WorldWideScience

Sample records for climate change workshop

  1. CCME Climate Change Indicators -- Workshop Report

    International Nuclear Information System (INIS)

    2000-01-01

    In an effort to give Canadians a better understanding of the climate change issue, in 1999 the Canadian Council of Ministers of the Environment (CCME) established a Project Working Group to identify and assemble a set of climate change indicators that is scientifically valid, useful and meaningful to the public. To ensure the widest possible participation of experts from all parts of the country the Project Working Group convened a two-day workshop in Toronto to take place on the 6th and 7th of November 2000. The outcome of the workshop, summarized in this report, resulted in a 'Made in Canada' framework of indicators for climate change impacts, divided into five categories: physical environment, personal health and safety, jobs and economic well-being, social and community well-being, and eco-system health. The report contains highlights of the discussions. There are seven appendices containing, respectively, a series of pre-workshop suggestions for indicators (Appendix A), the workshop agenda and backgrounder (Appendix B), a list of participants (Appendix C), presentation slides on the Canada country study (Appendix D), existing and proposed climate change indicators (Appendix E), presentation slides on communication issues (Appendix F), and notes summarizing small group discussions, including assessment of the level of interest demonstrated and opinions expressed by group members about the utility and value of each of the proposed indicators (Appendix G)

  2. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-01-01

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  3. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  4. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  5. Proceedings from the Sustainable Development and Climate Change Workshop

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Olhoff, Anne

    national examples of sustainable development policies with large impacts on climate change were given at the workshop. These include: 1) The ethanol programme of Brazil. 2) Energy efficiency programmes in China that are part of general economic development strategies. 3) Development of natural gas supply......The specific objectives of the workshop were: 1) To consider how longer-term development priorities link with climate change concerns. 2) To identify options for meeting developing countries needs and priorities while contributing to sustainable development both locally and globally. 3) To discuss...... possible longer term action at domestic and international levels by countries to further the sustainable development and climate change discussion. First of all, it was recognised that there has been a strong support, endorsement, and agreement among all participants on using sustainable development...

  6. Climate change adaptation in the Canadian energy sector : workshop report

    International Nuclear Information System (INIS)

    2009-01-01

    This workshop on climate change adaptation in the Canadian energy sector was conducted in order to develop a climate change work plan for the Council of Energy Ministers (CEM) as well as to develop awareness and dialogue within Canada's energy sector. Industry members and government officials identified findings from recent assessment reports on climate change adaptation and discussed ways in which the international oil and gas industry is currently adapting its operations and technologies to ensure continuing safety and risk mitigation. The use of hydrological models to forecast the potential impacts of climate change was discussed, and the drivers of climate change adaptation were reviewed. A total of 26 topics were identified, 13 of which were prioritized for group discussions based on their impact and urgency. The following 5 topics were finally identified as top priority topics: (1) climate change adaptation science, (2) co-ordinated local, provincial, national, and international policies, (3) information sharing and knowledge transfer, (4) aging infrastructure and increasing demand, and (5) market mechanisms for adaptation. Four presentations were given during the initial portion of the workshop. 4 tabs., 1 fig

  7. Proceedings of a climate change workshop

    International Nuclear Information System (INIS)

    1996-11-01

    Canadian Gas Association (CGA) member companies are drawn from the transmission, distribution and manufacturing sectors with additional membership from producers, energy service providers, marketers and others interested in the industry. Fifty-four delegates participated at this climate change workshop at which Canada's voluntary challenge and registry (VCR) program, a key component of the national action program on climate change, was the major topic of discussion. It was reported that as of October 1996, all member distribution companies and three major pipeline companies had filed action plans with the VCR office. The accomplishments of all member companies in the areas of reducing their own emissions, technology development, and other environmentally related activities were also reviewed. tabs., figs

  8. National stakeholder workshops on climate change - 2002 : summary report

    International Nuclear Information System (INIS)

    2002-08-01

    This summary report is based on 14 reports prepared following a series of 1 day climate change workshops held in 14 cities across Canada during the period of June 7 to 24, 2002. The input has been grouped into important themes that were highlighted during the workshops. The key messages focused on analysis and modelling, an overall approach to the Kyoto Protocol, targeted measures, domestic emissions trading, purchases of international emissions permits, preferred approach to the Kyoto Protocol, risks, and impacts and adaptations. The workshops were designed to provide participants with a better understanding of ways to respond to climate change and the Kyoto Protocol. They were also designed to obtain the views of the participants and options contained in the Federal Discussion Paper on Canada's Contribution to Addressing Climate Change, as well as the National Climate Change Process, and the national analysis conducted by the Analysis and Modelling Group (AMG). While many participants agreed that climate change is a real problem requiring attention, there were widely divergent views regarding the ratification of the Kyoto Protocol. Industry participants suggested alternative approaches that include a longer time frame, less restrictive targets and greater harmonization with the United States approach. The Alberta Plan gained some interest because it contained some of these characteristics, however, some argued that the Alberta Action Plan must meet the Kyoto target. There was good support for Targeted Measures, a mix of support and some concerns for Domestic Emissions Trading (DET), and opposition to the international purchases under the Clean Development Mechanisms and Joint Implementation. There was little support for Canada's request for Clean Energy Export Credits. The western provinces and Quebec were in favour of negotiated covenants with a regulatory backstop as an alternative to DET. 1 tab

  9. Pre-service teacher professional development on climate change: Assessment of workshop success and influence of prior knowledge

    Science.gov (United States)

    Veron, D. E.; Ad-Marbach, G.; Fox-Lykens, R.; Ozbay, G.; Sezen-Barrie, A.; Wolfson, J.

    2017-12-01

    As states move to adopt the next generation science standards, in-service teachers are being provided with professional development that introduces climate change content and best practices for teaching climate change in the classroom. However, research has shown that it is challenging to bring this information into the higher education curriculum in education courses for pre-service teachers due to curricular and programming constraints. Over two years, the Maryland and Delaware Climate Change Assessment and Research (MADE-CLEAR) project explored a professional development approach for pre-service teachers which employed paired workshops that resulted in participant-developed lesson plans based on climate change content. The workshops were designed to provide pre-service teachers with climate change content related to the carbon cycle and to model a variety of techniques and activities for presenting this information in the classroom. Lesson plans were developed between the first and second workshop, presented at the second workshop and discussed with peers and in-service teachers, and then revised in response to feedback from the second workshop. Participant climate change content knowledge was assessed before the first workshop, and after the final revision of the lesson plan was submitted to the MADE-CLEAR team. Climate content knowledge was also assessed using the same survey for additional pre-service teacher groups who did not participate in the professional development. Results show that while the paired workshop approach increased climate content knowledge, the amount of improvement varied depending on the participants' prior knowledge in climate change content. In addition, some alternate conceptions of climate change were not altered by participant involvement in the professional development approach. Revised lesson plans showed understanding of underlying climate change impacts and demonstrated awareness of appropriate techniques for introducing this

  10. Proceedings from the sustainable development and climate change workshop

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.; Olhoff, A.

    2001-07-01

    The specific objectives of the workshop were: 1) To consider how longer-term development priorities link with climate change concerns. 2) To identify options for meeting developing countries needs and priorities while contributing to sustainable development both locally and globally. 3) To discuss possible longer term action at domestic and international levels by countries to further the sustainable development and climate change discussion. First of all, it was recognised that there has been a strong support, endorsement, and agreement among all participants on using sustainable development as a framework for climate change olicies, and this agreement is very encouraging for further activities and collaboration. Furthermore, there is a need for new innovative international financial schemes taht can support sustainable development investments with large climate change benefits. This is maybe beyond the scope of the UNFCCC, but will maybe be more important than the convention in controlling global GHG emissions. It was several times emphasised in the discussion that capacity building and institutional strengthening in developning countries are needed to implement long-term global strategies. Several national examples of sustainable development policies with large impacts on climate change were given at the workshop. These include: 1) The ethanol programme of Brazil. 2)Energy efficiency programmes in China that are part of general economic development strategies. 3) Development of natural gas supply through investment in a pipeline project in Shanghai in China. 4) Energy efficiency and renewable energy programme in India that are linked to economic development programmes. Detailed national programmes for forestry, agriculture and land use sectors. 5) National development programmes including climate change policies in South Korea with broad stakeholder participation, and the use of market instruments. 6) The South Africa approach to use sustainable development

  11. Proceedings from the sustainable development and climate change workshop

    International Nuclear Information System (INIS)

    Halsnaes, K.; Olhoff, A.

    2001-01-01

    The specific objectives of the workshop were: 1) To consider how longer-term development priorities link with climate change concerns. 2) To identify options for meeting developing countries needs and priorities while contributing to sustainable development both locally and globally. 3) To discuss possible longer term action at domestic and international levels by countries to further the sustainable development and climate change discussion. First of all, it was recognised that there has been a strong support, endorsement, and agreement among all participants on using sustainable development as a framework for climate change olicies, and this agreement is very encouraging for further activities and collaboration. Furthermore, there is a need for new innovative international financial schemes taht can support sustainable development investments with large climate change benefits. This is maybe beyond the scope of the UNFCCC, but will maybe be more important than the convention in controlling global GHG emissions. It was several times emphasised in the discussion that capacity building and institutional strengthening in developning countries are needed to implement long-term global strategies. Several national examples of sustainable development policies with large impacts on climate change were given at the workshop. These include: 1) The ethanol programme of Brazil. 2)Energy efficiency programmes in China that are part of general economic development strategies. 3) Development of natural gas supply through investment in a pipeline project in Shanghai in China. 4) Energy efficiency and renewable energy programme in India that are linked to economic development programmes. Detailed national programmes for forestry, agriculture and land use sectors. 5) National development programmes including climate change policies in South Korea with broad stakeholder participation, and the use of market instruments. 6) The South Africa approach to use sustainable development

  12. A Faculty Workshop Model to Integrate Climate Change across the Curriculum

    Science.gov (United States)

    Teranes, J. L.

    2017-12-01

    Much of the growing scientific certainty of human impacts on the climate system, and the implications of these impacts on current and future generations, have been discovered and documented in research labs in colleges and universities across the country. Often these institutions also take decisive action towards combatting climate change, by making significant reductions in greenhouse emissions and pledging to greater future reductions. Yet, there are still far too many students that graduate from these campuses without an adequate understanding of how climate change will impact them within their lifetimes and without adequate workforce preparation to implement solutions. It may be that where college and universities still have the largest influence on climate change adaption and mitigation is in the way that we educate students. Here I present a curriculum workshop model at UC San Diego that leverages faculty expertise to infuse climate change education across disciplines to enhance UC San Diego students' climate literacy, particularly for those students whose major focus is not in the geosciences. In this model, twenty faculty from a breadth of disciplines, including social sciences, humanities, arts, education, and natural sciences participated in workshops and developed curricula to infuse aspects of climate change into their existing undergraduate courses. We particularly encouraged development of climate change modules in courses in the humanities, social sciences and arts that are best positioned to address the important human and social dimensions of climate change. In this way, climate change content becomes embedded in current course offerings, including non-science courses, to increase climate literacy among a greater number and a broader cross-section of students.

  13. Experts' workshop on critical issues in the science of global climate change. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    A summary is given of the International Petroleum Industry Environmental Conservation Association's Workshop on 'Critical issues in the science of global climate change' held in 1994. The topics of the panel sessions were (1) modelling global climate change: capabilities and limitations; (2)the physics and chemistry of greenhouse gas concentrations; (3) other factors in predicting climate change; and (4) ecosystem response. (UK)

  14. Biological and Environmental Research: Climate and Environmental Sciences Division: U.S./European Workshop on Climate Change Challenges and Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Laboratory; McCord, Raymond [Oak Ridge National Laboratory; Sisterson, Doug [Argonne National Laboratory; Voyles, Jimmy [Pacific Northwest National Laboratory

    2012-11-08

    The workshop aimed to identify outstanding climate change science questions and the observational strategies for addressing them. The scientific focus was clouds, aerosols, and precipitation, and the required ground- and aerial-based observations. The workshop findings will be useful input for setting priorities within the Department of Energy (DOE) and the participating European centers. This joint workshop was envisioned as the first step in enhancing the collaboration among these climate research activities needed to better serve the science community.

  15. Climate change and disturbance interactions: Workshop on climate change and disturbance interactions in western North America, Tucson, Ariz., 12-15 February 2007

    Science.gov (United States)

    McKenzie, Don; Allen, Craig D.

    2007-01-01

    Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?Researchers in climatology, ecosystem science, fire and insect ecology, and landscape modeling from across western North America convened in Tucson, Ariz., for a 2 and a half day intensive workshop to identify new research directions in climate change and disturbance ecology. Four work groups focused on different aspects of the response of disturbance regimes to climate change: (1) extreme events and climatic variability (2) the effects of changing disturbance regimes on ecosystems, (3) disturbance interactions and cumulative effects, and (4) developing new landscape disturbance models. The workshop was structured with the analytic hierarchy process, a decision support method for achieving consensus from diverse groups of experts without sacrificing individual contributions.

  16. Workshop on ''Climate change and environmental issues in transportation''

    Energy Technology Data Exchange (ETDEWEB)

    Rothengatter, Werner; Ott, Anselm; Scholz, Aaron (and others)

    2008-07-15

    The workshop covers the following issues: 1. Recommendations - action list: raking responsibility; analyzing the areas of impact; designing the instruments. 2. Climate change and necessary responses: challenges for the economy and the transportation sector; external cost of transportation and climate change. 3. Taking responsibility in the transportation sector: global responsibility; strategy in air transportation, strategies in road transportation; strategies in rail transportation, strategies in shipping.

  17. A healthy turn in urban climate change policies; European city workshop proposes health indicators as policy integrators.

    Science.gov (United States)

    Keune, Hans; Ludlow, David; van den Hazel, Peter; Randall, Scott; Bartonova, Alena

    2012-06-28

    The EU FP6 HENVINET project reviewed the potential relevance of a focus on climate change related health effects for climate change policies at the city region level. This was undertaken by means of a workshop with both scientists, city representatives from several EU-countries, representatives of EU city networks and EU-experts. In this paper we introduce some important health related climate change issues, and discuss the current city policies of the participating cities. The workshop used a backcasting format to analyse the future relevance of a health perspective, and the main benefits and challenges this would bring to urban policy making. It was concluded that health issues have an important function as indicators of success for urban climate change policies, given the extent to which climate change policies contribute to public health and as such to quality of life. Simultaneously the health perspective may function as a policy integrator in that it can combine several related policy objectives, such as environmental policies, health policies, urban planning and economic development policies, in one framework for action. Furthermore, the participants to the workshop considered public health to be of strategic importance in organizing public support for climate change policies. One important conclusion of the workshop was the view that the connection of science and policy at the city level is inadequate, and that the integration of scientific knowledge on climate change related health effects and local policy practice is in need of more attention. In conclusion, the workshop was viewed as a constructive advance in the process of integration which hopefully will lead to ongoing cooperation. The workshop had the ambition to bring together a diversity of actor perspectives for exchange of knowledge and experiences, and joint understanding as a basis for future cooperation. Next to the complementarities in experience and knowledge, the mutual critical reflection

  18. Climate change science applications and needs in forest ecosystem management: a workshop organized as part of the northern Wisconsin Climate Change Response Framework Project

    Science.gov (United States)

    Leslie Brandt; Chris Swanston; Linda Parker; Maria Janowiak; Richard Birdsey; Louis Iverson; David Mladenoff; Patricia. Butler

    2012-01-01

    Climate change is leading to direct and indirect impacts on forest tree species and ecosystems in northern Wisconsin. Land managers will need to prepare for and respond to these impacts, so we designed a workshop to identify forest management approaches that can enhance the ability of ecosystems in northern Wisconsin to cope with climate change and address how National...

  19. Creating dialogue: a workshop on "Uncertainty in Decision Making in a Changing Climate"

    Science.gov (United States)

    Ewen, Tracy; Addor, Nans; Johnson, Leigh; Coltekin, Arzu; Derungs, Curdin; Muccione, Veruska

    2014-05-01

    Uncertainty is present in all fields of climate research, spanning from projections of future climate change, to assessing regional impacts and vulnerabilities, to adaptation policy and decision-making. In addition to uncertainties, managers and planners in many sectors are often confronted with large amounts of information from climate change research whose complex and interdisciplinary nature make it challenging to incorporate into the decision-making process. An overarching issue in tackling this problem is the lack of institutionalized dialogue between climate researchers, decision-makers and user groups. Forums that facilitate such dialogue would allow climate researchers to actively engage with end-users and researchers in different disciplines to better characterize uncertainties and ultimately understand which ones are critically considered and incorporated into decisions made. We propose that the introduction of students to these challenges at an early stage of their education and career is a first step towards improving future dialogue between climate researchers, decision-makers and user groups. To this end, we organized a workshop at the University of Zurich, Switzerland, entitled "Uncertainty in Decision Making in a Changing Climate". It brought together 50 participants, including Bachelor, Master and PhD students and academic staff, and nine selected speakers from academia, industry, government, and philanthropy. Speakers introduced participants to topics ranging from uncertainties in climate model scenarios to managing uncertainties in development and aid agencies. The workshop consisted of experts' presentations, a panel discussion and student group work on case studies. Pedagogical goals included i) providing participants with an overview of the current research on uncertainty and on how uncertainty is dealt with by decision-makers, ii) fostering exchange between practitioners, students, and scientists from different backgrounds, iii) exposing

  20. Teaching about Climate Change and Energy with Online Materials and Workshops from On the Cutting Edge

    Science.gov (United States)

    Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.

    2009-12-01

    Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role

  1. DTU climate change technologies. Recommendations on accelerated development and deployment of climate change technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Halsnaes, K [Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, System Analysis Div., Roskilde (Denmark); Nielsen, Niels Axel; Moeller, J S; Hansen, Jakob Fritz; Froekjaer Strand, I [Technical Univ. of Denmark, Kgs. Lyngby (Denmark)

    2009-09-15

    During 2009, the Technical University of Denmark (DTU) has held a number of international workshops for climate change. Participants came from industry, research institutions and government. The workshops focused on sustainable energy systems and climate change adaptation. The summary of conclusions and recommendations from the workshops constitutes a comprehensive set of technology tracks and recommended actions towards accelerated development and deployment of technology within these two key areas. The workshop process has led to three main conclusions. A. Radical changes are needed to develop sustainable energy systems. B. Tools and processes that climate-proof societal planning and management are needed in order to adapt to climate change. C. Partnerships concerning innovation and deployment (research, development and deployment) are required to meet time constraints.

  2. Report of the workshop on Climate Sensitivity

    International Nuclear Information System (INIS)

    2004-01-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO 2 doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions, and transient

  3. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  4. Resilient Rotterdam. Climate change as a challenge. Report of a workshop

    International Nuclear Information System (INIS)

    Wardekker, J.A.; De Jong, A.; Van der Sluijs, J.P.

    2008-12-01

    The objective of the study of the resilience of Rotterdam (the Netherlands) with regard to climate change is twofold: 1) to obtain insight in the concepts resilience and uncertainty; to gain insight in how a resilience oriented approach deals with uncertainties about the future; and (2) putting the resilience oriented approach into operation in a case: the area outside the dike of Rotterdam, the Netherlands, which is designated for new buildings. The objective of the workshop was manifold: Making a small inventory of problems that could arise in the area outside the dike of Rotterdam caused by climate change; thinking about working out the 'resilience approach' in concrete options for climate change adaptation in this area; making an inventory of knowledge questions that come from the people that are involved in the design of the area; applying, testing and assessing a number of 'frame-based methods' for structural thinking about such issues [nl

  5. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions, and

  6. Report of the workshop on Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The IPCC Working Group I (WGI) held this Workshop on Climate Sensitivity as a major keystone in activities preparing for the WGI contribution to the IPCC Fourth Assessment Report (AR4). One of the most important parameters in climate science is the 'climate sensitivity', broadly defined as the global mean temperature change for a given forcing, often that of a doubling of atmospheric carbon dioxide. Climate sensitivity has played a central role throughout the history of IPCC in interpretation of model outputs, in evaluation of future climate changes expected from various scenarios, and it is closely linked to attribution of currently observed climate changes. An ongoing challenge to models and to climate projections has been to better define this key parameter, and to understand the differences in computed values between various models. Throughout the last three IPCC assessments the climate sensitivity has been estimated as being in the range 1.5 to 4.5 deg. C for CO{sub 2} doubling (i.e., uncertain by a factor of three), making this parameter central to discussions of uncertainty in climate change. The aims of the workshop were to: - Evaluate a range of climate model results so as to relate different climate sensitivity estimates to differences descriptions of physical processes, particularly those related to atmospheric water vapor, clouds, lapse rate changes, ocean heat uptake, treatment of evapotranspiration, land-atmosphere coupling, etc.; - Obtain a more comprehensive picture of the relationships between climate sensitivity and other model features such as resolution, numerical approach, radiative transfer parameters, etc.; - Consider how current, historical, and paleo-climatic data can aid in the determination of the likely range of climate sensitivity; - Improve the understanding of the interpretation and limits of the climate sensitivity concept, including for example possible dependencies upon different forcing agents, predictability questions

  7. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2010 - part 1)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.

  8. US/Japan workshop on mitigation and adaptation technologies related to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bernthal, F.M.

    1993-12-31

    It is a great pleasure for me to have the honor of delivering the keynote address for this important gathering, an honor enhanced further because of the many activities and historic relationships represented by this workshop. First of all, it represents the spirit of continuing cooperation and good relations between the United States and Japan. With the aid of the framework provided by the U.S./Japan Science and Technology Agreement, our two nations can come together to address a problem that has no national boundaries {hor_ellipsis} and we can think about solutions of potential benefit to all citizens of the global community. This workshop also symbolizes the spirit of cooperation so characteristic of the conduct of research in science and technology -- cooperation between us as individual scientists and engineers, between the various institutions we represent, and across our diverse disciplines. This workshop is only the second of its kind. The first US/Japan Workshop on global climate change was held last year in Japan. That workshop focused on cooperative scientific research in the United States and Japan. Out of it came a general agreement to continue collaborative work and to extend cooperation into the area of global change-related technologies, in particular those technologies that hold promise for mitigation and adaptation.

  9. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  10. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    Wei-Chyung, Wang; Isaksen, I.S.A.

    1993-01-01

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O 3 ; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  11. Our knowledge on climate change

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Van Wijk, A.J.M.

    1991-01-01

    A workshop was organised to evaluate and discuss the report 'Scientific Assessment of Climate Change (1990)' of the Intergovernmental Panel on Climate Change (IPCC). Thirty prominent Dutch experts in the field attended the workshop. The introductions and discussions held on our knowledge of climatic change as a result of the growth of the greenhouse effect caused by the emission of greenhouse gases from human actions are presented. It is concluded that the IPCC-report shows in a clear and balanced way the certainties and uncertainties in our knowledge of climate change. There is a large chance that the earth's climate will change considerably, if the policy remains unamended. 15 figs., 2 apps

  12. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science

    Science.gov (United States)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.

    2012-12-01

    To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic

  13. Impact of Climate Change on Drylands. Climate variability, livelihood strategies and policy options

    Energy Technology Data Exchange (ETDEWEB)

    Verhagen, A. [Plant Research International, Wageningen (Netherlands); Dietz, A.J. [Amsterdam Research Institute for Global Issues and Development Studies AGIDS, University of Amsterdam UvA, Amsterdam (Netherlands)

    2001-09-01

    The findings of the Impact of Climate Change on Drylands (ICCD) project were discussed during a workshop held on 26 and 27 April 2001. The aims of the workshop were to disseminate the findings of the ICCD project, create awareness of the possible effects of climate change and contribute to the dialogue on climate change research in West Africa. Both the workshop and the project were financed by the National Research Programme on Global Air Pollution and Climate Change (NRP), Centre Technique de Cooperation de Agricole et Rurale (CTA), Wageningen University (INREF), and Amsterdam Research Institute for Global Issues and Development Studies (AGIDS)

  14. The petroleum industry's response to climate change: The role of the IPIECA Global Climate Change Working Group

    International Nuclear Information System (INIS)

    Lemlin, J.S.; Graham Bryce, I.

    1994-01-01

    IPIECA formed the Global Climate Change Working Group in 1988 to coordinate members' efforts to understand the global climate change issue, to promote support for education and research, and to serve as the focus for engaging with international activities. The working group has sponsored a number of activities, including seminars and workshops. The Lisbon Experts Workshop on Socio-Economic Assessment of Climate Change in 1993 represents the most recent IPIECA forum for interaction between industry experts and those involved in the production of the IPCC 1995 Second Assessment Report. This workshop is described in the article. (author)

  15. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  16. Proceedings of the CEATI water management 2008 workshop : climate change impacts on hydroelectric water resource management

    International Nuclear Information System (INIS)

    2008-01-01

    Hydroelectric power will occupy a significant portion of future renewable energy sources. This conference provided a forum for scientists, industry experts, and utility operators to discuss methods of determining and managing the potential impacts of climatic change on water resources. Attendants at the conference discussed issues related to future water supplies, and examined methods of predicting hydrological shifts and pattern changes for various watersheds and basins. Methods of using global climate and regional climate models for predicting the impacts of climatic change on water resources were reviewed, and new strategies for simulating and predicting shifts in sedimentation and shoreline erosion were discussed. New technologies and tools designed to improve the accuracy of utility risk assessments were also presented. The conference was divided into the following 11 sessions: (1) climate change impacts, (2) hydroclimatic variability, (3) downscaling of climate models, (4) global climate models and regional climate models, (5) watershed modelling, (6) adaptation on short-, medium-, and long-term planning, (7) climate change adaptation, (8) operations and planning, (9) risk assessment and uncertainty, (10) operations and planning, and (11) extreme events. A series of workshop posters presented new forecasting and simulation tools. The conference featured 35 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs

  17. NASA Partnership with JSU and MSU to Promote Remote Sensing Applications and Global Climate Change Education: 2013 Summer Course/Workshop

    Science.gov (United States)

    Reddy, S. R.

    2014-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in the fields relevant to earth system science global climate change, marine and environmental sciences. A two week summer course/workshop was held during May 20-31, 2013 at JSU, focusing on historical and technical concepts of remote sensing technology and applications to climate and global climate change. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science and climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Some of the activities of the sessions will be presented. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high

  18. Proceedings of a workshop on coastal impacts and adaptation related to climate change : the C-CIARN Coastal Node

    International Nuclear Information System (INIS)

    2001-03-01

    Coastal zones are sensitive to increases in air, sea and ground temperatures as well as to variations in sea level, precipitation, ice thickness, and storm intensity. In order to address concerns regarding climate change in coastal areas, the government of Canada established a Coastal Node as part of the Canadian Climate Impact and Adaptation Research Network (C-CIARN). The role of C-CIARN Coastal Node was recently outlined in a workshop aimed at providing guidelines and research priorities for stakeholders from all coastal regions of Canada. The workshop considered the integration of the node function with one or more of the regional nodes or with the fisheries node. Topics of discussion included both direct impacts on coastal infrastructure or human-use activities as well as indirect impacts resulting from changes in the ecosystem. refs., tabs

  19. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  20. Resource management and operations in central North Dakota: Climate change scenario planning workshop summary November 12-13, 2015, Bismarck, ND

    Science.gov (United States)

    Fisichelli, Nicholas A.; Schuurman, Gregor; Symstad, Amy J.; Ray, Andrea; Friedman, Jonathan M.; Miller, Brian; Rowland, Erika

    2016-01-01

    The Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-Quantitative Scenario Planning Workshops project synthesizes climate data into 3-5 distinct but plausible climate summaries for the northern Great Plains region; crafts quantitative summaries of these climate futures for two focal areas; and applies these local summaries by developing climate-resource-management scenarios through participatory workshops and, where possible, simulation models. The two focal areas are central North Dakota and southwest South Dakota (Figure 1). The primary objective of this project is to help resource managers and scientists in a focal area use scenario planning to make management and planning decisions based on assessments of critical future uncertainties.This report summarizes project work for public and tribal lands in the central North Dakota focal area, with an emphasis on Knife River Indian Villages National Historic Site. The report explainsscenario planning as an adaptation tool in general, then describes how it was applied to the central North Dakota focal area in three phases. Priority resource management and climate uncertainties were identified in the orientation phase. Local climate summaries for relevant, divergent, and challenging climate scenarios were developed in the second phase. In the final phase, a two-day scenario planning workshop held November 12-13, 2015 in Bismarck, ND, featured scenario development and implications, testing management decisions, and methods for operationalizing scenario planning outcomes.

  1. Climate Research Roadmap Workshop: Summary Report, May 13-14, 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-01

    In recognition of the ongoing advances and challenges of climate change research, DOE's Office of Biological and Environmental Research (BER) organized a workshop asking the scientific community to identify the current state of climate science. The goal of the workshop was to determine the research challenges important for developing a predictive understanding of global climate. Participants were asked to focus on interdisciplinary research that capitalized on BER's scientific strengths in Atmospheric System Research, Terrestrial Ecosystem Science, and Climate and Earth System Modeling. Approximately 50 scientists representing these three areas were asked to identify desired outcomes for the next 10 years. Goals were identified for the near (1--3 years), mid (4--7 years), and long term (8--10 years). Discussions were focused by discipline (atmospheric, terrestrial, and modeling) and by latitude (high, temperate, and tropical). In addition, opportunities and needs for integration across disciplines and latitudes were identified with a specific focus on crosscutting challenges and outcomes. BER will use this workshop output to update its strategic plan for climate research.

  2. Standardization for climate change. Approaches and perspectives. Final report

    International Nuclear Information System (INIS)

    Weterings, R.

    1995-01-01

    The results of a project, aimed at support of the environmental quality target for climate policy on a national level (Follow-up Memorandum Climatic Change of the Dutch government) and on an international level (elaboration of the UN Framework Convention on Climate Change). In order to generate ideas for standards of the climate policy a workshop was held on Environmental Quality and Climate. During the workshop standards of climatic change were highlighted from different points of view. Those views and perspectives are analyzed and the results are presented in this report. 4 figs., 31 refs

  3. Uncertainty and global climate change research

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E. [Oak Ridge National Lab., TN (United States); Weiher, R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  4. Management and monitoring of the endangered Shenandoah salamander under climate change: Workshop report 10-12 April 2012

    Science.gov (United States)

    Grant, Evan H. Campbell; Wofford, John E.B.; Smith, D.R.; Dennis, J.; Hawkins-Hoffman, C.; Schaberl, J.; Foley, M.; Bogle, M.

    2014-01-01

    Here we report on a structured decision making (SDM) process to identify management strategies to ensure persistence of the federally endangered Shenandoah salamander (Plethodon shenandoah), given that it may be at increased extinction risk under projected climate change. The focus of this report is the second of two SDM workshops; in the first workshop, participants developed a prototype of the decision, including problem frame, management objectives and a suite of potential management strategies, predictive models to inform the decision and link alternatives with the objectives to identify potential solutions, and identified data needs to reduce key uncertainties in the decision. Participants in this second workshop included experts in National Park Service policy at multiple administrative levels, who refined objectives, further evaluated the initial management alternatives, and discussed policy constraints on implementing active management for the species and its high-elevation habitat. The conclusion of the second workshop was similar to that of the first: the current state of information and objectives suggest that there is some value in considering active management to reduce the long-term extinction risk for the species, though there are institutional conservative policies to implementing active management at range-wide scales. The workshop participants also emphasized a conservative NPS management philosophy, including caution in implementing management actions that may ultimately harm the system, a stated assumption that ecosystem changes were “natural” unless demonstrated otherwise (therefore not warranting active management to mitigate), and a need to demonstrate that extinction risk is tied to anthropogenic influence prior to taking active management to mitigate specific anthropogenic influences. Even within a protected area having minimal human disturbance, intertwined environmental variables and interspecific relationships that drive population

  5. The Heat is On! Confronting Climate Change in the Classroom

    Science.gov (United States)

    Bowman, R.; Atwood-Blaine, D.

