WorldWideScience

Sample records for climate change vulnerability

  1. Mapping Vulnerability to Climate Change

    OpenAIRE

    Heltberg, Rasmus; Bonch-Osmolovskiy, Misha

    2011-01-01

    This paper develops a methodology for regional disaggregated estimation and mapping of the areas that are ex-ante the most vulnerable to the impacts of climate change and variability and applies it to Tajikistan, a mountainous country highly vulnerable to the impacts of climate change. The authors construct the vulnerability index as a function of exposure to climate variability and natura...

  2. Tajikistan’s Vulnerability to Climate Change

    OpenAIRE

    Lerman, Zvi

    2011-01-01

    Tajikistan is classified by the World Bank as one of the CIS countries that are most vulnerable to climate change risks. This paper provides a closer look at a set of variables that determine Tajikistan’s vulnerability to risk in general and to climate change risk in particular. After presenting some background information on Tajikistan (Chapter 1), we provide a conceptual introduction to vulnerability and discuss some quantitative approaches to vulnerability assessment that have been recentl...

  3. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  4. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud

    IPCC climate change scenarios, which also consider possible changes in urban population, have been developed. Innovative strategies to land use and spatial planning are proposed that seek synergies between the adaptation to climate change and the need to solve social problems. Furthermore, the book......Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences and...

  5. Climate variability and climate change vulnerability and adaptation. Workshop summary

    International Nuclear Information System (INIS)

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country's vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations

  6. Vulnerability of birds to climate change in California's Sierra Nevada

    OpenAIRE

    Rodney B. Siegel; Peter Pyle; James H. Thorne; Andrew J. Holguin; Christine A Howell; Sarah Stock; Tingley, Morgan W.

    2014-01-01

    In a rapidly changing climate, effective bird conservation requires not only reliable information about the current vulnerability of species of conservation concern, but also credible projections of their future vulnerability. Such projections may enable managers to preempt or reduce emerging climate-related threats through appropriate habitat management. We used NatureServe's Climate Change Vulnerability Index (CCVI) to predict vulnerability to climate change of 168 bird species that breed i...

  7. Adaptation to climate change and industrial vulnerability

    International Nuclear Information System (INIS)

    In today's societies, the production base made up by the industrial fabric acts as an important link between the climate and its variations and our lifestyle. However, several decades of experience have often enabled us to minimise the impact of the weather and its fluctuations on activities, making the industrial sector out to be purely artificial and protected from climate impacts. Yet climate change leads us to challenge this assumption: if the industrial base is supposed to be impervious to the current climate, is this still the case in a context of climate change? In an attempt to answer this question, the Invulnerable project was launched, led by the Institute for Sustainable Development and International Relations (IDDRI) and bringing together scientific and industrial partners (Meteo-France, IPSL, CERFACS). Observing the availability of scientific resources on climate change, partly resulting from the modeling research coordinated by the IPCC, the idea was to work with industries to identify their vulnerabilities and to use these to define indicators for climatologists. These indicators are not chosen by scientists without consulting industries, but are in fact defined by these industries to ensure they correspond to their needs as closely as possible. The challenge is therefore to bring together scientists and industries and to catalyse a mutual understanding to ensure this discussion results in one or several indicators that are relevant to the activity in question and on which climatologists can work

  8. Australian climate change impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    Full text: Full text: The IPCC Fourth Assessment Report on impacts, adaptation and vulnerability made the following conclusions about Australia (Hennessy et al., 2007): Regional climate change has occurred. Since 1950, there has been 0.70C warming, with more heat waves, fewer frosts, more rain in north-west Australia, less rain in southern and eastern Australia, an increase in the intensity of Australian droughts and a rise in sea level of about 70 mm. Australia is already experiencing impacts from recent climate change. These are now evident in increasing stresses on water supply and agriculture, changed natural ecosystems, and reduced seasonal snow cover. Some adaptation has already occurred in response to observed climate change. Examples come from sectors such as water, natural ecosystems, agriculture, horticulture and coasts. However, ongoing vulnerability to extreme events is demonstrated by substantial economic losses caused by droughts, floods, fire, tropical cyclones and hail. The climate of the 21st century is virtually certain to be warmer, with changes in extreme events. Heat waves and fires are virtually certain to increase in intensity and frequency. Floods, landslides, droughts and storm surges are very likely to become more frequent and intense, and snow and frost are very likely to become less frequent. Large areas of mainland Australia are likely to have less soil moisture. Potential impacts of climate change are likely to be substantial without further adaptation; As a result of reduced precipitation and increased evaporation, water security problems are projected to intensify by 2030 in southern and eastern Australia; Ongoing coastal development and population growth, in areas such as Cairns and south-east Queensland, are projected to exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding by 2050. Significant loss of biodiversity is projected to occur by 2020 in some ecologically rich

  9. Climate change vulnerability assessments in the regional context

    OpenAIRE

    Holsten, Anne

    2013-01-01

    Adapting sectors to new conditions under climate change requires an understanding of regional vulnerabilities. Conceptually, vulnerability is defined as a function of sensitivity and exposure, which determine climate impacts, and adaptive capacity of a system. Vulnerability assessments for quantifying these components have become a key tool within the climate change field. However, there is a disagreement on how to make the concept operational in studies from a scientific perspective. This co...

  10. Societal Vulnerability to Climate Change and Variability

    International Nuclear Information System (INIS)

    Institutions in many wealthy industrialised countries are robust and their societies appear to be relatively well insulated against the impacts of climate variability, economic problems elsewhere and so on. However, many countries are not in this position, and there is a growing group of humanity which is not benefiting from the apparent global adaptive trends. Worst case scenarios reinforce the impact of this uneven distribution of adaptive capacity, both between and within countries. Nevertheless, at the broad global scale human societies are strongly adaptive and not threatened by climate change for many decades. At the local level the picture is quite different and the survival of some populations at their present locations is in doubt. In the absence of abatement, the longer term outlook is highly uncertain. Adaptation research needs to begin with an understanding of social and economic vulnerability. It requires a different approach to the traditional IPCC impacts assessment, as human behaviour, institutional capacity and culture are more important than biophysical impacts. This is consistent with the intellectual history of the IPCC which has gradually embraced an increasing range of disciplines. 32 refs

  11. Vulnerability of birds to climate change in California's Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Rodney B. Siegel

    2014-06-01

    Full Text Available In a rapidly changing climate, effective bird conservation requires not only reliable information about the current vulnerability of species of conservation concern, but also credible projections of their future vulnerability. Such projections may enable managers to preempt or reduce emerging climate-related threats through appropriate habitat management. We used NatureServe's Climate Change Vulnerability Index (CCVI to predict vulnerability to climate change of 168 bird species that breed in the Sierra Nevada mountains of California, USA. The CCVI assesses species-specific exposure and sensitivity to climate change within a defined geographic area, through the integration of (a species' range maps, (b information about species' natural history traits and ecological relationships, (c historic and current climate data, and (d spatially explicit climate change projections. We conducted the assessment under two different downscaled climate models with divergent projections about future precipitation through the middle of the 21st century. Assessments differed relatively little under the two climate models. Of five CCVI vulnerability ranking categories, only one species, White-tailed Ptarmigan (Lagopus leucura, received the most vulnerable rank, Extremely Vulnerable. No species received the second-highest vulnerability ranking, Highly Vulnerable. Sixteen species scored as Moderately Vulnerable using one or both climate models: Common Merganser (Mergus merganser, Osprey (Pandion haliaetus, Bald Eagle (Haliaeetus leucocephalus, Northern Goshawk (Accipiter gentilis, Peregrine Falcon (Falco peregrinus, Prairie Falcon (Falco mexicanus, Spotted Sandpiper (Actitis macularius, Great Gray Owl (Strix nebulosa, Black Swift (Cypseloides niger, Clark's Nutcracker (Nucifraga columbiana, American Dipper (Cinclus mexicanus, Swainson's Thrush (Catharus ustulatus, American Pipit (Anthus rubescens, Gray-crowned Rosy-Finch (Leucosticte tephrocotis, Pine Grosbeak

  12. Vulnerability in Climate Change Research: A Comprehensive Conceptual Framework

    OpenAIRE

    Füssel, Hans–Martin

    2005-01-01

    Vulnerability is a central concept in climate change research as well as in a number of other research contexts. However, the term is conceptualized in many different ways by the various scientific communities that use it. Widespread disagreement about the appropriate definition of vulnerability is a frequent cause for misunderstanding in interdisciplinary research on vulnerability and adaptation to climate change. This paper attempts to ameliorate this confusion by presenting a comprehensive...

  13. Rural Nevada and climate change: vulnerability, beliefs, and risk perception.

    Science.gov (United States)

    Safi, Ahmad Saleh; Smith, William James; Liu, Zhnongwei

    2012-06-01

    In this article, we present the results of a study investigating the influence of vulnerability to climate change as a function of physical vulnerability, sensitivity, and adaptive capacity on climate change risk perception. In 2008/2009, we surveyed Nevada ranchers and farmers to assess their climate change-related beliefs, and risk perceptions, political orientations, and socioeconomic characteristics. Ranchers' and farmers' sensitivity to climate change was measured through estimating the proportion of their household income originating from highly scarce water-dependent agriculture to the total income. Adaptive capacity was measured as a combination of the Social Status Index and the Poverty Index. Utilizing water availability and use, and population distribution GIS databases; we assessed water resource vulnerability in Nevada by zip code as an indicator of physical vulnerability to climate change. We performed correlation tests and multiple regression analyses to examine the impact of vulnerability and its three distinct components on risk perception. We find that vulnerability is not a significant determinant of risk perception. Physical vulnerability alone also does not impact risk perception. Both sensitivity and adaptive capacity increase risk perception. While age is not a significant determinant of it, gender plays an important role in shaping risk perception. Yet, general beliefs such as political orientations and climate change-specific beliefs such as believing in the anthropogenic causes of climate change and connecting the locally observed impacts (in this case drought) to climate change are the most prominent determinants of risk perception. PMID:22583075

  14. Vulnerability and Adaptation to the Health Impacts of Climate Change

    OpenAIRE

    Antonio Postigo

    2008-01-01

    Antonio Postigo argues that in contrast to the increasing recognition of the environmental outcomes of climate change, its consequences on human health have received little attention. These health impacts will be largely shaped by socio-economic factors being more severe among vulnerable communities in developing countries. He outlines the need to integrate health vulnerabilities into climate change mitigation and adaptation strategies. Greater consideration of the health effects of climate c...

  15. Climate variability and vulnerability to climate change: a review

    OpenAIRE

    Thornton, Philip K.; Polly J Ericksen; Herrero, Mario; Challinor, Andrew J.

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food syst...

  16. Questioning Complacency: Climate Change Impacts, Vulnerability, and Adaptation in Norway

    International Nuclear Information System (INIS)

    Most European assessments of climate change impacts have been carried out on sectors and ecosystems, providing a narrow understanding of what climate change really means for society. Furthermore, the main focus has been on technological adaptations, with less attention paid to the process of climate change adaptation. In this article, we present and analyze findings from recent studies on climate change impacts, vulnerability, and adaptation in Norway, with the aim of identifying the wider social impacts of climate change. Three main lessons can be drawn. First, the potential thresholds and indirect effects may be more important than the direct, sectoral effects. Second, highly sensitive sectors, regions, and communities combine with differential social vulnerability to create both winners and losers. Third, high national levels of adaptive capacity mask the barriers and constraints to adaptation, particularly among those who are most vulnerable to climate change. Based on these results, we question complacency in Norway and other European countries regarding climate change impacts and adaptation. We argue that greater attention needs to be placed on the social context of climate change impacts and on the processes shaping vulnerability and adaptation

  17. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    OpenAIRE

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; M. S. R. Murthy

    2014-01-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to...

  18. Vulnerability of mountain glaciers in China to climate change

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Ping; DING Yong-Jian; LIU Shi-Yin; TAN Chun-Ping

    2015-01-01

    Mountain glaciers in China are an important water source for both China and adjoining countries, and therefore their adaptation to glacier change is crucial in relation to maintaining populations. This study aims to improve our understanding of glacial vulnerability to climate change to establish adaptation strategies. A glacial numerical model is developed using spatial principle component analysis (SPCA) supported by remote sensing (RS) and geographical information system (GIS) technologies. The model contains nine factorsdslope, aspect, hillshade, elevation a.s.l., air temperature, precipitation, glacial area change percentage, glacial type and glacial area, describing topography, climate, and glacier characteristics. The vulnerability of glaciers to climate change is evaluated during the period of 1961e2007 on a regional scale, and in the 2030s and 2050s based on projections of air temperature and precipitation changes under the IPCC RCP6.0 scenario and of glacier change in the 21st century. Glacial vulnerability is graded into five levels:potential, light, medial, heavy, and very heavy, using natural breaks classification (NBC). The spatial distribution of glacial vulnerability and its temporal changes in the 21st century for the RCP6.0 scenario are analyzed, and the factors influencing vulnerability are discussed. Results show that mountain glaciers in China are very vulnerable to climate change, and 41.2% of glacial areas fall into the levels of heavy and very heavy vulnerability in the period 1961e2007. This is mainly explained by topographical exposure and the high sensitivity of glaciers to climate change. Trends of glacial vulnerability are projected to decline in the 2030s and 2050s, but a declining trend is still high in some regions. In addition to topographical factors, variation in precipitation in the 2030s and 2050s is found to be crucial.

  19. Assessing the Agricultural Vulnerability for India under Changing Climate

    Science.gov (United States)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  20. Climate Vulnerability Assessments : An Assessment of Climate Change Vulnerability, Risk, and Adaptation in Albania's Energy Sector

    OpenAIRE

    World Bank

    2009-01-01

    Many countries are increasingly vulnerable to destructive weather events, floods, droughts, windstorms, or other parameters. The vulnerability is driven in part by recent extremes in climate variability but also by countries' sensitivity to events exacerbated by past practices, socioeconomic conditions, or legacy issues. The degree to which vulnerability to weather affects the countries' e...

  1. Completing Northeast Regional Vulnerability Assessment Incorporating the NatureServe Climate Change Vulnerability Index

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — NatureServe and Heritage Program collaborators have developed a Climate Change Vulnerability Index (CCVI) to provide a rapid, scientifically defensible assessment...

  2. Urban vulnerability and climate change in Africa a multidisciplinary approach

    CERN Document Server

    Coly, Adrien; Fohlmeister, Sandra; Gasparini, Paolo; Jørgensen, Gertrud; Kabisch, Sigrun; Kombe, Wilbard; Lindley, Sarah; Simonis, Ingo; Yeshitela, Kumelachew

    2015-01-01

    The book presents results of CLUVA (CLimate Change and Urban Vulnerability in Africa), a large European Commission funded research project (2010-2013). The project aimed to develop a better understanding of the risks and impacts of climate change related hazards to African cities, assess their vulnerability to these risks, and identify innovative strategies for planning and governance to increase their resilience. For the first time, a systematic and groundbreaking study of this kind was applied in an inter- and trans-disciplinary approach. CLUVA was unique in that it combined: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences and qualitative approaches of the social sciences; a novel multi-risk modeling methodology; strategic approaches to urban and green infrastructure planning with neighborhood perspectives of adaptation. The book broadly follows the approach taken in the CLUVA project. First, the co...

  3. Vulnerability to Poverty and Vulnerability to Climate Change : Conceptual Framework, Measurement and Synergies in Policy

    OpenAIRE

    K. S. Kavi Kumar; Richard J.T. Klein; Cezar Ionescu; Jochen Hinkel; Rupert Klein

    2007-01-01

    This paper attempts to compare the concepts and metrics related to vulnerability notion as used in the poverty literature with those in the filed of climate change. Such comparison could shed light on the understanding of the perceived and real differences between the two fields and also help to identify possible policy synergies between the climate change and poverty communities. The analysis shows that while vulnerability concepts in both the disciplines are defendable, broader policy relev...

  4. Ecosystem vulnerability to climate change in the southeastern United States

    Science.gov (United States)

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-01-01

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  5. Coastal vulnerability: climate change and natural hazards perspectives

    Science.gov (United States)

    Romieu, E.; Vinchon, C.

    2009-04-01

    Introduction Studying coastal zones as a territorial concept (Integrated coastal zone management) is an essential issue for managers, as they have to consider many different topics (natural hazards, resources management, tourism, climate change…). The recent approach in terms of "coastal vulnerability" studies (since the 90's) is the main tool used nowadays to help them in evaluating impacts of natural hazards on coastal zones, specially considering climate change. This present communication aims to highlight the difficulties in integrating this concept in risk analysis as it is usually practiced in natural hazards sciences. 1) Coastal vulnerability as a recent issue The concept of coastal vulnerability mainly appears in the International panel on climate change works of 1992 (IPCC. 2001), where it is presented as essential for climate change adaptation. The concept has been defined by a common methodology which proposes the assessment of seven indicators, in regards to a sea level rise of 1m in 2100: people affected, people at risk, capital value at loss, land at loss, wetland at loss, potential adaptation costs, people at risk assuming this adaptation. Many national assessments have been implemented (Nicholls, et al. 1995) and a global assessment was proposed for three indicators (Nicholls, et al. 1999). The DINAS-Coast project reuses this methodology to produce the DIVA-tool for coastal managers (Vafeidis, et al. 2004). Besides, many other methodologies for national or regional coastal vulnerability assessments have been developed (review by (UNFCCC. 2008). The use of aggregated vulnerability indicators (including geomorphology, hydrodynamics, climate change…) is widespread: the USGS coastal vulnerability index is used worldwide and was completed by a social vulnerability index (Boruff, et al. 2005). Those index-based methods propose a vulnerability mapping which visualise indicators of erosion, submersion and/or socio economic sensibility in coastal zones

  6. Social Vulnerability to Climate Change and the Architecture of Entitlements

    International Nuclear Information System (INIS)

    The objective of this paper is to outline a conceptual model of vulnerability to climate change as the first step in appraising and understanding the social and economic processes which facilitate and constrain adaptation. Vulnerability as defined here pertains to individuals and social groups. It is the state of individuals, of groups, of communities defined in terms of their ability to cope with and adapt to any external stress placed on their livelihoods and well-being. This proposed approach puts the social and economic well-being of society at the centre of the analysis, thereby reversing the central focus of approaches to climate impact assessment based on impacts on and the adaptability of natural resources or ecosystems and which only subsequently address consequences for human well-being. The vulnerability or security of any group is determined by the availability of resources and, crucially, by the entitlement of individuals and groups to call on these resources. This perspective extends the concept of entitlements developed within neoclassical and institutional economics. Within this conceptual framework, vulnerability can be seen as a socially-constructed phenomenon influenced by institutional and economic dynamics. The study develops proxy indicators of vulnerability related to the structure of economic relations and the entitlements which govern them, and shows how these can be applied to a District in coastal lowland Vietnam. This paper outlines the lessons of such an approach to social vulnerability for the assessment of climate change at the global scale. We argue that the socio-economic and biophysical processes that determine vulnerability are manifest at the local, national, regional and global level but the state of vulnerability itself is associated with a specific population. Aggregation one level to another is therefore not appropriate and global-scale analysis is meaningful only in so far as it deals with the vulnerability of the global

  7. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  8. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  9. Vulnerability of cloud forest reserves in Mexico to climate change

    Science.gov (United States)

    Ponce-Reyes, Rocío; Reynoso-Rosales, Víctor-Hugo; Watson, James E. M.; Vanderwal, Jeremy; Fuller, Richard A.; Pressey, Robert L.; Possingham, Hugh P.

    2012-06-01

    Tropical montane cloud forests are among the most vulnerable terrestrial ecosystems to climate change owing to their restricted climatic requirements and their narrow and fragmented distribution. Although 12% of Mexican cloud forest is protected, it is not known whether reserves will ensure the persistence of the ecosystem and its endemic species under climate change. Here, we show that 68% of Mexico's cloud forest could vanish by 2080 because of climate change and more than 90% of cloud forest that is protected at present will not be climatically suitable for that ecosystem in 2080. Moreover, if we assume unprotected forests are cleared, 99% of the entire ecosystem could be lost through a combination of climate change and habitat loss, resulting in the extinction of about 70% of endemic cloud forest vertebrate species. Immediate action is required to minimize this loss--expansion of the protected-area estate in areas of low climate vulnerability is an urgent priority. Our analysis indicates that one key area for immediate protection is the Sierra de Juárez in Oaxaca. This area supports many endemic species and is expected to retain relatively large fragments of cloud forest despite rapid climate change.

  10. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its

  11. Critical list: the 100 nations most vulnerable to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Jessica [London School of Economics (United Kingdom); Huq, Saleemul

    2007-12-15

    Well over a billion people in 100 countries face a bleak future. In these, the nations most vulnerable to climate change, resilience has already been eroded by entrenched poverty, degraded or threatened environments and other problems. The harsher, more frequent natural disasters that are predicted could tip them over the edge into chronic famine or forced migration. Yet these are also the countries that have contributed least to climate change. It is vital that their voices and views be heard in the negotiations to determine the post-Kyoto climate regime. Equally importantly, the countries emitting the most greenhouse gases must redress the balance by establishing robust mitigation programmes and by supporting adaptation.

  12. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    Science.gov (United States)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  13. Socio-Economic Vulnerability to Climate Change in California

    Science.gov (United States)

    Heberger, M. G.; Cooley, H.; Moore, E.; Garzon, C.

    2011-12-01

    The western United States faces a range of impacts from global climate change, including increases in extreme heat, wildfires, and coastal flooding and erosion; changes are also likely to occur in air quality, water availability, and the spread of infectious diseases. To date, a great deal of research has been done to forecast the physical effects of climate change, while less attention has been given to the factors make different populations more or less vulnerable to harm from such changes. For example, mortality rates from Hurricane Audrey, which struck the coast of Louisiana in 1957, were more than eight times higher among blacks than among whites. While disaster events may not discriminate, impacts on human populations are shaped by "intervening conditions" that determine the human impact of the flood and the specific needs for preparedness, response, and recovery. In this study, we analyze the potential impacts of climate change by using recent downscaled climate model outputs, creating a variety of statistics and visualizations to communicate potential impacts to community groups and decision makers, after several meetings with these groups to ask, "What types of information are most useful to you for planning?" We relate climate impacts to social vulnerability - defined as the intersection of the exposure, sensitivity, and adaptive capacity of a person or group of people - with a focus on the U.S. state of California. Understanding vulnerability factors and the populations that exhibit these factors are critical for crafting effective climate change policies and response strategies. It is also important to the emerging study of climate justice, which is the concept that no group of people should disproportionately bear the burden of climate impacts or the costs of mitigation and adaptation.

  14. Livelihoods, vulnerability and adaptation to climate change in Morogoro, Tanzania

    International Nuclear Information System (INIS)

    This article examines farmers' livelihood responses and vulnerability to climate variability and other stressors in Morogoro, Tanzania, to understand their implications for adaptation to climate change by agricultural households in developing world more generally. In Morogoro, agricultural households have extended cultivation, intensified agriculture, diversified livelihoods and migrated to gain access to land, markets and employment as a response to climatic and other stressors. Some of these responses have depleted and degraded natural resources such as forest, soil and water resources, which will complicate their living with climate change in the future. This will be particularly problematic to vulnerable groups such as women, children and pastoralists who have limited access to employment, markets and public services. In this light, fair adaptation to climate change by agricultural households in Morogoro and elsewhere in developing countries requires several complementary responses. Adaptation efforts should involve effective governance of natural resources because they function as safety nets to vulnerable groups. In addition, strengthening of national markets by infrastructure investments and institutional reforms is needed to give incentives to intensification and diversification in agriculture. Market participation also demands enhancement of human capital by public programs on health, education and wellbeing

  15. Livelihoods, vulnerability and adaptation to climate change in Morogoro, Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Paavola, Jouni [Sustainability Research Institute (SRI), School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)], E-mail: j.paavola@see.leeds.ac.uk

    2008-11-15

    This article examines farmers' livelihood responses and vulnerability to climate variability and other stressors in Morogoro, Tanzania, to understand their implications for adaptation to climate change by agricultural households in developing world more generally. In Morogoro, agricultural households have extended cultivation, intensified agriculture, diversified livelihoods and migrated to gain access to land, markets and employment as a response to climatic and other stressors. Some of these responses have depleted and degraded natural resources such as forest, soil and water resources, which will complicate their living with climate change in the future. This will be particularly problematic to vulnerable groups such as women, children and pastoralists who have limited access to employment, markets and public services. In this light, fair adaptation to climate change by agricultural households in Morogoro and elsewhere in developing countries requires several complementary responses. Adaptation efforts should involve effective governance of natural resources because they function as safety nets to vulnerable groups. In addition, strengthening of national markets by infrastructure investments and institutional reforms is needed to give incentives to intensification and diversification in agriculture. Market participation also demands enhancement of human capital by public programs on health, education and wellbeing.

  16. The vulnerability of renewable energy to climate change in Brazil

    International Nuclear Information System (INIS)

    Energy supply in Brazil relies heavily on renewable energy source. The production of energy from renewable sources, however, greatly depends on climatic conditions, which may be impacted in the future due to global climate change (GCC). This paper analyzes the vulnerabilities of renewable energy production in Brazil for the cases of hydropower generation and liquid biofuels production, given a set of long-term climate projections for the A2 and B2 IPCC emission scenarios. The most important result found in this study is the increasing energy vulnerability of the poorest regions of Brazil to GCC. Both biofuels production (particularly biodiesel) and electricity generation (particularly hydropower) may negatively suffer from changes in the climate of those regions. Other renewable energy sources-such as wind power generation-may also be vulnerable, raising the need for further research. However, the results found are fundamentally dependent on the climate projections which, in turn, are still highly uncertain with respect to the future evolution of greenhouse gas emissions, greenhouse gas concentrations in the atmosphere and GCC. Therefore, in such long-term scenario analyses, the trends and directions derived are the ones to be emphasized rather than the precise results one arrives

  17. Vulnerabilities of macrophytes distribution due to climate change

    Science.gov (United States)

    Hossain, Kaizar; Yadav, Sarita; Quaik, Shlrene; Pant, Gaurav; Maruthi, A. Y.; Ismail, Norli

    2016-06-01

    The rise in the earth's surface and water temperature is part of the effect of climatic change that has been observed for the last decade. The rates of climate change are unprecedented, and biological responses to these changes have also been prominent in all levels of species, communities and ecosystems. Aquatic-terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have contributed severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Most researches on climate change effects on biodiversity are contemplating on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have been detected in response to climate change. This is unfortunate, given the importance of aquatic systems for providing ecosystem goods and services. Thus, if researchers were able to identify early-warning indicators of anthropogenic environmental changes on aquatic species, communities and ecosystems, it would certainly help to manage and conserve these systems in a sustainable way. One of such early-warning indicators concerns the expansion of emergent macrophytes in aquatic-terrestrial ecotones. Hence, this review highlights the impact of climatic changes towards aquatic macrophytes and their possible environmental implications.

  18. Vulnerability to climate change: people, place and exposure to hazard

    Science.gov (United States)

    Hutton, C. W.; Kienberger, S.; Amoako Johnson, F.; Allan, A.; Giannini, V.; Allen, R.

    2011-04-01

    The Human Dimension of the Twinning European and South Asian River Basins to Enhance Capacity and Implement Adaptive Management Approaches Project (EC-Project BRAHMATWINN) is aimed at developing socio-economic tools and context for the effective inclusion of the "Human Dimension" or socio-economic vulnerability into the overall assessment of climate risk in the twinned basins of the Upper Brahmaputra River Basin (UBRB), and the Upper Danube River Basin (UDRB) . This work is conducted in the light of stakeholder/actor analysis and the prevailing legal framework. In order to effectively achieve this end, four key research and associated activities were defined: 1. Identifying stakeholders and actors including: implement an approach to ensure a broad spread of appropriate stakeholder input to the assessment of vulnerability undertaken in Asia and Europe within the research activities of the project. 2. Contextualising legal framework: to provide an assessment of the governance framework relating to socio-environmental policy development within the study site administrative areas leading to the specific identification of related policy and legal recommendations. 3. Spatial analysis and mapping of vulnerability: providing a spatial assessment of the variation of vulnerability to pre-determined environmental stressors across the study areas with an additional specific focus on gender. 4. Inclusion of findings with the broader context of the BRAHMATWINN risk of climate change study through scenarios of hazard and vulnerability (subsequent chapters). This study utilises stakeholder inputs to effectively identify and map relative weightings of vulnerability domains, such as health and education in the context of pre-specified hazards such as flood. The process is underpinned by an adaptation of the IPCC (2001) which characterizes Risk as having the components of Hazard (physiographic component) and Vulnerability (socio-economic component).

  19. Predicting vulnerabilities of North American shorebirds to climate change.

    Directory of Open Access Journals (Sweden)

    Hector Galbraith

    Full Text Available Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90% taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  20. Climate Change Impacts on Migration in the Vulnerable Countries

    Science.gov (United States)

    An, Nazan; Incealtin, Gamze; Kurnaz, M. Levent; Şengün Ucal, Meltem

    2014-05-01

    This work focuses on the economic, demographic and environmental drivers of migration related with the sustainable development in underdeveloped and developed countries, which are the most vulnerable to the climate change impacts through the Climate-Development Modeling including climate modeling and panel logit data analysis. We have studied some countries namely Bangladesh, Netherlands, Morocco, Malaysia, Ethiopia and Bolivia. We have analyzed these countries according to their economic, demographic and environmental indicators related with the determinants of migration, and we tried to indicate that their conditions differ according to all these factors concerning with the climate change impacts. This modeling covers some explanatory variables, which have the relationship with the migration, including GDP per capita, population, temperature and precipitation, which indicate the seasonal differences according to the years, the occurrence of natural hazards over the years, coastal location of countries, permanent cropland areas and fish capture which represents the amount of capturing over the years. We analyzed that whether there is a relationship between the migration and these explanatory variables. In order to achieve sustainable development by preventing or decreasing environmental migration due to climate change impacts or related other factors, these countries need to maintain economic, social, political, demographic, and in particular environmental performance. There are some significant risks stemming from climate change, which is not under control. When the economic and environmental conditions are considered, we have to regard climate change to be the more destructive force for those who are less defensible against all of these risks and impacts of uncontrolled climate change. This work was supported by the BU Research Fund under the project number 6990. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  1. Guiding climate change adaptation within vulnerable natural resource management systems.

    Science.gov (United States)

    Bardsley, Douglas K; Sweeney, Susan M

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making. PMID:20383706

  2. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    Science.gov (United States)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  3. Climate, karst, and critters—A multidisciplinary evaluation of karst species vulnerability to climate change

    Science.gov (United States)

    Mahler, B. J.; Musgrove, M.; Long, A. J.; Stamm, J. F.; Poteet, M. F.; Symstad, A.

    2015-12-01

    The complex hydrologic regimes of karst aquifers respond rapidly to the effects of climate change, and unique biological communities associated with karst are sensitive to hydrologic changes. To explore how climate change might affect karst-dependent species, we coupled a climate-change model, a hydrologic model, and a vulnerability assessment tool to evaluate projected hydrologic change and vulnerability of selected species at sites in the karstic Edwards aquifer (Texas) and Madison aquifer (South Dakota). The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate from 2011 to 2050 at a 36-km grid spacing for 3 weather stations near the study sites. Daily climate projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI). RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, superposing the quick- and slow-flow responses that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to assess the vulnerability of a species. An upward trend in temperature was projected at all three weather stations; there was a trend (downward) in precipitation only for the Texas weather station. A downward trend in mean annual spring flow or groundwater level was projected for the three Edwards sites, but there was no significant trend for the two Madison sites. Of 16 Edwards aquifer species evaluated, 10 were scored as highly or moderately vulnerable under the projected climate change scenario. In contrast, all 8 Madison aquifer species evaluated were scored as moderately vulnerable, stable, or intermediate between the two. The inclusion of hydrologic projections in the vulnerability assessment was essential for interpreting the effects of climate change on aquatic species of conservation concern such as endemic salamanders.

  4. Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment

    OpenAIRE

    Gbetibouo, Glwadys Aymone; Ringler, Claudia

    2009-01-01

    "This paper analyzes the vulnerability of South African farmers to climate change and variability by developing a vulnerability index and comparing vulnerability indicators across the nine provinces of the country. Nineteen environmental and socio-economic indicators are identified to reflect the three components of vulnerability: exposure, sensitivity, and adaptive capacity. The results of the study show that the region's most vulnerable to climate change and variability also have a higher c...

  5. Climate Change and Vulnerabilities of the European Energy Balance

    Directory of Open Access Journals (Sweden)

    Giuliano Buceti

    2015-03-01

    Full Text Available Energy consumption induces climate change but at the same time modifications in climate impact energy sector both in term of supply capacity and shifts in energy demands. Different regions will be affected in different ways and this paper aims at analysing the issue at European level. Usually rising sea levels, extremes of weather and an increase in the frequency of droughts and floods are indicated play havoc with the world's energy systems but they can be hardly estimated and this study will be limited to the effects of the increase in average temperature. Tipping points are also taken out of any quantitative assessment. Structure of the EU energy budget is presented, shifts in energy demand, vulnerabilities of supply and risks for energy infrastructure are discussed in order to, eventually, provide figures of possible further threats to continental energy security.

  6. Urban vulnerability and resilience within the context of climate change

    Directory of Open Access Journals (Sweden)

    E. Tromeur

    2012-05-01

    Full Text Available Natural hazards, due to climate change, are particularly damaging in urban areas because of interdependencies of their networks. So, urban resilience has to face up to climate risks. The most impacting phenomenon is the urban heat island (UHI effect. The storage capacity of heat is depending on shapes of buildings, public spaces, spatial organization, transport or even industrial activities. So, adaptive strategies for improving urban climate could be possible in different ways. In the framework of the French project Resilis, this study characterises urban vulnerability and resilience in terms of energy needs of buildings and outside urban comfort according to the IPCC carbon dioxide emission scenarios B2 and A2 for the period 2050–2100 for 10 French cities. The evolutions of four climate indicators in terms of heating and cooling needs and number of hours when the temperature is above 28 °C are then obtained for each city to analyse climate risks and their impacts in urban environment.

  7. Expert assessment of vulnerability of permafrost carbon to climate change

    Science.gov (United States)

    Schuur, E.A.G.; Abbott, B.W.; Bowden, W.B.; Brovkin, V.; Camill, P.; Canadell, J.G.; Chanton, J.P.; Chapin, F. S., III; Christensen, T.R.; Ciais, P.; Crosby, B.T.; Czimczik, C.I.; Grosse, G.; Harden, J.; Hayes, D.J.; Hugelius, G.; Jastrow, J.D.; Jones, J.B.; Kleinen, T.; Koven, C.D.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; McGuire, A.D.; Natali, S.M.; O'Donnell, J. A.; Ping, C.-L.; Riley, W.J.; Rinke, A.; Romanovsky, V.E.; Sannel, A.B.K.; Schädel, C.; Schaefer, K.; Sky, J.; Subin, Z.M.; Tarnocai, C.; Turetsky, M.R.; Waldrop, M.P.; Anthony, K.M. Walter; Wickland, K.P.; Wilson, C.J.; Zimov, S.A.

    2013-01-01

    Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.

  8. A Climate Change Vulnerability Assessment of California's At-Risk Birds

    OpenAIRE

    Thomas Gardali; Seavy, Nathaniel E.; DiGaudio, Ryan T.; Comrack, Lyann A.

    2012-01-01

    Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified clim...

  9. What's in a word? Conflicting interpretations of vulnerability in climate change research

    OpenAIRE

    O'Brien, Karen; Eriksen, Siri E H; Schjolden, Ane; Nygaard, Lynn P.

    2004-01-01

    In this paper, we discuss two competing interpretations of vulnerability in the climate change literature and consider the implications for both research and policy. The first interpretation, which can be referred to as the “end point” approach, views vulnerability as a residual of climate change impacts minus adaptation. The second interpretation, which takes vulnerability as a “starting point,” views vulnerability as a general characteristic generated by multiple factors and processes. View...

  10. What's in a word? Conflicting interpretations of vulnerability in climate change research

    International Nuclear Information System (INIS)

    In this paper, we discuss two competing interpretations of vulnerability in the climate change literature and consider the implications for both research and policy. The first interpretation, which can be referred to as the ''end point'' approach, views vulnerability as a residual of climate change impacts minus adaptation. The second interpretation, which takes vulnerability as a ''starting point'', views vulnerability as a general characteristic generated by multiple factors and processes. Viewing vulnerability as an end point considers that adaptations and adaptive capacity determine vulnerability, whereas viewing vulnerability as a starting point holds that vulnerability determines adaptive capacity. The practical consequences of these two interpretations are illustrated through the examples of Norway and Mozambique. We show that, if the underlying causes and contexts of vulnerability are not taken into account, there is a danger of underestimating the magnitude (large), scope (social arid environmental) and urgency (high) of climate change. (author)

  11. "Climate change" and vulnerability analysis: poor will become poorer

    OpenAIRE

    Ozer, Pierre

    2013-01-01

    The recent Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC-AR5) considers new evidence of climate change based on many independent scientific analyses from observations of the climate system, paleoclimate archives, theoretical studies of climate processes and simulations using climate models. “Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warme...

  12. Mapping the Drivers of Climate Change Vulnerability for Australia’s Threatened Species

    OpenAIRE

    Lee, Jasmine R; Maggini, Ramona; Taylor, Martin F. J.; Fuller, Richard A.

    2015-01-01

    Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each fac...

  13. A climate change vulnerability assessment of California's at-risk birds.

    Directory of Open Access Journals (Sweden)

    Thomas Gardali

    Full Text Available Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable and exposure (the magnitude of climate change expected for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.

  14. Climate change and health: Indoor heat exposure in vulnerable populations

    International Nuclear Information System (INIS)

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  15. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA is releasing the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and Developmen...

  16. Vulnerability to climate change: people, place and exposure to hazard

    OpenAIRE

    Hutton, C W; S. Kienberger; Amoako Johnson, F.; Allan, A; Giannini, V; Allen, R

    2011-01-01

    The Human Dimension of the Twinning European and South Asian River Basins to Enhance Capacity and Implement Adaptive Management Approaches Project (EC-Project BRAHMATWINN) is aimed at developing socio-economic tools and context for the effective inclusion of the "Human Dimension" or socio-economic vulnerability into the overall assessment of climate risk in the twinned basins of the Upper Brahmaputra River Basin (UBRB), and the Upper Danube River Basin (UDRB) . This work is ...

  17. Mapping the Drivers of Climate Change Vulnerability for Australia's Threatened Species.

    Directory of Open Access Journals (Sweden)

    Jasmine R Lee

    Full Text Available Effective conservation management for climate adaptation rests on understanding the factors driving species' vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia's threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species.

  18. Assessing Local Vulnerability to Climate Change in Agriculture for Tocantins, Brazil

    OpenAIRE

    Guerrero-Escobar, Santiago; Juarez-Torres, Miriam; Martinez Cruz, Adan

    2014-01-01

    We propose a reliable indicator of vulnerability to climate change in agriculture that allows assessing within the system the main components of vulnerability at a local level: stressors exposure (SE), stressors sensitivity (SS), and adaptive capacity (AC). Also, this indicator will allow identifying main vulnerability drivers and planning policies to increase system resiliency as well as designing climate change adaptation policies at the local level.

  19. Vulnerability and adaptation to potential impacts of climate change

    International Nuclear Information System (INIS)

    Climate in Kenya is controlled by the seasonal southward and northward movements of the Inter-Tropical Convergence zone (ITCZ).The effects of ITCZ produces two rainy seasons namely the 'long rains' in April/May and the 'short rains' in October/November. Following the build up of greenhouse gases such as carborn dioxide and methane in the earth's atmosphere, a variety of changes is expected in climatic conditions. The study analyses the sensivity of the lower Tana Basin to climate change while specific objectives include: to determine the effects of climate change on water supply in Tana River Basin; to assess the posible effect of climate change on the ground water resourse in the basin; to make some suggestions on possible adaptation measures that may be adopted to cope with the possible impacts of climate change for the Tana Basin

  20. Mapping vulnerability to climate change and its repercussions on human health in Pakistan

    OpenAIRE

    Malik Sadia; Awan Haroon; Khan Niazullah

    2012-01-01

    Abstract Background Pakistan is highly vulnerable to climate change due to its geographic location, high dependence on agriculture and water resources, low adaptive capacity of its people, and weak system of emergency preparedness. This paper is the first ever attempt to rank the agro-ecological zones in Pakistan according to their vulnerability to climate change and to identify the potential health repercussions of each manifestation of climate change in the context of Pakistan. Methods A cl...

  1. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    Directory of Open Access Journals (Sweden)

    Peter B Moyle

    Full Text Available Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1 current status of each species (baseline vulnerability to extinction and (2 likely future impacts of climate change (vulnerability to extinction. Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish

  2. Demographic Differential Vulnerability to Extreme Climate Change (HELIX)

    OpenAIRE

    Zickgraf, Caroline; Perrin, Nathalie; Gemenne, François

    2014-01-01

    With the target of limiting global warming to 2ºC becoming increasingly difficult to achieve, policymakers, businesses and other decision-makers need to begin to plan ahead for adaptation to changes in climate associated with higher levels of global warming. Alongside this, ongoing international negotiations on limiting global warming require clear information on the demographic consequences of different levels of climate change. The HELIX project (High-End cLimate Impacts and eXtremes), and ...

  3. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    Science.gov (United States)

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. PMID:26796918

  4. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    International Nuclear Information System (INIS)

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey forecasting model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emission Scenarios and results from PRECIS (Providing Regional Climate projections for Impacts Studies) model. The most important result found in this research is the increasing hydropower vulnerability of the poorest regions and the main hydropower generation provinces of China to climate change. Other main empirical results reveal that the impacts of climate change on the supply of hydropower generation in China will be noteworthy for the society. Different scenarios have different effects on hydropower generation, of which A2 scenario (pessimistic, high emission) has the largest. Meanwhile, the impacts of climate change on hydropower generation of every province are distinctly different, of which the Southwest part has the higher vulnerability than the average level while the central part lower. - Highlights: • The hydropower vulnerability will be enlarged with the rapid increase of hydropower capacity. • Modeling the vulnerability of hydropower in different scenarios and different provinces. • The increasing hydropower vulnerability of the poorest regions to climate change. • The increasing hydropower vulnerability of the main hydropower generation provinces. • Rainfall pattern caused by climate change would be the reason for the increasing vulnerability

  5. Climate change and health: impacts, vulnerability, adaptation and mitigation.

    Science.gov (United States)

    Kjellstrom, Tord; Weaver, Haylee J

    2009-01-01

    Global climate change is progressing and health impacts have been observed in a number of countries, including Australia. The main health impacts will be due to direct heat exposure, extreme weather, air pollution, reduced local food production, food- and vectorborne infectious diseases and mental stress. The issue is one of major public health importance. Adaptation to reduce the effects of climate change involves many different sectors to minimise negative health outcomes. Wide-scale mitigation is also required, in order to reduce the effects of climate change. In addition, future urban design must be modified to mitigate and adapt to the effects of climate change. Strategies for mitigation and adaptation can create co-benefits for both individual and community health, by reducing non-climate-related health hazard exposures and by encouraging health promoting behaviours and lifestyles. PMID:19261209

  6. Urban vulnerability and resilience within the context of climate change

    OpenAIRE

    E. Tromeur; Ménard, R.; Bailly, J.-B.; Soulié, C.

    2012-01-01

    Natural hazards, due to climate change, are particularly damaging in urban areas because of interdependencies of their networks. So, urban resilience has to face up to climate risks. The most impacting phenomenon is the urban heat island (UHI) effect. The storage capacity of heat is depending on shapes of buildings, public spaces, spatial organization, transport or even industrial activities. So, adaptive strategies for improving urban climate could be possible in different ...

  7. IMPACT, VULNERABILITY AND INURING TO THE CLIMATE CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Mazilu Mirela; Buce Gabriela; Ciobanu Mariana [University of Craiova, University Centre of Drobeta Turnu Severin, Mehedinti (Romania)

    2008-09-30

    The adverse effects of the climate changes caused or not by the human being are on the international politic agenda for more than a decade. All over the world the discussions on the climate changes are intensifying and heading new directions, with a larger opening. The climate changes were subject of the agenda of the most important regional and international meetings this year, many of these asking the ending with positive results of the U.N.O. Conference on Climate Changes that is taking place these days in Bali, between the 3rd and 14th of December 2007. The Bali Conference will give the possibility of getting involved in the future into the multilateral processes of climate change under the auspices of the United Nations and into the process of shaping a global approaching plan of the climate changes. The climate changes represent one of the major challenges in our century--a complex field about what we have to improve our knowledge and understanding in order to take immediate and correct actions for a lasting and efficient approach from the point of view of the costs and challenges in the climate changes field respecting the precaution and climate changes inuring principle. The inuring is a process which allows societies to learn to react to the risks associated to the climate changes. These risks are real and already present in many systems and essential sectors of the human existence--the hydrological resources, alimentary security and health. The inuring options are multiple and vary from the technical ones--protection against the water gown level or dwellings protected against the floods by being hanged up on pontoons--to the change of the behavior of the individuals, such as the reduce of the water or energy consumption and/or a more efficient consumption. Other strategies suppose: signaling systems of the meteorological phenomenon, improvements of the risk management, ways to assure and preserve the biodiversity in order to reduce the impact of the

  8. Assessment of Human Health Vulnerability to Climate Variability and Change in Cuba

    OpenAIRE

    Bultó, Paulo Lázaro Ortíz; Rodríguez, Antonio Pérez; Valencia, Alina Rivero; Vega, Nicolás León; Gonzalez, Manuel Díaz; Carrera, Alina Pérez

    2006-01-01

    In this study we assessed the potential effects of climate variability and change on population health in Cuba. We describe the climate of Cuba as well as the patterns of climate-sensitive diseases of primary concern, particularly dengue fever. Analyses of the associations between climatic anomalies and disease patterns highlight current vulnerability to climate variability. We describe current adaptations, including the application of climate predictions to prevent disease outbreaks. Finally...

  9. Vulnerability of Australian agriculture to climate change: sequencing impacts over IPCC trajectories for adaptation planning

    International Nuclear Information System (INIS)

    Full text: Full text: Agricultural systems are susceptible to adverse effects of climate change, including climate variability and extremes. While the degree of vulnerability is a function of the magnitude and the rate of variation in climate exposure, agricultural systems with a stronger adaptive capacity are likely to be less vulnerable to climate change. In preparing the agriculture sector for ongoing climate change, adaptation planning to moderate potential impacts and to take advantage of opportunities, has emerged as an effective strategic response. Global climate change scenarios developed by the IPCC indicate that changes in climate may alter the production potential of agriculture across many regions. Wide regional variability in productivity, extensive land use and the dominance in rural economies across Australia could expose agriculture to considerable risks from climate change impacts. In many cases these risks could cascade across a range of sectors and vary overtime, reflecting the capacity of exposed enterprises to adapt to a changing climate by taking advantage of opportunities. Effective planning of adaptation responses will require integrated assessments of regional vulnerability to climate risks over IPCC projection trajectories. In this paper, we present a method for estimating and mapping vulnerability to climate risks at the regional level, and apply this method to examine the vulnerability of Australian agriculture to climate change, focusing on case studies drawn from dryland broadacre and irrigated horticulture industries. In developing a conceptual framework for assessing vulnerability and adaptation options, the paper provides a review of key approaches used globally for the assessment of vulnerability to climate change in agriculture. It presents an approach to link global climate change scenario-based projections for assessing economic impacts on industries and regions through a process that maps climate risks to factors contributing

  10. Country Stakes in Climate Change Negotiations. Two Dimensions of Vulnerability

    International Nuclear Information System (INIS)

    Using a comprehensive geo-referenced database of indicators relating to global change and energy, the paper assesses countries' likely attitudes with respect to international treaties that regulate carbon emissions. The authors distinguish between source and impact vulnerability and classify countries according to these dimensions. The findings show clear differences in the factors that determine likely negotiating positions. This analysis and the resulting detailed, country level information help to explain the incentives required to make the establishment of such agreements more likely.

