of free public health care. With a completely computerized system, Moli-sani is a “paperless” study, in which researchers and participants communicate using recently developed technologies such as mobile phone text messages (SMS. The newly established biological data bank (the “MoliBank” will be one of the largest in Europe. Results: Early results of 8000 participants so far show a slightly worrying pattern of risk factors for a Mediterranean population. The prevalence of obesity, hypertension and metabolic syndrome is growing at rates close to those of other Western countries. Hypertension and, to a lesser extent, high blood glucose levels, are under-diagnosed and underestimated by patients, and appropriate therapy appears under-used and not very successful. However, cholesterol management appears more efficient.

    Conclusions: Paying particular attention towards innovation and new technologies, theMoli-sani project has placed itself at the cutting edge of a new paradigm crossing research and prevention.

  17. Extending and Merging the Purple Crow Lidar Temperature Climatologies Using the Inversion Method

    Science.gov (United States)

    Jalali, Ali; Sica, R. J.; Argall, P. S.

    2016-06-01

    Rayleigh and Raman scatter measurements from The University of Western Ontario Purple Crow Lidar (PCL) have been used to develop temperature climatologies for the stratosphere, mesosphere, and thermosphere using data from 1994 to 2013 (Rayleigh system) and from 1999 to 2013 (vibrational Raman system). Temperature retrievals from Rayleigh-scattering lidar measurements have been performed using the methods by Hauchecorne and Chanin (1980; henceforth HC) and Khanna et al. (2012). Argall and Sica (2007) used the HC method to compute a climatology of the PCL measurements from 1994 to 2004 for 35 to 110 km, while Iserhienrhien et al. (2013) applied the same technique from 1999 to 2007 for 10 to 35 km. Khanna et al. (2012) used the inversion technique to retrieve atmospheric temperature profiles and found that it had advantages over the HC method. This paper presents an extension of the PCL climatologies created by Argall and Sica (2007) and Iserhienrhien et al. (2013). Both the inversion and HC methods were used to form the Rayleigh climatology, while only the latter was adopted for the Raman climatology. Then, two different approaches were used to merge the climatologies from 10 to 110 km. Among four different functional identities, a trigonometric hyperbolic relation results in the best choice for merging temperature profiles between the Raman and Low level Rayleigh channels, with an estimated uncertainty of 0.9 K for merging temperatures. Also, error function produces best result with uncertainty of 0.7 K between the Low Level Rayleigh and High Level Rayleigh channels. The results show that the temperature climatologies produced by the HC method when using a seed pressure are comparable to the climatologies produced by the inversion method. The Rayleigh extended climatology is slightly warmer below 80 km and slightly colder above 80 km. There are no significant differences in temperature between the extended and the previous Raman channel climatologies. Through out

  18. Formation and Development of Diabatic Rossby Vortices in a 10-Year Climatology

    Science.gov (United States)

    2012-06-01

    DEVELOPMENT OF DIABATIC ROSSBY VORTICES IN A 10-YEAR CLIMATOLOGY by Nengwei “Tom” Shih June 2012 Thesis Advisor: Richard W. Moore Second...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Formation and Development of Diabatic Rossby Vortices in a 10-Year Climatology 5...release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) A diabatic Rossby vortex (DRV) is a short-scale

  19. Evaluating the performance of CMIP5 GCMs in Northern Eurasia and constructing optimal ensemble projection: analysis of regional precipitati