    2008-12-01

    This paper discusses a professional development workshop for K-12 science teachers entitled "The Heat is On! Confronting Climate Change in the Classroom." This workshop was conducted by the Center for Remote Sensing of Ice Sheets (CReSIS), which has the primary goal to understand and predict the role of polar ice sheets in sea level change. The specific objectives of this summer workshop were two-fold; first, to address the need for advancement in science technology engineering and mathematics (STEM) education and second, to address the need for science teacher training in climate change science. Twenty-eight Kansas teachers completed four pre-workshop assignments online in Moodle and attended a one-week workshop. The workshop included lecture presentations by scientists (both face-to-face and via video-conference) and collaboration between teachers and scientists to create online inquiry-based lessons on the water budget, remote sensing, climate data, and glacial modeling. Follow-up opportunities are communicated via the CReSIS Teachers listserv to maintain and further develop the collegial connections and collaborations established during the workshop. Both qualitative and quantitative evaluation results indicate that this workshop was particularly effective in the following four areas: 1) creating meaningful connections between K-12 teachers and CReSIS scientists; 2) integrating distance-learning technologies to facilitate the social construction of knowledge; 3) increasing teachers' content understanding of climate change and its impacts on the cryosphere and global sea level; and 4) increasing teachers' self-efficacy beliefs about teaching climate science. Evaluation methods included formative content understanding assessments (via "clickers") during each scientist's presentation, a qualitative evaluation survey administered at the end of the workshop, and two quantitative evaluation instruments administered pre- and post- workshop. The first of these

  6. Resource management and operations in southwest South Dakota: Climate change scenario planning workshop summary January 20-21, 2016, Rapid City, SD

    Science.gov (United States)

    Fisichelli, Nicholas A.; Schuurman, Gregor W.; Symstad, Amy J.; Ray, Andrea; Miller, Brian; Cross, Molly; Rowland, Erika

    2016-01-01

    The Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-Quantitative Scenario Planning Workshops project synthesizes climate data into 3-5 distinct but plausible climate summaries for the northern Great Plains region; crafts quantitative summaries of these climate futures for two focal areas; and applies these local summaries by developing climate-resource-management scenarios through participatory workshops and, where possible, simulation models. The two focal areas are central North Dakota and southwest South Dakota (Figure 1). The primary objective of this project is to help resource managers and scientists in a focal area use scenario planning to make management and planning decisions based on assessments of critical future uncertainties.This report summarizes project work for public and tribal lands in the southwest South Dakota grasslands focal area, with an emphasis on Badlands National Park and Buffalo Gap National Grassland. The report explains scenario planning as an adaptation tool in general, then describes how it was applied to the focal area in three phases. Priority resource management and climate uncertainties were identified in the orientation phase. Local climate summaries for relevant, divergent, and challenging climate scenarios were developed in the second phase. In the final phase, a two-day scenario planning workshop held January 20-21, 2016 in Rapid City, South Dakota, featured scenario development and implications, testing management decisions, and methods for operationalizing scenario planning outcomes.

  7. Workshop on the preparation of climate change action plans. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-24

    Over 130 participants from more than 27 countries shared experiences of developing and transition countries in preparation and development of their climate change national action plans. International experts guided countries in preparation of their climate change national action plans.

  8. Investigating Climate Science Misconceptions Using a Teacher Professional Development Workshop Registration Survey

    Science.gov (United States)

    Lynds, S. E.; Gold, A. U.; McNeal, K.; Libarkin, J. C.; Buhr Sullivan, S. M.; Ledley, T. S.; Haddad, N.; Ellins, K. K.

    2013-12-01

    The EarthLabs Climate project, an NSF-Discovery Research K12 program, has developed a suite of three online classroom-ready modules: Climate and the Cryosphere; Climate and the Carbon Cycle; and Climate and the Biosphere. The EarthLabs Climate project included week-long professional development workshops during June of 2012 and 2013 in Texas and Mississippi. Evaluation of the 2012 and 2013 workshops included participant self-reported learning levels in many areas of climate science. Teachers' answers indicated they had increased their understanding of the topics addressed in the workshops. However, the project team was interested in refining the evaluation process to determine exactly those areas of climate science in which participants increased content knowledge and ameliorated misconceptions. Therefore, to enhance the investigation into what teachers got out of the workshop, a pre-test/post-test design was implemented for 2013. In particular, the evaluation team was interested in discovering the degree to which participants held misconceptions and whether those beliefs were modified by attendance at the workshops. For the 2013 workshops, a registration survey was implemented that included the Climate Concept Inventory (a climate content knowledge quiz developed by the education research team for the project). The multiple-choice questions are also part of the pre/post student quiz used in classrooms in which the EarthLabs Climate curriculum was implemented. Many of the questions in this instrument assess common misconceptions by using them as distractors in the multiple choice options. The registration survey also asked respondents to indicate their confidence in their answer to each question, because, in addition to knowledge limitations, lack of confidence also can be a barrier to effective teaching. Data from the registration survey informed workshop managers of the topic content knowledge of participants, allowing fine-tuning of the professional development

  9. Bringing climate change into natural resource management: proceedings.

    Science.gov (United States)

    L. Joyce; R. Haynes; R. White; R.J. Barbour

    2007-01-01

    These are the proceedings of the 2005 workshop titled implications of bringing climate into natural resource management in the Western United States. This workshop was an attempt to further the dialogue among scientists, land managers, landowners, interested stakeholders and the public about how individuals are addressing climate change in natural resource management....

  10. Abstracts and final report of the Southern Gulf of St. Lawrence Coalition on Sustainability workshop on climate change and coastal communities: concerns and challenges for today and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    The participants at this workshop presented important climate change information from a national perspective and provided an opportunity for stakeholder comments on the Southeastern New Brunswick Sea-Level Rise Project. The abstracts presented in this report outlined current research on ocean current variabilities; climate change and coastal erosion impacts in the Gulf of St. Lawrence estuary; and agriculture and climate change. Community focus presentations addressed issues associated with coastal vulnerability to climate change and sea-level rise in Haida Gwaii, BC; Inuit observations of climate change; impacts and adaptation to climate change in Atlantic Canada; and communities, fisheries and tourism. Future research orientations from governments were also examined, with information on protection policies for coastal areas; climate change impact and adaptation directorates; climate change scenarios; and potential impacts and possible adaptations to the communities in the region. The studies indicate that the sea level will rise by 70 cm by the year 2100 in the southeastern Gulf of St. Lawrence. Immediate implementation of New Brunswick's Coastal Areas Protection Policy was recommended. Climate change is an issue that contains ecological, social and economic aspects, linking science to local knowledge. This final report contains 25 abstracts presented at the conference. A participant list and an appendix of the workshop's agenda was also included.

  11. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  12. National and regional climate change impact assessments in the forestry sector. Workshop summary and abstracts of oral and poster presentations

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, M [ed.

    2000-07-01

    Climate change is likely to affect forests and the forest industry during the 21{sup st} century. Different processes in forest ecosystems and the forest sector are sensitive to climate and many different projects have been conducted, in which the scale of study varied from the individual leaf to the whole globe. Several attempts have been made to link impact models (e.g., ecological and socio-economic models), and to integrate them in national or regional climate impact assessment studies. However, integration of climate impact assessments for the forestry sector is still a relatively new issue on the research agenda. From November 10 to 13, 1999 the Postdam Institue for Climate Impact Research and the European Forest Institute organised a workshop in Wenddoche near Belzig (Germany) to bring together individuals and research groups from the currently developing research community, to provide a forum for the exchange of experience, and to stimulate further research collaboration. The workshop attracted 31 scientists from 12 countries, representing a wide range of disciplines covering ecophysiology, soils, forest ecology, growth and yield, silviculture, remote sensing, forest policy, and forest economics. Several presentations investigated possible impacts of climate change on forest growth and development. A second major topic was the carbon budget and the possible contribution of forestry to carbon dioxide mitigation. The third important focus was the application of economic models to estimate socio-economic consequences of changes in forest productivity and the linkage of ecological and economic models. Non-timber forest benefits were addressed in one regional impact assessment and in two national integrated assessments from the U.S. and Germany. The latter also included social components with the involvement of stakeholders and the decision making of forest owners under global change.

  13. Multidisciplinary approaches to climate change questions

    Science.gov (United States)

    Middleton, Beth A.; LePage, Ben A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  14. Resilience and Adaptation of Cultural Heritage to Climate Change; International Workshop in Ravello (Italy) 18-19 May 2017

    Science.gov (United States)

    Lefèvre, Roger-Alexandre

    2017-04-01

    Cultural Heritage is the core of civilization and mankind and contributes substantially to quality of life. Its preservation for its historical value and aesthetics, for its conservation and transmission, must be one of the paramount preoccupations of each citizen and institution. It is therefore fundamental to guard against a major evolution of our planet that is increasing and harmful for all the materials: climate imbalance. The tangible Cultural Heritage, often in an urban environment, is threatened both by extreme climate events, relatively short but recurrent, and by slow, insidious and continuous ones, often in relationship with pollution. The main climate factor at global scale - a general increase of mean temperatures leading to sea level rise - will have direct and indirect consequences on Cultural Heritage. The other climate threats (rain, relative humidity, solar radiation, drought, wind, floods…) and pollution (by gases and particles) will have specific effects on materials of Cultural Heritage, both outdoors (façades of monuments, historical centres of cities, open-air statues, cultural landscapes…) and indoors (museums, libraries, reserves, collections…). Since the 1st International Workshop on « Climate Change and Cultural Heritage » held at the European University Centre for Cultural Heritage in Ravello in May 2009, three important events appeared: • The publication in 2014 of the 5th IPCC Assessment Report. For the first time the Cultural Heritage was cited in an IPCC Report. • The holding in 2015 in Paris of the COP21. Some round-tables were organised during this conference concerning the Cultural Heritage. • The holding the same year in Paris of the International Scientific Conference "Our Common Future under Climate Change" in the frame and ahead of the COP21. Cultural Heritage was the topic of a special session at this important conference. During the last decade, the European scientific community was focused on the Threats and

  15. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: introduction to a SETAC international workshop.

    Science.gov (United States)

    Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Copyright © 2013 SETAC.

  16. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Fischer, W.; Stein, G.

    1991-01-01

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.) [de

  17. Global climate change: Social and economic research issues

    International Nuclear Information System (INIS)

    Rice, M.; Snow, J.; Jacobson, H.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available

  18. Measuring Engagement and Learning Outcomes During a Teacher Professional Development Workshop about Creative Climate Communication

    Science.gov (United States)

    Morrison, A.; Gold, A. U.; Soltis, N.; McNeal, K.; Kay, J. E.

    2017-12-01

    Climate science and global climate change are complex topics that require system-level thinking and the application of general science concepts. Identifying effective instructional approaches for improving climate literacy is an emerging research area with important broader impacts. Active learning techniques can ensure engagement throughout the learning process and increase retention of climate science content. Conceptual changes that can be measured as lasting learning gains occur when both the cognitive and affective domain are engaged. Galvanic skin sensors are a relatively new technique to directly measure engagement and cognitive load in science education. We studied the engagement and learning gains of 16 teachers throughout a one-day teacher professional development workshop focused on creative strategies to communicate about climate change. The workshop consisted of presentations about climate science, climate communication, storytelling and filmmaking, which were delivered using different pedagogical approaches. Presentations alternated with group exercises, clicker questions, videos and discussions. Using a pre-post test design we measured learning gains and attitude changes towards climate change among participating teachers. Each teacher wore a hand sensor to measure galvanic skin conductance as a proxy for emotional engagement. We surveyed teachers to obtain self-reflection data on engagement and on their skin conductance data during and after the workshop. Qualitative data provide critical information to aid the interpretation of skin conductance readings. Based on skin conductance data, teachers were most engaged during group work, discussions and videos as compared to lecture-style presentations. We discuss the benefits and limitations of using galvanic skin sensors to inform the design of teacher professional development opportunities. Results indicate that watching videos or doing interactive activities may be the most effective strategies for

  19. Climate Change Education: Goals, Audiences, and Strategies--A Workshop Summary

    Science.gov (United States)

    Forest, Sherrie; Feder, Michael A.

    2011-01-01

    The global scientific and policy community now unequivocally accepts that human activities cause global climate change. Although information on climate change is readily available, the nation still seems unprepared or unwilling to respond effectively to climate change, due partly to a general lack of public understanding of climate change issues…

  20. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    Science.gov (United States)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school

  1. Global climate change: Social and economic research issues

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.; Snow, J.; Jacobson, H. [eds.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.

  2. Are the Projections of Future Climate Change Reliable in the IPCC Reports?

    Institute of Scientific and Technical Information of China (English)

    Zongci Zhao

    2011-01-01

    @@ As we know,the projections of future climate change including impacts and strategies in the IPCC Assessment Reports were based on global climate models with scenarios on various human activities.Global climate model simulations provide key inputs for climate change assessments. In this study,the main objective is to analyze if the projections of fu-ture climate change by global climate models are reli-able.Several workshops have been held on this issue,such as the IPCC expert meeting on assessing and combining multi-model climate projections in January of 2010 (presided by the co-chairs of the IPCC WGI and WGII AR5),and the workshop of the combined global climate model group held by NCAR in June of 2010.

  3. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  4. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  5. NATO advanced research workshop on implications of climate change and disasters on military activities: building resiliency and mitigating vulnerability in the Balkan Region

    CERN Document Server

    Veeravalli, Swathi

    2017-01-01

    This volume provides preliminary recommendations on ways to educate and develop experience-based expertise among disaster response, security and other professionals from diverse backgrounds, whose current and future interests relate to crisis management. The book takes a multidisciplinary approach to improving regional security cooperation and to addressing the complex issues of climate change and disasters on military activities. The main aims of this proceedings volume are: -to provide an Education and Individual Training Activity Common Core Curriculum, whose main purpose is to support increased awareness of the implications of Climate Change; -to identify broad issues on climate change and disasters, particularly those with the highest importance and relevance to regional security. The Crisis Management and Disaster Response Centre of Excellence (CMDR COE) conducted an Advanced Research WorkshopClimate Change Implications on Military Activities in the Balkans Region” between 05-07 July, 2016. The ev...

  6. Proceedings from glaciation and hydrogeology. Workshop on the impact of climate change and glaciations on rock stresses, groundwater flow and hydrochemistry - Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    King-Clayton, L.; Chapman, N. [eds.] [QuantiSci Ltd (United Kingdom); Ericsson, L.O. [ed.] [SKB, Stockholm (Sweden); Kautsky, F. [ed.] [SKI, Stockholm (Sweden)

    1997-04-01

    Assessment of the long term safety of radioactive waste disposal requires assimilation of evidence for the impact of climate change and especially glaciation on the geosphere, particularly in terms of its implications for: the distribution and stability of stress regimes, groundwater flux and flow patterns, groundwater chemistry, and thermal conditions. This workshop was intended to promote informal scientific discussion and the exchange of information and ideas between a wide range of disciplines such as climatology, glaciology, hydrology, hydrochemistry, rock mechanics and structural geology. Participants from outside the radioactive waste community were welcome. Of particular need were palaeosignatures, direct observational information and models of the impact of continental ice sheets and periglacial conditions on crystalline bedrock. The workshop has highlighted the fact that there is a great deal of interest in the area of climate change and its impact on the performance of a deep geological repository, but that there are still many issues remaining that require further resolution. The first half of these proceedings gives overviews of the discussions and conclusions from the different sessions at the workshop, as well as the general conclusion and summary. In the second half, summaries of 49 contributions to the workshop are printed. These summaries have been indexed separately.

  7. Proceedings from glaciation and hydrogeology. Workshop on the impact of climate change and glaciations on rock stresses, groundwater flow and hydrochemistry - Past, present and future

    International Nuclear Information System (INIS)

    King-Clayton, L.; Chapman, N.; Kautsky, F.

    1997-04-01

    Assessment of the long term safety of radioactive waste disposal requires assimilation of evidence for the impact of climate change and especially glaciation on the geosphere, particularly in terms of its implications for: the distribution and stability of stress regimes, groundwater flux and flow patterns, groundwater chemistry, and thermal conditions. This workshop was intended to promote informal scientific discussion and the exchange of information and ideas between a wide range of disciplines such as climatology, glaciology, hydrology, hydrochemistry, rock mechanics and structural geology. Participants from outside the radioactive waste community were welcome. Of particular need were palaeosignatures, direct observational information and models of the impact of continental ice sheets and periglacial conditions on crystalline bedrock. The workshop has highlighted the fact that there is a great deal of interest in the area of climate change and its impact on the performance of a deep geological repository, but that there are still many issues remaining that require further resolution. The first half of these proceedings gives overviews of the discussions and conclusions from the different sessions at the workshop, as well as the general conclusion and summary. In the second half, summaries of 49 contributions to the workshop are printed. These summaries have been indexed separately

  8. Greenhouse-gas-induced climatic change: A critical appraisal of simulations and observations

    International Nuclear Information System (INIS)

    Schlesinger, M.E.

    1990-01-01

    This book is the culmination of a Workshop on Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations which was held at the University of Massachusetts, Amherst, during 8--12 May 1989. The objectives of the Workshop were to: (1) present and evaluate the current status of climate model simulations of greenhouse-gas-induced changes of both the equilibrium and nonequilibrium (transient) climates; (2) present and assess the current status of the observations of global and regional climates from the beginning of the industrial revolution to the present, circa 1850 to 1989; (3) present reconstructions of climatic change during the last millennium to determine the ''natural variability'' of climate on the intra-century time scale; (4) critically evaluate whether or not the climate has changes from circa 1850 to 1989; and (5) compare the observations with the model simulations to ascertain whether a greenhouse-gas-induced climatic change has occurred and, if not, to estimate when in the future such a climatic change will likely become detectable against the background of the ''natural variability.''

  9. Climate change: Implications for water and ecological resources

    International Nuclear Information System (INIS)

    Wall, G.; Sanderson, M.

    1990-01-01

    A conference was held to discuss the implications of climate change on water and ecological resources. The meeting consisted of a number of plenary sessions, luncheon speeches, an open forum, and five workshops. Presentations concerned regional and global issues, climate modelling, international aspects of climate change, water resources supply and demand, wetlands, wildlife and fisheries, agriculture and forests, and conservation strategies. Separate abstracts have been prepared for 32 presentations from the conference

  10. Minority Pre-service Teachers' and Faculty Training on Climate Change Education in Delaware State University

    Science.gov (United States)

    Ozbay, G.; Fox-Lykens, R.; Veron, D. E.; Rogers, M.; Merrill, J.; Harcourt, P.; Mead, H.

    2015-12-01

    Delaware State University is working toward infusing undergraduate education with climate change science and enhancing the climate change learning content of pre-service teacher preparation programs as part of the MADE-CLEAR project (www.madeclear.org). Faculty development workshops have been conducted to prepare and educate a cadre of faculty from different disciplines in global climate science literacy. Following the workshops, the faculty participants have integrated climate literacy tenets into their existing curriculum. Follow up meetings have helped the faculty members to use specific content in their curriculum such as greenhouse gases, atmospheric CO2, sea level rise, etc. Additional training provided to the faculty participants in pedagogical methods of climate change instruction to identify common misconceptions and barriers to student understanding. Some pre-service teachers were engaged in summer internships and learned how to become messenger of climate change science by the state parks staff during the summer. Workshops were offered to other pre-service teachers to teach them specific climate change topics with enhanced hands-on laboratory activities. The participants were provided examples of lesson plans and guided to develop their own lesson plans and present them. Various pedagogical methods have been explored for teaching climate change content to the participants. The pre-service teachers found the climate content very challenging and confusing. Training activities were modified to focus on targeted topics and modeling of pedagogical techniques for the faculty and pre-service teachers. Program evaluation confirms that the workshop participant show improved understanding of the workshop materials by the participants if they were introduced few climate topics. Learning how to use hands-on learning tools and preparing lesson plans are two of the challenges successfully implemented by the pre-service teachers. Our next activity includes pre

  11. Standardization for climate change. Approaches and perspectives. Final report; Normstelling voor klimaatverandering. Invalshoeken en perspectieven. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, R.

    1995-01-01

    The results of a project, aimed at support of the environmental quality target for climate policy on a national level (Follow-up Memorandum Climatic Change of the Dutch government) and on an international level (elaboration of the UN Framework Convention on Climate Change). In order to generate ideas for standards of the climate policy a workshop was held on Environmental Quality and Climate. During the workshop standards of climatic change were highlighted from different points of view. Those views and perspectives are analyzed and the results are presented in this report. 4 figs., 31 refs.

  12. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  13. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K. [eds.

    1994-05-01

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  14. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  15. Climate change in the four corners and adjacent regions: Implications for environmental restoration and land-use planning

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J. [ed.

    1995-09-01

    This document contains the workshop proceedings on Climate Change in the Four Corners and Adjacent Regions: Implications for Environmental Restoration and Land-Use Planning which took place September 12-14, 1994 in Grand Junction, Colorado. The workshop addressed three ways we can use paleoenvironmental data to gain a better understanding of climate change and its effects. (1) To serve as a retrospective baseline for interpreting past and projecting future climate-induced environmental change, (2) To differentiate the influences of climate and humans on past environmental change, and (3) To improve ecosystem management and restoration practices in the future. The papers presented at this workshop contained information on the following subjects: Paleoclimatic data from the Pleistocene and Holocene epochs, climate change and past cultures, and ecological resources and environmental restoration. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Impacts of Participatory Modeling on Climate Change-related Water Management Impacts in Sonora, Mexico

    Science.gov (United States)

    Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.

    2013-12-01

    Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.

  17. Addressing socioeconomic and political challenges posed by climate change

    Science.gov (United States)

    Fernando, Harindra Joseph; Klaic, Zvjezdana Bencetic

    2011-08-01

    NATO Advanced Research Workshop: Climate Change, Human Health and National Security; Dubrovnik, Croatia, 28-30 April 2011; Climate change has been identified as one of the most serious threats to humanity. It not only causes sea level rise, drought, crop failure, vector-borne diseases, extreme events, degradation of water and air quality, heat waves, and other phenomena, but it is also a threat multiplier wherein concatenation of multiple events may lead to frequent human catastrophes and intranational and international conflicts. In particular, urban areas may bear the brunt of climate change because of the amplification of climate effects that cascade down from global to urban scales, but current modeling and downscaling capabilities are unable to predict these effects with confidence. These were the main conclusions of a NATO Advanced Research Workshop (ARW) sponsored by the NATO Science for Peace and Security program. Thirty-two invitees from 17 counties, including leading modelers; natural, political, and social scientists; engineers; politicians; military experts; urban planners; industry analysts; epidemiologists; and health care professionals, parsed the topic on a common platform.

  18. Assessing the impact of climatic change in cold regions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, M L; Carter, T R [eds.

    1984-01-01

    The report describes the use of models to predict the consequences of global warming in particular (cold) regions. The workshop focused on two related issues: (a) the current sensitivity of ecosystems and farming systems to climatic variability, and (b) the range of impacts likely for certain changes of climate. This report addresses four broad themes: (1) the nature of the research problem; (2) methods of evaluating sensitivity to climatic variability; (3) methods of measuring the impact of climate change; and (4) how these methods might be refined. (ACR)

  19. Adapting to the impacts of climate change and variability

    International Nuclear Information System (INIS)

    Mortsch, L.; Koshida, G.; Tavares, D.

    1993-05-01

    A workshop was held to encourage awareness of the climate change impact issues and build collaboration among the Great Lakes/St. Lawrence basin (GLSLB) research, resource management, and policy-making community; to identify research opportunities to address the issues of water management, ecosystem health, human health, and land use and management; and to recommend directions and priority areas for future studies to develop an integrated climate impact assessment for the GLSLB. Presentations at the workshop were on topics including an overview of the GLSLB Project, the impacts of climate change on water supply and demand, and impacts on water quality, fisheries, wetlands, agriculture, shoreline management, and human health. Panel sessions were also convened to discuss information requirements that would assist in decision- and policy-making and to address the concept of integration. Working groups on water management, ecosystem health, land use and management, and human health were formed and made recommendations. A synthesis is presented of the reports from and recommendations of the four working groups as well as extended abstracts of the plenary presentations. A separate abstract has been prepared for one of the presentations from this workshop

  20. Exploring adaptations to climate change with stakeholders: A participatory method to design grassland-based farming systems.

    Science.gov (United States)

    Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger

    2017-05-15

    Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change

  1. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  2. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    Science.gov (United States)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  3. Shaping the Public Dialogue on Climate Change

    Science.gov (United States)

    Spitzer, W.; Anderson, J. C.

    2012-12-01

    engaging in conversations with visitors based on audience research, role playing, and reflective feedback on their practice. From our NSF Phase I CCEP project, we have learned that in-depth training can help interpreters increase their confidence, self-efficacy, and a sense of hope in their ability to effectively communicate about climate change. This sense of hope and optimism has a powerful "ripple effect" on colleagues at their own institution, as well as others in their social and professional networks. In the next phase of our work, we hope to expand our reach to provide professional development for interpretive staff from additional institutions, in collaboration with climate scientists and cognitive/social scientists. Regional leaders will participate in recruiting and in planning and leading additional workshops. For youth interpreters, we plan to develop and implement special training methods. For scientists, we will offer workshops on strategic framing and communication. We will conduct and incorporate new social science research into a widely disseminated e-Workshop. For the growing network of participants, we will facilitate ongoing dialogue and an online community. Ultimately, we envision informal science interpreters as "vectors" for effective science communication, ocean and climate scientists with enhanced communication skills, and increased public demand for explanation and dialogue about global issues.

  4. Climate Change Education in Formal Settings, K-14: A Workshop Summary

    Science.gov (United States)

    Beatty, Alexandra

    2012-01-01

    Climate change is occurring, is very likely caused by human activities, and poses significant risks for a broad range of human and natural systems. Each additional ton of greenhouse gases emitted commits us to further change and greater risks. In the judgment of the Committee on America's Climate Choices, the environmental, economic, and…

  5. Workshop phenotyping, genotyping, breeding, reproduction techniques and evaluating alternative crop species for adaptation to climate change - State-of-art and opportunities for further cooperation, 27-28 October 2016, Wageningen

    NARCIS (Netherlands)

    Boekhorst, te D.

    2016-01-01

    The workshop highlighted opportunities, gaps, needs and priorities for novel breeding techniques like phenotyping for resilience under climate change. Starting with four key presentations, the scene was set from the perspectives of policy, end-users and science, accompanied by an overview of

  6. Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers

    Science.gov (United States)

    Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.

    2013-12-01

    Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the

  7. Health Care Facilities Resilient to Climate Change Impacts

    Directory of Open Access Journals (Sweden)

    Jaclyn Paterson

    2014-12-01

    Full Text Available Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change.

  8. The increased atmospheric greenhouse effect and regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Groenaas, S. [Bergen Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The main information for predicting future climate changes comes from integrating coupled climate models of the atmosphere, ocean and cryosphere. Regional climate change may be studied from the global integrations, however, resolution is coarse because of insufficient computer power. Attempts are being made to get more regional details out of the global integrations by ``downscaling`` the latter. This can be done in two ways. Firstly, limited area models with high resolution are applied, driven by the global results as boundary values. Secondly, statistical relationships have been found between observed meteorological parameters, like temperature and precipitation, and analyzed large scale gridded fields. The derived relations are then used on similar data from climate runs to give local interpretations. A review is given of literature on recent observations of climate variations and on predicted regional climate change. 18 refs., 4 figs.

  9. Climate Change Student Summits: A Model that Works (Invited)

    Science.gov (United States)

    Huffman, L. T.

    2013-12-01

    The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems

  10. Climate change risk perception and communication: addressing a critical moment?

    Science.gov (United States)

    Pidgeon, Nick

    2012-06-01

    Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions. © 2012 Society for Risk Analysis.

  11. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  12. Scientific Grand Challenges: Challenges in Climate Change Science and the Role of Computing at the Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.; Johnson, Gary M.; Washington, Warren M.

    2009-07-02

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) in partnership with the Office of Advanced Scientific Computing Research (ASCR) held a workshop on the challenges in climate change science and the role of computing at the extreme scale, November 6-7, 2008, in Bethesda, Maryland. At the workshop, participants identified the scientific challenges facing the field of climate science and outlined the research directions of highest priority that should be pursued to meet these challenges. Representatives from the national and international climate change research community as well as representatives from the high-performance computing community attended the workshop. This group represented a broad mix of expertise. Of the 99 participants, 6 were from international institutions. Before the workshop, each of the four panels prepared a white paper, which provided the starting place for the workshop discussions. These four panels of workshop attendees devoted to their efforts the following themes: Model Development and Integrated Assessment; Algorithms and Computational Environment; Decadal Predictability and Prediction; Data, Visualization, and Computing Productivity. The recommendations of the panels are summarized in the body of this report.

  13. Key Findings from the U.S.-India Partnership for Climate Resilience Workshop on Development and Application of Downscaling Climate Projections

    Science.gov (United States)

    Kunkel, K.; Dissen, J.; Easterling, D. R.; Kulkarni, A.; Akhtar, F. H.; Hayhoe, K.; Stoner, A. M. K.; Swaminathan, R.; Thrasher, B. L.

    2017-12-01

    s part of the Department of State U.S.-India Partnership for Climate Resilience (PCR), scientists from NOAA NCEI, CICS-NC, Texas Tech University (TTU), Stanford University (SU), and the Indian Institute of Tropical Meteorology (IITM) held a workshop at IITM in Pune, India during 7-9 March 2017 on the development, techniques and applications of downscaled climate projections. Workshop participants from TTU, SU, and IITM presented state-of-the-art climate downscaling techniques using the ARRM method, NASA NEX climate products, CORDEX-South Asia and analysis tools for resilience planning and sustainable development. PCR collaborators in attendance included Indian practitioners, researchers and other NGO including the WRI Partnership for Resilience and Preparedness (PREP), The Energy and Resources Institute (TERI), and NIH. The scientific techniques were provided to workshop participants in a software package written in R by TTU scientists and several sessions were devoted to hands-on experience with the software package. The workshop further examined case studies on the use of downscaled climate data for decision making in a range of sectors, including human health, agriculture, and water resources management as well as to inform the development of the India State Action Plans. This talk will discuss key outcomes including information needs for downscaling climate projections, importance of QA/QC of the data, key findings from select case studies, and the importance of collaborations and partnerships to apply downscaling projections to help inform the development of the India State Action Plans.

  14. Strategic planning and action on climate change: A guide for Canadian mining companies

    International Nuclear Information System (INIS)

    2000-01-01

    This Guide has been developed by the Pembina Institute for Appropriate Development of Drayton Valley, Alberta and Stratos Inc., of Ottawa, as a project for the Mining Association of Canada, in an effort to assist senior executives in the Canadian mining industry in developing corporate strategic responses to the risks and opportunities associated with climate change and sustainable development. Section One of the Guide provides an introduction to the scientific, political and legal issues involved in climate change. Section Two outlines the implications of this issue for Canadian mining companies. Section Three and Four provide senior managers with a strategic framework to help understand the scope of a comprehensive response and assist them in developing and integrating climate change policies into their overall corporate strategy and business plan. Section Five outlines the major components of a generic climate change strategy and action plan, while Section Six looks at specific technical opportunity areas where mining companies can reduce greenhouse gas emissions. Section Seven focuses on business opportunities related to greenhouse gas emission reductions that can be implemented domestically or internationally outside of Canadian mining operations. Section Eight concludes the Guide with a comprehensive list of references and additional sources of information to assist users in follow-up and implementation. The accompanying companion handbook, entitled 'Guide to inventorying, measuring and reporting on climate change actions for MAC member companies' is designed to be used by energy managers and technical support staff who are responsible for implementing greenhouse gas measurement reporting systems. In addition to the Guide, the Mining Association and the Pembina Institute also developed three versions of a climate change strategy workshop designed for mining company personnel at different levels and different responsibilities. These workshops can also be

  15. Challenges and Opportunities for Integrating Social Science Perspectives into Climate and Global Change Assessments

    Science.gov (United States)

    Larson, E. K.; Li, J.; Zycherman, A.

    2017-12-01

    Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for

  16. Climate Change Education: Preparing Future and Current Business Leaders--A Workshop Summary

    Science.gov (United States)

    Storksdieck, Martin

    2014-01-01

    Climate change poses challenges as well as opportunities for businesses and, broadly speaking for the entire economy. Businesses will be challenged to provide services or products with less harmful influence on the climate; respond to a changing policy, regulatory, and market environment; and provide new services and products to help address the…

  17. Climate change and respiratory disease: European Respiratory Society position statement.

    Science.gov (United States)

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  18. A Model for Local Experiential Learning: Teacher Workshop on Mangroves, Oceans & Climate in Kosrae

    Science.gov (United States)

    Maloney, A. E.; Sachs, J. P.; Barros, C.; Low, M.

    2016-02-01

    A curriculum for an intensive one-day workshop about mangroves, oceans, and climate has been developed for school teachers in the Federated States of Micronesia. The goals of the workshop are for teachers/attendees to be able to (i) explain what salinity is and describe how it varies from the ocean to the river, (ii) explain what a mangrove is and describe adaptations mangroves have developed that allow them to live in saline or brackish water and adjust to changing sea level, and (iii) develop a grade-appropriate poster on mangroves or salinity and one interactive activity that uses the poster to engage students in learning. These objectives are accomplished by field trips to the ocean and mangrove swamp, where each participant learns how to measure salinity and identify mangrove species. The hands-on field component is followed by a poster development session where participants design, present, and share feedback on their posters that they will bring back to their classrooms. This experience allows schoolteachers to intimately explore their coastal ecosystems and gain new perspectives about their environment that they can take back to their students. The workshop was designed through a collaborative effort between Pacific Resources for Education and Learning (PREL) NSF Pacific Climate Education Partnership, University of Washington professors, graduate students and undergraduate students, Kosrae Department of Education, Kosrae Island Resource Management Authority (KIRMA), Kosrae Island Conservation and Safety Organization (KCSO), and local Kosraean schoolteachers and administrators. The workshop was offered to elementary school teachers from 4 of 5 school districts in 2013, 2014, and 2015, led by University of Washington scientists and PREL. Local education officials and PREL staff will lead future workshops.