  11. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut

    OpenAIRE

    Prno, Jason; Bradshaw, Ben; Wandel, Johanna; Pearce, Tristan; Smit, Barry; Tozer, Laura

    2011-01-01

    Climate change in the Canadian north is, and will be, managed by communities that are already experiencing social, political, economic and other environmental changes. Hence, there is a need to understand vulnerability to climate change in the context of multiple exposure-sensitivities at the community level. This paper responds to this perceived knowledge need based on a case study of the community of Kugluktuk in Nunavut, Canada. An established approach for vulnerability assessment is used ...

  12. Vulnerability to changes in malaria transmission due to climate change in West Africa

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2012-12-01

    Malaria transmission in West Africa is strongly tied to climate; temperature affects the development rate of the malaria parasite, as well as the survival of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. As a result, the environmental suitability for malaria transmission in this region is expected to change as temperatures rise and rainfall patterns are altered. The vulnerability to changes in transmission varies throughout West Africa. Areas where malaria prevalence is already very high will be less sensitive to changes in transmission. Increases in environmental suitability for malaria transmission in the most arid regions may still be insufficient to allow sustained transmission. However, areas were malaria transmission currently occurs at low levels are expected to be the most sensitive to changes in environmental suitability for transmission. Here, we use data on current environment and malaria transmission rates to highlight areas in West Africa that we expect to be most vulnerable to an increase in malaria under certain climate conditions. We then analyze climate predictions from global climate models in vulnerable areas, and make predictions for the expected change in environmental suitability for malaria transmission using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a mechanistic model developed to simulate village-scale response of malaria transmission to environmental variables in West Africa.

  13. Vulnerability of freshwater fisheries and impacts of climate change in south Indian states economies

    Digital Repository Service at National Institute of Oceanography (India)

    Sannadurgappa, D.; Abitha, R.; Sukumaran, S.

    The vulnerability of five states in India national economies to potential climate change impacts on their capture fisheries using an indicator-based approach were compared. The states: Karnataka, Tamilnadu, Andhrapradesh, Kerala and Maharashtra were...

  14. A landscape-based assessment of climate change vulnerability for native Hawaiian plants

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One common way to conduct species vulnerability assessments (VA) to climate change (CC) is to model species distributions and predict CC-related range shifts....

  15. Climate Change's Role in Disaster Risk Reduction's Future: Beyond Vulnerability and Resilience

    OpenAIRE

    Kelman, I.; Gaillard, J. C.; Mercer, J.

    2015-01-01

    A seminal policy year for development and sustainability occurs in 2015 due to three parallel processes that seek long-term agreements for climate change, the Sustainable Development Goals, and disaster risk reduction. Little reason exists to separate them, since all three examine and aim to deal with many similar processes, including vulnerability and resilience. This article uses vulnerability and resilience to explore the intersections and overlaps amongst climate change, disaster risk red...

  16. An overview of climate change vulnerability: a bibliometric analysis based on Web of Science database

    OpenAIRE

    Bing Wang; Su-Yan Pan; Ruo-Yu Ke; Ke Wang; Yi-Ming Wei

    2014-01-01

    Based on worldwide scholars' 3004 papers published in 658 academic journals in the Web of Science (WOS) database on the topic of climate change vulnerability from 1991 to 2012, this paper quantitatively analyzes the global scientific performance and hot research areas in this field by adopting bibliometric method. The results show that (i) the vulnerability researches on climate change have experienced a rapid growth since 2006 and the publications are widely distributed in a large number of ...

  17. Climate Vulnerability Assessments : An Assessment of Climate Change Vulnerability, Risk, and Adaptation in Albania’s Power Sector

    OpenAIRE

    World Bank

    2009-01-01

    Energy security is a key concern in Albania, which relies on hydropower for about 90 percent of its electricity production. While renewable energy resources like hydropower play a fundamental role in moving the world towards a low-carbon economy, they are also vulnerable to climatic conditions. Climate variability already affects Albania's energy production to a considerable extent, and cl...

  18. Foreword to the special issue: climate change impacts, adaptation and vulnerability in the Arctic

    OpenAIRE

    Ford, James D; Furgal, Chris

    2009-01-01

    The Arctic climate is changing, carrying wide-ranging implications for indigenous and non-indigenous inhabitants, businesses, industry and government across the circumpolar region. The latest scientific assessments indicate that change is happening faster than previously thought, and that the Arctic will continue to experience dramatic climate change in the future. This special edition of Polar Research brings together nine papers on climate change impacts, adaptation and vulnerability in the...

  19. Community-level climate change vulnerability research: trends, progress, and future directions

    Science.gov (United States)

    McDowell, Graham; Ford, James; Jones, Julie

    2016-03-01

    This study systematically identifies, characterizes, and critically evaluates community-level climate change vulnerability assessments published over the last 25 years (n = 274). We find that while the field has advanced considerably in terms of conceptual framing and methodological approaches, key shortcomings remain in how vulnerability is being studied at the community-level. We argue that vulnerability research needs to more critically engage with the following: methods for evaluating future vulnerability, the relevance of vulnerability research for decision-making, interdependencies between social and ecological systems, attention to researcher / subject power dynamics, critical interpretation of key terms, and consideration of the potentially positive opportunities presented by a changing climate. Addressing these research needs is necessary for generating knowledge that supports climate-affected communities in navigating the challenges and opportunities ahead.

  20. Vulnerability of crops to climate change in Northeastern Austria

    Czech Academy of Sciences Publication Activity Database

    Thaler, S.; Eitzinger, J.; Rischbeck, P. M.; Dubrovský, Martin; Trnka, M.

    2010-01-01

    Roč. 15, č. 1 (2010), s. 50-61. ISSN 0861-0762 R&D Projects: GA AV ČR IAA300420806 Institutional research plan: CEZ:AV0Z30420517 Keywords : Climate change * crops * Austria * weather generator Subject RIV: DG - Athmosphere Sciences, Meteorology

  1. Climate change vulnerabilities- an integrated assessment in Pyramid Lake Paiute Indian Reservation

    Science.gov (United States)

    Gautam, M. R.; Chief, K.; Wilde, K.; Smith, W.

    2011-12-01

    There are increasing concerns of potential climate change impacts that may place the Truckee River Basin in Nevada under unprecedented stress. We hypothesized that Pyramid Lake, a terminal lake of Truckee River, is prone to climatic as well as non-climatic stressors stemming from cumulative impacts from upstream urban areas and activities. Thus climate change may impair the ability of a major downstream water user, the Pyramid Lake Paiute Tribe (PLPT), to cope and adapt. The conventional approach in assessing vulnerability primarily focuses on hazards or biophysical vulnerabilities, such as water availability, floods, and drought impact. However, we found it inadequate to address the overall vulnerability of the PLPT. Thus in addition to biophysical vulnerabilities, intrinsic and external vulnerabilities were considered such as socio-economic variables (e.g. adaptive capacity) and policy and legal drivers (e.g. water rights). We proposed an elaborate framework for an integrated vulnerability assessment by adapting IPCC framework for vulnerability assessment, the Exposure-Sensitivity-Adaptive Capacity, and applied it to PLPT. Analysis of projected climate change dataset pointed towards increased incidences of floods and droughts and a warming trend over the whole basin with a higher rate at the lower basin in the future. In effort to understand how climatic trends trigger the vulnerability of PLPT, a multi-pronged approach was employed to understand key tribal livelihood assets including an in-depth analysis of the adaptive capacity of PLPT, a climate change survey, and a historical analysis of water conflict and negotiation. Results of the survey identified key natural assets as the lake, endangered fish, rangeland, and wetlands. The framework of a casual-loop diagram was developed in a system dynamic model that incorporated opinions of tribal stakeholders and other experts to evaluate how potential future climate changes might impact the endangered Cui ui fish

  2. Assessment of wheat productivity vulnerability in Northern Kazakhstan under possible climate change

    International Nuclear Information System (INIS)

    Assessment of wheat productivity vulnerability in basic wheat-sowing regions of Kazakstan under possible climate changes is presented. Productivity calculation is carried out with use of CERES-Wheat numerical model under different scenarios of climate change, formed on the base of common atmospheric output data circulation models, received for conditions of carbon dioxide concentration doubling in atmosphere. (author)

  3. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    Science.gov (United States)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  4. The changing climate and human vulnerability in north-central Namibia

    Directory of Open Access Journals (Sweden)

    Margaret N. Angula

    2016-01-01

    Full Text Available North-central Namibia is more vulnerable to effects of climate change and variability. Combined effects of environmental degradation, social vulnerability to poverty and a changing climate will compromise subsistence farming in north-central Namibia (NCN. This will make subsistence and small-scale farmers in the region more vulnerable to projected changes in the climate system. Thus, the aim of this article was to examine factors contributing to subsistence farmers’ vulnerability to impacts of climate change. The article further discusses different aspects of human vulnerability and existing adaptation strategies in response to impacts of climate related disasters experienced over the past three to four decades in NCN. Qualitative and quantitative research approaches and methodology were employed to obtain information from subsistence farmers in north-central Namibia. The sociodemographic characteristics of Ohangwena, Oshana and Omusati Region reveals high levels of unemployment, high adult and elderly population and high dependency on agricultural livelihood system. These indicators help understand levels of household vulnerability. The study concludes that households interviewed revealed low levels of adaptive capacity due to exposure to climate risks and combined effects of social, political and cultural factors. This article provided an understanding that is required to inform the adaptation pathways relevant for NCN.

  5. On the Vulnerability of Water Limited Ecosystems to Climate Change

    Directory of Open Access Journals (Sweden)

    Kelly K. Caylor

    2013-06-01

    Full Text Available Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive, and their mutual relationships with the hydrologic cycle. In this respect, ecohydrology suggests a renewed interdisciplinary approach that aims to provide a better comprehension of the effects of climatic changes on terrestrial ecosystems. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale using as test site the Upper Rio Salado basin (Sevilleta, NM, USA. The hydrological analyses have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This enables quantitatively assessing the effects on soil water availability on future climatic scenarios. Results highlighted that the relationship between climatic forcing (water availability and vegetation patterns is strongly non-linear. This implies, under some specific conditions which depend on the ecosystem characteristics, small changes in climatic conditions may produce significant transformation of the vegetation patterns.

  6. Modelling robust crop production portfolios to assess agricultural vulnerability to climate change

    OpenAIRE

    Mitter, Hermine; Heumesser, Christine; Schmid, Erwin

    2014-01-01

    Agricultural vulnerability is assessed by (i) modelling climate change impacts on crop yields and gross margins, (ii) identifying crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on adaptive capacity. We combine, spatially explicit, a statistical climate change model, the bio-physical process model EPIC and a portfolio optimization model. Under climate change, optimal portfolios include higher shares of intensive crop managem...

  7. Building world narratives for climate change impact, adaptation and vulnerability analyses

    OpenAIRE

    Hallegatte, Stéphane; Valentin, Przyluski; Vogt-Schilb, Adrien

    2011-01-01

    International audience The impacts of climate change on human systems depend not only on the level of emissions but also on how inherently vulnerable these systems are to the changing climate. The large uncertainties over future development and structure of societies and economies mean that the assessment of climate change efects is complex. One way to deal with this complexity is by using scenario analysis that takes account of these socio-economic diferences. The challenge is to identify...

  8. Operationalizing analysis of micro-level climate change vulnerability and adaptive capacity

    DEFF Research Database (Denmark)

    Jiao, Xi; Moinuddin, Hasan

    2016-01-01

    their ability to adapt. Participatory group discussions and 271 household surveys in three villages highlight the current level of vulnerability and adaptive capacity towards climatic variability and risks. This paper visualizes three dimensions of the vulnerability framework at two levels using the......This paper explores vulnerability and adaptive capacity of rural communities in Southern Laos, where households are highly dependent on climate-sensitive natural resources and vulnerable to seasonal weather fluctuations. The speed and magnitude of climate-induced changes may seriously challenge....... The majority of vulnerable households are characterized by low adaptive capacity. Floods and drought regularly put the poor under stress, which has led to various coping mechanisms; but capability of applying long-term adaptive strategies remains low among all households. The outcome of the...

  9. Weather Vulnerability, Climate Change, and Food Security in Mt. Kilimanjaro

    OpenAIRE

    Muamba, Francis; Kraybill, David S.

    2010-01-01

    This study estimates the impact of rainfall variation on livelihood in Mt. Kilimanjaro using the Ricardian approach to capture farmers’ adaptation strategies to cope with climate change risks. The data for the analysis were gathered from a random sample of over 200 households in 15 villages and precipitation from rainfall observation posts placed in each of the surveyed villages. The precipitation data provide information on the effect of moisture at critical months in the growing season. Due...

  10. Assessing vulnerability to climate change and socioeconomic stressors in the Reef Islands group, Solomon Islands

    DEFF Research Database (Denmark)

    Birk, Thomas

    2014-01-01

    This article assesses the vulnerability to climatic and socioeconomic stresses in the Reef Islands, Solomon Islands, an atoll island group in the Southwest Pacific. Climate change and the associated sea-level rise are often seen as the most pressing challenges to atoll communities, yet this study...... infrastructure, economic marginalization and weak governance of Solomon Islands. Findings suggest that some of these non-climatic stresses are currently – and in the short term – more important determinants of local vulnerability than climate change and sea-level rise. Certainly, these stresses are likely...... to be exacerbated by different elements of climate change in the short, medium and long term, but generally speaking climate change does not appear to be a major driver of the current changes in the islands. On the basis of these observations, the possible adaptation options, relevant to different time scales...

  11. Two key concepts of the society-climate change interface: vulnerability and adaptation

    International Nuclear Information System (INIS)

    Vulnerability and adaptation are two inseparable concepts, each being dependent on the other. Although they are extremely sensitive to the contextual specificities of particular areas, vulnerability reduction and adaptation strategies can only be developed at the interface between different spatial and temporal scales. This leads us to assert that faced with a common threat - climate change -, different types of vulnerability and adaptation exist. The aim of this text is to provide an overview of two concepts that can no longer be ignored in discussions on climate change: vulnerability and adaptation. These are two pillars for analysing both the potential impact of climate change on societies and regions, and also their ability to live with these consequences. We will begin by describing how the interdependence of these two concepts explains the position(s) of present and future societies in the face of climate change impacts. We will then show that they share certain determinants that may themselves provide an appropriate framework for analysis. Finally, we will insist on the fact that these two concepts nevertheless remain extremely difficult to grasp, as they require a multi-scalar and multi-temporal approach to regions, which also explains why they are a relevant response to the challenges posed by climate change. The conclusion will call for wider discussion, reiterating that since their nature is fundamentally linked to the diversity and specificities of regions and societies, we must accept the idea that faced with the same threat - climate change - there are different types of vulnerability and adaptation. (author)

  12. Accounting for adaptive capacity and uncertainty in assessments of species’ climate-change vulnerability

    Science.gov (United States)

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Luikart, Gordon; Whited, Diane; Muhlfeld, Clint C.

    2016-01-01

    Climate change vulnerability assessments (CCVAs) are valuable tools for assessing species’ vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. Here, we provide a more comprehensive CCVA approach that incorporates all three elements used for assessing species’ climate change vulnerability: exposure, sensitivity, and adaptive capacity. We illustrate our approach using case studies of two threatened salmonids with different life histories – anadromous steelhead trout (Oncorhynchus mykiss) and non-anadromous bull trout (Salvelinus confluentus) – within the Columbia River Basin, USA. We identified general patterns of high vulnerability in low-elevation and southernmost habitats for both species. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the two species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multi-species conservation. Our results highlight how CCVAs should be considered within a broader conceptual and computational framework for refining hypotheses, guiding research, and comparing plausible scenarios of species’ vulnerability for ongoing and projected climate change.

  13. Vulnerability of Korean water resources to climate change and population growth.

    Science.gov (United States)

    Chang, H; Franczyk, J; Im, E-S; Kwon, W-T; Bae, D-H; Jung, I-W

    2007-01-01

    Freshwater availability is affected by changes in climate and growth. We assessed the freshwater vulnerability for five major Korean river basins for 2015 and 2030. We used a regional climate model based on the IPCC SRES A2 scenario, US Geological Survey's Precipitation Rainfall Simulation Model, and population and industrial growth scenarios for impact assessment. The model simulation results suggest increasing spatial and temporal variations of water stress for the basins that are already developed. While freshwater is more vulnerable to growth scenarios than the climate change scenario, climate change alone could decrease mean annual runoff by 10% in four major river basins by 2030. As the first national assessment of climate change, we suggest possible adaptive water resource management and policy strategies for reducing climate related risks in Korea. PMID:17851205

  14. The Dynamics of Vulnerability and Implications for Climate Change Adaptation: Lessons from Urban Water Management

    Science.gov (United States)

    Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.

    2013-12-01

    Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand

  15. Assessing agriculture vulnerabilities for the design of effective measures for adaptation to climate change (AVEMAC project)

    OpenAIRE

    DONATELLI Marcello; DUVEILLER BOGDAN GRÉGORY HENRY E; Fumagalli, Davide; SRIVASTAVA AMIT KUMAR; ZUCCHINI Antonio; FASBENDER DOMINIQUE; ANGILERI Vincenzo; Kay, Simon; JUSKEVICIUS Valentinas; Toth, Tibor; Haastrup, Palle; M'BAREK Robert; ESPINOSA GODED MARIA; CIAIAN PAVEL

    2012-01-01

    This final report of the AVEMAC study presents an assessment of the potential vulnerability of European agriculture to changing climatic conditions in the coming decades. The analysis is based on weather data generated from two contrasting realizations of the A1B emission scenario of the Intergovernmental Panel on Climate Change (IPCC) for the time horizons 2020 and 2030. These two realizations (obtained from two different general circulation models, downscaled using regional climate...

  16. Climate change in California - why is this region especially vulnerable?

    Science.gov (United States)

    Cayan, D. R.

    2008-12-01

    It is very likely that global warming has already been affecting the California region., and global model projections indicate that much larger changes will unfold over the coming decades. In this talk we review results from two recent State-sponsored assessments of prospective climate change scenarios for California, which indicate that impacts in this region may be particularly challenging. Among the rest of the United States, the annual delivery of precipitation in this region is remarkably volatile, being prone to multi- year droughts and occasional wet spells and large storms-climate change may exacerbate this. An important part of the water supply that historically has come in the form of snow in mountain watersheds will probably shift to rain, which is harder to manage and save for dry summer irrigation and other forms of consumption. Furthermore, much of the water supply is conveyed through the San Franciso Bay/Delta, a complex estuary that will be impacted by bigger floods and rising sea levels.

  17. Coastal vulnerability, resilience and adaptation to climate change

    OpenAIRE

    Klein, R J

    2002-01-01

    The work presented in this PhD thesis has not been carried out within a single, well-defined project. Instead, it integrates the results of a number of studies conducted from 1994 onwards, each of which had different clients and objectives. The common theme of the studies has been the description and analysis of elements that determine how coastal systems and communities would and could respond to climate change and, in particular, how this response may be assessed as part of c...

  18. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    Science.gov (United States)

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  19. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut

    Directory of Open Access Journals (Sweden)

    Laura Tozer

    2011-07-01

    Full Text Available Climate change in the Canadian north is, and will be, managed by communities that are already experiencing social, political, economic and other environmental changes. Hence, there is a need to understand vulnerability to climate change in the context of multiple exposure-sensitivities at the community level. This article responds to this perceived knowledge need based on a case study of the community of Kugluktuk in Nunavut, Canada. An established approach for vulnerability assessment is used to identify current climatic and non-climatic exposure-sensitivities along with their associated contemporary adaptation strategies. This assessment of current vulnerability is used as a basis to consider Kugluktuk's possible vulnerability to climatic change in the future. Current climate-related exposure-sensitivities in Kugluktuk relate primarily to subsistence harvesting and community infrastructure. Thinner and less stable ice conditions and unpredictable weather patterns are making travel and harvesting more dangerous and some community infrastructure is sensitive to permafrost melt and extreme weather events (e.g., flash floods. The ability of individuals and households to adapt to these and other climatic exposure-sensitivities is influenced by non-climatic factors that condition adaptive capacity including substance abuse, the erosion of traditional knowledge and youth suicide. These and other non-climatic factors often underpin adaptive capacity to deal with and adapt to changing conditions and must be considered in an assessment of vulnerability. This research argues that Northern communities are challenged by multiple exposure-sensitivities—beyond just those posed by climate—and effective adaptation to climate change requires consideration if not resolution of socio-economic and other issues in communities.

  20. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    Science.gov (United States)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  1. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    Science.gov (United States)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at

  2. Reducing subsistence farmers’ vulnerability to climate change: evaluating the potential contributions of agroforestry in western Kenya

    Directory of Open Access Journals (Sweden)

    Thorlakson Tannis

    2012-10-01

    Full Text Available Abstract Subsistence farmers are among the people most vulnerable to current climate variability. Climate models predict that climate change will lead to warmer temperatures, increasing rainfall variability, and increasing severity and frequency of extreme weather events. Agroforestry, or the intentional use of trees in the cropping system, has been proposed by many development practitioners as a potential strategy to help farmers reduce their vulnerability to climate change. This study explores whether and, if so, how agroforestry techniques can help subsistence farmers reduce their vulnerability to climate change. From field research conducted in western Kenya, we find that households are not currently coping with climate-related hazards in a sustainable way. Farmers are aware of this, and believe that the most effective way to adapt to climate-related shocks is through improving their general standard of living. We evaluated agroforestry as one possible means of improving farmers’ well-being. By comparing farmers engaged in an agroforestry project with a control group of neighboring farmers, we find that involvement in agroforestry improves household’s general standard of living via improvements in farm productivity, off-farm incomes, wealth and the environmental conditions of their farm. We conclude that agroforestry techniques can be used as an effective part of a broader development strategy to help subsistence farmers reduce their vulnerability to climate-related hazards.

  3. Climate Change Vulnerabilities and Adaptation Options for Forest Vegetation Management in the Northwestern USA

    OpenAIRE

    Jessica E. Halofsky; Peterson, David L.

    2016-01-01

    Recent vulnerability assessments, conducted in diverse regions in the northwestern United States, indicate that many commonalities exist with respect to projected vulnerabilities to climate change. Dry forests are projected to have significant changes in distribution and abundance of species, partially in response to higher temperature and lower soil moisture, but mostly in response to projected increases in extreme events and disturbances—drought, wildfire, and insect outbreaks. Wildfire and...

  4. Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa

    OpenAIRE

    Isabella Zouh; Joanna C Ellison

    2012-01-01

    Intertidal mangrove ecosystems are sensitive to climate change impacts, particularly to associated relative sea level rise. Human stressors and low tidal range add to vulnerability, both characteristics of the Doula Estuary, Cameroon. To investigate vulnerability, spatial techniques were combined with ground surveys to map distributions of mangrove zones, and compare with historical spatial records to quantify change over the last few decades. Low technology techniques were used to establish ...

  5. Integrated assessment of vulnerability to climate change and options for adaptation in the Netherlands

    International Nuclear Information System (INIS)

    In recent decades it has become increasingly clear that the global climate is warming and that regional climates are changing. The changes include alterations in rainfall pattern and intensities, sea level, and the frequencies of extreme weather events. Climate changes will not just have global effects, they will also occur regionally. The consequences will be felt and dealt with in our own region. In addition to studies at the European level, a study entitled 'An integrated assessment of vulnerability to climate change and adaptation options in the Netherlands' was carried out

  6. Vulnerability-based evaluation of water supply design under climate change

    Science.gov (United States)

    Umit Taner, Mehmet; Ray, Patrick; Brown, Casey

    2015-04-01

    Long-lived water supply infrastructures are strategic investments in the developing world, serving the purpose of balancing water deficits compounded by both population growth and socio-economic development. Robust infrastructure design under climate change is compelling, and often addressed by focusing on the outcomes of climate model projections ('scenario-led' planning), or by identifying design options that are less vulnerable to a wide range of plausible futures ('vulnerability-based' planning). Decision-Scaling framework combines these two approaches by first applying a climate stress test on the system to explore vulnerabilities across many traces of the future, and then employing climate projections to inform the decision-making process. In this work, we develop decision scaling's nascent risk management concepts further, directing actions on vulnerabilities identified during the climate stress test. In the process, we present a new way to inform climate vulnerability space using climate projections, and demonstrate the use of multiple decision criteria to guide to a final design recommendation. The concepts are demonstrated for a water supply project in the Mombasa Province of Kenya, planned to provide domestic and irrigation supply. Six storage design capacities (from 40 to 140 million cubic meters) are explored through a stress test, under a large number climate traces representing both natural climate variability and plausible climate changes. Design outcomes are simulated over a 40-year planning period with a coupled hydrologic-water resources systems model and using standard reservoir operation rules. Resulting performance is expressed in terms of water supply reliability and economic efficiency. Ensemble climate projections are used for assigning conditional likelihoods to the climate traces using a statistical distance measure. The final design recommendations are presented and discussed for the decision criteria of expected regret, satisficing, and

  7. Application of the new scenario framework for climate change research: Future social vulnerability in large urban areas

    OpenAIRE

    Rohat, Guillaume Thibaut; Flacke, Johannes; Dao, Quoc-Hy

    2016-01-01

    It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the ...

  8. Concerning Caribbean Climate Change Vulnerabilities and Adaptation in Small Island Cities

    OpenAIRE

    Aponte-Gonzalez, Felix Ivan

    2014-01-01

    Climate change poses one of the biggest challenges that most countries have to face over the coming decades. The transformations in our global weather patterns are expected to bring some very adverse effects for most of the island nations that comprise the Caribbean region. These nations have been continuously identified as one of the territorial groups that are most vulnerable to climate change, while the region barely contributes to the main triggers of these changes. Caribbean island natio...

  9. Vulnerable Populations Perceive Their Health as at Risk from Climate Change.

    Science.gov (United States)

    Akerlof, Karen L; Delamater, Paul L; Boules, Caroline R; Upperman, Crystal R; Mitchell, Clifford S

    2015-12-01

    Climate change is already taking a toll on human health, a toll that is likely to increase in coming decades. The relationship between risk perceptions and vulnerability to climate change's health threats has received little attention, even though an understanding of the dynamics of adaptation among particularly susceptible populations is becoming increasingly important. We demonstrate that some people whose health will suffer the greatest harms from climate change-due to social vulnerability, health susceptibility, and exposure to hazards-already feel they are at risk. In a 2013 survey we measured Maryland residents' climate beliefs, health risk perceptions, and household social vulnerability characteristics, including medical conditions (n = 2126). We paired survey responses with secondary data sources for residence in a floodplain and/or urban heat island to predict perceptions of personal and household climate health risk. General health risk perceptions, political ideology, and climate beliefs are the strongest predictors. Yet, people in households with the following characteristics also see themselves at higher risk: members with one or more medical conditions or disabilities; low income; racial/ethnic minorities; and residence in a floodplain. In light of these results, climate health communication among vulnerable populations should emphasize protective actions instead of risk messages. PMID:26690184

  10. Indicators for tracking European vulnerabilities to the risks of infectious disease transmission due to climate change.

    Science.gov (United States)

    Suk, Jonathan E; Ebi, Kristie L; Vose, David; Wint, Willy; Alexander, Neil; Mintiens, Koen; Semenza, Jan C

    2014-02-01

    A wide range of infectious diseases may change their geographic range, seasonality and incidence due to climate change, but there is limited research exploring health vulnerabilities to climate change. In order to address this gap, pan-European vulnerability indices were developed for 2035 and 2055, based upon the definition vulnerability = impact/adaptive capacity. Future impacts were projected based upon changes in temperature and precipitation patterns, whilst adaptive capacity was developed from the results of a previous pan-European study. The results were plotted via ArcGISTM to EU regional (NUTS2) levels for 2035 and 2055 and ranked according to quintiles. The models demonstrate regional variations with respect to projected climate-related infectious disease challenges that they will face, and with respect to projected vulnerabilities after accounting for regional adaptive capacities. Regions with higher adaptive capacities, such as in Scandinavia and central Europe, will likely be better able to offset any climate change impacts and are thus generally less vulnerable than areas with lower adaptive capacities. The indices developed here provide public health planners with information to guide prioritisation of activities aimed at strengthening regional preparedness for the health impacts of climate change. There are, however, many limitations and uncertainties when modeling health vulnerabilities. To further advance the field, the importance of variables such as coping capacity and governance should be better accounted for, and there is the need to systematically collect and analyse the interlinkages between the numerous and ever-expanding environmental, socioeconomic, demographic and epidemiologic datasets so as to promote the public health capacity to detect, forecast, and prepare for the health threats due to climate change. PMID:24566049

  11. Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change

    Directory of Open Access Journals (Sweden)

    Jonathan E. Suk

    2014-02-01

    Full Text Available A wide range of infectious diseases may change their geographic range, seasonality and incidence due to climate change, but there is limited research exploring health vulnerabilities to climate change. In order to address this gap, pan-European vulnerability indices were developed for 2035 and 2055, based upon the definition vulnerability = impact/adaptive capacity. Future impacts were projected based upon changes in temperature and precipitation patterns, whilst adaptive capacity was developed from the results of a previous pan-European study. The results were plotted via ArcGISTM to EU regional (NUTS2 levels for 2035 and 2055 and ranked according to quintiles. The models demonstrate regional variations with respect to projected climate-related infectious disease challenges that they will face, and with respect to projected vulnerabilities after accounting for regional adaptive capacities. Regions with higher adaptive capacities, such as in Scandinavia and central Europe, will likely be better able to offset any climate change impacts and are thus generally less vulnerable than areas with lower adaptive capacities. The indices developed here provide public health planners with information to guide prioritisation of activities aimed at strengthening regional preparedness for the health impacts of climate change. There are, however, many limitations and uncertainties when modeling health vulnerabilities. To further advance the field, the importance of variables such as coping capacity and governance should be better accounted for, and there is the need to systematically collect and analyse the interlinkages between the numerous and ever-expanding environmental, socioeconomic, demographic and epidemiologic datasets so as to promote the public health capacity to detect, forecast, and prepare for the health threats due to climate change.

  12. Rapid regional-scale assessments of socio-economic vulnerability to climate change

    Science.gov (United States)

    Smith, Erin F.; Lieske, Scott N.; Keys, Noni; Smith, Timothy F.

    2016-03-01

    Assessing socio-economic vulnerability to climate change impacts to support regional decision-making is conceptually and practically challenging. We report on research that tested a rapid assessment approach of socio-economic vulnerability in Australia’s natural resource management regions. The approach focuses on regionally important economic sectors, identified using existing datasets, which are likely to be sensitive to climate change impacts. Disaggregated spatial representations of factors known to be associated with vulnerability function as multiple lines of evidence for highlighting intra-regional hotspots of high potential vulnerability. Our results show that a small number of factors based upon contextually relevant empirical evidence offers a low-cost, rapid assessment process, which is readily transferable across regions and provides end-users with guidance for interpreting the results within the context of regional conditions.

  13. A CRITICAL ASSESSMENT OF CLIMATE CHANGE IMPACTS, VULNERABILITY AND POLICY IN INDIA

    Directory of Open Access Journals (Sweden)

    Vijaya Gupta

    2011-10-01

    Full Text Available There is considerable disagreement on the extent of the changes in the variables of climate, but is expected that these changes will lead to submergence of coastal areas, and increased severe occurrence of floods and droughts and harm productivity in agriculture, fishery, forestry, human, all converted into loss of lives and livelihood, productivity, employment opportunities, with high opportunity cost of adaptations and mitigations in India. The developing countries are particularly vulnerable to climate change due to their vast population depending on natural resources. In spite of no commitment to reduce GHGs under Kyoto protocol, India can not afford to ignore it due to its agenda of higher growth. Its concerted efforts for sustainable economic development would not only provide an insurance against the impact of climate change and increase adaptive capacity of vulnerable sectors and sections, but also lead to avoidance of binding commitment to reduce GHGs emissions in the next phase of Kyoto Protocol. This paper critically analyzes the impacts and vulnerability of Indian economy to climate change and analyzes India’s efforts in addressing and reducing the vulnerability of its natural and socioeconomic systems to climate change and enhancing the adaptive capacity of the same under uncertainty

  14. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica

    OpenAIRE

    Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oreana

    2014-01-01

    The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic ...

  15. Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment

    OpenAIRE

    Baer, Roger; Rouholahnedjad, E.; Rahman, Kazi; K. C. Abbaspour; Lehmann, Anthony

    2015-01-01

    Agriculture in the Black Sea catchment is responsible for a considerable share of the area's total water withdrawal and the majority of its total water consumption. It therefore plays a key role in sustainable water resources management. However, in the future water resources will be exposed to climate change. This assessment aims at identifying the most vulnerable regions and to explain the reasons of this vulnerability. It is based on a combination of the well-known Driver–Pressure–State–Im...

  16. Quantitative assessment of Vulnerability of Forest ecosystem to Climate Change in Korea

    Science.gov (United States)

    Byun, J.; Lee, W.; Choi, S.; Oh, S.; Climate Change Model Team

    2011-12-01

    The purpose of this study was to assess the vulnerability of forest ecosystem to climate change in Korea using outputs of vegetation models(HyTAG and MC1) and socio-ecological indicators. Also it suggested adaptation strategies in forest management through analysis of three vulnerability components: exposure, sensitivity and adaptive capacity. For the model simulation of past years(1971-2000), the climatic data was prepared by the Korea Meteorological Administration(KMA). In addition, for the future simulation, the Fifth-Generation NCAR/Penn State Mesoscale Model(MM5) coupling with atmosphere-ocean circulation model(ECHO-G) provide the future climatic data under the A1B scenarios. HyTAG (Hydrological and Thermal Analogy Groups), korean model of forest distribution on a regional-scale, could show extent of sensitivity and adaptive capacity in connection with changing frequency and changing direction of vegetation. MC1 model could provide variation and direction of NPP(Net Primary Production) and SCS(Soil Carbon Storage). In addition, the sensitivity and adaptation capacity were evaluated for each. Besides indicators from models, many other indicators such as financial affairs and number of officers were included in the vulnerability components. As a result of the vulnerability assessment, south western part and Je-ju island of Korea had relatively high vulnerability. This finding is considered to come from a distinctively adaptative capacity. Using these results, we could propose actions against climate change and develop decision making systems on forest management.

  17. CLIMATE CHANGE AND VULNERABILITY OF THE ARCTIC ELDERLY: AN ASSESSMENT FROM HUMAN RIGHTS POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Shahnaj Begum

    2012-10-01

    Full Text Available There are increasing challenges among the elderly in the Arctic region. Global warming due to climate change is one of the major reasons for these challenges. Because of climate change temperature in the region increases, which results in rapid melting of sea ice causing various environmental, social, cultural and economic problems. Population in the region suffers from these problems where elderly people are the most vulnerable. Climate change has already affected the elderly lives in different ways, such as, by physical, social, political, cultural and psychological ways. These have serious consequences in terms of human rights of this vulnerable group of people. However, the elderly people’s human rights issues have not been adequately researched in the context of this region. The goal of this paper is to present elderly related human rights issues, particularly the rights that are affected due to climate change in this specific region.

  18. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation.

    Science.gov (United States)

    Schroth, Götz; Läderach, Peter; Martinez-Valle, Armando Isaac; Bunn, Christian; Jassogne, Laurence

    2016-06-15

    The West African cocoa belt, reaching from Sierra Leone to southern Cameroon, is the origin of about 70% of the world's cocoa (Theobroma cacao), which in turn is the basis of the livelihoods of about two million farmers. We analyze cocoa's vulnerability to climate change in the West African cocoa belt, based on climate projections for the 2050s of 19 Global Circulation Models under the Intergovernmental Panel on Climate Change intermediate emissions scenario RCP 6.0. We use a combination of a statistical model of climatic suitability (Maxent) and the analysis of individual, potentially limiting climate variables. We find that: 1) contrary to expectation, maximum dry season temperatures are projected to become as or more limiting for cocoa as dry season water availability; 2) to reduce the vulnerability of cocoa to excessive dry season temperatures, the systematic use of adaptation strategies like shade trees in cocoa farms will be necessary, in reversal of the current trend of shade reduction; 3) there is a strong differentiation of climate vulnerability within the cocoa belt, with the most vulnerable areas near the forest-savanna transition in Nigeria and eastern Côte d'Ivoire, and the least vulnerable areas in the southern parts of Cameroon, Ghana, Côte d'Ivoire and Liberia; 4) this spatial differentiation of climate vulnerability may lead to future shifts in cocoa production within the region, with the opportunity of partially compensating losses and gains, but also the risk of local production expansion leading to new deforestation. We conclude that adaptation strategies for cocoa in West Africa need to focus at several levels, from the consideration of tolerance to high temperatures in cocoa breeding programs, the promotion of shade trees in cocoa farms, to policies incentivizing the intensification of cocoa production on existing farms where future climate conditions permit and the establishment of new farms in already deforested areas. PMID:26974571

  19. Data driven approaches vs. qualitative approaches in climate change impact and vulnerability assessment.

    Science.gov (United States)

    Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello

    2015-04-01

    In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.

  20. Mapping vulnerability to climate change and its repercussions on human health in Pakistan

    Directory of Open Access Journals (Sweden)

    Malik Sadia

    2012-09-01

    Full Text Available Abstract Background Pakistan is highly vulnerable to climate change due to its geographic location, high dependence on agriculture and water resources, low adaptive capacity of its people, and weak system of emergency preparedness. This paper is the first ever attempt to rank the agro-ecological zones in Pakistan according to their vulnerability to climate change and to identify the potential health repercussions of each manifestation of climate change in the context of Pakistan. Methods A climate change vulnerability index is constructed as an un-weighted average of three sub-indices measuring (a the ecological exposure of each region to climate change, (b sensitivity of the population to climate change and (c the adaptive capacity of the population inhabiting a particular region. The regions are ranked according to the value of this index and its components. Since health is one of the most important dimensions of human wellbeing, this paper also identifies the potential health repercussions of each manifestations of climate change and links it with the key manifestations of climate change in the context of Pakistan. Results The results indicate that Balochistan is the most vulnerable region with high sensitivity and low adaptive capacity followed by low-intensity Punjab (mostly consisting of South Punjab and Cotton/Wheat Sindh. The health risks that each of these regions face depend upon the type of threat that they face from climate change. Greater incidence of flooding, which may occur due to climate variability, poses the risk of diarrhoea and gastroenteritis; skin and eye Infections; acute respiratory infections; and malaria. Exposure to drought poses the potential health risks in the form of food insecurity and malnutrition; anaemia; night blindness; and scurvy. Increases in temperature pose health risks of heat stroke; malaria; dengue; respiratory diseases; and cardiovascular diseases. Conclusion The study concludes that geographical

  1. Climate change, vulnerability and the local adaptation strategies of food enterprises in Finland

    OpenAIRE

    Puupponen, Antti

    2015-01-01

    This chapter discusses vulnerability and the adaptation strategies of Finnish food supply chains in the context of climate change. A case study was conducted in 2012 within three Finnish regions. The people interviewed were food entrepreneurs, the managers of food enterprises and relevant stakeholders. According to the study, food enterprises seem to trust local and decentralised food supply chains as an adaptation strategy for combating climate change. Hence, the case study di...

  2. Life on the edge: Vulnerability and adaptation of African ecosystems to global climate change

    OpenAIRE

    Dixon, R; J. Smith; Guill, S.

    2003-01-01

    Donor countries are providing financial and technical support for global climate change country studies to help African nations meet their reporting needs under the United Nations Framework Convention on Climate Change (UNFCCC). Technical assistance to complete vulnerability and adaptation assessments includes training of analysts, sharing of contemporary tools (e.g. simulation models), data and assessment techniques, information-sharing workshops and an international exchange programme for a...

  3. Spatial Vulnerability Map and Distributed Response Strategies for Irrigation System Under Climate Change

    Science.gov (United States)

    Huang, P. H.; Tung, C. P.; Lien, W. Y.

    2012-04-01

    It is an important issue whether irrigation systems can continuously provide quality service under climate change conditions. The streamflow irrigation system, which delivers water from a river directly, is still widely applied in Taiwan. Due to the impacts of climate change, the amount of available streamflow may decrease during dry season and higher variation of flows can be expected, which influences irrigation systems severely. Furthermore, sub-irrigation areas may have different levels of impacts under climate change. Instead of applying the adaptation strategies to the whole irrigation areas, different adaptive measures should be considered according to the vulnerability of each sub-irrigation area in order to face the impacts of climate change. The purposes of this study include defining the carrying capacity of an irrigation system, developing spatial distributed assessment methods through geographic information system and discussing how to develop adaptation systems for the areas which are more vulnerable. In this study, both agricultural and domestic water supply systems of the Touchien creek watershed are considered in this study. Future water demands of agriculture are estimated under the change of temperature and rainfall, and the amount of water supply to each sub-irrigation area is calculated according to its area and water losses. As for public water uses, the most restrict scenarios are taken in, e.g. the largest impact toward agriculture in the Touchien creek watershed. Then, the vulnerability of sub-irrigation areas is quantified by agricultural shortage index (ASI). ASI represents the percentage of crop yields in that area comparing with its potential crop yields. At last, the spatial distribution of vulnerability is established in order to emphasize the climate change impacts on each sub-irrigation area and to analyze their possible responses. Possible distributed adaptive strategies are proposed in this study too. Keywords: Vulnerability

  4. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Herslund, Lise Byskov; Jalyer, Fatameh; Jean-Baptiste, Nathalie;

    2016-01-01

    strategic coordination and action. To better adapt to urban flooding andthereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning...... potential of the approach to assessing several dimensions of vulnerability and illustrate the complexity of urban vulnerability at different scales: households (e.g., lacking assets); communities (e.g., situated in low-lying areas, lacking urban services and green areas); and entire cities (e.g., facing...

  5. Vulnerable Populations Perceive Their Health as at Risk from Climate Change

    Directory of Open Access Journals (Sweden)

    Karen L. Akerlof

    2015-12-01

    Full Text Available Climate change is already taking a toll on human health, a toll that is likely to increase in coming decades. The relationship between risk perceptions and vulnerability to climate change’s health threats has received little attention, even though an understanding of the dynamics of adaptation among particularly susceptible populations is becoming increasingly important. We demonstrate that some people whose health will suffer the greatest harms from climate change—due to social vulnerability, health susceptibility, and exposure to hazards—already feel they are at risk. In a 2013 survey we measured Maryland residents’ climate beliefs, health risk perceptions, and household social vulnerability characteristics, including medical conditions (n = 2126. We paired survey responses with secondary data sources for residence in a floodplain and/or urban heat island to predict perceptions of personal and household climate health risk. General health risk perceptions, political ideology, and climate beliefs are the strongest predictors. Yet, people in households with the following characteristics also see themselves at higher risk: members with one or more medical conditions or disabilities; low income; racial/ethnic minorities; and residence in a floodplain. In light of these results, climate health communication among vulnerable populations should emphasize protective actions instead of risk messages.

  6. Is Education a Key to Reducing Vulnerability to Natural Disasters and hence Unavoidable Climate Change?

    Directory of Open Access Journals (Sweden)

    Raya Muttarak

    2014-03-01

    Full Text Available The collection of articles in this Special Feature is part of a larger project on "Forecasting Societies' Adaptive Capacity to Climate Change" (an Advanced Grant of the European Research Council to Wolfgang Lutz. In investigating how global change will affect population vulnerability to climate variability and extremes, the project aims to help develop strategies that enable societies to better cope with the consequences of climate change. In doing so, the basic hypothesis being tested is that societies can develop the most effective long-term defense against the dangers of climate change by strengthening human capacity, primarily through education. Education can directly influence risk perception, skills and knowledge and indirectly reduce poverty, improve health and promote access to information and resources. Hence, when facing natural hazards or climate risks, educated individuals, households and societies are assumed to be more empowered and more adaptive in their response to, preparation for, and recovery from disasters. Indeed the findings from eleven original empirical studies set in diverse geographic, socioeconomic, cultural and hazard contexts provide consistent and robust evidence on the positive impact of formal education on vulnerability reduction. Highly educated individuals and societies are reported to have better preparedness and response to the disasters, suffered lower negative impacts, and are able to recover faster. This suggests that public investment in empowering people and enhancing human capacity through education can have a positive externality in reducing vulnerability and strengthening adaptive capacity amidst the challenges of a changing climate.

  7. Land vulnerability evaluation and climate change impacts in andalucia, spain: soil erosion and contamination

    Directory of Open Access Journals (Sweden)

    J.A. Moreno

    1996-09-01

    Full Text Available Two of the main desertification indices or land degradation risks in agricultural areas are soil erosion and contamination. Increased land degradation is one possible, and important, consequence of global climate change. Therefore, it is a priority to predict global environmental change impacts on these degradation risks. Land evaluation is a formal way to develop the capability to predict land degradation risks or vulnerability caused by interactive changes in land use and climate. The fundamental purpose of land evaluation is to predict the consequences of change. As a part of the ACCESS model, and by using standard land evaluation techniques, a qualitative prediction approach was developed to assess the risks of soil erosion and contamination in agricultural lands. Through this bio-physical approach, it is easy to modify parameters to create new evaluating scenarios, run the evaluation models, and observe their effects. The Andalucia Region of Spain was used as the test region for this approach, based on the current climate and two climate change scenarios. The evaluation results show that 16 % and 27 % of the Andalucian land area is at elevated risk of soil rainfall erosion and contamination, respectively; and a further 58 % and 33 % at medium risk. For the present drought scenario, the modelling approach predicts that in 59 % of land the erosion risk decreases, while for 24 % of land this vulnerability increases. These values are 40 % and 60 %, respectively, for soil contamination vulnerability. The second scenario assumes the predicted climate change for 2050 AD for the Mediterranean area. This evaluation predicts that in 18 % of land the erosion risk decreases, and increases in 47 % of land. For the contamination vulnerability the predicted values are similar to those of the first scenario. Thus, change in rainfall amount affected erosion risks strongly, but this change proved to have little direct influence on contamination vulnerability.

  8. Study on the Sensitivity and Vulnerability of Wheat to Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    SUN Fang; YANG Xiu; LIN Er-da; JU Hui; XIONG Wei

    2005-01-01

    Based on B2 climate change scenario produced by PRECIS (providing regional climates for impacts studies), which was developed by the UK Hadley Center, and the wheat yield data outputted by CERES-wheat model, the sensitivity and vulnerability of wheat production to the future climate change in China were studied through analyzing the yield variation using the GIS (geographical information system) techniques. Results showed that, by the 2070s, there will be three negative sensitive areas of rain-fed wheat, i.e., northeastern China, the region of the middle and lower reaches of the Yangtze River, and part of the Loess Plateau. Irrigated wheat is generally sensitive to the future climate change for most areas of China, with a lower sensitive degree and a distribution of sensitive areas similar to the rain-fed wheat. For the irrigated wheat, northeast and northwest of China are strongly negative sensitive, while the middle and lower reaches of the Yangtze River, the coastal areas of southern China and the southwest of China, are moderately negative sensitive to the climate change. With the appropriate adaptation to the climate change, the rain-fed wheat in most regions of China will not be vulnerable and even has a yield increase, while the irrigated wheat will still have a larger vulnerable area (occupying about 2/3 of its total area in China), with the highly vulnerable regions distributed in northeastern China and northwestern China, and the medium and light vulnerable areas distributed along the middle and lower reaches of the Yangtze River,Yunnan and Guizhou provinces.