  19. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  20. Developing Capacity for Cities to Adapt to a Changing Climate-a Case Study in Boulder, Colorado

    Science.gov (United States)

    Sands, R.; Groves, D. G.; Nason, M.; Pandya, R.

    2016-12-01

    The City of Boulder in Colorado has undertaken many progressive climate-related initiatives, from signing the Kyoto protocol to passing a Climate Action Tax. But as the city prepared to launch its Climate Commitment document and lead a community process, it realized that one critical group that had not been fully engaged in the process was its own staff. It became clear that for organizational change to occur and for the city to meet its goals, city staff needed to develop a deeper understanding of the importance of the climate goals while also learning better how to use these goals to guide their long-term planning. In early 2016, the city launched a year-long "Climate Leaders" initiative which comprised of a series of workshops that brought together over 70 staff members with climate scientists and experts in climate adaptation planning. The first two workshops, billed as Climate 101 and 201, reviewed the best available scientific information about climate threats and potential impacts, and worked with participants to understand how climate changes could affect diverse city functions. These interactive workshops also explored ways to help city staff feel comfortable preparing for a significantly different climate and discussed ways to communicate this information to the public. From there the group split into two tracks. A "mitigation" track focused on the ways in which Boulder could meet its aggressive emissions reduction targets. The "adaptation" track developed integrated scenarios for citywide planning to highlight Boulder's vulnerability to climate change and guide adaptation planning. Bringing these two conversations together is helping city staff to explore critical linkages between mitigation and adaptation, develop common messages to build community support for climate action, and inform comprehensive climate resiliency planning. We will describe how Boulder successfully partnered with scientists and planning experts to program a year of interactive

  1. Enhancing the contribution and role of practitioner knowledge in the Intergovernmental Panel on Climate Change (IPCC Working Group (WG II process: Insights from UK workshops

    Directory of Open Access Journals (Sweden)

    Candice Howarth

    2017-01-01

    Full Text Available This perspective critically assesses how the Intergovernmental Panel on Climate Change (IPCC could facilitate a closer alignment of its activities and include lessons drawn from the policy and decision-making communities working on the ground at the regional/local levels. The objective is to facilitate practitioner input into the detailed choice of topics and priorities for IPCC review and in the conclusions drawn (we define practitioners as those engaged in the development and application of practical responses to climate change on the ground. By means of a series of workshops with academics, policy officials and decision-makers in the United Kingdom, the research reported here illuminates how the IPCC’s Working Group II (WGII has been used in the past to inform decision-making and how practitioner responses to climate change could better inform the IPCC process in the future. In particular, we recommend three key actions. Firstly that IPCC WGII should incorporate more practitioners as authors to improve the awareness and understanding amongst the writing teams of the nature and detail of decisions being made in response to climate change; secondly a practitioner-led IPCC Special Report should be commissioned on good-practice responses to climate change; and thirdly a new body should be created, attached to the IPCC, to synthesise and report on good practice on climate response strategies in a timely manner. By adopting these recommendations, the IPCC could become more directly useful to decision-makers working on adaptation at the national, regional and local levels and enable more actionable decision-making.

  2. Carbon Dioxide Effects Research and Assessment Program. Workshop on environmental and societal consequences of a possible CO/sub 2/-induced climate change

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The Workshop was part of a process of elucidating areas of uncertainty where research is needed before meaningful forecasts and sound decisions can be made about the CO/sub 2/ issue. The conferees were divided into five panels dealing with the ocean and the cryosphere: the less managed biosphere; the managed biosphere (chiefly agricultural, forest, and grazing lands); the ways society and its institutions might respond to climate changes; and issues involving the economic and geopolitical consequences of CO/sub 2/ build-up. Also, 28 papers or discussion drafts dealing with a wide variety of topics were contributed to the conference.

  3. Successfully Engaging Family and Student Audiences in Climate Science Workshops in an Informal Learning Venue

    Science.gov (United States)

    DeFrancis, G.; Haynes, R.; Schroer, K.

    2017-12-01

    The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.

  4. ASK Florida; a climate change education professional development program for middle school teachers in Florida

    Science.gov (United States)

    Weihs, R. R.

    2012-12-01

    A series of professional development workshops covering the fundamentals of climate change have been developed and facilitated for two groups of middle school science teachers in three Florida counties. The NASA-supported joint venture between Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and the University of South Florida's (USF's) Coalition for Science Literacy, ASK Florida, focuses on expanding and deepening teachers' content knowledge of a wide range of climate change topics, connecting local and regional changes to the global picture, and supporting classroom implementation and effective teaching practices. Education experts from USF, climate scientists from COAPS, and Hillsborough county teachers and science coaches coordinated and developed the workshop content, which is based on Florida's Next Generation Sunshine State Standards in science, science curriculum guides for 6th grade, and teacher interest. Several scientists have facilitated activities during the workshop, including professors in meteorology and climatology, research scientists in the field, a NOAA program manager, the state climatologists for Florida, and others. Having these climate scientists present during the workshop provides teachers an opportunity to interact directly with the scientists and gain insight into the climatology field. Additionally, we host an open-forum discussion panel during which teachers can ask the experts about any topics of interest. Activities are designed to enhance the scientific skill level of the teachers. Introductory activities reinforce teachers' abilities to distinguish facts from opinions and to evaluate sources. Other activities provide hands-on experience using actual scientific data from NASA and other agencies. For example, teachers analyze precipitation data to create distributions of Florida rainfall, examine sea level trends at various locations, identify Atlantic hurricane frequencies during the phases of ENSO

  5. Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA

    Science.gov (United States)

    Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.

    2014-01-01

    Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.

  6. Municipal climate change policies. A case study for Amsterdam

    International Nuclear Information System (INIS)

    Schol, E.; Van den Bosch, A.; Ligthart, F.A.T.M.; Roemer, J.C.; Ruijg, G.J.; Schaeffer, G.J.; Dinkelman, G.H.; Kok, I.C.; De Paauw, K.F.B.

    1999-01-01

    Insight in the local policy options with respect to climate change is provided, in this case within the sphere of influence of Amsterdam local authorities. A list of new policy options for CO 2 reduction has been made with the assistance of local policy makers and representatives of interest groups. These policy options have been divided into three qualitative scenarios: Institutional Cultural Change, Technological Innovation and Least-Regrets. The environmental, economic and other effects have been described for each policy option. The three most interesting policy options have been selected by local policymakers and representatives of interest groups during a workshop. Implementation strategies have been developed for the options selected. These strategies have been discussed during a second workshop. The reduction target, stabilisation of CO 2 emissions in 2015 compared to 1993, can be reached by a combination of all the new policy options. The three selected policy options count for 40% of this total CO 2 emission reduction. Finally, a general outline on the methodology can also be applied to other cities and municipalities. For example, this methodology can be used by participants of Cities for Climate Protection, an initiative of the International Council for Local Environmental Initiatives, or the Netherlands Climate Association. 136 refs

  7. NCSE's 15th National Conference and Global Forum on Science, Policy, and the Environment: Energy and Climate Change, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Ellen [National Council for Science and the Environment (NCSE), Washington, DC (United States)

    2016-07-08

    The National Council for Science and the Environment (NCSE) held its 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change, on January 27-29, 2015, at the Hyatt Regency Hotel, Crystal City, VA. The National Conference: Energy and Climate Change developed and advanced partnerships that focused on transitioning the world to a new “low carbon” and “climate resilient” energy system. It emphasized advancing research and technology, putting ideas into action, and moving forward on policy and practice. More than 900 participants from the scientific research, policy and governance, business and civil society, and education communities attended. The Conference was organized around four themes: (1) a new energy system (including energy infrastructure, technologies and efficiencies, changes in distribution of energy sources, and low carbon transportation); (2) energy, climate and sustainable development; (3) financing and markets; and (4) achieving progress (including ideas for the 21st Conference of Parties to the United Nations Framework Convention on Climate Change). The program featured six keynote presentations, six plenary sessions, 41 symposia and 20 workshops. Conference participants were involved in the 20 workshops, each on a specific energy and climate-related issue. The workshops were designed as interactive sessions, with each workshop generating 10-12 recommendations on the topic. The recommendations were prepared in the final conference report, were disseminated nationally, and continue to be available for public use. The conference also featured an exhibition and poster sessions. The National Conference on Energy and Climate Change addressed a wide range of issues specific to the U.S. Department of Energy’s programs; involved DOE’s scientists and program managers in sessions and workshops; and reached out to a broad array of DOE stakeholders.

  8. Global climate change and California

    International Nuclear Information System (INIS)

    Knox, J.B.; Scheuring, A.F.

    1991-01-01

    In the fall of 1988 the University of California organized a new public-service initiative on global climate change in response to inquiries and requests from members of Congress and the Department of Energy (DOE). This new systemwide initiative involved all of the University of California campuses and the University's three national laboratories at Berkeley, Los Alamos, and Livermore. The goal of this Greenhouse Initiative was to focus the multidisciplinary resources of the UC campuses and the team-oriented research capabilities of the laboratories on the prospect of global warming and its associated effects on the planet and its nations. In consultation with the DOE, the organizers proposed a series of workshops to focus University of California research resources on the issue of global warming, to contribute to the congressionally mandated DOE studies on options for the US to reduce carbon dioxide emissions by 20% by the year 2000, and to begin building a long-term research base contributing to an improved understanding of global change in all of its complexity and diverse discipline implications. This volume contains papers from the first of these workshops. Individual papers are processed separately for inclusion in the appropriate data bases

  9. Exploring Pacific Northwest ecosystem resilience: packaging climate change science for federal managers

    Science.gov (United States)

    Bachelet, D. M.

    2014-12-01

    Climate change is projected to jeopardize ecosystems in the Pacific Northwest. Managing ecosystems for future resilience requires collaboration, innovation and communication. The abundance of data and documents describing the uncertainty around both climate change projections and impacts has become challenging to managers who have little funding and limited time to digest and incorporate these materials into planning and implementation documents. We worked with US Forest Service and BLM managers to help them develop vulnerability assessments and identify on-the-ground strategies to address climate change challenges on the federal lands in northwest Oregon (Siuslaw, Willamette and Mt. Hood National Forests; Eugene and Salem BLM Districts). We held workshops to promote dialogue about climate change, which were particularly effective in fostering discussions between the managers who often do not have the time to share their knowledge and compare experiences across administrative boundaries. We used the Adaptation for Conservation Targets (ACT) framework to identify measurable management objectives and rapidly assess local vulnerabilities. We used databasin.org to centralize usable information, including state-of-the-art CMIP5 climate projections, for the mandated assessments of vulnerability and resilience. We introduced participants to a decision support framework providing opportunities to develop more effective adaptation strategies. We built a special web page to hold the information gathered at the workshops and provide easy access to climate change information. We are now working with several Landscape Conservation Cooperatives (LCCs) to design gateways - conservation atlases - to their relevant data repositories on databasin.org and working with them to develop web tools that can provide usable information for their own vulnerability assessments.

  10. New directions in climate change vulnerability, impacts, and adaptation assessment: summary of a workshop

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Subcommittee for a Workshop on New Directions in Vulnerability, Impacts, and Adaptation Assessment; National Academies Press (U.S.); National Research Council (U.S.). Division of Behavioral and Social Sciences and Education; National Research Council (U.S.). Committee on the Human Dimensions of Global Change; Brewer, Jennifer F

    ...; adaptation is inevitable. The remaining question is to what extent humans will anticipate and reduce undesired consequences of climate change, or postpone response until after climate change impacts have altered ecological...

  11. Managing the global commons decision making and conflict resolution in response to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, S. (Oak Ridge National Lab., TN (USA)); Naegeli, W.; Lund, P. (Tennessee Univ., Knoxville, TN (USA))

    1990-07-01

    A workshop was convened to develop a better understanding of decision-making matters concerning management of the global commons and to resolve conflicts in response to climate change. This workshop report does not provide a narrative of the proceedings. The workshop program is included, as are the abstracts of the papers that were presented. Only the introductory paper on social science research by William Riebsame and the closing summary by Richard Rockwell are reprinted here. This brief report focuses instead on the deliberations of the working groups that developed during the workshop. 4 figs., 1 tab.

  12. Youth Climate Summits: Empowering & Engaging Youth to Lead on Climate Change

    Science.gov (United States)

    Kretser, J.

    2017-12-01

    The Wild Center's Youth Climate Summits is a program that engages youth in climate literacy from knowledge and understanding to developing action in their schools and communities. Each Youth Climate Summit is a one to three day event that brings students and teachers together to learn about climate change science, impacts and solutions at a global and local level. Through speakers, workshops and activities, the Summit culminates in a student-driven Climate Action Plan that can be brought back to schools and communities. The summits have been found to be powerful vehicles for inspiration, learning, community engagement and youth leadership development. Climate literacy with a focus on local climate impacts and solutions is a key component of the Youth Climate Summit. The project-based learning surrounding the creation of a unique, student driven, sustainability and Climate Action Plan promotes leadership skills applicable and the tools necessary for a 21st Century workforce. Student driven projects range from school gardens and school energy audits to working with NYS officials to commit to going 100% renewable electricty at the three state-owned downhill ski facilities. The summit model has been scaled and replicated in other communities in New York State, Vermont, Ohio, Michigan and Washington states as well as internationally in Finland, Germany and Sri Lanka.

  13. Understanding climate change adaptation and adaptive capacity: synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Patino, L. [Policy Research Initiative, Government of Canada, Ottawa, ON (Canada)

    2010-09-15

    In 2007, the Natural Resources Canada (NRCan) Climate Change Impacts and Adaptation Division (CCIAD) offered its support to research projects that were involved in understanding and improving adaptation and adaptive capacity and contributed to climate change decision-making and policy development in Canada. 20 research projects were commissioned by the CCIAD. With the collaboration of NRCan, the principal findings raised by the commissioned projects were synthesized by the Policy Research Initiative (PRI). Common themes and main messages are introduced in this synthesis report, and policy and program aspects that promote adaptive capacity to climate change in Canada are identified. Common themes and important messages emerging from the research projects, as well as the processes and barriers to adaptation and adaptive capacity identified in the commissioned projects, were discussed during a workshop held in Ottawa in 2009. Five main themes and four common barriers to adaptation were found. 25 refs.

  14. #ClimateEdCommunity : Field Workshops Bring Together Teachers and Researchers to Make Meaning of Science and Classroom Integration

    Science.gov (United States)

    Bartholow, S.; Warburton, J.; Wood, J. H.; Steiner, S. M.

    2015-12-01

    Seeing Understanding and Teaching: Climate Change in Denali is a four-day immersive teacher professional development course held in Denali National Park. Developed through three partner organizations, the course aims to develop teachers' skills for integrating climate change content into their classrooms. This presentation aims to share tangible best practices for linking researchers and teachers in the field, through four years of experience in program delivery and reported through a published external evaluation. This presentation will examine the key aspects of a successful connection between teachers, researchers, science, and classrooms: (1) Inclusion of teacher leaders, (2) dedicated program staff, (3) workshop community culture, and will expose barriers to this type of collaboration including (1) differences in learning style, (2) prior teaching experience, (3) existing/scaffolding understanding of climate change science, and (4) accessibility of enrollment and accommodations for the extended learning experience. Presentation Content Examples:Participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions. The goal of including a teacher-leader is to enhance translatability between fieldwork and the classroom. Additionally, qualitative aspects of the report touches on the intangible successes of the workshop such as: (1) the creation of a non-judgmental learning atmosphere, (2) addressing accessibility to science learning tools in rural and under-served communities, (3) defining successful collaboration as making meaning together through exploratory questioning while in the field (4) discussed the social and cultural implications of climate change, and the difficulty of navigating these topics in educational and/or multicultural spaces. Next Steps? Create a #Climate

  15. The Role of Federal Government for Climate Adaptation in the Urban Context: Results of a workshop (Invited)

    Science.gov (United States)

    Buizer, J.; Chhetri, N.; Roy, M.

    2010-12-01

    Extreme weather events in urban areas such as torrential rainfall in Chicago and London, floods in Boston and Elbe and heat waves in Europe have shed stark light on cities’ vulnerability to the effects of climate change. At the same time, cities themselves are significant net contributors to GHG’s attributable to climatic changes through the built environment (e.g. housing, roads, and parking lots), transport, consumption and recreation. In the arid region of southwestern United States, issues associated with the adequacy of water resources, urban heat island, and air quality best exemplify these contributions. This duality - cities as impacted by, and contributors to extreme climatic patterns induced by climate change, and the specific climate information needed for decision-making by city planners - provided the impetus for a two-day workshop in January 2009. Organized by Arizona State University, the workshop included city managers, planners, private sector stakeholders, water managers, researchers, and Federal program managers. The aim was to identify information needs, and data and research gaps, as well as to design strategies to address climate uncertainty. Two key approaches discussed were: a) building multiple, flexible scenarios and modeling efforts that enable decision-makers to plan for a number of possible futures, and b) matching Federal climate assets to local, regional and sectoral needs through continuous collaboration that supports decision-making within the social, economic, and political context of the place. Federal leadership in facilitating, coordinating and informing efforts that nurture the creative intellectual capacity of cities to produce integrated solutions to mitigate the effects of and adapt to climate change will go a long way in addressing urban climate adaptation in the United States. Participants outlined a number of concerns and suggestions for Federal government leaders and services associated with a national climate

  16. Communicating climate change – Learning from business: challenging values, changing economic thinking, innovating the low carbon economy

    Directory of Open Access Journals (Sweden)

    Katharina Kaesehage

    2014-08-01

    Full Text Available The risks and opportunities presented by climate change for Small and Medium Sized Enterprises (SMEs have been largely overlooked by previous research. The subsequent lack of knowledge in this field makes it difficult for SMEs to engage with climate change in a meaningful, profitable, and sustainable way. Further, current research cannot explain why SMEs rarely engage with climate change. We examine critically 30 SMEs, which engage with climate change knowledges and 5 Innovation-Support-Organizations (ISOs that communicate climate change knowledges. Over a three-year period we explore why and how these businesses approach the knowledge gap between climate change science and business practice, drawing on a variety of ethnographic research methods: (1 in-depth semi-structured and open interviews; (2 participant observations; and (3 practitioners’ workshops. The results demonstrate that business’ mitigation and adaptation strategies are lay-knowledge-dependent, derived from personal values, space, and place identity. To enhance the number of SMEs engaging with climate change, maximize the potential value of climate change for the econo- my and establish a low carbon economy, climate change communication needs to target personal values of business leaders. The message should highlight local impacts of climate change, the benefits of engagement to (the local society and economy, and possible financial benefits for the business. Climate change communication therefore needs to go beyond thinking about potential financial benefits and scientific evidence and challenge values, cultures, and beliefs to stimulate economic, political, and social frameworks that promote values-based decision-making.

  17. Technology policy for climate change mitigation: a transatlantic perspective

    International Nuclear Information System (INIS)

    2004-01-01

    This workshop was the second climate policy conference jointly organized by RFF and IFRI in Paris. (The first one, ''How to Make Progress Post-Kyoto?'', was held on March 19, 2003). This Summary Paper is divided into two parts: The first part presents short summaries of all the presentations at the workshop (rationale and past experience in technology policies, the challenges and policy responses of the climate friendly technologies). The second part, which is an edited version of the closing remarks by Pierre Noel (Ifri), highlights some of the policy lessons that emerged from the workshop. (A.L.B.)

  18. Technology policy for climate change mitigation: a transatlantic perspective

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This workshop was the second climate policy conference jointly organized by RFF and IFRI in Paris. (The first one, ''How to Make Progress Post-Kyoto?'', was held on March 19, 2003). This Summary Paper is divided into two parts: The first part presents short summaries of all the presentations at the workshop (rationale and past experience in technology policies, the challenges and policy responses of the climate friendly technologies). The second part, which is an edited version of the closing remarks by Pierre Noel (Ifri), highlights some of the policy lessons that emerged from the workshop. (A.L.B.)

  19. A report from the second US/Japan workshop on global change research: Environmental response technologies (mitigation and adaptation). United States-Japan Science and Technology Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Edgerton, S. [comp.] [National Science Foundation, Washington, DC (United States). Committee on Earth and Environmental Sciences; Mizuno, Tateki [comp.] [National Inst. for Resources and Environment, MITI (Japan)

    1993-12-31

    The Second US - Japan Workshop on Global Change: Environmental Response Technologies for Global Change was hosted by the Program on Resources at the East-West Center, in Honolulu, Hawaii on February 1--3, 1993, on behalf of the United States Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET). This workshop brought together over fifty leading scientists from the two countries to review existing technologies and to identify needed research on the development of new technologies for mitigation and adaptation of global change. The Workshop was organized around three areas of research: (1) capture, fixation/utilization, and disposal of CO{sub 2} (e.g. CO{sub 2}, separation and capture technologies, ocean and land disposal of CO{sub 2}; (2) energy production and conservation technologies to reduce greenhouse gas emissions (e.g. combustion efficiency, non-carbon based energy technologies, energy conservation technologies); and (3) adaptation technologies and practices related to global climate change (e.g., adaptation responses of crops to climate change, adapting urban infrastructure for climate change). Priorities for joint research in each of these areas were discussed. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  20. Lifelines for High School Climate Change Education

    Science.gov (United States)

    Gould, A. D.

    2012-12-01

    The Lifelines project aims to establish a network of practicing high school teachers actively using climate change curricula by creating professional learning communities (PLCs) of teachers who, through remote meetings and workshops, maintain ongoing communication and sharing of best practices among colleagues to strengthen knowledge and promote effective teaching strategies. The project explores techniques to achieve the most effective teleconferencing meetings and workshops. This promotes not only teaching about minimizing environmental impacts of human activity, but minimizes environmental impacts of professional development — practicing what we preach. To date, Lifelines PLCs have set up websites and e-mail lists for sharing information. Teleconferences and webinars have been held using services such as Skype, ReadyTalk, and Wiggio. Many of the meetings have been recorded and archived for the benefit of members who could not attend in real-time.

  1. Assessing Impacts of Climate Change on Food Security Worldwide

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  2. Sustainable Water Resources for Communities under Climate Change: Can State-of-the-Art Forecasting Inform Decision-Making in Data Sparse Regions?

    Science.gov (United States)

    Mayer, A.; Vivoni, E.; Halvorsen, K.; Robles-Morua, A.; Dana, K.; Che, D.; Mirchi, A.; Kossak, D.; Casteneda, M.

    2013-05-01

    In this project, we are studying decision-making for water resources management in anticipation of climate change in the Sonora River Basin, Mexico as a case study for the broader arid and semiarid southwestern North America. The goal of the proposed project is to determine whether water resources systems modeling, developed within a participatory framework, can contribute to the building of management strategies in a context of water scarcity, conflicting water uses and highly variable and changing climate conditions. The participatory modeling approach will be conducted through a series of three workshops, designed to encourage substantive participation from a broad range of actors, including representatives from federal and local government agencies, water use sectors, non-governmental organizations, and academics. Participants will guide the design of supply- and demand-side management strategies and selection of climate change and infrastructure management scenarios using state-of-the-art engineering tools. These tools include a water resources systems framework, a spatially-explicit hydrologic model, the use of forecasted climate scenarios under 21st century climate change, and observations obtained from field and satellite sensors. Through the theory of planned behavior, the participatory modeling process will be evaluated to understand if, and to what extent, the engineering tools are useful in the uncertain and politically-complex setting. Pre- and post-workshop surveys will be used in this evaluation. For this contribution, we present the results of the first collaborative modeling workshop that will be held in March 2013, where we will develop the initial modeling framework in collaboration with workshop participants.

  3. Introducing Argumentation About Climate Change Socioscientific Issues in a Disadvantaged School

    Science.gov (United States)

    Dawson, Vaille; Carson, Katherine

    2018-03-01

    Improving the ability of young people to construct arguments about controversial science topics is a desired outcome of science education. The purpose of this research was to evaluate the impact of an argumentation intervention on the socioscientific issue of climate change with Year 10 students in a disadvantaged Australian school. After participation in a professional development workshop on climate change science, socioscientific issues and argumentation, an early career teacher explicitly taught argumentation over four non-consecutive lessons as part of a 4 week (16 lesson) topic on Earth science. Thirty students completed a pre- and post-test questionnaire to determine their understanding of climate change science and their ability to construct an argument about a climate change socioscientific issue. Students' understanding of climate change improved significantly (p size. There was also a significant increase (p Qualitative data, comprising classroom observation field notes, lesson transcripts, work samples, and teacher and student interviews, were analysed for the extent to which the students' argumentation skills improved. At the end of the intervention, students became aware of the need to justify their decisions with scientific evidence. It is concluded that introducing argumentation about climate change socioscientific issues to students in a disadvantaged school can improve their argumentation skills.

  4. Planning and costing agricultural adaptation to climate change in the pastoral livestock system of Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Tumbo, S.; Mutabazi, K.; Kimambo, A.; Rwehumbiza, F.

    2011-08-15

    There is limited research on bottom-up adaptation economics in general – and climate change adaptation in animal agriculture in particular – to guide adaptation actions. This study therefore tries to address costing and planning of adaptation to climate change in animal agriculture in Tanzania. The study adopted a bottom-up costing of adaptation actions that were identified using a case study approach. A questionnaire interview involving a sample of pastoralists and agro-pastoralist was conducted to identify and quantify impacts due to climate change, and currently-used adaptation actions and costs, in some selected areas in Same, Chamwino and Mvomero districts. This was followed by key informants' interviews at district and national level to get insights on developmental and climate change policies and actions, and their costs. A mini-workshop was later conducted to establish priority adaptation actions and their costs. The workshop involved local-, district- and national-level stakeholders. A country feedback workshop was then held to present initial findings and get additional inputs from experts and other stakeholders. The case study findings showed that a changing climate has resulted in environmental shocks and extreme events such as drought, excessive rains, floods and high temperatures, which have caused inadequate supply of water and pasture, increases in disease incidences, and death of animals. It is probable that in the future such events are likely to have even more serious repercussions and therefore there is a compelling need to plan mitigation measures. Through this study, various adaptation actions envisioned to be capable of fostering resilience have been identified and categorised as addressing three levels: development deficit, climate variability, or climate change-related extremes and shocks. Current annual adaptation costs were estimated at 226.7 M US$ and up to 3,987.5 M US$ by 2030; some of these costs are already being incurred by

  5. Planning and costing agricultural adaptation to climate change in the pastoral livestock system of Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Tumbo, S; Mutabazi, K; Kimambo, A; Rwehumbiza, F

    2011-08-15

    There is limited research on bottom-up adaptation economics in general – and climate change adaptation in animal agriculture in particular – to guide adaptation actions. This study therefore tries to address costing and planning of adaptation to climate change in animal agriculture in Tanzania. The study adopted a bottom-up costing of adaptation actions that were identified using a case study approach. A questionnaire interview involving a sample of pastoralists and agro-pastoralist was conducted to identify and quantify impacts due to climate change, and currently-used adaptation actions and costs, in some selected areas in Same, Chamwino and Mvomero districts. This was followed by key informants' interviews at district and national level to get insights on developmental and climate change policies and actions, and their costs. A mini-workshop was later conducted to establish priority adaptation actions and their costs. The workshop involved local-, district- and national-level stakeholders. A country feedback workshop was then held to present initial findings and get additional inputs from experts and other stakeholders. The case study findings showed that a changing climate has resulted in environmental shocks and extreme events such as drought, excessive rains, floods and high temperatures, which have caused inadequate supply of water and pasture, increases in disease incidences, and death of animals. It is probable that in the future such events are likely to have even more serious repercussions and therefore there is a compelling need to plan mitigation measures. Through this study, various adaptation actions envisioned to be capable of fostering resilience have been identified and categorised as addressing three levels: development deficit, climate variability, or climate change-related extremes and shocks. Current annual adaptation costs were estimated at 226.7 M US$ and up to 3,987.5 M US$ by 2030; some of these costs are already being incurred by

  6. Development and Climate Change in Nepal. Focus on Water Resources and Hydropower

    International Nuclear Information System (INIS)

    Agrawala, S.; Raksakulthai, V.; Van Aalst, M.; Larsen, P.; Smith, J.; Reynolds, J.

    2003-01-01

    This document is an output from the OECD Development and Climate Change project, an activity jointly overseen by the EPOC Working Party on Global and Structural Policies (WPGSP), and the DAC Network on Environment and Development Co-operation (ENVIRONET). The overall objective of the project is to provide guidance on how to mainstream responses to climate change within economic development planning and assistance policies, with natural resource management as an overarching theme. This report presents the integrated case study for Nepal carried out under an OECD project on Development and Climate Change. The report is structured around a three-tier framework. First, recent climate trends and climate change scenarios for Nepal are assessed, and key sectoral impacts are identified and ranked along multiple indicators to establish priorities for adaptation. Second, donor portfolios in Nepal are analyzed to examine the proportion of donor activities affected by climate risks. A desk analysis of donor strategies and project documents as well as national plans is conducted to assess the degree of attention to climate change concerns in development planning and assistance. Third, an in-depth analysis is conducted for Nepal's water resources sector which was identified as most vulnerable to climate change. This part of the analysis also involved stakeholder consultation through an in-country workshop to identify key synergies and conflicts between climate change concerns and sectoral projects and plans

  7. Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberger, John [Aspen Global Change Inst., Basalt, CO (United States); Arnott, James [Aspen Global Change Inst., Basalt, CO (United States); Wright, Alyson [Aspen Global Change Inst., Basalt, CO (United States)

    2014-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6,” on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project – 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

  8. Results of a Technical Review of the U.S. Climate Change Technology Program's R&D Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn A [ORNL

    2006-07-01

    The U.S. Climate Change Technology Program (CCTP) is a multi-agency planning and coordinating entity, led by the U.S. Department of Energy that aims to accelerate the development and facilitate the adoption of technologies to address climate change. In late 2005, CCTP asked Oak Ridge National Laboratory and Energetics Incorporated to organize and coordinate a review of the CCTP R&D portfolio using structured workshops. Each workshop focused on one of CCTP's six strategic goals: 1.Reduce emissions from energy end-use and infrastructure 2.Reduce emissions from energy supply 3.Capture and sequester carbon dioxide 4.Reduce emissions of non-CO2 greenhouse gases (GHG) 5.Improve capabilities to measure and monitor GHG emissions 6.Bolster basic science contributions to technology development To promote meaningful dialogue while ensuring broad coverage, a group of broadly experienced professionals with expertise in fields relevant to each CCTP goal were asked to participate in the portfolio reviews and associated workshops. A total of 75 experts participated in the workshops; 60 of these participants represented non-Federal organizations. This report summarizes the findings of the workshops and the results of the Delphi assessment of the CCTP R&D portfolio.

  9. Interdisciplinary Research on Climate Change: Past Trends and Challenges for the Future

    Science.gov (United States)

    Marlon, J. R.; Mitchell, R.

    2009-12-01

    Interdisciplinary research is crucial to understanding complex and urgent environmental problems, particularly climate change. Universities are increasingly hosting trans-, multi-, and inter-disciplinary workshops and conferences and developing innovative interdisciplinary training programs (e.g., NSF’s IGERT program) to foster such research. Yet, much doctoral training remains highly disciplinary with very little evidence of graduate training producing transformative research that bridges the natural/social-science divide. Indeed, strong cultural and institutional obstacles often deter or preclude doctoral students from conducting such research. Here we analyze the past three decades of climate-change related dissertation abstracts to assess the balance between disciplinary and interdisciplinary scholarship among young climate change scholars. We analyze trends in the number of dissertations in natural vs. social science disciplines and code the abstracts of over 500 recent dissertations to assess how many dissertations reference one or more disciplines beyond the PhD-granting one. This research is sponsored by the Dissertations Initiative for the Advancement of Climate Change Research (DISCCRS).

  10. Executive summary: Climate change in the northwest: Implications for our landscapes, waters, and communities

    Science.gov (United States)

    Dalton, Meghan M.; Bethel, Jeffrey; Capalbo, Susan M.; Cuhaciyan, J.E.; Eigenbrode, Sanford D.; Glick, Patty; Houston, Laurie L.; Littell, Jeremy S.; Lynn, Kathy; Mote, Philip W.; Raymondi, Rick R.; Reeder, W. Spencer; Shafer, Sarah L.; Snover, Amy K.

    2013-01-01

    Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities is aimed at assessing the state of knowledge about key climate impacts and consequences to various sectors and communities in the northwest United States. It draws on a wealth of peer-reviewed literature, earlier state-level assessment reports conducted for Washington (2009) and Oregon (2010), as well as a risk-framing workshop. As an assessment, it aims to be representative (though not exhaustive) of the key climate change issues as reflected in the growing body of Northwest climate change science, impacts, and adaptation literature now available. This report will serve as an updated resource for scientists, stakeholders, decision makers, students, and community members interested in understanding and preparing for climate change impacts on Oregon, Washington, and Idaho. This more detailed, foundational report is intended to support the key findings presented in the Northwest chapter of the Third National Climate Assessment.

  11. Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership

    Science.gov (United States)

    Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.

    2012-12-01

    This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.

  12. Climate change impacts on forest fires: the stakeholders' perspective

    Science.gov (United States)

    Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.

    2012-04-01

    In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability

  13. Community-based Participatory Process – Climate Change and Health Adaptation Program for Northern First Nations and Inuit in Canada

    Directory of Open Access Journals (Sweden)

    Diane McClymont Peace

    2012-05-01

    Full Text Available Objectives: Health Canada's Program for Climate Change and Health Adaptation in Northern First Nation and Inuit Communities is unique among Canadian federal programs in that it enables community-based participatory research by northern communities. Study design: The program was designed to build capacity by funding communities to conduct their own research in cooperation with Aboriginal associations, academics, and governments; that way, communities could develop health-related adaptation plans and communication materials that would help in adaptation decision-making at the community, regional, national and circumpolar levels with respect to human health and a changing environment. Methods: Community visits and workshops were held to familiarize northerners with the impacts of climate change on their health, as well as methods to develop research proposals and budgets to meet program requirements. Results: Since the launch of the Climate Change and Health Adaptation Program in 2008, Health Canada has funded 36 community projects across Canada's North that focus on relevant health issues caused by climate change. In addition, the program supported capacity-building workshops for northerners, as well as a Pan-Arctic Results Workshop to bring communities together to showcase the results of their research. Results include: numerous films and photo-voice products that engage youth and elders and are available on the web; community-based ice monitoring, surveillance and communication networks; and information products on land, water and ice safety, drinking water, food security and safety, and traditional medicine. Conclusions: Through these efforts, communities have increased their knowledge and understanding of the health effects related to climate change and have begun to develop local adaptation strategies.

  14. Community-based Participatory Process – Climate Change and Health Adaptation Program for Northern First Nations and Inuit in Canada

    Science.gov (United States)

    Peace, Diane McClymont; Myers, Erin

    2012-01-01

    Objectives Health Canada's Program for Climate Change and Health Adaptation in Northern First Nation and Inuit Communities is unique among Canadian federal programs in that it enables community-based participatory research by northern communities. Study design The program was designed to build capacity by funding communities to conduct their own research in cooperation with Aboriginal associations, academics, and governments; that way, communities could develop health-related adaptation plans and communication materials that would help in adaptation decision-making at the community, regional, national and circumpolar levels with respect to human health and a changing environment. Methods Community visits and workshops were held to familiarize northerners with the impacts of climate change on their health, as well as methods to develop research proposals and budgets to meet program requirements. Results Since the launch of the Climate Change and Health Adaptation Program in 2008, Health Canada has funded 36 community projects across Canada's North that focus on relevant health issues caused by climate change. In addition, the program supported capacity-building workshops for northerners, as well as a Pan-Arctic Results Workshop to bring communities together to showcase the results of their research. Results include: numerous films and photo-voice products that engage youth and elders and are available on the web; community-based ice monitoring, surveillance and communication networks; and information products on land, water and ice safety, drinking water, food security and safety, and traditional medicine. Conclusions Through these efforts, communities have increased their knowledge and understanding of the health effects related to climate change and have begun to develop local adaptation strategies. PMID:22584509

  15. Practice and progress in integrated assessments of climate change

    International Nuclear Information System (INIS)

    Toth, F.L.

    1995-01-01

    This paper is intended to provide an overview of the state of the art integrated socioeconomic-biophysical assessments of climate change as presented at the IIASA workshop in October 1993. The paper seeks to tally the major improvements facilitated by integrated assessments in understanding the global warming problem and the crucial unresolved problems they currently face. The basic conclusion is that, as a result of a healthy diversity in practice, integrated assessments show significant progress in structuring the economic issues of climate change and providing the first broad insights into policy options. But, as some of the simple and traditional cases seem to be solved, more complex and difficult contingencies come to the fore. This suggests a long way to go to develop skills that will be required to address the numerous open issues. (author)

  16. Climate Change at the Poles: Research Immersion Experience at Bellingshausen, Antarctica

    Science.gov (United States)

    Alexeev, V. A.; Repina, I. A.; Baeseman, J. L.; Fernandoy, F.; Bart, S.

    2010-12-01

    We brought a party of 15 scientists, graduate students, and educators to King George Island, the largest of the South Shetland Islands, just off the Antarctic Peninsula, for an international workshop on Antarctica and global climate change in January 2010. Participants included professors, young scientists and graduate students from the Obukhov Institute of Atmospheric Physics, the University of Maryland, the University of Wisconsin, and the Michigan Technological University. Lindsay Bartholomew, an education and outreach specialist at the Museum of Science and Industry in Chicago connected the workshop via video and Internet with an audience of museum visitors. Scientists living and working at Bellingshausen, including Hans-Ulrich Peter, an eminent ecologist from Jena University (Germany), and Bulat Movlyudov (Institute of Geography, Moscow), a distinguished glaciologist, participated in the workshop. Field trips led by Peter and Movlyudov and others were made by day and lectures were held by night. Professors and graduate students made cutting-edge presentations on such subjects as permafrost, glaciology, and global climate models. Three workshop teams conducted field research projects at the foot of the Bellingshausen Dome icecap - two on carbon cycling and one on permafrost. Major funding sources for the workshop included the Russian Foundation for Basic Research (Russia), Wilderness Research Foundation (USA), NSF, University of Wisconsin at Stevens Point, Alfred Wegener Institute (Germany) and Museum for Science and Industry (Chicago). INACH, the Chilean Antarctic Institute, and IAU, the Uruguayan Antarctic Institute, provided air charter services. On King George Island, our group was billeted at Russia’s Bellingshausen science station.

  17. The Norwegian Climate and Ozone Research Programme

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, E. [ed.

    1996-03-01

    This report includes abstracts from a workshop arranged by the Norwegian Climate and Ozone Research Programme 11-12 March 1996. The abstracts are organized according to the sessions: (1) Regional effects of climate change with emphasis on ecology, (2) Climate research related to the North Atlantic, (3) What lessons can be drawn from paleoclimatology about changes in the current climate?, (4) Changes in the ozone layer and their effect on UV and biology. Abstracts of a selection of papers presented at the workshop can be found elsewhere in the present data base. 70 refs., 19 figs., 2 tabs.

  18. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  19. IOC-CEC-ICES-WMO-ICSU ocean climate data workshop

    International Nuclear Information System (INIS)

    1992-01-01

    The Ocean Climate Data Workshop organized in Greenbelt, Maryland, USA, on 18-21 February 1992 was attended by more than 100 people from 18 countries. The heart of the programme were three groupings of ''Case Studies'' in which scientists and data managers summarized findings on recent research projects and discussed data management aspects including recommendations for improvements needed for the future. Case studies were grouped into the following sessions: Monitoring Changes in the Ocean and Atmosphere; Data Archeology (Historical Data); Effect of Change in the Ocean and on the Life Cycle (Emphasis on Chemical and Biological Observations). A full range of technical matters associated with the collection and dissemination of data and meta-date were discussed. The topics covered were the problems associated with the increasing size of data sets like techniques for storage and retrieval of these data; increasing complexity of data (new data types especially in Chemistry and Biology, growing importance of meta-data and problems associated with the cost, formatting, storage and retrieval of this information); and for correlation of data sets across disciplinary lines, for instance development of a common geo-reference system

  20. Long-term climate monitoring by the global climate observing system

    International Nuclear Information System (INIS)

    Karl, T.R.

    1995-12-01

    Is the climate warming? Is the hydrologic cycle changing? Is the atmospheric/oceanic circulation changing? Is the climate becoming more variable or extreme? Is radiative forcing of the climate changing? are complex questions not only from the standpoint of a multi-variate problem, but because of the various aspects of spatial and temporal sampling that must be considered on a global scale. The development of a Global Climate Observing System (GCOS) offers the opportunity for scientists to do something about existing observing deficiencies in light of the importance of documenting long-term climate changes that may already be affected by anthropogenic changes of atmospheric composition and land use as well as other naturally occurring changes. As an important step toward improving the present inadequacies, a workshop was held to help define the long-term monitoring requirements minimally needed to address the five questions posed above, with special emphasis on detecting anthropogenic climate change and its potential impact on managed and unmanaged systems The workshop focussed on three broad areas related to long-term climate monitoring: (a) the scientific rationale for the long-term climate products (including their accuracy, resolution, and homogeneity) required from our observing systems as related to climate monitoring and climate change detection and attribution; (b) the status of long-term climate products and the observing systems from which these data are derived; and (c) implementation strategies necessary to fulfill item (a) in light of existing systems. Item (c) was treated more in terms of feasibility rather than as a specific implementation plan. figs., tabs., refs

  1. Western Regional Center of the National Institute for Climatic Change Research

    Energy Technology Data Exchange (ETDEWEB)

    Hungate, Bruce A. [Northern Arizona Univ., Flagstaff, AZ (United States)

    2013-05-02

    The major goal of this project was fostering, integrating, synthesizing, and disseminating experimental, observational, and modeling research on predicted climate change in the western region of the U.S. and the impacts of that change on the structure, productivity, and climatic interactions of the region's natural and managed ecological systems. This was accomplished through administering a competitive grants program developed in collaboration with the other four regional centers of the NICCR. The activities supported included efforts to synthesize research on climate change in the western U.S. through meta-analysis studies, model comparisons, and data synthesis workshops. Results from this work were disseminated to the scientific and public media. This project also supported the development of the NICCR web site, hosted at NAU, which was used as the means to accept pre-proposal and proposal submissions for each funding cycle, and served as a clearing house for public outreach for results from NICCR-funded research

  2. Climate change adaptability of cropping and farming systems for Europe

    DEFF Research Database (Denmark)

    Justes, Eric; Rossing, Walter; Vermue, Anthony

    systems to CC through a gradient of adaptation strategies. Methods: The adaptation strategies are evaluated at cropping and farming systems as well as regional levels for nine “Adaptation Pilots” along a North-South climate gradient in the EU. Three categories of strategies are evaluated: i) Resistance...... and foster learning in participatory co-design workshops. Results and expectations: The expected results of the Climate-CAFE on-going project will produce an overview of potential CC adaptation measures for selected sites across the EU, along with mutual learning experiences for improved understanding......Introduction: Prospective studies showed that the European agriculture will be impacted by climate change (CC) with different effects depending on the geographic region. The ERA-Net+ project Climate-CAFE (call of FACCE-JPI) aims to improve the “adaptive capacity” of arable and forage based farming...

  3. Workshop summary: 'Integrating air quality and climate mitigation - is there a need for new metrics to support decision making?'

    Science.gov (United States)

    von Schneidemesser, E.; Schmale, J.; Van Aardenne, J.

    2013-12-01

    Air pollution and climate change are often treated at national and international level as separate problems under different regulatory or thematic frameworks and different policy departments. With air pollution and climate change being strongly linked with regard to their causes, effects and mitigation options, the integration of policies that steer air pollutant and greenhouse gas emission reductions might result in cost-efficient, more effective and thus more sustainable tackling of the two problems. To support informed decision making and to work towards an integrated air quality and climate change mitigation policy requires the identification, quantification and communication of present-day and potential future co-benefits and trade-offs. The identification of co-benefits and trade-offs requires the application of appropriate metrics that are well rooted in science, easy to understand and reflect the needs of policy, industry and the public for informed decision making. For the purpose of this workshop, metrics were loosely defined as a quantified measure of effect or impact used to inform decision-making and to evaluate mitigation measures. The workshop held on October 9 and 10 and co-organized between the European Environment Agency and the Institute for Advanced Sustainability Studies brought together representatives from science, policy, NGOs, and industry to discuss whether current available metrics are 'fit for purpose' or whether there is a need to develop alternative metrics or reassess the way current metrics are used and communicated. Based on the workshop outcome the presentation will (a) summarize the informational needs and current application of metrics by the end-users, who, depending on their field and area of operation might require health, policy, and/or economically relevant parameters at different scales, (b) provide an overview of the state of the science of currently used and newly developed metrics, and the scientific validity of these

  4. How do we convert the transport sector to renewable energy and improve the sector's interplay with the energy system? Main findings and recommendations from Workshop on Transport - renewable energy in the transport sector and planning

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2009-07-15

    As part of the DTU Climate Change Technologies Programme, DTU arranged a series of workshops and conferences on climate change technology focusing on assessment of and adaptation to climate changes as well as on mitigation of greenhouse gasses (GHG). Each workshop targeted a specific technology problem area. The Workshop on Transport took place at DTU 17 - 18 March 2009. The workshop developed and discussed recommendations for future climate change technologies. This report presents summary and recommendations from the workshop. (au)

  5. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  6. Indigenous community health and climate change: integrating biophysical and social science indicators

    Science.gov (United States)

    Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.

    2014-01-01

    This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.

  7. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  8. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  9. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  10. Workshop in economics - the problem of climate change benefit-cost analysis

    International Nuclear Information System (INIS)

    Kosobud, R.F.

    1992-01-01

    Could benefit-cost analysis play a larger role in the discussion of policies to deal with the greenhouse effect? The paper also investigates the causes of this lack of influence. Selected forms of benefit-cost research are probed, particularly the critical discussions raised by this type of research, in an effort to suggest where the chances of greater acceptance lie. The paper begins by discussing the search for an appropriate policy: optimal, targeted, or incremental. It then describes the work being done in specifying and estimating climate change damage relationships. A consideration of the work being done in specifying and estimating abatement (both mitigation and adaptation) cost relationships follows. Finally, the paper ends with an examination of the search for the appropriate policy instrument. International and methodological concerns cut across these areas and are discussed in each section. This paper concludes that there seem to be a number of reasons that benefit-cost results play only a limited role in policy development. There is some evidence that the growing interest in market-based approaches to climate change policy and to other environmental control matters is a sign of increased acceptance. Suggestions about research directions are made throughout this paper

  11. Scientific climate change information by collaborative venture and digital portal

    Science.gov (United States)

    Dubelaar-Versluis, W.

    2010-09-01

    Klimaatportaal is the digital entry of Dutch ‘climate' knowledge centres, which are collaborated in the Platform Communication on Climate Change (PCCC). This collaborative venture was established in 2003 by the Dutch climate research community to improve the quality, efficiency and effectiveness of the communication of Dutch climate research. By now, eight Dutch knowledge centres are participating and still more want to join. The Ministry of Housing, Spatial Planning and the Environment (VROM) supports the PCCC and the project is implemented in collaboration with the BSIK ‘Climate Changes Spatial Planning' programme. The website provides actual and background climate change information for a wide audience on the national scale from policy makers, media to general public. By supplying integral climate information, such as observations of climate change, causes and consequences of climate system, adaptation, mitigation and energy issues, a wide spectrum of target groups will be served. The information is offered in different forms, because of the needs of different target groups. Klimaatportaal contains therefore news on climate issues, frequently asked questions and popular science reports, like the annually brochure De Staat van het Klimaat (‘The State of the Climate'). Recently, also a portal for students is added, where they can find information for their assignments. Beside the website, PCCC is organising activities as symposia and workshops and is supplying information on international issues, for example the content of the Kyoto protocol and the IPCC fourth assessment report (2007). Finally, informing the public through contacts with the media is also an important part of the PCCC. The presentation will address the strengths and weaknesses of this approach which may serve as an example for combining knowledge in outreach activities in other countries.

  12. Climate change - New directions for the Northeast: background paper

    International Nuclear Information System (INIS)

    2001-01-01

    This background paper was developed in preparation for a workshop to bring forward action options to be used for developing an action plan for the consideration of the next meeting of New England Governors/ Eastern Canadian Premiers Conference in September 2001. The background paper is the product of the cooperative effort of all eleven jurisdictions. The paper examines climate science in its global and regional aspects; climate changes impacts, identifying environmental, natural resources and infrastructure issues; monitoring of emission levels and progress in reductions; policy processes, such as leadership, cooperation, emission trading and Kyoto mechanisms; mitigation action options to reduce emissions in the Northeast context, adaptation options and their effects on the natural environment, such a coastal and forestry concerns; infrastructure development; and common Northeast issues and opportunities. A series of options in each of these areas have been identified, including gaps in options. Attention is drawn to the need to consider social and ecological objectives which will become more acute as more climate change policies and programs are implemented. 45 refs

  13. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  14. Workshop on Sustainable Infrastructure with NASA Science Mission Directorate and NASA's Office of Infrastructure Representatives

    Science.gov (United States)

    Rosenzweig, Cynthia; Brown, Molly

    2009-01-01

    NASA conducted a workshop in July 2009 to bring together their experts in the climate science and climate impacts domains with their institutional stewards. The workshop serves as a pilot for how a federal agency can start to: a) understand current and future climate change risks, b) develop a list of vulnerable institutional capabilities and assets, and c) develop next steps so flexible adaptation strategies can be developed and implemented. 63 attendees (26 scientists and over 30 institutional stewards) participated in the workshop, which extended across all or part of three days.

  15. Improving Climate Science Education by Supporting Faculty: Climate Programs from On the Cutting Edge

    Science.gov (United States)

    Wiese, K.; Kirk, K. B.; Manduca, C. A.; Shellito, L. J.; Sztein, E.; Bruckner, M. Z.

    2011-12-01

    Students arrive in our classrooms with a wide range of viewpoints on climate change. Some carry misconceptions resulting from media portrayal of the subject; others have strong feelings about the policy of climate change that overshadow their understanding of the science; while some already grasp the basics of climate science and are thirsty for a more in-depth treatment. In any of these cases, the topic of climate change is likely to be of high interest to students and will challenge faculty to be well-versed in the science, the policy, and in effective pedagogic strategies. The On the Cutting Edge project continues its emphasis on climate science, climate change and energy resources with ongoing professional development events. An underlying theme of all of these events is to help faculty be more effective teachers by providing up-to-date science, examples of promising pedagogies and a forum to network with others who teach similar subjects. A monthly webinar and book club series about teaching climate and energy was offered throughout the 2010-2011 academic year. These one-hour events allowed faculty a convenient way to learn about science topics such as carbon capture and storage, nuclear energy, thermohaline circulation, alternative energy, or the energy-water nexus. Some of the webinars focused on pedagogic approaches, including teaching with climate models, dealing with misconceptions, or using local energy issues for a semester-long jigsaw project. Webinar participants reported that they could expand their teaching to include these topics, they increased their comfort level in presenting those subjects and answering student questions, and they learned where to turn for additional references. An online workshop, Teaching about Earth's Climate Using Data and Numerical Models, was held in October 2010. Participants learned about different types of models, the strategies for teaching with models and how to use online datasets. The workshop also provided

  16. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  17. The Northern Climate Exchange Gap Analysis Project : an assessment of the current state of knowledge about the impacts of climate change in northern Canada

    International Nuclear Information System (INIS)

    2002-01-01

    The Northern Climate ExChange (NCE) Gap Analysis Project was launched in 1999 with an objective to assess the state of knowledge on climate change in northern Canada. Resulting products of the project have included the Infosource Database, an on-line database of published climate change research related to the Canadian North, the Directory of Contacts, another on-line database of interested parties to climate change issues, and a set of tables that rate the level of available information on climate change as it relates to natural, economic and community systems. Other products include a report of a workshop on climate change research, 2 reports assessing the level of traditional northern knowledge about climate change, 2 reports assessing the completeness and value of the Infosource Database, a web site for NCE, and this report. All products are available to the public on the Internet or on a CD-ROM. The NCE Gap Analysis Project has shown there are inequalities in the amount of information across different systems, and that there is more knowledge on predicted temperature changes than for other climate components. The study notes that there are strong regional trends for compiled knowledge, with some regions having been better studied than others. The project revealed that traditional knowledge of climate change has not been well documented, and that more information exists about climate change impacts on biological systems with an economic component than those without economic significance. refs., tabs., figs

  18. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  19. Climate Literacy: Progress in AMS Climate Studies Undergraduate Course in Meteorology Program at Jackson State University

    Science.gov (United States)

    Reddy, S. R.

    2013-12-01

    AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide and increasing involvement of under-represented groups The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. The AMS Climate Studies Diversity Project Workshop participation is on a first-come, first-serve basis as determined by the date-of-receipt of the License Order Form. To grow AMS Diversity Programs to their fullest extent, institutions are encouraged to nominate course instructors who did not previously attend Diversity Project workshops. Until three months before the workshop, two-thirds of the workshop positions would be reserved for institutions new to AMS Diversity Projects. The AMS five day course implementation workshop was held in Washington, DC, during May 24-29, 2012. It covered essential course topics in climate science and global climate change, and strategies for course implementation. Talks would feature climate science and sustainability experts from Federal agencies and area research institutions, such as NASA, NOAA, University of Maryland, Howard University, George Mason University, and other Washington, DC, area institutions. The workshop would also include visits to NASA Goddard Space Flight Center and NOAA's Climate Prediction Center. JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2014. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places

  20. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    Science.gov (United States)

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  1. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    Science.gov (United States)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  2. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  3. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  4. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  5. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  6. The U.S. climate change policy: a preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Viguier, L.

    2002-03-01

    This paper builds upon the first workshop of the Energy and climate Change programme of the CFE, held on january 15, 2002 at IFRI. The President Bush decision to reject the Kyoto protocol was taken for three main reasons. The first argument is related to scientific uncertainty regarding global warming and how human action could impact it. Secondly, Bush thinks that the Kyoto Protocol is unfair and ineffective because it excludes developing countries. Finally he thinks that the Kyoto targets are unrealistic, arbitrary and not based upon science. (A.L.B.)

  7. Integrating Media Production By Students Into Climate Change Education: Within and Beyond the Classroom

    Science.gov (United States)

    Rooney-Varga, J. N.; Brisk, A. A.; Grogan, M.; Ledley, T. S.

    2012-12-01

    Through the Climate Education in an Age of Media (CAM) Project (http://cleanet.org/cced_media/), we have developed approaches to integrate media production by students into climate change education in ways that are engaging, empowering, and can be readily adopted in a wide range of instructional environments. These approaches can be used to overcome many of the challenges that climate change education presents and provide a means to evoke experiential, affective, and social learning pathways. Video production combines many key twenty-first century literacy skills, including content research, writing, an understanding of the power of images and sounds, the ability to use that power, and the ability to manipulate, transform, and distribute digital media. Through collaboration, reflection, and visual expression of concepts, video production facilitates a deeper understanding of material and, potentially, shifts in mental models about climate change. Equally importantly, it provides a means to bridge formal and informal learning by enabling students to educate those beyond the classroom. We have piloted our approach in two intensive summer programs (2011 and 2012) for high school students, during which students learned about climate change science content in lessons that were paired with the production of short media pieces including animations, public service announcements, person-on-the-street interviews, mock trailers, mock news programs, and music videos. Two high school teachers were embedded in the program during the second year, providing feedback and assessment of the feasibility, accessibility, and utility of the approach. The programs culminated with students presenting and discussing their work at public screening events. The media lessons and climate change science content examples used in these programs form the backbone of a toolkit and professional development workshops for middle and high school teachers, in which teachers learn how to incorporate

  8. Developing tools and strategies for communicating climate change

    Science.gov (United States)

    Bader, D.; Yam, E. M.; Perkins, L.

    2011-12-01

    Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.

  9. Weather uncertainty versus climate change uncertainty in a short television weather broadcast

    Science.gov (United States)

    Witte, J.; Ward, B.; Maibach, E.

    2011-12-01

    For TV meteorologists talking about uncertainty in a two-minute forecast can be a real challenge. It can quickly open the way to viewer confusion. TV meteorologists understand the uncertainties of short term weather models and have different methods to convey the degrees of confidence to the viewing public. Visual examples are seen in the 7-day forecasts and the hurricane track forecasts. But does the public really understand a 60 percent chance of rain or the hurricane cone? Communication of climate model uncertainty is even more daunting. The viewing public can quickly switch to denial of solid science. A short review of the latest national survey of TV meteorologists by George Mason University and lessons learned from a series of climate change workshops with TV broadcasters provide valuable insights into effectively using visualizations and invoking multimedia-learning theories in weather forecasts to improve public understanding of climate change.

  10. Workshop on assessments of National Carbon Budgets within the Nordic Region

    DEFF Research Database (Denmark)

    Hansen, Kristina; Koyama, Aki; Lansø, Anne Sofie

    The three-day workshop organized by the three Nordic research projects; ECOCLIM, LAGGE and SnowCarbo brought together scientists and other actors from Nordic countries to communicate and discuss research on carbon budget estimations in the Nordic region. Through presentations of most recent...... research in the field and following scientific discussions, the workshop contributed to strengthen the scientific basis of the identification and quantification of major natural carbon sinks in the Nordic region on which integrated climate change abatement and management strategies and policy decisions...... status and knowledge on research on assessments of national carbon budgets as well as on projections and sensitivity to future changes in e.g. management and climate change in the Nordic Region....

  11. Workshop on assessments of National Carbon Budgets within the Nordic Region

    DEFF Research Database (Denmark)

    Mørk, Eva Thorborg; Lansø, Anne Sofie; Hansen, Kristina

    2013-01-01

    The three-day workshop organized by the three Nordic research projects; ECOCLIM, LAGGE and SnowCarbo brought together scientists and other actors from Nordic countries to communicate and discuss research on carbon budget estimations in the Nordic region. Through presentations of most recent...... research in the field and following scientific discussions, the workshop contributed to strengthen the scientific basis of the identification and quantification of major natural carbon sinks in the Nordic region on which integrated climate change abatement and management strategies and policy decisions...... status and knowledge on research on assessments of national carbon budgets as well as on projections and sensitivity to future changes in e.g. management and climate change in the Nordic Region....

  12. Diverse perspectives on governance on the very long term. Biodiversity, climatic change, CO2 storage, radioactive wastes, space wastes

    International Nuclear Information System (INIS)

    Boeuf, Gilles; Gouyon, Pierre Henry; Rollinger, Francois; Besnus, Francois; Heriard Dubreuil, Gilles; Dahan, Amy; Alby, Fernand; Arnould, Jacques; Fabriol, Hubert; Hoummady, Moussa; Demarcq, Francois; Farret, Regis; Hubert, Philippe; Weber, Jacques; Charton, Patrick; Boissier, Fabrice; Lopez, Mirelle; Devisse, Jean-Jacques; Mathy, Sandrine; Hourcade, Jean-Charles; Le Roux, Xavier; Bourcier, Danielle; Roure, Francoise; Henry, Claude; Bartet, Jean Hughes; Calame, Mathieu; Biteau, Benoit; Kastler, Guy; Ducret, Pierre; Berest, Pierre; Charron, Sylvie; Clin, Francois; Gadbois, Serge; Gueritte, Michel; Heriard-Dubreuil, Bertrand; Laville, Bettina; Marie, Michel; Marignac, Yves; Ollagnon, Henry; Pelegrin, Flora; Roure, Francoise; Rouyer, Michel; Schellenberger, Thomas; Toussaint, Jean-Francois

    2013-03-01

    This bibliographical note contains the program of a workshop and a presentation of a book based on the contributions to this workshop proposed by experts, representatives of institutional bodies and associations, or local representatives. This workshop addressed the issue of the governance on the very long term with respect to the management of resources such as climate, geology, biodiversity or space. How to make a possible usage of these resources while ensuring their protection and durability? What are the solutions or new challenges are raising these usages on the very long term? The first part addresses the main challenges and ethical issues for governance on the very long term for each of the examined topics: biodiversity, climatic change, CO 2 storage, radioactive waste storage, and space debris). The next parts propose contributions from different origins and disciplines, present relevant data, and report evidences

  13. Climate change and local policy. Report of the workshop 2 December 1998, KIT, Amsterdam

    International Nuclear Information System (INIS)

    Schol, E.; Van Vuuren, V.C.; Burger, H.

    1999-01-01

    The objective of the title workshop was to exchange knowledge among Dutch experts and local policy makers on the possibilities for cities to reduce their CO 2 -emissions. The workshop was subdivided into three working groups: (1) Monitoring and Benchmarking; (2) Liberalization of the Energy Market; and (3) Mobilization of the Target Groups

  14. EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.; Finlayson-Pitts, Barbara J.; Allen, Heather C.; Bertram, Allan K.; Grassian, Vicki H.; Martin, Scot T.; Penner, Joyce E.; Prather, Kimberly; Rasch, Philip J.; Signorell, Ruth; Smith, James N.; Wyslouzil, Barbara; Ziemann, Paul; Dabdub, Donald; Furche, Filipp; Nizkorodov, Sergey; Tobias, Douglas J.; Laskin, Julia; Laskin, Alexander

    2013-07-01

    This report contains the workshop scope and recommendations from the workshop attendees in identifying scientific gaps in new particle formation, growth and properties of particles and reactions in and on particles as well as the laboratory-focused capabilities, field-deployable capabilities and modeling/theory tools along with linking of models to fundamental data.

  15. Climate-Energy Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, Gary; Gentry, Randall; Zhuang, Jie

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology

  16. United Nations Climate Change Conference. Nairobi 2006

    International Nuclear Information System (INIS)

    2006-01-01

    Kenya hosted the second meeting of the Parties to the Kyoto Protocol (COP/MOP 2), in conjunction with the twelfth session of the Conference of the Parties to the Climate Change Convention (COP 12), in Nairobi from 6 to 17 November 2006. The conference also included, from 6 to 14 November, the twenty-fifth session of the Subsidiary Body for Scientific and Technological Advice (SBSTA 25), the twenty-fifth session of the Subsidiary Body for Implementation (SBI 25), and the second session of the Ad Hoc Working Group on Further Commitments for Annex I Parties under the Kyoto Protocol (AWG 2) including an in-session workshop. The site contains many of the reports and documents relevant to the conference

  17. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  18. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  19. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  20. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  1. Workshop on Pliocene Climate

    Directory of Open Access Journals (Sweden)

    Nabil Khélifi

    2010-04-01

    Full Text Available The warm Pliocene epoch (5–3 million years ago is often cited as a good analog for the near future climate because of its striking resemblance to the predictions of the “Intergovernmental Panel on Climate Change” for the next decades. Indeed, relative to today, during the Pliocene epoch, surface temperatures were 3–4°C warmer, sea level was about 5–40 meters higher, atmospheric CO2 concentrationswere relatively similar or slightly higher (~400 ± 50 ppmv, and ice sheets were restrained to Antarctica. However, since 3.0 Ma ago, the Earth’s climate has undergone a major transition from a warm and relatively stable state towards cold conditions marked by amplified glacial/interglacial cycles and widespread ice sheets in the Northern Hemisphere (NHG, and to a lesser extent over Antarctica. The causes and consequences of this global climate transition—driving warm periods to “icehouse” conditions marked by “Quaternary-style” glacial/interglacial cycles—are still uncertain. Yet, they may include the interaction of several mechanisms tied to oceanic and atmospheric circulations, tectonic-, greenhouse gases-, and biological activity, biogeochemical processes, and changes in Earth’s orbit.

  2. Rocks, Rain, and Climate: a GIFT Workshop for Teachers in Brazil

    Science.gov (United States)

    Passow, M. J.; Krusche, N.; Carneiro, C. D.

    2010-12-01

    Classroom teachers and university professors from two continents joined to learn about “Rocks, Rain, and Climate” in the GIFT (Geophysical Information For Teachers) Workshop at the Meeting of the Americas, held in Foz de Iguaçu (Iguassu Falls), Brazil, 8 - 9 August 2010. GIFT workshops have long been part of the AGU Fall Meetings, but among “the pioneers” from this program were the first GIFT in South America and the first GIFT presented in Portuguese and English. Its success will provide a model for future teacher-professor-researcher professional development in Brazil. The two-day course opened with overviews of the “Geology and Relief of South America” from C.D.R. Carneiro and the “Weather and Climate in South America” from Michelle R. Reboita (Federal University of Itajubá/UNIFEI). M.J. Passow organized a discussion about the “Challenges to Teaching about Climate Change,” followed by an exchange among the participants about their teaching experiences. The first day ended with a presentation by Antonio Carlos Alves Carvalho (Ministry of Education) about governmental initiatives to enhance distance learning and educational technology across the country to provide greater access to quality resources for all students and teachers. On the second day, Rachel Albrecht (Center for Weather Forecasting and Climate Studies of the National Space Research Institute/CPTEC-INPE) described her research using Tropical Rainfall Measuring Mission (TRMM)satellite precipitation data. M.J. Passow explained additional classroom applications of satellite data for studying precipitation and other patterns in the Tropics. C.D.R. Carneiro then discussed current research into “Weathering, Rocks, and the Carbon Cycle.” In the final session, Maria Assunção Faus da Silva Dias (University of São Paulo/USP)explained creation and educational uses of mathematical models to study the evolution of climate, especially as it relates to the hydrologic cycle. Participants

  3. "no snow - no skiing excursion - consequences of climatic change?"