  9. Characteristics of Areas Vulnerable to Climate Change in the Romanian Tisa Catchment Area

    Directory of Open Access Journals (Sweden)

    ALINA CHICOŞ

    2010-01-01

    Full Text Available The article summarizes the analysis carried out in two European projects in progress on the Romanian territory of the Tisa Catchment Area and aims to identify areas vulnerable to climate change, and their socio-demographic characterization. In areas identified, the most exposed category of the population is elderly and the most affected economic activity is agriculture.

  10. Characteristics of Areas Vulnerable to Climate Change in the Romanian Tisa Catchment Area

    OpenAIRE

    ALINA CHICOŞ; GEORGIANA TOTH; ALEXANDRU IONUŢ PETRIŞOR

    2010-01-01

    The article summarizes the analysis carried out in two European projects in progress on the Romanian territory of the Tisa Catchment Area and aims to identify areas vulnerable to climate change, and their socio-demographic characterization. In areas identified, the most exposed category of the population is elderly and the most affected economic activity is agriculture.

  11. Climate change, markets and livelihood strategies for adaptation in vulnerable Altiplano Ecosystems

    OpenAIRE

    Valdivia, Corinne; Jiménez, Elizabeth; Seth, Anji

    2009-01-01

    This presentation discusses a framework of scales and interactions, Altiplano climate trends and change, markets, livelihood strategies and perceptions of risks across the Altiplano ecosystem, uncertainty, and participatory research in adaptive capacities. LTRA-4 (Practices and Strategies for Vulnerable Agro-Ecosystems)

  12. A landscape-based assessment of climate change vulnerability for all native Hawaiian plants

    Science.gov (United States)

    Fortini, Lucas; Price, Jonathan; Jacobi, James; Vorsino, Adam; Burgett, Jeff; Brinck, Kevin W.; Amidon, Fred; Miller, Steve; `Ohukani`ohi`a Gon, Sam, III; Koob, Gregory; Paxton, Eben

    2013-01-01

    In Hawaiʽi and elsewhere, research efforts have focused on two main approaches to determine the potential impacts of climate change on individual species: estimating species vulnerabilities and projecting responses of species to expected changes. We integrated these approaches by defining vulnerability as the inability of species to exhibit any of the responses necessary for persistence under climate change (i.e., tolerate projected changes, endure in microrefugia, or migrate to new climate-compatible areas, but excluding evolutionary adaptation). To operationalize this response-based definition of species vulnerability within a landscape-based analysis, we used current and future climate envelopes for each species to define zones across the landscape: the toleration zone; the microrefugia zone; and the migration zone. Using these response zones we calculated a diverse set of factors related to habitat area, quality, and distribution for each species, including the amount of habitat protection and fragmentation and areas projected to be lost to sea-level rise. We then calculated the probabilities of each species exhibiting these responses using a Bayesian network model and determined the overall climate change vulnerability of each species by using a vulnerability index. As a first iteration of a response-based species vulnerability assessment (VA), our landscape-based analysis effectively integrates species-distribution models into a Bayesian network-based VA that can be updated with improved models and data for more refined analyses in the future. Our results show that the species most vulnerable to climate change also tend to be species of conservation concern due to non-climatic threats (e.g., competition and predation from invasive species, land-use change). Also, many of Hawaiʽi’s taxa that are most vulnerable to climate change share characteristics with species that in the past were found to be at risk of extinction due to non-climatic threats (e

  13. Investigating climate change vulnerability and planning for adaptation: Learning from a study of climate change impacts on the Mountain Gorilla in the Albertine Rift

    OpenAIRE

    Daniel John McGahey; David Gerard Williams; Philip Muruth; David Ian Loubser

    2013-01-01

    Climate change represents an unprecedented challenge for the conservation and management of endangered species and habitats. Effective climate smart conservation will require robust predictions of vulnerability and future changes, along with the design and prioritisation of effective adaptation planning and management responses that are clearly linked to projected climate impacts. To achieve this goal, conservation managers urgently need practical tools and approaches for vulnerability assess...

  14. Vulnerability Assessment of Environmental and Climate Change Impacts on Water Resources in Al Jabal Al Akhdar, Sultanate of Oman

    OpenAIRE

    Mohammed Saif Al-Kalbani; Martin F. Price; Asma Abahussain; Mushtaque Ahmed; Timothy O'Higgins

    2014-01-01

    Climate change and its consequences present one of the most important threats to water resources systems which are vulnerable to such changes due to their limited adaptive capacity. Water resources in arid mountain regions, such as Al Jabal Al Akhdar; northern Sultanate of Oman, are vulnerable to the potential adverse impacts of environmental and climate change. Besides climatic change, current demographic trends, economic development and related land use changes are exerting pressures and ha...

  15. Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa

    Science.gov (United States)

    Fakhruddin, S. H. M.; Babel, M. S.; Kawasaki, A.

    2015-06-01

    Pacific Islanders have been exposed to risks associated with climate change. Samoa, as one of the Pacific Islands, is prone to climatic hazards that will likely increase in the coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructure was developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM) was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Cyclone Evan recovery needs document. Additionally, data on criticality and capacity to repair damage were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a) criticality of a given infrastructure could be viewed differently among different stakeholders, and (b) stakeholders were the best available source (in this study) to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested a ranking of sectors from the most vulnerable to least vulnerable are: the transportation sector, the power sector, the water supply sector and the sewerage system.

  16. Assessing the vulnerability of infrastructure to climate change on the Islands of Samoa

    Directory of Open Access Journals (Sweden)

    S. H. M. Fakhruddin

    2015-03-01

    Full Text Available Pacific Islanders have been exposed to risks associated with climate change. Samoa as one of the Pacific Islands are prone to climatic hazards that will likely increase in coming decades, affecting coastal communities and infrastructure around the islands. Climate models do not predict a reduction of such disaster events in the future in Samoa; indeed, most predict an increase in such events. This paper identifies key infrastructure and their functions and status in order to provide an overall picture of relative vulnerability to climate-related stresses of such infrastructure on the island. By reviewing existing reports as well as holding a series of consultation meetings, a list of critical infrastructures were developed and shared with stakeholders for their consideration. An indicator-based vulnerability model (SIVM was developed in collaboration with stakeholders to assess the vulnerability of selected infrastructure systems on the Samoan Islands. Damage costs were extracted from the Evan cyclone recovery needs document. On the other hand, criticality and capacity to repair data were collected from stakeholders. Having stakeholder perspectives on these two issues was important because (a criticality of a given infrastructure could be viewed differently among different stakeholders, and (b stakeholders were the best available source (in this study to estimate the capacity to repair non-physical damage to such infrastructure. Analysis of the results suggested rankings from most vulnerable to least vulnerable sectors are the transportation sector, the power sector, the water supply sector and the sewerage system.

  17. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    OpenAIRE

    Carlos Carroll; Joshua J Lawler; Roberts, David R; Andreas Hamann

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic con...

  18. A Brazilian Vulnerability Index Towards Natural Disasters and Climatic Change - Flashfloods and Landslides.

    Science.gov (United States)

    Debortoli, N. S.; Camarinha, P. I., Sr.; Marengo, J. A.; Rodrigues, R.

    2015-12-01

    There are some evidences that hydrological climate extremes events have become more frequent an intense in the last decades due to climatic change. In Brazil, flashfloods and landslides were responsible for 74% of the deaths related to natural disasters in 1991-2010 period. In this sense, climate change could be considered a threat which can further increase these numbers, if actions of adaptation and reducing vulnerability are not taken. To evaluate Brazil's vulnerability hotspots to these disasters, two vulnerability indexes were developed using three sets of variables: (1) climate, with IPCC climate extreme indexes; (2) environmental, including land use, drainage systems, relief map, slope, road density and hydrography variables; (3) socioeconomic, including Gini coefficient, HDI (Human Development Index), housing conditions and poverty-related index. The variables were normalized on a scale between 0 to 1 and related using Map Algebra technique (ArcGIS). As part of the effort to contribute to the elaboration of the Third National Communication to the United Nations Framework Convention on Climate Change (UNFCCC), and to contribute to the assessment of impacts on strategic country's issues, simulations at higher resolution were carried out using Eta-20km RCM (Regional Climate Model) nested with two global climate models: HadGEM ES and MIROC 5 (INPE Brazilian National Institute for Space Research). For the baseline period of 1961-1990, the vulnerability indexes were adjusted by an iterative process, which was validated by comparing it to the Brazilian National Disasters Data. The same indexes found at baseline were used to estimate the vulnerability until the end of the XXI century, using the 4.5 and 8.5 IPCC/AR5 RCP (Representative Concentration Pathways) scenarios. The results indicate a large increase in Brazil's vulnerability to landslides mainly in coastal zone, southern states, high lands of southeast states, and along the Amazon River due to climatic

  19. Habitat associations drive species vulnerability to climate change in boreal forests

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli Pekka;

    2016-01-01

    Species climate change vulnerability, their predisposition to be adversely affected, has been assessed for a limited portion of biodiversity. Our knowledge of climate change impacts is often based only on exposure, the magnitude of climatic variation in the area occupied by the species, even...... scenarios. However, climate change will potentially reduce habitat suitability for ~9–43 % of the threatened deadwood-associated species. This loss is likely caused by future increase in timber extraction and decomposition rates causing higher deadwood turnover, which have a strong negative effect on boreal...... forest biodiversity. Our results are species- and scenario-specific. Diversified forest management and restoration ensuring deadwood resources in the landscape would allow the persistence of species whose capacity of delivering important supporting ecosystem services can be undermined by climate change....

  20. Assessing Vulnerability to Climate Change in Dryland Livelihood Systems: Conceptual Challenges and Interdisciplinary Solutions

    Directory of Open Access Journals (Sweden)

    Jan Sendzimir

    2011-09-01

    Full Text Available Over 40% of the earth's land surface are drylands that are home to approximately 2.5 billion people. Livelihood sustainability in drylands is threatened by a complex and interrelated range of social, economic, political, and environmental changes that present significant challenges to researchers, policy makers, and, above all, rural land users. Dynamic ecological and environmental change models suggest that climate change induced drought events may push dryland systems to cross biophysical thresholds, causing a long-term drop in agricultural productivity. Therefore, research is needed to explore how development strategies and other socioeconomic changes help livelihoods become more resilient and robust at a time of growing climatic risk and uncertainty. As a result, the overarching goal of this special feature is to conduct a structured comparison of how livelihood systems in different dryland regions are affected by drought, thereby making methodological, empirical, and theoretical contributions to our understanding of how these types of social-ecological systems may be vulnerable to climate change. In introducing these issues, the purpose of this editorial is to provide an overview of the two main intellectual challenges of this work, namely: (1 how to conceptualize vulnerability to climate change in coupled social-ecological systems; and (2 the methodological challenges of anticipating trends in vulnerability in dynamic environments.

  1. Climate Change Vulnerability and Resilience: Current Status and Trends for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ibarraran , Maria E.; Malone, Elizabeth L.; Brenkert, Antoinette L.

    2008-12-30

    Climate change alters different localities on the planet in different ways. The impact on each region depends mainly on the degree of vulnerability that natural ecosystems and human-made infrastructure have to changes in climate and extreme meteorological events, as well as on the coping and adaptation capacity towards new environmental conditions. This study assesses the current resilience of Mexico and Mexican states to such changes, as well as how this resilience will look in the future. In recent studies (Moss et al. 2000, Brenkert and Malone 2005, Malone and Brenket 2008, Ibarrarán et al. 2007), the Vulnerability-Resilience Indicators Model (VRIM) is used to integrate a set of proxy variables that determine the resilience of a region to climate change. Resilience, or the ability of a region to respond to climate variations and natural events that result from climate change, is given by its adaptation and coping capacity and its sensitivity. On the one hand, the sensitivity of a region to climate change is assessed, emphasizing its infrastructure, food security, water resources, and the health of the population and regional ecosystems. On the other hand, coping and adaptation capacity is based on the availability of human resources, economic capacity and environmental capacity.

  2. IPCC Climate Change 2013: Impacts, Adaptation and Vulnerability: Key findings and lessons learned

    Science.gov (United States)

    Giorgi, Filippo; Field, Christopher; Barros, Vicente

    2014-05-01

    The Working Group II contribution to the Fifth Assessment Report of the Intergivernmental Panel on Climate Change, Impacts, Adaptation and Vulnerability, will be completed and approved in March 2014. It includes two parts, Part A covering Global and Sectoral Aspects, and Part B, covering Regional Aspects. The WGII report spans a very broad range of topics which are approached in a strong interdisciplinary context. It highlights how observed impacts of climate change are now widespread and consequential, particularly for natural systems, and can be observed on all continents and across the oceans. Vulnerability to climate change depends on interactions with non-climatic stressors and inequalities, resulting in highly differential risks associated with climate change. It is also found that adaptation is already occurring across scales and is embedded in many planning processes. Continued sustained warming thrughout the 21st century will exacerbate risks and vulnerabilities across multiple sectors, such as freshwater resources, terrestrial and inland water systems, coastal and marine systems, food production, human health, security and livelihood. The report stresses how risks and vulnerabilities need to be assessed within a multi-stressor and regionally specific context, and can be reduced and managed by adopting climate-resilient pathwyas combining suitable adaptation and mitigation options with synergies and tradeoffs occurring both within and across regions. The Working group II report includes a large number of Chapters (30) and contributors (310 including authors and review editors), with expertise in a broad range of disciplines, from the physical science to the impact and socio-economic sciences. The communication across chapters and disciplines has been a challenge, and will continue to be one as the Global Change problem will increasingly require a fully integrated and holistic approach. Note that text on this abstract is not approved at the time its

  3. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  4. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.

    Directory of Open Access Journals (Sweden)

    Wendy B Foden

    Full Text Available Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species. The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%, 670-933 amphibian (11-15%, and 47-73 coral species (6-9% are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability

  5. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change.

    Science.gov (United States)

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C

    2014-05-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species populations at the warm and dry end of the species niche are underrepresented in the network. However, by 2100, target species in 33-65 % of conservation units, mostly located in southern Europe, will be at the limit or outside the species' current climatic niche as demonstrated by favourabilities below required model sensitivities of 95%. The highest average decrease in favourabilities throughout the network can be expected for coniferous trees although they are mainly occurring within units in mountainous landscapes for which we estimated lower velocities of change. Generally, the species-specific estimates of favourabilities showed only low correlations to the velocity of climate change in individual units, indicating that both vulnerability measures should be considered for climate risk analysis. The variation in favourabilities among target species within the same conservation units is expected to increase with climate change and will likely require a prioritization among co-occurring species. The present results suggest that there is a strong need to intensify monitoring efforts and to develop additional conservation measures for populations in the most vulnerable units. Also, our results call for continued transnational actions for genetic conservation of European forest trees, including the establishment of dynamic conservation populations outside the current species distribution ranges within European assisted migration schemes. PMID:24273066

  6. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment

    International Nuclear Information System (INIS)

    Climate change will lead to significant changes of groundwater recharge and thus renewable groundwater resources. Using the global water resources and use model WaterGAP, the impact of climate change on groundwater recharge and the number of affected people was computed for four climate scenarios by two climate models. Vulnerability of humans to decreased groundwater resources depends on both the degree of decrease and the sensitivity of the human system to the decrease. For each grid cell, a sensitivity index composed of a water scarcity indicator, an indicator for dependence of water supply on groundwater and the Human Development Index was quantified. Combining per cent groundwater recharge decrease with the sensitivity index, global maps of vulnerability to the impact of decreased groundwater recharge in the 2050s were derived. In the A2 (B2) emissions scenario, 18.4-19.3% (16.1-18.1%) of the global population of 10.7 (9.1) billion would be affected by groundwater recharge decreases of at least 10%, and 4.8-5.7% (3.8-3.8%) of the global population would be in the two highest vulnerability classes. The highest vulnerabilities are found at the North African rim of the Mediterranean Sea, in southwestern Africa, in northeastern Brazil and in the central Andes, which are areas of moderate to high sensitivity. For most of the areas with high population density and high sensitivity, model results indicate that groundwater recharge is unlikely to decrease by more than 10% until the 2050s. However, a fifth to a third of the population may be affected by a groundwater recharge increase of more than 10%, with negative impacts in the case of shallow water tables. The spatial distribution of vulnerability, even at the continental scale, differs more strongly between the two climate models than between the two emissions scenarios.

  7. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning.

    Science.gov (United States)

    Maxwell, Sean L; Venter, Oscar; Jones, Kendall R; Watson, James E M

    2015-10-01

    The impact of climate change on biodiversity is now evident, with the direct impacts of changing temperature and rainfall patterns and increases in the magnitude and frequency of extreme events on species distribution, populations, and overall ecosystem function being increasingly publicized. Changes in the climate system are also affecting human communities, and a range of human responses across terrestrial and marine realms have been witnessed, including altered agricultural activities, shifting fishing efforts, and human migration. Failing to account for the human responses to climate change is likely to compromise climate-smart conservation efforts. Here, we use a well-established conservation planning framework to show how integrating human responses to climate change into both species- and site-based vulnerability assessments and adaptation plans is possible. By explicitly taking into account human responses, conservation practitioners will improve their evaluation of species and ecosystem vulnerability, and will be better able to deliver win-wins for human- and biodiversity-focused climate adaptation. PMID:26555860

  8. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  9. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan.

    Science.gov (United States)

    Abid, Muhammad; Schilling, Janpeter; Scheffran, Jürgen; Zulfiqar, Farhad

    2016-03-15

    Pakistan is among the countries highly exposed and vulnerable to climate change. The country has experienced many severe floods, droughts and storms over the last decades. However, little research has focused on the investigation of vulnerability and adaptation to climate-related risks in Pakistan. Against this backdrop, this article investigates the farm level risk perceptions and different aspects of vulnerability to climate change including sensitivity and adaptive capacity at farm level in Pakistan. We interviewed a total of 450 farming households through structured questionnaires in three districts of Punjab province of Pakistan. This study identified a number of climate-related risks perceived by farm households such as extreme temperature events, insect attacks, animal diseases and crop pests. Limited water availability, high levels of poverty and a weak role of local government in providing proper infrastructure were the factors that make farmers more sensitive to climate-related risks. Uncertainty or reduction in crop and livestock yields; changed cropping calendars and water shortage were the major adverse impacts of climate-related risks reported by farmers in the study districts. Better crop production was reported as the only positive effect. Further, this study identified a number of farm level adaptation methods employed by farm households that include changes in crop variety, crop types, planting dates and input mix, depending upon the nature of the climate-related risks. Lack of resources, limited information, lack of finances and institutional support were some constraints that limit the adaptive capacity of farm households. This study also reveals a positive role of cooperation and negative role of conflict in the adaptation process. The study suggests to address the constraints to adaptation and to improve farm level cooperation through extended outreach and distribution of institutional services, particularly climate-specific farm advisory

  10. Integrated assessment of vulnerability to climate change and adaptation options in the Netherlands

    International Nuclear Information System (INIS)

    In recent decades, it has become increasingly clear that the global climate is becoming warmer and that regional climates are changing. This report summarizes the results of an integrated assessment of vulnerability to climate change and adaptation options in the Netherlands carried out between July 2000 and July 2001 within the framework of the Dutch National Research Program on Global Air Pollution and Climate Change (NRP-2). The project's main aims were: - to provide an overview of scientific insights, expert judgements and stakeholders' perceptions of current and future impacts (positive and negative) of climate change for several economic sectors, human health, and natural systems in the Netherlands, considering various cross-sectoral interactions, - to develop a set of adaptation options for these sectors through a participatory process with the main stakeholders, - to perform an integrated assessment of cross-sectoral interactions of climate change impacts and adaptation options. Climate change impacts and adaptation options have been investigated for several important economic sectors (including agriculture, forestry, fisheries, industry, energy, transport, insurance and recreation and tourism), human health and natural systems (including soils, water and biodiversity issues).The results of this study are based on literature survey, a dialogue with experts and stakeholders. We are convinced that the report represents the most essential and relevant aspects of the impacts and adaptation options for climate change in the Netherlands, given the scenario setting of this study, the state of the art of current scientific knowledge, and today's expert and stakeholders' perceptions of the issues at stake. 215 refs

  11. Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    OpenAIRE

    Foden, Wendy B.; Stuart H M Butchart; Simon N Stuart; Jean-Christophe Vié; H Resit Akçakaya; Ariadne Angulo; DeVantier, Lyndon M.; Alexander Gutsche; Emre Turak; Long Cao; Donner, Simon D.; Vineet Katariya; Rodolphe Bernard; Holland, Robert A.; Hughes, Adrian F.

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on specie...

  12. Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

    Directory of Open Access Journals (Sweden)

    Joshua E Cinner

    Full Text Available There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1 environmental exposure; 2 ecological sensitivity; 3 ecological recovery potential; 4 social sensitivity; and 5 social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.

  13. Failed development and vulnerability to climate change in central Asia: implications for food security and health.

    Science.gov (United States)

    Janes, Craig R

    2010-07-01

    This article presents results of research undertaken to identify factors that affect the vulnerability of rural Mongolian herders to climate change. Findings suggest that models of market development instituted since 1990 have failed to recognize and support key elements of the pastoralist adaptive strategy. A retreating state presence has led to the collapse of regulatory regimes needed to safeguard critical common resources. This in turn has produced considerable social differentiation in the countryside, a breakdown in cooperative institutions, and conflicts over water and pasture. In a context of climate change, these changes seriously threaten the sustainability of the rural economy, leading to livelihood insecurity, growing rural poverty, and increasing rates of migration to shantytowns surrounding the capital city of Ulaanbaatar. The newly vulnerable poor are at higher risk for poor health and malnutrition. PMID:20566560

  14. Vulnerability of wind power resources to climate change in the continental United States

    International Nuclear Information System (INIS)

    Renewable energy resources will play a key role in meeting the world's energy demand over the coming decades. Unfortunately, these resources are all susceptible to variations in climate, and hence vulnerable to climate change. Recent findings in the atmospheric science literature suggest that the impacts of greenhouse gas induced warming are likely to significantly alter climate patterns in the future. In this paper we investigate the potential impacts of climate change on wind speeds and hence on wind power, across the continental US. General Circulation Model output from the Canadian Climate Center and the Hadley Center were used to provide a range of possible variations in seasonal mean wind magnitude. These projections were used to investigate the vulnerability of current and potential wind power generation regions. The models were generally consistent in predicting that the US will see reduced wind speeds of 1.0 to 3.2% in the next 50 years, and 1.4 to 4.5% over the next 100 years. In both cases the Canadian model predicted larger decreases in wind speeds. At regional scales the two models showed some similarities in early years of simulations (e.g. 2050), but diverged significantly in their predictions for 2100. Hence, there is still a great deal of uncertainty regarding how wind fields will change in the future. Nevertheless, the two models investigated here are used as possible scenarios for use in investigating regional wind power vulnerabilities, and point to the need to consider climate variability and long term climate change in citing wind power facilities. (Author)

  15. Climate program "stone soup": Assessing climate change vulnerabilities in the Aleutian and Bering Sea Islands of Alaska

    Science.gov (United States)

    Littell, J. S.; Poe, A.; van Pelt, T.

    2015-12-01

    Climate change is already affecting the Bering Sea and Aleutian Island region of Alaska. Past and present marine research across a broad spectrum of disciplines is shedding light on what sectors of the ecosystem and the human dimension will be most impacted. In a grassroots approach to extend existing research efforts, leveraging recently completed downscaled climate projections for the Bering Sea and Aleutian Islands region, we convened a team of 30 researchers-- with expertise ranging from anthropology to zooplankton to marine mammals-- to assess climate projections in the context of their expertise. This Aleutian-Bering Climate Vulnerability Assessment (ABCVA) began with researchers working in five teams to evaluate the vulnerabilities of key species and ecosystem services relative to projected changes in climate. Each team identified initial vulnerabilities for their focal species or services, and made recommendations for further research and information needs that would help managers and communities better understand the implications of the changing climate in this region. Those draft recommendations were shared during two focused, public sessions held within two hub communities for the Bering and Aleutian region: Unalaska and St. Paul. Qualitative insights about local concerns and observations relative to climate change were collected during these sessions, to be compared to the recommendations being made by the ABCVA team of researchers. Finally, we used a Structured Decision Making process to prioritize the recommendations of participating scientists, and integrate the insights shared during our community sessions. This work brought together residents, stakeholders, scientists, and natural resource managers to collaboratively identify priorities for addressing current and expected future impacts of climate change. Recommendations from this project will be incorporated into future research efforts of the Aleutian and Bering Sea Islands Landscape Conservation

  16. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    Science.gov (United States)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  17. Vulnerability and adaptation to global climate change: The Estonian national report

    Energy Technology Data Exchange (ETDEWEB)

    Kont, A.; Punning, J.M. [Inst. of Ecology, Tallinn (Estonia); Ainsaar, M. [Univ. of Tartu (Estonia)] [and others

    1996-04-01

    Because of its geography, wide coastal areas, water resources, forests, and wetlands, the environment of Estonia is sensitive to climate change and sea level rise. Therefore, the vulnerability and adaptation assessment focused on these sectors GCM-based and incremental climate change scenarios are used for V and A assessment in Estonia. The results of five GCMs provided by NCAR are available, and four of them (GISS, CCCM, GFDL30, GFDL transient) are chosen for the assessment in Estonia. The CERES-Barley model is used to assess crop productivity in four long-term (1966--1987) barley field trials situated on different types of soils in different parts of Estonia. The SPUR-2 model which was expected to be used to assess herbage sensitivity to climate change doesn`t fit Estonia. To estimate the responses of forests to proposed climate change scenarios, five study sites with relatively species rich forest stands and with different types of climate (continental and moderately maritime) are selected and the simple version of the Forest Gap Model is used. The Holdridge Life Zones Classification Models are also used to determine the potential evapotranspiration ratio for different tree species and the multiplier for temperature as a function of the forest growth. The WatBal model is used in water resources vulnerability assessment for three rivers with different hydrological regimes and landscape conditions.

  18. Assessment of Social Protection as a Form of Capabilities to Reduce Climate Change Vulnerabilities: Public Sectors Initiatives of Bangladesh

    OpenAIRE

    Al-Mansur, Raiyan

    2011-01-01

    "Climate change is forcing vulnerable communities in developing countries to adapt to unprecedented climate stress. Developing countries like Bangladesh is especially vulnerable to climate change because of their geographic exposure; northern part of Bangladesh is gradually going to be desert with continued drought. At the same time, the southern part of Bangladesh is being threatened by cyclone and high tidal wave sinks of the saline water of sea. Due to limited adaptive capacities as well a...

  19. Assessment on Social Vulnerabilities to Climate Change – a Study on South-Western Coastal Region of Bangladesh

    OpenAIRE

    Laila, Fariya

    2013-01-01

    According to the Global Climate Risk Index, Bangladesh with its densely populated coastal areas is considered as one of the most vulnerable countries affected by climate change in the world. In this context, the goal of this research is to assess the social vulnerability of the south-western coastal communities of the country,which is becoming more vulnerable, trying to understand the underlying social conditions of coastal people who are dependent on limited natural resources. To do so, vuln...

  20. Vulnerability of rural households to climate change and extremes: Analysis of Chepang households in the Mid-Hills of Nepal

    OpenAIRE

    Piya, Luni; Maharjan, Keshav Lall; Joshi, Niraj Prakash

    2012-01-01

    Rural communities, who are dominantly dependent upon natural resources, have always been adjusting their livelihood against the vagaries of climate. With the global climate change, these communities have been placed in greater vulnerability as the weather and extreme events have become more unpredictable. In order to formulate suitable policy measures to address their livelihood, assessment of local level vulnerability is very important. This paper analyzes the micro-level vulnerability of ru...

  1. Assessing the Impacts of Local Knowledge and Technology on Climate Change Vulnerability in Remote Communities

    Directory of Open Access Journals (Sweden)

    Andrew Kliskey

    2011-03-01

    Full Text Available The introduction of new technologies into small remote communities can alter how individuals acquire knowledge about their surrounding environment. This is especially true when technologies that satisfy basic needs, such as freshwater use, create a distance (i.e., diminishing exposure between individuals and their environment. However, such distancing can potentially be countered by the transfer of local knowledge between community members and from one generation to the next. The objective of this study is to simulate by way of agent-based modeling the tensions between technology-induced distancing and local knowledge that are exerted on community vulnerability to climate change. A model is developed that simulates how a collection of individual perceptions about changes to climatic-related variables manifest into community perceptions, how perceptions are influenced by the movement away from traditional resource use, and how the transmission of knowledge mitigates the potentially adverse effects of technology-induced distancing. The model is implemented utilizing climate and social data for two remote communities located on the Seward Peninsula in western Alaska. The agent-based model simulates a set of scenarios that depict different ways in which these communities may potentially engage with their natural resources, utilize knowledge transfer, and develop perceptions of how the local climate is different from previous years. A loosely-coupled pan-arctic climate model simulates changes monthly changes to climatic variables. The discrepancy between the perceptions derived from the agent-based model and the projections simulated by the climate model represent community vulnerability. The results demonstrate how demographics, the communication of knowledge and the types of ‘knowledge-providers’ influence community perception about changes to their local climate.

  2. Vulnerability of sandy coasts to climate change and anthropic pressures: methodology and preliminary results

    Science.gov (United States)

    Idier, D.; Poumadère, M.; Vinchon, C.; Romieu, E.; Oliveros, C.

    2009-04-01

    1-INTRODUCTION Climate change is considered in the latest reports of the Intergovernmental Panel on Climate Change IPCC (2007) as unequivocal. Induced vulnerability of the system is defined as "the combination of sensitivity to climatic variations, probability of adverse effects, and adaptive capacity". Substantial methodological challenges remain, in particular estimating the risk of adverse climate change impacts and interpreting relative vulnerability across diverse situations. As stated by the IPCC, the "coastal systems should be considered vulnerable to changes in climate". In these areas, amongst the most serious impacts of sea-level rise (Nicholls, 1996) are erosion and marine inundation. Thus, the coast of metropolitan France, being composed of 31% sandy coasts, is potentially vulnerable, as it has been qualitatively assessed on the pilot coasts of Aquitaine and Languedoc-Roussillon in the RESPONSE project (Vinchon et al., 2008). Within the ANR VULSACO project (VULnerability of SAndy COast to climate change and anthropic pressure), the present day erosion tendencies as well as the potentially future erosion trends are investigated. The main objectives are to: (1) assess indicators of vulnerability to climate change for low-lying linear sandy coastal systems, from the shore to the hinterland, facing undergoing climate change and anthropic pressure until the 2030s; and (2) identify the aggravating or improving effect of human pressure on this vulnerability. This second issue is sometimes considered as a main driver of coastal risks. The methodology proposed in the project considers anthropic adaptation (or not) by putting decision makers in front of potential modifications of the physical system, to study the decision process and the choice of adaptation (or not). The coastal system is defined by its morphology, its physical characteristics and its land use. The time scales will range from short-term (days to weeks, e.g. time scale of extreme events) to

  3. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change.

    Directory of Open Access Journals (Sweden)

    Carlos Carroll

    Full Text Available Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth's surface to maintain constant climatic conditions. However, "analog-based" velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961-2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by

  4. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  5. Vul’Clim – Climate change vulnerability studies in the region Auvergne (France)

    OpenAIRE

    Bellocchi, Gianni; Martin, Raphaël; Shtiliyanova, Anastasiya; Ben Touhami, Haythem,; Carrère, Pascal

    2014-01-01

    The region Auvergne of France is a major livestock territory in Europe (beef and dairy cattle with permanent grasslands), with a place in climate change regional studies assisting policy makers and actors in identifying adaptation and mitigation measures. Vul’Clim is a research grant (Bourse Recherche Filière) of the region Auvergne and supported by the European Regional Development Fund (February 2014--‐September 2015), to develop model--‐ based vulnerability analysis approaches for a detail...

  6. Vulnerability Assessment of Agri-ecotourism Communities as Influenced by Climate Change

    OpenAIRE

    Hanilyn A. Hidalgo

    2015-01-01

    The growth of tourism in the Philippines can be largely attributed to nature-based destinations but communities in these areas largely depend on farming and fishing to sustain their day-to-day needs.  The need to capacitate the community’s social and human capital in addressing climate change impacts to their livelihood, properties and natural environment is deemed necessary to lessen their vulnerability issues in the management of agriecotourism destinations. The study aimed to 1.) character...

  7. Learning from the history of disaster vulnerability and resilience research and practice for climate change

    OpenAIRE

    Kelman, I.; J.C. Gaillard; Lewis, J; Mercer, J.

    2016-01-01

    Humanity has long sought to explain and understand why environmental processes and phenomena contribute to and interfere with development processes, frequently through the terms and concepts of ‘vulnerability’ and ‘resilience’. Many proven ideas and approaches from development and disaster risk reduction literature are not fully considered by contemporary climate change work. This chapter describes the importance of older vulnerability and resilience research for contemporary investigations i...

  8. Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability

    DEFF Research Database (Denmark)

    Hendriksen, Kåre

    2011-01-01

    Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability Kåre Hendriksen, PhD student, Aalborg University, Denmark The previous isolation of the Arctic will change as a wide range of areas increasingly are integrated into the globalized world....... Coinciding climate changes cause an easier access for worldwide market as well as for the extraction of coastal oil and mineral resources. In an attempt to optimize the fishing fleet by economic measures it is centralized to larger units, and the exports of unprocessed fish and shellfish to low wage...... countries, carrying out the processing before export, are increasing. Although the local populations often are able to adapt to climate change and exploit new seasonal fluxions and species, these developments leaves a series of smaller settlements without proper basis for commercially viable activities and...

  9. Implications of the Hidden Spatiotemporal Vulnerability of US Building Energy Demand to Climate Change

    Science.gov (United States)

    Huang, J.; Gurney, K. R.

    2015-12-01

    Energy consumption in US buildings, accounting for 41% of primary energy consumption in 2010, is particularly vulnerable to climate change due to the direct relationship between space heating/cooling and outside temperature. Past assessments of climate change impacts on building energy consumption have neglected spatial variations in the "balance point" temperature and the extremes at smaller spatiotemporal scales, making the implications of local-scale vulnerability incomplete. Here we develop state-specific empirical relationships between building energy consumption and temperature to explore the vulnerability of building energy supply and demand under climate change. We find increases in summertime electricity demand exceeding 20% and decreases in wintertime non-electric energy demand of more than 30% in some states by the end of the century. When examined annually at the national scale, these extremes are hidden by numerical cancellation. The financial implications vary spatially with increases in total net building energy expenditures in some states (as much as 3 billion/year) while in others, costs decline (as much as 1 billion/year). Integrated across the contiguous US, these variations result in a net savings of roughly 1.4 billion/year. However, this must be weighed against the cost of adding electricity generation capacity ranging from 13.9 billion/year to 52.2 billion/year in order to maintain the electricity grid's reliability in summer. These results have wide implications for climate policy, the social cost of carbon and energy supply planning. It also demonstrates the importance of representing the climate change impacts on energy consumption at scales relevant to human decisions and actions.Energy consumption in US buildings, accounting for 41% of primary energy consumption in 2010, is particularly vulnerable to climate change due to the direct relationship between space heating/cooling and outside temperature. Past assessments of climate change

  10. Climate Change: Vulnerability Assessment for Water Resources Management in South Florida

    Science.gov (United States)

    Obeysekera, J.

    2008-12-01

    South Florida is home to over 7 million people and its population is projected to increase to over 10 million people by 2025 and possibly 12-15 million by 2050. Through Federal/State/Local partnerships, the Greater Everglades is being restored under numerous water resources management projects requiring large investments of time and money. Recent climate change projections as published in the most recent report of the Intergovernmental Panel on Climate Change (IPCC) have the potential to cause significant impacts on flood control and water supply functions of water resources management, and on existing and future ecosystem restoration projects in south Florida. More recent estimates of sea level rise for south Florida are much higher than those in the IPCC report and if such projections become a reality, consequences may be disastrous. It is extremely important to understand the extent of global projections for various emission scenarios, their ability to represent the climatology of local regions, and the potential vulnerabilities of both climate change and sea level rise on water resources management. Implications of natural variability of the climate and teleconnections in South Florida are understood with a reasonable degree of certainty. Recent emphasis on climate change due to human-induced impacts have generated new questions on the sustainability of coastal environments with a heightened concern for the success of large-scale environmental projects throughout South Florida. An assessment of the precipitation projections of the General Circulation Models (GCMs) shows that their ability to represent the landscape of Florida and predict historical climate patterns may be limited. In order to understand the vulnerability of the water management system in south Florida under changing precipitation and evapotranspiration patterns, a sensitivity analysis using a regional-scale, hydrologic simulation model was conducted. The results show the vulnerability of

  11. From Risk Towards Resilience: Assessing Vulnerability and Adaptability to Climate Change in the Mekong Delta

    Science.gov (United States)

    Ling, F. H.; Yasuhara, K.; Tamura, M.; Tabayashi, Y.

    2012-12-01

    While efforts to mainstream climate adaptation have only begun in recent years, many developing regions are already taking measures to proof themselves from various natural disasters, including storm surges, flooding, land subsidence, and erosion. In the Asia-Pacific region, one of the most vulnerable in the world, climate resilience is urgently needed due to sea level rise and the increasing frequency and intensity of climate events. Yet, many regions and communities are unprepared due to insufficient awareness of disaster risks. In order to utilize the science of the changing environment more effectively, there is a critical need to understand the social context and perception of those who are affected by climate change. Using the Mekong Delta region in Vietnam as an example, we discuss our current efforts to develop a vulnerability and adaptation index for building climate resilience in the Asia-Pacific Region. A survey of current adaptation efforts in this region will be shown and preliminary findings from our survey to understand the perception of disaster risk in this region will be discussed.

  12. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    Science.gov (United States)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  13. Climate change in Germany. Vulnerability and adaption of climate sensitive sectors; Klimawandel in Deutschland. Vulnerabilitaet und Anpassungsstrategien klimasensitiver Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Zebisch, Marc; Grothmann, Torsten; Schroeter, Dagmar; Hasse, Clemens; Fritsch, Uta; Cramer, Wolfgang [Potsdam Institut fuer Klimaforschung, Potsdam (Germany)

    2005-08-15

    The objectives of this study were the following: documentation of existing knowledge on global change (and particularly climate change) in Germany and to analysis of its current and potential future impacts on seven climate-sensitive sectors (water management, agriculture, forestry, biodiversity/nature conservation, health, tourism and transport).; the evaluation of the present degree of adaptation and the adaptive capacity of these climate-sensitive sectors to global change; conclusions on the vulnerability to global change of sectors and regions in Germany by considering potential global change impacts, degrees of adaptation and adaptive capacity; and the discussion of the results of the study with decision-makers from government, administration, economy and society, in order to develop a basis for the development of strategies of adaptation to global change in Germany.

  14. Vulnerability of the boreal forest to climate change: are managed forests more susceptible?

    International Nuclear Information System (INIS)

    This paper postulates that forests dominated by younger seral stages are less vulnerable to climate change that those composed of mature and overmature stands. To support this analysis, an overview of expected changes in climate conditions was provided. Expected changes include higher maximum temperatures, higher minimum temperatures and a decrease in periods of intense cold and fewer frost days; reduction in the diurnal temperature range; an increase in the apparent heat index; greater numbers of intense precipitation; and, increased risk of drought associated with air mass movements. A comparison between conditions in a managed forest mosaic and natural forests was made, with managed forests differing due to efforts to regulate the age structure. The inversion in the age structure of forest mosaics creates significant changes in structural characteristics and composition, including greater hardwood components and more even-aged stands. It was concluded that in Canada, managed boreal forests are younger and have less black spruce and more hardwoods and fir, making younger forests less vulnerable to fire and more amenable to fire control due to increased accessibility. It was also noted that because of their relative youth, managed forests are more vulnerable to regeneration failure and that managed forests with more balsam fir and trembling aspen are at greater risk for insect outbreaks. In addition, wind throw, a threat to older forests, is not significant in managed forests. 15 refs., 1 tab., 2 figs

  15. Vulnerability Assessment of Natural Disasters for Small and Mid-Sized Streams due to Climate Change and Stream Improvement

    Science.gov (United States)

    Choi, D.; Jun, H. D.; Kim, S.

    2012-04-01

    Vulnerability assessment plays an important role in drawing up climate change adaptation plans. Although there are some studies on broad vulnerability assessment in Korea, there have been very few studies to develop and apply locally focused and specific sector-oriented climate change vulnerability indicators. Especially, there has seldom been any study to investigate the effect of an adaptation project on assessing the vulnerability status to climate change for fundamental local governments. In order to relieve adverse effects of climate change, Korean government has performed the project of the Major Four Rivers (Han, Geum, Nakdong and Yeongsan river) Restoration since 2008. It is expected that water level in main stream of 4 rivers will be dropped through this project, but flood effect will be mainly occurred in small and mid-sized streams which flows in main stream. Hence, we examined how much the project of the major four rivers restoration relieves natural disasters. Conceptual framework of vulnerability-resilience index to climate change for the Korean fundamental local governments is defined as a function of climate exposure, sensitivity, and adaptive capacity. Then, statistical data on scores of proxy variables assumed to comprise climate change vulnerability for local governments are collected. Proxy variables and estimated temporary weights of them are selected by surveying a panel of experts using Delphi method, and final weights are determined by modified Entropy method. Developed vulnerability-resilience index was applied to Korean fundamental local governments and it is calculated under each scenario as follows. (1) Before the major four rivers restoration, (2) 100 years after represented climate change condition without the major four rivers restoration, (3) After the major four rivers restoration without representing climate change (this means present climate condition) and (4) After the major four rivers restoration and 100 years after represented

  16. The nexus of oil, conflict, and climate change vulnerability of pastoral communities in northwest Kenya

    Science.gov (United States)

    Schilling, J.; Locham, R.; Weinzierl, T.; Vivekananda, J.; Scheffran, J.

    2015-11-01

    Turkana, in northwest Kenya, is the country's poorest and least developed county. Pastoralism in Turkana is well adapted to the harsh climatic conditions, but an increase in drought frequency associated with global climate change and intensifying violent conflicts between pastoral groups poses significant challenges for local communities. The conflicts are especially violent in the border region between the Turkana and the Pokot communities. In this very region significant oil reserves have recently been found. The first aim of this paper is to analyse how the oil exploration affects the communities' vulnerability to climate change. Secondly, the paper explores the risk of the oil explorations creating new conflicts or aggravating existing ones. The primary method of the study is qualitative field research supplemented with a geo-spatial analysis of conflict data. The field research was conducted in October 2013 and April 2014 in three villages with different levels of engagement with the oil exploration. At the time of the research, oil exploration was expected close to Lokwamosing, while it had recently started in the vicinity of Lopii and had been ongoing for a longer time close to Nakukulas. The findings suggest that the oil exploration increases the community's vulnerability to climate change. Further, unmet community expectations for water, employment and development pose a significant risk for violent conflict between local communities and the operating oil company. Intercommunal conflict over water and land could increase as well.

  17. The nexus of oil, conflict, and climate change vulnerability of pastoral communities in Northwest Kenya

    Directory of Open Access Journals (Sweden)

    J. Schilling

    2015-07-01

    Full Text Available Turkana, in northwest Kenya, is the country's poorest and least developed county. Pastoralism in Turkana is well adapted to the harsh climatic conditions but an increase in drought frequency associated with global climate change and intensifying violent conflicts between pastoral groups, poses significant challenges for local communities. The conflicts are especially violent in the border region between the Turkana and the Pokot communities. In this very region significant oil reserves have been found recently. The first aim of this paper is to analyse how the oil exploration affects the communities' vulnerability to climate change. Secondly, the paper explores the risk of the oil explorations to create new conflicts or aggravate existing ones. The primary method of the study is qualitative field research supplemented with a geo-spatial analysis of conflict data. The field research was conducted in October 2013 and April 2014 in three villages with different levels of engagement with the oil exploration. At the time of the research, oil exploration was expected close to Lokwamosing while it had recently started in the vicinity of Lopii and had been ongoing for a longer time close to Nakukulas. The findings suggest that the oil exploration increases the community's vulnerability to climate change. Further, unmet community expectations for water, employment and development pose a significant risk for violent conflict between local communities and the operating oil company. Intercommunal conflict over water and land could increase as well.

  18. Vulnerability Assessment of Agri-ecotourism Communities as Influenced by Climate Change

    Directory of Open Access Journals (Sweden)

    Hanilyn A. Hidalgo

    2015-01-01

    Full Text Available The growth of tourism in the Philippines can be largely attributed to nature-based destinations but communities in these areas largely depend on farming and fishing to sustain their day-to-day needs.  The need to capacitate the community’s social and human capital in addressing climate change impacts to their livelihood, properties and natural environment is deemed necessary to lessen their vulnerability issues in the management of agriecotourism destinations. The study aimed to 1. characterize and rank hazards that are likely to affect the nature-based tourism communities, 2. describe the nature-based tourism communities’ current sensitivity and exposure to climate stresses; and 3. estimate future vulnerability and risks of nature-based tourism communities.  Three agri-ecotourism communities were selected using five criteria such as attraction uniqueness, hazard type, risk level, tourism dependency and market potential.  The areas were subjected to tourism vulnerability case assessment focusing on services and energy; human health; food, security, water and agriculture; business and continuity; and biodiversity and culture.   Calaguas Island’s top hazards are typhoon, drought and strong wind.  Pecuaria Farm’s main hazards are drought, rat infestation and grass fire while Bulusan Lake’s major hazards are heavy rains and ash falls brought by volcanic eruption.  Generally, vulnerability is high in the human health, services and energy sectors of tourism. The vulnerability of the three agri-ecotourism sites was intensified by factors that merely characterize the kind of community they have: a high marketing dependency, b poor political will, c low level of awareness and preparedness, d poor farming practices and e lack of tourism-related livelihood options. Destinations with functioning agricultural areas are the most affected sites due to an estimated increase in the temperature and increase in rainfall precipitations.  Poverty

  19. Application of the new scenario framework for climate change research: Future social vulnerability in large urban areas

    Science.gov (United States)

    Rohat, Guillaume; Flacke, Johannes; Dao, Hy

    2016-04-01

    It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more

  20. On the frontiers of climate and environmental change. Vulnerabilities and adaptions in central Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Bruun, Ole; Casse, Thorkil (eds.) [Roskilde Univ. (Denmark). Dept. of Society and Globalization

    2013-06-01

    Based on new research in Central Vietnam with inputs from a range of disciplines. Suggests a broader, interdisciplinary approach to climate change adaptation and environmental planning. Advises steps on how to formulate a research framework for analyses of social and economic impacts of climate changes, using both quantitative and qualitative techniques. Concludes that climate change adaptation will not be successful unless integrated with environmental planning takes into account local man-made environmental changes, such as hydropower construction and changing forestry and land-use patterns. This book is intended to fill a gap in climate-change literature by providing a comprehensive regional study and identifying the overall adaptation challenges in a real-life context. The way in which possible climate impacts interact with a range of other challenges in agriculture, forestry, disaster planning, health care, general economic development, and common livelihoods are presented, and it is argued that greater realism and broader vision are needed in order to address the climate challenge. For instance, unsuitable land- use changes in both coastal and highland regions may increase the vulnerability of rural people, many of whom are already living on the fringes. The author(s) also state(s) that, depending on context, it may be pertinent to address short-term and unsustainable resource use, irregularities in local land management, ineffective governance and social inequality, which are all likely to aggravate the impact of external climate and weather. Not least, it is imperative to integrate general environmental management with any climate-change adaptation effort.