    Science.gov (United States)

    Neunzig, Thilo

    2014-05-01

    Climatology and climate change have become central topics in Geography at our school. Because of that we set up a climatological station at our school. The data are an important basis to observe sudden changes in the weather. The present winter (2013/2014) shows the importance of climate change in Alzey / Germany. In winter many students think of the yearly skiing trip to Schwaz / Austria which is part of our school programme. Due to that the following questions arise: Will skiing still be possible if climate change accelerates? How are the skiing regions in the Alpes going to change? What will happen in about 20 years? How does artificial snow change the landscape and the skiing sport? Students have to be aware of the ecological damage of skiing trips. Each class has to come up with a concept how these trips can be as environmentally friendly as possible. - the trip is for a restricted number of students only (year 8 only) - a small skiing region is chosen which is not overcrowded - snow has to be guaranteed in the ski area to avoid the production of artificial snow (avoidance of high water consumption) - the bus arrives with a class and returns with the one that had been there before These are but a few ideas of students in order to make their trip as environmentally friendly as possible. What is missing is only what is going to happen in the future. What will be the effect of climate change for skiing regions in the secondary mountains? How is the average temperature for winter going to develop? Are there possibilities for summer tourism (e.g. hiking) instead of skiing in winter? The students are going to try to find answers to these questions which are going to be presented on a poster on the GIFT-Workshop in Vienna.

  4. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  5. Research Priorities for NCD Prevention and Climate Change: An International Delphi Survey.

    Science.gov (United States)

    Colagiuri, Ruth; Boylan, Sinead; Morrice, Emily

    2015-10-16

    Climate change and non-communicable diseases (NCDs) are arguably the greatest global challenges of the 21st Century. However, the confluence between them remains under-examined and there is little evidence of a comprehensive, systematic approach to identifying research priorities to mitigate their joint impact. Consequently, we: (i) convened a workshop of academics (n = 25) from the Worldwide Universities Network to identify priority areas at the interface between NCDs and climate change; (ii) conducted a Delphi survey of international opinion leaders in public health and relevant other disciplines; and (iii) convened an expert panel to review and advise on final priorities. Three research areas (water security; transport; conceptualising NCD harms to support policy formation) were listed among the top 10 priorities by >90% of Delphi respondents, and ranked among the top 12 priorities by >60% of respondents who ranked the order of priority. A fourth area (reducing the carbon footprint of cities) was ranked highest by the same >60% of respondents. Our results are consistent with existing frameworks on health and climate change, and extends them by focusing specifically on NCDs. Researching these priorities could progress understanding of climate change and NCDs, and inform global and national policy decisions for mitigating associated harms.

  6. Research Priorities for NCD Prevention and Climate Change: An International Delphi Survey

    Directory of Open Access Journals (Sweden)

    Ruth Colagiuri

    2015-10-01

    Full Text Available Climate change and non-communicable diseases (NCDs are arguably the greatest global challenges of the 21st Century. However, the confluence between them remains under-examined and there is little evidence of a comprehensive, systematic approach to identifying research priorities to mitigate their joint impact. Consequently, we: (i convened a workshop of academics (n = 25 from the Worldwide Universities Network to identify priority areas at the interface between NCDs and climate change; (ii conducted a Delphi survey of international opinion leaders in public health and relevant other disciplines; and (iii convened an expert panel to review and advise on final priorities. Three research areas (water security; transport; conceptualising NCD harms to support policy formation were listed among the top 10 priorities by >90% of Delphi respondents, and ranked among the top 12 priorities by >60% of respondents who ranked the order of priority. A fourth area (reducing the carbon footprint of cities was ranked highest by the same >60% of respondents. Our results are consistent with existing frameworks on health and climate change, and extends them by focusing specifically on NCDs. Researching these priorities could progress understanding of climate change and NCDs, and inform global and national policy decisions for mitigating associated harms.

  7. Climate Change Science Teaching through Integration of Technology in Instruction and Research

    Science.gov (United States)

    Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.

    2015-12-01

    This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.

  8. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    Science.gov (United States)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the

  9. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  10. Workshop approach for developing climate change adaptation strategies and actions for natural resource management agencies in the United States

    Science.gov (United States)

    Jessica E. Halofsky; David L Peterson; Michael J. Furniss; Linda A. Joyce; Constance I. Millar; Ronald P. Neilson

    2011-01-01

    Concrete ways to adapt to climate change are needed to help land-management agencies take steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. Because the development of adaptation tools and strategies is at an early stage, it is important that ideas and strategies are disseminated...

  11. Western Pyrenees facing global change: comparison of the effects of climatic and anthropogenic change on water abstractions

    International Nuclear Information System (INIS)

    Terrasson, Isabelle; Chazot, Sebastien; Maton, Laure; Rinaudo, Jean-Daniel; Caballero, Yvan

    2014-01-01

    In the French Western Pyrenees, the trend to the decrease of low water flows that has been observed during the current years should be going on in the future. This may increase the hydric stress on aquatic ecosystems, and the competition among water uses and users for accessing water resources. The research project ANR-VULCAIN compared the impacts of climatic and socio-economic change on the hydro-systems of the French Western Pyrenees. Modeling and participative prospect analysis have been coupled to quantify the evolution of water abstractions under these two types of change. Socio-economic scenarios have been built together with local stakeholders during workshops (urbanism / land planning on the one hand and agriculture on the other hand). Their results have been quantified with the models developed so as to assess anthropogenic change impacts on domestic and agricultural abstractions. In parallel, the agricultural model has been fed with climatic scenarios so as to assess the impacts of climate change on agricultural water needs. In the created scenarios, the evolution of agricultural water needs under climate change have a bigger range than the evolution of abstractions for domestic water and agricultural needs under anthropic change, which are the same order of magnitude. To satisfy this evolution, there are some rooms to maneuver: make distribution modalities more efficient, optimize the management of storage capacity, or use substitution resources. This paper presents the approach that has been followed, and some of the main results. (authors)

  12. IPCC workshop on socio-economic scenarios. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y. (and others)

    2012-07-01

    The goal of the IPCC Workshop on Socio-Economic Scenarios (WoSES) was to facilitate the development of socioeconomic narratives and pathways by the integrated assessment modelling, impacts, and adaptation communities. Describing these pathways and narratives is a core step to analyzing the interdependent issues of adaptation and mitigation in an integrated manner. The Workshop participants agreed that structured and consistent assessments of possible future impacts, vulnerabilities, adaptation, and mitigation would benefit from using shared qualitative narrative and quantitative descriptions of potential socioeconomic and ecosystem reference conditions that underlie challenges to mitigation and adaptation. These descriptions should be flexible enough to provide a framework for comparison within which regional or local studies of adaptation and vulnerability could build their own narratives. The defining socioeconomic conditions of these scenarios are designated Shared Socioeconomic reference Pathways (SSPs). The SSPs define the state of human and natural societies at a macro scale and have two elements: a narrative storyline and a set of quantified measures that define the high-level state of society as it evolves over the 21st century under the assumption of no significant climate change. This assumption defines the SSPs as a baseline independent of climate change projections. The set of SSPs was chosen to characterize the range of uncertainty in mitigation efforts required to achieve particular radiative forcing pathways, in adaptation efforts that could be undertaken to prepare for and respond to the climate change associated with those pathways, and in residual impacts. This will allow assessment of scenarios along two axes: socioeconomic challenges to mitigation, and socioeconomic challenges to adaptation. This conceptualization of SSPs allows them to be combined with different degrees of anthropogenic interference with the climate system (measured in terms of

  13. Managing for climate change on federal lands of the western United States: perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation

    Directory of Open Access Journals (Sweden)

    Kerry B. Kemp

    2015-06-01

    Full Text Available Recent mandates in the United States require federal agencies to incorporate climate change science into land management planning efforts. These mandates target possible adaptation and mitigation strategies. However, the degree to which climate change is actively being considered in agency planning and management decisions is largely unknown. We explored the usefulness of climate change science for federal resource managers, focusing on the efficacy of potential adaptation strategies and barriers limiting the use of climate change science in adaptation efforts. Our study was conducted in the northern Rocky Mountains region of the western United States, where we interacted with 77 U.S. Forest Service and Bureau of Land Management personnel through surveys, semistructured interviews, and four collaborative workshops at locations across Idaho and Montana. We used a mixed-methods approach to evaluate managers' perceptions about adapting to and mitigating for climate change. Although resource managers incorporate general language about climate change in regional and landscape-level planning documents, they are currently not planning on-the-ground adaptation or mitigation projects. However, managers felt that their organizations were most likely to adapt to climate change through use of existing management strategies that are already widely implemented for other non climate-related management goals. These existing strategies, (e.g., thinning and prescribed burning are perceived as more feasible than new climate-specific methods (e.g., assisted migration because they already have public and agency support, accomplish multiple goals, and require less anticipation of the future timing and probability of climate change impacts. Participants reported that the most common barriers to using climate change information included a lack of management-relevant climate change science, inconsistent agency guidance, and insufficient time and resources to access

  14. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  15. Energy, development and climate change. Considerations in Asia and Latin America

    International Nuclear Information System (INIS)

    2003-01-01

    The main findings of two high-level regional workshops organized in 2002 - by the International Petroleum Industry Environmental Conservation Association (IPIECA) in Kuala Lumpur, Malaysia, and by the Regional Association of Oil and Natural Gas Companies in Latin America and the Caribbean (ARPEL), IPIECA and UNEP in San Jose, Costa Rica - are presented in this article. The purpose of these workshops was to increase the understanding of regional development and climate change issues, and to identify opportunities for effective near- and long-term action, particularly through the Clean Development Mechanism (CDM). Economic, methodological and institutional barriers to private sector investment in CDM projects still exist. Uncertainties about rules surrounding the CDM have progressed from hypothetical concerns to more practical ones related to institutional capacity to review and approve project applications in a timely and cost-effective manner

  16. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  17. The NASA Innovations in Climate Education Project: 'Instructional Strategies for Expanding Climate Change Concepts within Readng/Literacy Skills

    Science.gov (United States)

    Walton-Jaggers, L. J.; Johnson, D.; Hayden, L. B.; Hale, S. R.

    2013-12-01

    The Common Core State Standards (CCSS) provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. In 2010 the standards were designed to be robust and relevant to the real world, reflecting the knowledge and skills that young people need for success in college and careers. In 2013 the Next Generation Science Standards (NGSS) in connection with the CCSS developed revised science standards in performance, prior standards documents listed what students should know or understand, foundations were each performance expectation incorporates all three dimensions from a science or engineering practice, a core disciplinary idea, and a crosscutting concept, and coherence that connects each set of performance expectations lists connections to other ideas within the disciplines of science and engineering. Elizabeth City State University (ECSU) in Elizabeth City, North Carolina has joined with the University of New Hampshire (UNH) in Durham, New Hampshire under the NASA Innovations in Climate Education (NICE) grant to empower faculty of education programs at Minority Serving Institutions (MSIs) to better engage their pre-service teachers in teaching and learning about global climate change through the use of NASA Earth observation sets. Specifically, professors from MSIs received training with Global Positioning Systems (GPS) and GES-DISC Interactive Online Visualization And aNalysis Infrastructure (GIOVANNI) to engage pre-service teachers in facets of climate education. Grambling State University faculty members served as participants of the NICE workshop for 2012 and were encouraged to develop lessons in climate education from information shared at the workshop. A corresponding project that incorporated the CCSS and NGSS at Grambling State University in Grambling, Louisiana was headed by Dr. Loretta Jaggers. This paper documents activities that pre-service students in the GSU Curriculum and

  18. Climate Prediction Center - Outreach: 41st Annual Climate Diagnostics &

    Science.gov (United States)

    home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Annual Climate Diagnostics & Prediction Workshop NOAA's 41st Climate Diagnostics and Prediction Climate Diagnostics Prediction Workshop (CDPW) news, visit the CDPW list server Abstract Submission Has

  19. Climatic change and local policy, Amsterdam, Netherlands. Policy options and implementation strategies to reduce emission of CO2

    International Nuclear Information System (INIS)

    Schol, E.; Van den Bosch, A.; Ligthart, F.A.T.M.; Roemer, J.C.; Ruijg, G.J.; Schaeffer, G.J.; Dinkelman, D.H.; Kok, I.C.; De Paauw, K.F.B.

    1998-04-01

    Insight is given into the local policy options with respect to climate change, in this case within the sphere of influence of Amsterdam local authorities. A list of new policy options for CO2-reduction has been made with the assistance of local policy makers and representatives of interest groups. These policy options have been divided into three qualitative scenarios: Institutional Cultural Change, Technological Innovation and Least Regrets. The environmental, economic and other effects have been described for each policy option. The three most interesting policy options have been selected by local policy makers and representatives of interest groups during a workshop. Implementation strategies have been developed for the options selected. These strategies have been discussed during a second workshop. The reduction target, stabilization of CO2-emissions in 2015 compared to 1993, can be realized by a combination of all the new policy options. The three selected policy options count for 40% of this total CO2-emission reduction. Finally, a general outline on the methodology to construct local policies for climate protection has been described. This methodology can also be applied to other cities and municipal administrators, e.g. participants of Cities for Climate Protection, an initiative of the International Council for Local Environmental Initiatives, or the Netherlands Climate Association. 136 refs

  20. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  1. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  2. Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change

    Science.gov (United States)

    Puttick, Gillian; Tucker-Raymond, Eli

    2018-01-01

    Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.

  3. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    Science.gov (United States)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  4. Global precipitations and climate change. Proceedings

    International Nuclear Information System (INIS)

    Desbois, M.; Desalmand, F.

    1994-01-01

    The workshop reviewed the present status of knowledge concerning the past and present evolution of the distribution of precipitations at global scale, related to climate evolution at different time scales. This review was intended to assess the availability and quality of data which could help, through validation and initialization of model studies, to improve our understanding of the processes determining these precipitation changes. On another hand, the modelling specialists presented their actual use of precipitation data. Exchanges of views between the modelling and observing communities were thus made possible, leading to a set of recommendations for future studies. Sessions were then devoted to specific themes: 1) Paleoclimatology, 2) data collection, history and statistics, programmes, 3) methodologies and accuracy of large scale estimation of precipitation from conventional data, 4) estimation of precipitation from satellite data, 5) modelling studies. (orig.)

  5. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  6. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  7. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  8. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  9. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    development in 2010 and is likely to manage the system after 2011. The European Commission in its Communication in 2009 on disaster risk prevention also calls for improving and better sharing of data on disasters, disaster risk mapping and disaster risk management, in the context of the EU civil protection mechanism. Such information might also be linked to the planned EU Clearinghouse on climate change adaptation. The activities of EEA on climate change impacts, vulnerability and adaptation (including disaster risk reduction) include indicators of the impacts of climate change; a regularly updated overview of national assessments and adaptation plans on the EEA web site and specific focused reports, e.g. on adaptation to the challenges of changing water resources in the Alps (2009) and on analysis of past trends in natural disasters (due in 2010) and regular expert meetings and workshops with EEA member countries. The ECAC presentation will include the latest developments in the EU Clearinghouse on adaptation and progress in relevant EEA activities.

  10. Climate knowledge cultures: Stakeholder perspectives on change and adaptation in Nusa Tenggara Barat, Indonesia

    Directory of Open Access Journals (Sweden)

    E.L. Bohensky

    2016-01-01

    Full Text Available Effective climate adaptation requires engagement (awareness, motivation, and capacity to act at relevant scales, from individuals to global institutions. In many parts of the world, research attention has focused on the engagement of the general public. We suggest that studies also need to focus on key stakeholders in the government and non-governmental sectors who participate in adaptation planning processes, so that a better understanding may be achieved of the distinct knowledge cultures that influence their engagement with climate change. Indonesia is a key actor in climate adaptation because of the potentially dire consequences for its population’s livelihoods and well-being. In this paper we consider whether ‘climate knowledge cultures’ exist amongst stakeholders at multiple organisational levels in Nusa Tenggara Barat (NTB Province, Eastern Indonesia. Surveys were conducted with 124 stakeholders from differing levels at the beginning of four multi-stakeholder climate adaptation workshops. Questions elicited perceptions of their region’s challenges, observation and awareness of climate change, feelings they associated with climate change, beliefs regarding causes, risks and preparedness for climate change, and timeframes they associated with the future. Across all levels, climate change ranked highest as the first challenge participants identified, followed by food security, but well-being ranked highest when the top three challenges were combined. Most participants believed climate change was happening, but those working at higher organisational levels were more likely to attribute climate change to human factors whereas those at lower levels were more likely to think it was a natural phenomenon. Women were in greater agreement and more optimistic than men about current government policies to cope with climate change. Perceptions differed between sub-districts, reflecting NTB’s climatic diversity. We note that although climate

  11. Preliminary review of adaptation options for climate-sensitive ecosystems and resources. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research

    Science.gov (United States)

    Baron, Jill S.; Griffith, Brad; Joyce, Linda A.; Kareiva, Peter; Keller, Brian D.; Palmer, Margaret A.; Peterson, Charles H.; Scott, J. Michael; Julius, Susan Herrod; West, Jordan M.

    2008-01-01

    Climate variables are key determinants of geographic distributions and biophysical characteristics of ecosystems, communities, and species. Climate change is therefore affecting many species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue into the future regardless of emissions mitigation, strategies for protecting climate-sensitive ecosystems through management will be increasingly important. While there will always be uncertainties associated with the future path of climate change, the response of ecosystems to climate impacts, and the effects of management, it is both possible and essential for adaptation to proceed using the best available science. This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term “adaptation” in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or natural resource management goals, it is instructive to examine particular goals and processes used by different organizations to fulfill their objectives. Such an examination allows for discussion of specific adaptation options as well as potential barriers and opportunities for implementation. Using this approach, this report presents a series of chapters on the following selected management systems: National Forests, National Parks, National Wildlife Refuges, Wild and Scenic Rivers, National Estuaries, and Marine Protected Areas. For these chapters, the authors draw on the literature, their own expert opinion, and expert workshops composed of resource management scientists and representatives of managing agencies. The information drawn from across these chapters is then analyzed to develop the key synthetic messages presented below.

  12. Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience

    Science.gov (United States)

    Spellman, K.; Sparrow, E.

    2017-12-01

    Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this

  13. From products to processes: Academic events to foster interdisciplinary and iterative dialogue in a changing climate

    Science.gov (United States)

    Addor, Nans; Ewen, Tracy; Johnson, Leigh; Ćöltekin, Arzu; Derungs, Curdin; Muccione, Veruska

    2015-08-01

    In the context of climate change, both climate researchers and decision makers deal with uncertainties, but these uncertainties differ in fundamental ways. They stem from different sources, cover different temporal and spatial scales, might or might not be reducible or quantifiable, and are generally difficult to characterize and communicate. Hence, a mutual understanding between current and future climate researchers and decision makers must evolve for adaptation strategies and planning to progress. Iterative two-way dialogue can help to improve the decision making process by bridging current top-down and bottom-up approaches. One way to cultivate such interactions is by providing venues for these actors to interact and exchange on the uncertainties they face. We use a workshop-seminar series involving academic researchers, students, and decision makers as an opportunity to put this idea into practice and evaluate it. Seminars, case studies, and a round table allowed participants to reflect upon and experiment with uncertainties. An opinion survey conducted before and after the workshop-seminar series allowed us to qualitatively evaluate its influence on the participants. We find that the event stimulated new perspectives on research products and communication processes, and we suggest that similar events may ultimately contribute to the midterm goal of improving support for decision making in a changing climate. Therefore, we recommend integrating bridging events into university curriculum to foster interdisciplinary and iterative dialogue among researchers, decision makers, and students.

  14. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  15. Adapting Canada's northern infrastructure to climate change: the role of codes and standards

    International Nuclear Information System (INIS)

    Steenhof, P.

    2009-01-01

    This report provides the results of a research project that investigated the use of codes and standards in terms of their potential for fostering adaptation to the future impacts of climate change on built infrastructure in Canada's north. This involved a literature review, undertaking key informant interviews, and a workshop where key stakeholders came together to dialogue on the challenges facing built infrastructure in the north as a result of climate change and the role of codes and standards to help mitigate climate change risk. In this article, attention is given to the topic area of climate data and information requirements related to climate and climate change. This was an important focal area that was identified through this broader research effort since adequate data is essential in allowing codes and standards to meet their ultimate policy objective. A number of priorities have been identified specific to data and information needs in the context of the research topic investigated: There is a need to include northerners in developing the climate and permafrost data required for codes and standards so that these reflect the unique geographical, economic, and cultural realities and variability of the north; Efforts should be undertaken to realign climate design values so that they reflect both present and future risks; There is a need for better information on the rate and extent of permafrost degradation in the north; and, There is a need to improve monitoring of the rate of climate change in the Arctic. (author)

  16. Taking the uncertainty in climate-change vulnerability assessment seriously

    International Nuclear Information System (INIS)

    Patt, A.; Patt, A.; Klein, R.J.T.; Vega-Leinert, A. de la

    2005-01-01

    Climate-change vulnerability assessment has become a frequently employed tool, with the purpose of informing policy-makers attempting to adapt to global change conditions. However, we suggest that there are three reasons to suspect that vulnerability assessment often promises more certainty, and more useful results, than it can deliver. First, the complexity of the system it purports to describe is greater than that described by other types of assessment. Second, it is difficult, if not impossible, to obtain data to test proposed interactions between different vulnerability drivers. Third, the time scale of analysis is too long to be able to make robust projections about future adaptive capacity. We analyze the results from a stakeholder workshop in a European vulnerability assessment, and find evidence to support these arguments. (authors)

  17. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  18. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  19. The development of climatic scenarios for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T; Tuomenvirta, H [Finnish Meteorological Inst., Helsinki (Finland); Posch, M [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1997-12-31

    One of the main objectives of the Finnish Research Programme on Climate Change (SILMU) has been to assess the possible impacts of future changes in climate due to the enhanced greenhouse effect on natural systems and human activities in Finland. In order to address this objective, it was first necessary to specify the types of climate changes to be expected in the Finnish region. Estimates of future climate are conventionally obtained using numerical models, which simulate the evolution of the future climate in response to radiative forcing due to changes in the composition of the atmosphere (i.e. of greenhouse gases and aerosols). However, there are large uncertainties in the model estimates because current knowledge and understanding of atmospheric processes remains incomplete. Since accurate predictions of climate change are not available, an alternative approach is to develop scenarios. These are plausible projections which reflect the best estimates to the future conditions but at the same time embrace the likely uncertainties attached to these estimates. In order to obtain expert opinion on the most appropriate methods of providing scenarios for SILMU, an International Workshop was organised in 1993. The recommendations of the Workshop formed the basis of the present project, initiated in 1994, to develop standard climatic scenarios for Finland

  20. The development of climatic scenarios for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1996-12-31

    One of the main objectives of the Finnish Research Programme on Climate Change (SILMU) has been to assess the possible impacts of future changes in climate due to the enhanced greenhouse effect on natural systems and human activities in Finland. In order to address this objective, it was first necessary to specify the types of climate changes to be expected in the Finnish region. Estimates of future climate are conventionally obtained using numerical models, which simulate the evolution of the future climate in response to radiative forcing due to changes in the composition of the atmosphere (i.e. of greenhouse gases and aerosols). However, there are large uncertainties in the model estimates because current knowledge and understanding of atmospheric processes remains incomplete. Since accurate predictions of climate change are not available, an alternative approach is to develop scenarios. These are plausible projections which reflect the best estimates to the future conditions but at the same time embrace the likely uncertainties attached to these estimates. In order to obtain expert opinion on the most appropriate methods of providing scenarios for SILMU, an International Workshop was organised in 1993. The recommendations of the Workshop formed the basis of the present project, initiated in 1994, to develop standard climatic scenarios for Finland

  1. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  2. Climate Change Education in Protected Areas: Highlights from the Earth to Sky NASA-NPS-USFWS Partnership

    Science.gov (United States)

    Davis, A.; Morris, J.; Paglierani, R.

    2009-12-01

    National Parks, Hatcheries, Refuges, and other protected lands provide ideal settings for communicating the immediate and obvious effects of climate change, from rapidly melting glaciers, increased intensity and length of fire seasons, to flooding of archeological and historical treasures. Our nation's protected areas demonstrate clearly that climate change is happening now, and the impacts are affecting us all. Highlights of interpretive, educational and informational products presented in these sites, and developed through the Earth to Sky (ETS) partnership are described. The visiting public in our nation's parks, refuges, cultural sites and other protected lands wants to learn more about climate change, and is asking questions—often, complex questions. A broad array of educational programs and media are delivered in these unique settings, to diverse audiences. To be good "honest brokers" of the best information, staff needs access to accurate, up-to-date data, descriptions, analysis, and imagery that make the issues understandable. Pairing real world experiences of climate effects such as glacial retreat or beetle infestations, with NASA’s unique planetary perspective provides opportunities to link local, regional, and global effects in the minds and hearts of the public and students. The perspective afforded by such linkages can create powerful and long lasting impressions, and will likely provoke further learning about this topic. About Earth to Sky Earth to Sky is a partnership between NASA's Space and Earth Science disciplines, the US Fish and Wildlife Service (USFWS), and the National Park Service (NPS). The partnership actively fosters collaborative work between the science and interpretation/education communities of NPS, USFWS, and NASA, centering around a series of professional development workshops aimed at informal educators. The workshops weave NASA content with NPS and USFWS interpretation and environmental education methodology, and use best

  3. Workshop in political institutions - institutional analysis and global climate change: Design principles for robust international regimes

    International Nuclear Information System (INIS)

    McGinnis, M.

    1992-01-01

    Scientific evidence suggests that human activities have a significant effect on the world's climate. Political pressures are growing to establish political institutions at the global level that would help manage the social and economic consequences of climate change. Disagreements remain about the magnitude of these effects, as well as the regional distribution of the detrimental consequences of climate change. In this paper we do not wish to enter into the complexities of these technical debates. Instead, we wish to challenge a seemingly widespread consensus about the nature of the political response appropriate to this global dilemma. Specifically, we question the extent to which the open-quotes answerclose quotes can be said to reside primarily in the establishment of the new global institutions likely to emerge from the first open-quotes Earth Summitclose quotes - the United Nations (UN) Conference on Environment and Development - scheduled for June of 1992 in Rio de Janeiro

  4. RINGOs. Research and Independent Non-governmental Organisations to the United Nations Framework Convention on Climate Change (UNFCCC)

    International Nuclear Information System (INIS)

    2007-01-01

    RINGOs are organizations engaged in independent research and analysis aimed at developing sound strategies to address both the causes and consequences of global climate change. They form a constituency in their own right to contribute to the United Nations Framework Convention on Climate Change (UNFCCC), in a parallel way to ENGOs (Environment), BINGOs (Business and Industry), LGMAs (Local governments and municipal authorities) and the IPOs (Indigenous peoples organizations). During the COP and SB meetings of the UNFCCC the RINGOs organize meetings to discuss the developments of the negotiations. RINGOs have also been represented at workshops organized by the UNFCCC Secretariat. RINGO activities are co-ordinated by a steering committee

  5. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  6. Climate change and skin disease.

    Science.gov (United States)

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  7. Promoting Action on Climate Change through Scientific Storytelling and the Green Ninja Film Academy

    Science.gov (United States)

    Cordero, E.; Metzger, E. P.; Smith, G.

    2013-12-01

    Encouraging student interest on the challenges and opportunities associated with our changing climate can both promote science literacy and enable future reductions in carbon emissions. The goal of the Green Ninja Project is to affect youth culture in ways that promote informed action on climate change. The character and story of the Green Ninja are communicated in a series of quirky short films on YouTube, which focus on actions to reduce human impact. To complement the related underlying science, the films are designed in parallel with a set of engagement experiences that encourage young people to take action on climate change. One such experience is the Green Ninja Film Academy, a classroom experience where students use scientific storytelling to make their own Green Ninja films. Student filmmakers are asked to tell a story related to climate science for a particular audience using the Green Ninja as a storyline. In July 2013, a group of 24 teachers attended a workshop to develop experience using filmmaking to engage their students in climate science topics. The filmmaking experience is designed to promote integrated learning in the sciences, language arts, and technology fields. Students will have the opportunity to submit their films to the Green Ninja Film Festival for possible public screening and awards. Student films will also receive coaching from a panel of scientists and filmmakers. An initial analysis of the effectiveness of this project in engaging student action on climate change will be discussed.

  8. US country studies program: Support for climate change studies, national plans, and technology assessments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This paper describes the objectives of the next phase of the U.S. Country Studies Program which was launched in support of the Framework Convention on Climate Change (FCCC). The next phases of this program aim to: assist countries in preparing Climate Change Action plans; support technology assessments and development of technology initiatives; enhance exchange of information and expertise in support of FCCC. The program offers support for these processes in the form of handbooks which have been published to aid in preparing action plans, and to provide information on methane, forestry, and energy technologies. In addition an array of training workshops have been and are scheduled to offer hands on instruction to participants, expert advice is available from trained personnel, and modeling tools are available to aid in development of action plans.

  9. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  10. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    Perhaps one of the reasons we have so many climate change deniers in the United States is that to them climate change is not occurring. This is a valid claim about climate change deniers considering that the effects of climate change in the mid-latitudes are quite subtle as compared to those found in low-latitude and high-latitude regions. A mid-latitude classroom teacher is saddled with the challenge of enlightening students about our changing climate and empowering students to assist in making necessary lifestyle changes, all the while the students don't understand the urgency in doing so. Quality climate change data and resources from the Polar Regions and low latitudes, as well as connections to researchers from these regions help to bridge the understanding of our changing climate from the extreme latitudes to the mid-latitudes. Connecting science teachers with data, resources, and researchers is one way of ensuring our mid-latitude students understand the urgency in taking appropriate actions to adapt, mitigate, and show resilience. This presentation will highlight a few of the many impacts of an authentic research experience for teachers that not only provides teachers with data, resources, and researchers, but changes the way a science teacher teaches where the methods they use mirror the methods used by scientists. National projects like PolarTREC connect educators with the science of climate change as well as the reality of impacts of climate change. For example, research expeditions in the Arctic and in Antarctica connect teachers with the content and practices of climate change science preparing them to replicate their experiences with their students. A PolarTREC experience does not end with the close of the expedition. Teachers continue their connections with the program through their educator network, the integration of PolarTREC resources into their curriculums, and communications with their principal investigators either virtually or with school

  11. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  12. The climate is changing

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has finalized its Third Assessment Report. Among its conclusions is that we must expect continued changes in our climate, despite our efforts to reduce greenhouse gas emissions. Planning for and adapting to climate change are therefore necessary. As a starting point, CICERO has written this short note on expected impacts in Norway. The main conclusions are that (1) Adaptation to climate change is necessary (2) Substantial impacts are expected for several important sectors in Norway (3) The local and central authorities should now consider and start planning for adaptation measures. (4) There is still a need for more knowledge about potential impacts of climate change in Norway. (author)

  13. Climate Change Portal - Home Page

    Science.gov (United States)

    Science Partnerships Contact Us Take Action Climate change is already having significant and widespread of climate change. Business Businesses throughout California are taking action to address climate climate change impacts and informing policies to reduce greenhouse gases, adapt to changing environments

  14. A report on the climate change and investment risk workshop : best practices for Canadian pension funds and institutional investors

    International Nuclear Information System (INIS)

    Boshyk, A.

    2004-01-01

    Investors realize that the value of investment portfolios can be influenced by environmental risks such as climate change. This report is intended to raise awareness within the financial community of climate change risk, and to encourage greater corporate disclosure on climate change. It presents recommended best practices from the Social Investment Organization (SIO) regarding pension funds and other institutional investors for assessing and managing climate change risk. In 2003, 87 institutional investors handling $9 trillion, asked the 500 largest publicly traded companies in the world to disclose investment-relevant information concerning their greenhouse gas emissions. Nearly 800 organizations in all sectors of the Canadian economy have launched voluntary action plans to reduce greenhouse gas emissions. The SIO recommends that Canadian institutional investors should sign the Carbon Disclosure Project, a mechanism designed to obtain carbon risk data from the largest companies in the world. Mandatory disclosure programs have been a successful tool in promoting sustainable development. 37 refs

  15. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G

    2010-10-01

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  16. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  17. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  18. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  19. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  20. National Approaches to Adaptation. Some Lessons Learnt from recent OECD and UNFCCC Workshops

    International Nuclear Information System (INIS)

    Willems, S.