  1. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.

    Directory of Open Access Journals (Sweden)

    Valerie Steen

    Full Text Available The Prairie Pothole Region (PPR of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs. We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%. However, individual species projections varied widely, from +8% (Upland Sandpiper to -100% (Wilson's Snipe. Variable importance ranks indicated that land cover (wetland and upland variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.

  2. Vulnerability and adaptation to climate change in the Comoe River Basin (West Africa).

    Science.gov (United States)

    Yéo, Wonnan Eugène; Goula, Bi Tié Albert; Diekkrüger, Bernd; Afouda, Abel

    2016-01-01

    Climate change is impacting water users in many sectors: water supply, farming, industry, hydropower, fishing, housing, navigation and health. Existing situations, like population growth, movement of populations from rural to urban areas, poverty and pollution can aggravate the impacts of climate change. The aim of the study is to evaluate the vulnerability of different water user groups to climate change and define communities' adaptation strategies in the Comoe River Basin. Information was collected on communities' concerns and perception on changes in climate and potential adaptation measures and strategies. Results show that 95 % of the sample in the study communities had heard of it and are aware that climate change is occurring. They have been experiencing changes in economic activity and cropping pattern, reduced water level in rivers, crop failure, delay in cropping season, new pests and diseases, food insecurity, drop in income and decline in crop yield. Results also show that communities employ various adaptation strategies including crops diversification, substitution and calendar redefinition, agroforestry, borrowing from friends and money lenders and increasing fertilizer application. PMID:27386296

  3. Power-generation system vulnerability and adaptation to changes in climate and water resources

    Science.gov (United States)

    van Vliet, Michelle T. H.; Wiberg, David; Leduc, Sylvain; Riahi, Keywan

    2016-04-01

    Hydropower and thermoelectric power together contribute 98% of the world’s electricity generation at present. These power-generating technologies both strongly depend on water availability, and water temperature for cooling also plays a critical role for thermoelectric power generation. Climate change and resulting changes in water resources will therefore affect power generation while energy demands continue to increase with economic development and a growing world population. Here we present a global assessment of the vulnerability of the world’s current hydropower and thermoelectric power-generation system to changing climate and water resources, and test adaptation options for sustainable water-energy security during the twenty-first century. Using a coupled hydrological-electricity modelling framework with data on 24,515 hydropower and 1,427 thermoelectric power plants, we show reductions in usable capacity for 61-74% of the hydropower plants and 81-86% of the thermoelectric power plants worldwide for 2040-2069. However, adaptation options such as increased plant efficiencies, replacement of cooling system types and fuel switches are effective alternatives to reduce the assessed vulnerability to changing climate and freshwater resources. Transitions in the electricity sector with a stronger focus on adaptation, in addition to mitigation, are thus highly recommended to sustain water-energy security in the coming decades.

  4. Gender and climate change in the Indian Hindu-Kush Himalayas: global threats, local vulnerabilities

    Directory of Open Access Journals (Sweden)

    M. V. Ogra

    2014-11-01

    Full Text Available Global climate change has numerous implications for members of mountain communities who feel the impacts in both physical and social dimensions. In the Western Himalayas of India, a majority of residents maintain a livelihood strategy that includes a combination of subsistence or small-scale agriculture, seasonal pastoral migration, male out-migration, and localized natural resource extraction. Particularly under conditions of heavy male outmigration, but throughout the region, mountain women play a key role in providing labor and knowledge related to the management of local natural resources, yet often lack authority in related political and economic decision-making processes. This gap has important implications for addressing the impacts of climate change: while warming temperatures, irregular patterns of precipitation and snowmelt, and changing biological systems present challenges to the viability of these traditional livelihood portfolios throughout the region, mountain women increasingly face new challenges in their roles as household managers that have not adequately been emphasized in larger scale planning for climate change adaptation and mitigation. These challenges are complex in nature, and are shaped not only by gender issues but also interacting factors such as class, caste, ethnicity, and age (among others. In this paper, we review the main arguments behind the discursive gender/climate change nexus, discuss the implications for gendered vulnerabilities and transformation of adaptive capacities in the region, and suggest ways that researchers and policymakers seeking to promote "climate justice" can benefit from the incorporation of gender-based perspectives and frameworks.

  5. Gender and climate change in the Indian Hindu-Kush Himalayas: global threats, local vulnerabilities

    Science.gov (United States)

    Ogra, M. V.; Badola, R.

    2014-11-01

    Global climate change has numerous implications for members of mountain communities who feel the impacts in both physical and social dimensions. In the Western Himalayas of India, a majority of residents maintain a livelihood strategy that includes a combination of subsistence or small-scale agriculture, seasonal pastoral migration, male out-migration, and localized natural resource extraction. Particularly under conditions of heavy male outmigration, but throughout the region, mountain women play a key role in providing labor and knowledge related to the management of local natural resources, yet often lack authority in related political and economic decision-making processes. This gap has important implications for addressing the impacts of climate change: while warming temperatures, irregular patterns of precipitation and snowmelt, and changing biological systems present challenges to the viability of these traditional livelihood portfolios throughout the region, mountain women increasingly face new challenges in their roles as household managers that have not adequately been emphasized in larger scale planning for climate change adaptation and mitigation. These challenges are complex in nature, and are shaped not only by gender issues but also interacting factors such as class, caste, ethnicity, and age (among others). In this paper, we review the main arguments behind the discursive gender/climate change nexus, discuss the implications for gendered vulnerabilities and transformation of adaptive capacities in the region, and suggest ways that researchers and policymakers seeking to promote "climate justice" can benefit from the incorporation of gender-based perspectives and frameworks.

  6. The Paris-Nairobi climate initiative. Access to clean energy for all in Africa and countries vulnerable to climate change. Access to energy, sustainable development and climate change

    International Nuclear Information System (INIS)

    The first part of this report highlights the importance of a universal access to energy, the role of public policies and renewable energies, the need to implement sustainable economic models for energy services, and indicates the major objectives and essential actions for these purposes. The second part outlines the weakness of electricity production in Africa, the degradation of the energy mix balance, the vulnerability to climate change, and the fact that Africa, like other countries vulnerable to climate change, possess huge and unexploited renewable energy resources (biomass, hydroelectricity, geothermal, solar, wind). The third part proposes an approach to energy services by developing sustainable cooking, supplying energy to support rural development and to poles of economic growth, by developing sustainable cities (notably in transports and buildings), and by developing national and regional electricity grids. The last part addresses the issue of energy financing in developing countries

  7. Guidebook for territories' support in the analysis of their socio-economical vulnerability to climate change

    International Nuclear Information System (INIS)

    The work of the inter-ministerial group 'Impacts of Climate Change, Adaptation and Associated Costs for France', which met between March 2007 and October 2009, led to a sector-based assessment of all climate change related impacts and of associated adaptation measures. The aim was to obtain quantified elements that could underpin public policy decision-making and especially development of the National Adaptation Plan. While the sectoral analyses focused on quantifying the costs of adaptation, the approach of the 'Territories' group, co-steered by the Datar (regional development delegation) and Ademe (agency for energy management and environment), addressed the subject of interactions between players and activities, both spatial (sharing of resources between different uses, etc.) and temporal (transition from one situation to another, etc.) and the corresponding means for adjustment. It was in this context that the SOeS proposed a methodology for diagnosis of the socio-economic vulnerability of a given sub-national territory in the face of climate change. This document provides a broad-brush outline of the accompanying guidelines developed by Sogreah Consultants SAS for use by local players. A three step approach is followed to draw up the vulnerability profile of a territory: 1 - characterising the territory by the identification of the priority activities and physical features; 2 - using the analysis tools to produce a matrix of indices of vulnerability to climate change per hazard; 3 - drawing up an initial vulnerability profile by bringing together the information from the matrix and that from feedback, either by activity or group of activities, or by environment, depending on aims. The profile leads to identification of the important issues as well as allowing identification of potential impacts to be studied in more depth. Guidelines were tested in three pilot territories facing different climate change issues: Wateringues, in the Nord - Pas-de-Calais region

  8. Climate and Health Vulnerability to Vector-Borne Diseases: Increasing Resilience under Climate Change Conditions in Africa

    Science.gov (United States)

    Ceccato, P.

    2015-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases ( malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities; ministries of health; the WMO Global Framework for Climate and Services; and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above with examples in South Africa, Zimbabwe, Tanzania and Malawi.

  9. Vulnerability of Rice Production in Mekong River Delta under Impacts from Floods, Salinity and Climate Change

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Thuy

    2015-01-01

    Full Text Available This study sought to estimate the floods and salinity impact index and climate change vulnerability index for the rice farming provinces in Mekong River Delta. In both indexes, Tra Vinh province and the communes within it have the highest index value, followed by other coastal provinces. The estimation showed that the rice production in these areas are being threatened and will be worsen if there is no appropriate plan to cope with the changes in climate condition and extreme events. The results for the simulation model of paddy yield under different scenarios showed decreases in the paddy yield in Mekong River Delta. Specifically, the yield of Spring paddy decreases 6%, Autumn paddy decreases 2%, Winter paddy decreases 4% and Autumn-winter paddy decreases 4% in 2050. From these results, the climate change adaptation and mitigation policies in this delta is suggested to be focused reducing the exposure to sea level rise; upgrading the irrigation system for paddy planting since the coastal provinces have high rate of rain-fed paddy, vulnerability can also be reduced by enhancing the adaptive capacity of provinces through subsidizing and providing farmers with new paddy varieties which are more tolerant to salinity.

  10. Vulnerability of High-Quality Winegrowing to Climate Change in California

    Science.gov (United States)

    Cahill, K. N.; Field, C. B.; Matthews, M. A.; Lobell, D. B.

    2009-05-01

    We took an interdisciplinary approach to examine the climate sensitivity and adaptive capacity of both the ecological and social systems of winegrowing. In a three-year study, we used field, laboratory, modeling, and anthropological approaches to examine the vulnerability of the wine industry to climate change. We developed models of winegrape yields based on the effects of historical temperature and precipitation in California, and used these findings to project future yields under climate change. We examined the concentrations of phenolic compounds important to wine quality (anthocyanins and tannins) in Pinot noir grapes from across a range of mesoclimates. We found that increased concentrations of these phenolic compounds were correlated with cool temperatures in the fall the year before harvest, warm temperatures from budburst to bloom, and cool temperatures from bloom to veraison, and with lower light intensities in these highly sun-exposed vines. We also conducted interviews to examine the adaptation responses of winegrowers to environmental stresses. We found that growers undertake a wide variety of environmental management strategies in the vineyard, most of which are individual in nature, and either in response to an existing stress, or in anticipation of an imminent stress. Finally, we examined the potential adaptive capacity of the wine industry to climate change, based on its awareness of climate change, ability to react, and actual actions and barriers to action. We conclude that winegrowers have a fairly high adaptive capacity, but that successful adaptation in practice depends on including proactive and coordinated community responses, which are beginning to develop.

  11. A Climate Change Vulnerability Assessment Report for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. [Abt Environmental Research, Boulder, CO (United States); O' Grady, M. [Abt Environmental Research, Boulder, CO (United States); Renfrow, S. [Abt Environmental Research, Boulder, CO (United States)

    2015-09-03

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), in Golden, Colorado, focuses on renewable energy and energy efficiency research. Its portfolio includes advancing renewable energy technologies that can help meet the nation's energy and environmental goals. NREL seeks to better understand the potential effects of climate change on the laboratory--and therefore on its mission--to ensure its ongoing success. Planning today for a changing climate can reduce NREL's risks and improve its resiliency to climate-related vulnerabilities. This report presents a vulnerability assessment for NREL. The assessment was conducted in fall 2014 to identify NREL's climate change vulnerabilities and the aspects of NREL's mission or operations that may be affected by a changing climate.

  12. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf.

    Directory of Open Access Journals (Sweden)

    Jonathan A Hare

    Full Text Available Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region. These

  13. Measuring the vulnerability of marine social-ecological systems: a prerequisite for the identification of climate change adaptations

    Directory of Open Access Journals (Sweden)

    Sarah J. Metcalf

    2015-06-01

    Full Text Available Reducing the vulnerability of coastal communities to marine climate change requires that communities have some intrinsic capacity to adapt. To assist adaptation planning and the implementation of adaptation strategies, identifying barriers and enablers to adaptation is important. Adaptive capacity, resource dependence, local climate change exposure and biological sensitivity were used to assess socioeconomic vulnerability to climate change in three Australian coastal communities: St Helens, Tasmania; Bowen, Queensland; and Geraldton, Western Australia. Higher adaptive capacity was associated with larger population size (i.e., Geraldton whereas greater resource dependence, and lower human and natural capital were associated with smaller populations (St Helens and Bowen. Socioeconomic vulnerability was greatly influenced by climate exposure and sensitivity with the moderately sized Bowen having the highest socioeconomic vulnerability to climate change. Adaptation strategies that utilized available assets, improved adaptive capacity, or reduced socioeconomic vulnerability were identified in partnership with local communities, including increased and diversified employment opportunities, the re-establishment of local fish markets, and improved education and communication. The level of resources, or "capitals," available to communities can indicate where barriers and enablers to adaptation exist. Identified barriers to adaptation included a heavy reliance on one sector for employment and a lack of physical capital. We demonstrate that knowledge of intrinsic community characteristics can be beneficial for prioritizing adaptation actions to reduce socioeconomic vulnerability to marine climate change.

  14. Climate and Population Health Vulnerabilities to Vector-Borne Diseases: Increasing Resilience Under Climate Change Conditions in Africa

    Science.gov (United States)

    Ceccato, P.; McDonald, K. C.; Podest, E.; De La Torre Juarez, M.; Kruczkiewicz, A.; Lessel, J.; Jensen, K.; Thomson, M. C.

    2014-12-01

    The International Research Institute for Climate and Society (IRI), the City University of New York (CUNY) and NASA Jet Propulsion Laboratory (JPL) in collaboration with NASA SERVIR are developing tools to monitor climate variables (precipitation, temperature, vegetation, water bodies, inundation) that help projects in Africa to increase resilience to climate change for vector-borne diseases (i.e. malaria, trypanosomiasis, leishmaniasis, and schistosomiasis). Through the development of new products to monitor precipitation, water bodies and inundation, IRI, CUNY and JPL provide tools and capacity building to research communities, ministries of health and World Health Organization in Africa to: 1) Develop research teams' ability to appropriately use climate data as part of their research 2) Enable research teams and ministries to integrate climate information into social and economic drivers of vulnerability and opportunities for adaptation to climate change 3) Inform better policies and programs for climate change adaptation. This oral presentation will demonstrate how IRI, CUNY, and JPL developed new products, tools and capacity building to achieve the three objectives mentioned above.

  15. European Master-Doctorate Course on "Vulnerability of Cultural Heritage to Climate Change"

    Science.gov (United States)

    Lefèvre, R.-A.

    2009-04-01

    « Vulnerability of Cultural Heritage to Climate Change », European Master-Doctorate Course, Council of Europe, Strasbourg 7-11 September 2009 The character of Cultural Heritage is closely related to the climate, and the urban landscape and the built heritage have been designed with the local climate in mind. The stability of Cultural Heritage is, therefore, closely tied to its interactions with the ground and the atmosphere. Climate Change is thus expected to have either catastrophic or subtle effects on Cultural Heritage materials and Cultural Landscapes. The major aim of the 2009 Strasbourg Course is to ensure that young European students are informed on these important problems and will be able in the future to undertake rigorous ongoing scientific monitoring of changes in conditions of Cultural Heritage. The Programme of the Course will cover the following topics: • Heritage Climatology • Principles of Mitigation and Adaptation of Cultural Heritage to Climate Change • Impact of Climate Change on building structures • Dose-Response and Damage Functions for materials in a Changing Climate • Modelling sea salts transport and deposition • Modelling wetting and drying of historic buildings • Impact of Climate Change on building materials: stone, mortar, modern glass, stained glass windows • Impact of Climate Change on organic materials • Biological impact of Climate Change on Cultural Heritage • Sea level rise models and possible application to Cultural Heritage • Past, present and future for Venice • The policies and action plans of International Organisations (Council of Europe, UNESCO, ICCROM) The Course is addressed to young people with scientific background: physicists, chemists, geologists, biologists, engineers, because of the high scientific level of the background required to follow the lectures. Teaching will be delivered in English without any simultaneous translation. The teachers belong to European Universities, National

  16. Vulnerability Assessment of Environmental and Climate Change Impacts on Water Resources in Al Jabal Al Akhdar, Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Mohammed Saif Al-Kalbani

    2014-10-01

    Full Text Available Climate change and its consequences present one of the most important threats to water resources systems which are vulnerable to such changes due to their limited adaptive capacity. Water resources in arid mountain regions, such as Al Jabal Al Akhdar; northern Sultanate of Oman, are vulnerable to the potential adverse impacts of environmental and climate change. Besides climatic change, current demographic trends, economic development and related land use changes are exerting pressures and have direct impacts on increasing demands for water resources and their vulnerability. In this study, vulnerability assessment was carried out using guidelines prepared by United Nations Environment Programme (UNEP and Peking University to evaluate four components of the water resource system: water resources stress, water development pressure, ecological health, and management capacity. The calculated vulnerability index (VI was high, indicating that the water resources are experiencing levels of stress. Ecosystem deterioration was the dominant parameter and management capacity was the dominant category driving the vulnerability on water resources. The vulnerability assessment will support policy and decision makers in evaluating options to modify existing policies. It will also help in developing long-term strategic plans for climate change mitigation and adaptation measures and implement effective policies for sustainable water resources management, and therefore the sustenance of human wellbeing in the region.

  17. Climate hotspots: key vulnerable regions, climate change and limits to warming

    NARCIS (Netherlands)

    Hare, W.; Cramer, W.; Schaeffer, M.; Battaglini, A.; Jaeger, C.

    2011-01-01

    Defining and operationalizing Article 2 of the UNFCCC remains a challenge. The question of what is dangerous climate change is not a purely scientific one, as danger necessarily has a subjective dimension and its definition requires judgment and precaution. The papers in this special issue of Region

  18. Vulnerability and adaptation of ecologically sensitive mangrove habitats to the changing climate

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Kulkarni, V.A.; Verlekar, X.N.

    stream_size 11464 stream_content_type text/plain stream_name Proc_COMPASS_2008_15.pdf.txt stream_source_info Proc_COMPASS_2008_15.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Proceedings... of Conference on Marine Problems and Specific Solutions, COMPASS2008, June 15-18, 2008, Maldives Vulnerability and Adaptation of Ecologically Sensitive Mangrove Habitats to the Changing Climate T. G. Jagtap1, V. A. Kulkarni1, X. N. Verlekar1...

  19. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    Directory of Open Access Journals (Sweden)

    Camilo Mora

    2015-06-01

    Full Text Available Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5, suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation. Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5, underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

  20. Climate Change Vulnerabilities and Adaptation Options for Forest Vegetation Management in the Northwestern USA

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2016-03-01

    Full Text Available Recent vulnerability assessments, conducted in diverse regions in the northwestern United States, indicate that many commonalities exist with respect to projected vulnerabilities to climate change. Dry forests are projected to have significant changes in distribution and abundance of species, partially in response to higher temperature and lower soil moisture, but mostly in response to projected increases in extreme events and disturbances—drought, wildfire, and insect outbreaks. Wildfire and mountain pine beetles have caused extensive mortality across millions of hectares in this region during the past decade, and wildfire area burned is projected to increase 200%–300% by mid-21st century. Science–management partnerships associated with recent assessments have identified an extensive list of adaptation options, including both strategies (general planning and tactics (on-the-ground projects. Most of the options focus on increasing resilience to disturbances and on reducing current stressors to resource conditions. Adaptation options are generally similar across the biogeographically diverse region covered by assessments, suggesting that there may be a limit on the number of feasible responses to climate change. Federal agencies in the northwestern United States are now using these assessments and adaptation approaches to inform sustainable resource management and planning, mostly through fine tuning of existing practices and policies.

  1. The Effects of and Responses to Climate Change - A case study of vulnerability to climate change in two rural communities of coastal Vietnam

    OpenAIRE

    Sousa De Almeida, Frederick Alberto Rasmussen; Aunsborg, Niels Asger; Lyduch, Jakob; Arnth Jacobsen, Pi

    2015-01-01

    Throughout the project an examination of vulnerability to climate change is performed. The examination will be based on fieldwork in two villages in Central Vietnam, including 18 qualitative interviews, focusing on accounts by the villagers on the lives and livelihood strategies. The examination draws on theoretical approaches and conceptualizations from scholars within the field of vulnerability research, and focuses especially on the social dimensions that cause the villagers to be more vul...

  2. Vulnerability of the Barents Sea environment to climate changes: a review of the current assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gelfan, A.; Danilov-Danilyan, V.

    2009-07-15

    Authors' conclusion: Climate change is not considered to be just 'one more stress' on the ecosystem, but rather it will create complex and dynamic changes in the environment that may alter the level of its vulnerability. Cumulative effects can be defined as changes to the environment that are caused by an action in combination with other past, present and future human actions (Environment Canada 2003). The magnitude and effects of multiple stresses can be equal to the sum of the individual effects (additive effects) or they may strengthen or weaken each other (positive or negative feedbacks). To understand complex interactions within the system atmosphere-land surface-ocean at regional scales and to assess influence of the environmental changes on the ecological conditions, sophisticated models should be developed allowing to account for regional peculiarities of these systems. Development of such models is considered as one of the main challenge of the Earth system science. (author)

  3. A Training Partnership Focused on Climate Change Impact on Water Resources and Coastal Vulnerabilities

    Science.gov (United States)

    Abshire, W. E.; Brekke, L. D.; Arnold, J. R.

    2015-12-01

    -technical staff in many areas of climate science and water change management as well as training technical staff in topics related to coastal vulnerabilities and sea level change are underway. New self-paced training and live instructor courses will be developed to support these efforts and details will be provided in the presentation.

  4. Use of the NatureServe Climate Change Vulnerability Index as an Assessment Tool for Reptiles and Amphibians: Lessons Learned

    Science.gov (United States)

    Tuberville, Tracey D.; Andrews, Kimberly M.; Sperry, Jinelle H.; Grosse, Andrew M.

    2015-10-01

    Climate change threatens biodiversity globally, yet it can be challenging to predict which species may be most vulnerable. Given the scope of the problem, it is imperative to rapidly assess vulnerability and identify actions to decrease risk. Although a variety of tools have been developed to assess climate change vulnerability, few have been evaluated with regard to their suitability for certain taxonomic groups. Due to their ectothermic physiology, low vagility, and strong association with temporary wetlands, reptiles and amphibians may be particularly vulnerable relative to other groups. Here, we evaluate use of the NatureServe Climate Change Vulnerability Index (CCVI) to assess a large suite of herpetofauna from the Sand Hills Ecoregion of the southeastern United States. Although data were frequently lacking for certain variables (e.g., phenological response to climate change, genetic variation), sufficient data were available to evaluate all 117 species. Sensitivity analyses indicated that results were highly dependent on size of assessment area and climate scenario selection. In addition, several ecological traits common in, but relatively unique to, herpetofauna are likely to contribute to their vulnerability and need special consideration during the scoring process. Despite some limitations, the NatureServe CCVI was a useful tool for screening large numbers of reptile and amphibian species. We provide general recommendations as to how the CCVI tool's application to herpetofauna can be improved through more specific guidance to the user regarding how to incorporate unique physiological and behavioral traits into scoring existing sensitivity factors and through modification to the assessment tool itself.

  5. A vulnerability tool for adapting water and aquatic resources to climate change and extremes on the Shoshone National Forest, Wyoming

    Science.gov (United States)

    Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.

    2011-12-01

    Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results

  6. Developing a Pilot Indicator System for U.S. Climate Changes, Impacts, Vulnerabilities, and Responses

    Science.gov (United States)

    Kenney, M. A.; Janetos, A.; Arndt, D. S.; Pouyat, R. V.; Aicher, R.; Lloyd, A.; Malik, O.; Reyes, J. J.; Anderson, S. M.

    2014-12-01

    The National Climate Indicators System is being developed as part of sustained assessment activities associated with the U.S. National Climate Assessment (NCA). The NCA is conducted under the U.S. Global Change Research Program, which is required to provide a report to Congress every 4 years. The National Climate Indicators System is a set of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information. The Indicators System will address questions important to multiple audiences including (but not limited to) nonscientists (e.g., Congress, U.S. citizens, students), resource managers, and state and municipal planners in a conceptually unified framework. The physical, ecological, and societal indicators will be scalable, to provide information for indicators at national, state, regional, and local scales. The pilot system is a test of the Indicators System for evaluation purposes to assess the readiness of indicators and usability of the system. The National Climate Indicator System has developed a pilot given the recommendations of over 150+ scientists and practitioners and 14 multidisciplinary teams, including, for example, greenhouse gases, forests, grasslands, water, human health, oceans and coasts, and energy. The pilot system of indicators includes approximately 20 indicators that are already developed, scientifically vetted, and implementable immediately. Specifically, the pilot indicators include a small set of global climate context indicators, which provide context for the national or regional indicators, as well as a set of nationally important U.S. natural system and human sector indicators. The purpose of the pilot is to work with stakeholder communities to evaluate the system and the individual indicators using a robust portfolio of evaluation studies, which

  7. Livelihoods and climate change : combining disaster risk reduction, natural resource management and climate change adaptation in a new approach to the reduction of vulnerability and poverty

    Energy Technology Data Exchange (ETDEWEB)

    Burton, I.; Soussan, J.; Hammill, A.

    2003-07-01

    This paper provides a framework for researchers and policy-makers that are taking action on climate change adaptation. It presents innovative and sustainable ways to respond to the changing global climate. It focuses, in particular, on international research and policy initiatives on climate change, vulnerable communities and adaptation. The international and multi-disciplinary task force that put the framework together includes experts from the fields of disaster risk reduction, climate change, conservation and poverty reduction. The report emphasizes that successful climate change adaptation should be accomplished through actions that reduce the vulnerabilities of poor people and poor countries because people's livelihoods shape poverty and their ability to move out of poverty. The task force identifies the need to integrate a climate change adaptation approach based on the livelihoods of vulnerable communities in different parts of the world. The examples cited in this report include: (1) mangrove rehabilitation in Vietnam, (2) community-based rang eland rehabilitation for carbon sequestration in Sudan, (3) agroecological roots of resilience in Honduras, Nicaragua and Guatemala, and (4) watershed restoration and development in Maharashtra State, India. refs., figs.

  8. Livelihoods and climate change : combining disaster risk reduction, natural resource management and climate change adaptation in a new approach to the reduction of vulnerability and poverty

    International Nuclear Information System (INIS)

    This paper provides a framework for researchers and policy-makers that are taking action on climate change adaptation. It presents innovative and sustainable ways to respond to the changing global climate. It focuses, in particular, on international research and policy initiatives on climate change, vulnerable communities and adaptation. The international and multi-disciplinary task force that put the framework together includes experts from the fields of disaster risk reduction, climate change, conservation and poverty reduction. The report emphasizes that successful climate change adaptation should be accomplished through actions that reduce the vulnerabilities of poor people and poor countries because people's livelihoods shape poverty and their ability to move out of poverty. The task force identifies the need to integrate a climate change adaptation approach based on the livelihoods of vulnerable communities in different parts of the world. The examples cited in this report include: (1) mangrove rehabilitation in Vietnam, (2) community-based rang eland rehabilitation for carbon sequestration in Sudan, (3) agro-ecological roots of resilience in Honduras, Nicaragua and Guatemala, and (4) watershed restoration and development in Maharashtra State, India. refs., figs

  9. Vulnerability of boreal zone for increased nitrogen loading due to climate change

    Science.gov (United States)

    Rankinen, Katri; Holmberg, Maria

    2016-04-01

    The observed rapid warming of the boreal zone that has been observed in Finland (0.14 °C by decade) is expected to continue (http://www.ipcc.ch/report/ar5/wg1/). Also precipitation is assumed to increase in future. These changes may increase nitrogen (N) loading from terrestrial environments to water bodies by accelerating soil organic matter decay and by increasing runoff. Nitrogen is limiting nutrient in the Baltic Sea but also in some lakes, so increased loading may increase eutrophication. Further, high nitrate levels in drinking water may cause methaemoglobin anemia for humans, and nitrate is also connected to increased risk of diabetes and cancer. Thus EU has set upper limits to nitrate concentration in drinking water. MONIMET (LIFE12 ENV/FI/000409) is a project about Climate Change Indicators and Vulnerability of Boreal Zone. We simulated N loading from two boreal catchments to the receiving waters by the dynamic, catchment scale model INCA in different climate change and land use change scenarios. We calculated land use specific N loading values for these two well monitored catchments that belong to the LTER (The Long Term Ecological Research) monitoring network. We upscaled the results to the larger river basin, combining them with the information on drinking water supply to assess the vulnerability. Specific emphasis was paid on nitrate concentrations in soil water and groundwater. In general, land use change has higher influence on N loading than increase in precipitation and temperature alone. Peak runoff will sift from snow melting peak in April to late autumn and winter. Growing season will become longer allowing more efficient vegetation uptake of nutrients. Small groundwater aquifers and private wells in the middle of agricultural fields will be in the risk of increased N concentrations, if agricultural N loading increases due to changes in agricultural patterns and land use change.

  10. Agriculture Insurance: Adaptation to Vulnerability of Climate Change in Bali, Indonesia

    Science.gov (United States)

    Ambarawati, I. G. A. A.; Hongo, C.; Mirah Adi, A. A. A.; Tamura, E.

    2014-12-01

    Bali province of Indonesia is worldwide known for its tourist destination and it contributes more than 60 per cent to the regional domestic product. Meanwhile, agricultural sector including rice production still plays an important role in the Bali economy because of its 30 per cent contribution. Rice production in Bali is not just susceptible to loss caused by flood, drought and pest and disease attack but also from the climate change. The impact of climate change on food production in Indonesia is expected to decline in 2050, ranging from 38 per cent to more than ten-folds of the current production (Syaukat, 2011). Accordingly, adaptation to climate changes is required to minimize the risk along with the plans and strategies for food security and sustainable development. The government of Indonesia (GoI) has launched several pilot projects including agriculture insurance program to minimize the risk in production failure particularly rice farming, unfortunately Bali was excluded from the projects. Implementation of agriculture insurance in Indonesia has the legal basis now after the announcement of the Farmer Protection and Empowerment Act (Law No. 19/2013). Agriculture insurance is seen better in mitigating farmer's risk than that of the other program in rice production. The GoI plans to implement the insurance scheme in the beginning of 2015. This scheme is something "new" to farmers in Bali and Indonesia. Considering the importance of crop insurance to agriculture, this study attempts to explore the potential of such insurance to reveal a clear picture of opportunities and challenges in agriculture insurance implementation in Bali. The study empirically presents awareness and perception of farmers towards the insurance and adaptation to vulnerability of climate change. The study concludes with various suggestions for increasing the awareness of farmers for ensuring better penetration of agriculture insurance in Bali. Key words: agriculture insurance, farmer

  11. Comparative analysis of climate change vulnerability assessments. Lessons from Tunisia and Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Hammill, Anne; Bizikova, Livia; Dekens, Julie; McCandless, Matthew

    2013-03-15

    Vulnerability assessments (VAs) are central to shaping climate change adaptation decisions. They help to define the nature and extent of the threat that may harm a given human or ecological system, providing a basis for devising measures that will minimize or avoid this harm. Yet the wide variety of VA approaches can be confusing for practitioners, creating uncertainty about the ''right'' way to assess vulnerability. In an effort to provide some guidance on designing and conducting VAs, this paper reviews and compares VAs undertaken in Indonesia and Tunisia to distill key approaches, components and lessons. It begins with a general overview of definitions, approaches and challenges with conducting VAs, and then proposes a framework for analyzing and comparing them. The framework looks at four components of VAs: (1) Framing: where do we come from? (2) Process of conducting the VAs: how does it work? (3) Inputs: what is needed? (4) Outputs: what does it tell us? The framework is then applied to analyze the assessments carried out in Tunisia and Indonesia, from their respective framings of vulnerability to the outputs of the process. The report then concludes with observations on differences and similarities between the VAs, as well as lessons learned that can inform the design and execution of future assessments.

  12. Comparative analysis of climate change vulnerability assessments. Lessons from Tunisia and Indonesia

    International Nuclear Information System (INIS)

    Vulnerability assessments (VAs) are central to shaping climate change adaptation decisions. They help to define the nature and extent of the threat that may harm a given human or ecological system, providing a basis for devising measures that will minimize or avoid this harm. Yet the wide variety of VA approaches can be confusing for practitioners, creating uncertainty about the ''right'' way to assess vulnerability. In an effort to provide some guidance on designing and conducting VAs, this paper reviews and compares VAs undertaken in Indonesia and Tunisia to distill key approaches, components and lessons. It begins with a general overview of definitions, approaches and challenges with conducting VAs, and then proposes a framework for analyzing and comparing them. The framework looks at four components of VAs: (1) Framing: where do we come from? (2) Process of conducting the VAs: how does it work? (3) Inputs: what is needed? (4) Outputs: what does it tell us? The framework is then applied to analyze the assessments carried out in Tunisia and Indonesia, from their respective framings of vulnerability to the outputs of the process. The report then concludes with observations on differences and similarities between the VAs, as well as lessons learned that can inform the design and execution of future assessments.

  13. Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea

    Directory of Open Access Journals (Sweden)

    S. Torresan

    2012-07-01

    Full Text Available Sea level rise, changes in storms and wave climate as a consequence of global climate change are expected to increase the size and magnitude of flooded and eroding coastal areas, thus having profound impacts on coastal communities and ecosystems. River deltas, beaches, estuaries and lagoons are considered particularly vulnerable to the adverse effects of climate change, which should be studied at the regional/local scale. This paper presents a regional vulnerability assessment (RVA methodology developed to analyse site-specific spatial information on coastal vulnerability to the envisaged effects of global climate change, and assist coastal communities in operational coastal management and conservation. The main aim of the RVA is to identify key vulnerable receptors (i.e. natural and human ecosystems in the considered region and localize vulnerable hot spot areas, which could be considered as homogeneous geographic sites for the definition of adaptation strategies. The application of the RVA methodology is based on a heterogeneous subset of bio-geophysical and socio-economic vulnerability indicators (e.g. coastal topography, geomorphology, presence and distribution of vegetation cover, location of artificial protection, which are a measure of the potential harm from a range of climate-related impacts (e.g. sea level rise inundation, storm surge flooding, coastal erosion. Based on a system of numerical weights and scores, the RVA provides relative vulnerability maps that allow to prioritize more vulnerable areas and targets of different climate-related impacts in the examined region and to support the identification of suitable areas for human settlements, infrastructures and economic activities, providing a basis for coastal zoning and land use planning. The implementation, performance and results of the methodology for the coastal area of the North Adriatic Sea (Italy are fully described in the paper.

  14. How can African agriculture adapt to climate change: Mapping the South African farming sector’s vulnerability to climate change and variability: A subnational assessment

    OpenAIRE

    Aymone Gbetibouo, Glwadys; Ringler, Claudia

    2009-01-01

    In southern Africa, by the middle of the 21st century climate change is expected to cause temperature increases of 1–3°C, broad summer rainfall reductions of 5–10 percent, and an increase in the incidence of both droughts and floods. Consequently, climate change has significant potential to negatively affect crop production in South Africa, and in turn the well-being of the country’s farmers. This brief is based on a study that examines the level of vulnerability to climate change in S...

  15. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.

    Science.gov (United States)

    Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oriana

    2014-01-01

    The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and

  16. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica.

    Directory of Open Access Journals (Sweden)

    María Baca

    Full Text Available The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of

  17. Climate change impacts on vegetation in the San Francisco Bay Area: a novel approach to vulnerability analysis (Invited)

    Science.gov (United States)

    Ackerly, D.; Cornwell, W. K.; Weiss, S. B.; Branciforte, R.; Flint, L. E.; Flint, A. L.

    2010-12-01

    Climate change is expected to profoundly impact terrestrial vegetation. Understanding spatial variability of these impacts is critical to development of conservation strategies and projections of ecosystem services under future climates. We present a model of the projected impacts of climate change on the distribution of vegetation types in the San Francisco Bay Area using a novel application of multinomial logistic regression. The output of this method is a vector of the relative probability of occupancy by each of a set of vegetation types, for each pixel in the landscape. This approach models all vegetation types, in contrast to methods that model the distribution of each type or species individually. The overall vulnerability of vegetation to climate change can then be quantified as the change in modeled probabilities between the vectors modeled under present versus future climates. These changes capture the likelihood of long-term climate-driven vegetation change for each pixel, without relying on specific predictions of present and future vegetation types. This measure of vulnerability can be further decomposed as the product of two components, one reflecting the intrinsic sensitivity of the vegetation to climate and the second measuring the exposure to (i.e., magnitude of) climate change. Based on a new set of high-resolution downscaled climate projections for Coastal California, including an estimate of the annual climatic water deficit, we demonstrate that the vulnerability of vegetation distributions is almost entirely due to variation in sensitivity, and not to differences in the magnitude of climate change. Furthermore, there are weak but significant trends towards greater sensitivity on cool, north-facing slopes and in valley bottoms, as well as a bimodal distribution with greater sensitivity under the coolest and warmest summer temperature regimes in the Bay Area. These results do not support a commonly held conviction that cool environments will act

  18. Land vulnerability evaluation and climate change impacts in Andalucía, spain: soil erosion and contamination

    OpenAIRE

    Moreno, J. A.; F. Mayol; Crompvoets, J.; de la Rosa, D

    1996-01-01

    Two of the main desertification indices or land degradation risks in agricultural areas are soil erosion and contamination. Increased land degradation is one possible, and important, consequence of global climate change. Therefore, it is a priority to predict global environmental change impacts on these degradation risks. Land evaluation is a. formal way to develop the capability to predict land degradation risks or vulnerability caused by interactive changes in land use and climate. The fund...

  19. Glacier Runoff and Human Vulnerability to Climate Change: The Case of Export Agriculture in Peru (Invited)

    Science.gov (United States)

    Carey, M.

    2013-12-01

    There is growing concern about the effects of climate change and ensuing glacier shrinkage on water supplies for mountain communities worldwide. The issue is only becoming more complex as researchers seek to quantify glacier contributions to streamflow and to pinpoint when and how much glacier runoff will likely change as a result of future climate change and glacier variation. Additionally, some researchers are beginning to recognize the importance of understanding the human dimensions of glacier retreat to identify which social groups (stakeholders) use glacier runoff and how much they use, as well as what socio-environmental forces affect both water supplies and water use. This presentation examines these societal aspects of glacier runoff to analyze human vulnerability to hydrological changes in Peru's Santa River watershed below the most glaciated tropical mountain range in the world, the Cordillera Blanca. Specifically, it focuses on the billion-dollar export-oriented agricultural industry within the Chavimochic irrigation project, which uses Santa River water to irrigate approximately 80,000 hectares in the coastal desert region. Since the 1980s, Santa River water has allowed Chavimochic to sustain a major export economy, provide jobs in the agro-industry and related services, stimulate human migration, enhance or alter livelihoods, generate hydroelectricity, supply drinking water, and shape urban growth and land use practices. All of these variables are dependent on glacier meltwater from the Cordillera Blanca, especially during the dry season when glaciers provide most of the Santa River's water. In short, hundreds of thousands of people have come to depend on glacier runoff, thus revealing their high level of vulnerability to hydrological fluctuations in a glacier-fed watershed. What's more, people worldwide rely on the asparagus, avocados, and artichokes grown with glacier runoff. Consequently, the export-oriented agriculture, through the "virtual water

  20. Vulnerability on the Roof of the World: Resilience to Climate Change and Natural Resource Policies on the Tibetan Plateau

    Science.gov (United States)

    Klein, J. A.; Hopping, K. A.; Yeh, E.; Hu, J.; Nyima, Y.; Boone, R.; Galvin, K.; Kang, S.; Ojima, D. S.

    2010-12-01

    Pastoralists on the Tibetan Plateau are a marginalized people living in an extreme environment and may be especially vulnerable as the system approaches critical thresholds. In Tibet, temperatures are increasing several times more than the global average while the frequency and severity of severe snowstorms is predicted to increase. Pastoralists are also experiencing reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that include a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events within the context of changing natural resource policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika). We established the experiment in 2008 within the Tibet Autonomous Region (4,870 m) and are monitoring microclimate, vegetation, nutrient availability, carbon fluxes and stable isotopes. We are investigating the sensitivity of the system, whether it is likely to cross critical thresholds, and how resilient this system may be to predicted climate and land use changes. Semi-structured interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climatic and ecological change and vulnerability to snow disasters. To integrate our ecological and social findings, we are coupling an ecosystem model to an agent-based pastoral household model. Our results from the experiment and the indigenous knowledge study suggest that Kobresia pygmaea, the dominant species and primary grazing resource, is vulnerable to warming. Snow additions can partially mediate this effect. Herders throughout this region share common knowledge about both climatic and ecological changes, but appear to be more closely attuned to

  1. Climate Risk and Vulnerability in the Caribbean and Gulf of Mexico Region: Interactions with Spatial Population and Land Cover Change

    Science.gov (United States)

    Chen, R. S.; Levy, M.; Baptista, S.; Adamo, S.

    2010-12-01

    Vulnerability to climate variability and change will depend on dynamic interactions between different aspects of climate, land-use change, and socioeconomic trends. Measurements and projections of these changes are difficult at the local scale but necessary for effective planning. New data sources and methods make it possible to assess land-use and socioeconomic changes that may affect future patterns of climate vulnerability. In this paper we report on new time series data sets that reveal trends in the spatial patterns of climate vulnerability in the Caribbean/Gulf of Mexico Region. Specifically, we examine spatial time series data for human population over the period 1990-2000, time series data on land use and land cover over 2000-2009, and infant mortality rates as a proxy for poverty for 2000-2008. We compare the spatial trends for these measures to the distribution of climate-related natural disaster risk hotspots (cyclones, floods, landslides, and droughts) in terms of frequency, mortality, and economic losses. We use these data to identify areas where climate vulnerability appears to be increasing and where it may be decreasing. Regions where trends and patterns are especially worrisome include coastal areas of Guatemala and Honduras.

  2. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    McRae David

    2010-07-01

    Full Text Available Abstract Background There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change. Methods Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15 involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and non-governmental organisations in South-East Queensland. Results The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems, and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco

  3. Vulnerability to extreme heat and climate change: is ethnicity a factor?

    Directory of Open Access Journals (Sweden)

    Alana Hansen

    2013-07-01

    Full Text Available Background: With a warming climate, it is important to identify sub-populations at risk of harm during extreme heat. Several international studies have reported that individuals from ethnic minorities are at increased risk of heat-related illness, for reasons that are not often discussed. Objective: The aim of this article is to investigate the underpinning reasons as to why ethnicity may be associated with susceptibility to extreme heat, and how this may be relevant to Australia's population. Design: Drawing upon literary sources, the authors provide commentary on this important, yet poorly understood area of heat research. Results: Social and economic disparities, living conditions, language barriers, and occupational exposure are among the many factors contributing to heat-susceptibility among minority ethnic groups in the United States. However, there is a knowledge gap about socio-cultural influences on vulnerability in other countries. Conclusion: More research needs to be undertaken to determine the effects of heat on tourists, migrants, and refugees who are confronted with a different climatic environment. Thorough epidemiological investigations of the association between ethnicity and heat-related health outcomes are required, and this could be assisted with better reporting of nationality data in health statistics. Climate change adaptation strategies in Australia and elsewhere need to be ethnically inclusive and cognisant of an upward trend in the proportion of the population who are migrants and refugees.

  4. Utilization, vulnerability and possible adaptation ways of the Ishim river basin surface water under conditions of anthropogenic climate change

    International Nuclear Information System (INIS)

    Brief characteristics of water supply in the Ishim river basin are given. Results of surface water resources vulnerability by model of run-off formation with use of anthropogenic climate changes, received by common atmospheric circulation models, as well as incremental scenarios are cited. Possible mitigation of vulnerability by means of water-saving, increase of ground water intake and other adaptation measures realization are considered. (author)

  5. Adaptation, Spatial Heterogeneity, and the Vulnerability of Agricultural Systems to Climate Change and CO2 Fertilization: An Integrated Assessment Approach

    International Nuclear Information System (INIS)

    In this paper we develop economic measures of vulnerability to climate change with and without adaptation in agricultural production systems. We implement these measures using coupled, site-specific ecosystem and economic simulation models. This modeling approach has two key features needed to study the response of agricultural production systems to climate change: it represents adaptation as an endogenous, non-marginal economic response to climate change; and it provides the capability to represent the spatial variability in bio-physical and economic conditions that interact with adaptive responses. We apply this approach to the dryland grain production systems of the Northern Plains region of the United States. The results support the hypothesis that the most adverse impacts on net returns distributions tend to occur in the areas with the poorest resource endowments and when mitigating effects of CO2 fertilization and adaptation are absent. We find that relative and absolute measures of vulnerability depend on complex interactions between climate change, CO2 level, adaptation, and economic conditions such as relative output prices. The relationship between relative vulnerability and resource endowments varies with assumptions about climate change, adaptation, and economic conditions. Vulnerability measured with respect to an absolute threshold is inversely related to resource endowments in all cases investigated

  6. Flood/Typhoon vulnerability indicators of nuclear power plant in South Korea considering climate change impacts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyu Min; Jun, Kyung Soo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Chung, Eun Sung [Seoul National Univ of Science and technology, Seoul (Korea, Republic of); Min, Byung Il; Suh, Kyung Suk [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Republic of Korea lies in the principal course of the typhoon that is occurred to the Pacific Northwest. It has distinct monsoon wind, a rainy period from the East Asian Monsoon locally called 'Changma', typhoon, and while often heavy snowfalls in winter. It belongs to a relatively wet region due to much more precipitation than that of the world average. In the last 10 years, there frequently was a lot of damage due to flooding with typhoon. In particular, the damage was estimated at up to 5,000 billion KRW by the USA in 2002. Lately, after the 9.0 magnitude earthquake and resultant tsunami hit Japan on March 11, 2011, consecutively approached Typhoon Ro ke made a larger threat. Although it fortunately passed without significant impact. That is, not only typhoon and flood are one of a threat to nuclear power plant but also it could lead to overwhelming damage when it overlapped the other accident. Therefore, flood/typhoon vulnerability assessment could provide important information for the safety management of nuclear power plants. This study derived all the feasible indicators and their corresponding weights for a Flood/Typhoon Vulnerability Index (FTVI) to nuclear power plant considering climate change. In addition selection of the candidates and determination of their weights were estimated using a Delphi process, which is an advanced method for opinion measurement.

  7. Flood/Typhoon vulnerability indicators of nuclear power plant in South Korea considering climate change impacts

    International Nuclear Information System (INIS)

    The Republic of Korea lies in the principal course of the typhoon that is occurred to the Pacific Northwest. It has distinct monsoon wind, a rainy period from the East Asian Monsoon locally called 'Changma', typhoon, and while often heavy snowfalls in winter. It belongs to a relatively wet region due to much more precipitation than that of the world average. In the last 10 years, there frequently was a lot of damage due to flooding with typhoon. In particular, the damage was estimated at up to 5,000 billion KRW by the USA in 2002. Lately, after the 9.0 magnitude earthquake and resultant tsunami hit Japan on March 11, 2011, consecutively approached Typhoon Ro ke made a larger threat. Although it fortunately passed without significant impact. That is, not only typhoon and flood are one of a threat to nuclear power plant but also it could lead to overwhelming damage when it overlapped the other accident. Therefore, flood/typhoon vulnerability assessment could provide important information for the safety management of nuclear power plants. This study derived all the feasible indicators and their corresponding weights for a Flood/Typhoon Vulnerability Index (FTVI) to nuclear power plant considering climate change. In addition selection of the candidates and determination of their weights were estimated using a Delphi process, which is an advanced method for opinion measurement

  8. A Prototype Indicators System for U.S. Climate Changes, Impacts, Vulnerabilities, and Responses

    Science.gov (United States)

    Kenney, M. A.; Janetos, A.; Gerst, M.; Lloyd, A.; Wolfinger, J. F.; Reyes, J. J.; Anderson, S. M.; Pouyat, R. V.

    2015-12-01

    Indicators are observations or calculations that are used to systematically report or forecast social and biophysical conditions over time. When the purpose of indicators is to, in part, provide complex scientific information that is understood by non-scientists and included in decision processes, the choice of indicators requires a structured process that includes co-production among a range of actors, including scientists, decision-makers, and a range of stakeholders. Here we describe recommendations on a vision and a prototype created for an indicators system, we term the National Climate Indicators System (NCIS). The goal of the NCIS is to create a system of physical, natural, and societal indicators to communicate and inform decisions about climate changes, impacts, vulnerabilities, and responses. The process of generating the indicator system involved input from over 200 subject-matter experts. Organized into 13 teams, experts created conceptual models of their respective sectors to generate an initial recommended set of indicators. A subset of indicators, which could be immediately implemented, were prototyped for the U.S. Global Change Research Program (USGCRP) a Federal program that coordinates and supports integration of global change research across the government. USGCRP reviewed the recommendations (Kenney et al., 2014) and prototypes provided by the scientific experts, and recently launched 14 indicators as proof-of-concept in support of a sustained National Climate Assessment and to solicit feedback from the users. Social science research is currently being undertaken in order to evaluate how well the prototype indicators communicate science to non-scientists, the usability of indicator system portal by scientists and decision-makers, and the development of information visualization guidelines to improve visual communication effectiveness. The goal of such efforts would be to provide input into the development of a more comprehensive USGCRP indicator

  9. Climate change in Northern Norway: Toward an understanding of socio-economic vulnerability of natural resource- dependent sectors and communities

    OpenAIRE

    West, Jennifer; Hovelsrud, Grete K.

    2008-01-01

    The work in this report is a contribution from CICERO to Theme 4 of the NorACIA project, a Norwegian follow-up to the Arctic Council’s Arctic Climate Impact Assessment: http://acia.npolar.no/ It has been recognized that there is an urgent need for better and integrated knowledge of the social, economic and environmental conditions that underpin vulnerability to climate change at the local level. Such knowledge is necessary in order to develop credible vulnerability and adaptation asse...

  10. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    OpenAIRE

    S. P. Bindra; Hamid, A; S. Abulifa; H.S. Al Reiani; Hammuda Khalifa Abdalla

    2014-01-01

    This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achi...

  11. Water Resource Vulnerability Characteristics by District’s Population Size in a Changing Climate Using Subjective and Objective Weights

    Directory of Open Access Journals (Sweden)

    Eun-Sung Chung

    2014-09-01

    Full Text Available The goal of this study is to derive water resource vulnerability characteristics for South Korea according to individual district populations in a changing climate. The definition of water resource vulnerability in this study consists of potential flood damage and potential water scarcity. To quantify these vulnerabilities, key factors, or indicators affecting vulnerability, are integrated with a technique for order of preference by similarity to ideal solution (TOPSIS, which is a multi-criteria decision-making approach to determine the optimal alternative by considering both the best and worst solutions. The weight for each indicator is determined based on both the Delphi technique and Shannon’s entropy, which are employed to reduce the uncertainty in the process of determining the weights. The Delphi technique reflects expert opinions, and Shannon’s entropy reflects the uncertainty of the performance data. Under A1B climate change scenarios, medium-sized districts (200,000–300,000 inhabitants are the most vulnerable regarding potential flood damage; the largest districts (exceeding 500,000 inhabitants are found to be the most vulnerable with respect to potential water scarcity. This result indicates that the local governments of cities or districts with more than 200,000 inhabitants should implement better preventative measures for water resources. In addition, the Delphi and entropy methods show the same rankings for flood vulnerability; however, these approaches produce slightly different rankings regarding water scarcity vulnerability. Therefore, it is suggested that rankings from not only subjective but also objective weights should be considered in making a final decision to implement specific adaptive measures to climate change.

  12. Identifying bird and reptile vulnerabilities to climate change in the southwestern United States

    Science.gov (United States)

    Hatten, James R.; Giermakowski, J. Tomasz; Holmes, Jennifer A.; Nowak, Erika M.; Johnson, Matthew J.; Ironside, Kirsten E.; Van Riper, Charles, III; Peters, Michael; Truettner, Charles; Cole, Kenneth L.

    2016-01-01

    Current and future breeding ranges of 15 bird and 16 reptile species were modeled in the Southwestern United States. Rather than taking a broad-scale, vulnerability-assessment approach, we created a species distribution model (SDM) for each focal species incorporating climatic, landscape, and plant variables. Baseline climate (1940–2009) was characterized with Parameter-elevation Regressions on Independent Slopes Model (PRISM) data and future climate with global-circulation-model data under an A1B emission scenario. Climatic variables included monthly and seasonal temperature and precipitation; landscape variables included terrain ruggedness, soil type, and insolation; and plant variables included trees and shrubs commonly associated with a focal species. Not all species-distribution models contained a plant, but if they did, we included a built-in annual migration rate for more accurate plant-range projections in 2039 or 2099. We conducted a group meta-analysis to (1) determine how influential each variable class was when averaged across all species distribution models (birds or reptiles), and (2) identify the correlation among contemporary (2009) habitat fragmentation and biological attributes and future range projections (2039 or 2099). Projected changes in bird and reptile ranges varied widely among species, with one-third of the ranges predicted to expand and two-thirds predicted to contract. A group meta-analysis indicated that climatic variables were the most influential variable class when averaged across all models for both groups, followed by landscape and plant variables (birds), or plant and landscape variables (reptiles), respectively. The second part of the meta-analysis indicated that numerous contemporary habitat-fragmentation (for example, patch isolation) and biological-attribute (for example, clutch size, longevity) variables were significantly correlated with the magnitude of projected range changes for birds and reptiles. Patch isolation was

  13. Possible consequences of climate change on the Swedish energy sector - impacts, vulnerability and adaptation

    International Nuclear Information System (INIS)

    The events of recent years clearly demonstrate the far-reaching consequences of extreme weather situations on the energy system, particularly in the case of severe damage to transmission lines in connection with violent storms. Many climate researchers predict an increase in extreme weather events. Against this background, in 2005 Elforsk initiated this project where the aim has been to examine how climate change can affect plant operation, production conditions and energy usage patterns, how undesirable consequences can be predicted and what long-term measures may be necessary. Another central objective has been to bring about a dialogue between climate researchers, energy consultants/engineers and buyers for the energy industry. The inclusion of both positive and negative consequences has been an important ambition of the project. One key aspect of the project has been to develop climate scenarios for the next 20-25 years that describe possible changes in climate variables with relevance for the energy system. Based on these and literature studies, contact with experts and internal assessments, an analysis has been made of the possible impacts on hydropower, wind power, biofuel supply, natural gas supply, the power transmission network and energy usage. The project findings, which have also been discussed at a workshop with representatives from the energy industry, did not reveal any acute need for adaptation aside from those measures already being taken, for example to make the transmission system less vulnerable to weather conditions. Furthermore, the results indicate increased production potential for both hydropower and wind power. The production potential for hydropower stations from the Dalaelven River northwards would appear to increase by 2-10%. Estimates for the southern watercourses are less certain, but the production potential may decrease. Since around 80% of the country's hydropower is produced in the northern watercourses, this indicates an

  14. From climate change predictions to actions ? conserving vulnerable animal groups in hotspots at a regional scale.

    OpenAIRE

    Carvalho, Silvia Benoliel; Brito, José Carlos; Crespo, Eduardo J.; Possingham, Hugh

    2010-01-01

    Abstract Current climate change is a major threat to biodiversity. Species unable to adapt or move will face local or global extinction and this is more likely to happen to species with narrow climatic and habitat requirements and limited dispersal abilities, such as amphibians and reptiles. Biodiversity losses are likely to be greatest in global biodiversity hotspots where climate change is fast, such as the Iberian Peninsula. Here we assess the impact of climate change on 37 ende...

  15. Guideline on the System Vulnerability : Analysis of the Baltic Sea Region Vulnerability to the Impact of Climate Change

    OpenAIRE

    Hjerpe, Mattias; Schauser, Inke; Alberth, Johan

    2013-01-01

    This report elaborates an integrated vulnerability assessment concept, intended as a knowledge brokerage tool for decision-makers in the Baltic Sea Region. By developing an integrated vulnerability concept, in line with advances in regional and local vulnerability and adaptation research and based on the project’s review of the scope and quality of current vulnerability assessments, the report supports discussions on what is needed for a systematic assessment of vulnerability in the region. T...

  16. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands. PMID:26342186

  17. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    Science.gov (United States)

    Osland, Michael J.; Enwright, Nicholas M.; Day, Richard H.; Gabler, Christopher A.; Stagg, Camille L.; Grace, James B.

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate-change related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.

  18. Research Priorities on Vulnerability, Impacts and Adaptation: Responding to the Climate Change Challenge

    Science.gov (United States)

    Rosenzweig, C.; Horton, R. M.

    2013-12-01

    A major challenge of the research community is to provide relevant information to policymakers on vulnerability, impacts and adaptation (VIA) in the context of a changing climate, and to do so in a coherent and coordinated way. The Programme of Research on Climate Change Vulnerability, Impacts and Adaptation (PROVIA) aims to respond to this challenge by harmonizing, mobilizing, and communicating the growing knowledgebase on VIA to relevant audiences. PROVIA, in consultation with experts and policymakers, has developed a set of Research Priorities for the global VIA research community, whose activities are primarily carried out by individual researchers and research institutions. The Research Priorities include new and emerging topics as well as topics that have long been recognized as important but for which research is still required. To develop the Research Priorities, input was gathered from expert and policymaker communities through separate solicitation pathways. The expert prioritization of research topics began with a gap analysis based on existing literature. The members of the PROVIA Scientific Steering Committee (SSC) then participated in a two-day Foresight Panel that focused on determining selection criteria for inclusion in the Research Priorities, grouping the research topics into themes, and identifying additional topics. A newly framed list of 54 priority research topics was generated by compiling the SSC selections and updated findings from new literature. This list was distributed as an electronic survey to a broad group of experts in the VIA community. Respondents were asked to score each topic, provide suggestions for additional topics, and offer comments. A research prioritization process with policymakers was developed in parallel with the expert community process described above and included representatives from both developed and developing countries. The rankings of the expert and policymaker processes were then combined, along with an

  19. A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change.

    Directory of Open Access Journals (Sweden)

    Joshua Steven Reece

    Full Text Available Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri, Key tree cactus (Pilosocereus robinii, Florida duskywing butterfly (Ephyriades brunnea floridensis, and Key deer (Odocoileus virginianus clavium. We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida's biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments.

  20. Global Climate Change Effects on Venezuela's Vulnerability to Chagas Disease is Linked to the Geographic Distribution of Five Triatomine Species.

    Science.gov (United States)

    Ceccarelli, Soledad; Rabinovich, Jorge E

    2015-11-01

    We analyzed the possible effects of global climate change on the potential geographic distribution in Venezuela of five species of triatomines (Eratyrus mucronatus (Stal, 1859), Panstrongylus geniculatus (Latreille, 1811), Rhodnius prolixus (Stål, 1859), Rhodnius robustus (Larrousse, 1927), and Triatoma maculata (Erichson, 1848)), vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. To obtain the future potential geographic distributions, expressed as climatic niche suitability, we modeled the presences of these species using two IPCC (Intergovernmental Panel on Climate Change) future emission scenarios of global climate change (A1B and B1), the Global Climate model CSIRO Mark 3.0, and three periods of future projections (years 2020, 2060, and 2080). After estimating with the MaxEnt software the future climatic niche suitability for each species, scenario, and period of future projections, we estimated a series of indexes of Venezuela's vulnerability at the county, state, and country level, measured as the number of people exposed due to the changes in the geographical distribution of the five triatomine species analyzed. Despite that this is not a measure of the risk of Chagas disease transmission, we conclude that possible future effects of global climate change on the Venezuelan population vulnerability show a slightly decreasing trend, even taking into account future population growth; we can expect fewer locations in Venezuela where an average Venezuelan citizen would be exposed to triatomines in the next 50-70 yr. PMID:26336258

  1. Identifying and Addressing Infrastructure Vulnerabilities Under Climate Change in Data-Scarce Regions: the Role of Conservation

    Science.gov (United States)

    Shortridge, J.; Guikema, S.

    2015-12-01

    Climate change is expected to have dramatic impacts on built infrastructure, particularly in the water resources sector where infrastructure tends to have long lifespans and performance is highly sensitive to climate conditions. However, adapting to water resources infrastructure to climate change is challenging due to the considerable uncertainty surrounding projections of future hydrologic conditions. This has prompted the development of a number of approaches aimed at supporting planning under "deep-uncertainty" which cannot be represented probabilistically. One such method is robust decision making (RDM), which uses simulation models to assess how systems perform over a wide range of future scenarios and identify vulnerable scenarios where system performance is unacceptable. With the Lake Tana basin in Ethiopia as a case study, we use an RDM analysis to assess the vulnerability of planned irrigation infrastructure to climate change and environmental uncertainties related to data limitations. We find that planned infrastructure is vulnerable not only to climate change, but also to poorly characterized environmental conditions today. This suggests areas for research that could provide important insights into the long-term sustainability and effectiveness of the planned projects. Additionally, we evaluate the degree to which methods such as irrigation efficiency and upstream land conservation can improve the long-term performance of the proposed infrastructure. In doing so, we demonstrate how robust decision frameworks can provide decision support in data-scarce regions where more complex modeling and analysis may be impractical.

  2. Increasing Vulnerability to Drought and Climate Change on the Navajo Nation, southwestern United States

    Science.gov (United States)

    Hiza, M. M.; Kelley, K. B.; Francis, H.

    2011-12-01

    , and eagles). Changes in the frequency of wind, sand and dust storms (more frequent in the 1950s and increasing in the 1990s) were also observed. Important information that cannot be easily gleaned from meteorological and stream flow records are also recorded in our consultations. For example, they include observations of soil moisture and the description of disappearing migratory birds that rely on water sources. Local monitoring of soil moisture conditions today indicates that a rapid decline occurs in the Springtime. The fact that soil moisture was noted in the past to persist through the spring dry season, until the late summer monsoon season has profound implications for impacts to ecosystem viability that may have already occurred with climate change and drought. In addition, these changes in soil moisture also help us understand the mechanisms contributing to current drought severity. We conclude that a long-term drying trend and decreasing snowpack, superimposed on regional drought cycles, will magnify the cultural and literal erosion and desertification of the Navajo Nation and leave its people increasingly vulnerable to climate extremes.

  3. Climate change, impacts and vulnerability in Europe 2012. An indicator-based report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    This European Environment Agency (EEA) report presents information on past and projected climate change and related impacts in Europe, based on a range of indicators. The report also assesses the vulnerability of society, human health and ecosystems in Europe and identifies those regions in Europe most at risk from climate change. Furthermore, the report discusses the principle sources of uncertainty for the indicators and notes how monitoring and scenario development can improve our understanding of climate change, its impacts and related vulnerabilities. Some key findings: The last decade (2002-2011) was the warmest on record in Europe, with European land temperature 1.3 deg. C warmer than the pre-industrial average. Various model projections show that Europe could be 2.5-4 deg. C warmer in the later part of the 21st Century, compared to the 1961-1990 average. Heat waves have increased in frequency and length, causing tens of thousands of deaths over the last decade. The projected increase in heat waves could increase the number of related deaths over the next decades, unless societies adapt, the report says. However, cold-related deaths are projected to decrease in many countries. While precipitation is decreasing in southern regions, it is increasing in northern Europe, the report says. These trends are projected to continue. Climate change is projected to increase river flooding, particularly in northern Europe, as higher temperatures intensify the water cycle. However, it is difficult to discern the influence of climate change in flooding data records for the past. River flow droughts appear to have become more severe and frequent in southern Europe. Minimum river flows are projected to decrease significantly in summer in southern Europe but also in many other parts of Europe to varying degrees. The Arctic is warming faster than other regions. Record low sea ice was observed in the Arctic in 2007, 2011 and 2012, falling to roughly half the minimum extent seen

  4. Assessing vulnerable and expanding vegetation stands and species in the San Francisco Bay Area for conservation management under climate change

    Science.gov (United States)

    Morueta-Holme, N.; Heller, N. E.; McLaughlin, B.; Weiss, S. B.; Ackerly, D.

    2015-12-01

    The distribution of suitable climatic areas for species and vegetation types is expected to shift due to ongoing climate change. While the pace at which current distributions will shift is hard to quantify, predictions of where climatically suitable areas will be in the future can allow us to map 1) areas currently occupied by a species or vegetation type unlikely to persist through the end of this century (vulnerable stands), 2) areas likely to do better in the future and serve as nuclei for population expansion (expanding stands), and 3) areas likely to act as climate refugia (persisting stands). We quantified the vulnerability of 27 individual plant species and 27 vegetation types in the San Francisco Bay Area as well as the conservation importance, vulnerability, and resilience of selected management sites for climate change resilient conservation. To this end, we developed California-wide models of species and vegetation distributions using climate data from the 2014 California Basin Characterization Model at a 270 m resolution, projected to 18 different end-of century climate change scenarios. Combining these distribution models with high resolution maps of current vegetation, we were able to map projected vulnerable, expanding, and persisting stands within the Bay Area. We show that vegetation and species are expected to shift considerably within the study region over the next decades; although we also identify refugia potentially able to offset some of the negative impacts of climate change. We discuss the implications for managers that wish to incorporate climate change in conservation decisions, in particular related to choosing species for restoration, identifying areas to collect seeds for restoration, and preparing for expected major vegetation changes. Our evaluation of individual management sites highlights the need for stronger coordination of efforts across sites to prioritize monitoring and protection of species whose ranges are contracting

  5. Livelihood Vulnerability Approach to Assess Climate Change Impacts to Mixed Agro-Livestock Smallholders Around the Gandaki River Basin of Nepal

    Science.gov (United States)

    Panthi, J., Sr.

    2014-12-01

    Climate change vulnerability depends upon various factors and differs between places, sectors and communities. People in developing countries whose subsistence livelihood depends upon agriculture and livestock are identified as particularly vulnerable. Nepal, where the majority of people are in a mixed agro-livestock system, is identified as the world's fourth most vulnerable country to climate change. However, there are few studies on how vulnerable mixed agro-livestock smallholders are and how their vulnerability differs across different ecological regions. This study aims to test two vulnerability assessment indices, livelihood vulnerability index (LVI) and IPCC vulnerability index (VI-IPCC), around the Gandaki river basin of Nepal. A total of 543 households practicing mixed agro-livestock were surveyed from three districts (Dhading, Syangja and Kapilvastu) representing the mountain, mid-hill and lowland altitudinal belts respectively. Data on socio-demographics, livelihoods, social networks, health, food and water security, natural disasters and climate variability were collected. Both indices differed across the three districts, with mixed agro-livestock smallholders of Dhading district found to be the most vulnerable and that of Syangja least vulnerable. This vulnerability index approach may be used to monitor rural vulnerability and/or evaluate potential program/policy effectiveness in poor countries like Nepal. The present findings are intended to help in designing intervention strategies to reduce vulnerability of mixed agro-livestock smallholders and other rural people in developing countries to climate change.

  6. Adaptation to Climate Change in Risk and Vulnerability Analysis on a Municipal Level, a basis for further work

    International Nuclear Information System (INIS)

    The aim of Risk and Vulnerability Analysis (RVA) at local authority level in Sweden is to increase the capacity of local authorities to handle crises and to reduce vulnerability in the community. RVA processes could be an appropriate starting-point for discussions on how the community is influenced by climate change and how its effects could be reduced using various adjustment measures. In the report we present four methods: ROSA, MVA, IBERO and the Car Dun AB method. These have all been developed to support Swedish local authority RVA processes. We also present five international frameworks that have been developed by the organisations UNDP, USAID, UKCIP, C-CIARN and CSIRO to help decision-makers and stakeholders to adapt to climate change. Together, these descriptions form a foundation for continuing the work being done within the project Climatools, in which tools are being produced to be used by local authorities in adapting to climate change. In the report, we also discuss the concepts 'risk', 'vulnerability' and 'adaptation' and how analysis of adaptation to climate change has changed in recent years

  7. Agricultural vulnerability over the Chinese Loess Plateau in response to climate change: Exposure, sensitivity, and adaptive capacity.

    Science.gov (United States)

    Li, Xueling; Philp, Joshua; Cremades, Roger; Roberts, Anna; He, Liang; Li, Longhui; Yu, Qiang

    2016-04-01

    Understanding how the vulnerability of agricultural production to climate change can differ spatially has practical significance to sustainable management of agricultural systems worldwide. Accordingly, this study developed a conceptual framework to assess the agricultural vulnerability of 243 rural counties on the Chinese Loess Plateau. Indicators representing the climate/agriculture interface were selected to describe exposure and sensitivity, while stocks of certain capitals were used to describe adaptive capacity. A vulnerability index for each county was calculated and the spatial distribution was mapped. Results showed that exposure, sensitivity, and adaptive capacity occur independently, with most contributing indicator values concentrated in a narrow range after normalization. Within the 49 most vulnerable counties, which together encompass 81 % of the vulnerability index range, 42 were characterized by high exposure and sensitivity but low adaptive capacity. The most vulnerable area was found to be located in the central northeast-southwest belt of Loess Plateau. Adaptation measures for both ecological restoration and economic development are needed and potential adaptation options need further investigation. PMID:26563383

  8. Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model

    OpenAIRE

    Bing Wang; Xiao-Jie Liang; Hao Zhang; Lu Wang; Yi-Ming Wei

    2014-01-01

    This paper analyzes the long-term relationships between hydropower generation and climate factors (precipitation), hydropower generation capacity (installed capacity of hydropower station) to quantify the vulnerability of renewable energy production in China for the case of hydropower generation. Furthermore, this study applies Grey Forecasting Model to forecast precipitation in different provinces, and then sets up different scenarios for precipitation based on the IPCC Special Report on Emi...

  9. Effect of climate change on the vulnerability of a socio-ecological system in an arid area

    Science.gov (United States)

    Liu, Hai-Long; Willems, Patrick; Bao, An-Ming; Wang, Ling; Chen, Xi

    2016-02-01

    The vulnerability of arid areas threatens ecosystems and human existence. With climate change and increasing human activities, addressing this vulnerability has become an important concern. To support this objective, we present a complex index system to analyze vulnerability at a regional scale with a 1 km × 1 km resolution. Based on the evaluation framework, which includes natural resources, the natural environment and the social economy, the results indicate that an ecosystem in a mountainous area is more vulnerable than it is in a plain. Land desertification will worsen from 2014 to 2099 under the RCP4.5 scenarios and improve slightly under the RCP8.5 and RCP2.6 scenarios, while the suitable land for agriculture increased slightly under the three scenarios. In addition, a regional sensitivity analysis of vulnerability to climate change shows that the improving region and the worsening region will occupy 1.30% and 74.51%, respectively. In view of this, the socio-ecological system will undergo a worsening trend as a whole. Finally, we simplified how to solve the problem of a socio-ecological system in the future. This research method and results would generate new insights with respect to planning for sustainable development and provide a reference for decision-making.

  10. A Case Study in Caribbean Climate Change: Impacts on Crop Suitability and Small Farmer Vulnerability in St. Elizabeth, Jamaica

    Science.gov (United States)

    Curtis, W. R.; Gamble, D. W.; Popke, J.

    2013-12-01

    This paper examines some of the implications of climate change for farming in the Caribbean, through an analysis of future crop suitability and a case study of climate variability and agricultural practices in St. Elizabeth Parish, Jamaica. To assess potential changes in Caribbean agriculture, we present results from a water budget model based on a 100-year regional climate projection of temperature and precipitation for the circum-Caribbean basin. We find that future water deficits in the region are climate type-dependent. Savanna climates experience the largest annual changes, while semi-arid environments are greatly impacted in the spring. When the impacts of temperature and precipitation are considered separately, we find that predicted future warming, and the associated increase in evapotranspiration, has a slightly larger climatological effect on crop water need than predicted decreases in precipitation. To illustrate how a changing climate regime may impact agricultural practices, we present results from recent fieldwork in St. Elizabeth Parish, one of the main farming regions on the island of Jamaica. Drawing on data from farmer interviews and a recently-installed weather mesonet, we highlight the ways in which local microclimates influence farmer livelihood strategies and community-level vulnerability. Initial results suggest that farmers are experiencing greater climate variability, and that communities with Savanna and semi-arid type climates may be more susceptible to drought than communities in wetter, higher-elevation microclimates. These changes have enhanced the importance of irrigation technology and water management strategies for successful farming. In this context, we argue, large, well-capitalized farmers may be better able to manage the uncertainties associated with climate change, leading to an uneven landscape of vulnerability across the region.

  11. Vulnerability of drained and rewetted organic soils to climate change impacts and associated adaptation options

    Science.gov (United States)

    Renou-Wilson, Florence; Müller, Christoph; Wilson, David

    2016-04-01

    With 20% of the land covered with peat soils, Ireland needs to develop a deeper understanding among stakeholders of the potential vulnerability of peatlands and organic soils to climate change (both gradual and extreme events) in the context of current land use changes. The fate of carbon in organic soils is critical for predicting future greenhouse gas (GHG) concentrations in the atmosphere. While keeping carbon stock in organic soils (for example by rewetting drained sites) can be an effective mitigation measures to reduce CO2 emissions, adaptation options are also required to ensure their 'resilience'. Rewetting of drained organic soils has been initiated at several sites across the country with the aim to (i) reduce net GHG emissions at the source and/or (ii) create suitable conditions for carbon sequestration in active peatland habitats. We present here two sites: an industrial cutaway peatland and an extensive grassland over organic soil, where long-term (> 4 years) environmental and GHG flux (chamber) datasets in both drained and rewetted areas have provided information on the impact of annual weather variability on net ecosystem exchange (NEE). Statistical response functions estimated for gross primary production (GPP) and ecosystem respiration (Reco) were used to reconstruct annual CO2 balances using site-specific models driven by soil temperature, solar radiation, soil water table levels and leaf area index. The modification of some of the model parameters to fit predicted future climate scenarios for the region allowed potential changes in modelled NEE to be assessed. Both sites were, on average, an annual source of CO2 when drained (138 - 232 g C m‑2 yr‑1) and a sink when rewetted (ranging from -40 g C m‑2 yr‑1 in the ungrazed rewetted grassland to a maximum of -260 g C m‑2 yr‑1 in the rewetted cutaway). At both sites, soil temperatures and water table levels varied significantly between all years. Average NEE at each site displayed a very

  12. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    OpenAIRE

    Helen Brown; Jeffery Spickett; Dianne Katscherian

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action o...

  13. Methodology to determine the vulnerability of deltas to climate change and to identify adaptation strategies

    Science.gov (United States)

    Haasnoot, M.; Offermans, A. G. E.; Middelkoop, H.

    2009-04-01

    Development of sustainable water management strategies involves analysing current and future vulnerability, identification of adaptation possibilities, effect analysis and evaluation of the strategies under different possible futures. Recent studies on water management often followed the pressure-effect chain and compared the state of social, economic and ecological functions of water systems in one or two future situations. The future is, however, more complex and dynamic. Our approach starts at the end of the cause-effect chain by describing optimal conditions and critical thresholds for each water-related function in terms of their physical boundary conditions. This gives an indication of the current and future vulnerability. By comparing the optimal conditions with the physical conditions under the current and future climate and sea level we can identify mismatches. Where these occur are the vulnerable ‘hotspots' for which adaptation strategies should be defined. We developed a rapid assessment model to analyse the effectiveness of strategies for a large set of transient scenarios, in order to evaluate the strategies on robustness. This model describes the Pressure-State-Impact-Response chain of a delta system and exists of simple cause-effect relations based on outcomes of vulnerability analyses, complex hydrological models and studies on social responses. With the model transient scenarios are considered. These scenarios comprise time series that include trends, unexpected events, floods and droughts and the interaction between water system and society. We present the concept methodology for sustainable water management strategies by means of an imaginary case.

  14. Reducing the Vulnerability of Azerbaijan's Agricultural Systems to Climate Change : Impact Assessment and Adaptation Options

    OpenAIRE

    Ahouissoussi, Nicolas; James E. Neumann; Srivastava, Jitendra P.; Okan, Cuneyt; Brent B. Boehlert; Strzepek, Kenneth M.

    2014-01-01

    In countries such as Azerbaijan, the risks of climate change for the agricultural sector are a particularly immediate and important problem because the majority of the rural population depends either directly or indirectly on agriculture for their livelihoods. The need to adapt to climate change in all sectors is now on the agenda of the countries and development partners. International ef...

  15. Sending the Right Bill to the Right People: Climate change, environmental degradation, and social vulnerabilities in Central Vietnam

    DEFF Research Database (Denmark)

    Bruun, Ole

    2012-01-01

    the resulting technocratic approaches are applied to aid programs, addressing climate change as an autonomous field, the problems on the ground become distorted. Based on field studies in central Vietnam, the paper argues that fragmented approaches risk missing the target of helping the most......In a range of international reports Vietnam is pointed out as among the 5 to 10 most climate-vulnerable countries, which are taking center stage in global climate change assistance and thus attracting huge amounts of foreign aid for research, mitigation, adaptation, disaster management, etc....... However, for various reasons relating to global and domestic politics, climate change adaptation and mitigation in Vietnam are separating from general environmental management, while at the same time failing to address social inequality. From a global justice perspective this may seem irrelevant but when...

  16. Vulnerability of U.S. Agriculture and Energy Sectors to Changes in Climate and Socioeconomics

    Science.gov (United States)

    Hejazi, M. I.; Voisin, N.; Liu, L.; Bramer, L.; Fortin, D.; Huang, M.; Hathaway, J.; Kyle, P.; Leung, L. R.; Li, H. Y.; Liu, Y.; Patel, P.; Pulsipher, T.; Rice, J.; Tesfa, T. K.; Vernon, C. R.; Zhou, Y.

    2014-12-01

    A prominent integrated assessment model (IAM), the Global Change Assessment Model (GCAM), has been coupled with the Community Land Model (CLM) of the Community Earth system model (CESM) to assess the vulnerability of the US agriculture and energy sectors to future water shortages under changing climate and socioeconomics. This study utilizes the regionalized version of GCAM for the U.S. with 50-state. GCAM-USA includes a detailed representation of water demands and tracks them at multiple spatial scales and annual scale. A spatial and temporal disaggregation approach is developed to project the annual regional water demand simulations into a daily time step and 1/8o spatial resolution for input to CLM, which has been coupled to a river routing model and generic water management model applicable globally at 1/2o resolution and regionally at 1/8o resolution. The coupled modeling framework demonstrated reasonable ability to simulate the historical flow regulation and water supply over the continental U.S. The coupled modeling framework has been used to investigate: 1) Which water use sector (agriculture or energy) and subbasins in the conterminous U.S. will experience water deficits in future decades; 2) What are the drivers for the deficit (i.e., water availability, water demands, or both); 3) Will climate mitigation policies alleviate or exacerbate the situation; and lastly 4) How will the frequency , severity, and spatial extent of water deficits (hot spots) evolve under a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail versus a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward renewables and expansion of bioenergy productions. Results show that irrigation will face greater water deficit overall except in the northeastern U.S. Water deficit is greatest in the western U.S. except the Pacific Northwest. Human footprints on the regulated flows are most pronounced over the Rio Grande, Colorado, Great

  17. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    International Nuclear Information System (INIS)

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  18. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands

    Energy Technology Data Exchange (ETDEWEB)

    Heide-Joergensen, H.S.; Johnsen, I. [Koebenhavns Univ., Botanisk Inst., Oekologisk afd. (Denmark)

    1997-12-31

    An increase in the mean yearly temperature up to 3.6 deg. C may occur in North-Greenland by the end of the 21st century, while in south-Greenland temperature may remain stable or fall slightly. Consequences of this climate change for species diversity and the structure of terrestrial and marine ecosystems are discussed. For the Faroe Islands climate change is not expected to cause notable changes in terrestrial ecosystems, but in marine ecosystems changes are highly unpredictable. (au)

  19. Evaluating Vulnerability and Resilience between Urban and Rural Area in a Regional Water Resources System under Climate Change

    Science.gov (United States)

    Liu, T. M.; Tung, C. P.; Li, M. H.; Tsao, J. H.; Lin, C. Y.

    2014-12-01

    To the threat of climate change, the risk of water resources vary in different area but the same system because of the structure of water supply system and the different sensitivity and exposure to climate for different urbanization area. For example, the urban area with high population density is sensitive to any disturbance from drought and the rural area with unpopular tap water system is insensitive to disturbance of drought but highly risk to water shortage. The resilience of water supply relies on water storage from reservoirs or lakes and water management in urban area but relies on intake from groundwater in rural area. The strategies to water resources should be considered with the water mass flow between urban and rural area. To strengthen the whole water resources system, also, it is important to find where the vulnerability from, how to reduce it and how to build up the resilience for both urban and rural area. This study aims to evaluate the vulnerability and resilience of water resources in different township and city but in the same system. An integrated tool - TaiWAP (Taiwan Water Resources Assessment Program) for climate change vulnerability assessment on water resources is used for climate impact assessment. For the simulation of the complex water supply system, the system dynamics model- VENSIM which is connected with TaiWAP is adopted to simulate a water supply system and evaluate risk of each township and city in a water supply system. The cause of vulnerability will be identified and discussed in both urban and rural. The strategies to reduce vulnerability of water resources for urban and rural will be proposed and discussed in this study.

  20. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes.

    Science.gov (United States)

    Périé, Catherine; de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5-21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies. PMID:27478706

  1. Urbanising Thailand: Implications for climate vulnerability assessment

    NARCIS (Netherlands)

    R. Friend; C. Choosuk; K. Hutanuwatr; Y. Inmuong; J. Kittitornkool; B. Lambregts; B. Promphakping; T. Roachanakanan; P. Thiengburanathum; S. Siriwattanaphaiboon

    2016-01-01

    This report summarises a series of studies carried out by a multi-disciplinary team of Thai scholars. It focuses on the dynamics of urbanisation and climate change risks, and on the linkages between urbanisation, climate change and emerging patterns of urban poverty and vulnerability. It provides ne

  2. Assessment of long-term effects of climate change on biodiversity and vulnerability of terrestrial ecosystems

    International Nuclear Information System (INIS)

    Changes in CO2 levels, temperature and precipitation patterns are expected to have important effects on natural ecosystems. In the title project, different approaches are combined to analyse these effects. Subproject 1 is directed to the effects of climate change on plant species distribution and diversity in Europe. Subproject 2 analyses the effects of climatic change and nitrogen (N) deposition on ecosystem dynamics. Subproject 3 integrates the two other subprojects by analysing the effects of climatic change and N deposition on ecosystem processes and plant species distribution on a regional level

  3. Adaptation to climate change, Vulnerability and Micro- Insurance Business: A Study on Forest Dependent Communities in Drought prone areas of West Bengal, India

    OpenAIRE

    Jyotish Prakash Basu

    2011-01-01

    There are two main responses to climate change. One is adaptation and other is mitigation. The adaptation process includes three essential stages i.e. vulnerability assessment, capacity building and implementation of adaptation measures. The fundamental goal of adaptation strategies is the reduction of the vulnerabilities to climate-induced change. In India 700 million rural populations directly depend on climate-sensitive sectors like agriculture, forest and fisheries and natural resources s...

  4. Agricultural Vulnerability and Adaptation to Climatic Changes in Malaysia: Review on Paddy Sector

    Directory of Open Access Journals (Sweden)

    Basri Talib

    2013-04-01

    Full Text Available Climate change has mixed impacts on agriculture and the impacts are different in terms of areas, periods and crops. The changing factors of climate have been exerting strong negative impacts on Malaysian agriculture, which is apprehended to result in shortages of water and other resources for long term, worsening soil condition, disease and pest outbreaks on crops and livestock, sea-level rise, and so on. Due to climate change, agricultural productivity and profitability is declining. Despite continuous increases of government subsidy, area of paddy plantation is decreasing and the adaption practices are ineffective. As climate change is universal and its existence is indefinite, the farmers need to adapt to and find ways to mitigate the damages of climatic variation in order to sustain agricultural productivity and attain food security for them.

  5. Vulnerability, climate change and livestock – research opportunities and challenges for poverty alleviation

    Directory of Open Access Journals (Sweden)

    Philip Thornton

    2007-12-01

    Full Text Available Livestock systems in developing countries are characterised by rapid change, driven by factors such as population growth, increases in the demand for livestock products as incomes rise, and urbanisation. Climate change is adding to the considerable development challenges posed by these drivers of change. How can livestock keepers take advantage of the increasing demand for livestock products, where this is feasible, and how can the livestock assets of the poor be protected in the face of changing and increasingly variable climates? Given the complexity of livestock and crop-livestock systems, a mix of technological, policy and institutional innovations will inevitably be required. Here we outline some of the likely impacts of climate change on livestock and livestock systems, and discuss some of the resultant priority livestock development issues: water and feeds, livestock genetics and breeding, and animal health. We highlight livestock's role in alleviating poverty and helping households to deal with climate variability. However, there are considerable gaps in our knowledge of how climate change and increasing climate variability will affect livestock systems and the livelihoods of the people who depend on them. We highlight the need for detailed assessment of localised impacts, and the importance of identifying appropriate options that can help livestock keepers adapt to climate change.

  6. Reducing the Vulnerability of Uzbekistan's Agricultural Systems to Climate Change : Impact Assessment and Adaptation Options

    OpenAIRE

    William R. Sutton; Jitendra P. Srivastava; James E. Neumann; Droogers, Peter; Brent B. Boehlert

    2013-01-01

    Agricultural production is inextricably tied to climate, making agriculture one of the most climate-sensitive of all economic sectors. In countries such as Uzbekistan, the risks of climate change for the agricultural sector are a particularly immediate and important problem because the majority of the rural population depends either directly or indirectly on agriculture for their livelihoods. Recent trends in water availability and the presence of drought in Uzbekistan have underscored these ...

  7. Vulnerability of sandy coasts to climate variability

    OpenAIRE

    Idier, Deborah; Castelle, Bruno; Poumadère, Marc.; Balouin, Yann; Bohn Bertoldo, Raquel; Bouchette, Fréderic; Boulahya, Faiza; Brivois, Olivier; Calvete Manrique, Daniel; Capo, Sylvain; Certain, Raphael; Charles, Elodie; Chateauminois, Eric; Delvallée, Etienne; Falqués Serra, Albert

    2013-01-01

    The main objective of the VULSACO (VULnerability of SAndy COasts to climate change and anthropic pressure) project was to investigate present day and potential future vulnerability of sandy coasts at the 2030 horizon, i.e. on a time scale related to climate variability. The method, based on a multidisciplinary approach bringing together geologists, geographers, physicists, social psychologists, engineers and stakeholders, was structured around 4 axes: field data analysis; numerical modelling;...

  8. Climate Change and South Asia: What Makes the Region Most Vulnerable?

    OpenAIRE

    Islam, A.K.M. Nazrul; Sultan, Salma; Afroz,

    2009-01-01

    Climate change is no more a distant possibility rather a reality. Due to geo-physical conditions and socio-economic-demographic backwardness South Asia is projected as one of the worst affected regions from global warming and climate change. The region is the home of about 1.5 billion of the world’s population and a chunk of the global poor. Climate change will affect agriculture sector across South Asian countries very hard. The overwhelming dependence on agriculture and natural resources fo...

  9. Evaluation of mangrove ecosystem of India for assessing its vulnerability to projected climatic changes

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Komarpant, D.S.

    ) stock, annual growth and increase in AGB, composition of flora and associate biota, land use pattern and sediment organic carbon. Unfortunately, such data for the mangroves of India do not exist. Considering the projection of climate change resulting...

  10. What if ... abrupt and extreme climate change? Programme of VAM (Vulnerability, Adaptation, Mitigation)

    International Nuclear Information System (INIS)

    A number of researchers from different social scientific disciplines present a view in response to the question 'what will happen in our society if the climate suddenly changes?'. They answer questions such as: How will people respond to real risks such as imminent flooding? What are the economic consequences? How will it affect sectors such as inland shipping and coastal tourism? What are the costs of adapting our country to rising sea levels or sudden cold? As a society what do we consider to be socially and publicly acceptable? Can we still insure ourselves? Who will assume responsibility and what are the tasks of the various parties involved? The book merely sets the scene. Social sciences research into climate change has only just started. Besides providing answers to the question about the social and public implications of abrupt climate change, the book calls for a greater involvement of social scientists in climate change issues

  11. Climate Compatible Development in the Mongolia Steppe: analysis of vulnerability and adaptation response to global changes

    Science.gov (United States)

    Ojima, D. S.; Togtokh, C.; Galvin, K. A.

    2015-12-01

    INTRODUCTION: Climate change and variability, market and policy changes are shaping pastoral communities' decisions on what pathways their future livelihoods will take and how the steppe landscapes and river basins, are managed. Recent droughts and damaging winter storms (zuds) of the past two decades have exacerbated the situation and undermined the natural capital on which the pastoral livelihoods depend upon. River basins are critical natural resources well-being of social-ecological systems in Mongolia. River basins provide the ecosystem services which support pastoral communities and industrial and urban development. Green development strategies are strongly dependent on water resources. Consequently, integrated planning of river basin management is needed to maintain these critical ecosystem services to meet the multiple needs of livelihoods of communities in these basins and to support sustainable development activities within the basins. For this study our team worked in nine sums (i.e., county level administrative areas) in three river basins in two provinces (aimags) to collect household data from 144 households. We also collected census data from the aimags and national level to understand trends at the level of ecosystems and river basins. We have selected 3 sums in each river basis, representing forest steppe, steppe and desert steppe regions for comparison across river basins and ecological zones. FINDINGS: Integrated planning efforts would be enhanced through, one, use of a social-ecological framework and, two, the development of a cross-ministerial working group to address natural resource considerations. Across the three basins agriculture, pastoral, industrial, and urban needs vie for similar ecosystem services. The natural capital and ecosystem services of these basins need to be assessed to understand the vulnerability and capacity of the resources. The most frequently listed "best coping strategy" across all ecosystem types was for herders to

  12. Reducing the Vulnerability of Albania's Agricultural Systems to Climate Change : Impact Assessment and Adaptation Options

    OpenAIRE

    Sutton, William R.; Srivastava, Jitendra P.; James E. Neumann; Strzępek, Kenneth M.; Droogers, Peter

    2013-01-01

    Changes in climate and their impact on agricultural systems and rural economies are already evident throughout Europe and Central Asia (ECA). Adaptation measures now in use in Albania, largely piecemeal efforts, will be insufficient to prevent impacts on agricultural production over the coming decades. There is growing interest at the country and development partner levels to have a better understanding of the exposure, sensitivities, and impacts of climate change at farm level, and to develo...

  13. Reducing the Vulnerability of Moldova's Agricultural Systems to Climate Change : Impact Assessment and Adaptation Options

    OpenAIRE

    Sutton, William R.; Srivastava, Jitendra P.; James E. Neumann; Iglesias, Ana; Boehlert, Brent B.

    2013-01-01

    Changes in climate and their impact on agricultural systems and rural economies are already evident throughout Europe and Central Asia (ECA). Adaptation measures now in use in Moldova, largely piecemeal efforts, will be insufficient to prevent impacts on agricultural production over the coming decades. There is growing interest at country and development partner levels to have a better understanding of the exposure, sensitivities, and impacts of climate change at farm level, and to develop an...

  14. Vulnerability and the impact of climate change in South Africa's Limpopo River Basin:

    OpenAIRE

    Shewmake, Sharon

    2008-01-01

    "With likely long-term changes in rainfall patterns and shifting temperature zones, climate change is expected to increase the frequency of climate-related shocks, such as floods and droughts in Sub-Saharan Africa. For farm households, an increase in the frequency of climate-related income shocks could lead not only to lower expected income, but also to higher income variance, which in turn can cause them to pursue costly risk-coping strategies and to fall below poverty trap thresholds. For t...

  15. Vulnerability of Water Resources under Climate and Land Use Change: Evaluation of Present and Future Threats for Austria

    Science.gov (United States)

    Nachtnebel, Hans-Peter; Wesemann, Johannes; Herrnegger, Mathew; Senoner, Tobias; Schulz, Karsten

    2015-04-01

    Climate and Land Use Change can have severe impacts on natural water resources needed for domestic, agricultural and industrial water use. In order to develop adaptation strategies, it is necessary to assess the present and future vulnerability of the water resources on the basis of water quantity, water quality and adaptive capacity indicators. Therefore a methodological framework was developed within the CC-Ware project and a detailed assessment was performed for Austria. The Water Exploitation Index (WEI) is introduced as a quantitative indicator. It is defined as the ratio between the water demand and the water availability. Water availability is assessed by a high resolution grid-based water balance model, utilizing the meteorological information from bias corrected regional climate models. The demand term can be divided into domestic, agricultural and industrial water demand and is assessed on the water supply association level. The Integrated Groundwater Pollution Load Index (GWPLI) represents an indicator for areas at risk regarding water quality, considering agricultural loads (nitrate pollution loads), potential erosion and potential risks from landfills. Except for the landfills, the information for the current situation is based on the CORINE Landcover data. Future changes were predicted utilizing the PRELUDE land use scenarios. Since vulnerability is also dependent on the adaptive capacity of a system, the Adaptive Capacity Index is introduced. The Adaptive Capacity Index thereby combines the Ecosystem Service Index (ESSI), which represents three water related ecosystem services (Water Provision, Water Quantity Regulation and Water Quality Regulation) and the regional economic capacity expressed by the gross value added. On the basis of these indices, the Overall Vulnerability of the water resources can be determined for the present and the future. For Austria the different indices were elaborated. Maps indicating areas of different levels of

  16. Savannas Ecosystems Services: Local Knowledge On Vulnerability And Adaptation To Climate Change In South-Western Burkina Faso (West Africa)

    Science.gov (United States)

    Dimobe, K.; Goetze, D.; Ouédraogo, A.; Thiombiano, A.; Porembski, S.

    2015-12-01

    Local knowledge could form an effective channel and base through which climate change adaptation and mitigation can be realized. This paper uses the context of savannas ecosystem services in Burkina Faso to examine local knowledge and perspectives on the changing trends in vulnerability and adaptation to climate change. The survey targeted farmers, traditional authorities and administrators at the local government level. Semi-structured questionnaires were employed for one-on-one interviews and focused group discussions for data collection. Descriptive statistics and explanatory factor analysis were used to analyze the collected data. A total of 230 farmers, 6 traditional authorities and 5 administrators belonging to 32 villages were interviewed. Most of local people (95.1-96.7%) believe that climate change is occurring, and cited general increases in average temperatures, fluctuating rainfall regimes and extended drought periods as some of their observations. They explain the increasing changes and vulnerability of savannas ecosystems through the longer time spent and distance covered to collect medicinal plants and forest food; decreasing productivity and availability of fodder, fuel wood, forest food and medicinal plant, changing uses of forest food and medicinal plant species. The views of farmers were generally shared by the traditional authorities and administrators. Adaptation actions employed by local communities are tree planting, protection of forestry resources, migration, awareness raising, conservation of soil and water resources.