    2005-01-01

    Adaptation to climate change is a challenge that all countries are currently facing. Most countries have already started to develop national or sectoral adaptation strategies. In parallel, an international process has also started to emerge to support these national adaptation efforts, whereby countries share their experiences with - and exchange views on - their national strategies. At the end of last year, two international meetings took place around adaptation issues, which brought together Annex I and non-Annex I Parties: the OECD Global Forum on Sustainable Development: Development and Climate Change, on 11-12 November 2004; and the In-Session Workshop on adaptation, as part of the SBSTA meetings, on 8 December 2004. Another international workshop on adaptation practices and strategies took place in Wellington, New Zealand, on 11-13 October, which was limited to OECD countries. This paper provides a brief summary of the national approaches presented at the OECD and UNFCCC workshops, as well as some preliminary insights on national adaptation strategies that emerge from these events. The intent is to facilitate further exchanges of views on adaptation, such as the one that took place within the Seminar of the Annex I Expert Group 'Working Together to Respond to Climate Change', on 21-22 March 2005

  1. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  2. Climate Change in U.S. South Atlantic, Gulf of Mexico and Caribbean Fisheries Regions

    Science.gov (United States)

    Roffer, M. A.; Hernandez, D. L.; Lamkin, J. T.; Pugliese, R.; Reichert, M.; Hall, C.

    2016-02-01

    A review of the recent evidence that climate change is affecting marine ecosystems in the U.S. fishery management zones of the South Atlantic, Gulf of Mexico and Caribbean regions will be presented. This will include affects on the living marine resources (including fish, invertebrates, marine mammals and turtles), fisheries, habitat and people. Emphasis will be given on the effects that impact managed species and the likely new challenges that they present to fishery managers. The evidence is being derived from the results of the "Climate Variability and Fisheries Workshop: Setting Research Priorities for the Gulf of Mexico, South Atlantic, and Caribbean Regions," October 26-28, 2015 in St. Petersburg Beach, Florida. Commonalities and regional differences will be presented in terms of how climate variability is likely to impact distribution, catch, catchability, socioeconomics, and management.

  3. Climate Change and Malaria

    OpenAIRE

    Goklany;, I. M.

    2004-01-01

    Sir David A. King's claim that "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" ("Climate change

  4. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Anthropogenic impacts on the Earth`s atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  5. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    1996-01-01

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  6. Chatham Islands Climate Change

    International Nuclear Information System (INIS)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-01

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  7. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  8. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and the number and types of interviews conducted are, for example, not always clear. Information on crucial aspects of qualitative research like researcher positionality, social positions of key informants, the use of field assistants, language issues and post-fieldwork treatment of data is also lacking in many...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork......There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...

  9. First National Expert and Stakeholder Workshop on Water Infrastructure Sustainability and Adaptation to Climate Change

    Science.gov (United States)

    EPA Office of Research and Development (ORD) and EPA Office of Water (OW) joinined efforts to assess and evaluate programmatic, research & development (R&D) needs for sustainable water infrastructure development and effective adaptation to climate changes. The purpose of this pr...

  10. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  11. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  12. Uncertainty and Climate Change

    OpenAIRE

    Berliner, L. Mark

    2003-01-01

    Anthropogenic, or human-induced, climate change is a critical issue in science and in the affairs of humankind. Though the target of substantial research, the conclusions of climate change studies remain subject to numerous uncertainties. This article presents a very brief review of the basic arguments regarding anthropogenic climate change with particular emphasis on uncertainty.

  13. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  14. An integrated assessment of climate change impacts for Athens- relevance to stakeholders and policy makers

    Science.gov (United States)

    Giannakopoulos, C.; Hatzaki, M.; Kostopoulou, E.; Varotsos, K.

    2010-09-01

    Analysing climate change and its impact needs a production of relevant elements for policy making that can be very different from the parameters considered by climate experts. In the framework of EU project CIRCE, a more realistic approach to match stakeholders and policy-makers demands is attempted. For this reason, within CIRCE selected case studies have been chosen that will provide assessments that can be integrated in practical decision making. In this work, an integrated assessment of climate change impacts on several sectors for the urban site of Athens in Greece is presented. The Athens urban case study has been chosen since it provides excellent opportunities for using an integrated approach across multiple temporal and spatial scales and sectors. In the spatial dimension, work extends from the inner city boundaries to the surrounding mountains and forests. In the temporal dimension, research ranges from the current observed time period (using available meteorological and sector data) to future time periods using data from several climate change projections. In addition, a multi-sector approach to climate change impacts is adopted. Impacts sectors covered range from direct climate impacts on natural ecosystems (such as flash floods, air pollution and forest fire risk) to indirect impacts resulting from combined climate-social-economic linkages (such as energy demand, tourism and health). Discussion of impact sector risks and adaptation measures are also exploited. Case-study work on impact sector risk to climate change is of particular interest to relevant policy makers and stakeholders, communication with who is ensured through a series of briefing notes and information sheets and through regional workshops.

  15. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    Science.gov (United States)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further

  16. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  17. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  18. Proceedings of the workshop cum nineteenth national symposium on environment: climate change and its impact

    International Nuclear Information System (INIS)

    Pandit, G.G.; Saradhi, I.V.; Sahu, S.K.

    2014-01-01

    Climate change is now recognized as the major environmental problem facing the mankind. The impacts are being felt in the form of melting ice caps in the Polar Regions and increased variability in temperature, rainfall and storms in virtually all regions. In addition to global impacts pollution in India can also be attributed to rapid industrialization, energy production, urbanization and increase in the number of motorized vehicles. Similarly, untreated water from urban settlements and industrial activities, run off from agricultural lands carrying chemicals are primarily responsible for the deterioration of water quality and contamination of lakes, rivers and groundwater aquifers. Other environmental issues such as loss of biodiversity, land degradation and hazardous waste disposal are also a cause of concern. The continuous deterioration of environment is the result of unsustainable patterns of production and consumption processes. Actions to mitigate climate change are only possible with strong policies and technology development and appropriate pollution control measures need to be adopted to mitigate the pollutants in order to achieve a clean environment. Control of air pollution should include promotion of cleaner technologies, strengthening emission standards and monitoring systems. Water pollution control should include technological intervention to enhance effective treatment of wastewater. The discussions of the symposium covered the topics like: Climate change and mitigation strategies, air, water and soil pollution, monitoring and modeling of pollutants and their transport, aerosol characterization and health effects, environmental radioactivity including NORM, speciation studies of toxic pollutants, remote sensing - GIS studies, ecology, environmental awareness and education, bioremediation, waste management and other related areas. Papers relevant to INIS are indexed separately

  19. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  20. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  1. Climate change research in Canada

    International Nuclear Information System (INIS)

    Dawson, K.

    1994-01-01

    The current consensus on climatic change in Canada is briefly summarized, noting the results of modelling of the effects of a doubling of atmospheric CO 2 , the nonuniformity of climate change across the country, the uncertainties in local responses to change, and the general agreement that 2-4 degrees of warming will occur for each doubling of CO 2 . Canadian government response includes programs aimed at reducing the uncertainties in the scientific understanding of climate change and in the socio-economic response to such change. Canadian climate change programs include participation in large-scale experiments on such topics as heat transport in the ocean, and sources and sinks of greenhouse gases; development of next-generation climate models; studying the social and economic effects of climate change in the Great Lakes Basin and Mackenzie River Basin; investigation of paleoclimates; and analysis of climate data for long-term trends

  2. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  3. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  4. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  5. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Stehr, N.

    1994-01-01

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  6. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  7. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  8. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  9. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  10. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  11. Make the move on climate change : Synopsis of a workshop on transportation demand management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This conference provided an opportunity to discuss issues related to transportation demand management (TDM) with particular emphasis on British Columbia. This document includes summaries of presentations by speakers from Environment Canada, the Co-operative Auto Network (CAN), TransLink, BC Transit, and Better Environmentally Sound Transportation (BEST) and other organizations. Representatives from various municipalities in British Columbia were also given the opportunity to discuss specific issues facing their communities. Several presentations dealt with social marketing as it relates to transportation. This was defined as the planning and implementing of programs designed to bring about social change using concepts from commercial marketing. Seven small group workshops that focused on developing social marketing programs, based on several different scenarios, attempted to provide answers to numerous questions. One scenario was assigned to each group. Each group was then responsible for the development of social marketing strategy for that scenario.

  12. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  13. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  14. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  15. Technical backgrounder to CAPP input on June 14, 2002 workshop on federal climate change policy options

    International Nuclear Information System (INIS)

    2002-06-01

    This paper presents arguments regarding the Federal Discussion Paper on Climate Change which presents four options for Canada to implement the Kyoto Protocol. This paper describes some major flaws with the package. The Canadian Association of Petroleum Producers (CAPP) believes that policy on climate change should ensure that measures for the trade exposed industry sectors are based on achievable objectives and that all levels of government should take a coordinated approach to greenhouse gases. In addition there should be no unfair burden on any region or unfairness in any sector. Climate change policy objectives should also consider economic, environmental and social objectives. With respect to the Kyoto Protocol in particular, governments should assess the liability that ratification would create and determine whether it makes economic sense. CAPP argues that none of the four options in the federal discussion paper meets requirements for industry objectives and form of policies. In addition, if Canada does not shift industry and emissions to other countries, or buy foreign credits, energy use by consumers would have to be significantly reduced in order to meet the Kyoto target. It was also noted that if the 'polluter pay' policy proposal is to be adopted, it must be based on a thorough understanding of what it implies and be applied in such a way to reflect the reality of international markets

  16. Therapeutic Workshops and social changes in people with mental disorders

    Directory of Open Access Journals (Sweden)

    Aline Raquel de Sousa Ibiapina

    2017-06-01

    Full Text Available ABSTRACT Objective: To analyze the impact of the therapeutic workshops and the social changes in people with mental disorders from the point of view of the experience of the workers of a Center of Psychosocial Attention. Method: A descriptive, qualitative study developed with seven professionals from a Psychosocial Care Center in a city in the Northeast of Brazil. The data production was performed through a semi-structured interview and analyzed by the Descending Hierarchical Classification, after processing in the IRaMuTeQ software. Results: Were presented in two segments: the first one portrays the reality of the work of the professionals in the Center for Psychosocial Care, while segment two emphasizes the professionals' perception about the therapeutic workshops as a tool for social reintegration. Conclusion: The use of therapeutic workshops contributes to the effectuation of social change on mental illness and social inclusion of people with psychic disorders in the daily family, in the community, encouraged by the multidisciplinary approach.

  17. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  18. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  19. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  20. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  1. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  2. Yukon Government climate change action plan

    International Nuclear Information System (INIS)

    2009-02-01

    This Climate Change Action Plan described the measures that are being taken by the Yukon Government to adapt to, understand, and reduce contributions to climate change. The action plan is the result of input received from more than 100 individuals and organizations and provides clear direction for a strategy that will minimize the negative impacts of climate change and provide economic, social and other environmental benefits through climate change mitigation. The Yukon government has already taken many actions that respond to climate change, such as: developing the Yukon Cold Climate Innovation Centre; supporting the Northern Climate Exchange for public education and outreach; funding community recycling depots and other groups that reduce waste generation, promote public awareness and divert solid waste; and working with provincial and territorial counterparts to enhance national building standards. The main objectives of the climate change actions are to enhance knowledge and understanding of climate change; adapt to climate change; reduce greenhouse gas emissions; and lead Yukon action in response to climate change. tabs., figs.

  3. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  4. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  5. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  6. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exploring the science–policy interface on climate change: The role of the IPCC in informing local decision-making in the UK

    OpenAIRE

    Candice Howarth; James Painter

    2016-01-01

    Building on the Intergovernmental Panel on Climate Change’s (IPCC) review of\\ud how to make its Assessment Reports (ARs) more accessible in the future, the research\\ud reported here assesses the extent to which the ARs are a useful tool through which scientific\\ud advice informs local decision-making on climate change in the United Kingdom. Results from\\ud interviews with local policy representatives and three workshops with UK academics, practitioners\\ud and local decision makers are present...

  8. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  9. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  10. Second workshop of I.A.G./A.I.G. SEDIBUD - Sediment Budgets in Cold Environments: Sediment fluxes and sediment budgets in changing high-latitude and high-altitude cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Beylich, Achim A; Lamoureux, Scott F; Decaulne, Armelle

    2007-07-01

    This Second Workshop of the I.A.G./A.I.G. Working Group SEDIBUD (Sediment Budgets in Cold Environments) builds on four previous ESF SEDIFLUX Science Meetings held in Saudarkrokur (Iceland) in June 2004, Clermont-Ferrand (France) in January 2005, Durham (UK) in December 2005 and Trondheim (Norway) in the end of October/beginning of November 2006. A first kick-off Meeting of the new I.A.G./A.I.G. SEDIBUD Workshop. The theme of this Second I.A.G./A.I.G. SEDIBUD Workshop is Sediment FLuxes and Sediment Budgets in Changing High-Latitude Cold Environments. The Workshop is split between scientific paper and poster presentations, presentation and discussion of SEDIBUD key test sites, discussions within defined work groups and guided field trip to Kaerkevagge. This workshop will address the key aim of SEDIBUD to discuss Source-to-Sink-Fluxes and Sediment Budgets in Changing Cold Environments. Major emphasis will be given to consequences of climate change, scaling issues and source-to-sink correlations. Central issues will be presentation and discussion of the SEDIFLUX Manual (First Edition), the selection of SEDIBUD key test sites, the discussion and development of further ideas to extend the scientific activities within SEDIBUD in a global framework.(auth)

  11. Climate change research - Danish contributions

    International Nuclear Information System (INIS)

    Joergensen, A.M.K.; Fenger, J.; Halsnaes, K.

    2001-01-01

    The book describes a series of Danish scientific and technical studies. They broadly reflect the fields and disciplines embraced by assessments of the Intergovernmental Panel on Climate Change (IPCC), but with an emphasis on natural sciences (i.e. climate investigations and impact studies). After the general introduction, that presents the issue and gives a summary of the content of the book, the chapters are organised in four parts: 1. The Climate System and Climate Variations. 2. Climate Change Scenarios. 3. Impacts of Climate Change. 4. Policy Aspects. Each chapter is indexed separately. (LN)

  12. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  13. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  14. Impact relevance and usability of high resolution climate modeling and data

    Energy Technology Data Exchange (ETDEWEB)

    Arnott, James C. [Aspen Global Change Inst., Basalt, CO (United States)

    2016-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Impact Relevance and Usability of High-Resolution Climate Modeling and Datasets,” on August 2-7, 2015 in Aspen, CO. Kate Calvin (Pacific Northwest National Laboratory), Andrew Jones (Lawrence Berkeley National Laboratory) and Jean-François Lamarque (NCAR) served as co-chairs for the workshop. The meeting included the participation of 29 scientists for a total of 145 participant days. Following the workshop, workshop co-chairs authored a meeting report published in Eos on April 27, 2016. Insights from the workshop directly contributed to the formation of a new DOE-supported project co-led by workshop co-chair Andy Jones. A subset of meeting participants continue to work on a publication on institutional innovations that can support the usability of high resolution modeling, among other sources of climate information.

  15. Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes.

    Science.gov (United States)

    Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L

    2016-01-01

    Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat

  16. Indigenous Food Systems and Climate Change: Impacts of climatic shifts on the production and processing of native and traditional crops in the Bolivian Andes

    Directory of Open Access Journals (Sweden)

    Alder eKeleman Saxena

    2016-03-01

    Full Text Available Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data was collected between 2012 and 2014 via mixed-methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes a the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia; and b the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp., oca (Oxalis tuberosa, tarwi (Lupinus mutabilis, papalisa (Ullucus tuberosus, and charkay (llama or sheep jerky. Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, the use and spatial distribution of particular crop varieties. Further, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. While these findings are drawn from a single case-study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, indigenous food systems. Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture, and may be under different, more direct, and more immediate threat

  17. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    Hall, J.P.; Carlson, L.W.

    1990-01-01

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  18. International Space Science Institute Workshop on Shallow Clouds, Water Vapor, Circulation and Climate Sensitivity

    CERN Document Server

    Winker, David; Bony, Sandrine; Stevens, Bjorn

    2018-01-01

    This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The articles “Observing Convective Aggregation”, “An Observational View of Relationshi...

  19. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  20. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  1. The role of academic institutions in leveraging engagement and action on climate change

    Science.gov (United States)

    Hill, T. M.; Palca, J.

    2016-12-01

    Growing global concern over the impact of climate change places climate scientists at the forefront of communicating risks, impacts, and adaptation strategies to non-scientists. Academic institutions can play a leadership role in providing support, incentives, and structures that encourage scientific engagement on this, and other, complex societal and scientific issues. This presentation will focus on `best practices' in supporting university scientists in communicating their science and engaging in thoughtful dialogue with decision makers, managers, media, and public audiences. For example, institutions that can provide significant administrative support for science communication (press officers, training workshops) may decrease barriers between academic science and public knowledge. Additionally, financial (or similar) support in the form of teaching releases and institutional awards can be utilized to acknowledge the time and effort spent in engagement. This presentation will feature examples from universities, professional societies and other institutions where engagement on climate science is structurally encouraged and supported.

  2. Communicating Ocean Acidification and Climate Change to Public Audiences Using Scientific Data, Interactive Exploration Tools, and Visual Narratives

    Science.gov (United States)

    Miller, M. K.; Rossiter, A.; Spitzer, W.

    2016-12-01

    The Exploratorium, a hands-on science museum, explores local environmental conditions of San Francisco Bay to connect audiences to the larger global implications of ocean acidification and climate change. The work is centered in the Fisher Bay Observatory at Pier 15, a glass-walled gallery sited for explorations of urban San Francisco and the Bay. Interactive exhibits, high-resolution data visualizations, and mediated activities and conversations communicate to public audiences the impacts of excess carbon dioxide in the atmosphere and ocean. Through a 10-year education partnership with NOAA and two environmental literacy grants funded by its Office of Education, the Exploratorium has been part of two distinct but complementary strategies to increase climate literacy beyond traditional classroom settings. We will discuss two projects that address the ways complex scientific information can be transformed into learning opportunities for the public, providing information citizens can use for decision-making in their personal lives and their communities. The Visualizing Change project developed "visual narratives" that combine scientific visualizations and other images with story telling about the science and potential solutions of climate impacts on the ocean. The narratives were designed to engage curiosity and provide the public with hopeful and useful information to stimulate solutions-oriented behavior rather than to communicate despair about climate change. Training workshops for aquarium and museum docents prepare informal educators to use the narratives and help them frame productive conversations with the pubic. The Carbon Networks project, led by the Exploratorium, uses local and Pacific Rim data to explore the current state of climate change and ocean acidification. The Exploratorium collects and displays local ocean and atmosphere data as a member of the Central and Northern California Ocean Observing System and as an observing station for NOAA's Pacific

  3. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  4. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    Directory of Open Access Journals (Sweden)

    Nadja Kabisch

    2016-06-01

    Full Text Available Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning.

  5. Climate change: biological and human aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cowie

    2007-07-15

    The textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. Contents are: 1. An introduction to climate change; 2. Principal indicators of past climates; 3. Past climate change; 4. The Oligocene to the Quaternary: climate and biology; 5. Present climate and biological change; 6. Current warming and likely future impacts; 7. Human ecology of climate change; 8. Sustainability and policy; Appendix 1. Glossary and acronyms; Appendix 2. Bio-geological timescale; Appendix 3. Calculations of energy demand/supply, and orders of magnitude; Index. 69 figs.

  6. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  7. Shortcuts to sustainable Nordic communities. Experiences from Nordic Climate Festival (at) Aalto

    Energy Technology Data Exchange (ETDEWEB)

    Haanpaa, S [ed.

    2011-07-01

    Nordic Climate Festival (at) Aalto gathered some 90 Nordic Master's and PhD students to Helsinki and Espoo in late August 2011, to search for shortcuts to sustainable Nordic societies. The students worked in 7 workshop tracks, covering all key fields of sustainable societies, under the guidance of researchers from Aalto University. The workshop turned out to be a success with enthusiastic contribution from dedicated students. The real value of the workshop lies not only in the results however, but also in new ways of thinking about sustainability - both for the students and Aalto staff. Most of all, the event helped to build individual connections and networks people engaged in the topic. In the end, the festival was much more than just a Nordic event; the participants represented over 30 countries in total. This can only be seen as a richness in ways of looking at climate change related challenges and especially solutions that, although always being operationalized on a local level and in a local context, in the end are common challenges to all countries in one form or another. The core challenge in dealing with climate change, especially on mitigation, is time. As the level of global greenhouse gas emissions keeps on growing, we desperately need new policies and practices to turn this trend around. At the same time inertia both in natural phenomena and in changing our lifestyles means that global temperatures based on current emissions only will keep on rising for decades to come. This forces us to think of ways to adapt to unavoidable consequences of climate change and adaptation to them, despite the success of mitigation policies. Both aspects of managing climate change require forward oriented thinking already today, so that we can avoid being locked into unsustainable development pathways at the very least - a thing one might argue in many cases is already slowing mitigation efforts down. Therefore the key question the workshop set to study was: can we find

  8. Climate change and One Health.

    Science.gov (United States)

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  9. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  10. User needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger Knutti, Jacqueline

    2017-04-01

    In the framework of the recently founded National Center for Climate Services (NCCS) new climate change scenarios for Switzerland are currently under development that will be released in 2018 ("CH2018 scenarios"). An important component herein is the consideration of user needs in order to ensure that the new scenarios are user tailored and hence find a wide applicability in different sectors in Switzerland. A comprehensive market research was conducted to get a better overview of who the users of climate scenarios are and what they need. The survey targeted the most climate relevant sectors, and involved representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, a written questionaire, answered by more than one hundred users and two specific workshops gathering the needs in dissemination. Additionally, the survey results were consolidated at a national symposium with around 150 participants from research, administration and practice. The results of the survey show the necessity to classify the users of climate scenarios according to their level of usage and according to the different sectors. It turns out that the less intensive the usage of the climate scenarios is, the more important becomes the need of comprehensibility, clarity and support when disseminating new climate scenarios. According to the survey it is especially the non-experts that should be better addressed in the new cycle of national climate scenarios. In terms of content, the survey reveals strongest needs for quantitative information on changes in extremes, an aspect that was handled in a qualitative way only in the predecessor climate scenario suite CH2011. Another cross-sectoral need are physically consistent data in time, space and between several variables. For instance, in agriculture the combination of heat and dryness is an important aspect, while the same is true in the energy

  11. Developing rural community health risk assessments for climate change: a Tasmanian pilot study.

    Science.gov (United States)

    Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J

    2015-01-01

    This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites

  12. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    2009-07-01

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  13. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  14. Climate change: against despair

    OpenAIRE

    McKinnon, Catriona

    2014-01-01

    In the face of accelerating climate change and the parlous state of its politics, despair is tempting. This paper analyses two manifestations of despair about climate change related to (1) the inefficacy of personal emissions reductions, and (2) the inability to make a difference to climate change through personal emissions reductions. On the back of an analysis of despair as a loss of hope, the paper argues that the judgements grounding each form of despair are unsound. The paper concludes w...

  15. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  16. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  17. US National Climate Assessment (NCA) Scenarios for Assessing Our Climate Future: Issues and Methodological Perspectives Background Whitepaper for Participants

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Richard H.; Engle, Nathan L.; Hall, John; Jacobs, Kathy; Lempert, Rob; Mearns, L. O.; Melillo, Jerry; Mote, Phil; O' Brien, Sheila; Rosenzweig, C.; Ruane, Alex; Sheppard, Stephen; Vallario, Robert W.; Wiek, Arnim; Wilbanks, Thomas

    2011-10-01

    This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for release in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes

  18. The Role of Traditional Knowledge and Crop Varieties in Adaptation to Climate Change and Food Security in SW China, Bolivian Andes and coastal Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Swiderska, Krystyna; Reid, Hannah; Song, Yiching; Li, Jingsong; Mutta, Doris; Ongugo, Paul; Pakia, Mohamed; Oros, Rolando; Barriga, Sandra

    2011-09-15

    Paper prepared for the UNU-IAS workshop on Indigenous Peoples, Marginalised Populations and Climate Change: Vulnerability, Adaptation and Traditional Knowledge, Mexico, July 2011. Indigenous peoples and local communities often live in harsh natural environments, and have had to cope with extreme weather and adapt to environmental change for centuries in order to survive. They have done this using long standing traditions and practices – or traditional knowledge (TK) – relating to adaptive ecosystem management and sustainable use of natural resources. The three case studies presented provide evidence of the crucial role of traditional crop varieties, knowledge and practices in enabling adaption to changes in climate. The question is whether the climatic changes observed in these cases are human induced climate change or just natural changes. The findings show that indigenous farmers in SW China, coastal Kenya and the Bolivian Andes are already severely impacted by changes in climate, including drought, with serious consequences for crop production and food security. The scale of the changes, and the fact that they have occurred quite recently (in the last 10 or 20 years), suggests that they may be the result of human induced climate change.

  19. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come

  20. Engendering Behavior Change through Single-Session Workshops: Lessons Learned from Extension's Private well Initiative

    Science.gov (United States)

    McCann, Alyson; Gold, Arthur J.

    2012-01-01

    Based on a follow-up mail survey conducted in 2009, we found that structured, one-time workshops can influence and impact participant behavior change. Survey results suggest that brief workshops, staffed by key resource personnel, can have a powerful influence on participant behavior change and fill an important gap in rural drinking water…

  1. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  2. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  3. Resilience to climate change in a cross-scale tourism governance context: a combined quantitative-qualitative network analysis

    Directory of Open Access Journals (Sweden)

    Tobias Luthe

    2016-03-01

    Full Text Available Social systems in mountain regions are exposed to a number of disturbances, such as climate change. Calls for conceptual and practical approaches on how to address climate change have been taken up in the literature. The resilience concept as a comprehensive theory-driven approach to address climate change has only recently increased in importance. Limited research has been undertaken concerning tourism and resilience from a network governance point of view. We analyze tourism supply chain networks with regard to resilience to climate change at the municipal governance scale of three Alpine villages. We compare these with a planned destination management organization (DMO as a governance entity of the same three municipalities on the regional scale. Network measures are analyzed via a quantitative social network analysis (SNA focusing on resilience from a tourism governance point of view. Results indicate higher resilience of the regional DMO because of a more flexible and diverse governance structure, more centralized steering of fast collective action, and improved innovative capacity, because of higher modularity and better core-periphery integration. Interpretations of quantitative results have been qualitatively validated by interviews and a workshop. We conclude that adaptation of tourism-dependent municipalities to gradual climate change should be dealt with at a regional governance scale and adaptation to sudden changes at a municipal scale. Overall, DMO building at a regional scale may enhance the resilience of tourism destinations, if the municipalities are well integrated.

  4. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  5. Increasing Scientific Literacy at Minority Serving Institutions Nationwide through AMS Professional Development Diversity Workshops

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Moses, M. N.

    2011-12-01

    Increasing students' earth science literacy, especially those at Minority Serving Institutions (MSIs), is a primary goal of the American Meteorological Society (AMS). Through the NSF-supported AMS Weather Studies and AMS Ocean Studies Diversity workshops for Historically Black College and Universities, Hispanic Serving Institutions, Tribal Colleges and Universities, Alaska Native, and Native Hawaiian Serving Institutions, AMS has brought meteorology and oceanography courses to more students. These workshops trained and mentored faculty implementing AMS Weather Studies and AMS Ocean Studies. Of the 145 institutions that have participated in the AMS Weather Studies Diversity Project, reaching over 13,000 students, it was the first meteorology course offered for more than two-thirds of the institutions. As a result of the AMS Ocean Studies Diversity Project, 75 institutions have offered the course to more than 3000 students. About 50 MSIs implemented both the Weather and Ocean courses, improving the Earth Science curriculum on their campuses. With the support of NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the newest professional development workshop, AMS Climate Studies Diversity Project will recruit MSI faculty members through the vast network of Second Nature's more than 670 signatories. These workshops will begin in early summer 2012. An innovative approach to studying climate science, AMS Climate Studies explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, faculty and students learn about basic climate modeling through the AMS Conceptual Energy Model. Following the flow of energy in a clear, simplified model from space to

  6. Climate and Global Change

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Pons, A.; Fantechi, R.

    1991-01-01

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  7. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  8. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  9. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  10. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  11. Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)

    Science.gov (United States)

    Manning, M. R.; Swart, R.

    2009-12-01

    assessment [IPCC, 2005]. This paper extends a review of the treatment of uncertainty in the IPCC assessments by Swart et al [2009]. It is shown that progress towards consistency has been made but that there also appears to be a need for continued use of several complementary approaches in order to cover the wide range of circumstances across different disciplines involved in climate change. While this reflects the situation in the science community, it also raises the level of complexity for policymakers and other users of the assessments who would prefer one common consensus approach. References IPCC (2005), Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties, IPCC, Geneva. Manning, M., et al. (2004), IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk and of Options. IPCC Moss, R., and S. Schneider (2000), Uncertainties, in Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC, edited by R. Pachauri, et al., Intergovernmental Panel on Climate Change (IPCC), Geneva. Swart, R., et al. (2009), Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC Climatic Change, 92(1-2), 1 - 29.

  12. Climate changes over the past millennium: Relationships with Mediterranean climates

    International Nuclear Information System (INIS)

    Mann, M.E.

    2006-01-01

    Evidence is reviewed for climate change and its causes over the interval spanning roughly the past millennium. Particular emphasis is placed on patterns of climate change influencing Mediterranean climates of the Northern Hemisphere. The evidence is taken from studies using high-resolution climate proxy data sources, and climate modeling simulations. The available evidence suggests that forced changes in dynamical modes of variability including the North Atlantic Oscillation (NAO) and El Nino/Southern Oscillation (ENSO) have played a key role in the patterns of climate variability in Mediterranean regions over the past millennium

  13. Climate Change and Health

    Science.gov (United States)

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  14. Adaptability and climate change

    International Nuclear Information System (INIS)

    Sprague, M.W.

    1991-01-01

    The potential social, economic and environmental impacts of climate change are reviewed, with emphasis on agricultural implications. Impact analyses must be done on the scale of watersheds or river basins. For agriculture, climate change effects on water resources are likely to be more important than temperature changes, and climatic variability is also equally important. Another set of critical climatic variables are the frequencies, magnitudes and timing of extreme events such as floods, droughts, etc. A carbon dioxide enriched atmosphere will increase water use efficiency and confer increased tolerance to drought, salinity and air pollution. Better understanding and accounting is required for the effects of increased carbon dioxide on all plant life, including crops. Adaptability of agriculture to change must be taken into account in predicting impacts of climate change, with technological innovation and infrastructure giving agriculture a dynamic nature. Limitations and adaptations must be considered when formulating public policy, to ensure that marginal costs do not exceed marginal benefits. Monoculture plantation forests may be the most efficient sinks of atmospheric carbon dioxide, yet widespread reliance on them may harm biological diversity. Actions the U.S. is currently taking under a no-regrets policy are summarized

  15. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  16. Struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  17. Climate change issues in China

    Energy Technology Data Exchange (ETDEWEB)

    Ye Ruqiu (China National Environmental Protection Agency, Beijing (China))

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. 8 refs., 3 tabs.

  18. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  19. Theological and ethical dimensions of addressing climate change : reflections from the World Council of Churches (WCC)

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, D.G. [World Council of Churches, Toronto, ON (Canada)

    2000-06-01

    The World Council of Churches (WCC) has supported regional workshops around the world which focus on examining climate change issues from a theological and ethical perspective. The human responsibility is one dimension of the ethics of climate change and is supplemented by the fact that the problem is caused largely by rich industrialized countries, the consequences of which will be suffered in most part by the poor and politically weak developing nations and by future generations. When the WCC delivered a statement at the Kyoto Climate Conference in December 1997, they integrated these two ethical dimensions and spoke of climate change as an issue of justice. Their point of view was that as individuals and as societies, particularly in the over-developed parts of the world, we must be held responsible for the destructive impact of our actions which are leading to climate change and threatening vulnerable human communities, other species and broader ecosystems. Justice implies that we must be accountable for promises that we make to limit the emissions of greenhouse gases. The WCC has been actively involved in the climate change issue since 1988 through the education of its member churches around the world and through monitoring the inter-governmental negotiations through the UN, as well as through advocacy at national levels. In May 2000, the WCC held an international consultation to examine the issue of emissions trading from a perspective of equity. This paper included 2 appendices: Appendix A entitled Statement by the World Council of Churches to the high level segment of the third session of the Conference of the Parties (COP3) to the UN Framework Convention on Climate Change, and Appendix B entitled The atmosphere as a global commons : responsible caring and equitable sharing.

  20. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    Science.gov (United States)

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  1. Climate change: Recent findings

    International Nuclear Information System (INIS)

    Hesselmans, G.H.F.M.

    1993-08-01

    In the late eighties several reports have been published on climate change and sea level rise. In the meantime insights may have changed due to the availability of better and more observations and/or more advanced climate models. The aim of this report is to present the most recent findings with respect to climate change, in particular of sea level rise, storm surges and river peak flows. These climate factors are important for the safety of low-lying areas with respect to coastal erosion and flooding. In the first chapters a short review is presented of a few of the eighties reports. Furthermore, the predictions by state of the art climate models at that time are given. The reports from the eighties should be considered as 'old' information, whereas the IPCC supplement and work, for example, by Wigley should be considered as new information. To assess the latest findings two experts in this field were interviewed: dr J. Oerlemans and dr C.J.E. Schuurmans, a climate expert from the Royal Netherlands Meteorological Institute (KNMI). Their views are presented together with results published in recent papers on the subject. On the basis of this assessment, the report presents current knowledge regarding predictions of climate change (including sea-level rise) over the next century, together with an assessment of the uncertainties associated with these predictions. 14 figs., 11 tabs., 24 refs

  2. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.

  3. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Simon, Marie; Blanc, Dominique; Husson-Traore, Anne-Catherine; Amiell, Alison; Barochez, Aurelie de; Conti, Sophie; Kamelgarn, Yona; Bonnet, Olivier; Braman, Stuart; Chenet, Hugues; Fisher, Remco; Hellier, Mickael; Horster, Maximilian; Kindelbacher, Sophie; Leaton, James; Lieblich, Sebastien; Neuneyer, Dustin; Lenoel, Benjamin; Smart, Lauren; Torklep Meisingset, Christine

    2015-02-01

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  4. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  5. Climate Change Through a Poverty Lens

    Science.gov (United States)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  6. Climate change in Nova Scotia : a background paper to guide Nova Scotia's climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    Climate change causes changes in the temperature of the earth, the level of the sea, and the frequency of extreme weather conditions. The province of Nova Scotia recently released an act related to environmental goals and sustainable prosperity. Addressing climate change is a key element in achieving Nova Scotia's sustainable prosperity goals outlined in the act. The Nova Scotia Department of Energy is working towards developing both policy and action, to help meet its target of a 10 per cent reduction in greenhouse gases from 1990 levels by the year 2020. Two major plans are underway, notably a climate change action plan and a renewed energy strategy. This report provided background information on Nova Scotia's climate change action plan. It discussed climate change issues affecting Nova Scotia, air pollutants, energy sources in Nova Scotia, energy consumers in the province, and Nova Scotia's approach to climate change. The report also discussed actions underway and funding sources. It was concluded that in order for the climate change action plan to be successful, Nova Scotians must use energy more efficiently; use renewable energy; use cleaner energy; and plan for change. 13 refs., 2 tabs., 6 figs., 4 appendices

  7. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    Science.gov (United States)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  8. Prospects for future climate: A special US/USSR report on climate and climate change

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Budyko, M.I.; Hecht, A.D.; Izrael, Y.A.

    1990-01-01

    Starting with the US-USSR Agreement on Protection of the Environment signed in 1972, the two nations have cooperated in joint research on atmospheric and environmental problems. The result of these efforts has been an innovative approach to projecting future climate change based on what has been learned about past warm periods and what can be learned from models. The chapters in this document explore the following: past changes in climate, both paleoclimatology and changes in the recent past; changes in atmospheric composition; estimates of greenhouse-induced change including the use of both empirical methods and climate models; impacts of climate change on water resources and agriculture in the two countries; and prospects for future climate changes

  9. Global Climate Change Pilot Course Project

    Science.gov (United States)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  10. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change.

    Science.gov (United States)

    Dodo, Mahamat K

    2014-01-01

    Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many States are fragile and overwhelmed with mounting challenges. In recent years, the security implications of the climate change are being addressed from national, regional and multilateral level. Against this backdrop, this paper intends to contribute to the debate on climate change and international security and present a broader perspective on the discussion. The paper will draw from the EU-Africa partnership on climate change and is structured as follows: the first part introduces the background of the international climate change policy and its securitization, the second part covers the EU-Africa relations and EU-Africa partnership on climate change, and the third part discusses the Congo Basin Forest Partnership as a concrete example of EU-Africa Partnership on Climate Change. Lastly, the paper concludes by drawing some conclusions and offers some policy perspectives and recommendations. Q54; 055; 052; 01;

  11. Politics of climate change belief

    Science.gov (United States)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  12. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  13. Eye tracking and climate change: How is climate literacy information processed?

    Science.gov (United States)

    Williams, C. C.; McNeal, K. S.

    2011-12-01

    The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is

  14. Climate change issues in China

    International Nuclear Information System (INIS)

    Ye Ruqiu

    1994-01-01

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. (author). 8 refs, 3 tabs

  15. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    Science.gov (United States)

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  16. Climate change with Korea as the center

    International Nuclear Information System (INIS)

    Kim, Yeon Ok

    1998-04-01

    This book deals with climate change with Korea as the center, which is divided into ten chapters. It explain climate change by human life. The contents of this book are climate change, climate before human period, great ice age of prehistoric period, prehistoric times of last glacial era, climate change in historical era, change during observation time for 100 years, warming period, global environment period, the cause of climate change and climate and human. It has reference and an index.

  17. Research program on climatic and environmental problems. Summary of Norwegian climatic and ozone layer research in the last decade and important research tasks in the future

    International Nuclear Information System (INIS)

    Dahlin, Elin

    1999-04-01

    This report includes 44 abstracts, 21 lectures and 23 posters from a workshop arranged by the Norwegian Research Council, the Steering Group for the Norwegian research programme for changes in climate and ozone layer. The topics dealt with are: Results from the research, the greenhouse effect and its influence on the climate of today, the interactions between ocean and climate, pollution influence on ozone layer changes, the UV radiation effects and their influence on the environment, climatic modelling and forecasting, ecological problems related to climatic and environmental changes, the climatic influences of human energy utilisation and suggestions for future research

  18. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between...... climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...

  19. Creationism & Climate Change (Invited)

    Science.gov (United States)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  20. Climate Change and Transportation

    OpenAIRE

    Yevdokimov, Yuri

    2010-01-01

    As stated at the beginning of this chapter, the relationship between transportation and climate is two-directional. Based on our statistical analysis performed for Canada, we can make some general conclusions about this relationship. On the one hand, transportation is one of the largest contributors to GHG emissions which, in turn, cause various changes in climate. On the other hand, these climate changes negatively affect transportation in terms of its infrastructure and operations. Therefor...

  1. Adapting agriculture to climate change.

    Science.gov (United States)

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  2. Climate change in China and China’s policies and actions for addressing climate change

    OpenAIRE

    Luo Y.; Qin D.; Huang J.

    2010-01-01

    Since the first assessment report (FAR) of Inter-Governmental Panel on Climate Change (IPCC) in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warmi...

  3. Hard choices : climate change in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Coward, H.; Weaver, A.J. (eds.)

    2004-07-01

    This book explains the nature of climate change, the options to respond to it and the virtues of Canada's commitment to the Kyoto Protocol. It includes a collection of essays by prominent Canadian scientists and scholars who discuss the impacts of climate change on Canada from physical, social, technological, economic and political perspectives. Climate change assessments have been made possible by monitoring and recording changes in atmospheric concentrations of greenhouse gases. As a result of these assessments, climate change has become an issue on policy agendas. Advanced computer models have convinced much of the scientific community that climate change will bring with it droughts, floods, hurricanes, forest fires, ice storms, blackouts, and increased warming in countries in high latitudes, including Canada, despite remaining uncertainties about how human activities will affect the climate. The authors cautioned that climate change response strategies can only be refined once these uncertainties are significantly reduced. refs., tabs., figs.

  4. Financing climate change adaptation

    NARCIS (Netherlands)

    Bouwer, L.M.; Aerts, J.C.J.H.

    2006-01-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources.

  5. Research Advances of Impacts of Climate Changes on Crop Climatic Adaptability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Agriculture received most direct influences from climate changes. Because of climate changes, agricultural climate resources changed and thus influenced climate adaptability of agricultural products. The growth and output of crops were finally affected. The calculation method and application of agricultural products in recent years were summarized. Several questions about the response of agricultural crops to climate elements were proposed for attention.

  6. Witnesses of climate change

    International Nuclear Information System (INIS)

    2015-11-01

    After having evoked the process of climate change, the effect of greenhouse gas emissions, the evolution of average temperatures in France since 1900, and indicated the various interactions and impacts of climate change regarding air quality, water resources, food supply, degradation and loss of biodiversity, deforestation, desertification, this publication, while quoting various testimonies (from a mountain refuge guardian, a wine maker, a guide in La Reunion, an IFREMER bio-statistician engineer, and a representative of health professionals), describes the various noticed impacts of climate change on the environment in mountain chains, on agriculture, on sea level rise, on overseas biodiversity, and on health

  7. Technology and climate change

    International Nuclear Information System (INIS)

    Morrison, R.; Layzedl, D.; McLean, G.

    2002-01-01

    This paper was the major one of the opening plenary session at the Climate Change 2 conference. The paper provides a context for assessing the needs for technologies to reduce the concentration of GHG in the atmosphere. It looks at sources, sinks and trends for GHG, in the world at large and in Canada, and at efforts to develop new technologies to achieve the goals of climate change policy. The paper focusses on transport, electricity and biomass as sectors of interest, both because of their potential for contributing to climate change policy goals within Canada, and also because of research interests

  8. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T; Tuomenvirta, H [Finnish Meteorological Inst., Helsinki (Finland); Posch, M [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1996-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  9. The development of climatic scenarios for assessing impacts of climate change

    International Nuclear Information System (INIS)

    Carter, T.; Tuomenvirta, H.; Posch, M.

    1995-01-01

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  10. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  11. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  12. Fair adaptation to climate change

    International Nuclear Information System (INIS)

    Paavola, Jouni; Adger, W. Neil

    2006-01-01

    This article identifies social justice dilemmas associated with the necessity to adapt to climate change, examines how they are currently addressed by the climate change regime, and proposes solutions to overcome prevailing gaps and ambiguities. We argue that the key justice dilemmas of adaptation include responsibility for climate change impacts, the level and burden sharing of assistance to vulnerable countries for adaptation, distribution of assistance between recipient countries and adaptation measures, and fair participation in planning and making decisions on adaptation. We demonstrate how the climate change regime largely omits responsibility but makes a general commitment to assistance. However, the regime has so far failed to operationalise assistance and has made only minor progress towards eliminating obstacles for fair participation. We propose the adoption of four principles for fair adaptation in the climate change regime. These include avoiding dangerous climate change, forward-looking responsibility, putting the most vulnerable first and equal participation of all. We argue that a safe maximum standard of 400-500 ppm of CO 2 concentrations in the atmosphere and a carbon tax of $20-50 per carbon equivalent ton could provide the initial instruments for operationalising the principles. (author)

  13. The economics of climate change

    International Nuclear Information System (INIS)

    Jones, T.

    1992-01-01

    Perhaps the most startling aspect of the debate on climate change is the speed with which it has climbed the international political agenda. In 1985, climate change was viewed almost entirely as a scientific issue. Only seven years later, most industrialized countries have made some sort of political pledge to abate their emissions of greenhouse gases over a specific timetable. And earlier this year, 154 countries signed a Framework Convention on Climate Change at the UN Conference on Environment and Development in Rio de Janeiro. What is the present 'state of play' in the economics of climate change. And what priorities are now emerging in 'post-Rio' policy. 11 ref

  14. Shortcuts to sustainable Nordic communities. Experiences from Nordic Climate Festival (at) Aalto

    Energy Technology Data Exchange (ETDEWEB)

    Haanpaa, S. (ed.)

    2011-07-01

    Nordic Climate Festival (at) Aalto gathered some 90 Nordic Master's and PhD students to Helsinki and Espoo in late August 2011, to search for shortcuts to sustainable Nordic societies. The students worked in 7 workshop tracks, covering all key fields of sustainable societies, under the guidance of researchers from Aalto University. The workshop turned out to be a success with enthusiastic contribution from dedicated students. The real value of the workshop lies not only in the results however, but also in new ways of thinking about sustainability - both for the students and Aalto staff. Most of all, the event helped to build individual connections and networks people engaged in the topic. In the end, the festival was much more than just a Nordic event; the participants represented over 30 countries in total. This can only be seen as a richness in ways of looking at climate change related challenges and especially solutions that, although always being operationalized on a local level and in a local context, in the end are common challenges to all countries in one form or another. The core challenge in dealing with climate change, especially on mitigation, is time. As the level of global greenhouse gas emissions keeps on growing, we desperately need new policies and practices to turn this trend around. At the same time inertia both in natural phenomena and in changing our lifestyles means that global temperatures based on current emissions only will keep on rising for decades to come. This forces us to think of ways to adapt to unavoidable consequences of climate change and adaptation to them, despite the success of mitigation policies. Both aspects of managing climate change require forward oriented thinking already today, so that we can avoid being locked into unsustainable development pathways at the very least - a thing one might argue in many cases is already slowing mitigation efforts down. Therefore the key question the workshop set to study was: can we

  15. Climate change, environment and development

    OpenAIRE

    Okereke, Chukwumerije; Massaquoi, Abu-Bakar S.

    2017-01-01

    Climate change, a quintessential environmental problem, is generally recognised as the most important development challenge in the 21st century (IPCC, 2014). In addition to acknowledging its many significant direct consequences, climate change is increasingly used to frame discussions on other important global challenges, such as health, energy and food security. This chapter provides understanding of the intricate and complex relationship between climate change, environment and development.

  16. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  17. Climate indices of Iran under climate change

    OpenAIRE

    alireza kochaki; mehdi nasiry; gholamali kamali

    2009-01-01

    Global warming will affect all climatic variables and particularly rainfall patterns. The purpose of present investigation was to predict climatic parameters of Iran under future climate change and to compare them with the present conditions. For this reason, UKMO General Circulation Model was used for the year 2025 and 2050. By running the model, minimum and maximum monthly temperature and also maximum monthly rainfall for the representative climate stations were calculated and finally the e...

  18. New directions in climate change vulnerability, impacts, and adaptation assessment: summary of a workshop

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Subcommittee for a Workshop on New Directions in Vulnerability, Impacts, and Adaptation Assessment; National Academies Press (U.S.); National Research Council (U.S.). Division of Behavioral and Social Sciences and Education; National Research Council (U.S.). Committee on the Human Dimensions of Global Change; Brewer, Jennifer F

    ... special thanks for providing the original idea, motivation, and organizational efforts. Our work also benefited significantly from the thoughtful contributions of Gary Yohe and Linda Mearns. In addition to the members of the subcommittee, the other workshop presenters, Neil Leary, Richard Moss, Martin Parry, and Roger Pulwarty, helped greatly in orie...

  19. "It Takes a Network": Building National Capacity for Climate Change Interpretation

    Science.gov (United States)

    Spitzer, W.

    2014-12-01

    Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. More than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the U.S. population. These visitors expect reliable information about environmental issues and solutions. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. Beyond providing in-depth training, we have found that our "alumni network" is assuming an increasingly important role in achieving our goals: 1. Ongoing learning - Training must be ongoing given continuous advances in climate and social science research. 2. Implementation support - Social support is critical as interpreters move from learning to practice, given complex and potentially contentious subject matter. 3. Leadership development - We rely on a national cadre of interpretive leaders to conduct workshops, facilitate study circle trainings, and support alumni. 4. Coalition building - A peer network helps to build and maintain connections with colleagues, and supports further dissemination through the informal science community. We are experimenting with a variety of online and face to face strategies to support the growing alumni network. Our goals are to achieve a systemic national

  20. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K; Karlen, W [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  1. Late Quaternary changes in climate

    International Nuclear Information System (INIS)

    Holmgren, K.; Karlen, W.

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  2. Assessement of user needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  3. U.S. Navy Climate Change Roadmap

    Science.gov (United States)

    2010-04-01

    Climate change is a national security challenge with strategic implications for the Navy. Climate change will lead to increased tensions in nations...with weak economies and political institutions. While climate change alone is not likely to lead to future conflict, it may be a contributing factor... Climate change is affecting, and will continue to affect, U.S. military installations and access to natural resources worldwide. It will affect the

  4. iSeeChange: Crowdsourced Climate Change Reporting

    Science.gov (United States)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  5. Potential Impacts of Climate Change in Kenya

    International Nuclear Information System (INIS)

    Ogola, J.S.; Abira, M.A.; Awuor, V.O.

    1997-01-01

    According to the United Nations Framework Convention on Climate Change (UNFCCC), climate change is attributed directly or indirectly to human activities that alter the composition of the global atmosphere. It is a phenomenon that is still inadequately understood by the general public. Planners, policy makers and even within institutions of learning, but one which is bound to affect our environment and development activities. There is therefore need for information dissemination, systematic research, policy formulation, and development of strategies for managing climate change. The book is divided into five parts, Part I presents basic information on climate change; Part II looks at climatic change and natural resources; Part III discusses implications of climate change; Part IV presents ethical issues related to climatic change; and Part V deals with responses to climate change

  6. Climate Change: From Science to Practice.

    Science.gov (United States)

    Wheeler, Nicola; Watts, Nick

    2018-03-01

    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  7. Climate Change 2014: Technical Summary

    Science.gov (United States)

    Field, Chrisopher B.; Barros, Vicente; Mach, Katherine; Mastrandrea, Michael; van Aalst, Maarten; Adger, Niel; Arent, Douglas J; Barnett, Jonathan; Betts, Richard; Bilir, Eren; Birkmann, Joern; Carmin, Joann; Chadee, Dave; Challinor, Andrew; Chaterjee, Monalisa; Cramer, Wolfgang; Davidson, Debra; Estrada, Yuka; Gatusso, Jean-Pierre; Hijioka, Yasuakai; Yohe, Gary; Hiza, Margaret; Hoegh-Guldberg, Ove; Huang, He-Qing; Insarov, Gregory; Jones, Roger; Kovats, Sari; Lankao, Patricia Romero; Larsen, Joan Nymand; Losada, Iñigo; Marengo, José; McLean, Roger; Mearns, Linda; Mechler, Reinhard; Morton, John; Niang, Isabelle; Oki, Taikan; Olwoch, Jane Mukarugwiza; Opondo, Maggie; Poloczanska, Elvira; Pörtner, Hans -O.; Reisinger, Andy; Revi, Aromar; Schmidt, Daniela; Shaw, Rebecca; Solecki, William; Stone, Dáithí; Stone, John; Strzepek, Ken; Suarez, Avelino G.; Tschakert, Petra; Valentini, Riccardo; Vicuna, Sebastian; Villamizar, Alicia; Vincent, Katharine; Warren, Rachel; White, Leslie; Wilbanks, Thomas; Wong, Poh Poh

    2014-01-01

    Human interference with the climate system is occurring (WGI AR5 SPM Section D.3; WGI AR5 Sections 2.2, 6.3, 10.3 to 10.6, 10.9). Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC’s Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of adaptation and mitigation. For the past 2 decades, IPCC’s Working Group II has developed assessments of climate change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC’s Fourth Assessment Report (WGII AR4), published in 2007, and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), published in 2012. It follows the Working Group I contribution to the AR5. The WGII AR5 is presented in two parts (Part A: Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage. [1.1 to 1.3] The number of scientific publications available for assessing climate change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation, allowing for a more robust assessment that supports policymaking (high confidence). The diversity of the topics and regions covered has similarly expanded, as has

  8. Regional climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-01-01

    Because studies of the regional impact of climate change need higher spatial resolution than that obtained in standard global climate change scenarios, developing regional scenarios from models is a crucial goal for the climate modelling community. The zoom capacity of ARPEGE-Climat, the Meteo-France climate model, allows use of scenarios with a horizontal resolution of about 50 km over France and the Mediterranean basin. An IPCC-A2 scenario for the end of the 21. century in France shows higher temperatures in each season and more winter and less summer precipitation than now. Tuning the modelled statistical distributions to observed temperature and precipitation allows us to study changes in the frequency of extreme events between today's climate and that at the end of century. The frequency of very hot days in summer will increase. In particular, the frequency of days with a maximum temperature above 35 deg C will be multiplied by a factor of 10, on average. In our scenario, the Toulouse area and Provence might see one quarter of their summer days with a maximum temperature above 35 deg C. (author)

  9. Feframing Climate Change for Environmental Health.

    Science.gov (United States)

    Weems, Caitlin; Subramaniam, Prithwi Raj

    2017-04-01

    Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.

  10. Growing Diversity in Space Weather and Climate Change Research

    Science.gov (United States)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  11. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  12. Assessing socio-technical mindsets: Public deliberations on carbon capture and storage in the context of energy sources and climate change

    International Nuclear Information System (INIS)

    Einsiedel, Edna F.; Boyd, Amanda D.; Medlock, Jennifer; Ashworth, Peta

    2013-01-01

    The adaptation and transition to new configurations of energy systems brought on by challenges of climate change, energy security, and sustainability have encouraged more integrative approaches that bring together the social and technical dimensions of technology. The perspectives of energy systems and climate change play an important role in the development and implementation of emerging energy technologies and attendant policies on greenhouse gas reduction. This research examines citizens’ views on climate change and a number of energy systems, with a specific focus on the use of carbon capture and storage (CCS) as a technology to address greenhouse gas emissions. An all-day workshop with 82 local participants was held in the city of Calgary in Alberta, Canada to explore the views of climate change, energy and CCS. Participants were provided the opportunity to ask experts questions and discuss in small groups their views of climate change policy and energy systems. Results demonstrate that participants’ assessments of energy systems are influenced by social–political–institutional–economic contexts such as trust in industry and government, perception of parties benefiting from the technology, and tradeoffs between energy systems. We discuss our findings in the context of understanding social learning processes as part of socio-technical systems change. - Highlight: ► Energy systems are judged in the context of wider socio-technical system dimensions. ► Skepticism about climate change may affect support for CCS. ► Concerns about CCS include: CO 2 leaks, accuracy of monitoring and costs.

  13. Climate change and respiratory health.

    Science.gov (United States)

    Gerardi, Daniel A; Kellerman, Roy A

    2014-10-01

    To discuss the nature of climate change and both its immediate and long-term effects on human respiratory health. This review is based on information from a presentation of the American College of Chest Physicians course on Occupational and Environmental Lung Disease held in Toronto, Canada, June 2013. It is supplemented by a PubMed search for climate change, global warming, respiratory tract diseases, and respiratory health. It is also supplemented by a search of Web sites including the Environmental Protection Agency, National Oceanic and Atmospheric Administration, World Meteorological Association, National Snow and Ice Data Center, Carbon Dioxide Information Analysis Center, Inter-Governmental Panel on Climate Change, and the World Health Organization. Health effects of climate change include an increase in the prevalence of certain respiratory diseases, exacerbations of chronic lung disease, premature mortality, allergic responses, and declines in lung function. Climate change, mediated by greenhouse gases, causes adverse health effects to the most vulnerable patient populations-the elderly, children, and those in distressed socioeconomic strata.

  14. Gender Perspectives on Climate Change & Human Security in India: An Analysis of National Missions on Climate Change

    Directory of Open Access Journals (Sweden)

    Jyoti K Parikh

    2012-04-01

    Full Text Available Women play a crucial role in many activities essential for coping with climate change. Indian women appear to be more vulnerable than men to differential impacts of climate change because they share most of the household managing responsibilities but have limited access to participation in decision making and governance. Most of the policies for climate change adaptation and mitigation do not specifically address the vulnerability of women. The National Action Plan for Climate Change (NAPCC, formulated to shape future discourse of climate change adaptation and development, recognizes the differential impacts of climate change on society, but incorporates merely a few gender specific measures. The paper suggests gender specific measures for each mission of the NAPCC to make the adaptation and development process more inclusive and sustainable in India.

  15. Land use and climate change

    OpenAIRE

    Koomen, E.; Moel, de, H.; Steingröver, E.G.; Rooij, van, S.A.M.; Eupen, van, M.

    2012-01-01

    Land use is majorly involved with climate change concerns and this chapter discusses and reviews the interrelationships between the vulnerability, adaptation and mitigation aspects of land use and climate change. We review a number of key studies on climate change issues regarding land productivity, land use and land management (LPLULM), identifying key findings, pointing out research needs, and raising economic/policy questions to ponder. Overall, this chapter goes beyond previous reviews ...

  16. Wine and Climate Change

    OpenAIRE

    Ashenfelter, Orley; Storchmann, Karl

    2014-01-01

    In this article we provide an overview of the extensive literature on the impact of weather and climate on grapes and wine with the goal of describing how climate change is likely to affect their production. We start by discussing the physical impact of weather on vine phenology, berry composition and yields, and then survey the economic literature measuring the effects of temperature on wine quality, prices, costs and profits and how climate change will affect these. We also describe what ha...

  17. Uncertainties and climatic change

    International Nuclear Information System (INIS)

    De Gier, A.M.; Opschoor, J.B.; Van de Donk, W.B.H.J.; Hooimeijer, P.; Jepma, J.; Lelieveld, J.; Oerlemans, J.; Petersen, A.

    2008-01-01

    Which processes in the climate system are misunderstood? How are scientists dealing with uncertainty about climate change? What will be done with the conclusions of the recently published synthesis report of the IPCC? These and other questions were answered during the meeting 'Uncertainties and climate change' that was held on Monday 26 November 2007 at the KNAW in Amsterdam. This report is a compilation of all the presentations and provides some conclusions resulting from the discussions during this meeting. [mk] [nl

  18. Climate Change. Solutions for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, T.; Hoegh-Guldberg, O.; Karoly, D.; Lowe, I.; McMichael, T.; Mitchell, C.; Pearman, G.; Scaife, P.; Reynolds, A. (eds.)

    2004-06-01

    The Australian Climate Group was convened in late 2003 by WWF Australia and the Insurance Australia Group (IAG) in response to the increasing need for action on climate change in Australia. This group proposes a set of solutions to lower the risk that climate change will reach a dangerous level.

  19. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  20. Climate change: Factors and forecasts

    International Nuclear Information System (INIS)

    Wilson, W.R.

    1990-01-01

    An overview is presented of global climatic change. The greenhouse effect is an established physical phenomena. The reradiative effects of various anthropogenic gases are scientifically demonstrable, and the increasing concentration of such gases in the atmosphere is irrefutable. The delinquent information is the magnitude of the agravated greenhouse effect (AGE)-induced climatic change, the temporal pace of the change and its spatial distribution. The pace of the climatic change implied by many of the general circulation model (GCM) estimates is for a northern hemispheric warming 10-50 times faster than the change since the last ice age. At a relatively aggregated representation, researching the impact of climate change involves estimating energy use and greenhouse gas atmospheric retention, climate modeling and socio-economic impact models. Recognizing that certain of the impacts of anthropogenic gasses will prove to be cumulative, non-reversible and synergistic, it would be prudent to examine mitigating options for immediate implementation. Given the current degree of scientific uncertainty, response priorities would be on the no-regrets or covering-the-bets options. 14 refs., 1 fig., 1 tab

  1. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    Science.gov (United States)

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role

  2. Sweden's third national communication on climate change. Under the United Nations framework convention on climate change

    International Nuclear Information System (INIS)

    2001-01-01

    Sweden's national communication to the UN Convention on Climate Change describes everything about the emission and absorption of greenhouse gases, the motives and forces behind emissions, and official Swedish climate policies. Every five years, Sweden submits a communication on practical climate efforts in Sweden to the UN Convention on Climate Change. The Swedish Environmental Protection Board has coordinated the work of producing the basic documentation for the communication, which also describes the measures already taken and those planned for the future. In addition, scenarios have been adopted for developments in Swedish greenhouse gas emissions, Sweden's vulnerability and Swedish research into the climate and climate change

  3. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Science.gov (United States)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  4. On climate change and economic growth

    International Nuclear Information System (INIS)

    Fankhauser, Samuel; Tol, Richard S.J.

    2005-01-01

    The economic impact of climate change is usually measured as the extent to which the climate of a given period affects social welfare in that period. This static approach ignores the dynamic effects through which climate change may affect economic growth and hence future welfare. In this paper we take a closer look at these dynamic effects, in particular saving and capital accumulation. With a constant savings rate, a lower output due to climate change will lead to a proportionate reduction in investment which in turn will depress future production (capital accumulation effect) and, in almost all cases, future consumption per capita. If the savings rate is endogenous, forward looking agents would change their savings behavior to accommodate the impact of future climate change. This suppresses growth prospects in absolute and per capita terms (savings effect). In an endogenous growth context, these two effects may be exacerbated through changes in labour productivity and the rate of technical progress. Simulations using a simple climate-economy model suggest that the capital accumulation effect is important, especially if technological change is endogenous, and may be larger than the direct impact of climate change. The savings effect is less pronounced. The dynamic effects are more important, relative to the direct effects, if climate change impacts are moderate overall. This suggests that they are more of a concern in developed countries, which are believed to be less vulnerable to climate change. The magnitude of dynamic effects is not sensitive to the choice of discount rate

  5. A Model for Pre-Service Teachers' Climate Change Awareness and Willingness to Act for Pro-Climate Change Friendly Behavior: Adaptation of Awareness to Climate Change Questionnaire

    Science.gov (United States)

    Dal, Burçkin; Alper, Umut; Özdem-Yilmaz, Yasemin; Öztürk, Nilay; Sönmez, Duygu

    2015-01-01

    Public awareness of the negative effects of climate change is vital since it leads to collective action for prevention and adaptation. However, investigations on to what extent people are aware of the climate change issue are rare in the literature. The present study reported the adaptation process of awareness to climate change questionnaire into…

  6. Climate change hotspots in the CMIP5 global climate model ensemble.

    Science.gov (United States)

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  7. Linking models of human behaviour and climate alters projected climate change

    Science.gov (United States)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  8. World Regionalization of Climate Change(1961–2010)

    Institute of Scientific and Technical Information of China (English)

    Peijun; Shi; Shao; Sun; Daoyi; Gong; Tao; Zhou

    2016-01-01

    Traditional climate classification or regionalization characterizes the mean state of climate condition, which cannot meet the demand of addressing climate change currently. We have developed a climate change classification method, as well as the fundamental principles, an indicator system, and mapping techniques of climate change regionalization. This study used annual mean temperature and total precipitation as climatic indices, and linear trend and variation change as change indices to characterize climate change quantitatively. The study has proposed a scheme for world climate change regionalization based on a half century of climate data(1961–2010). Level-I regionalization divides the world into 12 tendency zones based on the linear trend of climate, level-II regionalization resulted in 28 fluctuation regions based on the variation change of climate. Climate change regionalization provides a scientific basis for countries and regions to develop plans for adapting to climate change, especially for managing climate-related disaster or environmental risks.

  9. Natural versus anthropogenic climate change: Swedish farmers' joint construction of climate perceptions.

    Science.gov (United States)

    Asplund, Therese

    2016-07-01

    While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.

  10. Changing Climate in the MENA Means Changing Energy Needs

    Directory of Open Access Journals (Sweden)

    Adam Fenech

    2015-12-01

    Full Text Available The leading authority on climate change, the Intergovernmental Panel on Climate Change (IPCC hasconcluded that warming of the climate system is unequivocal, and will continue for centuries. The regionsin the Middle East and Northern Africa (MENA have experienced numerous extreme climate events overthe past few years including the 2009 flooding in Jeddah, Kingdom of Saudi Arabia; the 2005 dust stormin Al Asad, Iraq; water scarcity throughout the Arab MENA; and the rising sea levels on the Nile Deltacoast, Egypt. A climate baseline can be developed for regions in the MENA by locating climate stations inthe study area using observations made in the Global Climate Observing System (GCOS. For projectionsof future climate, global climate models (GCMs, mathematical equations that describe the physics, fluidmotion and chemistry of the atmosphere, are the most advanced science available. The Climate ResearchLab at the University of Prince Edward Island has a dataset available to researchers, called the Climate,Ocean and Atmosphere Data Exchange (COADE, that provides easy access to the output from fortyglobal climate models used in the deliberations of the Intergovernmental Panel on Climate Change’s(IPCC Fifth Assessment Report (AR5 including monthly global climate model projections of future climatechange for a number of climate parameters including temperature and precipitation. Over the past 50years, climate changes in the MENA Region have led to increases in annual mean temperatures anddecreases in annual total precipitation. Applying all four greenhouse gas emission futures on a baseclimate normal of 1981-2010 to an ensemble of forty global climate models used in the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change (IPCC AR5 results in future temperatureincreases for the MENA Region ranging from 1.6 to 2.3 degrees Celsius, and in a range of futureprecipitation changes from reductions of 11 percent to increases of 36 percent

  11. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    Science.gov (United States)

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  12. Glaciers, ice sheets, and sea level: effect of a CO/sub 2/-induced climatic change

    Energy Technology Data Exchange (ETDEWEB)

    None

    1985-09-01

    The workshop examined the basic questions of how much water has been exchanged between land ice and ocean during the last century, what is happening now, and, given existing climate-modeling prediction, how much exchange can be expected in the next century. In addition, the evidence for exchange was examined and gaps in that evidence were identified. The report includes the 23 presentations made at the workshop, summarizes the workshop discussion, and presents the Committee's findings and recommendations. Separate abstracts have been prepared for the 23 presentations.