  17. Zoning vulnerability of climate change in variation of amount and trend of precipitation - Case Study: Great Khorasan province

    Science.gov (United States)

    Modiri, Ehsan; Modiri, Sadegh

    2015-04-01

    Climatic hazards have complex nature that many of them are beyond human control. Earth's climate is constantly fluctuating and trying to balance itself. More than 75% of Iran has arid and semi-arid climate thus assessment of climate change induced threats and vulnerabilities is essential. In order to investigate the reason for the changes in amount and trend of precipitation parameter, 17 synoptic stations have been selected in the interval of the establishment time of the station until 2013. These stations are located in three regions: Northern, Razavi and Southern Khorasan. For quality control of data in Monthly, quarterly and annual total precipitation of data were tested and checked by run test. Then probable trends in each of the areas was assessed by Kendall-tau test. Total annual precipitation of each station is the important factor that increase the sensitivity of vulnerability in the area with low rainfall. Annual amount of precipitation moving from north to south has been declining, though in different fields that they have different geomorphologic characteristics controversies occur. But clearly can be observed average of precipitation decline with decreasing latitude. There were positive trends in the annual precipitation in 6 stations, negative trends in 10 stations, as well as one station, has no trend. The remarkable notice is that all stations have a positive trend were in the northern region in the case study. These stations had been in ranging from none to Moderate classification of threats and vulnerability. After the initialization parameters to classify levels of risks and vulnerability, the two measures of mean annual precipitation and the trends of this fluctuation were combined together. This classification was created in five level for stations. Accordingly Golmakan, Ghochan, Torbate heydarieh, Bojnord and Mashhad were in none threat level. Khoor of Birjand and Boshruyeh have had complete stage of the threat level and had the greatest

  18. Local variability mediates vulnerability of trout populations to land use and climate change

    Science.gov (United States)

    Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E.

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  19. Assessing the increasing flood risk in the Niger River: Climate change, land use change or increasing vulnerability?

    Science.gov (United States)

    Aich, Valentin; Kone, Bakary; Müller, Eva N.; Hattermann, Fred F.

    2014-05-01

    The Niger River in West Africa experiences a strong increase of flood risk during the past decades. The evaluation of the three most extensive databases on floods in Africa (NatCat database of Munich Re, Dartmouth Flood Observatory, International disaster database EM-DAT) shows a strong increasing trend in the annual number of people affected by floods in the Niger basin. The reason for this trend is controversial as it goes along with a decrease of mean precipitation. In the ongoing debate many studies identify land use change as cause for the increase in extreme discharges in Sahelian rivers and deny an increase of extreme rainfall. Other studies focus more on the vulnerability of an increasing population, which leads to more and more people affected. However, quantitative approaches on the extreme discharges in the Niger basin are rare. In order to assess the floods systematically, we analyze long time series for 10 gauging stations along the Niger River with state of the art statistical methods. By means of change-point analysis coupled with trend analysis, wavelet analysis and non-stationary generalized extreme value functions (NSGEV) we are able to identify decadal changes and changing probability distributions of flood occurrence along the Niger. The results in the basins differ substantially, depending on the source region of the flood. We differentiate between the Guinean flood, originating from precipitation in the Guinean highland and the Red flood, originating from rains in the Sahelian part of the basin. We find significant changes of frequency in floods since the 80s, but only for the Red flood. The peaks of the Guinean flood recovered since the droughts of the 70s/ 80s, but do not reach the level of the 50s/ 60s. In addition, the NSGEV reveals that the probability for extreme floods has increased for the Red flood, but rather decreased for the Guinean flood in the past decade. These results indicate that the increase in vulnerability is at least not

  20. Vulnerability and adaptation assessments of agriculturalcrops under climate change in the Southeastern USA

    Science.gov (United States)

    Alexandrov, V. A.; Hoogenboom, G.

    It is expected that a change in climatic conditions due to global warming will directly impact agricultural production. Most climate change studies have been applied at very large scales, in which regions were represented by only one or two weather stations, which were mainly located at airports of major cities. The objective of this study was to determine the potential impact of climate change at a local level, taking into account weather data recorded at remote locations. Daily weather data for a 30-year period were obtained for more than 500 sites, representing the southeastern region of the USA. Climate change scenarios, using transient and equilibrium global circulation models (GCM), were defined, created and applied to the daily historical weather data. The modified temperature, precipitation and solar radiation databases corresponding to each of the climate change scenarios were used to run the CERES v.3.5 simulation model for maize and winter wheat and the CROPGRO v.3.5 model for soybean and peanut. The GCM scenarios projected a shorter duration of the crop-growing season. Under the current level of CO2, the GCM scenarios projected a decrease of crop yields in the 2020s. When the direct effects of CO2 were assumed in the study, the scenarios resulted in an increase in soybean and peanut yield. Under equilibrium , the GCM climate change scenarios projected a decrease of maize and winter wheat yield. The indirect effects of climate change also tended to decrease soybean and peanut yield. However, when the direct effects of CO2 were included, most of the scenarios resulted in an increase in legume yields. Possible changes in sowing data, hybrids and cultivar selection, and fertilization were considered as adaptation options to mitigate the potential negative impact of potential warming.

  1. Beyond the black box: Forest sector vulnerability assessments and adaptation to climate change in North America

    International Nuclear Information System (INIS)

    In the wake of the failures to date of well-publicized multilateral and multi-sectoral mitigation efforts to control greenhouse gases, attention is now increasingly focused on the effectiveness and capacity of national and sub-national level sectoral plans, including forestry, to usher in a new era of adaptation efforts. In Canada, the government of British Columbia spent several years developing its Future Forest Ecosystems Initiative as part of a larger climate change response strategy in the forest sector. Similarly, in the United States, wildfire related events have led to climate change inspired efforts by individual states (e.g., Alaska, California) and the US Forest Service has recently undertaken plans to incorporate climate change considerations in national forest planning beginning with the National Road Map for Responding to Climate Change. This paper highlights a number of shortcomings with both these national and sub-national strategies with respect to the relationships existing between governance, forestry and climate change. It proposes incorporating considerations of governance mechanisms directly into forest sector planning and the need to assess not only natural system level changes but also the extent to which new problems can be dealt with by ‘old’ or ‘new’ governance arrangements

  2. Health, Climate Change and Energy Vulnerability: A Retrospective Assessment of Strategic Health Authority Policy and Practice in England

    Directory of Open Access Journals (Sweden)

    J. Richardson

    2008-01-01

    Full Text Available Background: A number of policy documents suggest that health services should be taking climate change and sustainability seriously and recommendations have been made to mitigate and adapt to the challenges health care providers will face. Actions include, for example, moving towards locally sourced food supplies, reducing waste, energy consumption and travel, and including sustainability in policies and strategies. A Strategic Health Authority (SHA is part of the National Health Service (NHS in England. They are responsible for developing strategies for the local health services and ensuring high-quality performance. They manage the NHS locally and are a key link between the U.K. Department of Health and the NHS. They also ensure that national priorities are integrated into local plans. Thus they are in a key position to influence policies and practices to mitigate and adapt to the impact of climate change and promote sustainability.Aim: The aim of this study was to review publicly available documents produced by Strategic Health Authorities (SHA to assess the extent to which current activity and planning locally takes into consideration climate change and energy vulnerability.Methods: A retrospective thematic content analysis of publicly available materials was undertaken by two researchers over a six month period in 2008. These materials were obtained from the websites of the 10 SHAs in England. Materials included annual reports, plans, policies and strategy documents.Results: Of the 10 SHAs searched, 4 were found to have an absence of content related to climate change and sustainability. Of the remaining 6 SHAs that did include content related to climate change and energy vulnerability on their websites consistent themes were seen to emerge. These included commitment to a regional sustainability framework in collaboration with other agencies in the pursuit and promotion of sustainable development.Results indicate that many SHAs in England

  3. Climate Change Impact Assessment and Adaptation Options in Vulnerable Agro-Landscapes in East-Africa

    Science.gov (United States)

    Manful, D.; Tscherning, K.; Kersebaum, K.; Dietz, J.; Dietrich, O.; Gomani, C.; Böhm, H.; Büchner, M.; Lischeid, G.,; Ojoyi, M.,

    2009-04-01

    Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.

  4. The Icarus challenge - Predicting vulnerability to climate change using an algorithm-based species’ trait approach

    Science.gov (United States)

    Like Icarus, the world’s ecological resources are “flying too close” to the sun, and climate change will impact near-coastal species through temperature, sea-level rise, and ocean acidification and indirectly through changes in invasive species and land-use patt...

  5. Assessment of long-term effects of climate change on biodiversity and vulnerability of terrestrial ecosystems

    International Nuclear Information System (INIS)

    The aim of this project was to analyze the effects of climatic change on plant species diversity and ecosystem functioning. The direct effects of climatic change on plant species diversity are analyzed using a species based probabilistic Model (EUROMOVE) that relates the probability of occurrence of ca 1400 European plant species to climatic variables as the mean temperature of the coldest month, the effective temperature sum, the annual precipitation, the annual potential and actual evapotranspiration, the length of the growing season, and the mean growing season temperature. The indirect effects of raised C02 levels and increased temperatures on ecosystem functioning and the consequences of these indirect effects for plant diversity are analyzed by combining a mechanistic simulation model (NUCOM) with regression models. NUCOM predicts the effects of environmental changes on dominant plant species composition and ecosystem variables. The predicted ecosystem variables are linked to plant species diversity of subordinate species by regression models, using Ellenberg indices for N availability, soil acidity, soil moisture, and light intensity. With these two approaches, the consequences of climatic change scenarios (IPCC Baseline A, IPCC Stabilization 450) and N deposition scenarios (reduced, constant) are analyzed for Europe (EUROMOVE) and part of the Netherlands (NUCOM). The results showed that the direct effects of climatic change may have large impact on plant species diversity and distribution. The indirect effects of climatic change on plant diversity appeared minor but effects of changes in soil moisture are not included. Other environmental changes like eutrofication and human impact have large effect on ecosystem variables and plant species diversity. Reductions in nitrogen emission have a positive effect but take time to become apparent. 49 refs

  6. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    Directory of Open Access Journals (Sweden)

    Helen Brown

    2014-12-01

    Full Text Available This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  7. Climate challenges, vulnerabilities, and food security

    Science.gov (United States)

    Nelson, Margaret C.; Ingram, Scott E.; Dugmore, Andrew J.; Streeter, Richard; Peeples, Matthew A.; McGovern, Thomas H.; Hegmon, Michelle; Arneborg, Jette; Brewington, Seth; Spielmann, Katherine A.; Simpson, Ian A.; Strawhacker, Colleen; Comeau, Laura E. L.; Torvinen, Andrea; Madsen, Christian K.; Hambrecht, George; Smiarowski, Konrad

    2016-01-01

    This paper identifies rare climate challenges in the long-term history of seven areas, three in the subpolar North Atlantic Islands and four in the arid-to-semiarid deserts of the US Southwest. For each case, the vulnerability to food shortage before the climate challenge is quantified based on eight variables encompassing both environmental and social domains. These data are used to evaluate the relationship between the “weight” of vulnerability before a climate challenge and the nature of social change and food security following a challenge. The outcome of this work is directly applicable to debates about disaster management policy. PMID:26712017

  8. Vulnerability to climate change of Anolis allisoni in the mangrove habitats of Banco Chinchorro Islands, Mexico.

    Science.gov (United States)

    Medina, Marlin; Fernández, Jimena B; Charruau, Pierre; de la Cruz, Fausto Méndez; Ibargüengoytía, Nora

    2016-05-01

    As niche specialist species, lizards from tropical environments are characterized by a low tolerance and high physiological sensitivity to temperature changes. The extent of vulnerability to thermal changes depends on the lizard's physiological plasticity to adjust the environmental changes. Herein we studied the thermal biology of Anolis allisoni, an endemic arboreal lizard from the tropical islands of the Banco Chinchorro Biosphere Reserve, Mexico, carried out during April and May 2012 and April 2014. We report field body (Tb) and preferred body temperatures in the laboratory (Tpref), operative temperatures (Te) and restriction of hours of activity. Anolis allisoni showed high and identical Tb and Tpref (33°C), not significantly different than the mean Te (32.15°C). The effectiveness of thermoregulation (E=-0.30) and the analysis of hours of restriction suggested that the high temperatures of Te (40-62.5°C) registered at midday (from 12:00 to 15:00) of A. allisoni habitat are hostile and force lizards to take refuge during a period of 3h of their daily time of activity. The scarcity of opportunities to find alternative refuges for thermoregulation in Banco Chinchorro point out the vulnerability of A. allisoni and the risk of local extinction when considering future predictions of increase in global environmental temperatures. PMID:27157328

  9. Vulnerability of Brazilian Megacities to Climate Change: The São Paulo Metropolitan Region

    OpenAIRE

    Carlos Afonso Nobre; Andrea Ferraz Young; Paulo Hilário Nascimento Saldiva; José Antônio Marengo Orsini; Antonio Donato Nobre; Agostinho Tadashi Ogura; Osório Thomaz; Guillermo Oswaldo Obregón Párraga; Gustavo Costa M. da Silva; Maria Valverde; André Carvalho Silveira; Grasiela de Oliveira Rodrigues

    2012-01-01

    A major concern of contemporary society in relation to future climate projections relates to possible changes in the frequencies and intensities of extreme weather events. Megacities such as São Paulo have numerous social and environmental problems associated with patterns of development and transformation of space, which have been aggravated by increases in temperature and intensification of extreme weather events. (?)

  10. Social Dimensions of Climate Change : Equity and Vulnerability in a Warming World

    OpenAIRE

    Mearns, Robin; Norton, Andrew

    2010-01-01

    Climate change is widely acknowledged as foremost among the formidable challenges facing the international community in the 21st century. It poses challenges to fundamental elements of our understanding of appropriate goals for social and economic policy, such as the connection of prosperity, growth, equity, and sustainable development. This volume seeks to establish an agenda for research...

  11. SANREM CRSP LTR4: Adapting to change in the Andes: Practices and strategies to address market and climate risks in vulnerable ecosystems

    OpenAIRE

    Valdivia, Corinne

    2008-01-01

    This presentation describes the work of the SANREM CRSP Long term research activity 4 (LTRA-4), "Adapting to Change in the Andes: Practices and Strategies to Address Market and Climate Risks in Vulnerable Ecosystems." The objectives of the project are to address: LTRA-4 (Practices and Strategies for Vulnerable Agro-Ecosystems)

  12. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    Science.gov (United States)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  13. Vulnerability assessment of skiing-dependent businesses to the effects of climate change in Banff and Jasper National Parks, Canada

    Science.gov (United States)

    Reynolds, David Michael

    This qualitative study examines the potential positive and negative socio-economic impacts that may emerge from the long-term effects of climate change on skiing-dependent businesses in Banff and Jasper National Parks, Canada. My goal was to determine whether or not skiing-related tourism in the parks in the 2020s and 2050s is more or less socio-economically vulnerable to the effects of climate change on snow cover, temperatures and ski season length at ski resorts in the parks. My study explored the level of awareness and personal perceptions of 60 skiing-dependent business managers about how the impact of climate change on ski resorts may influence future socio-economics of ski tourism businesses. I employed a vulnerability assessment approach and adopted some elements of grounded theory. My primary data sources are interviews with managers and the outcome of the geographical factors index (GFI). Supporting methods include: an analysis and interpretation of climate model data and an interpretation of the economic analysis of skiing in the parks. The interview data were sorted and coded to establish concepts and findings by interview questions, while the GFI model rated and ranked 24 regional ski resorts in the Canadian Cordillera. The findings answered the research questions and helped me conclude what the future socio-economic vulnerability may be of skiing-dependent businesses in the parks. The interviews revealed that managers are not informed about climate change and they have not seen any urgency to consider the effects on business. The GFI revealed that the ski resorts in the parks ranked in the top ten of 24 ski resorts in the Cordillera based on 14 common geographical factors. The economic reports suggest skiing is the foundation of the winter economy in the parks and any impact on skiing would directly impact other skiing-dependent businesses. Research indicates that the effects of climate change may have less economic impact on skiing

  14. A CRITICAL ASSESSMENT OF CLIMATE CHANGE IMPACTS, VULNERABILITY AND POLICY IN INDIA

    OpenAIRE

    Vijaya Gupta

    2011-01-01

    There is considerable disagreement on the extent of the changes in the variables of climate, but is expected that these changes will lead to submergence of coastal areas, and increased severe occurrence of floods and droughts and harm productivity in agriculture, fishery, forestry, human, all converted into loss of lives and livelihood, productivity, employment opportunities, with high opportunity cost of adaptations and mitigations in India. The developing countries are particularly vulnerab...

  15. Vulnerability of waterborne diseases to climate change in Canada: a review.

    Science.gov (United States)

    Charron, Dominique; Thomas, M; Waltner-Toews, David; Aramini, Jeffery; Edge, Tom; Kent, Robert; Maarouf, Abdel; Wilson, Jeff

    This project addresses two important issues relevant to the health of Canadians: the risk of waterborne illness and the health impacts of global climate change. The Canadian health burden from waterborne illness is unknown, although it presumably accounts for a significant proportion of enteric illness. Recently, large outbreaks with severe consequences produced by E. coli O157:H7 and Cryptosporidium have alarmed Canadians and brought demands for political action. A concurrent need to understand the health impacts of global climate changes and to develop strategies to prevent or prepare for these has also been recognized. There is mounting evidence that weather is often a factor in triggering waterborne disease outbreaks. A recent study of precipitation and waterborne illness in the United States found that more than half the waterborne disease outbreaks in the United States during the last half century followed a period of extreme rainfall. Projections of international global climate change scenarios suggest that, under conditions of global warming most of Canada may expect longer summers, milder winters, increased summer drought, and more extreme precipitation. Excess precipitation, floods, high temperatures, and drought could affect the risk of waterborne illness in Canada. The existing scientific information regarding most weather-related adverse health impacts and on the impacts of global climate change on health in Canada is insufficient for informed decision making. The results of this project address this need through the investigation of the complex systemic interrelationships between disease incidence, weather parameters, and water quality and quantity, and by projecting the potential impact of global climate change on those relationships. PMID:15371208

  16. Climate vulnerability of drinking water supplies

    Science.gov (United States)

    Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes

    2016-04-01

    Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified

  17. Vulnerability and Adaptation to Potential Impacts of Climate Change and Inventory of Greenhouse Gas Emissions and Sinks in Kenya

    International Nuclear Information System (INIS)

    This document is the proceedings of two workshops organized by the Kenya Country Study on Climate change Project (KCSCCP) of the Ministry of Research and Technology. The first workshop dealt with the Vulnerability and Adaptation to the Impacts of climate Change whilst the second was on the inventory of Greenhouse gas emissions and sinks in Kenya. These were for culmination and socio-economic development in Kenya. this efforts were made possible through financial support from the US government, which was channelled through the US Country studies program. The US country studies program also supervised the expeditious peer review of the consultancy work to facilitate refining of the final reports by the consultants. These proceedings therefore, contain only summarized versions of the papers presented at the workshops

  18. Local Constructions of Vulnerability and Resilience in the Context of Climate Change. A Comparison of Lübeck and Rostock

    Directory of Open Access Journals (Sweden)

    Gabriela B. Christmann

    2014-02-01

    Full Text Available Climate change is globally defined as a “reality”. This does not mean however that the way in which it is understood is the same all over the world. Rather, perceptions may differ at different places and times, even if physical and geographical conditions are similar. For the time being, this phenomenon has not been dealt with on a theoretical-conceptual level. The article will address this desiderate. Based on the approaches of social constructivism as well as actor-network theory, a theoretical concept will be suggested as a heuristic model for empirical analysis. By the examples of Lübeck and Rostock, two cities on Germany’s Baltic coast, it will be shown that climate change related perceptions of vulnerability and resilience may build on physical-material aspects but that they are above all considerably interwoven with specific cultural and social patterns of interpretation. In the framework of the local discourse in Lübeck, it is the strong Hanseatic tradition which consumes the climate change issue, whereas in Rostock it is the problems and historical breaks of a transformation society which shape the way of viewing climate change.

  19. A Climate Change Adaptation Planning Process for Low-Lying, Communities Vulnerable to Sea Level Rise

    Directory of Open Access Journals (Sweden)

    Kristi Tatebe

    2012-09-01

    Full Text Available While the province of British Columbia (BC, Canada, provides guidelines for flood risk management, it is local governments’ responsibility to delineate their own flood vulnerability, assess their risk, and integrate these with planning policies to implement adaptive action. However, barriers such as the lack of locally specific data and public perceptions about adaptation options mean that local governments must address the need for adaptation planning within a context of scientific uncertainty, while building public support for difficult choices on flood-related climate policy and action. This research demonstrates a process to model, visualize and evaluate potential flood impacts and adaptation options for the community of Delta, in Metro Vancouver, across economic, social and environmental perspectives. Visualizations in 2D and 3D, based on hydrological modeling of breach events for existing dike infrastructure, future sea level rise and storm surges, are generated collaboratively, together with future adaptation scenarios assessed against quantitative and qualitative indicators. This ‘visioning package’ is being used with staff and a citizens’ Working Group to assess the performance, policy implications and social acceptability of the adaptation strategies. Recommendations based on the experience of the initiative are provided that can facilitate sustainable future adaptation actions and decision-making in Delta and other jurisdictions.

  20. Approaching to a model for evaluating of the vulnerability of the vegetable covers of Colombia in a possible climatic change using SIG

    International Nuclear Information System (INIS)

    This technical paper summarizes the gradual thesis Approach to a model for evaluating of the vulnerability of the vegetation covers in Colombia in face of a possible global climate change (Gutierrez, 2001). It present the methodologies and results of the construction of a prospective model using GIS (Geographical Information Systems) for evaluating the vulnerability of the vegetation covers of Colombia, in face of a possible global climate chance. The analysis of the vulnerability of the possible impact on vegetation and for identification of its vulnerability as a consequence of climate change was carried out by application of the method of direct function establishing, recommended by IPCC, Intergovernmental Panel on Climate Change (1999). An analysis of the displacement of Life Zones of Holdridge was made under a scenario with duplication of the CO2 concentration in the atmosphere and identified vegetation affected by displacement. These results were adjusted to the bioclimatic and biogeographic conditions of the country. The Model of Vulnerability of the Vegetation Covers of Colombia was developed in Spatial Modeler Language, of Arc/lnfo and Erdas Imagine. This model is able to generate the spatial distribution of the climatic variables and Bioclimatic Units, under past, present and future climate scenarios, as well as to evaluate the degree of vulnerability of the vegetation covers of Colombia in face a climatic change. For the improvement of the model of Vulnerability, specially the intermediate products, it was subdivided in three Phases or Subsystems: In the First Phase or Present Subsystem, the sub models generate a Bioclimatic Zonification of the Life Zones of Holdridge, under a currently scenario of Climatic Line Base 1961-1990. In the Second Phase or Subsystem of Climate Change, the sub models develop a Bioclimatic Zonification of the Life Zones of Holdridge, under a future climate Scenario with duplication of the contained of the CO2 in the atmosphere

  1. Perspectives on contextual vulnerability in discourses of climate conflict

    OpenAIRE

    U. T. Okpara; L. C. Stringer; Dougill, A.J.

    2016-01-01

    The science of climate security and conflict is replete with controversies. Yet the increasing vulnerability of politically fragile countries to the security consequences of climate change is widely acknowledged. Although climate conflict reflects a continuum of conditional forces that coalesce around the notion of vulnerability, how different portrayals of vulnerability influence the discursive formation of climate conflict relations remains an exceptional but under-researc...

  2. Assessing social vulnerability in African urban context. The challenge to cope with climate change induced hazards by communities and households

    Science.gov (United States)

    Kabisch, Sigrun; Jean-Baptiste, Nathalie

    2013-04-01

    Social vulnerability assessment remains central in discourses on global climatic change and takes a more pertinent meaning considering that natural disasters in African countries continue to deeply affect human settlements and destroys human livelihoods. In recent years, in particular large territories and growing cities have experienced severe weather events. Among them are river and flash floods, affecting the social and economic assets of local populations. The impact of the damage related to floods is not only perceptible during seasonal events but also during unexpected larger disasters which place a particular burden on local population and institutions to adapt effectively to increasing climatic pressures. Important features for social vulnerability assessment are the increasing severity of the physical damages, the shortcoming of social and technical infrastructure, the complexity of land management/market, the limited capacity of local institutions and last but not least the restricted capacities of local population to resist these events. Understanding vulnerability implies highlighting and interlinking relevant indicators and/or perceptions encompassed in four main dimensions: social, institutional, physical and attitudinal vulnerability. Case studies in Dar es Salaam, Ouagadougou and Addis Ababa were carried out to obtain insights into the context-related conditions, behavior routines and survival networks in urban areas in west and east Africa. Using a combination of tools (e.g. focus group discussions, transect walks, interviews) we investigated in close cooperation with African partners how households and communities are being prepared to cope with, as well as to recover from floods. A comprehensive process of dealing with floods can be described based on sequential attributes concerning i) Anticipation before a flood occurs, ii) Resistance and coping activities during a flood event and, iii) Recovery and reconstruction afterwards. A participatory

  3. Livelihood strategies under the constraints of climate change vulnerability in Quang Nam

    DEFF Research Database (Denmark)

    Casse, Thorkil

    2013-01-01

    This chapter examines how vulnerability can be measured in quantitative terms. Households whose livelihoods are based on economic activities like acacia production and shrimp farming suffered the most....

  4. Vulnerability of climate change and its adaptation in the Mekong Delta: monitoring and resident's perception along the coast

    Science.gov (United States)

    Tamura, M.; Yasuhara, K.

    2014-12-01

    The Mekong Delta in Vietnam is expected to face challenges from various forms of climate-induced events. In addition, a growing population, which currently stands at 18.6 million people lives in the Mekong Delta, Vietnam. Therefore, the Mekong Delta is the focus of international action for adaptation. However, many climate sensitive regions and communities are unprepared for climate-induced natural disasters due to mismatch in perception with their respective risks. This study examines the vulnerability and appropriate adaptation in the Mekong Delta from both scientific and regional aspects. First, we show the change in coastal areas in Soc Trang province, comparing the past to the present images using Unmanned Aerial Vehicle (UAV) and satellite. We identify some vulnerable areas which derived from multiple factors due to coastal erosion, flooding, and sea level rise. Second, we present results of perception survey about climate change and the adaptation at community level in Ca Mau, Soc Trang, and An Giang Provinces, which were conducted in 2012 and 2014. While the findings suggest varying degrees of adaptation to seasonal flooding by raising the ground floors of their homes and repairing houses, their capacity to prepare for extreme flooding is limited in spite of the residents' awareness of the increasing frequency and intensity of natural disasters. Third, we propose an erosion-resistant dyke reinforcement technique by mixing natural palm tree fiber and cement, both of which are locally available materials in the Mekong Delta. It is expected that adaptation with multiple protections in accordance to regional feature can work well for such coastal disasters.

  5. Energy sector vulnerability to climate change: adaptation options to increase resilience

    Science.gov (United States)

    Newmark, R. L.; Bilello, D.; Macknick, J.; Hallett, K. C.; Anderson, R.; Tidwell, V. C.; Zamuda, C.

    2012-12-01

    Climate change will affect the energy sector in multiple ways. Potential impacts include those directly affecting energy infrastructure and operations, such as sea level rise combined with storm surge; increased frequency or intensity extreme events such as hurricanes, floods or droughts; alterations in the hydrologic cycle; as well as those indirectly affecting energy demand and system efficiencies such as increased average temperatures and heat waves, particularly during peak summer demand. Although these changes and challenges occur on different timescales; adaptation options must consider both long-term (chronic) changes as well as short-term (acute) affects as well as the benefits derived from adaptation actions relative to cost, degree of resiliency gained, and the probability of exposure to a given risk. Different energy sector stakeholders tend to focus on response strategies that address specific spatial and temporal scales based on their perceived risks. Here we assess climate change impacts to the Nation's electric sector reliability and consider potential responses necessary to ensure energy security and sustainability. For specific examples such as options to reduce freshwater needs for electricity generation or demand response strategies for extreme heat events, we examine both the technical and economic implications of adopting those strategies, including the national/regional costs for their implementation.

  6. Tailored stakeholder products help provide a vulnerability and adaptation assessment of Greek forests due to climate change

    Science.gov (United States)

    Giannakopoulos, Christos; Karali, Anna; Roussos, Anargyros

    2014-05-01

    Greece, being part of the eastern Mediterranean basin, is an area particularly vulnerable to climate change and associated forest fire risk. The aim of this study is to assess the vulnerability of Greek forests to fire risk occurrence and identify potential adaptation options within the context of climate change through continuous interaction with local stakeholders. To address their needs, the following tools for the provision of climate information services were developed: 1. An application providing fire risk forecasts for the following 3 days (http://cirrus.meteo.noa.gr/forecast/bolam/index.htm) was developed from NOA to address the needs of short term fire planners. 2. A web-based application providing long term fire risk and other fire related indices changes due to climate change (time horizon up to 2050 and 2100) was developed in collaboration with the WWF Greece office to address the needs of long term fire policy makers (http://www.oikoskopio.gr/map/). 3. An educational tool was built in order to complement the two web-based tools and to further expand knowledge in fire risk modeling to address the needs for in-depth training. In particular, the second product provided the necessary information to assess the exposure to forest fires. To this aim, maps depicting the days with elevated fire risk (FWI>30) both for the control (1961-1990) and the near future period (2021-2050) were created by the web-application. FWI is a daily index that provides numerical ratings of relative fire potential based solely on weather observations. The meteorological inputs to the FWI System are daily noon values of temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. It was found that eastern lowlands are more exposed to fire risk followed by eastern high elevation areas, for both the control and near future period. The next step towards vulnerability assessment was to address sensitivity, ie the human-environmental conditions that

  7. Climate Change Adaptation and Vulnerability Assessment of Water Resources Systems in Developing Countries: A Generalized Framework and a Feasibility Study in Bangladesh

    OpenAIRE

    Fabrice G. Renaud; Carlo Giupponi; Animesh K. Gain

    2012-01-01

    Water is the primary medium through which climate change influences the Earth’s ecosystems and therefore people’s livelihoods and wellbeing. Besides climatic change, current demographic trends, economic development and related land use changes have direct impact on increasing demand for freshwater resources. Taken together, the net effect of these supply and demand changes is affecting the vulnerability of water resources. The concept of ‘vulnerability’ is not straightforward as there is no u...

  8. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    Science.gov (United States)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  9. Climate change planning for the Great Plains : Wildlife vulnerability assessment & recommendations for land and grazing management

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is the Great Plains Landscape Conservation Cooperative (GP LCC) Vulnerability Assessment Report The purpose of the GP LCC is to conduct applied science...

  10. Livelihood strategies under climate change vulnerability in Quang Nam province, Vietnam

    DEFF Research Database (Denmark)

    Casse, Thorkil

    Analysis of the transformation of primary to plantation forest under risk of severe natural disasters in central Vietnam. The articles argues that the process could be seen as an example of government induced vulnerability......Analysis of the transformation of primary to plantation forest under risk of severe natural disasters in central Vietnam. The articles argues that the process could be seen as an example of government induced vulnerability...

  11. Climate Change and Health: Acting to Reduce Risks and Vulnerabilities - 20th Annual John K. Friesen Conference - Growing Old in a Changing Climate: Exploring the Interface Between Population Aging and Global Warming (2011)

    OpenAIRE

    Corvalán, Carlos

    2011-01-01

    This video clip is the Free Public Lecture presented at the 20th Annual John K. Friesen Conference, "Growing Old in a Changing Climate: Exploring the Interface Between Population Aging and Global Warming," MAY 25-26, 2011, Vancouver, BC. Climate change is one of the biggest challenges facing humanity. Along with other environmental changes brought about by global population and economic growth, it will put increasing strain on our health systems. Vulnerabilities include the rising probabil...

  12. Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology.

    Science.gov (United States)

    Liancourt, Pierre; Spence, Laura A; Boldgiv, Bazartseren; Lkhagva, Ariuntsetseg; Helliker, Brent R; Casper, Brenda B; Petraitis, Peter S

    2012-04-01

    The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold

  13. What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: a systematic literature review

    International Nuclear Information System (INIS)

    This letter systematically reviews and synthesizes scientific and gray literature publications (n = 420) to identify and characterize the nature of climate change vulnerability in the Inuvialuit Settlement Region of the western Canadian Arctic and identify gaps in understanding. The literature documents widespread evidence of climate change, with implications for human and biophysical systems. Adaptations are being employed to manage changing conditions and are indicative of a high adaptive capacity. However, barriers to adaptation are evident and are expected to constrain adaptive capacity to future climate change. Continued climate change is predicted for the region, with differential exposure sensitivity for communities, groups and sectors: a function of social-economic-biophysical characteristics and projected future climatic conditions. Existing climate risks are expected to increase in magnitude and frequency, although the interaction between projected changes and socio-economic-demographic trends has not been assessed. The capacity for adapting to future climate change has also not been studied. The review identifies the importance of targeted vulnerability research that works closely with community members and other stakeholders to address research needs. Importantly, the fully categorized list of reviewed references accompanying this letter will be a valuable resource for those working or planning to work in the region, capturing climate change research published since 1990. At a broader level, the systematic review methodology offers a promising tool for climate/environmental change studies in general where there is a large and emerging body of research but limited understanding of research gaps and needs.

  14. A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide

    Science.gov (United States)

    López-Carr, David; Pricope, Narcisa G.; Aukema, Juliann E.; Jankowska, Marta M.; Funk, Christopher C.; Husak, Gregory J.; Michaelsen, Joel C.

    2014-01-01

    We present an integrative measure of exposure and sensitivity components of vulnerability to climatic and demographic change for the African continent in order to identify “hot spots” of high potential population vulnerability. Getis-Ord Gi* spatial clustering analyses reveal statistically significant locations of spatio-temporal precipitation decline coinciding with high population density and increase. Statistically significant areas are evident, particularly across central, southern, and eastern Africa. The highly populated Lake Victoria basin emerges as a particularly salient hot spot. People located in the regions highlighted in this analysis suffer exceptionally high exposure to negative climate change impacts (as populations increase on lands with decreasing rainfall). Results may help inform further hot spot mapping and related research on demographic vulnerabilities to climate change. Results may also inform more suitable geographical targeting of policy interventions across the continent.

  15. Alpine ecosystem vulnerability to climate change on the Tibetan Plateau: Global implications for carbon balance, regional consequences for local pastoralists

    Science.gov (United States)

    Hopping, K. A.; Klein, J. A.; Hu, J.; Kang, S.

    2010-12-01

    The Tibetan Plateau is predicted to undergo climate warming much greater than the global average, as well as shifts in its currently monsoon-dominated precipitation regime. These changes will likely affect the vegetation composition, carbon balance, and nutrient cycling of this alpine, social-ecological system. In 2009 we established a fully factorial experiment to test ecosystem responses to predicted climate changes on the Tibetan Plateau. Our experiment site (4870 m) is located in the foothills of the Nyanchenthanglha Mountains, where local pastoralists graze their livestock. The site is representative of central Tibet’s alpine meadow ecosystems, with the turf-forming sedge, Kobresia pygmaea, as both the dominant species and preferred forage of yaks. Our climate treatments are spring snow addition, which is added at 1-m depth to simulate severe snowstorms, and warming with open top chambers, which elevate air temperatures by an average of 1.2 degrees Celsius. The climate treatments are fully crossed with controlled grazing by yaks, which represents the primary livelihood practice of herders at our study site and throughout Tibet’s grasslands. To better understand the ecosystem shifts that may occur under climate change in this alpine system and to elucidate the drivers of these shifts, we collected data from a suite of measurements in each of our plots. Using a LiCOR 6400 infrared gas analyzer, we measured CO2 fluxes at 4 periods throughout the growing season to obtain values for net ecosystem productivity (NEP), ecosystem respiration, and gross primary productivity. We also measured available nitrogen (N) across three distinct moisture regimes (snowmelt, dry-down, and monsoon). Finally, we quantified changes in vegetation composition and recorded air and soil temperature and soil moisture throughout the growing season. After two years of applying treatments, our findings suggest that Tibet’s alpine grasslands are particularly vulnerable to climate change

  16. Contribution of the working group 2 to the fourth evaluation report of the inter government expert group on the climatic change. Evaluation 2007 of the climatic changes: impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    This document exposes the results of the fourth evaluation report of the working group II of the inter government experts group on the climatic change. This evaluation presents the today scientific understanding of the climatic change impacts on the humans and their adaptation ability and vulnerability. It is based on the GIEC evaluations and new knowledge added since the third evaluation report. (A.L.B.)

  17. The Neglect of Governance in Forest Sector Vulnerability Assessments: Structural-Functionalism and “Black Box” Problems in Climate Change Adaptation Planning

    OpenAIRE

    Adam M. Wellstead; Michael Howlett; Jeremy Rayner

    2013-01-01

    Efforts to develop extensive forest-based climate change vulnerability assessments have informed proposed management and policy options intended to promote improved on-the-ground policy outcomes. These assessments are derived from a rich vulnerability literature and are helpful in modeling complex ecosystem interactions, yet their policy relevance and impact has been limited. We argue this is due to structural-functional logic underpinning these assessments in which governance is treated as a...

  18. Perspectives on contextual vulnerability in discourses of climate conflict

    Science.gov (United States)

    Okpara, U. T.; Stringer, L. C.; Dougill, A. J.

    2016-02-01

    The science of climate security and conflict is replete with controversies. Yet the increasing vulnerability of politically fragile countries to the security consequences of climate change is widely acknowledged. Although climate conflict reflects a continuum of conditional forces that coalesce around the notion of vulnerability, how different portrayals of vulnerability influence the discursive formation of climate conflict relations remains an exceptional but under-researched issue. This paper combines a systematic discourse analysis with a vulnerability interpretation diagnostic tool to explore (i) how discourses of climate conflict are constructed and represented, (ii) how vulnerability is communicated across discourse lines, and (iii) the strength of contextual vulnerability against a deterministic narrative of scarcity-induced conflict, such as that pertaining to land. Systematically characterising climate conflict discourses based on the central issues constructed, assumptions about mechanistic relationships, implicit normative judgements and vulnerability portrayals, provides a useful way of understanding where discourses differ. While discourses show a wide range of opinions "for" and "against" climate conflict relations, engagement with vulnerability has been less pronounced - except for the dominant context centrism discourse concerned about human security (particularly in Africa). In exploring this discourse, we observe an increasing sense of contextual vulnerability that is oriented towards a concern for complexity rather than predictability. The article concludes by illustrating that a turn towards contextual vulnerability thinking will help advance a constructivist theory-informed climate conflict scholarship that recognises historicity, specificity, and variability as crucial elements of contextual totalities of any area affected by climate conflict.

  19. Climate indices for vulnerability assessments

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Gunn; Baerring, Lars; Kjellstroem, Erik; Strandberg, Gustav; Rummuk ainen, Markku

    2007-08-15

    The demand is growing for practical information on climate projections and the impacts expected in different geographical regions and different sectors. It is a challenge to transform the vast amount of data produced in climate models into relevant information for climate change impact studies. Climate indices based on climate model data can be used as means to communicate climate change impact relations. In this report a vast amount of results is presented from a multitude of indices based on different regional climate scenarios. The regional climate scenarios described in this report show many similarities with previous scenarios in terms of general evolution and amplitude of future European climate change. The broad features are manifested in increases in warm and decreases in cold indices. Likewise are presented increases in wet indices in the north and dry indices in the south. Despite the extensive nature of the material presented, it does not cover the full range of possible climate change. We foresee a continued interactive process with stakeholders as well as continued efforts and updates of the results presented in the report.

  20. Increasing severity of damage caused by floods in the Spanish Mediterranean coast (1960-2014), climate change or vulnerability?

    Science.gov (United States)

    Perez, Alfredo; Gil, Salvador; Lopez, Francisco; Barriendos, Mariano

    2016-04-01

    In recent decades, there has been an increase in physical and economic losses (WMO, CRED and UCL, 2014) that raises serious concerns in society. Climate change projections may explain the rise in flood losses; however, these shouldn't be considered yet (Bouwer, 2011). According to IPCC (2014), there is low confidence in anthropogenic climate change affecting the frequency and magnitude of fluvial floods on a global scale. In other words, this increase in flood events is not completely related to the higher frequency of heavy rainfall. To illustrate the aforementioned, a spatial example can be seen in the study area. In the Spanish Mediterranean coast, we see an increase in economic losses within the last 50 years due to flood events (Gil et al., 2014). It seems that the socio-economic growth and the rise of housing construction (Gaja, 2008) have led to an increase in vulnerability and exposure which are mainly responsible for those losses and the increase in severity of flood events (Pérez et al., 2015). Furthermore, this situation will probably become more precarious if some climate forecasts are met [IPCC, 2014; AEMET, 2015], and if the economic model fails to adopt efficient adaptive measures. Therefore, it is interesting to focus attention on social factors either within the present or future scenario in order to minimise the potential consequences and improve the adaptation. The main objective of this work focuses on the study of the evolution of the severity of the floods in the Spanish Mediterranean coast for the period (1960-2015). To do that, a statistical analysis of the data base [Gil et al., 2014; extended to the entire Spanish Mediterranean coast (MEDIFLOOD)] and a multiscale mapping (local, provincial and regional level) of the frequency of these events will take place in order to make comparisons and show spatiotemporal patterns according to the severity events evolution. Preliminary results show some interesting statistically significant

  1. Linkages between human health and ocean health: a participatory climate change vulnerability assessment for marine mammal harvesters

    Directory of Open Access Journals (Sweden)

    Lily Gadamus

    2013-08-01

    Full Text Available Background. Indigenous residents of Alaska’s Bering Strait Region depend, both culturally and nutritionally, on ice seal and walrus harvests. Currently, climate change and resultant increases in marine industrial development threaten these species and the cultures that depend on them. Objective. To document: (a local descriptions of the importance of marine mammal hunting; (b traditional methods for determining if harvested marine mammals are safe to consume; and (c marine mammal outcomes that would have adverse effects on community health, the perceived causes of these outcomes, strategies for preventing these outcomes and community adaptations to outcomes that cannot be mitigated. Design. Semi-structured interviews and focus groups were conducted with 82 indigenous hunters and elders from the Bering Strait region. Standard qualitative analysis was conducted on interview transcripts, which were coded for both inductive and deductive codes. Responses describing marine mammal food safety and importance are presented using inductively generated categories. Responses describing negative marine mammal outcomes are presented in a vulnerability framework, which links human health outcomes to marine conditions. Results. Project participants perceived that shipping noise and pollution, as well as marine mammal food source depletion by industrial fishing, posed the greatest threats to marine mammal hunting traditions. Proposed adaptations primarily fell into 2 categories: (a greater tribal influence over marine policy; and (b documentation of traditional knowledge for local use. This paper presents 1 example of documenting traditional knowledge as an adaptation strategy: traditional methods for determining if marine mammal food is safe to eat. Conclusions. Participant recommendations indicate that 1 strategy to promote rural Alaskan adaptation to climate change is to better incorporate local knowledge and values into decision-making processes

  2. The Paris-Nairobi climate initiative. Access to clean energy for all in Africa and countries vulnerable to climate change. Access to energy, sustainable development and climate change; Initiative climat Paris-Nairobi. Acces aux energies propres en Afrique et dans les pays vulnerables au changement climatique. Livre-Blanc, Acces a l'energie, developpement durable et changements climatiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-21

    The first part of this report highlights the importance of a universal access to energy, the role of public policies and renewable energies, the need to implement sustainable economic models for energy services, and indicates the major objectives and essential actions for these purposes. The second part outlines the weakness of electricity production in Africa, the degradation of the energy mix balance, the vulnerability to climate change, and the fact that Africa, like other countries vulnerable to climate change, possess huge and unexploited renewable energy resources (biomass, hydroelectricity, geothermal, solar, wind). The third part proposes an approach to energy services by developing sustainable cooking, supplying energy to support rural development and to poles of economic growth, by developing sustainable cities (notably in transports and buildings), and by developing national and regional electricity grids. The last part addresses the issue of energy financing in developing countries

  3. Climate Change

    Science.gov (United States)

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  4. Vulnerability, forest-related sectors and climate change adaptation : the case of Cameroon

    NARCIS (Netherlands)

    Sonwa, D.J.; Somorin, O.A.; Jum, C.; Bele, M.Y.; Nkem, J.N.

    2012-01-01

    In Cameroon and elsewhere in the Congo Basin, the majority of rural households and a large proportion of urban households depend on plant and animal products from the forests to meet their nutritional, energy, cultural and medicinal needs. This paper explores the likely impacts of climate-induced ch

  5. Vulnerability Assessment of Dust Storms in the United States under a Changing Climate Scenario

    Science.gov (United States)

    Severe weather events, such as flooding, drought, forest fires, and dust storms can have a serious impact on human health. Dust storm events are not well predicted in the United States, however they are expected to become more frequent as global climate warms through the 21st cen...

  6. PERCEPTIONS OF CLIMATE CHANGE

    OpenAIRE

    WAITHAKA, E.; OGENDI, KIMANI; MORARA, G.; MUTUA, MAKENZI P.

    2014-01-01

    There is evidence of climate change related events in arid and semi-arid lands. People living in Arid and Semi-arid Lands are particularly vulnerable to the change. Previous studies have revealed great wealth of adaptation mechanisms developed by communities residing in therein over the course of history for their survival. Despite this, there is little or no evidence whether these developed indigenous strategies by the vulnerable communities are based on perception of climate change. The obj...

  7. A multi-disciplinary approach to evaluate vulnerability and risks of pluvial floods under changing climate: the case study of the municipality of Venice (Italy).

    Science.gov (United States)

    Sperotto, Anna; Torresan, Silvia; Gallina, Valentina; Coppola, Erika; Critto, Andrea; Marcomini, Antonio

    2015-04-01

    Global climate change is expected to affect the intensity and frequency of extreme events (e.g. heat waves, drought, heavy precipitations events) leading to increasing natural disasters and damaging events (e.g. storms, pluvial floods and coastal flooding) worldwide. Especially in urban areas, disasters risks can be exacerbated by changes in exposure and vulnerability patterns (i.e. urbanization, population growth) and should be addressed by adopting a multi-disciplinary approach. A Regional Risk Assessment (RRA) methodology integrating climate and environmental sciences with bottom-up participative processes was developed and applied to the urban territory of the municipality of Venice in order to evaluate the potential consequences of climate change on pluvial flood risk in urban areas. Based on the consecutive analysis of hazard, exposure, vulnerability and risks, the RRA methodology is a screening risk tool to identify and prioritize major elements at risk (e.g. residential, commercial areas and infrastructures) and to localize sub-areas that are more likely to be affected by flood risk due to heavy precipitation events, in the future scenario (2041-2050). From the early stages of its development and application, the RRA followed a bottom-up approach to select and score site-specific vulnerability factors (e.g. slope, permeability of the soil, past flooded areas) and to consider the requests and perspectives of local stakeholders of the North Adriatic region, by means of interactive workshops, surveys and discussions. The main outputs of the assessment are risk and vulnerability maps and statistics aimed at increasing awareness about the potential effect of climate change on pluvial flood risks and at identifying hot-spot areas where future adaptation actions should be required to decrease physical-environmental vulnerabilities or building resilience and coping capacity of human society to climate change. The overall risk assessment methodology and the results

  8. Vulnerability of Water Systems to the Effects of Climate Change and Urbanization: A Comparison of Phoenix, Arizona and Portland, Oregon (USA)

    Science.gov (United States)

    Larson, Kelli L.; Polsky, Colin; Gober, Patricia; Chang, Heejun; Shandas, Vivek

    2013-07-01

    The coupled processes of climate change and urbanization pose challenges for water resource management in cities worldwide. Comparing the vulnerabilities of water systems in Phoenix, Arizona and Portland, Oregon, this paper examines (1) exposures to these stressors, (2) sensitivities to the associated impacts, and (3) adaptive capacities for responding to realized or anticipated impacts. Based on a case study and survey-based approach, common points of vulnerability include: rising exposures to drier, warmer summers, and suburban growth; increasing sensitivities based on demand hardening; and limited capacities due to institutional and pro-growth pressures. Yet each region also exhibits unique vulnerabilities. Comparatively, Portland shows: amplified exposures to seasonal climatic extremes, heightened sensitivity based on less diversified municipal water sources and policies that favor more trees and other irrigated vegetation, and diminished adaptive capacities because of limited attention to demand management and climate planning for water resources. Phoenix exhibits elevated exposure from rapid growth, heightened sensitivities due to high water demands and widespread increases in residential and commercial uses, and limited adaptive capacities due to weak land use planning and "smart growth" strategies. Unique points of vulnerability suggest pathways for adapting to urban-environmental change, whether through water management or land planning. Greater coordination between the land and water sectors would substantially reduce vulnerabilities in the study regions and beyond.

  9. Hydrologic vulnerability to climate change of the Mandrone glacier (Adamello-Presanella group, Italian Alps)

    Science.gov (United States)

    Grossi, Giovanna; Caronna, Paolo; Ranzi, Roberto

    2013-05-01

    In order to assess the annual mass balance of the Mandrone glacier in the Central Alps an energy-balance model was applied, supported by snowpack, meteorological and glaciological observations, together with satellite measurements of snow covered areas and albedo. The Physically based Distributed Snow Land and Ice Model (PDSLIM), a distributed multi-layer model for temperate glaciers, which was previously tested on both basin and point scales, was applied. Verification was performed with a network of ablation stakes over two summer periods. Satellite images processed within the Global Land Ice Measurements from Space (GLIMS) project were used to estimate the ice albedo and to verify the position of the simulated transient snowline on specific dates. The energy balance was estimated for the Mandrone and Presena glaciers in the Central Italian Alps. Their modeled balances (-1439 and -1503 mm w.e. year-1, respectively), estimated over a 15 year period, are in good agreement with those obtained with the glaciological method for the Caresèr glacier, a WGMS (World Glacier Monitoring Service) reference located in the nearby Ortles-Cevedale group. Projections according to the regional climate model COSMO-CLM (standing for COnsortium for Small-scale MOdeling model in CLimate Mode) indicate that the Mandrone glacier might not survive the current century and might be halved in size by 2050.

  10. Climate change and the potential effects on maternal and pregnancy outcomes: an assessment of the most vulnerable – the mother, fetus, and newborn child

    Directory of Open Access Journals (Sweden)

    Charlotta Rylander

    2013-03-01

    Full Text Available In 2007, the Intergovernmental Panel on Climate Change (IPCC presented a large amount of evidence about global warming and the impact of human activities on global climate change. The Lancet Commission have identified a number of ways in which climate change can influence human health: lack of food and safe drinking water, poor sanitation, population migration, changing disease patterns and morbidity, more frequent extreme weather events, and lack of shelter. Pregnant women, the developing fetus, and young children are considered the most vulnerable members of our species and are already marginalized in many countries. Therefore, they may have increased sensitivity to the effects of climate change. Published literature in the fields of climate change, human health, tropical diseases, and direct heat exposure were assessed through the regular search engines. This article demonstrates that climate change will increase the risk of infant and maternal mortality, birth complications, and poorer reproductive health, especially in tropical, developing countries. Thus, climate change will have a substantial impact on the health and survival of the next generation among already challenged populations. There is limited knowledge regarding which regions will be most heavily affected. Research efforts are therefore required to identify the most vulnerable populations, fill knowledge gaps, and coordinate efforts to reduce negative health consequences. The effects of malnutrition, infectious diseases, environmental problems, and direct heat exposure on maternal health outcomes will lead to severe health risks for mothers and children. Increased focus on antenatal care is recommended to prevent worsening maternal health and perinatal mortality and morbidity. Interventions to reduce the negative health impacts caused by climate change are also crucial. Every effort should be made to develop and maintain good antenatal care during extreme life conditions as a

  11. Climate change and the potential effects on maternal and pregnancy outcomes: an assessment of the most vulnerable--the mother, fetus, and newborn child.

    Science.gov (United States)

    Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2013-01-01

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a large amount of evidence about global warming and the impact of human activities on global climate change. The Lancet Commission have identified a number of ways in which climate change can influence human health: lack of food and safe drinking water, poor sanitation, population migration, changing disease patterns and morbidity, more frequent extreme weather events, and lack of shelter. Pregnant women, the developing fetus, and young children are considered the most vulnerable members of our species and are already marginalized in many countries. Therefore, they may have increased sensitivity to the effects of climate change. Published literature in the fields of climate change, human health, tropical diseases, and direct heat exposure were assessed through the regular search engines. This article demonstrates that climate change will increase the risk of infant and maternal mortality, birth complications, and poorer reproductive health, especially in tropical, developing countries. Thus, climate change will have a substantial impact on the health and survival of the next generation among already challenged populations. There is limited knowledge regarding which regions will be most heavily affected. Research efforts are therefore required to identify the most vulnerable populations, fill knowledge gaps, and coordinate efforts to reduce negative health consequences. The effects of malnutrition, infectious diseases, environmental problems, and direct heat exposure on maternal health outcomes will lead to severe health risks for mothers and children. Increased focus on antenatal care is recommended to prevent worsening maternal health and perinatal mortality and morbidity. Interventions to reduce the negative health impacts caused by climate change are also crucial. Every effort should be made to develop and maintain good antenatal care during extreme life conditions as a result of climate

  12. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia

    OpenAIRE

    McRae David; Aird Rosemary; Tong Shilu; Strand Linn B

    2010-01-01

    Abstract Background There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capaci...

  13. Thermal Reaction Norms and the Scale of Temperature Variation: Latitudinal Vulnerability of Intertidal Nacellid Limpets to Climate Change

    OpenAIRE

    Morley, Simon A.; Martin, Stephanie M.; Day, Robert W.; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A. S.; Peck, Lloyd S.

    2012-01-01

    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different tempera...

  14. Reducing the Vulnerability of the Former Yugoslav Republic of Macedonia's Agricultural Systems to Climate Change : Impact Assessment and Adaptation Options

    OpenAIRE

    Sutton, William R.; Srivastava, Jitendra P.; James E. Neumann; Strzępek, Kenneth M.; Brent B. Boehlert

    2013-01-01

    Agricultural production is inextricably tied to climate, making agriculture one of the most climate-sensitive of all economic sectors. In countries such as the Former Yugoslav Republic (FYR) of Macedonia, the risks of climate change for the agricultural sector are a particularly immediate and important problem because the majority of the rural population depends either directly or indirectly on agriculture for their livelihoods. Climate impacts can therefore undermine progress that has been m...

  15. Climate Change Adaptation and Vulnerability Assessment of Water Resources Systems in Developing Countries: A Generalized Framework and a Feasibility Study in Bangladesh

    Directory of Open Access Journals (Sweden)

    Fabrice G. Renaud

    2012-04-01

    Full Text Available Water is the primary medium through which climate change influences the Earth’s ecosystems and therefore people’s livelihoods and wellbeing. Besides climatic change, current demographic trends, economic development and related land use changes have direct impact on increasing demand for freshwater resources. Taken together, the net effect of these supply and demand changes is affecting the vulnerability of water resources. The concept of ‘vulnerability’ is not straightforward as there is no universally accepted approach for assessing vulnerability. In this study, we review the evolution of approaches to vulnerability assessment related to water resources. From the current practices, we identify research gaps, and approaches to overcome these gaps a generalized assessment framework is developed. A feasibility study is then presented in the context of the Lower Brahmaputra River Basin (LBRB. The results of the feasibility study identify the current main constraints (e.g., lack of institutional coordination and opportunities (e.g., adaptation of LBRB. The results of this study can be helpful for innovative research and management initiatives and the described framework can be widely used as a guideline for the vulnerability assessment of water resources systems, particularly in developing countries.

  16. Baltic Climate Vulnerability Assessment Framework : Introduction and Guidelines

    OpenAIRE

    Hjerpe, Mattias; Wilk, Julie

    2010-01-01

    This Vulnerability Assessment Framework was put together within the project Baltic Challenges and Chances for local and regional development generated by Climate Change financed by the European Regional Development Fund and the Baltic Sea Region Programme 2007-2013. The purpose of the framework is to guide and assist the Target Areas (TA) within the project in mapping and analysing the challenges and chances created by climate change. The Vulnerability exercises have originally been developed...

  17. Climate challenges, vulnerabilities, and food security

    OpenAIRE

    Margaret C. Nelson; Ingram, Scott E.; Dugmore, Andrew J.; Streeter, Richard; Peeples, Matthew A.; McGovern, Thomas H.; Hegmon, Michelle; Arneborg, Jette; Kintigh, Keith W.; Brewington, Seth; Katherine A. Spielmann; Simpson, Ian A.; Strawhacker, Colleen; Comeau, Laura E. L.; Torvinen, Andrea

    2015-01-01

    Climate-induced disasters are impacting human well-being in ever-increasing ways. Disaster research and management recognize and emphasize the need to reduce vulnerabilities, although extant policy is not in line with this realization. This paper assesses the extent to which vulnerability to food shortage, as a result of social, demographic, and resource conditions at times of climatic challenge, correlates with subsequent declines in social and food security. Extreme climate challenges are i...

  18. Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.

    Science.gov (United States)

    Morley, Simon A; Martin, Stephanie M; Day, Robert W; Ericson, Jess; Lai, Chien-Houng; Lamare, Miles; Tan, Koh-Siang; Thorne, Michael A S; Peck, Lloyd S

    2012-01-01

    The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt)) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max) and T(opt) over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their

  19. Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal nacellid limpets to climate change.

    Directory of Open Access Journals (Sweden)

    Simon A Morley

    Full Text Available The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna, New Zealand (Cellana ornata, Australia (C. tramoserica and Singapore (C. radiata, were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of "duration tenacity", which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (T(opt increased from 1.0°C (N. concinna to 14.3°C (C. ornata to 18.0°C (an average for the optimum range of C. tramoserica to 27.6°C (C. radiata. The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CT(max and T(opt over habitat temperature. However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their

  20. Climate Change

    Science.gov (United States)

    ... can be caused by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate change can affect our health. It can lead to More heat-related illness ...

  1. Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact

    Directory of Open Access Journals (Sweden)

    Hamid Goharnejad

    2013-08-01

    Full Text Available Recent investigations have demonstrated global sea level rise as being due to climate change impact. Probable changes in sea level rise need to be evaluated so that appropriate adaptive strategies can be implemented. This study evaluates the impact of climate change on sea level rise along the Iranian south coast. Climatic data simulated by a GCM (General Circulation Model named CGCM3 under two-climate change scenarios A1b and A2 are used to investigate the impact of climate change. Among the different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves are selected for predicting sea level rise by using stepwise regression. Two Discrete Wavelet artificial Neural Network (DWNN models and a Discrete Wavelet Adaptive Neuro-Fuzzy Inference system (DWANFIS are developed to explore the relationship between selected climatic variables and sea level changes. In these models, wavelets are used to disaggregate the time series of input and output data into different components. ANFIS/ANN are then used to relate the disaggregated components of predictors and predictand (sea level to each other. The results show a significant rise in sea level in the study region under climate change impact, which should be incorporated into coastal area management.

  2. A multi-institutional and interdisciplinary approach to the assessment of vulnerability and adaptation to climate change in the Peruvian Central Andes: problems and prospects

    Directory of Open Access Journals (Sweden)

    A. G. Martínez

    2008-04-01

    Full Text Available A local integrated assessment of the vulnerability and adaptation to climate change in the Mantaro River Basin, located in Peruvian Central Andes, was developed between years 2003 to 2005. In this paper we present some lessons learned during the development of this study, emphasizing the multi-institutional and interdisciplinary efforts, briefly showing the methodological aspects, and pointing out the main problems found.

  3. Drivers of soil organic matter vulnerability to climate change. Part I: Laboratory incubations of Swiss forest soils and radiocarbon analysis

    Science.gov (United States)

    González Domínguez, Beatriz; Studer, Mirjam S.; Niklaus, Pascal A.; Haghipour, Negar; McIntyre, Cameron; Wacker, Lukas; Zimmermann, Stephan; Walthert, Lorenz; Hagedorn, Frank; Abiven, Samuel

    2016-04-01

    Given the key role of soil organic carbon (SOC) on climate and greenhouse gas regulation, there is an increasing need to incorporate the carbon (C) feedback between SOC and the atmosphere into earth system models. The evaluation of these models points towards uncertainties on the response of CO2-C fluxes, derived from the decomposition of SOC, to the influence of controls/drivers. SOC vulnerability refers to the likelihood of losing previously stabilized soil organic matter, by the effect of environmental factors. The objective of this study is to produce a SOC vulnerability ranking of soils and to provide new insights into the influence of environmental and soil properties controls. Research on SOC vulnerability tends to focus on climatic controls and neglect the effect of other factors, such as soil geochemistry and mineralogy, on C stabilization/de-stabilization processes. In this work, we hypothesized that climate (mean annual temperature and soil moisture status proxy at the research sites in the period 1981-2010), soil (pH and % clay) and terrain (slope gradient and orientation) characteristics are the main controls of the CO2-C fluxes from SOC. Following a statistics-based approach, we selected 54 forest sites across Switzerland, which cover a broad spectrum of values for the hypothesized controls. Then, we selected the study sites so that the controls are orthogonal to each other; thus, their effect was not confounded. At each site, we collected three non-overlapping topsoil (i.e. 20 cm) composites within 40 x 40 m2 plots. In the laboratory, we sieved fresh soils at 2 mm and run a 2-weeks pre-incubation, before beginning a 6-months aerobic soil incubation under controlled conditions of moisture and temperature. Periodically, we collected NaOH (1M) traps containing the CO2-C derived from microbial heterotrophic respiration. We calculated the cumulative CO2-C respired and the one-pool SOC decomposition rates from the 54 forest sites, and linked these data to

  4. Climate vulnerability in Cuba. The role of social networks

    Energy Technology Data Exchange (ETDEWEB)

    Sygna, L.

    2005-10-01

    The case of Cuba offers a unique opportunity to investigate the dynamics of climate vulnerability. This paper takes a closer look at recent economic and social developments in Cuba, and how these affect patterns of vulnerability. Faced with the ongoing processes of climate change and economic globalization, Cuban households are carefully trying to sustain livelihood. Findings suggest that social networks are important as means of accessing coping strategies. Their access is on the other hand not equally distributed.

  5. Climate vulnerability in Cuba. The role of social networks

    International Nuclear Information System (INIS)

    The case of Cuba offers a unique opportunity to investigate the dynamics of climate vulnerability. This paper takes a closer look at recent economic and social developments in Cuba, and how these affect patterns of vulnerability. Faced with the ongoing processes of climate change and economic globalization, Cuban households are carefully trying to sustain livelihood. Findings suggest that social networks are important as means of accessing coping strategies. Their access is on the other hand not equally distributed

  6. Risk Assessment of Drought Hazards based on Water Resource Vulnerability under Climate Change - A case study in Guangdong province, South China

    Science.gov (United States)

    Hua, D.; Chen, Y. D.

    2015-12-01

    The extreme climatic events are becoming more and more frequent and intensive owing to climate change. Droughts have caused a variety of problems and threats, such as water shortage, salinity intrusion, water quality deterioration, and etc., which can seriously hamper the rapid socio-economic development. The proposed study aims to develop a joint system of assessing the risk of drought hazards from physical dimension to the socioeconomic dimension. For the former dimension, the research will focus on characterizing the changing properties of droughts in both time and space. For the latter dimension, the water resource vulnerability will be assessed based on the typical regional water demanding and supply indicators. The combination research will enable us to not only advance the state-of-the-art of drought research, but also produce many results and findings for sustainable management and adaptation of water resources resilient to the changing climate and socioeconomic development in the Guangdong province.

  7. Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe

    OpenAIRE

    Harrison, Paula A.; Holman, Ian P.; Cojocaru, George; Kok, Kasper; Kontogianni, Areti; Metzger, Marc J.; Gramberger, Marc

    2013-01-01

    Abstract Climate change will affect all sectors of society and the environment at all scales, ranging from the continental to the national and local. Decision-makers and other interested citizens need to be able to access reliable science-based information to help them respond to the risks of climate change impacts and assess opportunities for adaptation. Participatory integrated assessment (IA) tools combine knowledge from diverse scientific disciplines, take account of the value and importa...

  8. Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe

    OpenAIRE

    Harrison, P.A.; Holman, I.P.; Cojocaru, G.; Kok, K; Kontogianni, A.; Metzger, M.J.; Gramberger, M.

    2013-01-01

    Climate change will affect all sectors of society and the environment at all scales, ranging from the continental to the national and local. Decision-makers and other interested citizens need to be able to access reliable science-based information to help them respond to the risks of climate change impacts and assess opportunities for adaptation. Participatory integrated assessment (IA) tools combine knowledge from diverse scientific disciplines, take account of the value and importance of st...

  9. Using a Multi-Method Approach to Examine Social-Ecological Vulnerability to Climate Change and Natural Resource Policies on the Tibetan Plateau

    Science.gov (United States)

    Klein, J.; Hopping, K. A.; Yeh, E.; Nyima, Y.; Galvin, K.; Boone, R.; Dorje, T.; Ojima, D. S.

    2012-12-01

    Pastoralists and ecosystems on the Tibetan Plateau are facing a suite of novel stresses. Temperatures are increasing several times more than the global average. The frequency and severity of severe snowstorms, which lead to critical losses of livestock, are also increasing. Pastoralists are also experiencing changes to their livelihood activities, including reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that integrate results from a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events (snow disasters) within the context of changing natural resource management policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika) that are being affected by current policy. We established the experiment in 2008 within the Tibet Autonomous Region. We are monitoring microclimate, vegetation, nutrient availability, ecosystem carbon fluxes and stable isotope signatures of select plant species. Through this experiment, we are investigating the sensitivity of the system, whether it can cross critical thresholds, and how resilient this system may be to predicted future climate and land use changes. Semi-structured, in-depth interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climate and ecological change and their drivers and are also conducting interviews on vulnerability to snow disasters across a three site, 300-500mm precipitation gradient. We are using remote sensing to identify biophysical landscape change over time. To integrate our ecological and social findings, we are coupling the Savanna ecosystem model to the DECUMA agent-based pastoral household model. Our results to date

  10. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America

    Science.gov (United States)

    Perry, Laura G.; Andersen, Douglas C.; Reynolds, Lindsay V.; Nelson, S. Mark; Shafroth, Patrick B.

    2012-01-01

    Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant and late-successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian

  11. Modeling Infrastructure Vulnerabilities and Adaptation to Climate Change in Urban Systems: Methodology and Application to Metropolitan Boston

    OpenAIRE

    Ruth, Matthias

    2003-01-01

    Much of the infrastructure in use today was designed and constructed decades if not centuries ago. Many of these infrastructure systems are vulnerable to a variety of anthropogenic or natural disruptions even though their functioning is vital to the creation and maintenance of quality of life in a region. Moreover, concepts and designs have persisted even as technologies have changed. Yet the demands and technologies of the future may require infrastructures - both material facilities and hum...

  12. Travelling in antique lands. Using past famines to develop an adaptability/resilience framework to identify food systems vulnerable to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, E.D.G. [Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2007-08-15

    This paper builds on existing theory and proposes a framework to identify vulnerability to climate change in food systems by examining historic cases where common environmental problems caused famine. Cases presented are (1) Ireland's Potato Famine, (2) El Nino induced famines during the Colonial period, and (3) Ethiopia between 1965 and 1997. Three factors stand out as common in each. Prior to each famine: (1) there were very few ways that people could obtain a living in the worst affected regions; (2) livelihoods in famine stricken communities came to depend on highly specialized agro-ecosystems that were sensitive to environmental change; (3) institutions failed to provide adequate safety nets to protect livelihoods from failure. This analysis suggests that vulnerability to climate change in food systems can be assessed by looking at agro-ecosystems, livelihoods and institutions. Local conditions, however, mean that ways of measuring these three factors will vary from place to place. As a result, direct comparisons are difficult. By conceptualizing these three variables as the axes of a three dimensional 'vulnerability' space, it is possible to compare regions and look at trends over time by studying the paths through this 'space' as traced by changes at the agro-ecosystem, livelihood, and institutional scale.

  13. A bottom-up, vulnerability-based framework for identifying the adaptive capacity of water resources systems in a changing climate

    Science.gov (United States)

    Culley, Sam; Noble, Stephanie; Timbs, Michael; Yates, Adam; Giuliani, Matteo; Castelletti, Andrea; Maier, Holger; Westra, Seth

    2015-04-01

    Water resource system infrastructure and operating policies are commonly designed on the assumption that the statistics of future rainfall, temperature and other hydrometeorological variables are equal to those of the historical record. There is now substantial evidence demonstrating that this assumption is no longer valid, and that climate change will significantly impact water resources systems worldwide. Under different climatic inputs, the performance of these systems may degrade to a point where they become unable to meet the primary objectives for which they were built. In such a changing context, using existing infrastructure more efficiently - rather than planning additional infrastructure - becomes key to restore the system's performance at acceptable levels and minimize financial investments and associated risk. The traditional top-down approach for assessing climate change impacts relies on the use of a cascade of models from the global to the local scale. However, it is often difficult to utilize this top-down approach in a decision-making procedure, as there is disparity amongst various climate projections, arising from incomplete scientific understanding of the complicated processes and feedbacks within the climate system, and model limitations in reproducing those relationships. In contrast with this top-down approach, this study contributes a framework to identify the adaptive capacity of water resource systems under changing climatic conditions adopting a bottom-up, vulnerability-based approach. The performance of the current system management is first assessed for a comprehensive range of climatic conditions, which are independent of climate model forecasts. The adaptive capacity of the system is then estimated by re-evaluating the performance of a set of adaptive operating policies, which are optimized for each climatic condition under which the system is simulated. The proposed framework reverses the perspective by identifying water system

  14. Reviews on Regional Climate Change Vulnerability Assessment%区域气候变化脆弱性综合评估研究进展

    Institute of Scientific and Technical Information of China (English)

    喻鸥; 阎建忠; 张镱锂

    2011-01-01

    区域脆弱性评估为脆弱性地区农户摆脱贫困、区域持续发展和政府制定适应策略提供科学依据.由于区域内部人地系统的复杂性,区域的脆弱性定量评估较为困难.中国脆弱性研究起步较晚,关注较早的是脆弱性区域的分布,但对区域内脆弱人群的脆弱性研究较少,认识上的不足影响了国家和地方政府制定科学的适应政策和措施.本文介绍了对脆弱性的认识,梳理了区域气候变化脆弱性评估方法,阐释r定性内涵、指标评估、以可持续生计框架为基础的脆弱性评估、基于地理信息系统的脆弱性评估等方法.针对中国的生态脆弱区,建议利用可持续生计框架构建指标体系,定量评估其脆弱性.%Assessments of regional vulnerability provide a scientific basis for poverty reduction, sustainable development and formulation of adaptive strategies in vulnerable regions. Quantitative methods for regional vulnerability assessment are very difficult due to the complexity of man-land system. Vulnerability studies started late in China, and the earlier studies concerned more on the distribution of vulnerable areas but less on vulnerable people, which prevents the central and local governments from formulating scientific adaptation policies and measures. This paper reviews the understandings of vulnerability and the methods for regional climate change vulnerability assessment. Cases about qualitative analysis, index evaluation and vulnerability evaluation based on sustainable livelihood framework and GIS methods are introduced. Suggestions on vulnerability assessment based on sustainable livelihood framework are also presented for the vulnerable regions of China.

  15. Climate Volatility and Poverty Vulnerability in Tanzania

    OpenAIRE

    Ahmed, Syud Amer; Diffenbaugh, Noah S.; Hertel, Thomas W.; Ramankutty, Navin; Rios, Ana R.; Rowhani, Pedram

    2009-01-01

    Climate volatility will increase in the future, with agricultural productivity expected to become increasingly volatile as well. For Tanzania, where food production and prices are sensitive to the climate, rising climate volatility can have severe implications for poverty. We develop and use an integrated framework to estimate the poverty vulnerabilities of different socio-economic strata in Tanzania under current and future climate. We find that households across various strata are similarly...

  16. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined and...... evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change and...... illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  17. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  18. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  19. The Neglect of Governance in Forest Sector Vulnerability Assessments: Structural-Functionalism and “Black Box” Problems in Climate Change Adaptation Planning

    Directory of Open Access Journals (Sweden)

    Adam M. Wellstead

    2013-09-01

    Full Text Available Efforts to develop extensive forest-based climate change vulnerability assessments have informed proposed management and policy options intended to promote improved on-the-ground policy outcomes. These assessments are derived from a rich vulnerability literature and are helpful in modeling complex ecosystem interactions, yet their policy relevance and impact has been limited. We argue this is due to structural-functional logic underpinning these assessments in which governance is treated as a procedural “black box” and policy-making as an undifferentiated and unproblematic output of a political system responding to input changes and/or system prerequisites. Like an earlier generation of systems or cybernetic thinking about political processes, the focus in these assessments on macro system-level variables and relationships fails to account for the multi-level or polycentric nature of governance and the possibility of policy processes resulting in the nonperformance of critical tasks.

  20. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  1. Global climate change and the vulnerability of the Nigerian coastal zone to accelerated sea level rise: Impacts and responds.

    OpenAIRE

    Ibe, A.C.

    1990-01-01

    In the recent past, climatic changes and variations have occurred in Nigeria with resulting adverse socio-economic impact. From these experiences, it is inferred that the expected change in global climate will have far reaching disastrous consequences for Nigeria if appropriate anticipatory technical and policy Measure are not taken. More recent results from various models based on an eventual warming from a doubling of greenhouse gases of between 1.5 and 5oC by the end of the 21st century pr...

  2. Climate volatility deepens poverty vulnerability in developing countries

    International Nuclear Information System (INIS)

    Extreme climate events could influence poverty by affecting agricultural productivity and raising prices of staple foods that are important to poor households in developing countries. With the frequency and intensity of extreme climate events predicted to change in the future, informed policy design and analysis requires an understanding of which countries and groups are going to be most vulnerable to increasing poverty. Using a novel economic-climate analysis framework, we assess the poverty impacts of climate volatility for seven socio-economic groups in 16 developing countries. We find that extremes under present climate volatility increase poverty across our developing country sample-particularly in Bangladesh, Mexico, Indonesia, and Africa-with urban wage earners the most vulnerable group. We also find that global warming exacerbates poverty vulnerability in many nations.

  3. Climate volatility deepens poverty vulnerability in developing countries

    Science.gov (United States)

    Ahmed, Syud A.; Diffenbaugh, Noah S.; Hertel, Thomas W.

    2009-07-01

    Extreme climate events could influence poverty by affecting agricultural productivity and raising prices of staple foods that are important to poor households in developing countries. With the frequency and intensity of extreme climate events predicted to change in the future, informed policy design and analysis requires an understanding of which countries and groups are going to be most vulnerable to increasing poverty. Using a novel economic-climate analysis framework, we assess the poverty impacts of climate volatility for seven socio-economic groups in 16 developing countries. We find that extremes under present climate volatility increase poverty across our developing country sample—particularly in Bangladesh, Mexico, Indonesia, and Africa—with urban wage earners the most vulnerable group. We also find that global warming exacerbates poverty vulnerability in many nations.

  4. Methodological framework, analytical tool and database for the assessment of climate change impacts, adaptation and vulnerability in Denmark

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten; Gregg, Jay Sterling;

    This report was prepared at the request of and funded by the Coordination Unit for Research in Climate Change Adaptation (KFT). The report is a milestone of the project titled “Udvikling af metodisk ramme for dansk analytisk værktøj og database over klimasårbarhed og klimatilpasning”, funded by K...

  5. Pro-poor Adaptation to Climate Change in Urban Centers: Case Studies of Vulnerability and Resilience in Kenya and Nicaragua

    OpenAIRE

    Moser, Caroline; Norton, Andrew; Stein, Alfredo; Georgieva, Sophia

    2010-01-01

    The objective of this economic sector work (ESW) is to address these gaps by piloting a methodology capable of quickly and cost-effectively introducing into adaptation planning processes an appreciation of the significance of climate change impacts for poor people in informal urban settlements. Specifically in the two case study sites (Mombasa in Kenya and Esteli in Nicaragua) sought to: a...

  6. Climate change, cattle herd vulnerability and food insecurity : adaptation through livestock diversification in the Borana pastoral system of Ethiopia

    OpenAIRE

    Megersa Bati, Bekele

    2013-01-01

    Climate change is one of the dominant drivers of changing patterns in precipitation, rise in temperature and increasing frequency of extreme weather events that present a major challenge to livestock production in arid and semi-arid environments. In the Borana region of southern Ethiopia, the resulting reduction in the resilience of rangelands and heavy cattle losses associated with recurrent droughts pose serious challenges to cattle pastoralism. This study aimed at investigating regional ma...

  7. Climate Volatility Deepens Poverty Vulnerability in Developing Countries

    OpenAIRE

    Ahmed, S.A.; Diffenbaugh, N. S.; Hertel, T. W.

    2009-01-01

    Extreme climate events could influence poverty by affecting agricultural productivity and raising prices of staple foods that are important to poor households in developing countries. With the frequency and intensity of extreme climate events predicted to change in the future, informed policy design and analysis requires an understanding of which countries and groups are going to be most vulnerable to increasing poverty. Using a novel economic-climate analysis framework, we assess the poverty...

  8. Not only climate change: mobility, vulnerability and socio-economic transformations in environmentally fragile areas in Bolivia, Senegal and Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Tacoli, Cecilia

    2011-02-15

    This paper argues that migration is better defined as an adaptive response to socio-economic, cultural, political and environmental transformations, in most instances closely linked to the need to diversify income sources and reduce dependency on natural resources. Drawing on case studies in Bolivia, Senegal and Tanzania, it describes how environmental change at the local level interacts with other factors to shape migration patterns, and how such patterns in turn affect the livelihoods and resilience of individuals, households and communities in areas experiencing the impacts of climate change in the form of desertification, soil degradation, disrupted rainfall patterns and changes in temperature.

  9. Health, Climate Change and Energy Vulnerability: A Retrospective Assessment of Strategic Health Authority Policy and Practice in England

    OpenAIRE

    Richardson, J.; Kagawa, F.; Nichols, A.

    2008-01-01

    Background: A number of policy documents suggest that health services should be taking climate change and sustainability seriously and recommendations have been made to mitigate and adapt to the challenges health care providers will face. Actions include, for example, moving towards locally sourced food supplies, reducing waste, energy consumption and travel, and including sustainability in policies and strategies. A Strategic Health Authority (SHA) is part of the National Health Service (NH...

  10. CONTRIBUTION TO THE ASSESSMENT OF CLIMATE CHANGE VULNERABILITIES IN THE LIVESTOCK SECTOR IN NORTH AFRICA, THE CASE OF MOROCCO

    OpenAIRE

    Bergigui, Fouad

    2011-01-01

    Through this paper, we attempted to spotlight on potential climate change consequences on North Africa’s livestock sector and possible adaptation measures, it presents a literature overview of some relevant studies and projects on the subject in Morocco. Probable decrease in water and feeding resources associated to heat stress and outbreaks of emergent and reemergent animal diseases underscore the need to act fast and efficiently through exploring quality data via methodological vulnerabilit...

  11. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  12. Climate volatility and poverty vulnerability in Tanzania

    OpenAIRE

    Ahmed, Syud Amer; Diffenbaugh, Noah S.; Hertel, Thomas W.; Lobell, David B.; Ramankutty, Navin; Rios, Ana R.; Rowhani, Pedram

    2009-01-01

    Climate models generally indicate that climate volatility may rise in the future, severely affecting agricultural productivity through greater frequency of yield-diminishing climate extremes, such as droughts. For Tanzania, where agricultural production is sensitive to climate, changes in climate volatility could have significant implications for poverty. This study assesses the vulnerabil...

  13. Using the Climate Assessment Tool (CAT) in U.S. EPA BASINS integrated modeling system to assess watershed vulnerability to climate change.

    Science.gov (United States)

    Imhoff, J C; Kittle, J L; Gray, M R; Johnson, T E

    2007-01-01

    During the last century, much of the United States experienced warming temperatures and changes in amount and intensity of precipitation. Changes in future climate conditions present additional risk to water and watershed managers. The most recent release of U.S. EPA's BASINS watershed modeling system includes a Climate Assessment Tool (CAT) that provides new capabilities for assessing impacts of climate change on water resources. The BASINS CAT provides users with the ability to modify historical climate and conduct systematic sensitivity analyses of specific hydrologic and water quality endpoints to changes in climate using the BASINS models (Hydrologic Simulation Program - FORTRAN (HSPF)). These capabilities are well suited for addressing questions about the potential impacts of climate change on key hydrologic and water quality goals using the watershed scale at which most important planning decisions are made. This paper discusses the concepts that motivated the CAT development effort; the resulting capabilities incorporated into BASINS CAT; and the opportunities that result from integrating climate assessment capabilities into a comprehensive watershed water quality modeling system. PMID:17978432

  14. Climate change

    International Nuclear Information System (INIS)

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  15. Global vs climate change

    International Nuclear Information System (INIS)

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  16. Developing Remote Sensing Products for Monitoring and Modeling Great Lakes Coastal Wetland Vulnerability to Climate Change and Land Use

    Science.gov (United States)

    Bourgeau-Chavez, L. L.; Miller, M. E.; Battaglia, M.; Banda, E.; Endres, S.; Currie, W. S.; Elgersma, K. J.; French, N. H. F.; Goldberg, D. E.; Hyndman, D. W.

    2014-12-01

    Spread of invasive plant species in the coastal wetlands of the Great Lakes is degrading wetland habitat, decreasing biodiversity, and decreasing ecosystem services. An understanding of the mechanisms of invasion is crucial to gaining control of this growing threat. To better understand the effects of land use and climatic drivers on the vulnerability of coastal zones to invasion, as well as to develop an understanding of the mechanisms of invasion, research is being conducted that integrates field studies, process-based ecosystem and hydrological models, and remote sensing. Spatial data from remote sensing is needed to parameterize the hydrological model and to test the outputs of the linked models. We will present several new remote sensing products that are providing important physiological, biochemical, and landscape information to parameterize and verify models. This includes a novel hybrid radar-optical technique to delineate stands of invasives, as well as natural wetland cover types; using radar to map seasonally inundated areas not hydrologically connected; and developing new algorithms to estimate leaf area index (LAI) using Landsat. A coastal map delineating wetland types including monocultures of the invaders (Typha spp. and Phragmites austrailis) was created using satellite radar (ALOS PALSAR, 20 m resolution) and optical data (Landsat 5, 30 m resolution) fusion from multiple dates in a Random Forests classifier. These maps provide verification of the integrated model showing areas at high risk of invasion. For parameterizing the hydrological model, maps of seasonal wetness are being developed using spring (wet) imagery and differencing that with summer (dry) imagery to detect the seasonally wet areas. Finally, development of LAI remote sensing high resolution algorithms for uplands and wetlands is underway. LAI algorithms for wetlands have not been previously developed due to the difficulty of a water background. These products are being used to

  17. Climatic change

    International Nuclear Information System (INIS)

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  18. Climatic change

    International Nuclear Information System (INIS)

    This book proposes both a scientific and societal approach of a phenomenon which is today the object of lot of debates. Climates perception is illustrated with examples taken in various modern civilizations and in the history of mankind. The Sahara example illustrates the notion of climate evolution. The last chapters are devoted to forecasting and scenarios for the future, taking into account the share of uncertainty. The controversies generated by these forecasts and the Kyoto protocol stakes demonstrate the tight links between the scientific, economical and political aspects in climatic change debates. (J.S.)

  19. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  20. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn;

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  1. The ends of justice: climate vulnerability beyond the pale

    OpenAIRE

    Mason, Michael

    2011-01-01

    Liberal egalitarian theorists of justice seek to bring the least advantaged into the fold of moral concern, but are found wanting when confronted both with the problem structure of climate change and the challenge of a protracted belligerent occupation. Both conditions are under-examined in liberal political theory, and when these circumstances converge, as with the climate vulnerability of the Palestinians, the limitations are compounded. In contrast, Giorgio Agamben’s ‘state of exception’ t...

  2. How can crop intra-specific biodiversity mitigate the vulnerability of agricultural systems to climate change? A case study on durum wheat in Southern Italy

    Science.gov (United States)

    Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca

    2014-05-01

    Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different

  3. Drivers of soil organic matter vulnerability to climate change, Part II: RothC modelling of carbon dynamics including radiocarbon data

    Science.gov (United States)

    Studer, Mirjam S.; Abiven, Samuel; González Domínguez, Beatriz R.; Hagedorn, Frank; Reisser, Moritz; Walthert, Lorenz; Zimmermann, Stephan; Niklaus, Pascal A.

    2016-04-01

    It is still largely unknown what drives the vulnerability of soil organic carbon (SOC) stocks to climate change, i.e. the likelihood of a soil to loose its SOC along with the change in environmental conditions. Our objective is to assess the SOC vulnerability of Swiss forest soils and identify its potential drivers: climate (temperature, soil moisture), soil (clay content, pH) and landscape (slope, aspect) properties. Fifty-four sites were selected for balanced spatial and driver magnitudes distribution. We measured the SOC characteristics (content and radiocarbon) and studied the C decomposition by laboratory soil incubations (details in Part I, abstract by B. González Domínguez). In order to assess the current SOC pool distribution and its radiocarbon signatures, we extended the Rothamsted Carbon (RothC) model with radiocarbon (14C) isotope modelling (RothCiso). The RothC model distinguishes four active SOC pools, decomposable and resistant plant material, microbial biomass and humified organic matter, and an inert SOC pool (Jenkinson 1990). The active pools are decomposed and mineralized to CO2 by first order kinetics. The RothCiso assigns all pools a 14C signature, based on the atmospheric 14C concentrations of the past century (plant C inputs) and their turnover. Currently we constrain the model with 14C signatures measured on the 54 fresh and their corresponding archived bulk soil samples, taken 12-24 years before. We were able to reproduce the measured radiocarbon concentrations of the SOC with the RothCiso and first results indicate, that the assumption of an inert SOC pool, that is radiocarbon dead, is not appropriate. In a second step we will compare the SOC mean residence time assessed by the two methodological approaches - incubation (C efflux based) and modelling (C stock based) - and relate it to the environmental drivers mentioned above. With the combination of the two methodological approaches and 14C analysis we hope to gain more insights into

  4. Climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on

  5. Climate change

    International Nuclear Information System (INIS)

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  6. Changing Climate, Disrupted Livelihoods: The Case of Vulnerability of Nomadic Maasai Pastoralism to Recurrent Droughts in Kajiado District, Kenya

    Science.gov (United States)

    Mwangi, M. N.; Desanker, P. V.

    2007-12-01

    Pastoralism is practiced in all arid and semiarid lands (ASALs) of Africa. High interannual rainfall variability and degraded ecosystems characterize these ASALs and limits arable farming. Under these conditions, pastoralism has evolved as the most feasible livelihood system in ASALs, where total annual rainfall correlates with annual net primary productivity, especially grass. Maasai of East Africa are the largest group of nomadic pastoralists in Africa, with about two-thirds living in southern Kenya, mainly in Kajiado and Narok Districts. Maasai people of Kenya subsist by nomadic pastoralism. Nomads migrate with their livestock in search of natural pastures and water as climatic and environmental circumstances mandate. Successful migrations of nomadic pastoralists are being hampered by changing social and ecological factors both at local and broader scales. What is more, increased frequency and duration of drought constitute a major challenge with which the Maasai have to confront. Drought is a slow-developing phenomenon; therefore, it captures delayed attention. Nonetheless, the cumulative impacts of drought are more immense. Drought triggers catastrophic events that diminish adaptive capacity of inhabitants of these ASALs; this is conspicuous in Kajiado District where livestock productivity plummet as resource base erodes. What is more, global climate change is projected to intensify the occurrence, severity and duration of droughts in this region. Frequent droughts are likely to disrupt proper functioning of nomadic Maasai pastoralism. This study presents findings from an integrated research conducted in Kajiado District during the last two years. Spatiotemporal trends of drought, effects of drought on, and possible future of nomadic Maasai pastoralism are presented. This is informative to the Maasai pastoralists, policy makers and other actors in this sector. Most important, the study is contributes toward formulation of informed drought management strategies

  7. Africa and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Toulmin, Camilla; Huq, Saleemul

    2006-10-15

    Remember the scenes from New Orleans of flooded streets and scavenging people? One year on and little progress is evident in achieving the step-change needed in controlling greenhouse gases. Hurricane Katrina showed only too vividly the massive power of natural forces combined with inadequate preparation. The flood waters washed away and exposed fully the lack of planning and low priority given to securing life and livelihoods, especially of the more vulnerable groups in the community. If this is what a whirlwind can bring in the southern USA, what might we reap in further storms and droughts tomorrow in poorer parts of the world? New research findings point to the likelihood of larger, faster and more substantial changes to our climate system. The African continent is particularly vulnerable to adverse changes in climate, the evidence for which is becoming more and more stark.

  8. Vulnerability assessment and risk level of ecosystem services for climate change impacts and adaptation in the High-Atlas mountain of Morocco

    Science.gov (United States)

    Messouli, Mohammed; Bounoua, Lahouari; Babqiqi, Abdelaziz; Ben Salem, Abdelkrim; Yacoubi-Khebiza, Mohammed

    2010-05-01

    Moroccan mountain biomes are considered endangered due to climate change that affects directly or indirectly different key features (biodiversity, snow cover, run-off processes, and water availability). The present article describes the strategy for achieving collaboration between natural and social scientists, stakeholders, decision-makers, and other societal groups, in order to carry out an integrated assessment of climate change in the High-Atlas Mountains of Morocco, with an emphasis on vulnerability and adaptation. We will use a robust statistical technique to dynamically downscale outputs from the IPCC climates models to the regional study area. Statistical downscaling provides a powerful method for deriving local-to-regional scale information on climate variables from large-scale climate model outputs. The SDSM will be used to produce the high resolution climate change scenarios from climate model outputs at low resolution. These data will be combined with socio-economic attributes such as the amount of water used for irrigation of agricultural lands, agricultural practices and phenology, cost of water delivery and non-market values of produced goods and services. This study, also analyzed spatial and temporal in land use/land cover changes (LUCC) in a typical watershed covering an area of 203 km2 by comparing classified satellite images from 1976, 1989 and 2000 coupled by GIS analyses and also investigated changes in the shape of land use patches over the period. The GIS-platform, which compiles gridded spatial and temporal information of environmental, socio-economic and biophysical data is used to map vulnerability assessment and risk levels over a wide region of Southern High-Atlas. For each scenario, we will derive and analyze near future (10-15 years) key climate indicators strongly related to sustainable management of ecosystem goods and services. Forest cover declined at an average rate of 0.35 ha per year due to timber extraction, cultivation

  9. The Gerici project: management of risks related to climate change for infrastructures. First lessons of three years of vulnerability study experience

    International Nuclear Information System (INIS)

    Climate change considerably modifies the vulnerability of infrastructures, and such concepts as the 'hundred-year flood' can even become dangerous in this new context. Interesting conclusions were reached for contracting authorities and a specific tool developed for infrastructure operators resulting from three years of research carried out after labelling by the RGCU (civil engineering and urban network) and with co-financing by the public works ministry. This project, managed by Egis (Scetauroute and Bceom) groups Sanef, ASF, Meteo-France, LCPC and Esri France. The article describes the stages in the procedure and the geographical information system (SIG), a user-friendly and transposable support tool for technical and strategic investigations. (authors)

  10. Salt Intake and Health Risk in Climate Change Vulnerable Coastal Bangladesh: What Role Do Beliefs and Practices Play?

    Directory of Open Access Journals (Sweden)

    Sabrina Rasheed

    Full Text Available High salt consumption is an important risk factor of elevated blood pressure. In Bangladesh about 20 million people are at high risk of hypertension due to climate change induced saline intrusion in water. The objective of this study is to assess beliefs, perceptions, and practices associated with salt consumption in coastal Bangladesh.The study was conducted in Chakaria, Bangladesh between April-June 2011. It was a cross sectional mixed method study. For the qualitative study 6 focus group discussions, 8 key informant interviews, 60 free listing exercises, 20 ranking exercises and 10 observations were conducted. 400 adults were randomly selected for quantitative survey. For analysis we used SPSS for quantitative data, and Anthropac and Nvivo for qualitative data.Salt was described as an essential component of food with strong cultural and religious roots. People described both health benefits and risks related to salt intake. The overall risk perception regarding excessive salt consumption was low and respondents believed that the cooking process can render the salt harmless. Respondents were aware that salt is added in many foods even if they do not taste salty but did not recognize that salt can occur naturally in both foods and water.In the study community people had low awareness of the risks associated with excess salt consumption and salt reduction strategies were not high in their agenda. The easy access to and low cost of salt as well as unrecognised presence of salt in drinking water has created an environment conducive to excess salt consumption. It is important to design general messages related to salt reduction and test tailored strategies especially for those at high risk of hypertension.

  11. Salt Intake and Health Risk in Climate Change Vulnerable Coastal Bangladesh: What Role Do Beliefs and Practices Play?

    Science.gov (United States)

    Rasheed, Sabrina; Siddique, A. K.; Sharmin, Tamanna; Hasan, A. M. R.; Hanifi, S. M. A.; Iqbal, M.; Bhuiya, Abbas

    2016-01-01

    Background High salt consumption is an important risk factor of elevated blood pressure. In Bangladesh about 20 million people are at high risk of hypertension due to climate change induced saline intrusion in water. The objective of this study is to assess beliefs, perceptions, and practices associated with salt consumption in coastal Bangladesh. Methods The study was conducted in Chakaria, Bangladesh between April-June 2011. It was a cross sectional mixed method study. For the qualitative study 6 focus group discussions, 8 key informant interviews, 60 free listing exercises, 20 ranking exercises and 10 observations were conducted. 400 adults were randomly selected for quantitative survey. For analysis we used SPSS for quantitative data, and Anthropac and Nvivo for qualitative data. Results Salt was described as an essential component of food with strong cultural and religious roots. People described both health benefits and risks related to salt intake. The overall risk perception regarding excessive salt consumption was low and respondents believed that the cooking process can render the salt harmless. Respondents were aware that salt is added in many foods even if they do not taste salty but did not recognize that salt can occur naturally in both foods and water. Conclusions In the study community people had low awareness of the risks associated with excess salt consumption and salt reduction strategies were not high in their agenda. The easy access to and low cost of salt as well as unrecognised presence of salt in drinking water has created an environment conducive to excess salt consumption. It is important to design general messages related to salt reduction and test tailored strategies especially for those at high risk of hypertension. PMID:27044049

  12. Components of Population Vulnerability and Their Relationship With Climate-Sensitive Health Threats.

    Science.gov (United States)

    English, P B; Richardson, M J

    2016-03-01

    Climate change is increasingly being framed as risks that will impact the poorest and most vulnerable communities among us. This has led to more efforts to estimate climate change risks across populations and in the context of human health and health equity. We describe the public health dimensions of climate vulnerability-exposure, population sensitivity, and adaptive capacity-and explore how these dimensions can modify population health impacts and their distribution. An overview of health disparities associated with specific climate risks is presented, and we offer potential solutions grounded in equitable urban development and improved characterization of climate vulnerabilities. PMID:26800675

  13. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  14. Climate change and tourism adaptation: literature review

    OpenAIRE

    Joseph M. Njoroge

    2015-01-01

    Purpose – This paper reviews published English literature on tourism adaptation to climate change. Climate change remains a challenge in the 21st centaury and beyond. Climate sensitive industries like tourism are vulnerable to climate change. It is for this reason that tourism researchers have continued to explore the relationship between tourism and climate change and further explored response strategies among tourism stakeholders. Tourism research on climate change adaptation may be traces ...