  13. Climate change: wildfire impact

    OpenAIRE

    Dautbasic, Mirza; Crabtree, J.; Ioras, Florin; Abrudan, Ioan Vasile; Ratnasingam, Jega

    2011-01-01

    Every ecosystem is a complex organization of carefully mixed life forms; a dynamic and particularly sensible system. Consequently, their progressive decline may accelerate climate change and vice versa, influencing flora and fauna composition and distribution, resulting in the loss of biodiversity. Climate changes effects are the principal topics of this volume. Written by internationally renowned contributors, Biodiversity loss in a changing planet offers attractive study cases focused on bi...

  14. Navigating SA's climate change legislation

    International Nuclear Information System (INIS)

    Dickey, Suzanne

    2006-01-01

    It is proposed that there should be a legislation to address climate change and Greenhouse Gas Emission Reduction Bill. South Australian Government Greenhouse Strategy and climate change legislation in light of the far-reaching implications this legislation could have on clients, who face the impacts of climate change in the business and natural environment. It is a commitment to reduce greenhouse gas emissions in South Australia by 2050 to 60 per cent of 1990 levels

  15. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now...... variability in temperature are ecologically important. Embracing complexity in future climate change experiments in general is therefore crucial......., precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies...

  16. Modeling Uncertainty and the Economics of Climate Change. Recommendations for Robust Energy Policy

    International Nuclear Information System (INIS)

    Haurie, A.; Tavoni, M.; Van der Zwaan, B.C.C.

    2011-01-01

    This special issue is meant to gather front-edge research and innovative analysis in the modeling of uncertainty related to the economics of climate change. The focus is notably on advancements in probabilistic integrated assessment modeling and stochastic analysis of climate futures. The possibility to use non-probabilistic economic methods to treat uncertainty in global or regional dynamic climate change models is explored as well. Given the intimate link between climate change and the nature of mankind's energy production and consumption system, this special issue also proffers direct practical recommendations for energy decision making at the global, regional, and national levels. The special issue originated from a series of research tasks carried out under the PLANETS project, funded by the European Commission under its 7th Framework Programme and co-coordinated by the Fondazione Eni Enrico Mattei (FEEM) and the Energy research Centre of the Netherlands (ECN). This project, accomplished in 2010, had, as main focus, how to incorporate uncertainty when carrying out numerical analysis of climate and energy policies. A special PLANETS session was organized during the 2010 edition of the International Energy Workshop (IEW 2010, Royal Institute of Technology, Stockholm), which generated broad expert discussion on both methodology and policy-related issues. The recognition of the importance of these topics and the diversity of approaches undertaken, plus a concern over them becoming fragmented in the literature, constituted the motivation to edit this special issue gathering the generated material in one orchestrated publication. Several contributions, in the form of 12 papers, have been brought together with the aim of providing a comprehensive overview of some of the main recent developments in the modeling of uncertainty in the economics of climate change. We categorize these 12 articles in five distinct domains in hybrid integrated assessment EEE (Energy

  17. Modeling Uncertainty and the Economics of Climate Change. Recommendations for Robust Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Haurie, A. [ORDECSYS, Geneva (Switzerland); Tavoni, M. [Princeton University, Princeton, NJ (United States); Van der Zwaan, B.C.C. [Policy Studies Department, Energy research Centre of the Netherlands ECN, Amsterdam (Netherlands)

    2011-07-15

    This special issue is meant to gather front-edge research and innovative analysis in the modeling of uncertainty related to the economics of climate change. The focus is notably on advancements in probabilistic integrated assessment modeling and stochastic analysis of climate futures. The possibility to use non-probabilistic economic methods to treat uncertainty in global or regional dynamic climate change models is explored as well. Given the intimate link between climate change and the nature of mankind's energy production and consumption system, this special issue also proffers direct practical recommendations for energy decision making at the global, regional, and national levels. The special issue originated from a series of research tasks carried out under the PLANETS project, funded by the European Commission under its 7th Framework Programme and co-coordinated by the Fondazione Eni Enrico Mattei (FEEM) and the Energy research Centre of the Netherlands (ECN). This project, accomplished in 2010, had, as main focus, how to incorporate uncertainty when carrying out numerical analysis of climate and energy policies. A special PLANETS session was organized during the 2010 edition of the International Energy Workshop (IEW 2010, Royal Institute of Technology, Stockholm), which generated broad expert discussion on both methodology and policy-related issues. The recognition of the importance of these topics and the diversity of approaches undertaken, plus a concern over them becoming fragmented in the literature, constituted the motivation to edit this special issue gathering the generated material in one orchestrated publication. Several contributions, in the form of 12 papers, have been brought together with the aim of providing a comprehensive overview of some of the main recent developments in the modeling of uncertainty in the economics of climate change. We categorize these 12 articles in five distinct domains in hybrid integrated assessment EEE (Energy

  18. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  19. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    Science.gov (United States)

    Evans, Louisa S; Hicks, Christina C; Adger, W Neil; Barnett, Jon; Perry, Allison L; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  20. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    Agnew, T.A.; Headley, A.

    1994-01-01

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO 2 ; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  1. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  2. Selected international efforts to address climate change

    Energy Technology Data Exchange (ETDEWEB)

    Seki, M.; Christ, R. [Atmosphere Unit, United Nations Environment Programme UNEP, Nairobi (Kenya)

    1995-12-31

    Over the past two decades, concern about human-induced climate change has become an increasingly important item on the environmental and political agenda. The signing of the United Nations Framework Convention on Climate Change and the adoption of Agenda 21 at the United Nations Conference on Environment and Development in Rio de Janeiro in 1992 provided international organizations and the nations of the world with a new focus for climate-related activities. Although there remains considerable scientific uncertainty about the extent, magnitude, and rate of climate change and the impacts of such change, actions to address climate change have been initiated both internationally and nationally. Major international activities include the World Climate Programme, the Intergovernmental Panel on Climate Change, the United Nations Framework Convention on Climate Change. and the United Nations Environment Program me. 16 refs.

  3. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  4. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  5. Climate change: believing and seeing implies adapting.

    Directory of Open Access Journals (Sweden)

    Kristina Blennow

    Full Text Available Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01 to 0.81 (SD ± 0.03 for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008 to 0.91 (SD ± 0.02. We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  6. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  7. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  8. Climate change and climate variability: personal motivation for adaptation and mitigation.

    Science.gov (United States)

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  9. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  10. Global warming and climate change

    International Nuclear Information System (INIS)

    1992-10-01

    A panel discussion was held to discuss climate change. Six panelists made presentations that summarized ozone depletion and climate change, discussed global responses, argued against the conventional scientific and policy dogmas concerning climate change, examined the effects of ultraviolet radiation on phytoplankton, examined the effects of carbon taxes on Canadian industry and its emissions, and examined the political and strategic aspects of global warming. A question session followed the presentations. Separate abstracts have been prepared for the six presentations

  11. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    Science.gov (United States)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  12. Modeling the effect of climate change on the indoor climate

    NARCIS (Netherlands)

    Schijndel, van A.W.M.; Schellen, H.L.

    2010-01-01

    Within the new EU project ‘Climate for Culture’ researchers are investigating climate change impacts on UNESCO World Heritage Sites. Simulation results are expected to give information on the possible impact of climate change on the built cultural heritage and its indoor environment. This paper

  13. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    Science.gov (United States)

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  14. Adapting Indian Agriculture to Global Climate Change

    Indian Academy of Sciences (India)

    Adapting Indian Agriculture to Global Climate Change · Climate Change: Generic Implications for Agriculture · Controlled environment facilities at IARI used for evaluating model performance in future climate change scenarios · Slide 4 · Slide 5 · Global studies indicate considerable impact of climate change in tropics.

  15. Climate change - the impacts

    International Nuclear Information System (INIS)

    Reysset, Bertrand; Billes-Garabedian, Laurent; Henique, Julien; Pascal, Mathilde; Pirard, Philippe; Motreff, Yvon; Barbault, Robert; Weber, Jacques; Gate, Philippe; Salagnac, Jean-Luc; Desplat, Julien; Kounkou-Arnaud, Raphaelle

    2012-01-01

    This special dossier about the impacts of climate change is made of 6 contributions dealing with: the mitigation of climate effects and how to deal with them (Bertrand Reysset); how to dare and transmit (Laurent Billes-Garabedian); littoral risks, the Pas-de-Calais example (Julien Henique); extreme meteorological events and health impacts (Mathilde Pascal, Philippe Pirard, Yvon Motreff); Biodiversity and climate: the janus of global change (Robert Barbault, Jacques Weber); adapting agriculture to dryness and temperatures (Philippe Gate); Paris and the future heats of the year 2100 (Jean-Luc Salagnac, Julien Desplat, Raphaelle Kounkou-Arnaud)

  16. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  17. Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program

    Science.gov (United States)

    2006-06-01

    photosynthesis ), evapotranspiration, and energy balance. 12 Climate change recommended research priorities Organic matter inputs to soils and aquatic...may be altered through changes in climate (e.g., coral reefs, seagrass ). Finally, services provided by a number of federally protected areas depend

  18. Proceedings of the International Workshop on Sustainable ForestManagement: Monitoring and Verification of Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye (Ed.), Jayant; Makundi (Ed.), Willy; Goldberg (Ed.),Beth; Andrasko (Ed.), Ken; Sanchez (Ed.), Arturo

    1997-07-01

    The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policy makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led

  19. Synopsis of climate change

    Science.gov (United States)

    Angela Jardine; Jonathan Long

    2014-01-01

    Changes in climate can interact with other stressors to transform ecosystems and alter the services those ecosystems provide. This synopsis presents themes that run through the synthesis report regarding the impacts of a changing climate on the forests and waters of the synthesis area as well as long-term, broad-scale, science-based strategies to promote system...

  20. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  1. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  2. Climate change projections: past and future mysteries of climate science

    International Nuclear Information System (INIS)

    Meehl, Gerald A.

    2007-01-01

    Full text: Full text: The history of climate change has been wrapped in mysteries. Some have been solved, and we await the outcome of others. The major mystery of 20th century climate was why did temperatures rise in the early part of the century, level off, and then rise rapidly again after the 1970s? It has only been in the past seven years that advances in climate modelling have allowed us to deconstruct 20th century climate to pull apart the separate influences of natural and human-caused factors. This has allowed us to understand the subtle interplay between these various influences that produced the temperature time evolution. Another mystery has involved extreme weather and climate events. Again, climate models have allowed us to quantify how the small changes in average climate translate into much larger changes of regional extremes. The biggest remaining mysteries in climate science involve the future, and how the climate will evolve over the coming century. Up until now, various scenarios postulating different possible outcomes for 21st century climate, assuming different types of human activities, have been run in the climate models to provide a wide range of possible futures. However, more recently the outlook for global warming is being framed as a combination of mitigation and adaptation. If policy actions are taken to mitigate part of the problem of global warming, then climate models must be relied on to quantify the time-evolving picture of how much regional climate change we must adapt to. Solving this mystery will be the biggest and most important challenge ever taken on by the climate modelling community

  3. A climate of doubts. The weight of uncertainty about climate change

    International Nuclear Information System (INIS)

    Alex, Bastien

    2014-05-01

    The author proposes a review of four publications about climate change published in 2012 and 2013. He more particularly focuses on how these publications express how climate change is perceived by the different components of our modern societies, how these perceptions have an influence on the answer to challenges related to this phenomenon, what global warming tells us about mankind ability to (re)act to this major challenge. He notices that any doubt about the reality of climate change is exploited and maintains some confusion, favours the propagation and persistence of popular misbelief such as: population of developing countries will be more impacted by effects of climate change, only rich people can afford interest in environment protection and climate preservation. He outlines that a doubting community will not act, and notices that technological advances, for example geo-engineering or climate engineering, tend to deliberately manipulate the environment to counteract the climate change due to human activity

  4. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    Science.gov (United States)

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  5. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  6. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    Kjærgaard, Peter C.

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  7. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  8. Municipal vulnerability to climate change

    CSIR Research Space (South Africa)

    Mambo, Julia

    2017-12-01

    Full Text Available South Africa, like the rest of Africa, is considered highly vulnerable to climate change and variability as well as to global change. Climate change is and will continue to be an issue of concern in the development of the country. South Africa faces...

  9. Creating Effective Dialogue Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  10. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  11. Climatic Change. Human Influence?

    OpenAIRE

    Gonçalves, Dionísio; Leite, Solange; Ribeiro, A.C.; Figueiredo, Tomás de

    2016-01-01

    We begin by presenting the functioning of the Climate System and the variety of climates that occurs on the surface of the globe. We analyze climate change based on the sun's orbital parameters and other causes, focusing on the current interglacial period and the influence it had on the development of human societies. The following text looks on developing of the climate of the last 1000 years, with considerations about the warm medieval climate, the little ice age, the recovery...

  12. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    Fantechi, R.; Almeida-Teixeira, M.E.; Maracchi, G.

    1991-01-01

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  13. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  14. Global change of the climate

    International Nuclear Information System (INIS)

    Moharam-nejad, Naser.

    1995-01-01

    Greenhouse effect is defined. greenhouse gases which are capable to produce greenhouse effect is mentioned. The production of greenhouse effects depends on the following factors; The amount of discharge to the atmosphere, Concentration, Life span, stability, Absorption and Emission. The effect of global change of climate on agriculture and living organisms is discussed. Global actions related to climate change and national procedures are described. The aim of climate change convention is given and the important points of convention is also mentioned

  15. Climate change and food security

    Science.gov (United States)

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  16. Downscaled Climate Change Projections for the Southern Colorado Plateau: Variability and Implications for Vegetation Changes

    Science.gov (United States)

    Garfin, G. M.; Eischeid, J. K.; Cole, K. L.; Ironside, K.; Cobb, N. S.

    2008-12-01

    Recent and rapid forest mortality in western North America and associated changes in fire frequency and area burned are among the chief concerns of ecosystem managers. These examples of climate change surprises demonstrate nonlinear and threshold ecosystem responses to increased temperatures and severe drought. A consistent management request from climate change adaptation workshops held during the last four years in the southwest U.S. is for region-specific estimates of climate and vegetation change, in order to provide guidance for management of federal and state forest, range, and riparian preserves and land holdings. Partly in response to these concerns, and partly in the interest of improving knowledge of potential ecosystem changes and their relationships with observed changes and changes demonstrated in the paleoecological record, we developed a set of integrated climate and ecosystem analyses. We selected five of twenty-two GCMs from the PCMDI archive of IPCC AR4 model runs, based on their approximations of observed critical seasonality for vegetation in the Southern Colorado Plateau (domain: 35°- 38°N, 114°-107°W), centered on the Four Corners states. We used three key seasons in our analysis, winter (November-March), pre-monsoon (May-June), and monsoon (July- September). Projections of monthly and seasonal temperature and precipitation from our five-model ensemble indicate steadily increasing temperatures in our region of interest during the twenty-first century. By 2050, the ensemble projects increases of 3.0°C during May and June, months critical for drought stress and tree mortality, and 4.5-5.0°C by 2090. Projected temperature changes for months during the heart of winter (December and January) are on the order of 2.5°C by 2050 and 3.0°C by 2090; such changes are likely to affect snow hydrology in middle to low elevations in the Southern Colorado Plateau. Summer temperature increases are on the order of 2.5°C (2050) and 4.0°C (2090). The

  17. Abrupt climate-independent fire regime changes

    Science.gov (United States)

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  18. Climate and the changing Sun

    International Nuclear Information System (INIS)

    Eddy, J.A.

    1977-01-01

    Long-term changes in the level of solar activity are found in historical records and in fossil radiocarbon in tree-rings. Typical of these changes are the Maunder Minimum (A.D. 1645-1715), the Spoerer Minimum (A.D. 1400-1510), and a Medieval Maximum (c. A.D. 1120-1280). Eighteen such features are identified in the tree-ring radiocarbon record of the past 7500 years and compared with a record of world climate. In every case when long-term solar activity falls, mid-latitude glaciers advance and climate colls; at times of high solar activity glaciers recede and climate warms. It is proposed that changes in the level of solar activity and in climate may have a common cause: slow changes in the solar constant, of about 1% amplitude. (Auth.)

  19. Business responses to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Pinkse, J.M.

    2006-04-27

    This research project studies the evolution and determinants of corporate climate strategies of multinationals. Since most companies are affected by global climate change in a direct or indirect way, a range of strategies are emerging to mitigate climate change. These strategies are not only of a political nature (e.g. influencing government institutions), but also of a competitive nature. The aim is to introduce a typology of corporate climate strategies, paying specific attention to the market components related to climate change. More and more, multinationals' actions in reducing greenhouse gas emissions are aimed at achieving a sustained competitive advantage in addition to compliance with government regulation. What factors determine these market strategies for climate change will be explored in a theoretical framework based on institutional theory and the resource-based view of the firm.

  20. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  1. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  2. Challenges and priorities for modelling livestock health and pathogens in the context of climate change.

    Science.gov (United States)

    Özkan, Şeyda; Vitali, Andrea; Lacetera, Nicola; Amon, Barbara; Bannink, André; Bartley, Dave J; Blanco-Penedo, Isabel; de Haas, Yvette; Dufrasne, Isabelle; Elliott, John; Eory, Vera; Fox, Naomi J; Garnsworthy, Phil C; Gengler, Nicolas; Hammami, Hedi; Kyriazakis, Ilias; Leclère, David; Lessire, Françoise; Macleod, Michael; Robinson, Timothy P; Ruete, Alejandro; Sandars, Daniel L; Shrestha, Shailesh; Stott, Alistair W; Twardy, Stanislaw; Vanrobays, Marie-Laure; Ahmadi, Bouda Vosough; Weindl, Isabelle; Wheelhouse, Nick; Williams, Adrian G; Williams, Hefin W; Wilson, Anthony J; Østergaard, Søren; Kipling, Richard P

    2016-11-01

    Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can

  3. Climate change. Managing the risks

    International Nuclear Information System (INIS)

    Swart, R.J.

    1994-01-01

    In order to address the key question if a targeted approach to climate change response is feasible, different aspects of this question are analyzed. First, the scientific and political aspects of different options to determine specific long-term objectives for climate change are evaluated on the basis of the current scientific insights and the experiences over the last 5 years to develop climate objectives. Preliminary directions for such objectives are given. Next, important analytical tools are discussed that can be applied to analyze the different options and their implications in detail. In order to evaluate the implications of mitigation options, strategies that are consistent with the preliminary climate goals are analyzed in the third part. In chapter 2, the concept of long-term environmental goals, derived from critical levels of climate change, is discussed. Also a historical perspective is provided. A new, systematic regionalized and risk-based approach to elaborate the ultimate objective of the Framework Convention on Climate Change is proposed. In chapter 3 scenarios and integrated models are discussed. Central is the description of scenarios that were developed with RlVM's Integrated Model to Assess the Greenhouse Effect (IMAGE) and the US-EPA's Atmospheric Stabilization Framework (ASF). In chapter 4 potential long-term international emissions control strategies for the different sources and sinks of the most important greenhouse gases are analyzed. Carbon dioxide from energy, carbon dioxide from deforestation, and non-CO 2 greenhouse gases are dealt with subsequently. The dissertation ends with general conclusions and recommendations for the further design of a targeted approach to climate change response, the development of analytical tools to support policy development in the area of climate change, and strategies that are consistent with preliminary long-term environmental goals. 66 figs., 8 tabs., 417 refs., 1 appendix

  4. How does climate change cause extinction?

    Science.gov (United States)

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  5. Invertebrates, ecosystem services and climate change.

    Science.gov (United States)

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  6. Fisheries: climate change impacts and adaptation

    International Nuclear Information System (INIS)

    2003-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on fisheries focuses on the impact of climate change on Canada's marine and freshwater fisheries, and the role of adaptation in reducing the vulnerability of the sector. Canadian fisheries encompass the Atlantic, Pacific and Arctic oceans as well as freshwater systems. Fish health, productivity and distribution is strongly influenced by climatic factors such as air and water temperature, precipitation and wind. Most fish species have a distinct set of environmental conditions for optimal growth and survival. If the conditions change in response to changing climate, the fish may be affected. Some of the impacts include reduced growth, increased competition, a shift in species distribution, greater susceptibility to disease, and altered ecosystem function. Studies show that in some areas, fisheries may already be experiencing the effect of climate change. Recommendations were suggested on how to deal with the impacts associated with climate change in sensitive environments. It was noted that actions taken in the fisheries sector will have implications for the water resources, transportation, tourism and human health sectors. 103 refs., 2 tabs., 6 figs

  7. Tracking climate change. The IPCC in Four Questions. The Hidden Face of Climate Research. Climate Change: Facts and Uncertainties

    International Nuclear Information System (INIS)

    Beriot, Nicolas; Jouzel, Jean; Masson-Delmotte, Valerie; Braconnot, Pascale; Dufresne, Jean-Louis; Le Treut, Herve; Pachauri, Rajendra; Cazenave, Anny; Planton, Serge; Feral, Jean-Pierre

    2014-01-01

    Scientists and government delegations from around the world gathered in Stockholm (Sweden) in September 2013 to approve the first volume of the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). This document reviews existing scientific knowledge on the Earth's climate. How was it prepared? How do scientists conduct research on climate change? What do they know for certain? What remains to be discovered?

  8. Climate Change Ignorance: An Unacceptable Legacy

    Science.gov (United States)

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  9. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  10. Floods in a changing climate

    Science.gov (United States)

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  11. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  12. Acting efficiently on climate change

    International Nuclear Information System (INIS)

    Appert, Olivier; Moncomble, Jean-Eudes

    2015-01-01

    Climate change is a major issue. A survey of the utility companies that account for 80% of the world's electric power was released during the 20. climate conference in Lima as part of the World Energy Council' Global Electricity Initiative. It has concluded that all these utilities see climate change as being real and declare that policies for adapting to it are as important as policies for limiting it. Nonetheless, 97% of these utilities think that consumers will refuse to pay more for decarbonized electricity. This is the core problem in the fight against climate change: all agree that the issue is urgent, some agree about what should be done, but none wants to pay

  13. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  14. Is Information Enough? User Responses to Seasonal Climate Forecasts in Southern Africa. Report to the World Bank, AFTE1-ENVGC. Adaptation to Climate Change and Variability in Sub{sub S}aharan Africa, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Karen; Sygna, Linda; Naess, Lars Otto; Kingamkono, Robert; Hochobeb, Ben

    2000-05-01

    Since the mid-1980s, long-lead climate forecasts have been developed and used to predict the onset of El Nino events and their impact on climate variability. This report discusses user responses to seasonal climate forecasts in southern Africa, with an emphasis on small-scale farmers in Namibia and Tanzania. The study examines how farmers received and used the forecasts in the agricultural season of 1997/1998. It also summarises a workshop on user responses to seasonal forecasts in southern Africa. Comparison of case studies across south Africa revealed differences in forecast dissemination strategies and in the capacity to respond to extreme events. However, improving these strategies and the capacity to respond to the forecasts would yield net profit to agriculture in southern Africa. In anticipation of potential changes in the frequency or magnitude of extreme events associated with global climate change, there clearly is a need for improved seasonal forecasts and improved information dissemination.

  15. Atmospheric Composition Change: Climate-Chemistry Interactions

    Science.gov (United States)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  16. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    Science.gov (United States)

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  17. International Business and Global Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J.

    2008-11-15

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance.

  18. International Business and Global Climate Change

    International Nuclear Information System (INIS)

    Kolk, A.; Pinkse, J.

    2008-11-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and climate change policy. Embedded in relevant management literature, this book gives a concise treatment of developments in policy and business activity on global, regional and national levels, using examples and systematic data from a large number of international companies. The first part outlines the international climate policy landscape and voluntary initiatives taken by companies, both alone and together with others. The second part examines companies' strategies, covering innovation for climate change, as well as compensation via emissions trading and carbon offsetting. Written by well-known experts in the field, International Business and Global Climate Change illustrates how an environmental topic becomes strategically important in a mainstream sense, affecting corporate decision-making, business processes, products, reputation, advertising, communication, accounting and finance

  19. Conservation and adaptation to climate change.

    Science.gov (United States)

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  20. Climate change research in Bulgaria

    International Nuclear Information System (INIS)

    Iotova, A.; Koleva, E.

    1995-01-01

    Climate is traditionally one of the main fields of research interest and objects for study in Bulgaria. Therefore, many investigations on its genesis and specific features are carried out in the past and present. Recently, climate change research appears to be the most actual topic and it is in the centre of climatic studies. A major part of these studies are realized at the National Institute of Meteorology and Hydrology (NIMH) because of its essential role in collection and analysis of the basic climatic data for the country. A brief description of the climate change research at NIMH is presented and the obtained results are summarized

  1. Climatic change. What solutions?

    International Nuclear Information System (INIS)

    Vieillefosse, A.

    2009-01-01

    From 1990 to the present day, worldwide greenhouse gas emissions have increased by about 25%. Fighting climatic change has become an urgency: we only have 15 years in front of us to inflect the trajectory of worldwide emissions and to avoid a temperature rise of more than 2 deg. C during this century. Therefore, how is it possible to explain the shift between the need of an urgent action and the apparent inertia of some governing parties? How is it possible to implement a worldwide governance capable to answer the urgency of the fight against climatic change? These are the two questions that this pedagogical and concrete book tries to answer by analysing the different dimensions of climatic change and by making a first status of the building up of the international action, and in particular of the Kyoto protocol. For the post-2012 era, research and negotiations are in progress with the objective of reaching an agreement for the Copenhagen conference of December 2009. Several architectures are possible. This book shades light on the advantages and limitations of each of them with the possible compromises. It supplies a pluri-disciplinary approach of the international negotiations, often considered as complex by the general public. Content: 1 - understanding the climatic change stakes: climatic stakes, the main actors behind the figures, the technical-economical stakes; 2 - understanding the present day architecture of the fight against climatic change: strengths and weaknesses of the Kyoto protocol; encouraging research and technology spreading; the other action means in developing countries; 3 - what structure for a future international agreement?: the Bali negotiation process; the ideal vision: an improved Kyoto protocol; the pragmatic vision: individualized commitments; the negotiation space; preventing a planned fiasco. (J.S.)

  2. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  3. Study on climate change in Southwestern China

    International Nuclear Information System (INIS)

    Li, Zongxing

    2015-01-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  4. Communicating the Urgency and Challenge of Global Climate Change: Lessons Learned and New Strategies

    Science.gov (United States)

    Dilling, L.; Moser, S. C.

    2004-12-01

    Climate change can sometimes be characterized as a "creeping environmental problem"--it is complex and long-term, involves long system lags, lacks the immediacy of everyday experience and thus is hard to perceive, and feels overwhelming to most individuals. Climate change thus does not typically attain the status of an urgent concern, taking priority over other matters for individuals, organizations or in the policy arena. We review the major reasons behind this lack of urgency, and document the observed consequences of previous communication strategies, including lack of public understanding, indifference, confusion, fear and uncertainty. We find that certain emotional motivators such as fear and guilt, while oft-employed, do not actually result in improved recognition of the urgency of the issue, nor do they typically result in action. Rather, positive and engaging approaches may be more likely to achieve this goal. We propose seven strategies to improve the communication of climate change and its urgency: 1) Abide by basic communication rules and heed the warnings of communication experts; 2) Address the emotional and the temporal components of "urgency"; 3) Increase the persuasiveness of the message; 4) Use trusted messengers-broaden the circle; 5) Use opportunities well; 6) Tap into individual and cultural strengths and values; and 7) Unite and Conquer. The multi-faceted nature of the proposed strategies reflects the unique challenges of the climate change issue as well as the need to engage all levels and sectors of societies in the solution, from individuals, to businesses, to governments. These strategies and results emerged from a multi-disciplinary, academic/practitioner workshop on the topic held at NCAR in summer 2004.

  5. The Ecological consequences of global climate change

    National Research Council Canada - National Science Library

    Woodward, F. I

    1992-01-01

    ... & land use - modeling potential responses of vegetation to global climate change - effects of climatic change on population dynamics of crop pests - responses of soils to climate change - predicting...

  6. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    Enright, W.

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  7. A changing climate of skepticism: The factors shaping climate change coverage in the US press.

    Science.gov (United States)

    Schmid-Petri, Hannah; Adam, Silke; Schmucki, Ivo; Häussler, Thomas

    2017-05-01

    Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.

  8. Market strategies for climate change

    NARCIS (Netherlands)

    Kolk, A.; Pinkse, J.M.

    2004-01-01

    The issue of climate change has attracted increasing business attention in the past decade. Whereas companies initially aimed primarily at influencing the policy debate, corporate strategies increasingly include economic responses. Existing classifications for climate change strategies however still

  9. Climate Literacy Ambassadors

    Science.gov (United States)

    Ackerman, S. A.; Mooney, M. E.

    2011-12-01

    The Climate Literacy Ambassadors program is a collaborative effort to advance climate literacy led by the Cooperative Institute of Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. With support from NASA, CIMSS is coordinating a three-tiered program to train G6-12 teachers to be Ambassadors of Climate Literacy in their schools and communities. The complete training involves participation at a teacher workshop combined with web-based professional development content around Global and Regional Climate Change. The on-line course utilizes e-learning technology to clarify graphs and concepts from the 2007 Intergovernmental Panel on Climate Change Summary for Policy Makers with content intricately linked to the Climate Literacy: The Essential Principles of Climate Science. Educators who take the course for credit can develop lesson plans or opt for a project of their choosing. This session will showcase select lesson plans and projects, ranging from a district-wide action plan that engaged dozens of teachers to Ambassadors volunteering at the Aldo Leopold Climate Change Nature Center to a teacher who tested a GLOBE Student Climate Research Campaign (SCRC) learning project with plans to participate in the SCRC program. Along with sharing successes from the CIMSS Climate Literacy Ambassadors project, we will share lessons learned related to the challenges of sustaining on-line virtual educator communities.

  10. Risk communication on climate change

    International Nuclear Information System (INIS)

    Wardekker, J.A.

    2004-10-01

    For the title study use has been made of available scientific literature, results of new surveys and interviews. In the first part of the study attention is paid to the exchange of information between parties involved in climate change and differences in supply and demand of information. In the second part citizens' views on climate change, problems with communication on climate change, and the resulting consequences and options for communication are dealt with. In this second part also barriers to action that are related or influenced by communication are taken into consideration

  11. Climate project screening tool: an aid for climate change adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  12. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    Science.gov (United States)

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  13. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  14. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  15. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  16. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  17. Public Perception of Uncertainties Within Climate Change Science.

    Science.gov (United States)

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  18. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2005-01-01

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models is given

  19. The climate change problem and its consequences

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonova, N.A.

    2005-01-01

    The problem of climate change is investigated in the current work in Tajikistan. It shows that the changes of the republic thermal mode is connected with climate global changes. The forecast of climate change on 2050 on various models are given

  20. Third national climate change conference proceedings

    International Nuclear Information System (INIS)

    1997-01-01

    The international issue of climate change was discussed at this AREA (Alliance for Responsible Environmental Alternatives) conference. AREA, a coalition of industry, labour and municipalities from across Canada, was created to reflect the views and represent the interest of Canadians in the Climate Change debate. The role that Canada should play to optimize Canada's response to the Global Climate Change Challenge at the Kyoto Conference was the principal topic of discussion. Specific topics for panel discussions included the economic impacts of climate change, the effectiveness of voluntary mechanisms to reduce greenhouse gases versus government-mandated actions for achieving climate change targets, the issue of how a differentiated system for emission reduction targets and timetables might be implemented, the economic imperatives and the effect of those imperatives on negotiating positions at Kyoto, and various national agendas and the likely outcomes at Kyoto. tabs., figs