  15. Wildfires and storms: Increased vulnerability of water quality in the southwestern U.S. in the face of climate change

    Science.gov (United States)

    Murphy, S. F.; Writer, J. H.; McCleskey, R. B.; Martin, D. A.

    2014-12-01

    Communities in the southwestern U.S. rely on forested watersheds to provide high-quality water, but these watersheds are prone to major disturbance by wildfire. The loss of vegetation and litter can decrease water storage and infiltration and decrease nutrient uptake, leading to enhanced surface runoff, erosion, and nutrient export compared to undisturbed watersheds. Post-wildfire impacts on water quality vary widely across geographic regions, and are largely driven by post-fire storm timing and intensity. In the southwestern U.S., the North American Monsoon can produce high-intensity rain from July through September. A better understanding of the post-fire water-quality response of watersheds to monsoonal storms in this region is therefore critical. The Fourmile Canyon Fire burned 2600 ha near Boulder, Colorado in September 2010, including 23% of the Fourmile Creek watershed. This watershed had been recovering from historical mining activity, and dispersed waste rock and mine tailings were only partially revegetated before the wildfire. We collected water quality, hydrological, and meteorological data with high temporal and spatial density upstream and downstream of the burned area for 4 years post-fire. For 9 months post-fire, the area received snow or low-intensity rain, and the difference in stream water chemistry between burned and unburned watersheds was minimal. However, in the summer of 2011, and in the following two summers, relatively common monsoonal storms caused dramatic, but short-lived, increases in discharge, sediment, nitrate, dissolved organic carbon, and metals downstream of the burned area. Such pulses can degrade aquatic ecosystems, impair water treatability, and decrease reservoir capacity. Climate change is projected to increase wildfire frequency and size and lead to an earlier and longer wildfire season. Simultaneously, storm frequency and intensity are predicted to increase, and the monsoon season may occur later in the year, potentially

  16. A Cultural Heritage Management Methodology for Assessing the Vulnerabilities of Archaeological Sites to Predicted Climate Change Focuing on Ireland's Two World Heritage Sites

    OpenAIRE

    Daly, Caithleen, [Thesis

    2014-01-01

    The affect climate change will have on cultural heritage preservation poses a global challenge and is being addressed by international organisations such as UNESCO and ICOMOS. The aim of this doctoral research is to assist heritage managers in understanding the implications of climate change for the sites in their care. It addresses the question of how to approach the assessment and measurement of climate change impacts on cultural heritage. The potential future effects of climate change on c...

  17. Possible consequences of climate change on the Swedish energy sector - impacts, vulnerability and adaptation; Taenkbara konsekvenser foer energisektorn av klimatfoeraendringar. Effekter, saarbarhet och anpassning

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Axelsson, Johan; Eriksson, Sara; Holmgren, Kristina; Hovsenius, Gunnar; Kjellstroem, Erik; Larsson, Per; Lundstroem, Love; Persson, Gunn

    2007-06-15

    The events of recent years clearly demonstrate the far-reaching consequences of extreme weather situations on the energy system, particularly in the case of severe damage to transmission lines in connection with violent storms. Many climate researchers predict an increase in extreme weather events. Against this background, in 2005 Elforsk initiated this project where the aim has been to examine how climate change can affect plant operation, production conditions and energy usage patterns, how undesirable consequences can be predicted and what long-term measures may be necessary. Another central objective has been to bring about a dialogue between climate researchers, energy consultants/engineers and buyers for the energy industry. The inclusion of both positive and negative consequences has been an important ambition of the project. One key aspect of the project has been to develop climate scenarios for the next 20-25 years that describe possible changes in climate variables with relevance for the energy system. Based on these and literature studies, contact with experts and internal assessments, an analysis has been made of the possible impacts on hydropower, wind power, biofuel supply, natural gas supply, the power transmission network and energy usage. The project findings, which have also been discussed at a workshop with representatives from the energy industry, did not reveal any acute need for adaptation aside from those measures already being taken, for example to make the transmission system less vulnerable to weather conditions. Furthermore, the results indicate increased production potential for both hydropower and wind power. The production potential for hydropower stations from the Dalaelven River northwards would appear to increase by 2-10%. Estimates for the southern watercourses are less certain, but the production potential may decrease. Since around 80% of the country's hydropower is produced in the northern watercourses, this indicates an

  18. Data Integration for Climate Vulnerability Mapping in West Africa

    Directory of Open Access Journals (Sweden)

    Alex de Sherbinin

    2015-11-01

    Full Text Available Vulnerability mapping reveals areas that are likely to be at greater risk of climate-related disasters in the future. Through integration of climate, biophysical, and socioeconomic data in an overall vulnerability framework, so-called “hotspots” of vulnerability can be identified. These maps can be used as an aid to targeting adaptation and disaster risk management interventions. This paper reviews vulnerability mapping efforts in West Africa conducted under the USAID-funded African and Latin American Resilience to Climate Change (ARCC project. The focus is on the integration of remotely sensed and socioeconomic data. Data inputs included a range of sensor data (e.g., MODIS NDVI, Landsat, SRTM elevation, DMSP-OLS night-time lights as well as high-resolution poverty, conflict, and infrastructure data. Two basic methods were used, one in which each layer was transformed into standardized indicators in an additive approach, and another in which remote sensing data were used to contextualize the results of composite indicators. We assess the benefits and challenges of data integration, and the lessons learned from these mapping exercises.

  19. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that...... enable adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach...... is based on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant...

  20. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that...... enable adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach...... is based on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant...

  1. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  2. Climate Change: Basic Information

    Science.gov (United States)

    ... are here: EPA Home Climate Change Basic Information Climate Change: Basic Information On This Page Climate change ... We can make a difference How is the climate changing in the U.S.? Observations across the United ...

  3. Climate change

    International Nuclear Information System (INIS)

    The indicators in this bulletin are part of a national set of environmental indicators designed to provide a profile of the state of Canada's environment and measure progress towards sustainable development. A review of potential impacts on Canada shows that such changes would have wide-ranging implications for its economic sectors, social well-being including human health, and ecological systems. This document looks at the natural state of greenhouse gases which help regulate the Earth's climate. Then it looks at human influence and what is being done about it. The document then examines some indicators: Carbon dioxide emissions from fossil fuel use; global atmospheric concentrations of greenhouse gases; and global and Canadian temperature variations

  4. Adaptation to Climate Change in Risk and Vulnerability Analysis on a Municipal Level, a basis for further work; Anpassning till klimatfoeraendringar i risk- och saarbarhetsanalyser paa kommunal nivaa, underlag foer fortsatt arbete

    Energy Technology Data Exchange (ETDEWEB)

    Mossberg Sonnek, Karin; Lindberg, Anna; Lindgren, Johan

    2007-12-15

    The aim of Risk and Vulnerability Analysis (RVA) at local authority level in Sweden is to increase the capacity of local authorities to handle crises and to reduce vulnerability in the community. RVA processes could be an appropriate starting-point for discussions on how the community is influenced by climate change and how its effects could be reduced using various adjustment measures. In the report we present four methods: ROSA, MVA, IBERO and the Car Dun AB method. These have all been developed to support Swedish local authority RVA processes. We also present five international frameworks that have been developed by the organisations UNDP, USAID, UKCIP, C-CIARN and CSIRO to help decision-makers and stakeholders to adapt to climate change. Together, these descriptions form a foundation for continuing the work being done within the project Climatools, in which tools are being produced to be used by local authorities in adapting to climate change. In the report, we also discuss the concepts 'risk', 'vulnerability' and 'adaptation' and how analysis of adaptation to climate change has changed in recent years.

  5. Climate change and hazardscape of Sri Lanka

    OpenAIRE

    Akiko Yamane

    2009-01-01

    In recent years ‘vulnerability assessment’ has gained a prominent position in the international climate-change policy arena. There are many social-scientific studies that examine various methods and approaches involved in assessing vulnerability. Rather than making another addition to this literature I examine how climate-change policies have been translated in Sri Lanka in order to identify vulnerable places and social groups by combining actor-network theory and the concept of ‘hazardscape’...

  6. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  7. Analyses of surface and groundwater flow characteristics of the Ljubljana moor and water resources vulnerability to climate and land use change and groundwater overdraft

    Science.gov (United States)

    Globevnik, Lidija; Bracic Zeleznik, Branka

    2016-04-01

    One of the biggest water resource of Slovenian capital is groundwater of Ljubljana moor (Ljubljansko barje) aquifer. Quantity and quality of groundwater in Ljubljana moor aquifer directly depend on precipitation, surface water and riparian ecosystems of the Moor and indirectly by groundwater recharge from higher-lying mountainous karstic areas of forests and grasslands. Maintaining high groundwater level of the Ljubljana moor not only sustain stable water balance of aquifer, but also its riparian and wetland character. It also inhibit larger subsidence of the terrain. The paper addresses the vulnerability of the Ljubljana moor water resources to climate and land use change and due to groundwater overdraft. The results should help in selecting suitable mitigation measures and management of the Ljubljana moor area. We analyze surface and groundwater flow characteristics of water recharge area of one water work on the Ljubljana moor (Brest) from the point of view of climate change, changes in land use and water pumping practices. The I\\vska River, a tributary to the Ljubljanica River, recharges the area in the gravel bar, which lies just below the hills. We use existing data of meteorological, hydrological and hydrogeological monitoring and simulate rainfall-runoff processes. We use a conceptual semi-distributed rainfall-runoff model HBV-Light and simulate hydrological characteristics of the Ljubljana Moor (groundwater level fluctuations and recharge, surface - groundwater interchange) with two hydrodynamic models, DHI MIKE FLOOD (surface flow, 2D simulation) and DHI MIKE SHE (groundwater flow). For a calibration of runoff model HBV Light and MIKE SHE we use measured daily discharge data of the river I\\vska (1970-2010) and groundwater level data along the river (2010-2013) respectively. In groundwater modelling, we include the data of water pumping. Daily precipitation and temperature for period 2020 - 2050 are from ESAMBLE project for two GCM climate scenarios. We

  8. Tracking Nile Delta vulnerability to Holocene change.

    Directory of Open Access Journals (Sweden)

    Nick Marriner

    Full Text Available Understanding deltaic resilience in the face of Holocene climate change and human impacts is an important challenge for the earth sciences in characterizing the full range of present and future wetland responses to global warming. Here, we report an 8000-year mass balance record from the Nile Delta to reconstruct when and how this sedimentary basin has responded to past hydrological shifts. In a global Holocene context, the long-term decrease in Nile Delta accretion rates is consistent with insolation-driven changes in the 'monsoon pacemaker', attested throughout the mid-latitude tropics. Following the early to mid-Holocene growth of the Nile's deltaic plain, sediment losses and pronounced erosion are first recorded after ~4000 years ago, the corollaries of falling sediment supply and an intensification of anthropogenic impacts from the Pharaonic period onwards. Against the backcloth of the Saharan 'depeopling', reduced river flow underpinned by a weakening of monsoonal precipitation appears to have been particularly conducive to the expansion of human activities on the delta by exposing productive floodplain lands for occupation and irrigation agriculture. The reconstruction suggests that the Nile Delta has a particularly long history of vulnerability to extreme events (e.g. floods and storms and sea-level rise, although the present sediment-starved system does not have a direct Holocene analogue. This study highlights the importance of the world's deltas as sensitive archives to investigate Holocene geosystem responses to climate change, risks and hazards, and societal interaction.

  9. Method of an integrated and advanced evaluation of vulnerability. Conceptional-methodical fundamentals and examplary implementation for the water household, power generation and energetic utilisation of wood under climatic change; Methode einer integrierten und erweiterten Vulnerabilitaetsbewertung. Konzeptionell-methodische Grundlagen und exemplarische Umsetzung fuer Wasserhaushalt, Stromerzeugung und energetische Nutzung von Holz unter Klimawandel

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Helga; Koch, Hagen; Lasch, Petra [Potsdam-Institut fuer Klimafolgenforschung e.V. (Germany)] [and others

    2013-07-15

    Actually, in Germany there are more than hundred investigations on the consequences of the climatic change. It is difficult to evaluate the vulnerability of Germany against the climatic change. Under this aspect, the authors of the contributions report on a method of an integrated and advanced evaluation of vulnerability: Conceptional-methodical fundamentals and exemplary implementation for water household, power generation and energetic utilization of wood under climatic change.

  10. Bangladesh : Climate Change and Sustainable Development

    OpenAIRE

    World Bank

    2000-01-01

    The study examines Bangladesh's extreme vulnerability to climate change, whose low-lying topography, and funnel-shaped coast, further exposes the land to cyclones, and tidal surges, resulting in seasonal floods. These factors, and the large population base, widespread poverty, aggravated by the lack of strong institutional development, makes the country particularly vulnerable to climate v...

  11. Andean highlands: Implications of climate change

    OpenAIRE

    Seth, Anji; Thibeault, J.M.; García, Magali

    2007-01-01

    This presentation provides background on the SANREM CRSP project "Adapting to Change in the Andean Highlands: Practices and Strategies to Address Climate and Market Risks in Vulnerable Agro-Eco Systems" and discusses the means, variability and projections for the Altiplano climate. available in SANREM office, ESIILTRA-4 (Practices and Strategies for Vulnerable Agro-Ecosystems)

  12. GIS-Mapping and Statistical Analyses to Identify Climate-Vulnerable Communities and Populations Exposed to Superfund Sites

    Science.gov (United States)

    Climate change-related cumulative health risks are expected to be disproportionately greater for overburdened communities, due to differential proximity and exposures to chemical sources and flood zones. Communities and populations vulnerable to climate change-associated impacts ...

  13. Climate Change and Agricultural Vulnerability

    OpenAIRE

    Fischer, G.; Shah, M. M.; H.T. van Velthuizen

    2002-01-01

    The challenge of agriculture in the 21st century requires a systemic integration of the environmental, social and economic pillars of development to meet the needs of present generations without sacrificing the livelihoods of future generations. Over the next 50 years, the world population is projected to increase by some 3 billion, primarily in the developing countries. Yet, even today, some 800 million people go hungry daily, and more than a billion live on less than a dollar a day. This fo...

  14. Targeting attention on local vulnerabilities using an integrated index approach: the example of the climate vulnerability index.

    Science.gov (United States)

    Sullivan, C; Meigh, J

    2005-01-01

    It is known that climate impacts can have significant effects on the environment, societies and economies. For human populations, climate change impacts can be devastating, giving rise to economic disruption and mass migration as agricultural systems fail, either through drought or floods. Such events impact significantly, not only where they happen, but also in the neighbouring areas. Vulnerability to the impacts of climate change needs to be assessed, so that adaptation strategies can be developed and populations can be protected. In this paper, we address the issue of vulnerability assessment through the use of an indicator approach, the climate vulnerability index (CVI). We show how this can overcome some of the difficulties of incommensurability associated with the combination of different types of data, and how the approach can be applied at a variety of scales. Through the development of nested index values, more reliable and robust coverage of large areas can be achieved, and we provide an indication of how this could be done. While further work is required to improve the methodology through wider application and component refinement, it seems likely that this approach will have useful application in the assessment of climate vulnerability. Through its application at sub-national and community scales, the CVI can help to identify those human populations most at risk from climate change impacts, and as a result, resources can be targeted towards those most in need. PMID:15918360

  15. Land tenure insecurity, vulnerability to climate-induced disaster and opportunities for redress in southern Africa

    Directory of Open Access Journals (Sweden)

    Tigere Chagutah

    2013-01-01

    Full Text Available Land tenure is an important variable impacting on vulnerability to climate-related disaster. Land tenure insecurity is widespread in southern Africa and manifests itself in a number of ways that accentuate vulnerability to climate change impacts. Insecure tenure is seen to heighten vulnerability against growing demand for land for residential purposes and working space in urban areas while in the rural areas insecure tenure militates against diversified livelihoods and hinders investment in appropriate technologies and uptake of sound environmental management practices. Using the focused synthesis method, this article (1 maps the intersections between land tenure insecurity and vulnerability to climate-induced disaster in southern Africa; and (2 identifies the opportunities tenure reforms hold for vulnerability reduction in a region predicted to suffer widespread impacts from climate change. The paper contends that land tenure is a critical component of the milieu of factors – economic, social, cultural, institutional, political and even psychological – that are known to shape vulnerability and determine the environment that people live in. The study finds that land tenure reforms can help to reduce vulnerability and enhance community resilience to climate change. In this regard, the article outlines how tenure reforms can help build diverse household livelihoods, improve environmental management, particularly in the rural areas, and encourage investment in robust housing and safe neighbourhoods among the urban poor – all of which are integral to the region’s response to climate change.

  16. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines the...

  17. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  18. Adaptation to Climate Change in Developing Countries

    OpenAIRE

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.; Rasmussen, Kjeld

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in devel...

  19. A Survey on Adaptation to Climate Change

    OpenAIRE

    Dinda, Soumyananda

    2015-01-01

    In this 21st century, human civilization faces the toughest challenge to tackle the climate change for sustainable development. Civil society should adopt the climate change and reduce vulnerability for non-declining welfare. This paper reviews major papers on adaptation to climate change and provides an overview on the climate change and developing adaptive mechanism across the globe. Following major important articles this study provides clarity of the concept of adaptation, types of adapta...

  20. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  1. Contribution of the working group 2 to the fourth evaluation report of the inter government expert group on the climatic change. Evaluation 2007 of the climatic changes: impacts, adaptation and vulnerability; Contribution du Groupe de travail 2 au quatrieme rapport d'evaluation du Groupe d'expert intergouvernemental sur l'evolution du climat. Bilan 2007 des changements climatiques: impacts, adaptation et vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document exposes the results of the fourth evaluation report of the working group II of the inter government experts group on the climatic change. This evaluation presents the today scientific understanding of the climatic change impacts on the humans and their adaptation ability and vulnerability. It is based on the GIEC evaluations and new knowledge added since the third evaluation report. (A.L.B.)

  2. A Decision Analysis Tool for Climate Impacts, Adaptations, and Vulnerabilities

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Parish, Esther S [ORNL; Nugent, Philip J [ORNL

    2016-01-01

    Climate change related extreme events (such as flooding, storms, and drought) are already impacting millions of people globally at a cost of billions of dollars annually. Hence, there are urgent needs for urban areas to develop adaptation strategies that will alleviate the impacts of these extreme events. However, lack of appropriate decision support tools that match local applications is limiting local planning efforts. In this paper, we present a quantitative analysis and optimization system with customized decision support modules built on geographic information system (GIS) platform to bridge this gap. This platform is called Urban Climate Adaptation Tool (Urban-CAT). For all Urban-CAT models, we divide a city into a grid with tens of thousands of cells; then compute a list of metrics for each cell from the GIS data. These metrics are used as independent variables to predict climate impacts, compute vulnerability score, and evaluate adaptation options. Overall, the Urban-CAT system has three layers: data layer (that contains spatial data, socio-economic and environmental data, and analytic data), middle layer (that handles data processing, model management, and GIS operation), and application layer (that provides climate impacts forecast, adaptation optimization, and site evaluation). The Urban-CAT platform can guide city and county governments in identifying and planning for effective climate change adaptation strategies.

  3. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  4. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  5. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  6. Climate variability and climate change

    International Nuclear Information System (INIS)

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  7. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  8. Fair adaptation to climate change

    International Nuclear Information System (INIS)

    This article identifies social justice dilemmas associated with the necessity to adapt to climate change, examines how they are currently addressed by the climate change regime, and proposes solutions to overcome prevailing gaps and ambiguities. We argue that the key justice dilemmas of adaptation include responsibility for climate change impacts, the level and burden sharing of assistance to vulnerable countries for adaptation, distribution of assistance between recipient countries and adaptation measures, and fair participation in planning and making decisions on adaptation. We demonstrate how the climate change regime largely omits responsibility but makes a general commitment to assistance. However, the regime has so far failed to operationalise assistance and has made only minor progress towards eliminating obstacles for fair participation. We propose the adoption of four principles for fair adaptation in the climate change regime. These include avoiding dangerous climate change, forward-looking responsibility, putting the most vulnerable first and equal participation of all. We argue that a safe maximum standard of 400-500 ppm of CO2 concentrations in the atmosphere and a carbon tax of $20-50 per carbon equivalent ton could provide the initial instruments for operationalising the principles. (author)

  9. 2012 NEHA/UL sabbatical report: vulnerability to potential impacts of climate change: adaptation and risk communication strategies for environmental health practitioners in the United Kingdom.

    Science.gov (United States)

    Ratnapradipa, Dhitinut

    2014-04-01

    Climate change risk assessment, adaptation, and mitigation planning have become increasingly important to environmental health practitioners (EHPs). The NEHA/UL Sabbatical Exchange Award allowed me to investigate how EHPs in the UK are incorporating climate change planning and communication strategies into their work. Projected climate change risks in the UK include flooding, extreme heat, water shortages, severe weather, decreased air quality, and changes in vectors. Despite public perception and funding challenges, all the local government representatives with whom I met incorporated climate change risk assessment, adaptation, and mitigation planning into their work. The mandated Community Risk Register serves as a key planning document developed by each local government authority and is a meaningful way to look at potential climate change health risks. Adaptation and sustainability were common threads in my meetings. These often took the form of "going green" with transportation, energy efficiency, conserving resources, and building design because the efforts made sense monetarily as future cost savings. Communication strategies targeted a variety of audiences (EHPs, non-EHP government employees, politicians, and the general public) using a broad range of communication channels (professional training, lobbying, conferences and fairs, publications, print materials, Internet resources, social media, billboards, etc). PMID:24749223

  10. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    are now ques-tioning this. Measurements as dykes will changes or cut off the spatial and func-tional coherence between the city structure and the sea. Questions regarding the status and the appropriation of these ‘new’ adaptive func-tions in landscapes and open urban spaces by ordinary people must...

  11. Gender angle to the climate change negotiations

    NARCIS (Netherlands)

    Wamukonya, Njeri; Skutsch, Margaret

    2002-01-01

    The South is likely to suffer more from climate change than the North due to its already vulnerable situation and lack of the necessary resources to adapt to change. But do the interests of men and of women differ as regards climate change and does this have a South-North dimension? This paper attem

  12. Local assessment of vulnerability to climate change impacts on water resources in the Upper Thukela River Basin, South Africa : Recommendations for Adaptation

    OpenAIRE

    Andersson, Lotta ,; Wilk, Julie; Graham, Phil; Warburton, Michele

    2009-01-01

    This report originates from a project entitled Participatory Modelling for Assessment of Local Impacts of Climate Variability and Change on Water Resources (PAMO), financed by the Swedish Development Agency and Research Links cooperation (NRF and the Swedish Research Council). The project is based on interactions between stakeholders in the Mhlwazini/Bergville area of the Thukela River basin, climate and water researchers from the University of KwaZulu-Natal (Pietermaritzburg Campus) and the ...

  13. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  14. Climate changes your business

    International Nuclear Information System (INIS)

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  15. Guidebook for territories' support in the analysis of their socio-economical vulnerability to climate change; Guide d'accompagnement des territoires pour l'analyse de leur vulnerabilite socio-economique au changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The work of the inter-ministerial group 'Impacts of Climate Change, Adaptation and Associated Costs for France', which met between March 2007 and October 2009, led to a sector-based assessment of all climate change related impacts and of associated adaptation measures. The aim was to obtain quantified elements that could underpin public policy decision-making and especially development of the National Adaptation Plan. While the sectoral analyses focused on quantifying the costs of adaptation, the approach of the 'Territories' group, co-steered by the Datar (regional development delegation) and Ademe (agency for energy management and environment), addressed the subject of interactions between players and activities, both spatial (sharing of resources between different uses, etc.) and temporal (transition from one situation to another, etc.) and the corresponding means for adjustment. It was in this context that the SOeS proposed a methodology for diagnosis of the socio-economic vulnerability of a given sub-national territory in the face of climate change. This document provides a broad-brush outline of the accompanying guidelines developed by Sogreah Consultants SAS for use by local players. A three step approach is followed to draw up the vulnerability profile of a territory: 1 - characterising the territory by the identification of the priority activities and physical features; 2 - using the analysis tools to produce a matrix of indices of vulnerability to climate change per hazard; 3 - drawing up an initial vulnerability profile by bringing together the information from the matrix and that from feedback, either by activity or group of activities, or by environment, depending on aims. The profile leads to identification of the important issues as well as allowing identification of potential impacts to be studied in more depth. Guidelines were tested in three pilot territories facing different climate change issues: Wateringues, in the Nord

  16. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  17. Making Cities Resilient to Climate Change

    OpenAIRE

    Dulal, Hari Bansha

    2016-01-01

    Urbanization is truly a global phenomenon. Starting at 39% in 1980, the urbanization level rose to 52% in 2011. Ongoing rapid urbanization has led to increase in urban greenhouse gas (GHG) emissions. Urban climate change risks have also increased with more low-income urban dwellers living in climate sensitive locations. Despite increased emissions, including GHGs and heightened climate change vulnerability, climate mitigation and adaptation actions are rare in the cities of developing countri...

  18. Gender and climate change in the Indian Himalayas: global threats, local vulnerabilities, and livelihood diversification at the Nanda Devi Biosphere Reserve

    Science.gov (United States)

    Ogra, M. V.; Badola, R.

    2015-08-01

    Global climate change has numerous implications for members of mountain communities who feel the impacts in both physical and social dimensions. In the western Himalayas of India, a majority of residents maintain a livelihood strategy that includes a combination of subsistence or small-scale agriculture, livestock rearing, seasonal or long-term migration, and localized natural resource extraction. While warming temperatures, irregular patterns of precipitation and snowmelt, and changing biological systems present challenges to the viability of these traditional livelihood portfolios in general, we find that climate change is also undermining local communities' livelihood assets in gender-specific ways. In this paper, we present a case study from the Nanda Devi Biosphere Reserve (Uttarakhand, India) that both outlines the implications of climate change for women farmers in the area and highlights the potential for ecotourism (as a form of livelihood diversification) to strengthen both key livelihood assets of women and local communities' adaptive capacity more broadly. The paper intentionally employs a categorical focus on women but also addresses issues of inter-group and gender diversity. With this special issue in mind, suggestions for related research are proposed for consideration by climate scientists and social systems and/or policy modelers seeking to support gender justice through socially transformative perspectives and frameworks.

  19. Structure and Vulnerability of Pacific Northwest Tidal Wetlands –A Summary of Wetland Climate Change Researchby the Western Ecology Division, U.S. EPA

    Science.gov (United States)

    Climate change poses a serious threat to the tidal wetlands of the Pacific Northwest (PNW) region of the U.S. In response to this threat, scientists at the Western Ecology Division of the U.S. EPA at and the Western Fisheries Research Center of the U.S. Geological Survey, along w...

  20. Classifying climate change adaptation frameworks

    Science.gov (United States)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  1. Hurricane Katrina and climate change

    International Nuclear Information System (INIS)

    Serious and widely reported scientific analyses and assessments have called attention to climate changes and to the additional risks the world now faces. Through science has not yet provided proof positive of a connection between the increased intensity of extreme weather events and climate change, there can be no valid reason for failing to hedge the risk with preventive action. The catastrophe that struck New Orleans had can been predicted since the 1990s. The 2050 Coast Plan for reducing the vulnerability of the Louisiana coast and preventing hurricane disasters had been approved by the local authorities but not the federal government. Partly because of its cost, it was never carried into effect

  2. Impacts of Climate Change on Brazilian Agriculture

    OpenAIRE

    Assad, Eduardo; Pinto, Hilton S.; Nassar, Andre; Harfuch, Leila; Freitas, Saulo; Farinelli, Barbara; Lundell, Mark; Erick C.M. Fernandes

    2013-01-01

    This report evaluates the requirements for an assessment of climate change impacts on agriculture to guide policy makers on investment priorities and phasing. Because agriculture is vital for national food security and is a strong contributor to Brazil's GDP growth, there is growing concern that Brazilian agriculture is increasingly vulnerable to climate variability and change. To meet nat...

  3. Adapting to Climate Change in ECA

    OpenAIRE

    Fay, Marianne; Block, Rachel; Carrington, Tim; Ebinger, Jane

    2009-01-01

    Contrary to popular perception, Europe and Central Asia (ECA) countries are significantly threatened by climate change, with serious risks already in evidence. The vulnerability and adaptive capacity of ECA countries to climate change over the next two decades will be dominated by socio-economic factors and legacy issues. The next decade offers a window of opportunity for ECA to make its d...

  4. Climate change and climate policy

    International Nuclear Information System (INIS)

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  5. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:26504134

  6. World Water Resources and Regional Vulnerability: Impact of Future Changes

    OpenAIRE

    Kulshreshtha, S. N.

    1993-01-01

    This report is the first presentation of results from the Water Resources Project's current focus on climate change, water resources, and socioeconomic impacts. Not only is the global assessment valuable in itself, but the regional analysis has identified areas of acute vulnerability which require further in-depth study. Future efforts should focus on reducing the spatial (river basins) and temporal (crucial periods within the hydrological year) scales of the analyses, as well as on addres...

  7. Climatic change and security stakes

    International Nuclear Information System (INIS)

    This paper explores the relationships between climate change and security. Potential threats from climate change, as a unique source of stress or together with other factors, to human security are first examined. Some of the most explicit examples illustrate this section: food security, water availability, vulnerability to extreme events and vulnerability of small islands States and coastal zones. By questioning the basic needs of some populations or at least aggravating their precariousness, such risks to human security could also raise global security concerns, which we examine in turn, along four directions: rural exodus with an impoverishment of displaced populations, local conflicts for the use of natural resources, diplomatic tensions and international conflicts, and propagation to initially-unaffected regions through migratory flows. (authors)

  8. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO2; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  9. Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010

    Science.gov (United States)

    Huai, Jianjun

    2016-01-01

    In many agricultural countries, development of rural livelihood through increasing capital is a major regional policy to adapt to climate change. However, the role of livelihood capital in reducing climatic vulnerability is uncertain. This study assesses vulnerability and identifies the effects of common capital indicators on it, using Australian wheat as an example. We calculate exposure (a climate index) and sensitivity (a wheat failure index) to measure vulnerability and classify the resilient and sensitive cases, and express adaptive capacity through financial, human, natural, physical, and social capital indicators for 12 regions in the Australian wheat–sheep production zone from 1991–2010. We identify relationships between 12 indicators of five types of capital and vulnerability with t-tests and six logistic models considering the capital indicator itself, its first-order lag and its square as dependent variables to test the hypothesis that a high level of each capital metric results in low vulnerability. Through differing adaptive capacities between resilient and sensitive groups, we found that only four of the 12 (e.g., the access to finance, cash income level, total crop gross revenues, and family share of farm income) relate to vulnerability, which challenges the hypothesis that increasing capital reduces vulnerability. We conclude that further empirical reexaminations are required to test the relationships between capital measures and vulnerability under the sustainable livelihood framework (SLF). PMID:27022910

  10. Vulnerability of ecological systems to climatic effects of nuclear war

    International Nuclear Information System (INIS)

    The authors' analyses are based on a suite of approaches: physiological information, historical analogs, simulation and statistical analyses, and expert judgment. Because of the great complexity of ecosystems across the global landscape and the temporal and spatial complexity of potential nuclear-war induced climatic disturbances, it is not possible uniquely to characterize the effects on ecosystems. A biome approach has been chosen as an appropriate level for generalization of potential effects. Northern Hemisphere temperate terrestrial ecosystems, aquatic ecosystems, tropical ecosystems, and Southern Hemisphere extra-tropical ecosystems are addressed. The ecosystem discussions emphasize effects on the primary producers, in large part because those components are fundamental to the total ecosystem and are often especially vulnerable to the types of perturbations considered here. Estimates of effects on fauna are largely based on those mediated through changes in food supplies. Further study of effects on trophic structures and of indirect effects on species propagated through the complex interactions of ecosystems is required

  11. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  12. Rethinking climate change as a security threat

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, Corinne

    2011-10-15

    Once upon a time climate change was a strictly environment and development issue. Today it has become a matter of national and international security. Efforts to link climate change with violent conflict may not be based on solid evidence, but they have certainly captured the attention of governments. They have played a vital role in raising the much-needed awareness of climate change as an issue that deserves global action. But at what cost? Focusing on climate change as a security threat alone risks devolving humanitarian responsibilities to the military, ignoring key challenges and losing sight of those climate-vulnerable communities that stand most in need of protection.

  13. The adaptation to climate change

    International Nuclear Information System (INIS)

    The authors address the issue of adaptation to climate change. They first address the physical aspects related to this issue: scenarios of temperature evolution, main possible impacts. Then, they address the social impacts related to climate risks, and the adaptation strategies which aim at reducing the exposure and vulnerability of human societies, or at increasing their resilience. Some examples of losses of human lives and of economic damages due to recent catastrophes related to climate change are evoked. The authors address the international framework, the emergence of an international regime on climate, the quite recent emergence of adaptation within international negotiations in 2001, the emergence of the idea of a support to developing countries. National and local policies are presented in the next chapter (in the European Union, the Netherlands which are faced with the issue of sea level rise, programs in developing countries) and their limitations are also outlined. The next chapter addresses the adaptation actions performed by private actors (enterprises, households, associations, civil society, and so on) with example of vulnerability, and adaptation opportunities and possibilities in some specific sectors. The last chapter presents a typology of actions of adaptation, indicators of adaptation to climate change, and examples of mistaken adaptation

  14. Climate Change and Health

    Science.gov (United States)

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  15. Vulnerability to climate change and conflict, its impact on livelihoods and the enjoyment of human rights : case study: pastoral communities in Northern Kenya (Turkana, Pokot and Samburu Districts)

    OpenAIRE

    Koske, Janet Chepngeno

    2014-01-01

    The relationship between climate change and conflict is a complex one. Violent conflicts involving pastoralists have become widespread and increasingly severe in the North Rift and North Eastern regions of Kenya. This study examines the factors contributing to such conflicts, and discusses issues and priorities for conflict prevention and peace building. The pastoralists in the three districts under study are largely nomadic. They live primarily in arid or semi-arid areas and d...

  16. Climate change: a primer

    OpenAIRE

    Khanna, Dr. Perminder; Aneja, Reenu

    2011-01-01

    Abstract Climate has inherent variability manifesting in gradual changes in temperature, precipitation and sea-level rise. The paper entitled “Climate Change: A Primer” attempts to analyse the policy response and adaptation to the need to address climate change at the international and domestic level both. Intense variations in climate would increase the risk of abrupt and non-linear changes in the ecosystem, impacting their function, biodiversity and productivity. The policy initiations and ...

  17. Climate and Change

    OpenAIRE

    Roger S. Pulwarty

    2011-01-01

    A presentation about the basics of climate change - the science, the impacts, and the consequences. The focus is on water and the Caribbean in particular but the information is general. It includes information about climate change mitigation and climate change adaptation.

  18. Striving to Reduce Vulnerability:Lessons from the Poor Community Livelihoodsin the Jakarta Bay Facing High Risk of Rapid Urbanization and Climate Changes

    Science.gov (United States)

    Hidayati, D.; Delinom, R. M.; Abdurachim, A. Y.; Dalimunthe, S.; Haba, J.; Pawitan, H.

    2014-12-01

    This paper discusses water-food issues in relation to how livelihoods of the poor community in Jakarta Bayarein high risk ofrapid urbanization and climate changes. As a part of the capital city of Indonesia, this area has experienced rapid increase in populationand extensive developments causing significant increase in the built up area. This city is unable to keep with demand on sewers, water and solid waste management, leading to settlement with concentrated slum pockets areas and widespread of flooding. The community is mostly poor people of productive group, live with urban pressure in fragile home and livelihoods.The situation becomes much worse due to the impact of climate change with flooding as the greatest climate and disaster risk. With lack of basic services, coastal water inundation (BanjirRob)commonly occursand floods the community housing areaswithout patternanymore. The community has lack of fresh and clean water sources and facedeconomic problem, particularly significant reduction of fishing activities. Coastal reclamation and water pollution from nearby industries are blamed as the main reason for these problems. Strategies therefore have to be developed, especially increasing community awareness and preparedness, and poverty alleviation, to sustain their livelihoods in this high risk urban area.

  19. Distributional aspects of climate change impacts

    Energy Technology Data Exchange (ETDEWEB)

    Tol, R.S.J. [Hamburg University (Germany). Centre for Marine and Climate Research; Vrije Universiteit, Amsterdam (Netherlands). Institute for Environmental Studies; Carnegie Mellon University, Pittsburgh, PA (United States). Center for Integrated Study of the Human Dimensions of Global Change; Downing, T.E. [Stockholm Environment Institute, Oxford (United Kingdom); Kuik, O.J. [Vrije Universiteit, Amsterdam (Netherlands). Institute for Environmental Studies; Smith, J.B. [Stratus Consulting Inc., Boulder, CO (United States)

    2004-10-01

    Climate change is likely to impact more severely on the poorer people of the world, because they are more exposed to the weather, because they are closer to the biophysical and experience limits of climate, and because their adaptive capacity is lower. Estimates of aggregated impacts necessarily make assumptions on the relative importance of sectors, countries and periods; we propose to make these assumption explicit. We introduce a Gini coefficient for climate change impacts, which shows the distribution of impacts is very skewed in the near future and will deteriorate for more than a century before becoming more egalitarian. Vulnerability to climate change depends on more than per capita income alone, so that the geographical pattern of vulnerability is complex, and the relationship between vulnerability and development non-linear and non-monotonous. (author)

  20. Ecosystem vulnerability of China under B2 climate scenario in the 21st century

    Institute of Scientific and Technical Information of China (English)

    WU ShaoHong; DAI ErFu; HUANG Mei; SHAO XueMei; LI ShuangCheng; TAO Bo

    2007-01-01

    This paper applies climate change scenarios in China based on the SRES assumptions with the help of RCMs projections by PRECIS (providing regional climates for impacts studies) system introduced to China from.he Hadley Centre for Climate Prediction and Research at a high-resolution (50 kmx50 km)over China.This research focuses on B2 scenario of SRES.A biogeochemical model "Atmosphere Vegetation Integrated Model (AV1M2)" was applied to simulating ecosystem status in the 21st century.Then vulnerability of ecosystems was assessed based on a set of index of mainly net primary production (NPP) of vegetation.Results show that climate change would affect ecosystem of China severely and there would be a worse trend with the lapse of time.The regions where having vulnerable ecological background would have heavier impacts while some regions with better ecological background would also receive serious impacts.Extreme climate even would bring about worse impact on the ecosystems.Open shrub and desert steppe would be the two most affected types.When the extreme events happen,vulnerable ecosystem would extend to part of defoliate broad-leaved forest,woody grassland and evergreen conifer forest.Climate change would not always be negative.It could be of some benefit to cold region during the near-term.However,in view of mid-term to long-term negative impact on ecosystem vulnerability would be enormously.

  1. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  2. Our changing climate

    International Nuclear Information System (INIS)

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  3. Mathematics of Climate Change

    OpenAIRE

    Halstadtrø, Ida

    2013-01-01

    Mathematics in climate research is rarely mentioned in the everyday conversations or in the media when talking about climate changes. This thesis therefore focus on the central role mathematics plays in climate research, through describing the different models used in predicting future weather and climate. In Chapter 1, a general introduction to climate, its components and feedbacks, and today's status is given. Chapter 2 concentrates on the dynamical models represented by ordinary differenti...

  4. Climate Change Policy

    Science.gov (United States)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  5. Road Infrastructure and Climate Change in Vietnam

    Directory of Open Access Journals (Sweden)

    Paul S. Chinowsky

    2015-05-01

    Full Text Available Climate change is a potential threat to Vietnam’s development as current and future infrastructure will be vulnerable to climate change impacts. This paper focuses on the physical asset of road infrastructure in Vietnam by evaluating the potential impact of changes from stressors, including: sea level rise, precipitation, temperature and flooding. Across 56 climate scenarios, the mean additional cost of maintaining the same road network through 2050 amount to US$10.5 billion. The potential scale of these impacts establishes climate change adaptation as an important component of planning and policy in the current and near future.

  6. Climate change adaptation strategies and mitigation policies

    Science.gov (United States)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved

  7. Climatic change and insect outbreaks

    International Nuclear Information System (INIS)

    Insects represent the dominant natural disturbance factor in Canada's forests. Host trees are often killed over extensive areas. This paper examines how climate change may influence insect outbreak regimes in Canada's forests, primarily focusing on temperature, as the potential rate of increase of many insects is dependent on temperature. The extent and frequency of temperature extremes can have major impacts on insect populations. Temperature increases will accelerate development, activity and movement as well as influence reduced mortality from climatic factors. In addition, higher temperatures are likely to facilitate extended periods of activity at both ends of the season. It was concluded that a number of complex factors will likely determine the direct effect of increasing temperatures on insects. Changes in the abiotic environment, changes in species interactions, and changes in the regimes of natural selection will influence future insect activity. For example, increases in carbon:nitrogen ratios are expected to cause insects to eat more in order to maintain dietary nitrogen. The effects of climate change is expected to differ quantitatively among species in the complex food chains where most insect species are embedded. It is also assumed that if geographic distribution of insects shifts in response to climate change, their impact should basically remain static. Most published scenarios suggest that outbreaks of insects in Canada will last longer and occur more frequently where the climate will become warmer. However, climate warming may also allow certain insects to extend their ranges into regions of vulnerable host species. It was suggested that further research is necessary, as no data has been collected on how insects might respond to predicted, concurrent changes in atmospheric chemistry and climate. 19 refs

  8. Vulnerability of Coastal Crop Land to Climate Change in the Northern Part of Bay of Bengal: Issues, Challenges and Future Prospects

    Science.gov (United States)

    Kamal, A. H. M.

    2015-12-01

    The coastal communities of northeastern part of Bay of Bengal are used to live and survive through facing different types of natural disasters since primitive time. Among the natural disasters, salinity intrusion due to climate change and sea level rise in the coastal agriculture land is the major unpleasant incident now days. Because of that wide area of the coastal agricultural land, coastal forest, drinking water facilities and fresh water availability are in critical condition which may cause 40 million people of 147 coastal districts covering 47201 km area are placed in danger. The nation wide assessment on the detected of coastal soil and water salinity is not conducted since 9 years. The survey on the coastal soil salinity on 1973 and 2000 found that the saline effected land is increased from 0.83 million ha to 1.20 million ha within 27 years. It is assumed that at present the rate of salinity intrusion in the coastal agriculture land will be higher than those of 1973 and 2000. The soil salinity was recorded 18-20 psu after AILA in the south-eastern coast of Bangladesh and increased further 2-4 psu due to low precipitation which causes crop burning. This paper aims to know the salinity intrusion in the coastal soil and water of Bangladesh, which would help to plan and improvement of the sustainable agriculture production. Study revealed that to face any extra stresses on the coastal agriculture land due to climate change requires extensive inventory, awareness activities, mitigation measures, adaptation techniques and extension of indigenous technology.

  9. Our Changing Climate

    Science.gov (United States)

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  10. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    Science.gov (United States)

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart, III; McGuire, Anthony; Huntington, Orville; Duffy, Paul A; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  11. Risk management and climate change

    Science.gov (United States)

    Kunreuther, Howard; Heal, Geoffrey; Allen, Myles; Edenhofer, Ottmar; Field, Christopher B.; Yohe, Gary

    2013-05-01

    The selection of climate policies should be an exercise in risk management reflecting the many relevant sources of uncertainty. Studies of climate change and its impacts rarely yield consensus on the distribution of exposure, vulnerability or possible outcomes. Hence policy analysis cannot effectively evaluate alternatives using standard approaches, such as expected utility theory and benefit-cost analysis. This Perspective highlights the value of robust decision-making tools designed for situations such as evaluating climate policies, where consensus on probability distributions is not available and stakeholders differ in their degree of risk tolerance. A broader risk-management approach enables a range of possible outcomes to be examined, as well as the uncertainty surrounding their likelihoods.

  12. Extreme climatic events: reducing ecological and social systems vulnerabilities

    International Nuclear Information System (INIS)

    The Earth has to face more and more devastating extreme events. Between 1970 and 2009, at the worldwide scale, the 25 most costly catastrophes all took place after 1987, and for more than half of them after 2001. Among these 25 catastrophes, 23 were linked to climate conditions. France was not spared: the December 1999 storms led to 88 deaths, deprived 3.5 million households of electricity and costed more than 9 billion euros. The 2003 heat wave led to about 15000 supernumerary deaths between August 1 and August 20. The recent Xynthia storm, with its flood barrier ruptures, provoked 53 deaths in addition to many other tragedies that took place in areas liable to flooding. In the present day context of climate change, we know that we must be prepared to even more dangerous events, sometimes unexpected before. These events can have amplified effects because of the urban development, the overpopulation of coastal areas and the anthropization of natural environments. They represent real 'poverty traps' for the poorest countries of the Earth. The anticipation need is real but is our country ready to answer it? Does it have a sufficient contribution to international actions aiming at reducing risks? Is his scientific information suitable? France is not less vulnerable than other countries. It must reinforce its prevention, its response and resilience capacities in the framework of integrated policies of catastrophes risk management as well as in the framework of climate change adaptation plans. This reinforcement supposes the development of vigilance systems with a better risk coverage and benefiting by the advances gained in the meteorology and health domains. It supposes a town and country planning allowing to improve the viability of ecological and social systems - in particular by protecting their diversity. Finally, this reinforcement requires inciting financial coverage solutions for catastrophes prevention and for their management once they have taken place. A

  13. Climate change and agricultural adaptation in Sri Lanka: a review

    OpenAIRE

    Esham, Mohamed; Garforth, Chris

    2013-01-01

    Climate change is inevitable and will continue into the next century. Since the agricultural sector in Sri Lanka is one of the most vulnerable to climate change, a thorough understanding of climate transition is critical for formulating effective adaptation strategies. This paper provides an overview of the status of climate change and adaptation in the agricultural sector in Sri Lanka. The review clearly indicates that climate change is taking place in Sri Lanka in terms of rainfall variabil...

  14. 76 FR 55673 - Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach...

    Science.gov (United States)

    2011-09-08

    ... AGENCY Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach... period for the draft documents titled, Vulnerability Assessments in Support of the Climate Ready... Partnership (EPA/600/R-11/ 058a) and Vulnerability Assessments in Support of the Climate Ready...

  15. Climate and Global Change

    International Nuclear Information System (INIS)

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  16. The changing climate

    International Nuclear Information System (INIS)

    A historical outline of climate changes is followed by a discussion of the problem of predictability. The main section goes into anthropogenic changes of the local (urban) and global climate, with particular regard to the greenhouse effect and its consequences in terms of human action. The author points out that today's climate problems should be discussed in a subject-centered and objective manner. (KW)

  17. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus th